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CHAPTER I

INTRODUCTION

This chapter describes the basic background on linear programming problems,
the duality theory and linear programming algorithms such as the simplex method

and the interior-point method.

1.1 Linear Programming Problems

A linear programming problem is an optimization problem with a linear
objective function and linear constraints. It arises frequently in Economics,
Engineering and Science areas such as the network flow problem, the scheduling

problem and the assignment problem [2,8].

1.1.1 Standard Form

There are many different ways to represent a linear programming problem.
In this thesis, we are interested in'solvinglinear programming problems using the

following standard form:

minimize cjTy + %o + ... + Cplp
subject to a1 + a2 + ... + A1,T, = by
U21T1 + QoZo + ... + ApTp = b2
(1.1)
A1 T1 + CmaZo + ... + GnTn = by,

Z1,Z2,--- ,Tn Z 0



where ¢1, ¢a, . . ., ¢, are the cost coeflicients for nonnegative variables z,, zo, ..., z,,
respectively, a;;, for ¢+ = 1,2,... ) m and 7 = 1,2,...,n, are the coefficients of
linear constraints and by, by, ... | b, are the right-hand-side values.

A linear programming problem is to find a specific nonnegative value for each
decision variable such that the objective function achieves its minimum while all
the constraints are satisfied.

Tic = (CryCayens s ca)Tyb = (b1, b, .. b)T

If we denote x = (z1,Z2,-.. ,Zp)
and A is a matrix [a;;] for e =1,2,...,mand j = 1,2,...,n then the above linear

programming problem can be written in the matrix notation as follows:

minimize = c¢Tx
subject to Ax=Db (1.2)
x> O

In this thesis, we assume that A has full row rank, i.e., all rows of A are linearly
independent.

In general, we can convert any linear programming problem into this standard
form. For the maximization of the objective function; we multiply the objective
function by —1 and change the maximization problem into the minimization
problem. To recover the-objective solution of the-original problem, we multiply

the objective value by -1, that is

T T

mazimize ¢ X = =minimize (—c’ x).

All linear inequality constraints in the < or > form can be converted to the
equality constraints by adding a slack variable or subtracting a surplus variable.

If the k' constraint is of the form

Qk1T1 + k2o + ..+ QpaTn < by,



then we add a slack variable sy > 0 to the left-hand-side of the inequality

constraint to get

Ar1T1 + QpoZo + ...+ QpnZyn + Sk = bi.

Similarly, if the £ constraint is of the form
Ap1T1 + QraXo + ...+ GpnZy > by,
then we subtract the left-hand-side by a surplus variable e > 0
01281 +0pa%y + ...+ QpenTy — €x = by

If z; > I, we replace z; by 7; + | where Z; > 0 in all constraints. Similarly, If
z; < u, we can replace z; by u —Z; where ; > 0. And if the j* variable is

. ! 1" 12
unrestricted, we replace z; by T~z where x; and z; > 0.

1.1.2 Feasible Domain, Optimal Solution, Polyhedral Set,

Convex Set and Extreme Point

Consider a linear programming problem in its standard form (1.2), we define
IF = {x € R"| Ax =b, x > 0} to be the feasible domain or feasible region of
the linear programming problem. If /' is not empty, then the linear programming
problem is said to be consistent. For a consistent linear programming problem
with a feasible solution x* € IF, if ¢Zx* attains the minimum value of the objective
function over the feasible domain [F', then we say x* is an optimal solution to the
linear programming problem.
A fundamental geometric entity occurring in linear optimization is the
hyperplane
H={xe€ R a'x=p}



whose description involves a nonzero n-dimensional column vector a and a scalar

B. A hyperplane separates the whole space into two closed halfspaces
Hp={xe R a"x < B}

and
Hy = {x € R"| a¥x > B}.

We define a polyhedral set or polyhedron to be a set formed by the intersection
of a finite number of closed halfspaces. If the intersection is not empty and
bounded, it is called a polytope. For a linear programming problem in its standard
form, if we denote A, to be the i** row of the constraint matrix A and b; the i**

element of the right-hand-side vector b, then we have m-hyperplanes
Hi:{XERn|AiX:bi}, fori:1,2,...,m

and the feasible domain F' = {x € IR"| Ax = Db, x > 0} becomes the intersection
of these hyperplanes and the first orthant of /R”. Notice that each hyperplane H;
is an intersection of two closed halfspaces (H;); and (H;)y and the first orthant of
IR™ is the intersection of n closed halfspaces {x € IR"| z, > 0} fori=1,2,...,n.
Hence the feasible domain F' is a polyhedral set.

We define S .C IR™ is a convez set if x and, y are.in S, then the line segment
connecting x and y is also in S. Every set defined by a system of linear constraints
is a convex set. Hence IF = {x € IR"| Ax =b, x >0} is a convex set.

A point x in a convex set F' is said to be an extreme point (or a vertex) of F
if x is not a convex combination of any other two distinct points in F'. In other
words, an extreme point is a point that does not lie strictly within a line segment
connecting two other points of the convex set.

A function f is convex on a convex set S if it satisfies

flaz+ (1 —a)y) <af(z)+ (1 —a)f(y)



forall 0 < a <1 and for all z,y € S. We say that a function f is strictly convex
if
floz + (1 —a)y) < af(z)+ (1 - ) f(y)
for all z # y and 0 < @ < 1 where z,y € S.
Theorem 1.1.1. Fundamental Theorem of Linear Programming [4].
For a consistent linear programming problem in its standard form with a feasible
domain JF' = {x € IR*|Ax = b, x > 0}, the minimum objective value of c’x over

IF" is either unbounded below or is achievable at least at one extreme point of IF'.

1.2 The Duality Theory

The notion of duality is one of the most important concepts in linear
programming problems. Basically, associated with each linear programming
problem (we call it the primal problem), defined by the constraint matrix A,
the right-hand-side b, and the cost vector ¢, there is a corresponding linear
programming problem (we call it the dual problem) which is constructed by the
same set of data A, b, and ¢. A pair of the primal and dual problems are closely
related. The interesting relation between the primal and the dual problem reveals
important insights into solving linear programming problems:

Consider a linear programming problem in its standard form

minimize c¢'Xx

subject to Ax =Db

and the corresponding dual problem will have the form



maximize bfw
subject to ATw <c

w unrestricted.

We call a minimization problem (P), as the primal problem and a maximization
problem (D), as the dual problem. We can write the dual problem in its standard

form as follows:

maximize blw
subject to ATw+s=c

s > 0, w unrestricted.

Theorem 1.2.1. Weak Duality Theorem [4,7,10]. Let x be a feasible
point for the primal problem and let (w, s) be a feasible point for the dual problem.
Then

cIx > blw.

Corollary 1.2.2 [4,7,10]. If x” is a feasible solution for the primal problem,
(w*,s*) is a feasible solution for the dual problem and c¢”x* = b7w*, then x* is
an optimal solution for the primal problem and (w*,s*) is an-optimal solution for
the dual problem.

Corollary 1.2.3 [4,7,10]. If the primal problem is unbounded below, then
the dual problem is infeasible. If the dual problem is unbounded above, then the

primal problem is infeasible.



Theorem 1.2.4. Strong Duality Theorem [4,7,10].

1. If either the primal or the dual problem has an optimal solution, then they

achieve the same optimal value.

2. If either problerh has an unbounded objective value, then the other has no

feasible solution.

Theorem 1.2.5. Karush-Kuhn-Tucker Optimality Conditions
(K-K-T Conditions) [4,7,10]. Given a linear programming problem in its
standard form, x* is an optimal solution for the primal problem if and only if|

there exist (w*,s*) such that
1. Ax* = b,x* > 0 (primal feasibility)
2. ATw* +s* = ¢, s* > 0 (dual feasibility)
3. (x*)7s* = 0 (complementary slackness).

In this case, (w*, s*) is an optimal solution for the dual problem.

1.3 The Simplex Method

The simplex method was proposed in the summer of 1949 by G.B. Dantzig.
[t is the most widely used method for solving a-linear programming problem.
When the simplex algorithm is applied to a nondegenerated problem, it moves
from one extreme point to another. If the current feasible solution is not an
optimal solution, the method selects and moves to an adjacent extreme point that
has a better objective value. By repeating this search, the simplex method will

eventually achieve an optimal value of the objective function.



1.4 The Interior-Point Method

The interior-point method is the new method for solving linear programming
problems which is bounded by the smaller computational complexity for the
large scale linear programming problem. The interior-point method starts at an
initial point within a feasible region. Then, at each iteration the interior-point
method searches for the direction which improve the objective value and satisfy

linear constraints, until achieve an optimal solution.

Figure 1 : The simplex method and the interior-point method

optimal solution optimal solution

(0)

X The simplex method The interior-point method

We are interested in three algorithms of the interior-point method, the
Karmarkar’s projective scaling, the primal affine scaling and the primal-dual
algorithms which will be described in Chapter II.

In Chapter III, we describe the design of our software and our numerical results
which we test with a small tested problems and MPS files.

The MPS files and small tested problems can be found in Appendix A and B.



CHAPTER II

THE INTERIOR-POINT METHOD

This chapter describes Karmarkar’s projective scaling algorithm, the primal
affine scaling algorithm and the primal-dual algorithm. It is known that
Karmarkar’s projective scaling algorithm and the primal-dual algorithm are the
polynomial-time algorithms while the primal affine scaling algorithm has not been

proved to be a polynomial-time algorithm yet.

2.1 Karmarkar’s Projective Scaling Algorithm

Karmarkar noticed two fundamental insights, assuming the feasible domain

1s a polytope.

1. If the current interior solution is near the center of the polytope, then it
makes sense to move in the direction of the steepest descent of objective

function to achieve a minimum value.

2. Without changing the problem, an appropriate transformation can be
applied to the solution space such that the current interior solution is placed

near the center of the transformed solution space.

With these two fundamental insights, the basic strategy of Karmarkar’s projective
scaling algorithm is straightforward. We take an interior solution, transform the
solution so as to place the current solution near the center of the polytope in the

transformed space, and then move it in the direction of steepest descent. Then
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take the inverse transformation to map the improved solution back to the original
solution space as a new interior solution. We repeat the process until an optimal

solution is obtained.

2.1.1 Karmarkar’s Standard Form

Following the basic strategy of the projective scaling, Karmarkar’s algorithm

has a preferred standard form for linear programming problem:

minimize ¢’x (2.1a)

subject to Ax =0 (2.1b)

e’x=1, x>0 (2.1c)

where A is an m x n dimensional matrix of full row rank, eZ = (1,1,...,1) is an

n—vector of all ones and ¢, x € IR".

A feasible solution vector x of the problem (2.1) is defined to be an interior
solution if every variable z; is strictly positive. Note from (2.1¢) that the feasible
domain is a bounded set, hence it becomes a polytope. There are two assumptions
for the Karmarkar’s algorithm.

(A1) Ae = 0, so that x(0) — e = (l 1

P ) is an initial interior solution.
n’'n

3|

(A2) The optimal objective value of problem (2:1) 1s zero.

2.1.2° The Simplex Structure

Expression (2.1¢) defines a regular polygon in the n-dimensional Euclidean
space, namely

A:{XEIR”]Z:Eizl, z; > 0}. (2.2)
i=1

For example, a unit simplex in R* is A = {1} which is the singleton.

In IR?, A is the line segment between the points (0,1) and (1,0).
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In IR?, A is the triangular area formed by (0,0,1), (0,1,0) and (1,0,0).

In IR*, A is the pyramid with vertices at (0,0,0,1), (0,0,1,0), (0,1,0,0) and (1,0,0,0).

n n
In IR™, A has n vertices, edges, facets and its center at e/n.
P n—1
We can show that the radius of the smallest circumscribing spheroid of A is given
vn 1

by R = Tgl and the radius of the largest inscribing in A is given by » =

v/ n{n—1) ’

Figure 2 : The simplex structure

e/n
r

o X\

2.1.3 Projective Transformation on the Simplex

Let X be an interior point of A, te,, @; > 0forj = 1,2, .. ,nwith 37 7; =1

and X be an n x n diagonal matrix

zZ; O 0
— 0 = 0
X = diag(X) =

00 ...z,

: : - . : - N
It is obvious that matrix X is a nonsingular matrix and its inverse matrix X — is
also a diagonal matrix but with 1/z; as its i** diagonal elements forz = 1,2,...,n.

We define a projective transformation Ty from A to A such that
X— —1
1

TY<X) = ———1
eTX 'x

, forx € A.
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2.1.4 Karmarkar’s Projective Scaling Algorithm

Consider a linear programming problem in Karmarkar’s standard form (2.1),
its feasible domain is a polytope formed by the intersection of the null space of
the constraint matrix A, i.e., {x|Ax = 0} and the simplex A in IR*. Let X > 0 be

an interior feasible solution, then the projective transformation Tg maps x € A

to
< -1
-
y = Tx (X) =
elX "%
and we can find x in terms of y by
Xy
£ ERS =
< () Xy

Then we have a corresponding problem in the transformed solution space as

follows:
minimize (c'Xy)/(e" Xy)

subject to AXy =0 (2.3)

ely =1,y >0.
Note that in the problem (2.3), the image of X, i.e., ¥ = Tx%(X) = e/n becomes a
feasible solution and is at the center of the simplex A. If we denote the constraint

matrix by

B =

el

then any direction d € JR™ in the null space of matrix B, i.e., Bd = 0, is a feasible

direction of movement for y. Since the distance from the center of A to boundary

1

/n(n-1)"

is given by the radius r = Therefore, if we denote the norm of d by ||d||

and 0 < «a < 1, then

d
yi =5 +ar (—) (2.4)
]

remains a new interior solution to the problem (2.3) and its inverse image

Xy new
-1 _ (63
Xzew = rI‘i (y"ew) = _eTXyanew
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becomes a new interior solution to the original problem (2.1). Since r > % we can

replace 7 in equation (2.4) by

¢ n A\ [l

for 0 < & < 1, to obtain a new interior feasible solution.

After determining the structure of the feasible directions in the transformed
space, we want to find a good feasible direction that eventually leads to an
optimal solution. Since y is at the center of A, it makes sense to move along
the steepest descent of the objective function. Although the objective function of
the problem (2.3) is a fractional linear function. Karmarkar pointed out that the
linear numerator function ¢? Xy could be a good indication of the reduction of
the objective function. Therefore, we take its negative gradient which is —c7X,
or equivalent to —Xc, as a good candidate. In order to keep feasibility, we project
the negative gradient into the null space of the constraint matrix B. We have the

projected negative gradient by the following formula
d = - [I- B"(BB")'B] Xc. (2.5)

Here we provide an iterative procedure for the implementation of Karmarkar’s

algorithm.

Step 1. (initialization) :
Set k = 0,x(® = e/n where n'is a number of variables in Karmarkar’s
standard form, choose « to lie between 0 and 1, € to be a small positive
integer.

Step 2. (optimality check) :
If ¢cTx®) < ¢ then STOP with an optimal solution x* = x*)

else go to Step 3.
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Step 3. (find a better direction):

X = diag(x™®)

AX
B =
eT
d® = —[1-B%BB7)"'B]Xc

Step 4. (find a new solution) :

d®
T s WG
nn \[[d®

Xy k+D)

k+1)
eT)_('y(k+1)

x ¢

Set k =k + 1 ; go to Step 2.

2.1.5 Converting to Karmarkar’s Standard Form

Consider a linear programming problem in its standard form

I

minimize  ¢*x
subject to Ax =b (2.6)
x > 0.

Our objective is to convert this problem into Karmarkar’s standard form, while
satisfving the assumption (Al) and (A2).
The key feature of Karmarkar’s standard form is the simplex structure. Thus

we want to regularize problem (2.6) by adding a bounding constraint

n
2.5 <Q
=1

for some positive integer ¢ derived from the feasibility and optimality

considerations. By introducing a slack variable z,,,, we have a new linear



programming problem:

minimize c¢Tx

subject to Ax=Db
e'X + 2 =Q
x>0, zp41 2 0.
In order to keep the matrix structure of A undisturbed for sparsity manipulation,

we introduce a new variable #,,, = 1 and rewrite the problem (2.7) as

minimize ¢’x (2.8a)
subject to Ax —bz,.2 =0 (2.8Db)
el X+ Tu41 — QTnyo =0 (2.8¢)
e'X + Zny1 + Tp2 =Q + 1 (2.8d)
2040, >0h 7., > 0. (2.8e)

To normalize (2.8d) for the required simplex structure, we can apply the
transformation z; = (Q + 1)&;, for j = 1,2,...,n + 2, to the problem (2.8). In

this way, we have an equivalent linear programming problem

minimize (@ + 1)cT%
subject to AX —bz,,, =0
e’X + fop1 — Qfnin2 =0 (2.9)
L o " N\
Y4B Q ST 2)A) )
X Z Oa -’j:n—H Z 0: -in+2 2 0.
Problem (2.9) is now in Karmarkar’s standard form. In order to satisfy assumption

(A1), we may introduce an artificial variable £, .5 with a large cost coefficient M
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and consider the following problem
minimize (Q + 1)cT% 4+ Mg,
subject to AxX — bZ,,2 — [Ae —Db|E,.3=0
eT% + dpi1 — Qipys — (N + 1 — Q)fnys =0 (2.10)
eT% + £pp1 o Epgot+ Eniz = 1
X220, Zp41 20, £op9> 0, Zrq3 > 0.
Note that x = e/(n + 3) is clearly initial interior feasible solution to the
problem (2.10). Moreover, at an optimal, we would have Z,,3 = 0.
To ensure the second assumption of Karmarkar’s standard form, we convert
problem (2.6) to have the optimal objective value is zero. We consider the dual

problem of the standard form

maximize bTw
subject to ATw +s=c (2.11)
s>0
where s is n-dimensional vector, w is an m-dimensional vector and unrestricted.
By the strong duality theorem, we know that ¢”x—b?w = 0 when the problem
is optimal, then we can write a new linear programming problem by
minimize - €’x — blw

subject to Ax=Db

(2.12)
ATw +s=c¢
x,s >0
and replace w = w' — w” where w/, w” > 0
minimize ¢’x — b7 (w' — w")
subject to Ax=Db
(2.13)

AT(wW —w')+s=c

x,s,w ,w">0.
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So that the problem (2.13) satisfies the second assumption of Karmarkar’s
standard form and then we can convert the problem (2.13) to the problem (2.10)
which satisfies two assumptions of Karmarkar’s standard form.

Example 1.1
Minimize —8z; — 10z9
subject to 2z, + 29 +x3 = 50
(2.14)
Ty + 2z9 4+ 24 = 70

Ty, T2, L3,Z4 2 0.

In this case,

-8
2 110 50 —10
A= = and ¢ =
1 2.0 1 70 0
0

Since problem (2.14) is not in Karmarkar’s standard form, we can convert problem
(2.14) to Karmarkar’s standard form. We start by consider the dual problem of

problem (2.14)

maximize 950w; + 70w,

subject to 2w, + wy + sy = —8
wy + 2wy + s9= —10
wy—+.83 =0
Wy + 54 =0
S1,89,83,84 > 0

wy, We unrestricted.
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Then we convert the above problem to the form of problem (2.12) as follows:

minimize —8z; — 10z — [50w; + 70ws,]

subject to 2z, + 29 + 23 = 50

T + 229 + x4 = 70

-8

2wy + wy + S
Wy +2w2 + 89 = —10

w; + 83 =0

Wy + 84 =0

Iy, T3, T3, T4,5],82, 53,84 > 0

wy, wy unrestricted.

- . .. . ! "
Since w; and w, are not strictly positive variables, we replace w; = (w; —w; ) and

7 1" I 1" 7 "
wy = (wy — wy) Where wy, w,, wy, wy > 0.

minimize

subject to

~8z; — 10z5 — [50(w; — wy) + 70(wy — w,)]
221 + 25 + 23 = 50

Ty + 2a5 + x4 =70

2(w; — w,) + (wy —wy) + 57 = —8

(W) — w)) + 2(wy — wy) + 55 = —10

(wy — W)+ 83 =10

(wo' —wy) +537=0

' " ' "
L1, T2, T3, L4, ujl) w1 , Woy Wo, 51, 52,53, 54 2 O

(2.15)



Let ~ ~ ~
21 1 000 O 0 00 00O ( 50
1 20100 O 0O 0 0 00 70
- 000021 -2 -1100TD0 - -8
A= ,b = ,
000012 -1 -201P00 —10
000O0O1O0 -1 0 0O0T10 0
000O0OO0O1 0 —-100601 0
T ' / " "
X = [ Ty To T3 Ty Wy Wy wy Wy S So S3 84 } )
and

T
6:[—8 ~10 0 0 —50.-70 50 70 0 0 O 0}

then, we add a bounding constraint
e’x < Q

for some positive integer ). By introducing a slack variable Z3, we have

minimize ¢’'X

subject to AX=b
ef'X+713=0Q
X > 0,713 > 0.

We introduce a new variable Z;4 =1 and rewrite the above problem as

minimize ¢’X

subject to AX — 6514 =0
eTi + 213 - QC/L\'M =0
8T2+513+1/E\14 :Q+1

X>0,713 >0,z > 0.

19
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We apply the transformation z; = (@ + 1), for j = 1,2....,14. In this way, we

have an equivalent problem

minimize (Q + 1)e7%
subject to A% — Ba’:m =={}
el 4+ 43— Qiyy=0
e + #1534+ &4 =1
x>0, £3>20, 7,4 > 0.
Then we convert this problem to satisfy the first assumption of Karmarkar’s
standard form by introducing an artificial variable Z15 with a large cost coefficient
M, we have
minimize (Q+ 1)eT% + M1;s
subject to A% — by — [.Ke - B]m"ls =0
ek + %15 — Qg — (12+1— Q)t15 =0 (2.16)
elX 4 213 + 14 + 15 = 1
X >0, 213 >0, 214 >0, 435 > 0.
Now, problem (2.16) is in Karmarkar’s standard form, we may rewrite the

matrix A and ¢ of problem (2.16) as follows

(@+1)c
¢ A 0 b . —(Ae—b) 0
A: ,é:
el 1 -Q —(12+1-0Q) 0
M

It’s obvious that %(®) = e/15 is an initial interior feasible solution to the problem
(2.16). Hence for Step 1, we can start with @ = 100, M = 1000, o = 0.99,

¢ =108 and



21

For Step 2, we have ¢7%(0) = 65.4667 > 107®. Therefore we have to find a better

solution. Then in Step 3, we compute

X = diag(%\?),

d® = —[I-BTBB") 'B]X¢
= [4.893,14.557, =2.208,7.320, —2.805, —2.922,1.347, 1.465, —1.444, —3.129,

—2.308, —2.07, =0.728, —5.501, —6.461].

For Step 4, we compute a new solution ;

oy e 099 d©
PV = | e
15 15 \[dO]

= {0.082,0.114, 0.059, 0.090, 0.057,0.057,0.071, 0.071,

0.056,0.059, 0.064, 0.062,0.048, 0.045]”
Xy
- eT Xy
= [0.082,0.114, 0.059, 0.090, 0.057,0.057,0.071, 0.071,

%(1) —

0.062,0.056, 0.059,0.064, 0.048,0.045]7.

Continuing this iterative process, Karmarkar’s algorithm will stop at the optimal
47 = 0.0990099, 73 = 0.2970297, £; = 0.53 x 107°, £; = 0.14 x 107°. Remember
that «; = (1 + Q)z; for j =1,2,...,4. Hence we have the optimal z} = 10, z5 =

30, z5 =0, z; = 0 to problem (2.14) with objective value = —380.
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2.2 The Primal Affine Scaling Algorithm

Let us consider a linear programming problem in its standard form:

minimize c¢fx
subject to Ax =Db (2.17)
x>0

where A is an m X n matrix of full row rank, ¢ and x are n-dimensional column
vectors, b is an m-dimensional vector.
The guiding principles for the primal affine scaling algorithm are two

fundamental insights from the Karmarkar’s algorithm, we repeat them here:

1. if the current interior solution is near the center of the polytope, then it
makes sense to move in the direction of the steepest descent of the objective

function to achieve a minimum value;

2. without changing the problem, an appropriate transformation can be
applied to the solution space such that the current interior solution is placed

near the center in the transformed solution space.

In this algorithm, we directly work on the standard form problem. The
simplex structure is no longer available, and the feasible domain could become
an unbounded polyhedral set. If the feasible domain is not unbounded, then the
feasible'domain is the intersection of the affine space {x € IR"|Ax = b} and the
positive orthant {x € IR"|x > 0}. It is obvious that the nonnegative orthant
does not have a real “center” point. However, if we position oursclves at the point
e=(1,1,...,1)T, at least we still keep equal distance from each facet, or “wall” of
the nonnegative orthant. As long as the moving distance is less than one unit, any
new interior point that moves from e remains in the interior of the nonnegative

orthant. Consequently, if we were able to find an appropriate transformation that



23

maps a current interior point to the point e, then, in parallel with Karmarkar’s
projective scaling algorithm, we can state a modified strategy as follows:

“Take an interior solution, apply the appropriate transformation to the
solution space so as to place the current solution at e = (1,1,...,1)7 in the
transformed solution space, and then move in the direction of the steepest descent
in the null space of the transformed explicit constraints, but not all the way to the
nonnegativity walls in order to remain as an interior solution. Then we take the
inverse transformation to map the improved solution back to the original solution
space as a new interior solution. Repeat this process until the optimality or the

stopping conditions are met.”

2.2.1 Affine Scaling Transformation on the Nonnegative

Orthant

Let X € IR" be an interior solution of the nonnegative orthant IR%, ie., z; > 0

for j =1,2,...,n and define X as in 2.1.3, i.e.,

Tyl 0
— 0 7 0
X =diag(X)=

0 0 ... .7, J

The affine scaling transformation is defined from the nonnegative orthant IR?} to
IR? by

y =T(x) = X 'x for x € A, (2.18)

Note that, we can find x in terms of its image y by the formula

x =T y) =Xy fory € R}. (2.19)
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2.2.2 The Primal Affine Scaling Algorithm

Suppose that X is an interior solution of the linear programming problem
(2.17), we can apply the affine scaling transformation T to map X to the center
e =(1,1,...,1)T in the transformed solution space. By the relationship x = Xy,
we have a corresponding problem in the transformed solution space as follows:

minimize (&)Ty
subject to Ay =b (2.20)
y=0
where & = Xc and A = AX.

In the problem (2.20), the image of X, i.e., ¥y = T(X) becomes e that keeps
unit distance away from the walls of the nonnegative orthant. We want to find a
direction dy which lies in the null space of the matrix A = AX for an appropriate
step-length o > 0, then the new point y"** = e + ady remains interior feasible
to the problem (2.20) and its inverse image x™% = T~!(y"*¥) = Xy™¥ becomes
a new interior solution to the problem (2.17).

Since our objective is to minimize the value of the objective function, we can
improve the objective value by moving the point ¥ in a direction of the steepest
descent. In other words, we; wantto project the negative gradient —¢& onto the
null space of the matrix A to create a good direction dy. In order to do so, we

first define the null space projective matric by
P=1-AT(AAT)'A =1- XAT(AX'AT)'AX.
Then, the moving direction dy, similar to (2.5), is given by
dy = P(—&) = — {I - XAT(AX2AT)‘1A§} Xe.

Now, we are in a position to translate, in the transformed solution space, the

current interior solution ¥ = e along the direction of dy to a new interior solution
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y™ > 0 with an improved objective value. In doing so, we have to choose an
appropriate step-length o > 0 such that y*** =¥y + ady > 0.

Notice that if dy > 0, then « can be any positive number without leaving
the interior region. On the other hand, if (dy); < 0 for some 4, then « has to be

smaller than
A\ 1
Sidy); YA

Therefore we can choose 0 < § < 1 and apply the minimum ratio test

)
o = min | (dy); < O, izl,?,...,n}
{—(dy)i g

to determine an appropriate step-length that guarantees the positivity of y™¢®.
Our next task is to take the inverse transformation to map y™* back to the

original solution space to obtain a new interior solution x"¢% by

xnew P (ynew) — Xynew
=X + aXdy
—%—aX [1 - X‘AT(AXQAT)-IAX] Xc
=% - aX’ [c— AT(AXAT) ' AX c|
=% - aX [c — ATw]
where
w = (AX AT)'AX c. (2.21)
Lemma 2.2.1 [4]. If there exists an X € {x € IR*|Ax =b,x >0} with dy > 0,
then the linear programming problem (2.17) is unbounded.
Lemma 2.2.2 [4]. If there exists an X € {x € JR"|Ax = b,x > 0} with dg = 0,
then the linear programming problem (2.17) is optimal.
Observation [4]. If X is actually a vertex point, then w = (AKQAT)”AXZC

is a dual vector. Hence we call w the dual estimates in the primal affine scaling
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algorithm. Moreover, in this case, the quantity
r=c—-ATw (2.22)

is a reduced cost vector.

Note that when r > 0, the dual estimate w becomes a dual feasible and
(%X)Tr = eTXr becomes the duality gap. Hence, if e Xr = 0 with r > 0, then X
is primal optimal and w is dual optimal.

Based on the above discussions, we outline an iterative procedure for the primal
affine scaling algorithm.

Step 1. (Initialization) :
Set k = 0 and choose x(®> 0 such that Ax!® = b,
choose ¢ to lie between 0 and 1, and € to be a small positive integer.
Step 2. Compute X = diag(x®) and w® = (AX"AT)'AX c.
Step 3. Compute r®) = ¢ — ATw(k),
Step 4. (Check for optimality) -
If r® > 0-and eTXr® < ¢
then STOP with x%*) is primal optimal and w'*) is dual optimal.
Otherwise, go to the next step.
Step 5. (Compitte the ditection): d{) = —Xrk):
Step 6. (Check for unboundedness and constant objective value j :
If dg,k) > 0, then STOP and The problem is unbounded.
If d¥) = 0, then STOP with x*) is primal optimal solution.
Otherwise, go to the next step.
Step 7. (Compute the step-length):

a:mm{ )(dg,k))]-<0, 7=12,...,n }

I
k
—(a{y;

Step 8. (Move to a new solution):

x(k+1) = (k) 4 afi_dg,k)
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and £k =k + 1 go to Step 2.
Lemma 2.2.3 [4]. If the linear programming problem (2.17) is bounded below
and its objective function is not constant, then the sequence {cTx*) | k =1,2,...}

is well defined and strictly decreasing.

2.2.3 The Initial Interior Feasible Solution

Consider a linear programming problem (2.17), we want to find an initial
interior feasible solution x(®) for the primal affine scaling algorithm such that
Ax® = 0 and x@ > 0. Let us choose an arbitrary x(® > 0 and calculate
v=b—Ax® If v =0 then x(¥ is an initial interior feasible solution of the

primal affine scaling algorithm, otherwise, solve the following linear programming

problem
minimize
: x
Subject to  [A V] =b (2.23)
1
x>0, u2>20
(©) <(©)
with an initial interior feasible solution %(®) = = . Hence the
(0) 1
m

primal affine scaling algorithm can be applied to solve the problem (2.23). At

*

X
the optimal of the problem with an optimal solution X* = ,1f u* > 0, the

L
problem (2.17) is infeasible. If p* = 0 then the primal affine scaling algorithm

can be apply to solve the problem (2.17) and x* will become an initial interior

feasible solution which satisfies Ax* = 0.
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Example 1.2

Consider the same problem as in Example 1.1. In this case, we have

-8
2110 50 —-10
A= , b= , C=
1201 70 0
L 0 J

For Step 1, let us start with x(® =[5 5 5 5]7. We see that v = b — Ax® =
[30 50]7 # 0. Hence, we want to find an initial interior feasible solution by solving

the following problem

minimize 7%
subject to Ax =b (2.24)
x>0
N 0 X
where A =[A v], ¢= and % =
1 7
Now, the primal affine scaling algorithm can be apply to solve the problem
< <0
(2.24) with an initial feasible solution %(® = = such that
) 1
u

A% = b and we can choose d = 0.99. For Step 2, we compute

5 00 00 |
00 50 -0 0
X =diagx?) =10 0 5 0 0

and
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For Step 3, we compute
r® —¢& - ATw©®
= [—0.0157 0.0382 0.0022 — 0.0202 0.0561]T.

In Step 4, since some components of r{® are negative, go to Step 5. In Step 5, we

compute the direction with
d® = —Xr©® =[0.0787 0.190 —0.0112 0.1011 - 0.0562].

Since dg") # 0 and d§,°’ # 0, go to Step 7. then the step-length

o = min V.
—(@y);

Therefore, the new solution is

‘(d(yo))j <0, 7=12,...,5 } = 17.622

1 = %O £ oXdP =[11.93 21.83 4.01 13.91 0.01)7.

Continuing the iterative process, the primal affine scaling algorithm will stop

at the optimal ®* = [11.9747 22.0394 4.0110 13.9463 10 °]7(assume that
we accepted 107° = 0) to problem (2.24). Therefore, the primal affine scaling
algorithm can be apply to solve the problem (2.14) with an initial feasible solution

x(0 =[11.9747 22.0394 4.0110 13.9463]7. Hence, we have

11.9747 0 0 0
1A 0 22.039%4 0 0
X = diag(x'?) =
0 0 4.0110 0
I 0 0 0 13.9463 J

w® = (AX’AT)AX ¢ = [-3.0413 — 3.0844]T

and
)

=c— ATwO

=[1.1670 —0.7898 3.0413 3.0844]"
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since some components of r(® are negative. Hence, we compute the direction
A = —Xr® =[-13.9756 17.4070 — 12.1988 -~ 43.0166]"

then the step-length

99
azmin{%))—|(d§°))j<0, i=12...,5 }:0.02301
—(d,

3

Therefore, we have the new solution
xM = x© +6Xd{® = [8.1232 30.8686 2.8849 0.1394]"

Repeating the iterative process, the algorithm will achieve the optimal x* =

[10 30 0 0] with objective value = —380.

2.3 The Primal-Dual Algorithm

Consider a linear programming problem in its standard form:

minimize c¢fx
‘ (P)
subject-to "~Ax=Db
x>0
and its dual:
maximize bTw
(D)

subject to ATw +s=c¢

w unrestricted, s > 0.

We impose the following assumption for the primal-dual algorithm:

(A1) The set IFp = {x € R"|Ax = b, x > 0} is nonempty.
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(A2) The set Fp = {(w,s) € R™ x R"|ATw +s = c, s > 0} is nonempty.
(A3) The constraint matrix A has full row rank.
Under these assumptions, it is clearly seen from the duality theorem that problems
(P) and (D) have optimal solutions. Moreover, the sets of the optimal solutions
of (P) and (D) are bounded. Note that, for x > 0 in (P), we may apply the
logarithmic barrier function technique, and consider the following of nonlinear

programming problem (P,):

minimize ¢"x = py 7 logex;
subjectto  Ax=Db

x>0

where p > 0 1s a barrier or penalty parameter.

As p — 0, we would expeet the optimal solution of problem (P,) to converge
to an optimal solution of the original problem (P). Observe that the objective
function of the problem (P,) is a strictly convex function, hence problem (P,) has
at most one global minimum. The convex programming theory further implies
that the global minimum [7,10], if it exists, is completely characterized by the

Kuhn-Tucker conditions:

Ax=Db, x>0 (primal feasibility) (2.21a)
ATw + s=<¢, s > 0 (dual feasibility) (2.21b)
XSe ~ pe =0 (complementary slackness) (2.21c)

where X and S are diagonal matrices using the components of vectors x and s as
diagonal elements, respectively.

Lemma 2.3.1[4]. Under the assumptions (A1) and (A2), both problem (P,) and
system (2.21) have a unique solution.

Observe that system (2.21) also provides the necessary and sufficient conditions
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(the K-K-T conditions) for (w(p); s(u)) being a maximum solution of the following

problem (D,);

maximize bTw + 37" log.s;

D
subject to ATw +s=c¢ (Dw)
s > 0, w unrestricted.
Note that Equation (2.21¢) can be written componentwise as
z;5 L MOM N A NN (2.21¢)

Therefore, when the assumption (A3) is imposed, x uniquely determines w from
the Equations (2.21¢") and (2.21b). We let (x(u); w(u);s(p)) denote the unique
solution to system (2.21) for each u > 0. Obviously, we see x(u) € Fp and

(w(p);s(p)) € IFp. Moreover, the duality gap becomes

9(w) = c"x(u) = b w(p)

= (¢ — w(u)TA)x(p)

— s(1)Tx(n)

= np.
Therefore, as p.— 0, the duality gap g(u) converges to zero. This implies that
x(p) and (w(p);s(p)) indeed converge to the optimal solutions of problem (P)
and (D), respectively.
Lemma 2.3.2[4]. Under the assumptions (A1)-(A3), as 4 — 0, x(u) converges
to the optimal solution of (P) and (w(pu);s(u)) converges to the optimal solution
of problem (D).

For u > 0, we let I' denote the curve, or path, consisting of the solution of

system (2.21), i.e.,

T = {(x(p); wp); s(u))(x(p); w(p); s(1)) solves (2.21) for some p > 0} (2.22)
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As p — 0, the path ' leads to a pair of primal optimal solution x* and dual
optimal solution (w*;s*). Thus following the path I" serves as a theoretical model
for a class of primal-dual interior-point methods for linear programming. For this

reason, people may classify the primal-dual approach as a path-following approach.

2.3.1 Direction and Step-Length of Movement

Let us begin by synthesizing a direction of translation (moving direction)
(dx; dw;ds) at a current point (X; w;s) such that the translation is made along
the the curve I’ to a new point (x7%; w"¢¥;s""). This task is taken care of by
applying the Newton’s method to the system of equations (2.21a)-(2.21c).

Newton’s method is one of the most commonly used techniques for finding
a root of a system of nonlinear equations via successively approximating the
system by linear equations. To be more specific, suppose that F'(z) is a nonlinear
mapping from R™ to IR™ and we need to find a z* € IR" such that '(z*) = 0. By
using the multivariable Taylor series expansion (say at z = z), we obtain a linear
approximation:

F(z+ Az) ~ F(z) + J(Z)Az (2.23)
where J(Z) is the Jacobian matrix whose (7, 7)™ elementis given by

% Tha

and Az is a translation vector. As the left-hand side of (2.23) evaluates at a root

of F'(z) = 0, we have a linear system

3(Z)Az = —F(Z) (2.24)

new __

A solution vector of equation (2.24) provides one Newton iterate from z to z

Z + d, with a Newton direction d, and a unit step-length.
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Let us focus on the nonlinear system (2.21a-c). Assume that we are at a point
(X; w;s) for some & > 0, such that X, § > 0. The Newton direction (dy;d;ds)

is determined by the following system of linear equations:

A O O d, AX —b
0 AT 1 dy | =— | ATw+s5—c (2.25)
S O X d; XSe — pue

where X and S are the diagonal matrices formed by X and §, respectively.

Multiplying it out, we have

Ad, =t (2.26)
ATd, +d,=u (2.27)
Sd, 4 Xdg = v (2.28)

where t =b — AX, u=c— ATW — 5, and v = fie — XSe. Notice that if X € IFp
and (w;S) € Fp, then t = 0 and u = 0 correspondingly. To solve (2.25), we

multiply both sides of Equation (2.27) by AXS~!. Then we have
AXS'ATd,, = AXS™'u — AXS}d,. (2.29)
Now from Equation (2.28), we have
d, = X~'v — X"'8d,. (2.30)

We can denote p = X !v. Using Equation (2.30) and Equation (2.26) in the last

term of (2.29) would produce

AXS-ld, = AXS I (X"'v - X"!Sd,)
(2.31)
= AXS 'p - t.

Substituting Equation (2.31) back into Equation (2.29) yields

dy = [AXSTIAT] T (AXS ™} (uF — p) +t) (2.32)
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where XS~ is a positive definite diagonal matrix.

Once d,, is obtained, ds and d, can be readily computed by
d, =u— ATd,, (2.33)

and

d, = XS7Y(p—d,). (2.34)
Hence, for (X;W;5) € IFp X IFp, Equations (2.32-2.34) are simplified as

d, =< [AD?’AT]| "AS v
d, = -A%d, (2.35)
dy =S }v—Xd,)

where D2 = XS~1.

After obtaining a Newton direction, the primal-dual algorithm iterates to a new

point according to the following translation:
XTLC’LU — ‘)‘(* + ﬁdx

W = % + fd.,
s" =5 + fd,

where 8 is a step-length with- € (0, 1]. Unfortunately, we can often take only
a small-step-length-along the direction before violating the condition x™* > 0

new

and s > 0, hence, the Newton direction often does not allow us to make much
process toward a solution. Once the moving direction is obtained, we are ready

to move to a new point (x™¢%; wne%: g"¥) with x"* > 0 and s™*¥ > 0. Let
p

X" =X+ ;Bde

s"ev =5+ fpd,
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where p and fp are the step-lengths in the primal and dual spaces, respectively.
The nonnegative requirements of x™“ and s™* dictate the choice of the

step-lengths Sp and Bp. We can define the step-lengths by

1
PP = man(i, ~(d), /(o)) (2.37)
and
1
— (2.38)

maz{l, —(ds);/(a5;)}

where o < 1, (dy); is the ;" component of dy, Z; is the j component of X, (ds);
is the j* component of ds, 3; is the j* component of §.

For the penalty parameter fz, remembering the notations defined in (2.21),
since we want to reduce the duality gap, we may choose the penalty parameter to

be a smaller number by setting

= o(8)Tx/n

where 0 < o < 1.
Based on the above discussions; here we outline an iterative procedure for the
primal-dual algorithm.
Step 1. (initialization):
Set k= 0, choose a ‘and o lies between 0-and 1.
Set € to be a small positive number.
Find a starting solution (x(9:w(9:5() ¢ Fp'x Fp.
Step 2. (checking for optimality):
If ¢"x®) — bTwk) < ¢
then STOP and The solution is optimal.
Otherwise, go to Step 3.
Step 3. Compute pu*) = (s x®) /n v = (Fle — XSe and D? = XS~}

where X and S are diagonal matrices using the components of vectors
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x®) and s®) as diagonal elements, respectively.

Step 4. (finding the direction of translation):

d¥ = — [AD?AT] ' AS V(b
a = -ATa{)

4 =s1(v® = xd)

Step 5. (checking for unboundedness):
If Ax®) = b, d&k) > 0 and chEf’ < 0 then STOP and the primal
problem is unbounded.
1f ATw® 8% =¢ d%* > 0 and Zd¥’ > 0 then STOP and the dual
problem is unbounded.
Otherwise, go to the next step.

Step 6. (calculating step-length):

gtk 2 -
F max{l, —(dik))j/(ax§k>)}

it
maz{l, —(dﬁk))j/(a8§k))}

Byl =

Step 7. (moving to a new solution):

(R O 2 (k) +6}(Dk)d§(k)
s e () +6g)d$)

g+l — gk) +Bg°)d§k)

Set £k =k + 1 and go to Step 2.



38

2.3.2 Starting the Primal-Dual Algorithm

In order to apply the primal-dual algorithm, we start with an arbitrary point
(x; w(®;50) e R*m+n guch that x(® > 0 and s©® > 0. If Ax” = b and
ATw® 450 = ¢ then we have an initial feasible solution for the primal-dual

algorithm else we consider the following pair of artificial primal and dual problems:

minimize efx + 62,4,
subject to Ax +(b - AxP)z, ., =b (AP)
(ATw® + 50 — ) Tx + 2,09 = A
(X Tn4152Tni2) 2 0
where z,,, and z,4, are two artificial variables and § and A are sufficiently large

positive numbers to be specified later;

maximize bTW + Awm i

subject to \ATw + s+ (ATw® + 5 — e)w,, 1 =c

(b — AxNTw 45,1, =0 (AD)
Wine1 + Spi2 =0
(S5 541; Snga) > 0
where w11, Spyq and s,42 are artificial variables.
Notice that if we choose ¢ and X such that
§ > (b — Ax9)Tw( (2.39)

A > (ATwO 5O — ¢)Tx© (2.40)
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then (x(©, :vsloll, xg°+)2) and (w(®, w,(,?zrl; s, ssloll, SEIOJ)FQ) are feasible solutions to the

artificial problems (AP) and (AD), respectively, where

0
:I:E’L-?-l =1

a:ﬁlolg =) — (ATw(® 45O _ )Tx(©

0
7(n:—1 = -1

s =5 — (b - Ax©)Tw O

w
sflolz =-1.

In this case, the primal-dual algorithm can be apply to the artificial problems

(AP) and (AD) with a known starting solution. Actually, the optimal solutions of

(AP) and (AD) are closely related to those of the original problems (P) and (D).

Thorem 2.3 [4]. Let x* and (w*;s*) be optimal solutions of the original

problems (P) and (D). In addition to (2.3.2) and (2.40), suppose that
5> (b — AxO)Tw

and
A > (ATwWO 45O — ) Tx*
Then the following statements are true:

(1) A feasible solution (X,Zn415Tn+2) of (AP)is a minimizer if and only if X

solves (P) and Tp4=0.

(i1) A feasible solution (W,W,41;8, Snt1,9n42) Of (AD) is a maximizer if and

only if (W;5) solves (D) and W41 = 0.
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Example 1.3

Consider the same problem as in Example 1.1. In this case, we have

-8
2110 50 —10
A_: 3 b: N Cc =
1 201 70 0
0

We begin with an arbitrary assignment of x(® = [10 10 10 10]7, w® = [10 10]¥
and s©® = [10 10 10 10)7, we see that Ax¥ # b and ATw©® + s #£ c.

Hence, we start by considering the following pair of the artificial primal and dual

problems:
minimize ¢’x 4+ Szs
subject to Ax + (b — AxM)z; =b
(2.41)
(ATw® + 80 — c)Tx + 25 = )
(x;5;726) 2 0
and
maximize bTw + \ws
subject to ATw + s+ (ATw(® + 5 — c)ws = ¢
(b — AxNTw + 55 =6 (2.42)

ws + 55 =0

(s;-85586), >0
where we can choose § = (b — Ax)Tw( + 10 =410 and A = (ATw® + 50 —
¢)"x® + 10 = 1390.

Now, we denote that

C
N A (b—Ax") 0 : b |
A= y D= , €= ) )
(ATw® + 50 — )T 0 1 A
0
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X =[x 75 2|7, W =[w ws]’ and §=1[s s5 s6)7.

It is obvious that %@ = [x© 29 2O and (%®;50) = ([w®, w7 [s©
,séo),séo)]T) are feasible solutions to problems (2.41) and (2.42), respectively,

where

:Ego) =1

20 = A= (ATw® 460 ¢)Tx(0) = 10

wgo) ===

s =6 —(b — Ax®)Tw® = 10

séo) = I
Therefore, the primal-dual algorithm can be apply to solve problems (2.41) and
(2.42) with a feasible solution (%(*; w(®); 5(9) such that %(® > 0 and 5§ > 0.
Step 1, we choose a = 0.99, ¢ = 107% and ¢ = 0.5.

In Step 2, we compute ¢/ %0 — bTw(® =420 > ¢ = 1078,

Hence, go to Step 3, we have

u® = (0.5)S8_y (@8 x 59)/6 = 35
X =diag(X®)," S = diag(8?)

v = ;e — XSe = [-60.8001 — 60.8001 — 60.8001 — 60.8001 29.1999 29.1999]"
r T
1.0.0.0. 0.0
0100 0 0

00100 70

I
b
M

|
Il

D2
0001 0 O




For Step 4, we find the directions of translation:

= = =N e
df) =-[AD’A7| A0
= [-0.4912 —0.8052 0.1828]7
d® = -ATqY

= [-6.9903 —7.0421 —3.1662 — 2.8523 29.0688 - 0.1828]"
dY = §1(v) —

=[0.9103 0.9621 —2.9138 —3.2277 0.0131 31.0287]"

Since dﬁ.f’) # 0 and déo) 7 0y go to Step 6, we compute the step-lengths:

B = } =1
maz{1; —(df.(o))j/(().99§;§-0))}
", 1

= =1
maz {1, —(d);/(0.995)}
Hence, in Step 7, we compute a new solution (X(1); w);5(1) by
1 =50 4 gg’)déo)

=[10.9931 11.1371 6.8317 6.5977 1.0045 36.89]7

w1 =50 4 5090
=1[9.5516 9.3176 —0.811]T
s =30 4 B%déo)

=[2.5069 2.3629 6.6683 6.9023 34.955 0.811]"
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Continning this iterative process, the primal-dual algorithm will stop at the

optimal solutions x* = [10 30 0 0]7 to the primal problem and (w*;s*)

([-2 —4]T;[0 0 2 4]7) to the dual problem with objective value = —380.



CHAPTER III
IMPLEMENTATIONS, NUMERICAL RESULTS AND

CONCLUSIONS

This chapter describes the design of software which is divided in two modules,
the input module and the MPS module. The input module is admitted a linear
programming problem from a keyboard via the user interface while the MPS
module is admitted a problem from MPS files.

In our results, we test our software with small tested problems and MPS files.
Then we compare the iteration numbers with LINDO and MINOS which base on

the simplex method.

3.1 The Structure of Software

We divide the implementation into two modules, the input module and the
MPS module. After reading the problem data, software will convert the problem
into the standard form before solving it using the'interior-point method.

In the input-module; users can-save the problem or retrieve the problem to be
solved by the Karmarkar’s projective scaling, the primal affine scaling and the
primal-dual algorithms. While the MPS module can solve the problem in the MPS

file format using only the primal-dual and the primal affine scaling algorithms.



Figure 3 : The structure of software
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-Primal-dual
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Result of the problem

-Primal affine scaling
-Primal-dual

Result of the problem

3.1.1 The Input Module

The input module is shown in the Figure 4. The number 1 is the objective
direction which users can choose to maximize or minimize, the number 2 is an
input box for the linear objective function, the number 3 is an input box for
all linear constraints and the number 4 is a tool-bar. Users can save, open,
solve problem and select the optimization.algorithms from Karmarkar’s projective

scaling, the primal affine scaling and the primal-dual algorithms. The default

algorithm is set as the primal-dual algorithm.



The restriction of an input coefficient data

1. The default of all coeﬁi&i’g':nt,}szfare zer'_ggs‘;xﬁd the d

4

N -

£

s A

2. Coeflicient val_@_must be an integer or real numbiij

3. The available relation types are

—

S

Table 1 : The relation types
Type (#) | Indicator
“I7 or “e” | equal to
“G” or “g” | greater than or equal to
“L” or “I” | less than or equal to

45

efault of row type is “L”.
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For example, if we have a linear programming problem as follows:

minimize —3x; — 9z — 1223 + 5z4
subject to 1z + zo < 40

$3+I4§45

By H 1;3/< 30
Wt

S J =
/ xl)%)x3,x472-0-'.

then we can enter theytﬂe/'n the input module as Figure 5.

__pl;e of the input module

5’ : v 2 [ L
e =TT 0 0 [T
F ""‘f | ‘1 T A !:.. = _—?»"-E. J—L =
7 0o 0 1 1 L (45 9

- . : i

" do, 1 o L 30

= | = N S = L

el 19 1912 194S £
SR 50 ;‘}:‘_‘é_‘. | | B | I 1 2 R: 8 B l ~ 3 B 3 | - - 3 %a, i
Yok [::‘5“’:." i <

We click on the solve button. The software will scan an input data and solve the
problem by the default algorithm (the primal-dual algorithm) or we can click on
the method button to change the algorithm to Karmarkar’s projective scaling
algorithm or the primal affine scaling algorithm. Then we can save the problem
to file by clicking on the save button. If we want to solve the new problem, we

click on the new button to clear the input module.
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3.1.2 The MPS Module

The MPS module is used for solving a linear programming problem in
MPS file format which becomes the industry standard file format for a linear
programming problem. The MPS module is shown in the Figure 6. The number
1 is an open button for opening the problem in MPS file format, the number 2

are details of the problem file and the number 3 is the objective of the problem.

Figure 6 : The MPS module

MAME AFIRO
ROWS
E ROS

1E RI1O :

{L X05 :
L XA

{E R12 e §

E R13
L X7
L X3
{L X13
L X20
E R13
& R20
L X27

A4

In this module, users can choose only two algorithms, the primal affine scaling

and the primal-dual algorithms. For more details about MPS files, users should

consult Appendix A.



3.2 Numerical Results

In this section we summarize the performance of the interior-point methods

on problems from MPS files and our small tested problems.

The computational results were run under the Windows operating system with
a Celeron 400 MHz processor and 64 MB of RAM. The source code was compiled
using the Borland C++ Builder 5. We also compare the iteration numbers of
our results with LINDO and MINOS 5.0 which are the popular used code of
the simplex method. Table 2 shows the result from our small tested problems,
we compare the iteration numbers of our results with LINDO program, where

problem size is defined as the cross product of the number of rows and the number

of columns of each problem.

Table 2 : The result of our small tested problems

Problem Size Iterations
LINDO | Karmarkar | Primal Affine | Primal-Dual
1p01 3 x3 2 8 12 7
1p02 4 X4 1 20 37 16
1p03 5x4 4 9 12 8
Ip04 7 %20 6 9 13 8
1p05 10 x 30 7 9 13 9
lp06 13 % 25 4 11 15 10
Ip07 13 x 30 14 10 14 9
[p08 16 x 35 24 20 22 17
1p09 15 x 60 10 30 34 29
Ip10 32 x 40 38 15 19 14
Ip11 22 x 60 27 29 42 35
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Figure 7 : Iteration comparisons of LINDO, Karmarkar’s projective

scaling, the primal affine scaling and the primal-dual algorithms

Tterations
50

LINDO
B Xarmarkar's alg.

DOPrimal affine sclaing alg.
| |[OPrimal-dual alg.

40

30

10
0 , ie Bl : )
9 16 20 40 3’:00 325 390 560 900 1280 1320
,I’mbléﬁsize
‘,4 ,:_7 //ﬁ' 0
4
AJIJ" //‘
T T
From the Figure 7, we see_that LI ‘uses less iterations than all the

UJ 3y
interior-point methods for most/of our s?ﬁﬁl"tested prj)blems However, most

of the real world pn@tems—are—ra:rge—l—rrerehjre—arrordlﬁ@ry MPS file contains a

large-scaled linear proﬂg/ﬁammmg problem. We test w1th‘_1\'{IPS files and compare the
iteration numbers of our results from the primal affine scaling and the primal-dual

algorithms with MINOS program.



Table 3 : The results of MINOS.

Problems Sizes Slack-+Surplus | Nonzeros | MINOS Optimum
variables Iterations

Afiro 28 x 32 19 102 8 -4.6475314E+02
Adlittle 57 x 97 41 424 97 2.2549496E+05
Share2b 97 x 79 83 7T 117 -4.1573224E4-02
Scagr7 130 x 140 45 606 92 -2.3313898E+06
Sharelb | 118 x 225 28 1179 284 -7.6589319E+404
Israel 175 x 142 174 2443 327 -8.9664482E+05
Sc205 206 x 203 114 665 131 -5.2202061E+01
Beaconfd | 174 x 262 o 3408 87 3.3592486E+04
Scsdl 78 x 760 0 2388 220 8.6666670E+00
226 224 x 282 190 2768 686 -1.8751929E+01
Bandm 306 x 472 0 2494 463 -1.5862802E+02
Sctabl 301 % 480 180 1872 375 1.4122500E403
Scsd6 148 x 1350 0 4316 550 5.0500000E+01
Scagr25 | .472.x 500 171 1725 92 -1.4753433E4-07
Scrs8 491 x 1169 106 3288 933 9.0429696E+02




Table 4 : The primal affine scaling algorithm results

Problems Sizes Nonzeros | Iterations Optimum
Afiro 28 x 32 102 36 -4.6475314E+02
Adlittle 57 x 97 424 90 2.2549496E+05
Share2b 97 x 79 777 54 -4.1573224E4-02
Scagr7 130 x 140 606 90 -2.3313898E-+06
Sharelb | 118 x 225 1179 ol -7.6589319E4-04
Israel 175 x 142 2443 68 -8.9664482E4-05
5c205 206 x 203 665 34 -5.2202061E+-01
Beaconfd | 174 x 262 3408 63 3.3592486E+-04
Scsdl 78 % 760 2388 28 8.6666670E4-00
E226 224 x 282 2768 89 -1.8751928E+-01
Bandm | 306 x 472 2494 88 -1.5862802E4-02
Sctabl 301 x 480 1872 95 1.4122500E+03
Scsd6 148 %1350 4316 29 5.0499980E+01
Scagr2d | 472 x 500 1725 61 -1.4753433E+07
Sers8 491 x 1169 3288 165 9.0429695E4-02




Table 5 : The primal-dual algorithm results

Problems Sizes Nonzeros | Iterations Optimum
Afiro 28 x 32 102 15 -4.6475314E+02
Adlittle 97 x 97 424 22 2.2549496E+05
Share2b 97 x 79 77 19 -4.1573224E+02
Scagr? 130 x 140 606 24 -2.3313898E+06
Sharelb | 118 x 225 1179 34 -7.6589319E+04
Israel 175.x 142 2443 35 -8.9664482E+05
Sc205 206 x 203 665 19 -5.2202061E+01
Beaconfd | 174 x 262 3408 17 3.3592486E+04
Scsdl 78 x 760 2388 16 8.6666670E+00
E226 224 x 282 2768 27 -1.8751929E+01
Bandm | 306 x 472 2494 23 -1.5862802E+02
Sctabl 301 x 480 1872 21 1.4122501E+03
Scsd6 148 x 1350 4316 18 5.0500000E+01
Scagr25 | 472 x 500 1725 27 -1.4753433E+07
Scrs8 491 x 1169 3288 27 9.0429695E+02
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Figure 8 : Iteration comparisons of MINOS, the primal-dual and the

primal affine scaling algorithms

Iterations
1000

. HINOS
(| Prinal-Dual

|[] Prinal Affine Scaling|®

63168 144432 144480 139800 236000 573979

.
ad /”u /‘
Figure 8 shows the 1terat’ran—numbe1:séo‘f the primal affine scaling, the

primal-dual algorlthnx and \/IINT)S program I"Ess obv10usfhat MINOS used more

iterations than botH}( the primal affine scaling and tne\}lmal dual algorithms.
In addition, the prim\aj-dual algorithm has the best Qgrformance among these

three algorithms.

3.3 Conclusions

The “time complexity of Karmarkar’s projective scaling algorithm is
polynomial [4]. However, in practice, it’s difficult to convert the linear
programming problem to Karmarkar’s standard form. Moreover, the estimated
problem size is double from the original problem.

The formulation of the primal affine scaling algorithm is simpler than that

of the Karmarkar’s projective scaling algorithm and the primal affine scaling
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algorithm also has a better performance than the Karmarkar’s projective scaling
algorithm in some large scale problems. In practice, it is not easy to find an initial
solution (x°) which Ax® = b of the primal affine scaling algorithm. Hence, the
algorithm may take more iterations to find an initial solution. Currently, there is
no proof that the primal affine scaling algorithm can run in polynomial-time [4].

The principle of the primal-dual algorithm uses both of the primal and dual
variables which is more complicated than considering only the primal variables as
in the primal affine scaling algorithm. However, our experiment shows that this
algorithm has the best performance. Moreover, there has been a proof that the
primal-dual algorithm run in polynomial-time [4,11]. Nowadays, this algorithm is

the most widely used for solving the practical linear programming problems.
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APPENDIX A

MATHEMATICAL PROGRAMMING SYSTEM FILES
(MPS FILES)

MPS file is an input file format of a linear programming problem which has
become the industry standard. The various sections of the data in MPS file are

grouped according to the following order.

1. NAME: This section consists of the word “NAME” in columns 1-4, and the

title of the problem in columns 15-22.

2. ROWS: This section defines row labels as well as the row type. The row
type is entered in column 2 or 3 and the row label is entered in columns
5-12. This section of data is preceded by the word “ROWS” in columns 1-4,
followed by a data for each row.

Table 6 : The code for specifying the row type

' Row Type Indicator
E Equal to (=)
L Less than or equal to (<)
G Greater than or equal to (>)
N Objective function

3. COLUMNS: This section defines the names of the variables, the coefficients
of the objective function, and the nonzero coefficients of the linear
constraints. The section is preceded by the word “COLUMNS” in columns
1-7, followed by the data. The data has the variable name in columns 5-12,

the row label in columns 15-22, and the value of coefficient in columns 25-36.
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The next row label can be inserted in columns 40-47 and the corresponding

coefficient value in columns 50-61.

. RHS: This section contains the nonzero elements of the right-hand side. The
section is preceded by the word “RHS” in columns 1-3, followed by the data
of the right-hand side. The data of the right-hand side has a label for the
right-hand side in columns 5-12, the row label in columns 15-22, and the
right-hand side value in columns 25-36. The next right-hand side may be
in columns 40-47 and the corresponding right-hand side value in columns

50-61.

. RANGES (optional): This section is for constraints of the following form
L <a;121 +ai2xe+ ... + 0,2, < u;. That means both an upper and lower
bound exist for the row. The range of the constraint is r; = u; — ;. The
value of u; or [; is specified in the RHS section data, and the value of ; is
specified in the RANGES section data. If b; is the number entered in the
RHS section and 7; is the number specified in the RANGES section, the u;
and [; are defined as follows.

Table 7 : The code for specifying range type

Row Type | Lower Bound (I;) | Upper Bound (u;)

G b b KT 1

L bi — 75 bi

The section is preceded by the word “RANGES” in columns 1-6 . The data
of the RANGES section has a label for the range in columns 5-12, the row
label in columns 15-22, and the range value in columns 25-36. The next

range of constraint may be in columns 40-47 and the corresponding range
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value in columns 50-61.

6. BOUNDS (optional): In this section, bounds on the variables are specified.
The section is preceded by the word “BOUNDS” in columns 1-6. If the
BOUNDS section is omitted, the usual bounds, 0 < z; < oo, are assumed.
The data of the BOUNDS section has the type of bound in columns 2-3, the
bound row label in columns 5-12, the variable name in columns 15-22, and

the bound value in ecolumns 25-36.

Table 8 : The code for specifying bound type

Bound Type Bound on the variable
LO Lower Bound (b; < ;) |
UP Upper Bound (z; < b;)
FX Fixed Variable (z; = b;)
FR Free Variable (—oco < z; < 00)
MI Lower Bound —co (—oco < z; < 0)
EL Default Bound (0 < z; < 00)

7. ENDATA: This section‘is in-columns 1-6, the-end of the data input.

Here is a little sample problem written in MPS format (explained in more
detail below):

NAME EXAMPLEO1

ROWS
N COST
L  ROWI1
G ROW2
E  ROW3
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COLUMNS
X1 COST 1 ROW1 1
X1 ROW2 1
X2 COST 4 ROW1 1
X2 ROW3 -1
X3 COST 9 ROW2 1
X3 ROW3 1

RHS
RHS1 ROWI1 5 ROW2 10
RHS1 ROW3 7

ENDATA

For comparison, here is the same problem written out in an equation-oriented

format:
Optimize

Xy + 44Xy + 9X3(COST)
subject to

Xi+ Xy, <5 (ROWI)

X;+X;>10 (ROW2)

—Xo+ X3 =7 (ROW3)

X, X9, X3 >0



APPENDIX B
THE SMALL TESTED PROBLEMS

1p01 7
maximize 3z + 4xs + 273
subject to 3zy + 2z +4x3 < 15
Ty + 229+ 323 < 7
227 + 2o +23 <6
21,%2,%3 > 0
Ip02
maximize 1000z 4+ 100z5 + 10z3 + x4
subject to z; <1
20x7 + 2, <100
20027 + 202, + 23 < 10000
2000z, + 200z, + 2025 + x4 < 1000000
T1, T2, 23,24 2 0
Ip03
maximize 1 + 322 + Sx3+ 224
subject to 2z1 4 z, < 9
571 + 39 + 4z > 10
T +43y <8
T3 — 0xy < 4
3+ x4 <10

T1,T2,%3,%4 Z 0



1p04

minimize

subject to

1p05

minimize

subject to

1021 4+ 929 + 8x3 + Tx4 + 625 + bxg + 47 + 328 + 229 + Z19

+x1; + 3212 + 0213 + T14 + 4215 + 6216 + T17 + T1g + T19 + Tog

T, + 9 + 23 > 10
T4+ T5 +x6 > 10
T7 + x5 + 29 > 10
ZT10 + Z11 + 212 = 20

X13 + Zyg+ T15 Z 20

Zi16 + Ti7 + X153 > 20

T, +Tq + 27 + 210+ 213+ X1 + Tog = 100

T1, T2, %3, T, Ts, Lo, T7, T8, T9, T10 = 0

271+I2+$3+$4+I5+I6+I7+$3+$9+$10
+211 +.’1712+3313+l'14 +CE15+5615+.’Z?17+I18+CL'19

+Zop + Toy + Tog + Toz + Tog + Tos + Tog + To7 + Tog + Tog + Lo

0x1 +xir =+ +4dzey > 100
Ty + 819 + oo > 100
T3 + 213 + 203 > 100
~Ty+ T1g + 3124 > 100
Ts5 + Tx15 + 295 > 100
3%e -+ Ti6 + Zog > 100

T7 — 3217 + 2297 > 100
Tg + X188 + Tog > 100

429 + T19 + Tog > 100
T1g + 129 + 2230 > 100

Z1,%2,...,T30 > 0



1p06

minimize

subject to

64

Ty +To+ T3+ Ty + 25+ T+ 27+ Tg+ Tg+ Xyo

+Zy1 + 212+ T3+ ZT1g + Tis + T + X7 + Tig + Tr9 + Too
+To1 + Toz + Toz + Tog + Tas

T +2.’L‘2+3$3-l’4 < 30

49 + x4 — Tg + Ty — 2719 < D0

Ty — T3+ Ts+ Ty — 29 > 10

3210 + 2%y9 — 3T13 + T14 + T15 + 2T16 + T1s + Too < 100
T11 — 3x13 +B15s — & — 9 — 207 + 17 + 3%19 + Tos < 80
T12 + T2 + To1 + Toz — 3T — Tas + 57y <99

1 + dxg + 23 > 20

Tos + Toog + T1p = 12

T3 + 2%6 + Tg + T12 + T15 — 9%18 + Ta1 + Tog > 50

To + T4 + Tg + T1o + XTos + 2T04 > 40

Ty — Ts + T7+ Ty + 213 + 20217 + oz + 295 = 24

Tg + T7=-1b;

Tig -+ Tog = 26

Ty, T2, T3, T4, Ts, L6, L7, Tg, Lo, 10 = 0

T11,T12, T13, T1d, T15, L165 T17, L18, T19, T2g = 0

Lo1, T2, L23, T4, T25 Z 0



1p07

minimize

subject to

7Ty + 229 + T3 + x4 + 5 + Tg + T7 + 328 + Tg + T1o

T+ Ti2 + Tiz + Tig + Tis + Tie + Ta7 + Tig + Tig + Too

+Z21 + Too + OTo3 + Tog + Tas + Toe + Tar + Tag + 629 + Tao
—2x1 + T11 + 227 > 100

Ty + 412 + 220 > 100

T3 + 5T13 + Txey 2> 100

T4+ T4 + @94 > 100

s + 815 + 295 > 100

36 + x16 + w25 = 100

T7 + x17— 397 2> 100

Ty + 2218 + Hxag > 100

629 — Z19 + 2299 > 100

T10 + ZTog + 2239 > 100

Ty + 1729 + 23 + 24 + 2525 + g + 27 + 11as + 329 + 219 > 500
T1) + T F 215 F9T1r +F X5+ 26+ Tig + Tig + T19 + 820 > 500
To1 + Toa + 203 + Tog + Tos + Tos + 31x27 + Tog + Txo9 + x30 > 500
Ty, T2, T3, Ta, Ts, Te, L7, T, Tg, T10 = 0

T115%12, L13, T14, T15, T16, T17, T18, T19, L20 = 0

To1, T2, T23, T2a, Tas, To6 1 %27, T2g, Tag, Z3g > 0



Ipl1l

minimize

subject to

66

29727 + 4.65z9 + 423 + 9.924 + 0.625 + 8z + 9227 + 623

+3x9 + 19.5210 + 18211 + 1819 + 150x13 4+ 0.5214 + 17215 + 140z46
2977.0004z, + 3470.0003z, + 3376.0002z3 + 2358.524 + 2115.92¢
+1011zg + 2250z19 + 2182.5768215 + 3811.0005215 > 1500
0.6005z; + 0.085z9 + 0.088z3 + 0.44z4 + 0.414z6 + 0.95627
+0.253zg + 0.17z9 + 0.55219 + 0.62x15 + 0.587x16 > 18

0.094z, +0.0249225 + 0.02923 + 0.008z4 + 0.0108z¢ + 0.062z3
+0.02529 + 0.055210 + 0.98505z5 4+ 0.025z,5 > 3

0.0072, + 0.0249225 + 0.023x3 + 0.07z4 + 0.136x¢ + 0.153x5
+0.24129 + 0.01219 + 0.01375 < 7

0.007z; + 0.02492z, + 0.023z3 + 0.07z4 + 0.13626 + 0.15374
+0.24129 + 0.01z30 + 0.013215 > 0

0.0511z, + 0.000356z5 + 0.0004z3 4 0.0029z4 + 0.395z5 + 0.0015z6
+0.002925 + 0.014424 + 0.056215 + 0.1621, +-0.003214 > 3.4
0.0511z; + 0.000356x, + 0.0004z3 + 0.0029x4 + 0.395z5 + 0.0015z6
+0.0029zg 4 0.014429 4 0.056x19 + 0.162;; + 0.003z14 < 5
0.028796z1 -+ 0:.0008x7 + 0:002724 4-0:0022x¢ +0.0022z4
+0.026z,9 + 0.21zy; + 0.0014z,5 > 0.45

1729 +262.99992¢ + 191215 > 5

0.0451z; + 0.0026z5 + 0.0021z3 + 0.026924 + 0.0176z6 + 0.784z
+0.00925 + 0.0073z9 + 0.0425z1¢ + 0.01032y5 > 0.7

0.0451z1 + 0.0026z5 + 0.0021z3 + 0.0269z4 + 0.0176x¢ + 0.784z7

+0.009zg + 0.0073z9 + 0.04252,9 + 0.0103z5 < 100
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0.0163z7 + 0.0018z, + 0.001623 + 0.0062x4 + 0.0051x¢ + 0.0057xg + 0.002414
+0.0185219 + 0.0149z:5 + 0.982, > 0.3

0.0163z; + 0.0018z, + 0.0016x3 + 0.006224 + 0.0051z¢ + 0.0057z5 + 0.0024z4
+0.0185z10 4 0.0149215 + 0.98215 < 100

0.022z; + 0.0036z2 + 0.0033z3 + 0.0128z4 + 0.0113z¢ + 0.009625 + 0.0043z4
+0.035z19 + 0.0259z,5 + 0.98z16 > 0.55

0.0049z, + 0.0006xy + 0.008z3 + 0.0074z4 + 0.0052z¢ + 0.0034zg + 0.0023z4
+0.0042z19 + 0.0036x:5 > 0.18

To+ T3+ Ty + 25+ + s +Tg+ 210+ 21+ T2 +x13+ 214 =100

0<2; <12, 0< 2, <100, 0<23<25 0< 34 <100

0< 25 <100, 0 <26 <8, 0< 27 <100

0<23<6,0<29<4 0<21g<12, 29 >3

0 <xp €100, 0< 29, €3, 0.5 < 213 <0.51

0<214 <035, 0< 215 <10, 0 < 296 < 100
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1p09
minimize 1z, + 7Ty + 23 + 424 + T5 — Tg + T7 — Tg + Tg + T1g
+Z11 + 3T12 + 13 + T1g + T15 + T1s + 9T17 + T1g + T + 2T
+Z91 + 2T99 + Toz + Tog + Tos — Tog + Loy + Tog + 3Tag + T3p
+Z31 + T3z + Taz + Tag + (T35 + Tag + Ta7 + Tag + T3g + Tao
+%41 + Tag + 343 + Taa + Tys + Tag + 4T47 + Tag + Tag + Tso
+3%51 + Tso + Tsz + Tsg + Tss + 0Ts6 + Tsz + 258 + x59 + 11zg
subject to x1 + 3z + %3 + Ty + T5 + x5 + 927 + Tg + T9 + T30 < 1000
3211 + X1z + Z13 + Z1s + Llas + 2246 + 17 + 8218 + T19 + x99 < 1000
5To1 + Top + TTo3 + Tay + Tos + Tag + Loz + Tog + Tog + T30 < 1000
T31 + T3z + Tas + Taa + 20235 + 3%3s + Zz7 + Tag + 15x39 + 240 < 1000
3T41 + Tgz + 6&43 + Tyq + Tas + Tag + Tay + Tag + 349 + Tso < 1000
Ts1 + Ts2 + Ts3 + Tsq + Tss + Tsg + Tsz + Tsg + Tsg + 6z60 < 1000
2xs + 8x15 + Tog + TZ35 + Z45 + Xs5 > 500
3xy1 + 12 +Xo3z + T34 + T45 + Tse = 2500
T1 4+ Tx11 + 4291 + 237 + 241 + 257 > 1000
T + 31 + 241 < 800
3210 + Tog + Tag + Tag + Ts0 + Teg > 000
T1g = Tz — Ty + 623 + Tso + @48 — 236 + Z11 = 2000
o + x5 > 500
3% — &1 +&1o — Tgo + Zgg > 1000
Te + T7 + 25 + 9 > 750

L1,T2, X3y, L60 2 0



Ip10

maximize

subject to
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3z, — 8T + x3 + x4 + T5 + x5 + 327 + T3 + OTg -+ T1g

+4z1; + Z12 + 7213 + T1g — T15 + 2316 + T1z — TT15 + T19 + T2
+Zo1 + 2T9p + 2T03 + 12204 + Tos + Tog + 6To7 + Tog + Tog + 4T30
+T31 — X39 + T3z — Tag + Tys + Tsg + 18%37 + Tag + 2T39 + Zao
221 + 211 + T + 237 <= 150

Ty + T1o + oy + T35 < 150

3 + 2x13 + 6293 + 233 < 150

Ty + 2%14 + 3Tog + 234 < 150

3%5 + T1s5 + Tos + T35 < 150

Te + 22016 + 3Tog + T35 < 150

7+ Ty + 7297 + 237 < 150

g + x18 + 10x98 + 235 < 150

drg9 + 19 + Xog + T35 < 150

Z10 + 2%00 + T30 + 9249 < 150

T1 + 4%19 + TTo3 + T34 < 150

T34 + 3%25 + 216 + 527 < 150

Ty + T18 + 4%o9 + 249 < 150

Top'+ Top + T2 > 50

Tig+ oy 219,200

T30 + X31 + T32 > 50

Ty + Ts + T18 + Tzg + oo > 300

T1 — X4 + 235 — 91 > 300

z1 > 10,29 > 10,23 > 10, 294 > 10,239 > 19,235 > 17

5 > 10,216 > 10,297 > 10,23 > 10,240 < 50,237 > 10

T19 Z 10)I10 2 10):1:37 Z 15) Ty, T2, X3, .-+, T40 Z 0
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maximize

subject to
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T, +4xy — T3 + 224 + T5 + 6 + T7 + 428 + 29 — 3T19

+211 + 5%12 + 213 + 11214 — 2215 + T16 + T17 + T1g + TT19 + 279
+8x91 + 12299 — BTog + Tog + Tos — Tog + To7 + 2%9g + Tag + T3g
+4231 + T2 + T33 — 14T34 + T35 + T36 — 9737 + 3T38 + T3g + TTgp
+TT41 + Tao + Ta3 + Tyg -+ 3%as5 + Tag + Ta7 — 6T48 + Tag + Tso
+20x5) 4+ 859 + 53 + 4T54 — Tss — 2%56 + Ts7 + Tss + Ts9 + TTeo
—221 + Ty + X3 + T4 + x5 <= 500

T + T7 +Xg +Tg + 215 <= 1100

Ty + T2+ T13 + 14 + 215 <= 1500

T1g + T17 + T18 + 2T19 + Tog <= 1300

To1 + Lo + 203 + Tog + Tos <= 1250

2%96 4+ To7 + Tog + Tog + T3g <= 1400

T31 + T32 + T3z + T3q + 235 <= 2500

T3 + T37 + Tag + 3T39 + 3149 <= 1200

Tq1 + Tao + Taz + Tag + 45 <= 500

Tag + Tar + Tag + Tg9 + Tsp <= 3300

Ts1 + 2%50 + X533 + Tsa + 55 <= 1750

Tee + Ts7 + 4xss + T5g + g9 <= 1000

Ty — Xy —Tyo+ Taz>= 1500, x4+ Tzg >= 125

Teo — Tsg + Toy + Loz >= 1450, x1 + x55 >= 550

Tig + Tas + Toz — 21 >= 1000, 29 + 23 + 2258 >= 750

ZTog + 1o >= 120, z97 + 25 — 1 + Ty3 + 4299 >= 1800

Tie + Ta1 + 257 >= 330, 22 + 17 + 233 >= 450

T1, %2, T3, -, Tep >= 0
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