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CHAPTER I

INTRODUCTION

The problem of the convergence of the sequence of distribution functions of
sums of a random number of independent random variables has been discussed
many times in numerous papers. In this work we investigate the case whose the
limit distribution function is the standard normal distribution function .

In the case of one array, let (X,,) be a sequence of independent random vari-
ables with zero mean (this is not an essential restriction) and finite variances.
Let (Z,) be a sequence of positive integral-valued random variables which inde-
pendent of (X,,). Many authors (e.g.[1],[5],[13],[14],[16],[19],[20],[23],[24] and [27])
gave conditions of convergence of the sequence of distribution functions of random
sums X; + Xo + ... + X7 to the standard normal distribution function ®.

In this work we consider a double array of random variables. Let (X,;) be
a double sequence of random variables with mean 0 and finite variances o2,. For
each n, we assume that Z,, X,,1, X2, ... are independent. In [2],[3],[25] the authors
investigated the convergence of the sequence of distribution functions of random
sums X, + X0 +... + Xz, in case of X1, X,9, ... are identically distributed for
every n. The aim of our investigation is to extend the problem to the case of
X1, Xno, ... are not necessary identically distributed. First we state one of the

most important versions of central limit theorem of sums.

Theorem 1.1. ([12]) Let (k,) be a sequence of positive integers. Assume that
kn
lim Zaik = 1. Then

k=1



(1) the sequence of distribution functions of the sums
Sp =X+ Xp2+ ... + Xog,

converges weakly to ® and
(17) (Xpk), k=1,2,....k,,n=1,2, ... is infinitesimal,
1.€.

max P(|X.k| >¢) — 0

1<k<kn,
for every e > 0,
if and only if (Xuk), k=1,2,... k,,n= 1,2, ... satisfies the Lindeberg condition,
1.€.

kn,

k=1 |I|<€

for every e > 0.

In this work, we extend Theorem 1.1 to the case of random sums. In chapter II
we summarize known results and notations used in our work. Chapter III contains

our main results.
First, we will introduce some conditions:

() (Xnx) is random infinitesimal with respect to (Z,),
le.

max P X =) 20
1<k<Z,

for every € > 0,

Zn
(B) > on, = 1and

k=1
(7) for every subsequence (n'), if there exist distribution functions F(@ such

that the sequence of distribution functions of the sums

X1 + Xprg + .+ Xn’ln/(q)



converges weakly to F@ for a.e. ¢ € (0,1), then F@(z) is measurable in ¢ for
every x, where [,, : (0,1) — N defined by [,,(¢q) = max{k € N|P(Z, < k) < q}.

The following is the main theorem.

Theorem 1.2. Let (Z,, X,x) be a random double sequence of random variables
which satisfies conditions (3) and () .Then

(i) the sequence of distribution functions of random sums

ST = Xl Xoo h Xz,

n

converges weakly to ® and
(1) (Zn, Xnk) satisfies ()
if and only if (Z,, X,x) satisfies the random Lindeberg condition , i.e.

Zn

Z/ 22dFy(z) 2 1
k=1 Y lz|<e
for every € > 0.

Note that Theorem 1.1 is a special case of Theorem 1.2 when Z,, = k,, for each

n € N.



CHAPTER 11

PRELIMINARIES

2.1 Random Variables

A probability space is a measure space (2, &, P) in which P is a measure
such that P(€2) = 1. The set € will be refered to as a sample space. The elements
of £ are called events. For any event A, the value P(A) is called the probability
of A.

A function X from a probability space (€2, &, P) to the set of complex numbers
(' is said to be a complex-valued random variable if for every Borel set B in C,
X~1(B) belongs to £. If X is real-valued, we say that it is a real-valued random
variable, or simply a random variable. We note that the composition between
a Borel function and a complex-valued random variable is also a complex-valued
random variable.

We will use the notations P(X < ), P(X, >x)and P(|X| > z) to denote
P{w|X(w) < z}), P{w|X(w) > z}) and P({w||X(w)| > x}), respectively.

We define the expectation of a complex-valued random variable X to be

/XdP
Q

provided that the integral [, XdP exists. It will be denoted by E[X].
The expectation of a random variable X is known as the mean . The expec-

tation of (X — E[X])? is known as the variance of X and it denoted by o?(X).



Proposition 2.1.1. ([7],p.174) Let X1, Xo, ..., X,, be random variables. Then

n

k=1

provided that the sums on the right hand side is meaningful.

Let (©,&,u) be a measure space and Y a topological space. Let

X, X1, Xs, ..., X,, be measurable functions from €2 to Y. We will write
X, — X ae. [y

if (X,) converges to X almost everywhere with respect to p. In the case that

) = R* and p is the Lebesgue measure on R*, we simply write
X, — X ae.

A sequence (X,,) of complex-valued random variables is said to converges in

probability to a complex-valued random variable X if

lim P(|X,— X|>¢)=0

n—o0

for every € > 0. In this case we use the notation
X, = X.

Theorem 2.1.2. ([21],p.201) Let X, X1, X5, ... and Y, Y1,Y5, ... be complez-valued

random wariables. If X, B X andY, LY then X, +Y, &> X +VY.

From now on, we shall assume that all our complex-valued random variables,

including real-valued random variables, are defined on a common probability space

(Q,&, P).



2.2 Distribution Functions and Characteristic Functions

A function F from R to R is said to be a distribution function if it is
non-decreasing, right-continuous, F'(—o0) = 0 and F(400) = 1.

For any random variable X, the function F' : R — R defined by
F(z) = P(X <)

is a distribution function. It is called the distribution function of the random
variable X.

Now we will give some examples of random variables.

Example 2.2.1. we say that X is a standard normal random variable if the

distribution function of X is defined by

- = t2

Example 2.2.2. we say that X is a degenerate random variable with

parameter a, if the distribution function of X is defined by

0 af v <a
F(x) =

1 if x> a.
Proposition 2.2.3. ([15],p.28) Let X be a random variable with the distribution

function F. If E[X] ezists, then

BIX] = / " pdF(2),

o0

Let F' be a distribution function. The function ¢ : R — C' defined by

o(t) = /oo e dF (z)

[e.o]



is called the characteristic function of the distribution function F. If F
is the distribution function of a random variable X, then ¢ is also called the

characteristic function of X.

Proposition 2.2.4. ([18],p.45)
(1) The product of two characteristic functions is a characteristic function.

(x4 18 a4 Charactreristic Junction, Len 1S also a cnaracteristic junction.
i) If © is a characteristi tion, then |p|? is al haracteristi ti

Proposition 2.2.5. ([8],p.477) Let (F,) be a sequence of distribution functions
and (p,) a sequence of corresponding characteristic functions. Let (p,) be a se-

o
quence of non-negative numbers such that > pp = 1. Then the function
k=1

F(z) =) pFi()

s a distribution function and the function

o(t) = ZkaOk(t)
k=1
1s the characteristic function of F.

Any random variables X7, Xy, ..., X, are called independent if

n n

P(({w]Xip(@) < 2}) = [[P(Xs < )

k=1 k=1

holds for every real numbers x4, xa, ..., T,,.
A sequence of random variables (X,,) is said to be a sequence of independent

random variables if X; , X, ,..., X, are independent for all distinct 41,79, ..., i

Theorem 2.2.6. ([7],p.188,191) Let Xi, X5, ..., X,, be random variables with the
characteristic functions o1, s, ..., n, TEspectively. Assume that X1, Xs, ..., X, are
independent. Then the followings hold.

(1) The characteristic function ¢ of X1 + Xo + ... + X, is given by

p(t) = 1(t)pa(t)...on(t) forall t € R.



(ii) o*(X1+ Xo+ ... + X)) = 0%(X1) + 03(X2) + ... + 03(X,) if 0*(X;) < 0

fori=1,2,....n.

Let F,Fy, Fy, ... be bounded non-decreasing functions. The sequence (F,) is
said to converges weakly to F' if

(i) for every continuity point z of F', F,,(z) — F(x) and

(ii) Fy(400) — F(+00) and F,(—o0) — F(—0).
We will write

F, — F

if (F,,) converges weakly to F. Note that the weak limit of the sequence (F,),
if it exists, is unique. In the following theorems we state some facts of weak

convergence which will be used in our work.

Theorem 2.2.7. ([17]) Let (Y,) be a sequence of random wvariables and put
H,(x) = P(Y, < ). Suppose sup BE[Y:?] < co. If H, = H for some distri-

neN
bution function H then we have lim E[Y,] = [7 xdH(z) < occ.

Theorem 2.2.8. (Helly's Theorem, [15],p.133) Let (F,) be a sequence of uni-
formly bounded, non-decreasing, right-continuous functions. Then (F,) contains a
subsequence which converges weakly to a bounded, non-decreasing, right-continuous

function.

Let M be the set of bounded, non-decreasing, right-continuous functions M from
R into [0, 00) which vanish at —co. The function L defined for any M, My € M

by
L(My, My) = }ng{h | My(z—h)—h < My(z) < My(x+h)+h for every z in R}

is a complete metric on M. ([11],p.39)
The following corollary follows from Theorem 2.2.8 and the fact that the ele-

ments in M vanish at —oo.



Corollary 2.2.9. Let (M,,) be a uniformly bounded sequence of elements in M.

Then it contains a subsequence which converges weakly to an element in M.

Theorem 2.2.10. ([10],p.39) Let M, My, Ms, ... be elements in M. Then the
following statements are equivalent.

(17) For every bounded continuous function g on R,

/00 g(x)dM, (r) — /00 g(x)dM (x).
(idi) L(M,, M) = 0.

Theorem 2.2.11. ([26],p.15) Let (F},) and (¢,) be sequences of distribution func-
tions and their characteristic functions, respectively. Let F be a distribution func-
tion with the characteristic @. If F, ~ E, then (@,) converges to o uniformly on

arbitrary finite interval.

Theorem 2.2.12. ([26], p.15) Let (F,) and (¢,) be sequences of distribution func-
tions and their characteristic functions, respectively. Let ¢ be a complex-valued
function which is continuous at 0. If (¢,) converges to ¢ for every t, then there

exists a distribution function-F .such-that F,— F-and the characteristic function

of F is .

Let F} and F5 be distribution functions. The convolution of F; and F3 is
defined by

o0 o0

(Fy % Fy)(x) = /_ Fy(x —y)dFyi(y) = /_ Fi(x —y)dF»(y) for all z € R.

Theorem 2.2.13. ([9],p.252) Let F,G, F,,G,,n = 1,2, ... be distribution func-

tions. If F, = F and G, = G , then F, * G, — F % G.
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2.3 Infinitely Divisible Distribution Functions

A characteristic function ¢ is said to be infinitely divisible if for every natural

number n, there exists a characteristic functions ¢,, such that for every t,

w(t) = {en(0)}".

The distribution function of any infinitely divisible characteristic function is also
said to be infinitely divisible. A random variable is said to be infinitely di-

visible if its characteristic function is infinitely divisible.

Theorem 2.3.1. ([18], p.81)

(1) If ¢ is an infinitely divisible characteristic function, then for everyt , o(t) # 0.
(i) If @ is an infinitely divisible characteristic function, then |p|? is also infinitely
divisible characteristic function.

(1ii) The product of a finite number of infinitely divisible characteristic functions
15 infinitely divisible.

(iv) A characteristic function which is the limit of a sequence of infinitely divisible

characteristic functions isinfinitely divisible.

Theorem 2.3.2. ([26],p.32) A function p(t) is the characteristic function of an

infinitely divisible with finite variance if and only if it admits the representation

Inp(t) =iut + /OO f(t,z)dK (x) (2.1)

where

(e —1—itx) if x#0
f(t7x) =

—% if v =0,

W is a real constant, K is non-decreasing bounded function. The formula (2.1) is

known as Kolmogorov’s formula.
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There is another representation of the logarithm of an infinitely divisible

characteristic function ¢, known as Levy’s formula:

242 0~ :
In p(t) =iat — o +/ (e —1— e YdM (z)
2 . 1+ 22 (2.2)

too tx
ztm_l_ ! dN
[ )N ()

where 02 > 0 and a are real constants, A and N are non-decreasing functions
defined on (—o0,0) and (0, +00) respectively with M (—oo) = N(co) = 0 and
0~ e
/_a > dM (x) + /o+ 2dN(z) < +oo
for every positive real number e.
We will write F' = L(a, 0®, M, N) if an infinitely divisible distribution function

F is represented by Levy’s formula(2.2).

Remark 2.3.3. For the standard normal distribution function ®, we know that
® = L(ag, 03, My, Ny) where ag = 0,07 = 1, My(u) = 0(u < 0) and

No(u) = 0(u > 0).

Theorem 2.3.4. ([15],p.246) For each infinitely divisible distribution function,
the function K in Theorem 2.3.2 can be chosen to be right-continuous and

K (—o00) = 0. The function K in this theorem is unique.

Theorem 2.3.5. ([11],p.85) Let X be an infinitely divisible random variable with
finite variance. Let the constant i and the function K be given in the Kolmogorov’s

formula of the characteristic function of X. Then
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2.4 Kolmogorov Theorems

In this section, we let (X,x),k =1,2,....,k,,n = 1,2,... be a double sequence
of random variables with finite variances. For each n and k, we let p,, 02, and
F,;. be the expectation, variance and distribution function of X, respectively.

In [11], Kolmogorov gave necessary and sufficient conditions for weak conver-

gence of the sequence of distribution functions of the sums
Sn - an + Xn2 TR Xnkn ~ An

where (A,,) is a sequence of real numbers. There is an important convergence
theorem (Theorem 2.4.1). In this theorem (X,;) must satisfy the following con-
ditions.

(@) (Xuk — pnk) is infinitesimal, i.e., for every € > 0

e P(| Xk — tink| = €) = 0

(B) There exists a real number C' such that

kn
Z o2, < C.
k=1
In order to prove the theorem, Kolmogorov defined the accompanying dis-

tribution function of the sums
Sp=Xm +Xna+ .. + Xk, — An

to be the distribution function whose logarithm of its characteristic function is

given by

kn kn 00
In ¢n(t) = _iAnt + it Z Hnk + Z/ (eitac - 1)ank(*r + Mnk:)
k=1 k=17
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Theorem 2.4.1. ([11],p.98) Assume that (X,;) satisfies the conditions (&), ()
and for each n, X1, Xno, ..., Xur, are independent. Then there exists a sequence

(An) of real numbers such that the sequence of distribution functions of the sums
Sp =X+ Xp2+ ... + Xo,, — An

converges weakly to a limit distribution function if and only if the sequence of
accompanying distribution functions of S, converges weakly to the same limit dis-

tribution function.

Theorem 2.4.2. ([11], p.116) In order that for some suitably chosen constants A,

the sequence of distributions of the sums
Sn = Xnl +Xnadt .+ Xk, = Ay

of independent infinitesimal random variables converges to a limit, it is necessary
and sufficient that there exist non-decreasing functions M and N defined in the
intervals (—oo,0) and (0, 4+00), respectively, such that M (—oo) = 0 and N (4o00) =
0 and a constant o > 0 such that

(1) at every continuity point u of M and N

kn
Tim 3 Fou(u) = M(u)
k=1

kn

lim lirm inf 3 { / P2dFo(x) — ( / 2dFo(2))}
e=0 n=oo = Jia|<e |z|<e
kn
— hI% lim sup Z{/ 22dF(z) — (/ xdF,. (7))}
- | <e | <e

= 0'2.

The constants A,, may be chosen according to the formula

kn

A, = Z /x|<T xdFo(x) — (1)

k=1
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where y(7T) is any constant and —T and T are continuity points of M and N,

respectively.

AONUUINYUINNS )
ANRINITUNINE AL



CHAPTER I11
CONVERGENCE TO NORMAL DISTRIBUTION

OF RANDOM SUMS

The purpose of this chapter is to find necessary and sufficient conditions for
the weak convergence of the sequence of distribution functions of random sums to
the standard normal distribution function. One of the important tools is what is

known as the ”g-quantiles of Z,”.

3.1 Definition and properties of g-quantiles

Let Z be a positive integral-valued random variable. Let [ : (0,1) — N be defined
by

l(g) = max{k € N|P(Z < k) < ¢}.

The function [ is called the g-quantiles of Z.

Remark 3.1.1. For a positive integral-valued random variable Z, the function

g-quantiles of Z is non-decreasing.

Theorem 3.1.2. ([4]) For every n, let (ans) , k=1,2,... be a nondecreasing
sequence of mon-negative real numbers and Z, an integral-valued random vari-
able. Further,let a > 0 be fized. Then we have a,,yz, L @ if and only if Ani,(q) — @

for all g € (0,1) where l,, is the g-quantiles of Z,.
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3.2 Convergence to normal distribution of random sums

Let (X,x) be a double sequence of random variables with zero means and finite
variances 02, and (Z,) a sequence of positive integral-valued random variables.

Assume that for each n, Z,, X,,1, X,2,...are independent. For ¢ € (0,1), let
S = X+ XipAt + Xt ()

77 =X 1 + Xno ez

and let £\? and F,, be the distribution functions of S and S 7., respectively.

To prove the main theorem(Theorem 3.2.12), we need the concept of random
infinitesimal. We say that (X,;) is random infinitesimal with respect to (Z,)
if for every ¢ > 0,

max  P(| Xk > ) 2 0.
1<k<Zy

The following results are useful in our work.

Proposition 3.2.1. ([28])Let (X,) be random infinitesimal with respect to (Z,).
If F, = F for some distribution function F, then there exists a subsequence (n')
such that for a.e. q € (0,1), there exist distribution functions 7Y and a bounded

sequence of real numbers (afﬂ)) such that

EY%E, o % F”
where E, stands for the degenerated distribution function with parameter a € R.

Proposition 3.2.2. ([5]) If for a.e. ¢ € (0,1) , there exists distribution function
F@ such that F\” 2 F@ and for eachx € R, F\9(x) is a measurable function in

q, then F, % F where F is a distribution function defined by F(z) = fol F@(1)dg.

Proposition 3.2.3. ([3])For every q € (0,1), let F\9 = L(ay, 02, My, N;) be an

infinitely divisible distribution function with zero mean. Suppose that 03 and the
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function M, |N,| are non-decreasing in q and that the integral F'(z) = f01 F9(z)dq

exists for all x € R. Then we have F = ® if and only if F9 = & for all ¢ € (0, 1).

Corollary 3.2.4. For a.e. ¢ € (0,1) let F\9 = L(aq,ag,Mq,Nq) be an infinitely
divisible distribution function with zero mean. Suppose that 03 and the function
M,.|Ny| are non-decreasing in q and that the integral F(x) = fol F9(2)dq exists

for all z € R. Then we have F = ® if and only if F'9 = ® a.e. ¢ € (0,1).

Theorem 3.2.5. Let (X,x) be random infinitesimal with respect to (Z,) and

Zn

S 02, B 1. Assume that Fy > ®. Then the followings hold.

k=1

(1) there exists a subsequence (n') such that for a.e. q € (0,1), there exists a

distribution function F'9 which Ffﬂ) 2 F@
(i3) if for each v € R, F\9(x) is a measurable function in q, then F9 Y & for

every q € (0,1).

Proof. (i) By Proposition 3.2.1 | there exist a subsequence (n’) of (n) such that

(2)

for a.e. ¢ € (0,1), there exist distribution function F*" and bounded sequence

(') such that

FO+E ., % F7. (3.1)

Zn l’ﬂ(q)
It follows from Y o2, % 1 and Theorem 3.1.2 that 3. o2, 1 for all ¢ € (0, 1).
k=1 k=1
In(q)
Then for each ¢.€(0,1) ssup->_-02, < oo. Soforall ¢ &(0,1)

neN k=1
In(q)
sup E[(S9)?] = sup Z 02, < 00. (3.2)
neN neN

k=1
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Thus from (3.2) and the boundedness of (a )) we have for a.e. ¢ € (0,1),

sup E[(S + 0% = sup E[(5'9)? + 24959 + (a'9)?)

n’eN n’eN

= sup[E[(S9)?] + 209 E(SY) + (a'9)?]
n’eN

= sup[B[(S'9)?] + (a!)?]
n’eN

< sup E[(S9%)+ sup(a?)>?
n’eN n’eN

< 0.

From this fact and (3.1) we can apply Theorem 2.2.7 with Y,, S(q + a D for a.e.

€ (0,1). Then

lim a(,) = lim (E[ST(L?)] + agq,)) = lim E[S’SI) + a(Q)] / wdF

for a.e. ¢ € (0,1). Let a'? = [T 2dF® . Thus lim a(,) = a9 < o for ae.

€ (0,1). It is easy to check that £ ) = E_ @ for ae. ¢ € (0,1). From this

fact, (3.1) and Theorem 2.2.13 we see that

Fé,q) L F(q) * E_a(q)

for a.e. ¢ € (0,1). Let F(@ = F7% E_ . Thus FTE,) = F@ for ae. q € (0,1).
Hence we have (7)

(41) Assume that for each @ € R, F@ () is a measurable function in ¢q. Let (n’)
be an-arbitrary. subsequence of (n). By (i) , there exists another subsequence

(n") C () such that , for a.e. ¢ € (0,1),

F9 2 p@ (3.3)

n

for some distribution function F(@ and by Proposition 3.2.2 , ®(x f F@(1)dg.

First we show that the F(@ satisfies all conditions of Corollary 3.2.4 . By (3.2),

(3.3) , and applying Theorem 2.2.7 with Y,,» = 5’7(5,) , we have
/ 2dF(z) = lim E[S\Y] =0 (3.4)



19

for a.e. ¢ € (0,1). Thus F@ has zero mean. Applying Theorem 3.1.2 with
anr, = sup P(|Xy| > ¢) and (X,;) is random infinitesimal with respect to (Z,),
1<I<k

we obtain

lim sup P(|X.u|>¢e)=0

n90 1 <1<l (g)

for all ¢ € (0,1). By (3.3) and Theorem 2.4.1, we have that the accompanying
distribution function of ST(L?,) converge weakly to F(9 for a.e. ¢ € (0,1). By Theorem
2.3.1 (iv), F9 = L(ay, 0, My N,) are infinite divisible. From Theorem 2.4.2 and
the non-decreasing monotonicity of the I,,(¢) it can be easily seen that o7, My, | N,|
are non-decreasing in ¢q. Therefore Corollary 3.2.4 can be applied and it follows
that F(@ = & for a.e. ¢ € (0,1). So FTE?,) % @ for ae. g € (0,1). Next we will show
that F'% 2 & for all g € (0,1).Let ¢ € (0,1) and A = {q € (0,1)|F'? 2 ®}.
Then there exist ¢q, gs in A such that ¢; < ¢ < g2. From Theorem 2.4.2, Remark
2.3.3 and the non-decreasing monotonicity of the 1,,~(q), we have for u < 0,

Ly (qu) L, (q) L (g2)

0= /l/lm Fn//k(’u) S /l/lm Fn”k(u) S llllm Fn”k<u) =0
n’’ —oo | n!/’ —oo — n!’ —oo 1
for u > 0,
ln//((Il) ln//(q) ln//(qz)
n'’—oo 1 n!!' =00 Vi | n!!' —o0 ]

and

l NG (q1

1= lir%liminf Z {/ 22 dF(x (/ xdFm. (7))}
£-0 n"—oo |z lz|<e

|<e
ln” (q)

glir%limian{ / 22 dFyn(x) — ( / zdF,m,(x))?}
£=0 n"—o0 |z|<e |z|<e

k=1
ln” (q2)

<timlinint S ([ PdFm) - ([ sdbn@)) =1
—1 |z|<e lz|<e

e—0 n/"—o0
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ln” (ql )

1 = lim lim sup Z {/||< 22 dF.(x) — (/ rdF())?}

=0 proo 1 |z|<e
ln" (q)

< lim lim sup Z {/|< x2an//k(I) — (/ iUanuk(x))2}

e—0 n' —o0 o1 |CC|<E

ln// (q2)

< lim lim sup Z {/||< 22 dE,up, () — (/ rdFm(2))*} = 1.

=0 proo 1 |z|<e

w

From Theorem 2.4.2 and remark 2.3.3, we also obtain that Fn(?,) — ®. So Fé?,) 2P
for all ¢ € (0,1). That is every convergent subsequence of (F,Eq)) converges weakly

to @ for all ¢q. Thus (F,gQ) ) converges weakly to @ for all . Hence we have (i7). [

Proposition 3.2.6. Let (X,,;) be random infinitesimal with respect to (Z,). If

FO ™ @ forallq e (0, 1), then F,, = &.

Proof. Suppose that F9 % & for all g € (0,1). Let x € R, we will show that

F,(z) — ®(x). First we show that , for each n € N, F\”(z) is a measurable
kni

function in ¢. Let n € N. Let ImZ, = {knilkni < kngin)}s @i = > P(Zy = k)
=1

and gno = 0. Then for each ¢ € [¢y(i—1): @ni) , We have [,(q) = k.

Case 1 ImZ, is finite.

7=1
[ImZy ki
- Z P(Z an < x)X[qn(z—l) Q’m,)(Q>’
1 ; xeA
where y4(x) =
0 ; z¢A

So, F\¥ (x) is a simple function. Hence F (x) is a measurable function in q.
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Case 2 I'mZ,, is infinite.

Let
m kni
Sx = Z Z Qn(i—l)aq”ﬂi)<q)'

It is easy to check that for each m € N, S¥ (¢) < 57, ,(q) for all ¢ € (0,1).Then
(S*) is an increasing sequence of non-negative simple functions. By Monotone

Convergence Theorem , we have

lim 57, (¢ ZP ZXW Sz X[Qn(t Do) (@) = F{9(x)

m—00

is measurable in ¢g. Hence for each n € N, FT(Lq)(:p) is a measurable function in q.
It follows from this fact and Dominated Convergence Theorem that

i

tim/ [ {F9)(w)dg = /0 B(a)dy = B(x) (3.5)

n—oo 0

for all ¢ € (0,1).

Since
F.(x) =P(Sz, <)

= Y P(Zy=knj)P(Xp1 + Xpo + . + X, < 1)

knj elmZy,

=379 (@ + G ) PO X7 4 X, < )

knj elmZy,

= Z /J ¢ S\ < 2)dg

knj€ImZy

=/ P(S < x)dg
0

1
= / F{9(z)dg,
0

we have lim F,(z) = ®(x). Hence F, = ®. O

n—oo

Lemma 3.2.7. Let K, Ky, Ky, ... be elements in M. Assume that the following

conditions are satisfies:
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(a)

| st~ [ sk
for every real number t and
(b) (Kn(+00)) is bounded.

Then K, = K.

Proof. Since K, is non-decreasing and (K, (+0o0)) is bounded, we have (K,,) is
uniformly bounded. By Corollary 2.2.9, there exist a subsequence (K,,) of (K,)

and a function K in M such that K,, % K. Since for each t € R, and = # 0.

i e
(k) = e A )
1
4 @ (15%° AN T
= |(]€Z:0 1 +0 A0 1 —ztx)ﬁ|, where 6] < 1
21,2 1
= |(I'+ gtz + == =1 — ztx)ﬁ|
t2
< —.
2

So | f(t,x)| is bounded for all real number ¢ and ., it follows from Theorem 2.2.10
that
/ F(E T)aR ) / £(t, 2)dR ()

for every real number ¢. From this fact and (a) we have

/ Z F(t,2)dEK (1) = / Z (£, 2)dK ().

By Theorem 2.3.4, we have K = K. So K,, — K. That is every subsequence of
(K,), it contains a subsequence which converges weakly to K. By using Theorem
2.2.10, we have that every subsequence of (K,), it contains a subsequence which
converges to K with the metric L. This implies that (K,) converges to K with

respect to the metric L. So by Theorem 2.2.10, we have K,, — K. n

In the following theorems, we assume that (Z,, X,) satisfies the following

conditions:
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() (Xyk) is random infinitesimal with respect to (Z,).
Zn »
(8) > o — L.
k=1

(7) for every subsequence (n'), if there exist distribution functions F(@ such

that the sequence of distribution functions of the sums
Xn/l + Xn’2 + Xn’ln/(q)

converges weakly to F@ for a.e. ¢ € (0,1), then F@(z) is measurable in ¢ for

every x.

Theorem 3.2.8. Let (Z,,, X i) be a random double sequence of random variables
which satisfies the conditions («), (6) and (7). Then the sequence of distribution

functions of random sums

SZ —— X’n,l 5= Xn2 .. + XnZn

n

2
converges weakly to ® if and only if ¢y, (g)(t) — e~z for every q € (0,1) and every
real number t, where ¢y, o)(t) be the characteristic function of the accompanying

distribution function of
57(1‘1) =Xnl X+ Xl (o)

Proof.~(—), By Theorem 3:2.5-(ii), we have Fi\. % & for-all-q.€(0,1): By Theo-
rem 2.4:1, the sequence of accompanying distribution functions of St converges
weakly to ® for all ¢ € (0,1). Hence ¢y, (o)(t) — e % for every ¢ € (0,1) and
teR.

(<) Suppose that ¢y, q)(t) — e7 for every ¢ € (0,1) and every real number
t. Then the sequence of accompanying distribution functions of S converges

weakly to @ for all ¢ € (0,1). By Theorem 2.4.1, F9 Y @ for all g € (0,1). By

proposition 3.2.6, F, = ®. O
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Theorem 3.2.9. Let (Z,, X,,x) be a random double sequence of random variables
which satisfies the conditions («), (3) and (). Then the sequence of distribution

functions of the random sums

Sz =X+ Xna+ ... + Xz,

n

converges weakly to ® if and only if
(i) Kz, (u) 2 K(u) for every continuity point u of K and
(it') Kz,(+00) = K(+OO)

where Kz, ( Z [L a?dE, () and

0 for u<0
K(u) =

1 for u>0.
Zn
Proof. (—) From the fact K, (+00) = Z 02, K(+00) = 1 and (3), we have (i7).

To prove (i) , let u be any continuity point of K.

For each n and j , let

J u
anj(u) = Z/ 22dFop(x)
=il & =
Hence a,z, (u) = Kz, (u).

To prove Ky (u) % K (u), by Theorem 3.1.2 it suffices to show that

Qnl,,(qy(w) — K (u)

for every ¢ € (0,1) ,i.e
Ki, () (u) — K(u)

for every ¢ € (0,1).

To do this, we will apply Lemma 3.2.7 to a sequence (K, ) for all ¢ € (0,1).

+2

Let ¢ € (0,1). By Theorem 3.2.8, ¢y, (q)(t) — e~z for every real number ¢. This

implies
t2

In @y, () (t) — )
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for every real number t.
Note that [~ f(t,z)dK(z) = —2 and

2

In(q)

In @, (q)(t) = Y / f(t, x)dF(x / ft, 2)dK;, ) (2). (3.6)
k=1

Then
/ f(t,x)dI, g —>/ f(t,x)dK(x).

So (a) of Lemma 3.2.7 is satisfied. By (), it follows from Theorem 3.1.2 that
In(q)
Z o2, — 1.
This implies that (£, () (4+00)) is bounded. Therefore the condition (b) of Lemma
3.2.7 is satisfied. Thus K, () (u) — K(w).
(<) To prove the sufficient condition,by Theorem 3.2.8 it suffices to show that
Gu(q) () — e for every ¢ € (0,1) and every t € R.
Let ¢ € (0,1) and ¢ be any real number. It follows from (i') and Theorem 3.1.2
that

K — K.
By Theorem 2.2.10 ,

/_Oo [t 2)dK, ) (x) — /_OO Ft,2)dK (2).

+2

By (3.6),we have In' ¢y, () (t) — ‘Tﬁ Hence ¢y, g)(t) — e =« O

Theorem 3.2.10. Let (Z,, X,x) be a random double sequence of random variables
which satisfies the conditions («), (B) and (). Then the sequence of distribution

functions of random sums

Sz, =X+ Xn2+ ... + X0z,

n

converges weakly to ® if and only if



26

Zn,
(i) Z fx|<s 2?dF,,(z) 2 1 for every e > 0 and

(id") zf 22dFy(z) 2 1.

Proof. By Theorem 3.2.9, it suffices to show the conditions (i') and (ii") are equiv-
alent to the following conditions
(1) Kz, (u) & K(u) for every continuity point u of K , and
(2) Kz, (4+00) & K(+00).

(—) Assume that (i") and (i) hold. Since (2) is equivalent to (ii’), we have
(2). To prove (1), let u be the continuity point of K.

Case 1 u < 0.

Zn,
From (i'), we have Z Jiae— dE () L 1. From this fact and (i7') we have

Zn
Z f{z‘|> ux dFTLk Z f 2ank Z f|1_|<7u xQank(x) L ]_ — ]_ = O
k=1
Thus Z J2 2P dF (z) & 0. That is Kz, (u) = 0.
Case 2u>0.

Zn,
From (i'), we have Z Jiaj<u T2 Fnk(2) L, 1. From this fact and (ii') we have

fobua: dFi(z Z [ aPdF(a % kaua:?ank(a;) Z1-1=0.
Then Zf r2d P ( ) — 0.1 Thus Zf 22dF o (x Zf 2?dFi(x) +
kz f|x|<u 22dF,,(z) & 041 = 1. That is K, (u) & 1. From case 1 and case
2:1we have (1).

(<) Assume (1) and (2) holds. Since (2) is equivalent to (i7'), we have (ii’).
From( ), for e >0,

2 Jiojee TP dF(z 2 [F . 2?dE(x Z [-5 a?dF,(z) & 1-0 = 1. Thus

we have (7). Hence (1) and (17) are equlvalent to (1) and (2), respectively. [

Proposition 3.2.11. ([21],p.63) Let (Z,, Xux) be a random double sequence of

random variables which satisfies the following conditions.
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Zn
() 1; f‘m|<€ 2?dF,,(z) 2 1 for every e > 0 and
(17") (Zn, Xuk) satisfies the condition (3).

Then (Zn, Xni) satisfies the condition (o).
The following theorem is the main theorem of this chapter.

Theorem 3.2.12. Let (Z,, X,x) be a random double sequence of random variables
which satisfies the conditions () and (7). Then

(1) the sequence of distribution functions of random sums

Sz =X+ X+ ...+ X0z,

n

converges weakly to ® and
(13) (Zy, Xux) satisfies (o)

if and only if (Z,, X)) satisfies the random Lindeberg condition , i.e.

Zn,
/ CI?Qank({L') £> 1
k=1 Y |z|<e
for every € > 0.
Proof. It follows from Proposition 3.2.11 and Theorem 3.2.10. [

Corollary 3.2.13. Let (k,) be a sequence of positive integers. Assume that

kn
lim > 02, =1. Then

(1) the sequence of distribution functions of the sums
Sp =X+ Xp2+ ... + X,

converges weakly to ® and

(17) (Xpk) , k=1,2,....k, , n=1,2,... is infinitesimal, i.e.

P(X, .| >
max (| Xk =€) — 0

for every e > 0
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if and only if (Xuk), k=1,2,....k,, n=1,2,... satisfies the Lindeberg condition,
1.€.

kn

Z/ l’zank(.T) — 1
|z|<e

k=1
for every € > 0.
Proof. In order that S,, can be viewed as a random sums, we define Z,, and X,k

as follows. For any positive integer n, we define

for all w € €.

For k = 1,2,...,k,, define Xnk(w) = Xp(w) for all w € Q and for & > k,,
define X,x(w) = 0 for all w € Q. It follows that (Z,, X,;) is a random double
sequence of random variables which are independent in each row. We denote
the distribution function, characteristic function, mean and variance of X, by
Fnk, Dnk, e and 52,0 respectively. Then for each n and k, fi,, = 0. Since
Zn(w) = ky for all w e Q; l,(q) = ky for all ¢ € (0,1). First, we will show that
(Zn, X,u1;) satisfies the condition (3). Let @, () = lnz:(q) g2, = % G2, = % o2, for
all ¢ € (0,1). So any,( — 1 for all ¢ € (0,1). IS;ITheore];I:ll?).l.Z, O’anln Z1
Therefore % 52, £ 1. That s (Z,, Xup) satisfies the condition (3). Let (') be a
subsequenée_i)f (n). Since l,,(q) = k, forall g € (0, 1), P(Xn,1+)?n,2+...+Xn,ln,(q) <
r) = P(Xp1 + Xpo + .. + X, < ) for all ¢ € (0,1). Then the weak limit
distribution function F(9(z), if it exists, of a sequence of distribution function of

the sums

Xn’l + Xn’2 + ...+ Xn’ln/(q)

is measurable in ¢ for every z. That is (Z,, X,;) satisfies the condition (7).

Next , we will prove that the sequence of the distribution functions of the sums

Sy = Xn1+ Xno + .. + Xz,
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converges weakly to @ if and only if the sequence of the distribution functions of

sums

Sp=Xnm + Xp2 + oo + Xk,

converges weakly to ®.
According to the fact that P(Z, = k,) = 1, we have the characteristic function

P of S 7, 1s given by

f—1
7 Z P(Zn S ]) H @nk(t)
= k=1
kn
= P(Zn ) kn) @nk(t)
k=
— [Tout®

2

which is the characteristic function ¢, of S,. Then ¢,(t) — e foraltcR
_2
if and only if @, (t) — ez for all £ € R. Hence the sequence of the distribu-
tion functions of S‘Zn converges weakly to ® if and only if the sequence of the
distribution functions of S, converges weakly to ®.
(—) Let € > 0'be given and @y, ) = max  P(|X,%]>2)-S0 an,(q) = tnk, — 0
1<k<in(q)

for all ¢ € (0,1). By Theorem 3.1.2, a,z, — 0. That is  max P(|X| > ¢€)
, <k<

— 0.0 Therefore (Zn,f(nk) is’ random infinitesimal. -~ By Theorem 3.2.12,

Zn
> Jigjee TPAFk(2) L, 1 for every ¢ > 0. It follows from Theorem 3.1.2 |
k=1

In(q)
> Jigjee ¥°dFni(z) — 1 for every g € (0,1) and for every € > 0. Since l,(q) = ki,
k=1

kn
for all ¢ € (0,1), k;l f|m‘<€ 22dF,;(z) — 1 for every € > 0. Therefore (X,,;) satisfies
the Lindeberg condition.

(<) Let € > 0 be given. Since (X,y) satisfies the Lindeberg condition, we have

kn In(q)
> f|z|<€ 2?dFy(x) — 1. Since 1,,(q) = k,, for all ¢ € (0,1), > f‘$|<€ 22dFp ()
k=1 k=1
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Zn
— Lforallg € (0,1). By Theorem 3.1.2, 3° [ __ 2*dFu(z) 25 1. Hence (Zy, Xnp)
k=1

z|<e
satisfies the random Lindeberg condition. Therefore the sufficiency follows from

Theorem 3.2.12. ]

Example 3.2.14. For each n, let Z, be such that

1 1
P(Zn:n):l—ﬁ and P(Zn:n—i—l):ﬁ.

For each n and k, defined X,,; as follows:

If K #n+1,let X, be defined by

In case k =n+ 1, let X, be defined by
1
P(X,, =2 =P(Xup= —2") = 7
It can be seen that p,, = 0 for every n and k, and

1 if k#n+1
Onk
22n if k=n+1.

Assume that for each'n, Z,,, X,,1, X2, ... are independent.
Then
1. For'qg € (0,1) and n > 2,

n if 0<g<l—=%

In(q) =
n+1l if 1-5<¢g<Ll

2. (Z,, X,i) satisfies the condition (/).
3. (Zn, Xnr) satisfies the condition (7).

4. (Z,, X,i) satisfies the random Lindeberg condition.
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5.The sequence of the distribution functions of random sums

Sz =X+ Xno+ ... + Xz,

n

converges weakly to ®.
Next, we will show that 1-5 hold.
1.For ¢ € (0,1) and n > 2.

Case 1 0<q<1—%.

1
P(Z,<n)=0<qand P(Z,<n+1)=P(Z,=n)=1——= >q.

n2
Then I,(q) = n.
Case2 1-H <qg<L
P(Zn<n+1):P(Zn:n):1—n—12§q and
1 1
P(Zn<n+2)=P(Z,=n)+PZy=n+1)=1-=+5=1>q.
n?® n
Then [,,(q) =n+ 1.
2. For every € > 0, we have
Zn 1
2 _ _
PUS o =126 < P =t ) =

Zn

which converge to 0. So 3. 02, % 1. Hence (Z,, X,.i) satisfies the condition (3).
k=1

3. Let (n") be a subsequence of (n). Let x € R and ¢ € (0,1). Let N; € N such

that # < 1—gq. For each n' > Ny,
FO(2) = P(Xpr + Xz + oo + Xy < ).

Then the weak limit distribution function F(9(z) of Fqgﬁl)(x), if it exists, is mea-
surable in ¢ for every . Therefore (Z,,, X,x) satisfies the condition (7).
4. Let e > 0 and ¢q € (0,1). Let N; € N such that # <1l-—gq.

1

Let Ny € N be such that € > NLQ Let N = max{Ny, Na}.
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Forn > N,

1 2=} {=}
S\ | 1, 1,1,
< k:1((§ _O)(_ﬁ) +(1- 5)(_71) )

l’"«(q) Zn
Then > flx|<€ 2?dF,(r) — 1 for all g € (0,1). Thus > f|z‘<6 22 dE (T + pink)
k=1 k=1

2, 1. Therefore (Zn, Xar) satisfies the random Lindeberg condition.

4. Follows from Theorem 3.2.12. O
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