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CHAPTER I

INTRODUCTION

The problem of the convergence of the sequence of distribution functions of

sums of a random number of independent random variables has been discussed

many times in numerous papers. In this work we investigate the case whose the

limit distribution function is the standard normal distribution function Φ.

In the case of one array, let (Xn) be a sequence of independent random vari-

ables with zero mean (this is not an essential restriction) and finite variances.

Let (Zn) be a sequence of positive integral-valued random variables which inde-

pendent of (Xn). Many authors (e.g.[1],[5],[13],[14],[16],[19],[20],[23],[24] and [27])

gave conditions of convergence of the sequence of distribution functions of random

sums X1 + X2 + ... + XZn to the standard normal distribution function Φ.

In this work we consider a double array of random variables. Let (Xnk) be

a double sequence of random variables with mean 0 and finite variances σ2
nk. For

each n, we assume that Zn, Xn1, Xn2, ... are independent. In [2],[3],[25] the authors

investigated the convergence of the sequence of distribution functions of random

sums Xn1 + Xn2 + ... + XnZn in case of Xn1, Xn2, ... are identically distributed for

every n. The aim of our investigation is to extend the problem to the case of

Xn1, Xn2, ... are not necessary identically distributed. First we state one of the

most important versions of central limit theorem of sums.

Theorem 1.1. ([12]) Let (kn) be a sequence of positive integers. Assume that

lim
n→∞

kn∑

k=1

σ2
nk = 1. Then
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(i) the sequence of distribution functions of the sums

Sn = Xn1 + Xn2 + ... + Xnkn

converges weakly to Φ and

(ii) (Xnk), k = 1, 2, ..., kn, n = 1, 2, ... is infinitesimal,

i.e.

max
1≤k≤kn

P (|Xnk| ≥ ε) → 0

for every ε > 0,

if and only if (Xnk), k = 1, 2, ..., kn, n = 1, 2, ... satisfies the Lindeberg condition,

i.e.
kn∑

k=1

∫

|x|<ε

x2dFnk(x) → 1

for every ε > 0.

In this work, we extend Theorem 1.1 to the case of random sums. In chapter II

we summarize known results and notations used in our work. Chapter III contains

our main results.

First, we will introduce some conditions:

(α) (Xnk) is random infinitesimal with respect to (Zn),

i.e.

max
1≤k≤Zn

P (|Xnk| ≥ ε)
p−→ 0

for every ε > 0,

(β)
Zn∑
k=1

σ2
nk

p−→ 1 and

(γ) for every subsequence (n′), if there exist distribution functions F (q) such

that the sequence of distribution functions of the sums

Xn′1 + Xn′2 + ... + Xn′ln′ (q)



converges weakly to F (q) for a.e. q ∈ (0, 1), then F (q)(x) is measurable in q for

every x, where ln : (0, 1) → N defined by ln(q) = max{k ∈ N|P (Zn < k) ≤ q}.
The following is the main theorem.

Theorem 1.2. Let (Zn, Xnk) be a random double sequence of random variables

which satisfies conditions (β) and (γ) .Then

(i) the sequence of distribution functions of random sums

SZn = Xn1 + Xn2 + ... + XnZn

converges weakly to Φ and

(ii) (Zn, Xnk) satisfies (α)

if and only if (Zn, Xnk) satisfies the random Lindeberg condition , i.e.

Zn∑

k=1

∫

|x|<ε

x2dFnk(x)
p−→ 1

for every ε > 0.

Note that Theorem 1.1 is a special case of Theorem 1.2 when Zn = kn for each

n ∈ N.



CHAPTER II

PRELIMINARIES

2.1 Random Variables

A probability space is a measure space (Ω, E , P ) in which P is a measure

such that P (Ω) = 1. The set Ω will be refered to as a sample space. The elements

of E are called events. For any event A, the value P (A) is called the probability

of A.

A function X from a probability space (Ω, E , P ) to the set of complex numbers

C is said to be a complex-valued random variable if for every Borel set B in C,

X−1(B) belongs to E . If X is real-valued, we say that it is a real-valued random

variable, or simply a random variable. We note that the composition between

a Borel function and a complex-valued random variable is also a complex-valued

random variable.

We will use the notations P (X ≤ x), P (X ≥ x) and P (|X| ≥ x) to denote

P ({ω|X(ω) ≤ x}), P ({ω|X(ω) ≥ x}) and P ({ω||X(ω)| ≥ x}), respectively.

We define the expectation of a complex-valued random variable X to be

∫

Ω

XdP

provided that the integral
∫
Ω

XdP exists. It will be denoted by E[X].

The expectation of a random variable X is known as the mean . The expec-

tation of (X − E[X])2 is known as the variance of X and it denoted by σ2(X).
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Proposition 2.1.1. ([7], p.174) Let X1, X2, ..., Xn be random variables. Then

E[X1 + X2 + ... + Xn] =
n∑

k=1

E[Xk],

provided that the sums on the right hand side is meaningful.

Let (Ω, E , µ) be a measure space and Y a topological space. Let

X,X1, X2, ..., Xn be measurable functions from Ω to Y . We will write

Xn → X a.e. [µ]

if (Xn) converges to X almost everywhere with respect to µ. In the case that

Ω = Rk and µ is the Lebesgue measure on Rk, we simply write

Xn → X a.e..

A sequence (Xn) of complex-valued random variables is said to converges in

probability to a complex-valued random variable X if

lim
n→∞

P (|Xn −X| ≥ ε) = 0

for every ε > 0. In this case we use the notation

Xn
p−→ X.

Theorem 2.1.2. ([21], p.201) Let X, X1, X2, ... and Y, Y1, Y2, ... be complex-valued

random variables. If Xn
p−→ X and Yn

p−→ Y then Xn + Yn
p−→ X + Y .

From now on, we shall assume that all our complex-valued random variables,

including real-valued random variables, are defined on a common probability space

(Ω, E , P ).
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2.2 Distribution Functions and Characteristic Functions

A function F from R to R is said to be a distribution function if it is

non-decreasing, right-continuous, F (−∞) = 0 and F (+∞) = 1.

For any random variable X, the function F : R → R defined by

F (x) = P (X ≤ x)

is a distribution function. It is called the distribution function of the random

variable X.

Now we will give some examples of random variables.

Example 2.2.1. we say that X is a standard normal random variable if the

distribution function of X is defined by

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.

Example 2.2.2. we say that X is a degenerate random variable with

parameter a, if the distribution function of X is defined by

F (x) =





0 if x < a

1 if x ≥ a.

Proposition 2.2.3. ([15], p.28) Let X be a random variable with the distribution

function F . If E[X] exists, then

E[X] =

∫ ∞

−∞
xdF (x).

Let F be a distribution function. The function ϕ : R → C defined by

ϕ(t) =

∫ ∞

−∞
eitxdF (x)
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is called the characteristic function of the distribution function F . If F

is the distribution function of a random variable X, then ϕ is also called the

characteristic function of X.

Proposition 2.2.4. ([18], p.45)

(i) The product of two characteristic functions is a characteristic function.

(ii) If ϕ is a characteristic function, then |ϕ|2 is also a characteristic function.

Proposition 2.2.5. ([8], p.477) Let (Fn) be a sequence of distribution functions

and (ϕn) a sequence of corresponding characteristic functions. Let (pn) be a se-

quence of non-negative numbers such that
∞∑

k=1

pk = 1. Then the function

F (x) =
∞∑

k=1

pkFk(x)

is a distribution function and the function

ϕ(t) =
∞∑

k=1

pkϕk(t)

is the characteristic function of F .

Any random variables X1, X2, ..., Xn are called independent if

P (
n⋂

k=1

{ω|Xk(ω) ≤ xk}) =
n∏

k=1

P (Xk ≤ xk)

holds for every real numbers x1, x2, ..., xn.

A sequence of random variables (Xn) is said to be a sequence of independent

random variables if Xi1 , Xi2 , ..., Xin are independent for all distinct i1, i2, ..., in.

Theorem 2.2.6. ([7], p.188, 191) Let X1, X2, ..., Xn be random variables with the

characteristic functions ϕ1, ϕ2, ..., ϕn, respectively. Assume that X1, X2, ..., Xn are

independent. Then the followings hold.

(i) The characteristic function ϕ of X1 + X2 + ... + Xn is given by

ϕ(t) = ϕ1(t)ϕ2(t)...ϕn(t) for all t ∈ R.
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(ii) σ2(X1 + X2 + ... + Xn) = σ2(X1) + σ2(X2) + ... + σ2(Xn) if σ2(Xi) < ∞
for i = 1, 2, ..., n.

Let F, F1, F2, ... be bounded non-decreasing functions. The sequence (Fn) is

said to converges weakly to F if

(i) for every continuity point x of F , Fn(x) → F (x) and

(ii) Fn(+∞) → F (+∞) and Fn(−∞) → F (−∞).

We will write

Fn
w−→ F

if (Fn) converges weakly to F . Note that the weak limit of the sequence (Fn),

if it exists, is unique. In the following theorems we state some facts of weak

convergence which will be used in our work.

Theorem 2.2.7. ([17]) Let (Yn) be a sequence of random variables and put

Hn(x) = P (Yn ≤ x). Suppose sup
n∈N

E[Y 2
n ] < ∞. If Hn

w−→ H for some distri-

bution function H then we have lim
n→∞

E[Yn] =
∫∞
−∞ x dH(x) < ∞.

Theorem 2.2.8. (Helly′s Theorem, [15], p.133) Let (Fn) be a sequence of uni-

formly bounded, non-decreasing, right-continuous functions. Then (Fn) contains a

subsequence which converges weakly to a bounded, non-decreasing, right-continuous

function.

Let M be the set of bounded, non-decreasing, right-continuous functions M from

R into [0,∞) which vanish at −∞. The function L defined for any M1,M2 ∈ M
by

L(M1,M2) = inf
h≥0
{h | M1(x− h)− h ≤ M2(x) ≤ M1(x + h) + h for every x in R}

is a complete metric on M. ([11], p.39)

The following corollary follows from Theorem 2.2.8 and the fact that the ele-

ments in M vanish at −∞.
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Corollary 2.2.9. Let (Mn) be a uniformly bounded sequence of elements in M.

Then it contains a subsequence which converges weakly to an element in M.

Theorem 2.2.10. ([10], p.39) Let M,M1,M2, ... be elements in M. Then the

following statements are equivalent.

(i) Mn
w−→ M.

(ii) For every bounded continuous function g on R,

∫ ∞

−∞
g(x)dMn(x) →

∫ ∞

−∞
g(x)dM(x).

(iii) L(Mn,M) → 0.

Theorem 2.2.11. ([26], p.15) Let (Fn) and (ϕn) be sequences of distribution func-

tions and their characteristic functions, respectively. Let F be a distribution func-

tion with the characteristic ϕ. If Fn
w−→ F , then (ϕn) converges to ϕ uniformly on

arbitrary finite interval.

Theorem 2.2.12. ([26], p.15) Let (Fn) and (ϕn) be sequences of distribution func-

tions and their characteristic functions, respectively. Let ϕ be a complex-valued

function which is continuous at 0. If (ϕn) converges to ϕ for every t, then there

exists a distribution function F such that Fn
w−→ F and the characteristic function

of F is ϕ.

Let F1 and F2 be distribution functions. The convolution of F1 and F2 is

defined by

(F1 ∗ F2)(x) =

∫ ∞

−∞
F2(x− y)dF1(y) =

∫ ∞

−∞
F1(x− y)dF2(y) for all x ∈ R.

Theorem 2.2.13. ([9], p.252) Let F, G, Fn, Gn, n = 1, 2, ... be distribution func-

tions. If Fn
w−→ F and Gn

w−→ G , then Fn ∗Gn
w−→ F ∗G.
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2.3 Infinitely Divisible Distribution Functions

A characteristic function ϕ is said to be infinitely divisible if for every natural

number n, there exists a characteristic functions ϕn such that for every t,

ϕ(t) = {ϕn(t)}n.

The distribution function of any infinitely divisible characteristic function is also

said to be infinitely divisible. A random variable is said to be infinitely di-

visible if its characteristic function is infinitely divisible.

Theorem 2.3.1. ([18], p.81)

(i) If ϕ is an infinitely divisible characteristic function, then for every t , ϕ(t) 6= 0.

(ii) If ϕ is an infinitely divisible characteristic function, then |ϕ|2 is also infinitely

divisible characteristic function.

(iii) The product of a finite number of infinitely divisible characteristic functions

is infinitely divisible.

(iv) A characteristic function which is the limit of a sequence of infinitely divisible

characteristic functions is infinitely divisible.

Theorem 2.3.2. ([26], p.32) A function ϕ(t) is the characteristic function of an

infinitely divisible with finite variance if and only if it admits the representation

ln ϕ(t) = iµt +

∫ ∞

−∞
f(t, x)dK(x) (2.1)

where

f(t, x) =





(eitx − 1− itx) 1
x2 if x 6= 0

− t2

2
if x = 0,

µ is a real constant, K is non-decreasing bounded function. The formula (2.1) is

known as Kolmogorov’s formula.
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There is another representation of the logarithm of an infinitely divisible

characteristic function ϕ, known as Levy’s formula:

ln ϕ(t) =iat− σ2t2

2
+

∫ 0−

−∞
(eitx − 1− itx

1 + x2
)dM(x)

+

∫ +∞

0+

(eitx − 1− itx

1 + x2
)dN(x)

(2.2)

where σ2 ≥ 0 and a are real constants, M and N are non-decreasing functions

defined on (−∞, 0) and (0, +∞) respectively with M(−∞) = N(∞) = 0 and

∫ 0−

−ε

x2dM(x) +

∫ ε

0+

x2dN(x) < +∞

for every positive real number ε.

We will write F = L(a, σ2,M, N) if an infinitely divisible distribution function

F is represented by Levy’s formula(2.2).

Remark 2.3.3. For the standard normal distribution function Φ, we know that

Φ = L(a0, σ
2
0,M0, N0) where a0 = 0, σ2

0 = 1,M0(u) = 0(u < 0) and

N0(u) = 0(u > 0).

Theorem 2.3.4. ([15], p.246) For each infinitely divisible distribution function,

the function K in Theorem 2.3.2 can be chosen to be right-continuous and

K(−∞) = 0. The function K in this theorem is unique.

Theorem 2.3.5. ([11], p.85) Let X be an infinitely divisible random variable with

finite variance. Let the constant µ and the function K be given in the Kolmogorov’s

formula of the characteristic function of X. Then

(i) E[X] = µ

(ii) σ2(X) = K(+∞).
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2.4 Kolmogorov Theorems

In this section, we let (Xnk), k = 1, 2, ..., kn, n = 1, 2, ... be a double sequence

of random variables with finite variances. For each n and k, we let µnk, σ
2
nk and

Fnk be the expectation, variance and distribution function of Xnk, respectively.

In [11], Kolmogorov gave necessary and sufficient conditions for weak conver-

gence of the sequence of distribution functions of the sums

Sn = Xn1 + Xn2 + ... + Xnkn − An

where (An) is a sequence of real numbers. There is an important convergence

theorem (Theorem 2.4.1). In this theorem (Xnk) must satisfy the following con-

ditions.

(α̃) (Xnk − µnk) is infinitesimal, i.e., for every ε > 0

max
1≤k≤kn

P (|Xnk − µnk| ≥ ε) → 0.

(β̃) There exists a real number C such that

kn∑

k=1

σ2
nk < C.

In order to prove the theorem, Kolmogorov defined the accompanying dis-

tribution function of the sums

Sn = Xn1 + Xn2 + ... + Xnkn − An

to be the distribution function whose logarithm of its characteristic function is

given by

ln ψn(t) = −iAnt + it

kn∑

k=1

µnk +
kn∑

k=1

∫ ∞

−∞
(eitx − 1)dFnk(x + µnk).
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Theorem 2.4.1. ([11], p.98) Assume that (Xnk) satisfies the conditions (α̃) , (β̃)

and for each n,Xn1, Xn2, ..., Xnkn are independent. Then there exists a sequence

(An) of real numbers such that the sequence of distribution functions of the sums

Sn = Xn1 + Xn2 + ... + Xnkn − An

converges weakly to a limit distribution function if and only if the sequence of

accompanying distribution functions of Sn converges weakly to the same limit dis-

tribution function.

Theorem 2.4.2. ([11], p.116) In order that for some suitably chosen constants An

the sequence of distributions of the sums

Sn = Xn1 + Xn2 + ... + Xnkn − An

of independent infinitesimal random variables converges to a limit, it is necessary

and sufficient that there exist non-decreasing functions M and N defined in the

intervals (−∞, 0) and (0, +∞), respectively, such that M(−∞) = 0 and N(+∞) =

0 and a constant σ ≥ 0 such that

(1) at every continuity point u of M and N

lim
n→∞

kn∑

k=1

Fnk(u) = M(u),

lim
n→∞

kn∑

k=1

(Fnk(u)− 1) = N(u),

(2)

lim
ε→0

lim inf
n→∞

kn∑

k=1

{
∫

|x|<ε

x2dFnk(x)− (

∫

|x|<ε

xdFnk(x))2}

= lim
ε→0

lim sup
n→∞

kn∑

k=1

{
∫

|x|<ε

x2dFnk(x)− (

∫

|x|<ε

xdFnk(x))2}

= σ2.

The constants An may be chosen according to the formula

An =
kn∑

k=1

∫

|x|<τ

xdFnk(x)− γ(τ)
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where γ(τ) is any constant and −τ and τ are continuity points of M and N ,

respectively.



CHAPTER III

CONVERGENCE TO NORMAL DISTRIBUTION

OF RANDOM SUMS

The purpose of this chapter is to find necessary and sufficient conditions for

the weak convergence of the sequence of distribution functions of random sums to

the standard normal distribution function. One of the important tools is what is

known as the ”q-quantiles of Zn”.

3.1 Definition and properties of q-quantiles

Let Z be a positive integral-valued random variable. Let l : (0, 1) → N be defined

by

l(q) = max{k ∈ N
∣∣P (Z < k) 6 q}.

The function l is called the q-quantiles of Z.

Remark 3.1.1. For a positive integral-valued random variable Z, the function

q-quantiles of Z is non-decreasing.

Theorem 3.1.2. ([4]) For every n, let (ank) , k=1,2,... be a nondecreasing

sequence of non-negative real numbers and Zn an integral-valued random vari-

able.Further,let a ≥ 0 be fixed.Then we have anZn

p−→ a if and only if anln(q) → a

for all q ∈ (0, 1) where ln is the q-quantiles of Zn.
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3.2 Convergence to normal distribution of random sums

Let (Xnk) be a double sequence of random variables with zero means and finite

variances σ2
nk and (Zn) a sequence of positive integral-valued random variables.

Assume that for each n, Zn, Xn1, Xn2,...are independent. For q ∈ (0, 1), let

S(q)
n = Xn1 + Xn2 + ... + Xnln(q)

SZn = Xn1 + Xn2 + ... + XnZn

and let F
(q)
n and Fn be the distribution functions of S

(q)
n and SZn , respectively.

To prove the main theorem(Theorem 3.2.12), we need the concept of random

infinitesimal. We say that (Xnk) is random infinitesimal with respect to (Zn)

if for every ε > 0,

max
1≤k≤Zn

P (|Xnk| ≥ ε)
p−→ 0.

The following results are useful in our work.

Proposition 3.2.1. ([28])Let (Xnk) be random infinitesimal with respect to (Zn).

If Fn
w−→ F for some distribution function F , then there exists a subsequence (n′)

such that for a.e. q ∈ (0, 1), there exist distribution functions F
(q)

and a bounded

sequence of real numbers (a
(q)
n′ ) such that

F
(q)
n′ ∗ E

a
(q)

n′

w−→ F
(q)

where Ea stands for the degenerated distribution function with parameter a ∈ R.

Proposition 3.2.2. ([5]) If for a.e. q ∈ (0, 1) , there exists distribution function

F (q) such that F
(q)
n

w−→ F (q) and for each x ∈ R , F (q)(x) is a measurable function in

q , then Fn
w−→ F where F is a distribution function defined by F (x) =

∫ 1

0
F (q)(x)dq.

Proposition 3.2.3. ([3])For every q ∈ (0, 1), let F (q) = L(aq, σ
2
q ,Mq, Nq) be an

infinitely divisible distribution function with zero mean. Suppose that σ2
q and the
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function Mq, |Nq| are non-decreasing in q and that the integral F (x) =
∫ 1

0
F (q)(x)dq

exists for all x ∈ R. Then we have F = Φ if and only if F (q) = Φ for all q ∈ (0, 1).

Corollary 3.2.4. For a.e. q ∈ (0, 1) let F (q) = L(aq, σ
2
q ,Mq, Nq) be an infinitely

divisible distribution function with zero mean. Suppose that σ2
q and the function

Mq, |Nq| are non-decreasing in q and that the integral F (x) =
∫ 1

0
F (q)(x)dq exists

for all x ∈ R. Then we have F = Φ if and only if F (q) = Φ a.e. q ∈ (0, 1).

Theorem 3.2.5. Let (Xnk) be random infinitesimal with respect to (Zn) and
Zn∑
k=1

σ2
nk

p−→ 1. Assume that Fn
w−→ Φ. Then the followings hold.

(i) there exists a subsequence (n′) such that for a.e. q ∈ (0, 1), there exists a

distribution function F (q) which F
(q)
n′

w−→ F (q) ,

(ii) if for each x ∈ R, F (q)(x) is a measurable function in q, then F
(q)
n

w−→ Φ for

every q ∈ (0, 1).

Proof. (i) By Proposition 3.2.1 , there exist a subsequence (n′) of (n) such that

for a.e. q ∈ (0, 1), there exist distribution function F
(q)

and bounded sequence

(a
(q)
n′ ) such that

F
(q)
n′ ∗ E

a
(q)

n′

w−→ F
(q)

. (3.1)

It follows from
Zn∑
k=1

σ2
nk

p−→ 1 and Theorem 3.1.2 that
ln(q)∑
k=1

σ2
nk → 1 for all q ∈ (0, 1).

Then for each q ∈ (0, 1) , sup
n∈N

ln(q)∑
k=1

σ2
nk < ∞. So for all q ∈ (0, 1)

sup
n∈N

E[(S(q)
n )2] = sup

n∈N

ln(q)∑

k=1

σ2
nk < ∞. (3.2)
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Thus from (3.2) and the boundedness of (a
(q)
n′ ), we have for a.e. q ∈ (0, 1),

sup
n′∈N

E[(S
(q)
n′ + a

(q)
n′ )

2] = sup
n′∈N

E[(S
(q)
n′ )2 + 2a

(q)
n′ (S

(q)
n′ ) + (a

(q)
n′ )

2]

= sup
n′∈N

[E[(S
(q)
n′ )2] + 2a

(q)
n′ E(S

(q)
n′ ) + (a

(q)
n′ )

2]

= sup
n′∈N

[E[(S
(q)
n′ )2] + (a

(q)
n′ )

2]

≤ sup
n′∈N

E[(S
(q)
n′ )2] + sup

n′∈N
(a

(q)
n′ )

2

< ∞.

From this fact and (3.1) we can apply Theorem 2.2.7 with Yn′ = S
(q)
n′ +a

(q)
n′ for a.e.

q ∈ (0, 1). Then

lim
n′→∞

a
(q)
n′ = lim

n′→∞
(E[S

(q)
n′ ] + a

(q)
n′ ) = lim

n′→∞
E[S

(q)
n′ + a

(q)
n′ ] =

∫ ∞

−∞
xdF

(q)

for a.e. q ∈ (0, 1). Let a(q) =
∫∞
−∞ xdF

(q)
. Thus lim

n′→∞
a

(q)
n′ = a(q) < ∞ for a.e.

q ∈ (0, 1). It is easy to check that E−a
(q)

n′

w−→ E−a(q) for a.e. q ∈ (0, 1). From this

fact, (3.1) and Theorem 2.2.13 we see that

F
(q)
n′

w−→ F
(q) ∗ E−a(q)

for a.e. q ∈ (0, 1). Let F (q) = F
(q) ∗ E−a(q) . Thus F

(q)
n′

w−→ F (q) for a.e. q ∈ (0, 1).

Hence we have (i)

(ii)Assume that for each x ∈ R , F (q)(x) is a measurable function in q. Let (n′)

be an arbitrary subsequence of (n). By (i) , there exists another subsequence

(n′′) ⊂ (n′) such that , for a.e. q ∈ (0, 1),

F
(q)
n′′

w−→ F (q) (3.3)

for some distribution function F (q) and by Proposition 3.2.2 , Φ(x) =
∫ 1

0
F (q)(x)dq.

First we show that the F (q) satisfies all conditions of Corollary 3.2.4 . By (3.2),

(3.3) , and applying Theorem 2.2.7 with Yn′′ = S
(q)
n′′ , we have

∫ ∞

−∞
xdF (q)(x) = lim

n′′→∞
E[S

(q)
n′′ ] = 0 (3.4)
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for a.e. q ∈ (0, 1). Thus F (q) has zero mean. Applying Theorem 3.1.2 with

ank = sup
1≤l≤k

P (|Xnl| ≥ ε) and (Xnl) is random infinitesimal with respect to (Zn),

we obtain

lim
n→∞

sup
1≤l≤ln(q)

P (|Xnl| ≥ ε) = 0

for all q ∈ (0, 1). By (3.3) and Theorem 2.4.1, we have that the accompanying

distribution function of S
(q)
n′′ converge weakly to F (q) for a.e. q ∈ (0, 1). By Theorem

2.3.1 (iv), F (q) = L(aq, σ
2
q ,Mq, Nq) are infinite divisible. From Theorem 2.4.2 and

the non-decreasing monotonicity of the ln(q) it can be easily seen that σ2
q ,Mq, |Nq|

are non-decreasing in q. Therefore Corollary 3.2.4 can be applied and it follows

that F (q) = Φ for a.e. q ∈ (0, 1). So F
(q)
n′′

w−→ Φ for a.e. q ∈ (0, 1). Next we will show

that F
(q)
n′′

w−→ Φ for all q ∈ (0, 1).Let q ∈ (0, 1) and A = {q ∈ (0, 1)|F (q)
n′′

w−→ Φ}.
Then there exist q1, q2 in A such that q1 < q < q2. From Theorem 2.4.2, Remark

2.3.3 and the non-decreasing monotonicity of the ln′′(q), we have for u < 0,

0 = lim
n′′→∞

ln′′(q1)∑

k=1

Fn′′k(u) ≤ lim
n′′→∞

ln′′ (q)∑

k=1

Fn′′k(u) ≤ lim
n′′→∞

ln′′ (q2)∑

k=1

Fn′′k(u) = 0

for u > 0,

0 = lim
n′′→∞

ln′′ (q1)∑

k=1

(Fn′′k(u)−1) ≤ lim
n′′→∞

ln′′(q)∑

k=1

(Fn′′k(u)−1) ≤ lim
n′′→∞

ln′′(q2)∑

k=1

(Fn′′k(u)−1) = 0

and

1 = lim
ε→0

lim inf
n′′→∞

ln′′ (q1)∑

k=1

{
∫

|x|<ε

x2dFn′′k(x)− (

∫

|x|<ε

xdFn′′k(x))2}

≤ lim
ε→0

lim inf
n′′→∞

ln′′ (q)∑

k=1

{
∫

|x|<ε

x2dFn′′k(x)− (

∫

|x|<ε

xdFn′′k(x))2}

≤ lim
ε→0

lim inf
n′′→∞

ln′′ (q2)∑

k=1

{
∫

|x|<ε

x2dFn′′k(x)− (

∫

|x|<ε

xdFn′′k(x))2} = 1,
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1 = lim
ε→0

lim sup
n′′→∞

ln′′ (q1)∑

k=1

{
∫

|x|<ε

x2dFn′′k(x)− (

∫

|x|<ε

xdFn′′k(x))2}

≤ lim
ε→0

lim sup
n′′→∞

ln′′ (q)∑

k=1

{
∫

|x|<ε

x2dFn′′k(x)− (

∫

|x|<ε

xdFn′′k(x))2}

≤ lim
ε→0

lim sup
n′′→∞

ln′′ (q2)∑

k=1

{
∫

|x|<ε

x2dFn′′k(x)− (

∫

|x|<ε

xdFn′′k(x))2} = 1.

From Theorem 2.4.2 and remark 2.3.3, we also obtain that F
(q)
n′′

w−→ Φ. So F
(q)
n′′

w−→ Φ

for all q ∈ (0, 1). That is every convergent subsequence of (F
(q)
n ) converges weakly

to Φ for all q. Thus (F
(q)
n ) converges weakly to Φ for all q. Hence we have (ii).

Proposition 3.2.6. Let (Xnk) be random infinitesimal with respect to (Zn). If

F
(q)
n

w−→ Φ for all q ∈ (0, 1), then Fn
w−→ Φ.

Proof. Suppose that F
(q)
n

w−→ Φ for all q ∈ (0, 1). Let x ∈ R, we will show that

Fn(x) → Φ(x). First we show that , for each n ∈ N, F
(q)
n (x) is a measurable

function in q. Let n ∈ N. Let ImZn = {kni|kni < kn(i+1)}, qni =
kni∑
k=1

P (Zn = k)

and qn0 = 0. Then for each q ∈ [qn(i−1), qni) , we have ln(q) = kni.

Case 1 ImZn is finite.

F (q)
n (x) = P (S(q)

n ≤ x)

= P (

ln(q)∑
j=1

Xnj ≤ x)

=

|ImZn|∑
i=1

P (

kni∑
j=1

Xnj ≤ x)χ[qn(i−1),qni)(q),

where χA(x) =





1 ; x ∈ A

0 ; x /∈ A.

So, F
(q)
n (x) is a simple function. Hence F

(q)
n (x) is a measurable function in q.
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Case 2 ImZn is infinite.

Let

Sx
m(q) =

m∑
i=1

P (

kni∑
j=1

Xnj ≤ x)χ[qn(i−1),qni)(q).

It is easy to check that for each m ∈ N, Sx
m(q) ≤ Sx

m+1(q) for all q ∈ (0, 1).Then

(Sx
m) is an increasing sequence of non-negative simple functions. By Monotone

Convergence Theorem , we have

lim
m→∞

Sx
m(q) =

∞∑
i=1

P (

kni∑
j=1

Xnj ≤ x)χ[qn(i−1),qni)(q) = F (q)
n (x)

is measurable in q. Hence for each n ∈ N, F
(q)
n (x) is a measurable function in q.

It follows from this fact and Dominated Convergence Theorem that

lim
n→∞

∫ 1

0

F (q)
n (x)dq =

∫ 1

0

Φ(x)dq = Φ(x) (3.5)

for all q ∈ (0, 1).

Since

Fn(x) = P (SZn ≤ x)

=
∑

knj∈ImZn

P (Zn = knj)P (Xn1 + Xn2 + ... + Xnknj
≤ x)

=
∑

knj∈ImZn

(qnj − qn(j−1))P (Xn1 + Xn2 + ... + Xnknj
≤ x)

=
∑

knj∈ImZn

∫ qnj

qn(j−1)

P (S(q)
n ≤ x)dq

=

∫ 1

0

P (S(q)
n ≤ x)dq

=

∫ 1

0

F (q)
n (x)dq,

we have lim
n→∞

Fn(x) = Φ(x). Hence Fn
w−→ Φ.

Lemma 3.2.7. Let K, K1, K2, ... be elements in M. Assume that the following

conditions are satisfies:
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(a) ∫ ∞

−∞
f(t, x)dKn(x) →

∫ ∞

−∞
f(t, x)dK(x)

for every real number t and

(b) (Kn(+∞)) is bounded.

Then Kn
w−→ K.

Proof. Since Kn is non-decreasing and (Kn(+∞)) is bounded, we have (Kn) is

uniformly bounded. By Corollary 2.2.9, there exist a subsequence (Knk
) of (Kn)

and a function K in M such that Knk

w−→ K. Since for each t ∈ R, and x 6= 0.

|f(t, x)| = |(eitx − 1− itx)
1

x2
|

= |(
1∑

k=0

(itx)k

k!
+ θ

t2x2

2!
− 1− itx)

1

x2
|, where |θ| < 1

= |(1 + itx + θ
t2x2

2
− 1− itx)

1

x2
|

<
t2

2
.

So |f(t, x)| is bounded for all real number t and x, it follows from Theorem 2.2.10

that ∫ ∞

−∞
f(t, x)dKnk

(x) →
∫ ∞

−∞
f(t, x)dK(x)

for every real number t. From this fact and (a) we have

∫ ∞

−∞
f(t, x)dK(x) =

∫ ∞

−∞
f(t, x)dK(x).

By Theorem 2.3.4, we have K = K. So Knk

w−→ K. That is every subsequence of

(Kn), it contains a subsequence which converges weakly to K. By using Theorem

2.2.10, we have that every subsequence of (Kn), it contains a subsequence which

converges to K with the metric L. This implies that (Kn) converges to K with

respect to the metric L. So by Theorem 2.2.10, we have Kn
w−→ K.

In the following theorems, we assume that (Zn, Xnk) satisfies the following

conditions:
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(α) (Xnk) is random infinitesimal with respect to (Zn).

(β)
Zn∑
k=1

σ2
nk

p−→ 1.

(γ) for every subsequence (n′), if there exist distribution functions F (q) such

that the sequence of distribution functions of the sums

Xn′1 + Xn′2 + ... + Xn′ln′ (q)

converges weakly to F (q) for a.e. q ∈ (0, 1), then F (q)(x) is measurable in q for

every x.

Theorem 3.2.8. Let (Zn, Xnk) be a random double sequence of random variables

which satisfies the conditions (α), (β) and (γ). Then the sequence of distribution

functions of random sums

SZn = Xn1 + Xn2 + ... + XnZn

converges weakly to Φ if and only if ϕ̂ln(q)(t) → e−
t2

2 for every q ∈ (0, 1) and every

real number t, where ϕ̂ln(q)(t) be the characteristic function of the accompanying

distribution function of

S(q)
n = Xn1 + Xn2 + ... + Xnln(q).

Proof. (→) By Theorem 3.2.5 (ii), we have F
(q)
n

w−→ Φ for all q ∈ (0, 1). By Theo-

rem 2.4.1, the sequence of accompanying distribution functions of S
(q)
n converges

weakly to Φ for all q ∈ (0, 1). Hence ϕ̂ln(q)(t) → e−
t2

2 for every q ∈ (0, 1) and

t ∈ R.

(←) Suppose that ϕ̂ln(q)(t) → e−
t2

2 for every q ∈ (0, 1) and every real number

t. Then the sequence of accompanying distribution functions of S
(q)
n converges

weakly to Φ for all q ∈ (0, 1). By Theorem 2.4.1, F
(q)
n

w−→ Φ for all q ∈ (0, 1). By

proposition 3.2.6, Fn
w−→ Φ.
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Theorem 3.2.9. Let (Zn, Xnk) be a random double sequence of random variables

which satisfies the conditions (α), (β) and (γ). Then the sequence of distribution

functions of the random sums

SZn = Xn1 + Xn2 + ... + XnZn

converges weakly to Φ if and only if

(i′) KZn(u)
p−→ K(u) for every continuity point u of K and

(ii′) KZn(+∞)
p−→ K(+∞)

where KZn(u) =
Zn∑
k=1

∫ u

−∞ x2dFnk(x) and

K(u) =





0 for u < 0

1 for u ≥ 0.

Proof. (→) From the fact KZn(+∞) =
Zn∑
k=1

σ2
nk, K(+∞) = 1 and (β), we have (ii′).

To prove (i′) , let u be any continuity point of K.

For each n and j , let

anj(u) =

j∑

k=1

∫ u

−∞
x2dFnk(x).

Hence anZn(u) = KZn(u).

To prove KZn(u)
p−→ K(u), by Theorem 3.1.2 , it suffices to show that

anln(q)(u) → K(u)

for every q ∈ (0, 1) ,i.e.

Kln(q)(u) → K(u)

for every q ∈ (0, 1).

To do this, we will apply Lemma 3.2.7 to a sequence (Kln(q)) for all q ∈ (0, 1).

Let q ∈ (0, 1). By Theorem 3.2.8, ϕ̂ln(q)(t) → e−
t2

2 for every real number t. This

implies

ln ϕ̂ln(q)(t) → −t2

2
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for every real number t.

Note that
∫∞
−∞ f(t, x)dK(x) = − t2

2
and

ln ϕ̂ln(q)(t) =

ln(q)∑

k=1

∫ ∞

−∞
f(t, x)dFnk(x) =

∫ ∞

−∞
f(t, x)dKln(q)(x). (3.6)

Then ∫ ∞

−∞
f(t, x)dKln(q)(x) →

∫ ∞

−∞
f(t, x)dK(x).

So (a) of Lemma 3.2.7 is satisfied. By (β), it follows from Theorem 3.1.2 that

ln(q)∑

k=1

σ2
nk → 1.

This implies that (Kln(q)(+∞)) is bounded. Therefore the condition (b) of Lemma

3.2.7 is satisfied. Thus Kln(q)(u) → K(u).

(←) To prove the sufficient condition,by Theorem 3.2.8 it suffices to show that

ϕ̂ln(q)(t) → e−
t2

2 for every q ∈ (0, 1) and every t ∈ R.

Let q ∈ (0, 1) and t be any real number. It follows from (i′) and Theorem 3.1.2

that

Kln(q)
w−→ K.

By Theorem 2.2.10 ,

∫ ∞

−∞
f(t, x)dKln(q)(x) →

∫ ∞

−∞
f(t, x)dK(x).

By (3.6),we have ln ϕ̂ln(q)(t) → −t2

2
. Hence ϕ̂ln(q)(t) → e−

t2

2 .

Theorem 3.2.10. Let (Zn, Xnk) be a random double sequence of random variables

which satisfies the conditions (α), (β) and (γ). Then the sequence of distribution

functions of random sums

SZn = Xn1 + Xn2 + ... + XnZn

converges weakly to Φ if and only if
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(i′)
Zn∑
k=1

∫
|x|<ε

x2dFnk(x)
p−→ 1 for every ε > 0 and

(ii′)
Zn∑
k=1

∫∞
−∞ x2dFnk(x)

p−→ 1.

Proof. By Theorem 3.2.9, it suffices to show the conditions (i′) and (ii′) are equiv-

alent to the following conditions

(1) KZn(u)
p−→ K(u) for every continuity point u of K , and

(2) KZn(+∞)
p−→ K(+∞).

(→) Assume that (i′) and (ii′) hold. Since (2) is equivalent to (ii′), we have

(2). To prove (1), let u be the continuity point of K.

Case 1 u < 0.

From (i′), we have
Zn∑
k=1

∫
|x|<−u

x2dFnk(x)
p−→ 1. From this fact and (ii′) we have

Zn∑
k=1

∫
|x|>−u

x2dFnk(x) =
Zn∑
k=1

∫∞
−∞ x2dFnk(x) −

Zn∑
k=1

∫
|x|<−u

x2dFnk(x)
p−→ 1 − 1 = 0.

Thus
Zn∑
k=1

∫ u

−∞ x2dFnk(x)
p−→ 0. That is KZn(u)

p−→ 0.

Case 2 u > 0.

From (i′), we have
Zn∑
k=1

∫
|x|<u

x2dFnk(x)
p−→ 1. From this fact and (ii′) we have

Zn∑
k=1

∫
|x|>u

x2dFnk(x) =
Zn∑
k=1

∫∞
−∞ x2dFnk(x) −

Zn∑
k=1

∫
|x|<u

x2dFnk(x)
p−→ 1 − 1 = 0.

Then
Zn∑
k=1

∫ −u

−∞ x2dFnk(x)
p−→ 0. Thus

Zn∑
k=1

∫ u

−∞ x2dFnk(x) =
Zn∑
k=1

∫ −u

−∞ x2dFnk(x) +

Zn∑
k=1

∫
|x|<u

x2dFnk(x)
p−→ 0 + 1 = 1. That is KZn(u)

p−→ 1. From case 1 and case

2, we have (1).

(←) Assume (1) and (2) holds. Since (2) is equivalent to (ii′), we have (ii′).

From (1), for ε > 0,
Zn∑
k=1

∫
|x|<ε

x2dFnk(x) =
Zn∑
k=1

∫ ε

−∞ x2dFnk(x)−
Zn∑
k=1

∫ −ε

−∞ x2dFnk(x)
p−→ 1−0 = 1. Thus

we have (i′). Hence (i′) and (ii′) are equivalent to (1) and (2), respectively.

Proposition 3.2.11. ([21], p.63) Let (Zn, Xnk) be a random double sequence of

random variables which satisfies the following conditions.
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(i′)
Zn∑
k=1

∫
|x|<ε

x2dFnk(x)
p−→ 1 for every ε > 0 and

(ii′) (Zn, Xnk) satisfies the condition (β).

Then (Zn, Xnk) satisfies the condition (α).

The following theorem is the main theorem of this chapter.

Theorem 3.2.12. Let (Zn, Xnk) be a random double sequence of random variables

which satisfies the conditions (β) and (γ). Then

(i) the sequence of distribution functions of random sums

SZn = Xn1 + Xn2 + ... + XnZn

converges weakly to Φ and

(ii) (Zn, Xnk) satisfies (α)

if and only if (Zn, Xnk) satisfies the random Lindeberg condition , i.e.

Zn∑

k=1

∫

|x|<ε

x2dFnk(x)
p−→ 1

for every ε > 0.

Proof. It follows from Proposition 3.2.11 and Theorem 3.2.10.

Corollary 3.2.13. Let (kn) be a sequence of positive integers. Assume that

lim
n→∞

kn∑
k=1

σ2
nk = 1. Then

(i) the sequence of distribution functions of the sums

Sn = Xn1 + Xn2 + ... + Xnkn

converges weakly to Φ and

(ii) (Xnk) , k = 1, 2, ..., kn , n = 1, 2, ... is infinitesimal, i.e.

max
1≤k≤kn

P (|Xnk| ≥ ε) → 0

for every ε > 0
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if and only if (Xnk), k = 1, 2, ..., kn, n = 1, 2, ... satisfies the Lindeberg condition,

i.e.
kn∑

k=1

∫

|x|<ε

x2dFnk(x) → 1

for every ε > 0.

Proof. In order that Sn can be viewed as a random sums, we define Zn and X̃nk

as follows. For any positive integer n, we define

Zn(ω) = kn

for all ω ∈ Ω.

For k = 1, 2, ..., kn, define X̃nk(ω) = Xnk(ω) for all ω ∈ Ω and for k > kn,

define X̃nk(ω) = 0 for all ω ∈ Ω. It follows that (Zn, X̃nk) is a random double

sequence of random variables which are independent in each row. We denote

the distribution function, characteristic function, mean and variance of X̃nk by

F̃nk, ϕ̃nk, µ̃nk and σ̃2
nk, respectively. Then for each n and k, µ̃nk = 0. Since

Zn(ω) = kn for all ω ∈ Ω, ln(q) = kn for all q ∈ (0, 1). First, we will show that

(Zn, X̃nk) satisfies the condition (β). Let anln(q) =
ln(q)∑
k=1

σ̃2
nk =

kn∑
k=1

σ̃2
nk =

kn∑
k=1

σ2
nk for

all q ∈ (0, 1). So anln(q) → 1 for all q ∈ (0, 1). By Theorem 3.1.2, anZn

p−→ 1.

Therefore
Zn∑
k=1

σ̃2
nk

p−→ 1. That is (Zn, X̃nk) satisfies the condition (β). Let (n′) be a

subsequence of (n). Since ln(q) = kn for all q ∈ (0, 1), P (X̃n′1+X̃n′2+...+X̃n′ln′ (q) ≤
x) = P (Xn′1 + Xn′2 + ... + Xn′kn′ ≤ x) for all q ∈ (0, 1). Then the weak limit

distribution function F (q)(x), if it exists, of a sequence of distribution function of

the sums

X̃n′1 + X̃n′2 + ... + X̃n′ln′ (q)

is measurable in q for every x. That is (Zn, X̃nk) satisfies the condition (γ).

Next , we will prove that the sequence of the distribution functions of the sums

S̃Zn = X̃n1 + X̃n2 + ... + X̃nZn
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converges weakly to Φ if and only if the sequence of the distribution functions of

sums

Sn = Xn1 + Xn2 + ... + Xnkn

converges weakly to Φ.

According to the fact that P (Zn = kn) = 1, we have the characteristic function

ϕ̃n of S̃Zn is given by

ϕ̃n(t) = E[
Zn∏

k=1

ϕ̃nk(t)]

=
∞∑

j=1

P (Zn = j)

j∏

k=1

ϕ̃nk(t)

= P (Zn = kn)
kn∏

k=1

ϕ̃nk(t)

=
kn∏

k=1

ϕnk(t)

which is the characteristic function ϕn of Sn. Then ϕn(t) → e
−t2

2 for all t ∈ R

if and only if ϕ̃n(t) → e
−t2

2 for all t ∈ R. Hence the sequence of the distribu-

tion functions of S̃Zn converges weakly to Φ if and only if the sequence of the

distribution functions of Sn converges weakly to Φ.

(→) Let ε > 0 be given and anln(q) = max
1≤k≤ln(q)

P (|Xnk| ≥ ε). So anln(q) = ankn → 0

for all q ∈ (0, 1). By Theorem 3.1.2, anZn

p−→ 0. That is max
1≤k≤Zn

P (|Xnk| ≥ ε)

p−→ 0. Therefore (Zn, X̃nk) is random infinitesimal. By Theorem 3.2.12,
Zn∑
k=1

∫
|x|<ε

x2dFnk(x)
p−→ 1 for every ε > 0. It follows from Theorem 3.1.2 ,

ln(q)∑
k=1

∫
|x|<ε

x2dFnk(x) → 1 for every q ∈ (0, 1) and for every ε > 0. Since ln(q) = kn

for all q ∈ (0, 1),
kn∑

k=1

∫
|x|<ε

x2dFnk(x) → 1 for every ε > 0. Therefore (Xnk) satisfies

the Lindeberg condition.

(←) Let ε > 0 be given. Since (Xnk) satisfies the Lindeberg condition, we have
kn∑

k=1

∫
|x|<ε

x2dFnk(x) → 1. Since ln(q) = kn for all q ∈ (0, 1),
ln(q)∑
k=1

∫
|x|<ε

x2dFnk(x)
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→ 1 for all q ∈ (0, 1). By Theorem 3.1.2,
Zn∑
k=1

∫
|x|<ε

x2dFnk(x)
p−→ 1. Hence (Zn, Xnk)

satisfies the random Lindeberg condition. Therefore the sufficiency follows from

Theorem 3.2.12.

Example 3.2.14. For each n, let Zn be such that

P (Zn = n) = 1− 1

n2
and P (Zn = n + 1) =

1

n2
.

For each n and k, defined Xnk as follows:

If k 6= n + 1, let Xnk be defined by

P (Xnk =
1√
n

) = P (Xnk = − 1√
n

) =
1

2
.

In case k = n + 1, let Xnk be defined by

P (Xnk = 2n) = P (Xnk = −2n) =
1

2
.

It can be seen that µnk = 0 for every n and k, and

σ2
nk =





1
n

if k 6= n + 1

22n if k = n + 1.

Assume that for each n, Zn, Xn1, Xn2, ... are independent.

Then

1. For q ∈ (0, 1) and n ≥ 2,

ln(q) =





n if 0 < q < 1− 1
n2

n + 1 if 1− 1
n2 ≤ q < 1.

2. (Zn, Xnk) satisfies the condition (β).

3. (Zn, Xnk) satisfies the condition (γ).

4. (Zn, Xnk) satisfies the random Lindeberg condition.
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5.The sequence of the distribution functions of random sums

SZn = Xn1 + Xn2 + ... + XnZn

converges weakly to Φ.

Next, we will show that 1-5 hold.

1.For q ∈ (0, 1) and n ≥ 2.

Case 1 0 < q < 1− 1
n2 .

P (Zn < n) = 0 < q and P (Zn < n + 1) = P (Zn = n) = 1− 1

n2
> q.

Then ln(q) = n.

Case 2 1− 1
n2 ≤ q < 1.

P (Zn < n + 1) = P (Zn = n) = 1− 1
n2 ≤ q and

P (Zn < n + 2) = P (Zn = n) + P (Zn = n + 1) = 1− 1

n2
+

1

n2
= 1 > q.

Then ln(q) = n + 1.

2. For every ε > 0, we have

P (|
Zn∑

k=1

σ2
nk − 1| ≥ ε) ≤ P (Zn = n + 1) =

1

n2

which converge to 0. So
Zn∑
k=1

σ2
nk

p−→ 1. Hence (Zn, Xnk) satisfies the condition (β).

3. Let (n′) be a subsequence of (n). Let x ∈ R and q ∈ (0, 1). Let N1 ∈ N such

that 1
N2

1
< 1− q. For each n′ ≥ N1,

F
(q)
n′ (x) = P (Xn′1 + Xn′2 + ... + Xn′n′ ≤ x).

Then the weak limit distribution function F (q)(x) of F
(q)
n′ (x), if it exists, is mea-

surable in q for every x. Therefore (Zn, Xnk) satisfies the condition (γ).

4. Let ε > 0 and q ∈ (0, 1). Let N1 ∈ N such that 1
N2

1
< 1− q.

Let N2 ∈ N be such that ε > 1
N2

. Let N = max{N1, N2}.
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For n ≥ N ,

ln(q)∑

k=1

∫

|x|<ε

x2dFnk(x) =
n∑

k=1

∫ ε

−ε

x2dFnk(x)

=
n∑

k=1

(

∫

{− 1√
n
}
x2dFnk(x) +

∫

{ 1√
n
}
x2dFnk(x))

=
n∑

k=1

((
1

2
− 0)(− 1√

n
)2 + (1− 1

2
)(

1√
n

)2)

=
n∑

k=1

1

n
=

n

n
= 1.

Then
ln(q)∑
k=1

∫
|x|<ε

x2dFnk(x) → 1 for all q ∈ (0, 1). Thus
Zn∑
k=1

∫
|x|<ε

x2dFnk(x + µnk)

p−→ 1. Therefore (Zn, Xnk) satisfies the random Lindeberg condition.

4. Follows from Theorem 3.2.12. ¤
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