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Let R be a skewring. An R -skewmodule M is an additive group with a left
action RxM — M , defined by (r,m)a rm , such that (1) (r+s)ym=rm+sm,
(2) r(m+n)=rm+rn and (3) (rs)m=r(sm) for all r,seRand m,neM .

A subgroup N of an R -skewmodule M is called a subskewmodule of M if for
all neN and reR , then rneN . Moreover, N is called a normal subskewmodule if
N is a subskewmodule of M such that N+m=m+N for all meM .

An R -skewmodule M is simple if {0} and M are only normal
subskewmodules of M .

Let M be an R -skewmodule. Normal subskewmodules M and M, of M are
said to be supplementary ifM =M @M , . A normal subskewmodule N of M is

called a direct summand if there exists a normal subskewmodule P of M such that
N and P are supplementary.

The main results of this research are follows:
Generalization the notion of the four Isomorphism Theorems, the Schreier’s theorem
and the Jordan H&&der theorem in module theory to skewmodules. Moreover we
obtain the following theorems:

Theoreml Let M be an R -skewmodule. If M is both artinian and noetherian, then
M has a composition series.

Theorem?2 Let M be an R -skewmodule. If M is the sum of a family of its normal
simple subskewmodules, then every normal subskewmodule of M is a direct
summand.
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CHAPTER 1

INTRODUCTION

A Construction of great versatility is that of a module over a ring. For this
research, we are interested in a more general structure. Sureeporn has been
introduced the concept of a skewring in [1]: A skewring is a ring dropping an
additively commutative property. An object analogous to a module over a ring
which is called a skewmodule can be defined over a skewring. Moreover, we study
which theorems in Module Theory can be generalized to skewmodules. In this
research,we study the theorems in [1], [2], [4] and [5].

There are four chapters in this thesis. In Chapter I, we introduce the concept
of a normal subskewmodule. We find that skewmodules can be studied in much
the same way as modules if we replace submodules in Module Theory by normal
subskewmodules.

In Chapter II, we give definitions, examples and prove some fundamental
theorems about skewmodules.

In Chapter I, we study the concept of the composition series and generalize
the four basic Isomorphism Theorems and the Jordan Holder Theorem to
skewmodules.

In Chapter IV, we give definitions and theorems related artinian and
noetherian skewmodules. Moreover, we prove the relation between artinian,

noetherian skewmodules and the composition series.



CHAPTER 11

PRELIMINARIES

In this chapter we give some definitions and theorems which are used in this

thesis. Moreover, some examples are given.

Notation My general notation conventions are as follows:

N is the set of all natural numbers,
Og (or 0) is the additive identity of a group (R, +),

A C B (or B D A) means that A is a proper subset of B.

Definition 2.1. A triple (R, +,-) is a skewring if
(1) (R,+) is a group,
(2) (R,-) is a semigroup and

(3) x(y + 2) =2y +zz and (y + 2)r = yx + zx for all x,y,z € R.

Definition 2.2. Let R be a skewring. A left R-skewmodule M or a left
skewmodule M over R is an additive group M with a left action Rx M — M,
given by (r,m) +— rm, such that

(1) (r+s)m =rm+ sm,

(2) r(m +n) =rm+rn,

(3) (rs)m = r(sm)
for all r,s € R and all m,n € M. If R has a multiplicative identity 1, we define

1m =m for all m € M.



A left R-skewmodule M is called a left R-module or a left module over R
if M is an abelian group.

A right R-skewmodule or a right skewmodule over R and a right
R-module or a right module over R are defined in the similar way by replacing
a left action with a right action with corresponding properties to (1)—(3). In what
follows, we make the convention that the term R-skewmodule always means a left

R-skewmodule.

Remark 2.3. Let M be a skewmodule with additive identity 0,; over a skewring
R with additive identity 0g. It is easy to prove that, for all r € R, m € M,

70y = 057, Ogm = 05 and (—r)m = —(rm) = r(—m).

Lemma 2.4. Let M be an R-skewmodule. For r,s € R and m,n € M,

rm -+ sm=sm -+ rn.

Proof. Consider

(r+s)(m+n)=r(m+n)+s(m+n)=rm+rn+sm+sn (1)

(r+s)(m+n)=(+s)m+(r+s)n=rm+sm+rn+sn (2)

By (1); (2) and the definition of an R-skewmodule, we obtain that rn 4+ sm =

sm+rn.

O

Remark 2.5. Let R be a skewring and M an R-skewmodule. The following
statements hold.
(1) RM = {>_rim; | r; € R,m; € M,n € N} is a module over R.
i=1

(2) If RM = M, then M is a module over R.

3



(3) If R has a multiplicative identity, then R is a ring, and M is an

R-module.

Proof. (1) Apply Lemma 2.4 to prove the commutativity of addition.

(2) The result is obtained immediately from (1).

(3) If R has a multiplicative identity, Sureepron proved that R is a ring in [1],
then by (2), we obtain that M is an R-module.

]

Lemma 2.6. Let R be a skewring and M an R-skewmodule. If M is finite and
there exists an r € R\ {0} such that rm # 0 for all m € M\ {0}, then M is a

module over R.

Proof. Assume that M is finite and there exists an r € R \{0} such that rm # 0

for all m € M\{0}. Define f : M\{0} — M\{0} by
f(m) =rm for all m e M\{0}.

To show that f is 1-1, let - my,my € M\ {0} be such that f(m,) = f(m2). Then
rmy = rmg. Thus r(m; —my) = 0. By the assumption, we have m; — my = 0,
i.e., my = mgy. Hence f is 1-1. Since M is finite, f is onto. Then RM = M. By

Remark 2.5(2), Mis a module over R.

Definition 2.7. Let R be a skewring and I a nonempty subset of R.

(1) If I is a skewring under the operations of R, then I is a subskewring of
R, denoted by I < R.

(2) If I is a subskewring of R and {yz |z € ,y€e R} C I ({ay |z € I,y €
R} C I), then [ is a left (right) ideal of R.

If I is both a left and right ideal of R, then [ is a two-sided ideal or ideal

of R.



(3) If I is a subskewring of R and {r+x—r |r€ R,z € [} C I, then I isa
normal subskewring of R.

(4) If I is a left (right) ideal of R and [ is a normal subskewring of R, then
is a normal left (right) ideal of R.

If I is both a normal left and right ideal of R, then [ is a normal

two-sided ideal or normal ideal of R.

Definition 2.8. Let R and S be skewrings and f : R — S. f is called a

homomorphism if and only if for all z,y € R,

fle4y) = f(o) + f(y) and f(zy) = f(z)f(y).

Let R be a skewring and I a normal ideal of R. Let R/I = {x+ I | x € R}

and define the binary operations +, - on R/I as follows : for all z+1,y+1 € R/I,

(x+D)+(y+I)=x+y+ 1 and

(g Dy ) ="y

We, now, give some examples of skewmodule.
Example 2.9. Any a skewring R is‘an R-skewmodule.

Example 2.10. If S is a skewring and R a subskewring of S, then S is an

R-skewmodule with rs(r € R,s € S) being the multiplication in S.

Example 2.11. If ] is a left ideal of a skewring R, then [ is a left R-skewmodule

with ra(r € R,a € I) being the multiplication in R.

Example 2.12. If [ is a normal left ideal of a skewring R, then R/I is an

R-skewmodule with

r(f+1)=rF+1 whererT e R.



Example 2.13. Let R and S be skewrings and ¢ : R — S a homomorphism.
Then every S-skewmodule M can be made into an R-skewmodule by defining
rm(r € R,m € M) to be o(r)m.

To prove this, let r,r1,r9 € R and m, mq, my € M. We obtain that
(ritro)m = (p(ri+r2))m = (@(r1) +@lre))m = o(ri)m+p(ro)m = rim+rym,
r(my +me) = @(r)(my + ma) = @(r)m; + @(r)ms = rmy + rmy and
(rira)m = @(rire)m = (p(r1)e(rs))m = ¢(r1) (p(rz)m) = ri(rym). Then M is

an R-skewmodule.

Sureeporn introduced the next two examples for skewring and we continue

studying the same examples for skewmodules.

Example 2.14. Let (R,+,:) be the ring of all strictly upper triangular 3 x 3
matrices over R under the usual of addition and multiplication of matrix. Then
R?® = {0}. Define a binary operation ¢ on Rby a®b = a+b+ab for all a,b € R.
By [1], (R, &, -) is a skewring which is not a ring. Then from Example 2.9, (R, ®)

is an (R, @, -)-skewmodule.

Example 2.15. Let (G, +) be a nonabelian group, K an abelian subgroup of G
and X a nonempty set such that X MG = () and |.X| > 1.
Let Map (G, X, K)={f: GUX 5G| f|¢: G — K is a homomorphism}.

For all f,g € Map (G, X, K), define

(f +' g)(x) = f(x) 4+ g(z) and

(f-9)(x) = (fog)(x)

for all z € GU X. Then



(1) (Map (G, X,K),+, ) is a skewring which is not always a ring,
(2) G is a Map (G, X, K)-skewmodule with fa defined to be f(a) for all
a€ G, feMap (G, X, K).
The first result is already proved in [1]. Next, let a,b € G and
fyg € Map (G, X, K). We obtain that
2.1) (f + g)a = (f +'g)(a) = f(a) + g(b) = fa + ga.
(2.2) fla+b) = fla)+ f(b) = fa+ fb.
The second equality holds sinee a,b € G and f|g is a homomorphism.
(2.3) (f - 9)a = (f 09)(a) = f(9(a)) = f(ga).
Therefore, G is a Map (G, X, K )-skewmodule.

We now define a homomorphism from an R-skewmodule to another.

Definition 2.16. If M and N are R-skewmodules, then a mapping ¢ : M — N
is called an R-homomorphism if

(1) ¢(m +n) = p(m) + p(n) and

(2) p(rm) = re(m)
for all r € R and m,n € M.

An R-homomorphism ¢ is called an R-monomorphism, R-epimorphism,
R-isomorphism if it is injective, surjective, bijective, respectively. In the case ¢
is an R-isomorphism, M and N are said to be isomorphic, denoted by M = N.
The kernel of ¢ is its kernel as on R-homomorphism of modules; namely
Kerp ={m € M | ¢(m) = 0}. Similarly the image of ¢ is the set
Imp ={ne N | ¢(m)=n for some m e M}.

If o : M — N is an R-homomorphism, then ¢ is a group homomorphism of
(M,+) into (N,+), so

(1) ¢(0n) =0n

(2) ¢(—m) = —p(m) for all m € M.

7



Example 2.17. Obviously, the zero map from M into M’ and the identity map

on M are R-homomorphisms.

Definition 2.18. A subgroup N of an R-skewmodule M is an
R-subskewmodule, denoted by N < M, is stable under the action of R on M

in the sense that if n € N and r € R, then rn € N.

For simplicity we use the term subskewmodule instead of R-subskewmodule.

Remark 2.19. It is easy to show that a nonempty subset N of an R-skewmodule
M is a subskewmodule of M if and only if
(1) ny —ny € N for all ny,ny € N, and

(2) rme N for all 7 € R,n € N.

Example 2.20. Any R-skewmodule M has trivial subskewmodules M and {0}.

Lemma 2.21. (1) If M and M" are R-skewmodules and [ : M — M’ an
R-homomorphism, then Ker f < M and Im f < M.
(2) If {M; | i € I} is a family of subskewmodules of an R-skewmodule, then

iel

Theorem 2.22. (Modular Law) If M is an R-skewmodule and if A, B,C are

subskewmodules of M with C'C A, then AN (B+C)=(ANB)+C.

Proof. Let M be an R-skewmodule. Assume that A, B, C' are subskewmodules of
M with C' C A. Since C' C A, it follows that A+C' = A. Now (ANB)+C C A+C
and (ANB)+C C B+C. Thus (ANB)+C C (A+C)N(B+C) =AN(B+C).

Next, let a € AN(B+C). Then a = b+cfor some b € B,c € C. Since C C A, we



have c € A. Thenb=a—c € A, thatisbe€ ANB. Thusa =b+c € (ANB)+C.

Therefore AN (B+C)=(ANB)+C.
L

Definition 2.23. A subskewmodule N of an R-skewmodule M is a normal

subskewmodule, denoted by N << M, if N +m = m + N for all m € M.

Remark 2.24. Let M be an R-skewmodule. The followings are equivalent.
(1) N is a normal subskewmodule of M.
(2) m+ N —m = N for allm € M.

(3) m+ N —m C N for all m € M.

We can see that the skewring and skewmodules in Example 2.15 are significant
and interesting. From this example, we shall give various examples of definitions

given previously.
Example 2.25. It is clear that ((1 2)) is an abelian subgroup of Ss. Let X = {a}
be such that a ¢ S3. Then S3 M X = (). Tt is easy to check that
R =Map (S5, {a},{(1.2)))
={¢:S3U{a} — S5 | ¢ls, : 53 — {(1 2)) is a homomorphism}

=i i€ {1,2,...,12}} ‘where

(1), if z € 55
p1(x) = (1) for all x € S3U{a} pa(x) =
(12), ifzr=a
(1), if v eSs (1), if v €S
pa(r) = pa() =
(13), ifzx=a (23), ifx=a



pro(r) =

pn(z) =

p1a(z) =

p

\
p

(1),

(1),

(1 2)7

(132),

if z € Sy if © € S

(1),

(132),

we(T)
ifz=a

ifr=a
if x is even permutation and x=a
if z is odd permutation
if x is even permutation
if z is odd permutation and x=a
if x is even permutation
if x is odd permutation
ifez=a
if x is even permutation
if z is odd permutation
ifxr=a
if x is even permutation
if x is odd permutation
ifr'=a
if x is even permutation
if x 1s odd permutation

frx=a

Then R is a skewring which is not a ring since @45 # ©5@4.

Ry = {¢1,¥s5, v} is a subskewring of R which is a ring. Moreover, R; is a left

ideal of R, but it is not a right ideal because 50 19 = @2 & R1. {1, P2, 7, P8}

is an ideal of R which is a ring and Ry = {©1, 2, ©3, @4, ©5, 6} is a normal ideal

10



of R which is not a ring. Moreover, R; is a normal ideal of Ry, but it is not
normal ideal of R since p7ps5p7 = p12 ¢ R.
We obtain that S5 is an R-skewmodule which is not a module and R is an

Ry-skewmodule. Moreover, Az is a normal subskewmodule of Sj.

Example 2.26. N = {(1),(12)(34),(13)(24),(14)(23)} is an abelian subgroup
of Sy. Let X = {a} be such that a ¢ Ss. Then Map (S4, {a}, N) is a skewring
which is not a ring and S, is a Map (S, {a}, V)-skewmodule. Moreover, Ay is a
normal subskewmodule of Sy over Map (Sy, {a}, N).

((1 23 4)) is a subskewmodule of S; over Map (S4, {a}, N), but it is not a

normal subskewmodule since (1 342)(1432)(1342)=(34)¢((1234))

Lemma 2.27. (1) If M and M’ are R-skewmodules and ¢ : M — M’ an
R-homomorphism, then Kerp <1 M and ¢ is a monomorphism if and only if
Ker ¢ = {0}.

(2) If {M; | i € I} is a family of normal subskewmodules of an R-skewmodule

M, then (| M; < M.

il

Definition 2.28. Let M be ‘an R-skewmodule and X C M. The intersection of
all normal subskewmodules of M containing X is called a normal
subskewmodule generated by X. If X is finite, and X generates the
skewmodule M, M is said to be finitely generated. If X = (), then X clearly
generates the zero skewmodule.

If {M; | i€ I} is a family of normal subskewmodules of M, then the normal

subskewmodule generated by X = | M; is called the sum of the
i€l

11



skewmodules M;, which is denoted by > M;. If I = {1,2,...,n} , then the sum
iel

OfMl,MQ,...,Mn 15M1+M2++Mn

Lemma 2.29. Let M be an R-skewmodule. If P and N are subskewmodules of
M such that P is normal, then the following statements hold.

1) P is contained in N implies that P is a normal subskewmodule of N.

2) PN N is a normal subskewmodule of N.

(1)
(2)
(3) N + P is a subskewmodule of M.
(4)

4) N is normal implies that /N 4+ P is a normal subskewmodule of M.

Proof. Let M be an R-skewmodule. Assume that P and N are subskewmodules
of M such that P is normal.

(1) The proof is obvious.

(2) Clearly, PN N < N. Let n € Nyke€ PN N. Then n+k —n € N since
N <Mandn+k—ne Psince Pa4M. Thusn+k—n € PNN. Hence PN N
is a normal subskewmodule of V.

(3) Notice that N + P # () since 0 € N+ P. Let n+p,n'+p € N+ P be
such that n,n’ € N and p,p’ € P. Then (n+p)—(n'+p)=n+p—p —n' =
n+(p—p)—n"€ PCN+ P since P<q M. Next, let € R. Then r(n+p) =
rn+rp € N+ P. Hence N + P is a subskewmodule of M.

(4) By (3), it is already proved that N + P < M. Let m € M. Then

(N+P)+m=N+(P+m)
=N+ (m+P)
=(N+m)+P
=(m+N)+P

=m+ (N + P).

12



The second and the fourth equalities hold since P <t M and N <1 M, respectively.
Hence N + P is a normal subskewmodule of M.

]

Theorem 2.30. Let N be a normal subskewmodule of an R-skewmodule M and
M/N = {m+ N | m € M} the set of all cosets of M by N. Then M/N is an

R-skewmodule relative to the addition and sealar multiplication defined by

(x+N)+ (y+N)=(z+y)+N  and

r@c4+N)y=rz+ N

for all z,y € M,r € R.

Proof. First, we prove that these are indeed well-defined operations. Let
my, ma,my,my € M be such that m; + N = m| + N and mg + N = m/,, + N.
Then m; = mj +n and my = mb + n for some n,n € N. Thus my + my =
(m}+n)+(my+n) = mi+(n+mb)+7 = mi +mh+n+n for somen € N since
N <M. Thus my +msy € (m} +mb)+ N. Hence (my +me)+ N = (m)+mj})+N.
Let € R. Then rm; = r(m} +n) = rm} +rn € rm| + N since N < M.
Hence rm; + N = rm} + N. Therefore these operations are well-defined. It is
straightforward that M /N is an R-skewmodule.

]

Definition 2.31. Let N be a normal subskewmodule of an R-skewmodule M.
The R-skewmodule M /N defined in Theorem 2.30 is called the quotient
skewmodule of M by N.

The map 7 : M — M/N |, defined by n(z) = + N for all x € M, is called

the canonical projection. It is an epimorphism with kernel N.

13



Definition 2.32. Let M be an R-skewmodule. M is simple if {0} and M are

only its normal subskewmodules.

Lemma 2.33. Let M be an R-skewmodule. If M = Rz = {rx | r € R} for every

nonzero x € M, then M is simple.

Proof. Assume that M = Rz for all z € M\ {0}. Let N be a nonzero normal
subskewmodule of M and n € N\{0}. We obtain that M = Rn C N. Thus
M = N. Hence M is simple.

]

Lemma 2.34. Let M and N be R-skewmodules and f : M — N a nonzero

R-homomorphism. If M is simple, then f is a monomorphism.

Proof. Let f : M — N be anonzero R-homomorphism. Assume that M is simple.
Since f is a nonzero mapping, we obtain that Ker f # M. Hence Ker f = {0}

since Ker f <« M and M is simple. Therefore f is a monomorphism.

Lemma 2.35. Let M and M’ be R-skewmodules and ¢ : M — M’ an
R-homomorphism. Then the following statements hold.

(1) If N isa subskewmodule of M, then [N} is a subskewmodule of M.
Hence Im ¢ is a subskewmodule of M’.

(2) If ¢ is an epimorphism and N is a normal subskewmodule of M, then
¢[N] is a normal subskewmodule of M’. Hence ¢[N] is a normal subskewmodule
of Im .

(3) If NV is a subskewmodule of M, then ¢! (¢[N]) = (Ker ¢) + N. Moreover

if N contains Ker ¢, then ¢! (p[N]) = N.
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(4) If N” is a subskewmodule of M’, then ¢ '[N'] is a subskewmodule of M
containing Ker .
(5) If N” is a normal subskewmodule of M’, then ¢~![N’] is a normal

subskewmodule of M containing Ker ¢.

Proof. Let M and M’ be R-skewmodules and ¢ : M — M’ an R-homomorphism.

(1) Assume that N is a subskewmodule of M. Then @[N] # () since
©(0) = 0ppr. Let x,y € @[N]. Then ¢(a) = z and ¢(b) = y for some a,b € N.
Thus x —y = ¢(a) =(b) = pla —b) € p[N|. Let r € R. Then rz = ry(a) =
p(ra) € p[N]. Hence p|N] is a subskewmodule of M".

(2) Assume that @ is an epimorphism and  is a normal subskewmodule of M.
By (1) we have ¢[N] < M'. Let x € @[N] and m" € M'. Then ¢(a) = z for some
a € N. Since ¢ is onto, p(m) = m! for some m € M. It follows that m+a—m € N
since N QM. Thus m’ +x —m' = ¢(m) + p(a) — o(m) = p(m+a—m) € p|N].
Hence ¢[N] is a normal subskewmodule of M.

(3) Assume that N-is a subskewmodule of M. To show that ¢~ (¢[N]) =
(Ker )+ N, first, let a+b € (Ker¢)+ N be such that a € Ker p and b € N. Then
¢(a) = 0, so that p(a+b) = ¢(a)+¢(b) = ¢(b) € ¢[N]. Hence a+b € ¢ (¢[N]).
This shows that (Ker )+ N C ot (p[N]). Next, let '€ ¢~ (¢[N]). Then
o(x) € p[N], so p(x) = p(n) for some n € N. Thus p(x —n) =0,1ie.,x—n €
Ker ¢. Hence z = (z—n) +n € (Ker)-+N. Therefore o (¢[N]).C (Kerp)+N,
so that ¢~ (¢[N]) = (Kerp) + N. Then if N contains Ker ¢ then it is obvious
that ¢~ ([N]) = N.

(4) Assume that N’ is a subskewmodule of M’. Let x € Ker . Then ¢(x) =
0 € N, so that = € ¢ ![N]. Hence Kerp C ¢ '[N']. Let x,y € ¢ '[N'] and
r € R. Then p(z),p(y) € N'. So that p(x —y) = () — p(y) € N’ since

N' < M'. Hence z —y € ¢ '[N']. Next, p(rz) = ro(z) € N’ since N' < M'.
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Then rz € ¢~ ![N’]. Therefore p~![N’] is a subskewmodule of M.

(5) Assume that N’ is a normal subskewmodule of M’. By (4), we already
proved Kerp C o '[N'] < M. Let x € ¢ '[N'] and m € M. Then ¢(z) € N'.
Since N’ <« M" and ¢(m) € M, it follows that ¢(m) 4+ ¢(x) —¢(m) € N'. Hence
o(m—+z—m) = p(m)+p(x)—p(m) € N'. Thus m+z—m € p '[N']. Therefore

¢ '[N’] is a normal subskewmodule of M.
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CHAPTER III

JORDAN HOLDER THEOREM

In this chapter, we discuss the basic [somorphism Theorems and
generalize Schreier’s Theorem and Jordan Hoélder Theorem of modules to

skewmodules.

Theorem 3.1. Let M, M', N, N' be R-skewmodules and f: M — N an
R-homomorphism.

(1) If g : M — M’ is an epimorphism with Ker g C Ker f, then there
exists a unique R-homomorphism A : M’ — N such that f = h o g. Moreover,
Ker h = g[Ker f] and Im A = Im f, so that A is a monomorphism if and only if
Kerg = Ker f and h is an epimorphism if and only if f is an epimorphism.

(2) If g : N' — N is a monomorphism with Im f C Im g, then there
exists a unique R-homomorphism h : M — N’ such that f = g o h. Moreover,
Ker h = Ker f and Im h = g~ ![Im f], so that h is a monomorphism if and only if

f is a monomorphism and A is an epimorphism if-and only if Im g = Im f.

Proof. (1) Assume that g : M — M" is an_epimorphism with Ker g C Ker f. For
each m’ € M’, there exists m € M such that g(m) = m' since ¢ is onto. Then

we define h : M’ — N by
h(m') = f(m) for allm’ € M'.

To show that h is well-defined, let my, my € M be such that g(m;) = g(ms).
We must show that f(m;) = f(m2). Since g(my — ma) = g(m1) — g(me) = 0,

my —my € Kerg C Ker f. Hence f(m; —msy) = 0 and then f(my) = f(my).



Thus h is well-defined, and it is clear that f = hog. Moreover, it is easy to prove
that h is an R-homomorphism and it is unique.

Next, we show that Kerh = g[Ker f]. Let z € Kerh C M'. Then h(z) =0
and, since g is onto, g(m) = x for some m € M. Thus f(m) = (ho g)(m) =
h(g(m)) = h(z) =0, i.e., m € Ker f. Hence x = g(m) € g[Ker f]. Now, let
y € g[Ker f]. Then g(z) =y for some = € Ker f. Thus h(y) = hog(x) = f(z) =
0, so that y € Ker h. Hence Ker h = g[Ker f].

It is easy to prove that Im f = Im h, so that /& is an epimorphism if and only if
f is an epimorphism. Hence it remains to show that A is a monomorphism if and
only if Ker g = Ker f. First, assume that s is a monomorphism. Let x € Ker f.
Then h(g(x)) = f(x) = 0. Since h is a monomorphism, g(z) = 0. It follows that
x € Kerg. This shows that Ker f C Kerg. By the assumption, we can conclude
that Ker f = Kerg.

Conversely, assume that Ker f = Ker g and let © € M’ be such that h(x) = 0.
Since g is onto, there exists m € M such that g(m) = x. Thus f(m) = hog(m) =
h(x) = 0. Hence m € Ker f = Kerg, so that x = g(m) = 0. Therefore h is a
monomorphism.

(2) Assume that g : N’ — N is a monomorphism with Im f C Im g. We claim
that for each m € M there exists a unique m’ € N’ such that g(m’) = f(m).
Let m € M. Then f(m) € Im f € Im g." Thus there exists m' € N’ such that
g(m’) = f(m). Let n’ € N’ be such that g(n’) = f(m). Then g(n’) = g(m’).
Since ¢ is 1-1, it follows that n" = m’. Now, the claim is proved. Next, define
h: M — N' by

h(m) = g~ (f(m)) for all m € M.

By the claim, h is well-defined, and it is clear that f = goh. It is routine to check

that h is an R-homomorphism. To prove the uniqueness of h, let k : M — N’
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be an R-homomorphism such that f = go k. Then g(h(m)) = g(g*1 (f(m))) =
f(m) = g(k(m)). Since g is 1-1, h(m) = k(m). This proves that h = k.

To show that Kerh = Ker f, first, let x € Kerh. Then h(z) = 0. But
h(z) =g~ (f(z)), so that f(z) = g(h(z)) = g(0) = 0. Thus = € Ker f. Next, let
z € Ker f C M. Then f(z) = 0. We obtain that h(z) = g7 (f(z)) = ¢g7*(0) =0
since g is 1-1. Thus x € Ker h. This shows that Ker f = Ker h. Moreover, it is
easy to prove that Imh = ¢ '[Im f].

To prove that h is an epimorphism if and only if Im f = Im g, first, assume that
h is an epimorphism. By the assumption, we have that Im f C Img. Next, let
n € Img. Then g(n') =n for some n’ € N'. Since h : M — N'is an epimorphism,
there exists m € M such that h(m) = n’. But h(m) = g~ (f(m)), so that
f(m) = g(h(m)) = g(n') = n. Then n € Im f. We obtain that Im f = Img. It

is clear that if Im f = Im g, then A is an epimorphism.

Corollary 3.2. Let M, N be R-skewmodules and ¢ : M — N an

R-homomorphism. Then M /Ker ¢ = Im ¢.

Proof. Let m: M — M /Ker ¢ be the canonical projection. Then 7 is an
epimorphism and Ker 7 = Ker . By Theorem 3.1, there exists a unique
R-homomorphism h : M/Kery — N such that Imh = Im . Moreover, h is a

monomorphism since Kerm'="Ker ¢. Then M/Kerp = Imh =Tm p.

Corollary 3.3. Let M be an R-skewmodule and P and N normal

subskewmodules of M such that P C N. Then M/N = (M/P)/(N/P).
Proof. Define ¢ : M/P — M/N by

e(m+P)=m+ N forallme M.
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Since P C N, we obtain that ¢ is well-defined, and it is easy to prove that ¢ is
an epimorphism. Next, we show that Ker¢p = N/P. Let m € M be such that
N =¢(m+P)=m+ N. Then m € N. Thus m + P € N/P. This proves that
Kerg C N/P. Next, let n € N. Then p(n+ P)=n+ N = N. Thus

n+ P € Ker . Hence Ker ¢ = N/P. By Corollary 3.2, M/N = (M/P)/(N/P).

]

Corollary 3.4. Let M be an R-skewmodule and P and N subskewmodules of

M such that P is normal. Then N/NNP = (N + P)/P.

Proof. Assume that P and N are subskewmodules of M such that P << M. By
Lemma 2.29 (2) and (3), we have NN P <N and N+ P < M, respectively. Since

P < M, we obtain that P < (N + P). Next, define ¢ : N — (N + P)/P by
p(ny=n+ P forallneN.

Clearly, ¢ is an R-homomorphism. To prove that ¢ is onto, let k € N + P. Then
k=n+pforsomen€ Nandp € P. Thusk+ P = (n+p)+ P =n-+ P, so that
o(n) =n+ P =k+ P. Hence p is onto. It is easy to show that Kero = NN P.
By Corollary 3.2, NN NNP = (N + P)/P.

]

Corollary 3.5. Let M, N be R-skewmodules and L a normal subskewmodule of

N. If ¢ = M — N is an epimorphism, then M/o'[L] = N/L.

Proof. By Lemma 2.35 (5), ¢ ![L] is a normal subskewmodule of M. Define
f: M — N/L by
f(m)=¢(m)+ L forall m e M.
Since ¢ is an epimorphism, f is also an epimorphism. To show that
Ker f = o Y[L], let m € o [L]. Then ¢(m) € L. Thus f(m)=¢(m)+ L =L
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which is the zero in N/L. Hence m € Ker f. Next, let m € M be such that
L = f(m)=¢(m)+ L. Then p(m) € L. Thus m € ¢ '[L]. We obtain that

Ker f = ¢ ![L]. By Corollary 3.2, M/o'[L] = N/L.

The following theorem is generalized from the butterfly of Zazzenhaus

Theorem of modules.

Theorem 3.6. Let M be an R-skewmodule and IV, P, N'and P’ subskewmodules
of M such that N < P and N’ < P'. Then

(1) N + (PN N') is a normal subskewmodule of N + (P N P’);

(2) N' 4+ (P'N N) is a normal subskewmodule of N+ (P N P’);

B) [N+ (PnP)/IN+(PAN)Z [N+ (PNP)/IN'+ (P NN).

Proof. Assume that N, P, N'and P’ are subskewmodules of M such that N <1 P
and N’ < P’
(1) Clearly, N + (PN N’) is a subskewmodule of N + (PN P’). Let n+ k €

N+ (PNN')and n’'+1€ N+ (PN P') besuch that n,n’ € N, k € PN N’ and
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€ PN P'. Then

nM+D+n+k)—n'+)=n"+l+n+k—-1—1n
=n'+l4+n+n+k—1 for some m € N

=n'4+n'+1+k—1 for some n” € N

The second equality holds because N <1 P and £ — [ € P, and the last one
holds because N << P and [ € P. Since [,k € P, we have | + k — 1 € P,
and since k € N', | € P' and N' << P', we also have [ + k — [ € N’. Hence
W+D+n+k)—@+)=04+n")+((+k—1)e N+ (PNN’'). Therefore
N + (PN N’) is a normal subskewmodule of N + (PN P’).

(2) The proof is similar to the proof of (1).

(3) First, we prove that
[N+ (PnP)/IN+(PAN)=[PAP]/[(PNN)+(PNN).

Since PPN N C PN P and N < P, we obtain that P’ (0 V <« P N P’, Moreover,
since PNN' C PN P and N' < P’, we have PON'<< PN P'. By Lemma 2.29(4),
(PN N)+ (PN N’)is a normal subskewmodule of PN P'.

Let K = (P’ NN) 4. (P.0.N'). Define p :-N + (PA P') — (PN P')/K by
on+q)=q+ K forallne Nandgqe PN P.

To show that ¢ is well-defined, let ny,ny € N and ¢1,q2 € P N P’ be such that
ni+q = ng+q. Then ¢ —q =nyo—ny € (PNP)NN C PNN C
(PPAN)+ (PNN')=K. Thus ¢ + K = ¢ + K. Hence ¢ is well-defined.

To prove that ¢ is an R-homomorphism, let ny,ns € N, q1,q2 € PN P’ and

r € R. Then
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@((nl +q1) + (n2 + CJ2)) = (i + ¢ +n2+ q)
= p(ny +ny +q + @) for some n, € N
=(@+tq@ +K
= (@ +K) + (@ + K)

=1+ q)+ o+ q).

The second equality holds because ¢; € P, ny € N and N < P, and we also obtain
that go(r(nl + fh)) =o(rn +rq) =rqn + K =r(gn + K) = ro(ny + ¢1). Hence
© is an R-homomorphism.

For each ¢ € PN P, p(0 4 ¢q) = g + K since 0 € N, so that ¢ is onto. Next,
we prove that Kerp = N + (PN N'). Let n € N and ¢ € PN P’ be such that
o(n+q) = K. Then ¢+ K = ¢(n+q) = K. Thusqg€ K = (P'"NN)+(PNN’) C
N+ (PNN'). Next, let n+q € N+ (PNN") be such that n € N and ¢ € PN N'".
Then p(n+¢q) = ¢+ K =K sinceq=0+qg€ (P NN)+ (PNN')= K. Thus
n+ q € Ker ¢. Hence Ker p = N + (P N N'). By Corollary 3.2,

[N+ (PNP)]/IN+(PNN)=[PNP]/[(PPNN)+(PNN). Similarly, we
prove that [N'+ (PN P)]/[N"+ (P N] = [P P/[(P'NN)+ (PnN).
Therefore the result is proved.

O

Remark 3.7. Let M, N be R-skewmodules and L a normal subskewmodule of

M. If f: M — N is an R-isomorphism,then N/f[L] = M/L.
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The proof of the following two theorems are similar to the analogous Theorems

in Module Theory.

Theorem 3.8. Let M be an R-skewmodule and N a normal subskewmodule of
M. Then there is an inclusion-preserving bijection from the set of

subskewmodules of M/N to the set of subskewmodules of M containing N.

Theorem 3.9. Let M be an R-skewmodule and N a normal subskewmodule
of M. Then there is an inclusion-preserving bijection from the set of normal
subskewmodules of M/N to the set of normal subskewmodules of M containing

N.

Definition 3.10. Let M be an R-skewmodule and let
C:M=M2OM2D...2M andC": M =M, DM 2...2 M,

be two decreasing finite chains of subskewmodules of M. We say that C' is a
refinement of C if every member of C' occurs in C’; if C' # C’, then C is a

proper refinement of C'.

Definition 3.11. Let M be an R-skewmodule. Afinite chain of subskewmodules
M = My 2 M, D ... 2D M, is called a finite subnormal series of M if M;<1M,;_,
foralle=1,2,...,r.

Let M = My D M; O ... 2 M, be a finite subnormal series of an
R-skewmodule M. The quotient skewmodule M; /M, is called the factor of the
series. The length of this series is the number of nontrivial factors M; /M.
A finite subnormal series such that M; << M for all i = 1,2,...r is said to be a

finite normal series.
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Definition 3.12. A strictly decreasing finite subnormal series
C:M=My,>M D...> M, = {0} is called a composition series of an

R-skewmodule M if C' has no proper refinement.

Definition 3.13. Let M be an R-skewmodule and

CCM:MoDMlD...DMr:{O} and
C': M =Mg>M;>...>M,=A{0}
two strictly decreasing finite subnormal series of M. Then C' and C’ are called

equivalent, denoted by C' = C’ | if r = s and there exists a permutation 7 of

{0,1,...,r — 1} such that M//M/ = M) /Mgy for alli =0,1,...,r —1.

Definition 3.14. Let M be an R-skewmodule and C : M = My 2 M; O ...
a chain of subskewmodules of M. Let r < ry < ... <1, < ... be a strictly
increasing sequence of natural numbers. Then the chain €’ given by

M, DM, 2...2 M, DO...is called a subchain of C'.

The following lemma. is generalized from. Schreier’s- Theorem of modules in

[5]-

Lemma 3.15. Any two strictly decreasing finite subnormal series of an

R-skewmodule M have equivalent refinements.

Proof. Let M be an R-skewmodule and

CZM:MQDMlD...DMT:{O} and

C':M=M,>M >...0OM,={0}
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two strictly decreasing finite subnormal series of M. Define

— — . ! _ / . !/
Mig=M; =My, ; My=M_=M_,,

M; = M+ (M;_y N M) and M, = M, + (M/_, N M)

J

forall i =1,2,...,r, forall j =1,2,...,s. Then we obtain

Ci M =My=Moy2M,12Msy2D...2O M ,=M =DMpy2
Mg’l 2 c. 2 Mm = {0} and
Co M =My =MD M3y 2M,2 .. DM, =M =MyD

M, D ... 2 ML, = {0}

We claim that ¢ and C5 are decreasing finite subnormal series of M. For

each ¢ =1,2,...,r, Theorem 3.6 shows that
MZ‘ + (Mi—l N M],) < ]VL o (Ali_l N Mj/'—l) since MJI < Mjl»_l.

Thus we have the claim for C;. Similarly, we have the claim for 5. Note that
C7 and Cjy are refinement of C' and C”, respectively. By Theorem 3.6, we obtain

that

MGy M; jy = [M; 4 (M _y'1 M)]/[M = (M QM)

~ [\

Co (M0 M, )] /M + (M0 M)

- Mg,‘+1,i—1/M]/'+1,z'
foralli=1,2,...,7rand j =0,1,...,s5—1. Hence it follows that M; ; = M; ;1 if
and only if M} ,,; ; = M}, ,. Let (' be a series obtained from C; by dropping

every skewmodules which is equal to its predecessor and C5 a series obtained in

the similar way to C from Cy. Hence Cq = Cl.
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The next theorem is generalized from Jordan Holder Theorem of modules in
[5].

Theorem 3.16. If an R-skewmodule M has composition series, then
(1) any strictly decreasing subnormal series of M is finite and admits a
refinement which is a composition series and

(2) any two composition series of M are equivalent.

Proof. (1) Let C} be a composition series of M and C' a strictly decreasing
subnormal series of M. We prove that C' is finite. Let Cy be a finite subchain
of C. By Lemma 3.15, there exist finite chains €| and C) such that C] and
C) are refinements of Cf and C%, respectively, and C] = C}. Since C] is a
composition series, (| = . Hence C) = . These equivalences show that C}
is a composition series and, also, it is a refinement of C'. Then C' is finite.

(2) By the definition of a composition series, any refinement is equivalent to

itself. Thus the theorem holds by Lemma 3.15.
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CHAPTER IV

ARTINTAN AND NOETHERIAN SKEWMODULES

In this chapter, we study artinian and noetherian modules in [2] and [4] and
generalize some theorems to skewmodules. Furthermore, we prove the relation

between artinian, noetherian skewmodules and the composition series.

Definition 4.1. An R-skewmodule )M is said to be artinian if for every
decreasing normal series M, O M, O ... , there exists an integer n such that
M; = M, for all 1 > n.

An R-skewmodule M is said to be noetherian if for every increasing normal

series M; C My C ..., there exists an integer n such that M; = M, for all i« > n.

Theorem 4.2. Let M be an R-skewmodule. Then M is artinian (noetherian) if
and only if for every nonempty collection of normal subskewmodules of M has a

minimal (maximal) element:

Proof. Assume that M is artinian and A a nonempty set of normal

subskewmodules of M. Then we choose N; € A. If N; is not minimal, then
there exists Ny € A such that Ny D N,. If we choose N; € A which is not
minimal, then there exists an N;;; € A such that N; D N, ;. After a finite step,
we obtain a minimal element of A, otherwise we would have a chain of normal
subskewmodules of M such that Ny D Ny D N3 DO ... which contradicts the

assumption that M is artinian.



Conversely, assume that every nonempty collection of normal subskewmodules
of M has a minimal element. Let Ny O Ny O N3 D ... be a decreasing normal
series of M. Then the set {Ny, N, ...} has a minimal element, say Nj. By the
minimality of Ny, we have Ny = Ny, for all i € N. Thus M is artinian.

]

Theorem 4.3. Let M be an R-skewmodule. If every normal subskewmodule of

M is finitely generated, then A is noetherian.

Proof. Let M; C M, C ... be an increasing normal series of M. Clearly,
L>J M; < M. Let P = L>J M;. By the assumption, P is finitely generated, say
:b; M1, Ma,y ..., M. Sinéelmj is an element of some M, for all j, there exists an
no € N such that m; € M, for all j = 1,2,..., k. Hence P C M,,. Thus, for
all [ > ng, we have M,, € M; by the hypothesis and M; C P C M,,. Then
M,, = M, for all | > ny. Therefore M is noetherian.

]

Theorem 4.4. Let N be a normal subskewmodule of an R-skewmodule M. If
M is artinian (noetherian), then the following statements hold.

(1) For every chain-Ny 2 Ny 2. o+ (N7 & No C-..+) of subskewmodules of N
such that N; << M for all © € N there exists a k € N such that N, = Ny; for all
1€ N.

(2) The quotient skewmodule M /N is artinian (noetherian).

Proof. Assume that M is artinian and NV is a normal subskewmodule of M.

(1) Let C' : Ny O Ny D ... be a chain of subskewmodules of N such that
N; << M for all + € N. Then C'is a decreasing normal series of M. Since M is
artinian, there exists a k£ € N such that N, = Ny, for all © € N.

(2) This follows immediately by Theorem 3.9. O
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Theorem 4.5. Let N be a normal subskewmodule of an R-skewmodule M. If

N and M/N are artinian (noetherian), then M is artinian(noetherian).

Proof. Assume that N and M /N are artinian. Let D1 O Dy O ... be a decreasing
sequence of normal subskewmodules of M. Let 7 : M — M/N be the canonical
projection. Then Dy NN O Dy NN D ... and n(D;) 2 7w(Dy) D ... are
decreasing sequences of normal subskewmodules of N and M /N, respectively.
By the assumption, there exists an ny € N such that D, "N = D,, N N and
7(Dy) = m(Dy,) for all n > ny.

We claim that D,, = D,, for all n > ny. Let n > ny. We know from the
assumption, D,, C D, . It remains to show that D,, C D,,. Let x € D,,,. Since
7(D,) = m(Dy,), there exists a y € D,, such that 7(z) = 7(y), that is, v —y €
Kerm = N. Sincey € D,, C D,,, it follows that z—y € D,,, NN = D,NN C D,,.
Thus z € y+ D,, = D,,. Hence D,,, C D,,. Thus we obtain the claim. This shows
that M is artinian.

The proof for the noetherian case is similar . O]

Theorem 4.6. Let M be an R-skewmodule. If M is both artinian and

noetherian, then M has a composition series.

Proof. Assume that M is both artinian and noetherian. Let C' be-the collection
of all normal subskewmodules of M that have a‘composition series. Clearly,
{0} € C. Thus C # (. Note that C' has a maximal element, say M*, since M is
noetherian. We now show that M* = M. Suppose that M* # M. Then M/M*
is not the zero skewmodule. Let M/M* = My/M* O My/M* D ... be decreasing
nonzero normal series of M/M*. Since M is artinian, so is M /M* by Theorem
4.4(2). Then there exists an integer p such that M,/M* = M,;/M* for all i € N.

We can choose M** <9 M such that M* C M** C M and M**/M* is simple. Since
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M* € C, it has a composition series : M* D My D My D ... D M} = {0}. Since
M**/M* is simple, M** D M* D M{ D M; D ... D M} = {0} is a composition
series of M**. Hence M** € C which contradicts the maximality of M*. Hence
M* = M, whence M has a composition series.

]

Theorem 4.7. Let M be an R-skewmodule. If M has a composition series which

is a normal series then M is both artinian and noetherian.

Proof. Assume that M has a composition series which is a normal series and let
n be its length. We prove that M is both artinian and noetherian by induction
on n. Clearly, if n = 0 then M = {0} and there is nothing to prove. Assume
that the result is true for all R-skewmodules having composition series which is
a normal series of length less than n > 1.

Let M be an R-skewmodule having a composition series which is a normal
series of length n, say M = My D M; D ... D M,y D M, = {0}. Then we

observe that
M/Mnfleo/MnleMl/Mnle...DMnfl/Mnflz{O} ..... @

By Corollary 3.3, (M;/M,_.) / (Myer /My, 1) = MMy foralli = 0,1,...,n—2.
Since M; /M, is simple, so is (Mi/Mn—l)/(Mi—i—l/Mn—l) and we also obtain that
the inclusions in the claim ® are strict. Then ® is a composition series which is a
normal series of M /M,,_; with length n—1. By the induction hypothesis, M /M,
is both artinian and noetherian. Since M = My > M; D ... D> M,,_1 D M, = {0}
is a composition series, M,,_1 is simple. Then M, is trivially both artinian and
noetherian. Since M/M,,_; and M,,_; are both artinion and noetherian and by

Theorem 4.5, we deduce that M is both artinian and noetherian.
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This then shows that the result holds for all skewmodules of length n and complete

the induction.

Theorem 4.8. Let M be an R-skewmodule. If M can be written as
M = M; + My + ...+ M, where each M; is artinian (noetherian) and M, < M,

then M is artinian (noetherian).

Proof. 1t is enough to consider the case n = 2. By Corollary 3.4,
M/M2 = (Ml —l- MQ)/MQ = Aifl/(Ml N Mg)

Since M is artinian, so is My /(M; N M) by Theorem 4.4 (2). Then M /M, is also
artinian. Since M, is artinian, by Theorem 4.5, we deduce that M is artinian.

]

Theorem 4.9. Let M be an R-skewmodule and f : M — M an
R-homomorphism. For each p € N, let a positive integer. Let [, = Im (f?) and
N, = Ker (f?). Then the following statements hold.
(1) I; = I implies that Iy + Ny = M = N; + I; and
N1 = No-implies that [; N-N;= {0}
(2) If M is artinian and I, < M for all p € N, then
(2:1) there exists an r € N such that M = I, + Ny, for all.k > r,
(2.2) f is a monomorphism implies that f is an epimorphism.
(3) If M is noetherian, then
(3.1) there exists an r € N such that I, N Ny = {0} for all kK > r,

(3.2) f is an epimorphism implies that f is a monomorphism.
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Proof. Assume that f : M — M an R-homomorphism. For each p € N, let
I, = Im (f?) and N, = Ker (f?).

(1) Assume that I = I,. Let x € M. Then there exists a y € M such that
F(&) = 2(9). So F(F(5)—) = [(5)— f(x) = 0 innplics that [(y) —x € Ker f =
N;. But z = f(y) — (f(y) — m) € I, + N;. Hence M = I} + N;. Similarly,
M = Ny + 1.

Assume that Ny = Ny, Let z € I1 N N;. That is, x € Im f N Ker f. Then
f(z) = 0 and = = f(a) for some a € M. Thus f*(a) = f(f(a)) = f(z) = 0.
Hence a € Ker f2 = N, = N, = Ker f. We obtain that f(a) = 0 and then
x = f(a) = 0. This shows that [; N N; C {0}. Therefore I; N N; = {0}.

(2) Assume that M is artinian and 1, < M for all p € N.

(2.1) We observe that [, D I, D ... is a decreasing normal series of M.
Since M is artinian, there exists an r € N such that I, = Iy for all & > r. We
apply (1) to f*. Then we have M = I} + Ny, for all k > r.

(2.2) Assume that f is a monomorphism. By the hypothesis and (2.1),
there exists an r € N such that M = [+ N,.. Since f is a monomorphism, so is f".
Hence N, = Ker (f")={0}. Then M =1I,. From M DL 2D ...2 1, =M,
it follows that M = I; = Im f. Thus f is an epimorphism.

(3) Assume that M is noetherian.

(3.1) We observe that N; € N, C ... is an'increasing normal series of
M. Then there exists an r € N such that Ny = Ny for all & > r. We apply (1)
to f*. So I, N N;, = {0} for all k > r.

(3.2) Assume that f is an epimorphism. By the hypothesis and (3.1),
there exists an r € N such that I, N N, = {0}. Since f is an epimorphism, so is
fr. Hence I, = M, then N, = {0}. From 0 C N; C N, C ... C N, = {0}, it

follows that Ny = {0}. That is, Ker f = {0}. Thus f is a monomorphism. O

33



Definition 4.10. Let M be an R-skewmodule and {M; | i € I} a family of normal
subskewmodules of M. Then M is called the direct sum of {M; | i € I}, denoted

iel
(1) for each m € M, there exists an m;, € M,

ins Where k = 1,2,... n, such
that m =m;, +m;, +... +m;, and
(2) for all 4, j € I, if ¢ # j, then M; N (55 M) = {0}.
I#1
Definition 4.11. Let M be an R-skewmodule. Then normal subskewmodules
M, and M, are said to be supplementary if M/ = M; @ M,. A normal

subskewmodule N of M is called a direct summand if there exists a normal

subskewmodule P of M such that N and P are supplementary.

Theorem 4.12. Let M be an R-skewmodule. If M is a sum of a family of
its normal simple subskewmodules, then every normal subskewmodule of M is a

direct summand.

Proof. Assume that (M;);cr is a family of normal simple subskewmodules of M
such that M = Z M;. We claim that for each normal subskewmodule N of M
there exists a Jlegl I such that M = N @& (@MZ) If N = M, then, clearly,
J = (.- Suppose that N c M. Then there elzi]sts a-k-€-I such-that M, ¢ N.
Since N.-0 My < M}, and My, is simple, we deduce that either N N M, = {0} or
NN M, = M. But M, € N, so that NN M, = {0}. That is, N + M, is a direct

sum. Let
A:{HQI‘N—l— ZMiisdirect}.
icH

We have just shown that A # (). Let C be a partially order on A. Let C be a

totally ordered subset of A and let K* = |J K. We claim that K* € A. To see
KeC
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this, we observe that if x € ) M;, then x = m;, +m;, +...+m;, where each i,
i€K*
belongs to some subset I; of C. Since C is totally ordered, all the set Iy, Is, ..., I,

are contained in one of them, say I,. Then NN Y M, = {0} since I, € A. Hence

i€l,
NN Y, M; CNnY, M;={0},sothat N+ > M, is adirect sum. This shows
i€K* i€ly e

that K* € A. Hence K* is an upper bound of C in A. By Zorn’s Lemma, A has
a maximal element, say J.

Next, we show that N @ (@M,) = M. Suppose that N ® (@Ml) C M.

iel icJ
Then there exists a j € Jsuch that M; € N @ (EB MZ) Since M is simple, we
ieJ
deduce that M; N <N@ (b ]Vf,-)) = {0}. Hence M; + (N@ (b Mz)) is a direct
i€J =

sum. Thus J U {j} belongs to A which contradicts the maximality of J. Hence

M =N & (@ M;). Therefore the result holds.

icJ
Corollary 4.13. Let M be an R-skewmodule. Then the followings are
equivalent.

(1) M is the sum of a family of normal simple subskewmodules of M.

(2) M is the direct sum of a family of normal simple subskewmodules of M.

Proof. (1)=-(2) This follows immediately by Theorem 4.12.

(2)=-(1) This is obvious. O

Theorem 4.14. Let M be an R-skewmodule. If M = M; & M. then

M/M, = M.

Proof. Let m : M — M, be a projection mapping. We claim that Kerm = M;.
Let x € Kerm C M. Then x = my + my for some m; € M; and my € M;. Thus
my = w(z) = 0. Sox = my € Myj. Then Kerm C M;. Moreover, w(x) = 0
for all x € M;. Thus x € Kerm. Now, the claim is proved. By Corollary 3.2,

M/M; = M. 0
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