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Chapter I
Introduction

The problem which appears some variables tending to infinity in a finite time
T > 0 is called a blow-up phenomenon. In the theory of ordinary differential

equations, the simplest example is the initial-value problem
Uy =u? it >0,

u(0) = 0.

For b > 0 it is immediate that the unique solution exists in the time interval
0 <t <T =1/b. Solving the problem, we find that u(t) = 1/(T — t), one sees
that u(t) — oo as t — T'~. We say that the solution blows up at ¢ = 7" and also
that u(t) has a blow-up at a finite time. Starting from this example, the concept

of blow-up can be widely generalized. Thus we consider the more general form

Uy = f(u)7

where f is a positive and continuous function satisfying the condition

f%ds < 0.

This Osgood’s condition in the theory of ordinary differential equations estab-
lished in 1898 is necessary and sufficient for the occurrence of a blow-up in a finite
time for any solutions with positive initial data. Further details about blow-up
phenomena can be found in [10]. In this work, we are interested in a blow-up
phenomenon in a semilinear parabolic equation.

Previously, there were many mathematicians studied blow-up phenomenon.

For instance:



In 1989, M.S. Floater [6] studied degenerate semilinear parabolic equation:
ug(x,t) = uge(x,t) +uP(z,t) in (0,1) x (0, 00),
u(0,t) =u(l,t) =0 for ¢t >0,
u(z,0) = ug(x) >0 on [0,1].
Under certain conditions, it is shown that the solution may blow up at the bound-

ary in a finite time.

In 1991, Z. Lin and M. Wang [10] studied the semilinear parabolic equation:
ur(2,t) = uge(z, t) + uP(z,t) in (0,1) % (0,00),
u,(0,8) = 0,u,(1,t) = ul(x,t) fort >0,
u(z,0) = ug(x) >0 on [0,1].

Again, under certain conditions, they proved that the blow-up would occur only
at the boundary = = 1.

In 2000, C.Y. Chan and H.Y. Tian [2] showed that, under certain conditions,
a degenerate semilinear parabolic equation with initial-boundary value became
a single point blow-up problem. In addition, C.Y. Chan and J. Yang [4] proved
that the degenerate semilinear parabolic problem under the certain conditions is
a complete.

Based on the above results, we will show that, under certain conditions, the
following semilinear parabolic equation blows up in a finite time.

Let.T' < oo, and a and zq be constants with.a > 0.and 0. < xg < a. We would

like to study the following semilinear parabolic initial-boundary value problem,
ur(z,t) — uge(x,t) = f(u(zo,t)) for 0 <z <a, 0<t<T,
u(z,0) = ¢(z) on 0 <z <a, (1)

u(0,t) = uy(a,t) =0 for 0 <t <T,

Ve

where T' < 00, a and xy be constants with a > 0, 0 < xg < a, and f, ¢ are given
functions. We will also show that under certain conditions, v blows up in a finite

time, and the set of the blow-up points is the enire interval [0, al.



Similarly, a solution w (x,t) is said to blow up at the point (Z,T) if there
exists a sequence {(x,,t,)} such that lim w(zp, ty) — 00 as (xy,t,) — (T, 7).
Furthermore, if u (z,t) blows up at e\;ler;o point = € [0,a], then the complete
blow-up occurs.

The complete blow-up of the solution of a degenerate semilinear problem with
uz(a,t) = 0 replaced by wu(a,t) = 0 was studied by Chan and Yang [4]. Baras and
Cohen [1] and Lacey and Tzanetis [9] studied the problem of a complete blow-up
with f(u(zo,t)) being replaced by f (u(z,t)).

In chapter 2, we transform the problem from [0,a]| to [0,1]. In chapter 3,
we show that the transformed solution satisfies a nonlinear integral equation,
and establish the existence of a unique continuous solution u to this integral
equation. In chapter 4, we show that u blows up in a finite time if the initial data
are sufficiently large in some neighborhood of xy. In chapter 5, we prove that the

set of blow-up points is the entire interval [0, 1].



Chapter II

Transformation

Let T < 00, and a and %y be constants with ¢ > 0 and 0 < Zp < a. We

consider the following semilinear parabolic initial-boundary value problem

\
u;(i’,t) = u;;(i’./ N) 2 )

F(u(io, t)) in (0,a) x (0,T),
u(ia 0) By d)(%) on [07 a]7

w(0,8) = ug(a; 1) =0 for 0 <t < T,

J
where F and ¢ are given functions. Let Z = az, t = a?t T = a®T, Lu = Uy

— Ugg,
Flu(zo,)) = F(u(Fo, D), D = (0,1), D = [0,1] and Q = D x (0,T). We have,
Ur=1U @ = iu
+ td'{* a2 )
de 1
Uz =

Up—= = —U
J:dx axa

1 1

Then the above system (2) is transformed into the following problem

3\

Lu(z,t) = a®f(u(xo,t)) in Q,

u(z,0) = ¢(x) on D,

uw(0,t) = uy(1,t) =0 for 0 <t <T

with T = T/a®. We assuime that f € C*([0,00)), f(0) > 0, f'(s) > 0 and
f"(s) > 0 for s > 0, ff ds < oo for some zy > 0, and ¢(x) is nontrivial

¢'(1) =0, and

¢" (x) 4+ a®f(¢(z0)) > 0 in D.

nonnegative and contmuous such that ¢(0) =

(4)



We note that the last condition is used to show that before u blows up, u is a

nondecreasing function of ¢.

AONUUINYUINNS )
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Chapter III
Existence of a unique solution

Let us construct Green’s function G(x,t;&,7) corresponding to the problem
(3). It is determined by the following system: for & and £ in D and ¢ and 7 in
(0,7),

\

LG(z,t;:€6,71) =6(x — &)o(t — 1),
Gz, t;&,7)=0 fort <, (5)

@O & 7T5=Gafl, TR =

/

where 0 (z) is the Dirac delta function. By the method of eigenfunction expansion,

G(x,t€,7) =) an(t)gn (), (6)

[M]¢

3
Il
Kl

where

om—1\ 1°
= V2sin /T, Ay = {( " )ﬂ} ,n=1,23,..

2
are the n*® orthonormal eigenfunction and eigenvalue of the Sturm-Liouville prob-

lem,
9" () + Mg (2) =0, g(0) =¢"(1) = 0.

Substituting (6) into (5), we find that

>, (t) g Zan gl (x) = d(x — €)d(t — 7).
n=1

Since g () + A\gn () = 0, we have
> a,(t)g +Zan Angn (2) = 6(z — )0t — 7).
n=1

Therefore,
> fal (8) + Antn (D) g () = 8z — )5(t — 7).

n=1



Multiplying both sides by g, (z) and integrating from 0 to 1 with respect to z,

we formally obtain that

1

/gm )> [, (8) + At ()] g (2) dit = /gm () 5(z — £)8(t — 7)dx.

0

Thus
@y, (B)+ Aptn (1) = gn (§) O(f — 7).

Multiplying both sides by exp (A,t), we get

< lolh) s O = 9, ()50 = rexp ().

By integrating from 7~ to u with respect to ¢ and then replacing u by t, we have

an () exp (Ant) — an (77) exp (A7) = 95 (€) .

Since G(z,t;€,7) = > an(t)g.(x) = 0, for t < 7 and g, (x) # 0, we have
n=1
a, (t) = 0 for t < 7. This implies that,

an (t) exp (Ant) = gn (§) exp (AnT) -

Thus,
(1) = gn (§) exp[—An(t — 7).

Therefore,
G(z,t;,&,7) Zgn &) expl=An(t — 7)) for t > 7. (7)

Let us show that G(x,t;&,7) exists. We have
Z n () gn (&) exp[=An(t — 7)]| < Z |9n ()| [gn (§)| exp[=An(t — 7)]
<2 Z exp[—A,(t — 7).

Using the Ratio test, we see that > exp [—\, (¢t — 7)] converges. By the Weier-

n=1

strass M-test, the series > g, () gn (§) exp[—An(t — 7)] converges uniformly.

Hence G(z,t;&,T) exists.



Let us now verify that (7) is indeed the solution to (5). We begin by computing

[Z MG () g (€) exp[—An(t — T)]] H(t—7)

Z In (z §) exp[—An(t - T)]] ot —7),

where H is the Heaviside unit-step function. Using f (t) d(t —7) = f (1) §(t — 1),

we have

[Z Ann (T g)exp[—A.(t—7) ]

Zgn gn ] (t_T)'

From appendix B, > ¢, (x) g, (§) = é(x — ). Therefore,

n=1

[Z Angn () g (€) exp[=A,(t = T)]| H(t — 7) + 6(z — £)5(t — 7).

Hence,

{Z gn (& )+ AnGn (2)} expl=Aa(t — 7')]} H(t—7)+6(z—&)6(t—T).
Since ¢/ (x) + Apgn (x) = 0, we have
LG =6(x— &)t —7).

By direct computation, G(0,t;&,7) = G,(1,t;&,7) = 0.
To obtain the integral equation,

1

—a2//G(x,t;€7T)f(U(l’o,T))dﬁdT+/G(I7t;570)¢(§) g, (8)

0

corresponding to the problem (3), let us show that L*u = —u; — ug,, where L*
denote the adjoint operator of L:
0*u (vu,)
v— = (VUy), — Vgl
0x? ¥
= (quf)x - (Uxu):): + UzaU,

ou

Vo = (vu), — vu,



L=yt P
T T o
= [(vu), — o] = [(vug), = (Vo) + V]

= (vu), — viu — (vuy), + (V,u), — Ve,

which gives

viu —ul v = (yu —vuy),; + (vu),,

where L*u = —u; — Uyy.

Next, we show that a solution of the problem (3) is also a solution of the
integral equation (8). Using G* (€, 7;x,t) = G (x,t;&,7), and Green’s theorem,
which states that [[ (P, +Qy) dxdy = [ Pdy — Qdx, we obtain

D aD

/ / (GLu —uL*G*) dédr = / / (Gou—Gu,), + (Gu) | dédr

= /(Ggu — Gu,)dr — Gudg. (9)
o9

On {0} x (0,7),

T
/(Géu ~ Gu,)dr — Gudt = / (G, (2,80, u(0,7) = G (x,£0,7) u, (0,7)] dr
o0 0

=0

since u(0,7) =0 and G(z,t;0,7) =0. On {1} x (0,7,

T

/(Ggu — Gu, )dT— Gud{ = / [G§ (2,61, 1) u (1, 7) = Gz, t;1,7) u (1, 7')} dr

o0 0
=0

since u¢(1,7) = 0 and Ge(x,t;1,7) = 0. On D x {0},
1

/(Ggu — Gu,)dr — Gud{ = —/G(:p,t;f,O)u(f,O) d&

o0 0
1

:_/G@mémwﬁﬁ

0
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since u (£,0) = ¢ (§) . On the other hand, let us consider the left-hand side of
(9).

4 / (GLu — uL*G) dédr

:a2

/G(x,t;ﬁ,T)f(u(xo,T))dﬁdT—//u({,T)é(x—g)é(t—T)dde

Tt — g T

1
/G x, 6, &7) f(u(ze, 7))dédT — u (2, t).
0

From (9),

T 1 1
2 Z)
aO/O/G:cthf((J:O, 7))dédT — u (x,t) O/Gxtfo o (€) de.

Therefore, we have (8).

Next, we will prove some properties of Green’s function.

LEMMA 1. In the set {(z,¢;&,7) :zand Earein D, 0 <7 <t<T}
G(x,t;€,7) >0

Proof. Let Dy = {(z,t;¢,7) :x and  arein D, 0 <7 <t <T}. Suppose
that there exists a point (x1,1;&,7) in Dq such that G(x,t;&,7) < 0. Since
G(x,t;€,7) is continuous in Dy, there exists a positive number ¢ such that

G(z,t;&,7) <0 in the set,
Wo= (1 — e, 1 +€) X (tr—etpde) X (&1 —6,&§4 +e) X (=&,71 +¢€)
which is contained in D;. Let
Wi= (G —e&+e)x(n—em+e),

€ € € €
Wy = (51—5751‘1‘5) X (7'1—577'1‘1‘5)-

We would like to show that there exists a function & (z,t) in C? (R?) such that
h=1on W, h=0outside W;, and 0 < h < 1 in Wi\Ws. We construct the

desired function explicitly in a sequence of steps:
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Step one: the function f; defined by

0, s <0,
fi(s) =

exp(—s7t), s>0,

belongs to C? (R), vanishes for s < 0, is positive for s > 0, and is monotone
increasing.

Step two: the function f5 defined by

fo(s)=fi(s) fi(1—s)

belongs to C? (R), vanishes for s < 0 and s > 1, and is positive for 0 < s < 1.
Step three: the function f3 in C*° (R) defined by

vanishes for s < 0, is monotone increasing, equals one for s > 1, and satisfies
0< f3(s) <1forallseD.
Step four: the function h (z,t) defined by

h(zst) = f3 (%) fs (%)

is in C? (R?) and has h (z,t) = 1 on Wy, h (z,t) = Ooutside W, and 0 < h (z,t) <
1 in Wy\Ws. Hence, the solution of the problem, Lu(z,t) = h(z,t) in D x (0, a,
t1 < o with u satisfying zero initial and u(0,t) = 0 = u,(1,t), is given by
Tie E1te
u(z,t) = / / G(z,t;&,7)h(E, T)dEdT.
Ti—cgi—c
Since G(z,t;¢,7) < 0 in Wy, h(&,7) > 0 in Wy, and b = 1 on W, it follows
that u (x,t) < 0 for (z,t) in (x1 —e,21 +¢) X (t; —&,t1 +¢€). On the other hand,
h(xz,t) > 0in D x (0,a] implies that u (x,t) > 0 by weak maximum principle
and Holf’s Lemma. We have a contradiction, and therefore, G(z,¢;£,7) > 0 in

D;.
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Next, we show that G(z,t;&,7) # 0 in D;. Suppose that there exists a
point (zq,ts; &, 7o) in Dy such that G(x,t;€,7) = 0. Using the strong maximum
principle, we have G(z,t;&,7) = 0 in Dy N {(x,t;&, ) : 0 <z < 1, t < to}.
On the other hand, G(&, t2, &2, 72) = 2 io: sin? /A& exp[— A, (ta — 72)], which is
positive. We again have a contradictior?.z This shows that G(z,t; &, 7) is positive

Hll)y O

i1
LEMMA 2. For any function v € C([0,71), [ [ G(x,t;&, 7)y(T)dédr is con-
00

tinuous on €.
Proof. Let ¢ be any positive number such that t — e > 0. For 2 € D and
€ [0,t — €], we multiply

G(x,t;,7) Zgn )gn (&) exp [N (t — 7))
n=1
by v(7), to get
G(z, €, 7)y Zgn 2)gn(€) exXp [=An(t.— 7)] (7).
Since g, (z) = V2 sin /A2, we have

0<7t<T

> el xp[-ft ~ )](r) < 2 | o (7 }Zexp A= 7)],

which converges. By the Weierstrass M-test, > g,(2)gn(&) exp [=An(t — 7)] v(7)
n=1

converges uniformly, and we have

7/1 Gleti & (r)dedr = //gn ) exp A (t — 7)] 7(r)dedr
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Since
0o t/s
Lo

n=

/ ()9 () exp [~ At — 7)] 7(7)dEdr

AN €4

3 / /1 oxp [= A\, (t — )] dedr

<
<2 _OrgnTaSXTW(T ) Zl

0<7<T’

S
Il
e,

=2 _ max (7) Z / exp [—An(t — 7)] dT

— = AN - _
=2 _OrélTangv(T) A, [exp(—Ane) —exp(—Ant)]

I

S
Il
i

1
)

NE
57

<
< 2| sk A7)

—_

4 n=

which converges. Furthermore, it follows from the Weierstrass M-test that

> [ [ syt -l

converges uniformly with respect to . t and . Since the uniform convergence

also holds for € = 0, it follows that

> / / 90 (2) gul€) exp [~ A (t.=7)] y(7)dEdT

is a continuous function of x, t and € > 0. Therefore,

t 1 | S t—e 1
[ [t et <t > | [awm@ew =t = s
0 0 n=l17% 9
is a continuous function of z and t. O

Based on Theorem 2 of Chan and Tian [2], we will prove the following theorem.
THEOREM 3. There exists some ty such that for 0 < t < ¢y, the integral
equation (8) has the unique continuous solution u > ¢ () and u is a nondecreas-
ing function of ¢. Let t;, be the supremum of the interval for which the integral
equation (8) has the unique continuous solution u. If ¢, is finite, then u (zo,t) is

unbounded in [0, ).
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Proof. We construct a sequence {u,} by wug(z,t) = ¢(z), and for n =
0,1,2, ..,
Lty 1 (2,1) = a® f(un(z0,t)) in Q=D x (0,7T),

Unt1(2,0) = ¢ () on [0,1],
Un+1(0,1) = (Upy1).(1,8) =0 for 0 <t < T.
To show that the sequence w,(z,t) > ¢ (x) for all n = 0,1,2,..., we use the
condition (4) to obtain that
L (uy — up) (z,) = a” f (uo(wo, t)) + " (x)
> a*[f(uo(@o, 1)) = f(&(x0))]

¢ (wg)) — [(¢(20))] =0 in Q.

(
= a”[f(

Since
(uy —up) (,0) =0 on [0,1],
(ug —up) (0,8) =0 = (g —up), (1,£) =0 for 0 <t < T,
it follows from (8) and G(x,t; &, 7) being positive that wg(z,t) > ug(z,t) in .

Let us assume that for some positive integer 7,

¢§U1SU2< ...Suj_lgujinQ.

Since f is an inereasing function, and u; > w;_;, we have
L(ujsa =u;)=a°[f () = f (uj)] >0 -in Q,
(uj+1 — u;)(2,0) =0 on [0,1],
(uj-l—l — UJ)(O,t> =0= (Uj+1 — uj)ac(L t) for0<t<T.

From (8),

t

mﬂrmme:f//b@¢gﬂmwy,m”m@mzo

Thus, w11 > u;. By the principle of mathematical induction,

O <u <uy < ... <upy_q <y, in Q for all positive integer n. (10)
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Next, let us show that the sequence {u,} is a nondecreasing function of ¢.
Let wy(z,t) = up(x,t + h) — u,(z,t) for n = 0,1,2,..., where h is any positive
number less than 7" — ¢. It follows that

wo(x,t) = up(x, t+h) — ue(z,t)

In D x (0,7 — h),

Lw, (7,t) = a? f(uo(zo,t + h)) — a®f(up(wo, 1))

= a’ [f(¢(w0)) = f(B(x0))]
=}

By (10) and the construction of uy, we get that

w1<$,0) = u1<x7h) - ul('ra O)
— uy (2,h) — 6 (x) > 0 on D,
U)l(O,t) = ul(O,t—i— h) - ul(O,t) = 0, (w1(17t))z = 0, 0<t<T-—h.

By (8),w; > 0 for 0 <t < T — h. Let us assume that for some positive integer
J, w; > 0for 0 <t <T — h. Using the Mean Value Theorem, we get

Lwj (2, t) = a® [f (uj(xo, t + b)) — f(uj(20,1))]

= a* [f' (uj(2o0; t2) Jwj (z, )]
in D x (0,7 — h) for some t; in (¢, + h). Also,
wjt1(z,0) =0 on [0,1],

wi+1(0,t) = (wj+1(1,8)), =0 for 0 <t < T — h.

From (8) and G(x,t; &, 7) being positive, we get that for 0 <t < T — h,

¢
wj(z,t) = a2//G(x,t;f,T)f’(uj(xo,tl))wj(x,t)dde > (.
00
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By the principle of mathematical induction, w, > 0 for all positive integer n.
This shows that w, is a nondecreasing function of .

Next, we would like to show that there exists some ¢ such that the integral
equation (8) has a unique continuous solution u for 0 < ¢t < t. We consider the
problem

Lu(z,t) =0 1in Q,
v(,0) = ¢(x) on D,
v(0,8) =0, (1,t) =0 for0 <t <T.
From (8), the solution of the problem is

ik

Pl / G, £1£,0)6(£)dt.

We know that G(z,t;&,7) is positive and ¢(x) is nontrivial, nonnegative and
continuous. Thus, v > 0 in €2. By the weak maximum principle and the parabolic
version of Hopf’s lemma, v attains its maximum ko = max ¢(z) in D x {0}.
Next, we show that for some given positive const;;[‘[cnj]\/[ > ko, there exists
some to such that u; < M for 0 < ¢ < t5. By Lemma 2, G(x,t; £, 7) is integrable.

Let us consider
t 1 1
ui(z,t) = a? Gz, 46 7) f (i1 (o, 7))dédT + [ G(,8;€,0)p(§)dE.  (11)
/] /
As t — 0, we see that

1
g (. 7) = bty f Gl ¢, 0Jo(¢)
0

1

_ / lim Gz, €, 0)6(¢)dS

D gn () gn (&) H(E)dE

n=1

— o —_©

o(x —&§)(§)dg

I
< o
=
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This shows that there exists ¢y such that w;(z,t) < M for 0 < t < t5. Let u
denote lim u;. From (11), we have (8) for 0 < ¢ < t,.

Next, we show that {u;} converges uniformly to u for 0 <t < ty. From (11),

i1 (z,t) —u;(z, t) // x, b & ) [ f (wi(@o, 7)) — f (w1 (0, 7))]dédT. (12)

Let S; = [ I]nz?x | (u; —u;—1) . Using the Mean Value Theorem, we have
0,1]%x[0,t2

fui(wo, 7)) = fuir (o, 7)) = f' (1) (ws(w0, 7) — ui—1(20,7))

for some p between w; (2o, 7) and u;(zg, 7). Since u; < M for all i and f” (s) > 0

for s > 0, we get

fuizo, 7)) = f(ti1(wo, 7)) < f' (M) (ws(wo,7) — i1 (w0, 7))

From (12), we have

1
Sip1 < 2a*f'(M)S; Z //exp [—An(t = 7)) ddT
n=1 0

=2a*f'(M SZZ/eXp n(t—7)]dr
= 2a*f' (M [Z)\ (1 — exp( )\nt))] Sy (13)

We also know that > A H(1—exp(—A,t)) < > A, ', which converges. Therefore,
n=1

n=1

by the Weierstrass M-test, Z A L1 — exp(—Ant)) converges uniformly.

We would like to show that there exists some oy (> 0) such that

20> f' (M Z)\ (1 —exp(—=A,t)) <1 fort e [0,0y].

Since PII(]) ST —exp(—Ant)) = Z hm A (1 — exp(—Ant)) = 0, there exists
Y n=1 n=1t—0

some oy (>_0) such that

Z)\ (1 —exp(=A,t))| <

for t € [0, 04],

b
2a* f* (M)
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that is,
2a* f' (M Z/\ (1 —exp(—=Aut)) <1 fort € [0,0q]. (14)

From (13) and (14), it implies that {u;} converges uniformly to u(x,t) for 0 <
t S 1.

Similarly for oy <t < 5, we use u (£, 0y) in place of ¢ (€) in (11), and obtain
that

t

1 1
wi(z,t) = a2/ G(z, ;€ 7) f (w1 (xo, 7))dEdT + /G(a:,t;ﬁ,())u (&, 0q) dE.
0

o1 0
Furthermore,
t 1
Ui (7,1) — i GQ//G z, &, 7) [f (ui(wo, 7)) — f(ui—1(z0,7))] dédT.
o1 0
Since S; = [0,{?38{,@ (u; — w;—1), it follows from the Mean Value Theorem that

fui(zo, 7)) — f(uia(20,7)) < f' (M) S;

From (12), we have

Si1 < 2a*f'(M)S; Z//exp o(t — 1) dédr
=2a*f' (M SZ/eXp n(t=1)]dr

= 2a2f'(M [Z)\ (1 — exp(—An(t — 01)))] S;. (15)
Thus, there exists 0o = min {0y, ts — o1} > 0 such that
20> f' (M Z)\ (1 —exp(=A,(t —01))) <1, for t € [0y, min{20y,t2}]. (16)

Hence, {u;} converges uniformly to u for ¢ € [o7, min{2071, t5}].
By proceeding in this way the sequence {u;} converges uniformly for 0 < ¢ <

to. Therefore, the integral equation (8) has a continuous solution u for 0 < ¢ < t,.
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To show that the solution u is unique, let us suppose that the integral equation
(8) has two distinct solutions u and u on the interval [0,%5]. Also, let & =

max |u—u| > 0. From (8),
DX[U tz}

(e, 1) ~ e, 0) = o / / G 15 ) oo, 7)) — (o, 7)) dedr
As in the derivation of (13), we obtain that

d < 2a*f'(M [ik Y1 = exp(— )\nt))] O for t € [0,04].

n=1

This implies that

2a°f' (M [Z)\ (1 —exp( )\nt))] >1forte|0,0].

For t € [0,04], it follows from (14) that we have a contradiction. Hence, the
solution is unique for 0 <t < 0.

As in the derivation of (15), we obtain that

d < 2a*f' (M [Z A (1 — exp(= A (t — 01)))] O for t € o1, min{204 t2}].
This shows that
20> f' (M [Z A1 —exp(=A(t — 01)))] > 1 for t € [o1, min{20, t2}].

For t € [0y, min{20, t3}], it ‘follows ‘from (16) that we have a contradiction.
Hence, the solution is unique for o3 < t < min{20; ¢;}. By proceeding in this
way, the integral (8) has the unique continuous solution u for 0 < ¢ < t,.

Let ¢, be the supremum of the interval for which the integral equation (8) has
the unique continuous solution u. We would like to show that if ¢, is finite, then
u (xg,t) is unbounded in [0,t,). Suppose that u (xg,t) is bounded in [0,t,). We
consider (8) for t € [ty, T) with the initial condition u (z,0) replaced by u (z, ;) .

1

t 1
ul(zo,t) = a? / / G0, t:6,7) f (u (0, 7)) dédr + / G, 15 €, ty)u(€. 1)
ty O

0



20

For any positive constant N > u(xg, t), an argument as before shows that there
exists t3 such that the integral equation (8) has the unique continuous solution u
on [ty, t3]. This contradicts the definition of #,. Hence, if ¢, is finite, then u (o, t)
is unbounded in [0, ;).

Since u; is also a nondecreasing function of ¢, u is a nondecreasing function of

t. U



Chapter IV
A sufficient condition for blow-up in a finite time

In this chapter, we will give a sufficient condition for the solution u to blow-up
in a finite time.

LEMMA 4. Let u (z,t) be a solution of the following problem:
Lu=b(z,t)u(xp,t) in €,
u(z,0) >0 on D,
u(0,t) =0=u,(1,t) for0<t<T,

where b (x,t) is nonnegative and bounded, then u (z,t) > 0 in Q.

Proof. Case 1: b(x,t) = 0.

If uw < 0in , then by the weak maximum principle, u attains its negative
minimum somewhere at x = 1. By the parabolic version of Hopf’s lemma, u, < 0
at this point. This contradiction shows that w (x,¢) > 0 in Q.

Case 2: b(x,t) being nonnegative and nontrivial.

Let n be a positive constant, and
V(z,t) =u(z,t)+n(1 —|—xl/2) e

where ¢ is a positive constant to be determined. Also, we obtain that V (z,0) > 0

on D and V(0,t) > 0 for 0 < t <T- Then we have
LV (2,8) — b(z,t) V (w0, 1)
— L [, t) + 5 (L+22) ] = bz, 1) [u(wo,t) + 7 (14 2% ]
= bz, t)u (z0,t) + L [ (1 +2"2) "] — bz, t)u (o, t) — b (2,1) 7 (1 +$1/2> ct

[77 (1+:B1/2) ]—b(x,t)n<1+xl/2) ct
[ (1422 + 413/2—b(3c,t) (1+x1/2>}
{ +3:1/2

1 1/2
4 3/2—(1+;1:0 )(max b(x,t)].

z,t)EQT
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Let M = max b(x,t), and we choose ¢ > (1 + :E(l)/2> M. Then,

(z,t)€Q
LV (z,t) = b(x,t) V (x0,1)

1
)M {(1—}—3:1/2) (1—1—1:(1)/2) M+ = <1+xé/2) M]
i

1+a:(1)/2

> net(

> et (1) {(1 - x(l)/2> M [(T+2'3) -1] + Fl?)/?]

Therefore,
LV (zyt) — b (z,t) V (z9,t) > 0in €.
To show that V (&,¢) >0 in £, let us suppose that there exists some point in
Q2 such that V (z,t) <0. Since V (2,0) > 0 and V (z,t) is continuous, the set

{t : V (z,t) <0 for some z € D}

is nonempty. Let ¢ denote its infimum. Then, there exists some x; € D such
that V (21,f) = 0 and V; (21,£) < 0. For ¢ < {, we have V (z,t) > 0 for all .
Since V' (z,t) is continuous, we have V (z,£) > 0 for all z. Because V (z1,¢) =0,

V (z1,%) is a local minimum. Thus, V' (z,%) > 0 and V;, (z1,%) > 0. We have
0>V, (21,8) > LV (21,8) — b (21,) V (20,7) > 0.

We have a contradiction. This show that V' (z,¢) > 01in 2. Since V is continuous,
it follows that V' (1,¢) > 0for 0 << T Asn — 0F, we also have that u (z,t) > 0
in Q. O

The following theorem gives a sufficient condition for the solution w to blow-up
in a finite time.

THEOREM 5. If ¢(z) is sufficiently large in a neighborhood of zg, then u
blows up in a finite time.

Proof. Let us consider following problem,
Lo(z,t) = a®f(v(xg,t)) in (zg — d,20) % (0,T),

v(x,0) = vo(z) >0 on [zg — 0, x], (17)

v(xg — 6,t) = vy(x,t) =0 for 0 <t < T,
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where vy(z) is nondecreasing on [xy — §, zo] and vo(zg — 0) = 0 = vj(zg). We
would like to show that lim (f(x)/z) = co. Suppose that lim (f(z)/x) = N for
some positive number N. Then, there exists some positive number z; > 0 such

that

Zz

lf(w)

—N‘<1forx>z0.

Thus f(z)/x <1+ N. We have

)l
fl@)  (T+N)z

f N/ Ly = o0

which contradicts the assumption / G ——ds < oo for some zj. Thus, hm (f(z)/x)

for x > zo.

This implies that

20
= OQ.

Let A1 be the principal eigenvalue of the problem,

g(x) = =Aig(x)
g(zo — 90) = 0= g'(x0).

Since A\; > 0, there exists a positive constant k; > 2y such that

@ > maxq{2\, 50 2} for oz > ky. (18)
From f (x) /2> 2X;, we have f (x) /2> Xjx. Therefore,
F(@) > 1) ~ M > (@) - 1 SO
which gives
1 1 2

From /Lds < 00, we have
f(s)

[e.e]

1

k1
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From appendix C, the solution of the problem (17) blows up in a finite time at
x = xg, provided that vo(z) is large enough.

Next, we choose a positive constant ko > k;/ (6%a?) big enough such that
wo(x) = a2k52[m — (zo = 0)][(xg +0) — ] > vo(x) in [xg — §, x0).
We see that
wo(zo —0) = 0 and w((zg) = 0.
By (18), we see that f(z) > 22/ (6%a*). Then,

wh (x) + a®f (wo(x0)) = =2aky + a®f(a5?k,)

2
> —2a%ky + a%a®5°k, <—>

a?y?
== Ik
Let us consider the following problem,
Lw(z,t) = a® fw(wy,t)) i (29—, z0) x (0,T),
w(x,0) = we(x) on [zg — I, o),

w(zg — 0,t) = wy(xp,t) =0 for 0 <t < T.
In (xg — 0, 9) X (0,7),

L(w — o)z, t) = a*f"(8) [w(o, t) — v(o, t)]
for some [ between w(xg,t) and v(zg,t). Also,

w(z,0) —v(x,0) >0 on [zg— 0, x0],

w(xg — 0,t) —v(xg — d,t) =0, wy(wo,t) — vu(x0,t) =0 for 0 <t <T.

From Lemma 4, w(z,t) > v(z,t) in [xg — §,20] X [0,T"), and w(x,t) blows up in
a finite time.

By choosing ¢ (x) > wo(z) in [xg—4, 2] X [0,T) and using Lemma 4, u(z,t) >
w(x,t). Therefore, u(x,t) blows up in a finite time, provided that ¢(x) is suffi-

ciently large in some neighborhood of x. 0



Chapter V
Complete blow-up

In this chapter, we will show the complete blow-up of the solution w.
LEMMA 6. Given any « € D and any finite 7, there exists positive constants

C} (depending on z and T') and (5 (depending on 7") such that

1
/Grf{Od§>Cl for 0<t<T,
0
1

/Gxo7t§()d§<02 for 0 <t<T.
0

Proof. Let us consider the following auxiliary problem,

\

Lv(xz,t) =a®in D x (0,T),
v(z,0) =0 on D, (19)

v(0,8) = (l,t) =0for 0 <t <T

/

The problem (19) has a unique solution v given by

1L
ZCLQO/O/G(:E,t—T;f,O)dde

t o1
:aQO/O/G(:C,T;f,O)dde,

1

v(z,t) = a2/G(x,t;§,O)d§.

0

which gives

It follows from Lemma 1 that v;(x,t) > 0 for any « € D and any ¢ > 0. Since for
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any x € D,

it follows that for any 2z € D and for any finite 7', there exists a positive C}

(depending on = and 7") such that

i
/G(m,t;f,O)d£>C’1 for0<t<T.
0

1
Since [ G(x,t;&,0)d¢ exists, there exists a positive (5 (depending on T') such
0

that
1

/G(xo,t;g,o)d§<02 for0<t<T.
0

which completes the proof. 0

THEOREM 7. If the solution of the problem (8) blows up in a finite time T,
then the blow-up set is D.
Proof. For any t < T,

t 1 1

ule,t) = o2 / / G €, 7) f (ulwo, 7))dEdr + / Gl 1:€,0)6(€)de

:a2//G(x,t—T;f,O)f(u(xo,T))dédT—i-/G(%t;fao)(b(g)dg (20)

If w(z,t) blows up in a finite time 7', we know that u blows up at least at © =

by Theorem 3.
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From (20) and Lemma 6,

1

u(wo,t) = / / G, 15 €,0) fulwo, t — 7))dédr + / G, 1: €, 0)5(€)dé
0 0

0

:CL2/f(U(l’g,t—T))dT/G(.To,t,g,())dg—i—/G(l’(]?t,g?())gb(é)dg
0 0 0

< Cya? / fu(zo,t = 7))dr + Cymax ¢(z)
0

zeD

Gy
Since u(wg,t) — oo as t— T, we also have [ f(u(xo,T — 7))dT = c0.
0
For any (z,t) € Q

t 1

u(z,t) > C’la2/f(u(x0,t —7))dT + /G(m,t;§,0)¢(§)d§

0 0
t

> Cla2/f(u(xo,t — 7))dr.

0
T
As t approaches T, it follows from [ f(u(x, T —7))dT — oo that u(x,t) tends to
0
infinity. Thus, the blow-up set is D. For T € {0, 1}, we can always find a sequence

{(zn,tn)} such that (x,,t,) — (Z,T) and lim-u(z,,t,) — oo. Therefore the
blow-up set is D. 0
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The parabolic boundary of S(P) is

([0, 1] x {0}) U ({0} > (0,1]) U ({1} x (0, 1])

Then the positive maximum or negative minimum is attained on the parabolic
boundary.
Hopf’s Lemma (Parabolic version).

Let ¢(x,t) be a continuous function in 7" with ¢ < 0. If (L +c)u > 01in T,
the maximum M (minimum m) of u is attained at a point P € 9T, and a sphere
through P, having its interior lying in 7" such that u < M (u > m) there, can
be constructed, then g% > 0 (< 0) at P, provided that the radial direction from

the centre of the sphere to P is not parallel to the t-axis.
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Appendix A
Maximum principle and Hopf’s lemma

We outline briefly on strong and weak maximum. Hopf’s lemma is also in-
cluded. Interested readers may consult [11].

Let T be a (n + 1)-dimensional domain in £"™ and

n

Lu = Z alj(;z,,t)u%m] -+ Zbl(x,t)uzz — Uy,

i j=1 i=1
where a;; = a;;. The operator L is parabolic at (z,t) if there is a number p > 0

such that

n

Z a2, 1) 665 > MZ@Z
i=1

ij=1
for all n-tuple (&1,&s,...,&,). The operator L is uniformly parabolic in T if the
above inequality holds with the same number p for all (z,t) € T.

Let us assume that L is uniformly parabolic, and a;; and b; are continuous in
T. For each P € T, denote by S(P) the set of points () which may be connected
to P by a simple curve in T along which the coordinate ¢ is nondecreasing from
Q to P.
Strong Maximum Principle

Let ¢(x,t) be a continuous function in 7" such that ¢(z,t) <O0.

If (L + c)u > 0.and u achieves its positive maximum at a point Py € 7', then
u=u(Fy) in S(H).

If (L +c)u >0 and u achieves its negative minimum at a point Py € 7', then
u=u(Fy) in S(F).
Weak Maximum Principle

If (L4 c¢)u > 0 and u is continuous on T, then for any point P € T, the
positive maximum of u in S(P) is attained at a point on the complement of
S(P).

If (L4 c)u > 0 and u is continuous on T, then for any point P € T, the

negative of v in S(P) is attained at a point on the complement of S(P).



the solution of the problem is unbounded and exists till time

Ty <71, = —<oo.
0 /Q — A7

Proof. Let
1

E(t) = /u(m,t)1/)1(x)dx

0
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Then E(0) = Ey and furthermore, as follows from (C1), E(t) satisfies the equality

1
Cig /um(%’ )y (z d:B—{—/Q (x,t))Yr (v)dx

0
Integrating by parts and taking into account (C1) and (C2), we obtain

1 1

/u:m x, 6 (v)dr = /u(:c,t) V(z)dx

0 0

Furthermore, from Jensen’s inequality for convex functions, we obtain

/ Qluyi(@)dz > ¢ / i D)) 20E),

from (C4), we have the inequality

dE
EZQ() )\1E>07t>07

E(0) = Ey > 6.

(C4)

Hence under assumptions we have that E(t) > Ey for all £ > 0, and consequently

B(t)
dn
— >t t>0.
/ Q1) — M\i(n)
Eo

Therefore, by (C3), E(t) — oo ast — 17 < T,, and since F(t) < supu(z,t), the

solution u(z,t) is unbounded.

O



Appendix B
Orthogonality of eigenfunctions

The following lemma gives the relation between eigenfunctions and d-function,
for further reading, sec [5].

LEMMA. o
Zgn(€>gn(x) = d(z = 9),
i
where g,(x) is an orthonormal eigenfunction of the Sturm-Liouville problem

g" (@) + Ag(z) = 0,

and the boundary conditions

Proof.  Let us expand d(x — &) in term of g,(x). From the Sturm-Liouville

theorem o

é(x—¢&) = Z Cngn (),
where )

[ (=€) gn(x)d

Cp = 0 1 = gn<§)
bf g (z)dz
Hence -
Zgn(f)gn(x) = (5(1‘ - 5))

which completes the proof. U



Appendix C
Blowing up problem

We will show that the following problem blows up in a finite time under
certain conditions. The generalized problem is contained in [12]
THEOREM. Let us consider a boundary value problem for a semilinear

)

u(,t) = Upe (2, t) + Qu(z,t)) fort >0, x € (0,1),
w(z,0) = uo(z) >0 onz € [0,1], (C1)

u(0,t) = ug(l,t) =0 fort >0,

where @) € C? is a convex function: Q"(u) >0, u > 0.
Let Ay > 0 be the first eigenvalue of the problem

¥/(z) + My(z) =0,
(C2)

$(0).= ¢'(1) =0,

and by v (x) the first eigenfunction. Let ¢ (z) > 0 and

/1¢1(x)dx = 1.

If Q(u) — Ayu > 0 for all u > dg, where dy is a positive constant, and

e N C
(/Q(n)—km< ’ (©3)

then for any initial function uy(z) > 0 such that

1

EO = /uo(x)¢1(x)dx Z 50,

0
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[12] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov.
Blow-up in Quasilinear Parabolic Equations (translated from Russian
by M. Grinfeld). New York, NY: Walter de Gruyter, 1995.

AONUUINYUINNS )
ANRINITUNINE AL



Appendix D
An example of initial value data

In this appendix, we will give an example of initial value data of the problem
(3) that satisfies all the needed conditions and is guarunteed to blow up in a finite

time.

Let f € C%*([0,00)), f(0) >0, f'(s) >0 and f"(s) >0 for s > 0, /f ds < 00

for some zo > 0. It is easy to see that lim (f(x)/z) = oc. Then there exists

(8 > 0 such that
2%
AL Gl 4
Ja)z zoa?(2 — xp)

(see the proof of Theorem 5 for details). Let

for x > 3 (D1)

(z) = —a’k(z —1)> +a’k for0<z <1
g

here k > ——————.
where k > 0a2(2 = 20)

We can see that ¢ is nontrivial, nonnegative and continuous such that ¢(0) =

¢'(1) = 0. Moreover, its second derivative with respect to x is given by
¢"(z) = —2a*k for 0 <z <1.
Using (D1), we obtain that

¢ () 1 a* f(¢(20)) = —2a°k +a* f(~a’k(wo —1)* + a’k)
= 20’k + a® f (kzoa®(2 — x))

2kxoa(2 — x0)
zoa?(2 — xp)

> —2a°k + a®
=0.

Hence ¢"(x) + a®f(¢(x9)) >0 for 0 <z <1,

REMARK: Since ¢(zg = kzga*(2 — x0), ¢(xo) depends on the positive constant
k. We can always choose a positive constant k& big enough to meet the required
condition in Theorem 5. Consequently, the blow-up phenomenon occurs in a

finite time.
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