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Let @ ,[x] be the ring of polynomials over @ , the finite field of g elements,
@, (x) its field of quotients,
D, ((+)) the completion of @, (x) with respect to the infinite valuation,
and @, ((x)) the completion of @ , (x) with respect to the x—adic valuation.

This thesis deals with continued fractions in @ , (%)) and @, ((x)), which we

shall refer to as function fields, and their characterization properties. There have been

different kinds of continued fractions constructed over local fields, such as the p-adic

number field; the two notable ones being due to Ruban and Schneider in the seventies.
The Ruban type continued fraction, which mimics the classical continued fraction

in the reals, was first developed in @, ((+)) by Baum & Sweet, while the Schneider type
continued fraction has never been seriously considered in function fields. Here we present
the constructions of both types of continued fractions (Ruban and Schneider) in ® ()

and @, ((x)) and derive their basic properties.

Next, it is shown that as in the classical case both continued fractions terminate if
and only if they represent rational elements. As to the characterization of quadratic
irrationals, it is well known that a real number is a quadratic irrational if and only if its
classical continued fraction is periodic. In the function fields case, this result remains true
for Ruban continued fraction, while for Schneider continued fraction, we can only show
that a quadratic irrational belonging to a large class does indeed have periodic Schneider
continued fraction.

In the last part, we prove that should one try to construct continued fraction in

function fields using the best approximation criteria, one will inevitably end up with
Ruban continued fraction.
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CHAPTER 1

Introduction

There are two well-known continued fractions for p-adic numbers, namely the
one due to Ruban [15] and the other due to Schneider [16]. As seen from their
algorithms, both kinds of continued fractions can be constructed in any local field.
Indeed, as pointed out by Browkin [4], by choosing different sets of representatives
for the residue class field, many more similar, yet with certain different properties,
continued fractions can be derived. In the classical case, real numbers are rational
if and only if their continued fractions are finite. In the p-adic case, the situation,
though already settled, is more complicated for there are rational numbers whose
p-adic continued fractions are infinite periodic, see e.g. Bundchuh [5], Laohakosol
[7], Lianxiang [8], de Weger [6], and Browkin [4]. A beautiful characterization of
quadratic irrationals, due to Lagrange, with periodic continued fractions in the
classical case leads-one to ask whether there is such-a characterization in other
fields. The situation in the p-adic case is much more difficult, for example there
are p-adic quadratic irrationals whose continued fractions are not periodic. To
date this is not completely settled, though there have been various investigations,
see e.g. de Weger [6], and Browkin [4]. In this thesis, we consider analogous
questions in the case of function field, K, i.e. completions of F,(z), where F,
denotes the finite field of ¢ elements, with respect to two main valuations, namely
the infinite valuation | - |, and the w-adic valuation | - |, where 7 := 7(z) is a
non-constant irreducible element in F,(x).

In Chapter II, we collect definitions and results, mainly without proofs, to be



used throughout the entire thesis.

In Chapter III, we describe the constructions of the so-called Ruban continued
fraction, henceforth called RCF, in any local field K, and specialize K to be
Fy((1)), or Fy((z)) the completions of Fy(x) with respect to | - |o, and | - |, with
m = x, respectively. We show that rational elements in both fields are precisely
those with finite continued fractions. As for quadratic irrationals, it is not difficult
to see that infinite periodic continued fractions of any kind represent a quadratic
irrational. However, we can only establish that a large class of quadratic irrationals
has periodic continued fractions.

In Chapter IV, we describe the constructions of the so-called Schneider contin-
ued fraction, henceforth called SCF, in any local field K, and specialize K to be
Fo((2)), or Fo((x)). Rationality and quadratic irrationality characterization are
considered with similar results as those in Chapter III.

In the final chapter, Chapter V, we prove that should one start constructing
continued fractions via the concept of best approximations, one will end up with

RCF.



CHAPTER II

Basic Definitions and Results

In this chapter, we collect definitions and results, mainly without proofs, to
be used throughout the entire thesis. The first section deals with valuations and
related concepts. Details and proofs can be found in McCarthy [10] or Bachman
[1]. The second section deals with continued fractions and their properties. Details
and proofs can be found in Lorentzen and Waadeland [9] or Niven, Zuckerman
and Montgomery [14] for the classical case, and in Ruban [15], Schneider [16],
Bundchuh [5], Laohakosol 7], Browkin [4], de Weger [6], and Lianxiang [8] for the

p-adic case.

2.1 Valuations

Definition 2.1. A valuation on a field K is a real-valued function a — |a| defined
on K which satisfies the following conditions:
(i) Vae K, |a]>0and |a|]=0<a=0
(i) Ya,b€ K, |abl = |al|b|
(iii) Ya,b € K, |a+b| < |a| + |b].

There is always at least one valuation on K, namely, that given by setting
la| = 1if a € K — {0} and |0] = 0. This valuation is called the trivial valuation

on K.

Definition 2.2. A valuation |-| on K is called non-Archimedean if the condition

(iii) in Definition 2.1 is replaced by a stronger condition, called the strong triangle



inequality
la + b] < maz(|al,|b]) (Va, b€ K).
Any other valuation on K is called Archimedean.
A wvaluated field (K, |-]) is a field K together with a prescribed valuation |- |.

If the valuation is non-Archimedean, then K is called a non-Archimedean valuated

field.

Examples 2.3. 1) For K = @, the ordinary absolute value |-| is an Archimedean
valuation on K.

2) For K = Q, let p be a prime number. Each a € Q—{0} can be written uniquely

¥59 0
.

where u, v € Z, (v>0), (u,v) =1, n € Z, pfuand ptv. Define

in the form

laly = ™ and (0], = 0.

Then | - |, is a non-Archimedean valuation on Q and called the p-adic valuation.
3) Consider the field F,(z) of rational functions over a finite field F, of ¢ elements.

€ f(l‘) xXr) — ernne
Let {5 € Fylw) = {0} Def
‘@

g(x)

= 20e9/=dea9 g (0] = 0.

o)

Then |+ | 1s a non-Archimedean valuation on F ().

4) Let 7(z) be an irreducible polynomial in F,[z].

m x) — we can write uniquely as
If o) € F,(z) — {0}, t quely
J@) @
T

where u(x) and v(z) are relatively prime elements of F,[z], neither of which is
divisible by m(z). Define
‘f ()

=2""and |0|, = 0.
g9(x) 0

™




Then | - |, is a non-Archimedean valuation on [F,(z). We will consider mostly the

case where m(x) = z, and write | - |, instead of | - .

Since valuation gives rise to a metric on any valuated field K, the usual com-
pletion process is applicable. In the case of @Q, with the usual absolute value, its
completion is the field R of real numbers and in the case of (Q, |-|,), its com-
pletion is the p-adic number field (Q,, |- |,), while in the cases of (F,(z), |- |w)
and (Fy(x), |-|») the completions are (Fy((1)), | |x) and (Fo((7(2))), |- |~) the

1
fields of formal Laurent series in — and 7(x), respectively.
T

Definition 2.4. Let (K, |- |) be a valuated field. i) The set
V ={lal;a € K — {0}}

is easily checked to be a group and is called the value group of (K, |-|).

ii) If V' is an infinite eyelic group, then (K |-|) is called a discrete valuated field.
iii) A local field is a complete, discrete non-Archimedean valuated field.

iv) The set w = {a € K : |a| < 1} is a ring, called the valuation ring of (K, |-|).
v) The set p ={a € K :'|a| < 1} is the unique maximal ideal of w.

vi) The field w/p is called the residue class field of (K, |-|).

Examples 2.5. 1) (Q,, |-],) is a local field with {0, 1, 2,..., p—1} as a set of

representatives of its residue class field.

2) (Fq((2)), |- ]) is a local field with I, as a set of representatives of its residue
class field.
3) (F,((x)), |- |2) is a local field with [F, as a set of representatives of its residue

class field.



In a local field (K, |-|) with R being the set of representatives of its residue

class field, each element o € K can be uniquely represented as

oo
o= Z ',
i=r
where ¢; € R, r € Z, and @ € K is called a prime element which is usually
normalized so that || = 27!, Thus |a| = |7|” = 27". Sometimes, it is convenient
to use the ordinal function which is defined by ord,(a) = r, and so ord,(m) = 1.

2.2 Classical continued fractions

The expansion

a
by + i,
by + a3
by +
= an
£ay b + an+1
n
is called a continued fraction.
It is more convenient to use the notation
[bo; ay, bl, as, bg,, Ap, bn;] (21)
for the above continued fractions. The elements ay, as, as, . .. are called its partial
numerators; by, baybs, .. its partial denominators.~When all a; =1 we use
[bo, b1, bo,...]
for [bo; 1, by; 1, ba;...; 1, by;...]. We assume that all partial denominators are
not equal to zero.
The terminating or finite continued fraction
p
[bo; a1, bi; ag, by;...; an, by] ===

an



is called the n'" convergent of the continued fraction (2.1) .
In R, it is known that any real number can be represented as a continued

fraction of the form
(b, b1y Do, .. ]

where by € Z, b; € N. This is called a simple continued fraction and the b; are
called its partial quotients. Such representation is unique for real irrationals, but

for real rationals, we have the following characterization.

Theorem 2.6. Any finite simple continued fraction represents a rational number.
Conversely, any rational number can be expressed as a finite simple continued

fraction, and in exactly two ways,
[bo, b1y bay..., bul=bo, by, ba,..., b, —1, 1].
An infinite simple continued fraction
[bo, b1, bo,...]

is said to be periodic if there is an integer r such that b, = b, ., for all sufficiently
large integers n. A well known theorem of Lagrange characterizing infinite, peri-

odic, simple continued fractions states that:

Theorem: 2.7. An infinite, periodic, simple continued fraction-is a quadratic

irrational number, and conversely.

2.3 p-adic Continued fractions

There are many p-adic continued fractions constructed by various authors.
We shall consider only two types, namely, Ruban Continued Fraction first devel-
oped by Ruban [15] and Schneider Continued Fraction first developed by Schnei-

der [16].



The process for the expansion of the p-adic Ruban continued fraction, denoted
by p-adic RCF, was described by Ruban [15] and Laohakosol [7] as follows:

Let £ € Q,. As usual, £ can be represented uniquely as

§ = Z Cipi

where r € Z, ¢; € {0, 1,..., p—1}:=F, (i = r). Define

=S &, BRGES

1= =1
and we call [¢] and (§) the head part and the tail part of £, respectively. The head
and tail parts of £ are uniquely determined, and so uniquely write & = [£] + (£).

Let by = [¢] € F,[]. Hence |bo|, > 1.

1
p
If (£) = 0, the process stops.

1
Otherwise, write £ in the form £ = by + & where &' = (&) with |&], > 1. As
1

above, we can uniquely write & = [&] + (&). Let by = [&] € Fp[%] —{0}.
If (&) = 0, the process stops.

1
Otherwise, write &; in the form & = by + & where &1 = (&) with |&], > 1.
2

As above, we can uniquely write & = [&] + (&2). Let by = [&] € Fp[]l)] —{0}.
Again, if (&) = 0, the process stops.

Otherwise proceed in the same manner.

Therefore ¢ has a unique p-adic RCF of the form

[bo, b1, bo,...]

where all b; € IFp[Z—lj] —{0} (i>1).
It is quite trivial that a finite p-adic RCF always represents a rational number.
However, there exist infinitely many rational numbers with infinite periodic p-adic

RCF’s. Laohakosol [7] gave a characterization of rational numbers via p-adic

RCF as follows:



Theorem 2.8. Let £ € Q, — {0}. Then ¢ is a rational number if and only if its
p-adic RCF is either finite or periodic from a certain fraction onwards with the
shape

(p—Dp' + (=1, p—1p ' +(p—1),...].

Schneider [15] constructed another p-adie continued fraction, denoted hence-
forth by p-adic SCF, as follows:
Let £ € Q, — {0}. It can be assumed without loss of generality that |£], = 1.

Then £ can be represented uniquely as

&° -
§= Z cip'
i=0

where ¢; € F, (i > 0), ¢y # 0. Let by = ¢y and write £ in the form & = by + %
1

with |£1|p =1= |bo|p,a1 :pa1 (Odl = N) Let

&= Z dz'pi
i=0

where d; € F, (i > 0), do # 0. Let by = dp and write &; in the form & = b + ?
2

with |&], = 1 = |bi]p, as = p**> (g € N). Continuing in the same manner, we

have generally

gn _ bn + An41

gn—i-l (n Z O>

where b, € F, = {0}, ‘@1 = p*t* with |b,], = 1 = [€npialp. Therefore ¢ has a

unique p-adic SCF of the form

52 [bo, as, bl, as, bg,, A, bn;]

where a,, = p**, a,, €N, b, € F, —{0}.
The expansion into p-adic SCF is unique. The following theorem (see [5]) contains

a necessary and sufficient condition for rationality of p-adic numbers.
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Theorem 2.9. Let £ € Q, — {0}. Then ¢ is rational if and only if its p-adic
SCF is either finite or periodic with period length 1 and a,, = p, b, = p — 1 for

sufficiently large n.

~,
Y |
!'lJ

|

4
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CHAPTER III

RCF

As seen in Chapter II, the underlying idea of p-adic RCF algorithm is exactly
the same as in the classical case, i.e. separate the p-adic expansion of each number
€ = [¢ + (&) with |[g]], > 1, [(§)], < 1 into the head part , [£], which is kept
as partial quotient, and the tail part, (£), which is then inverted. The p-adic
expansion of %, provided (&) # 0, is again separated into head and tail parts,
and the process repeats. Browkin [4] observed that the same construction can
be done in any local field. It is to be noted that almost all continued fractions
considered in function fields are of this type, see e.g. Baum and Sweet [2], [3], Mills
and Robbins [12], Mesirov and Sweet [11], Niederreiter and Wien [13], Thakur [17],
[18], [19] and we shall refer to them throughout as RCF. In the first section of
this chapter, a brief description of RCF in local field and its basic properties are
given. In the last two sections, our-main concerns are the two function field cases of
(Fq((2)), |"so) and (Fy(()), |].). Section 3.2 deals with complete characterization

of rationals, while Section 3.3 does the same for quadratic irrationals but with less

complete characterization.

3.1 Construction and basic properties

Let (K, |-|) be a local field, R the set of representatives of its residue class

field. Every element £ € K — {0} can be uniquely written in the form

oo
=2 e’
n=r



12

with prime element 7 so normalized that |r| = 27"%™ =271 r € Z ¢; € R and

¢ # 0. We assume that 0 € R. Define

0 0o

€] == chﬂn, (&) = chﬂ'n.

n=r n=1

We call [¢] and (£) the head part and the tail part of £, respectively. Then
1 0
R—| = e K;a= nt, T EZ, r <0},
[W] {a ire ;c _— r }

the set of all head parts of elements in K. The head part and tail part of £ are
uniquely determined, and so we can uniquely write & = [£] + (£).

Let by = [¢] € R[%]. Hence |bg| > 1.

If (£) = 0, then the process stops.

If (£) # 0, then write £ = by + 5-11, where &1 = (&) with |&| > 1. Next write
& = [&] + (&) Let by = [&4] € R[2] — R, then |b;] > 1.

If (&) = 0, then the process stops.

If (&) # 0, then write & = b1 + é, where &' = (&) with |&] > 1. Let
by = [&] € R[] — R, then |by| > 1.

Again, if (&) = 0, then the process stops.

If (§&2) # 0, then we proceed in the same manner.

Therefore ¢ has a unique RCF of the form

62 [b(b bla b2>"'7 bnfb én]a

where all b; € R[] —{0} (i > 1), &, € K, |&,| > 1if exists and &, is referred to as
the n'™ complete quotient. The sequence (b,) so obtained is uniquely determined
and we call b, the partial quotients of &.

In order to establish convergence, we define two sequences (A,,), (B,) as



follows:

13

A*l = 1, AO = bo, An+1 = bn+1An + An,1 (n Z O) (31)

B—l = O, BO = 1, Bn+l = bn—i—an + Bn—l (n 2 O) (32)

Proposition 3.1. For any n > 0, a € K — {0}, we have

aAn+An—1
T, — b .
OéBn‘FBn*l [b0> 1, b2> ) bn7 a]
A A
Proof. Let P(n) : Oé_Bn%u = [bo, b1, b, ..., by, al.
O Dy n—1

OéAo + A,1 . Oébo +1
aBy+ B4  a+0
Suppose that P(n — 1) holds. Consider

1
= by + —, then P(0) is true.
a

1
[bo, b1, ba, ..., by, al =[bo, b1, oy ..., bn+a]

(bn + l)An,1 = An72 . . .
= < , (by induction hypothesis
_a(bnAn—l 1 An—2) + An—l - aAn + An—l

_a(ann—l — Bn—Q) = Bn—l 4 aBn + Egn—l7

which gives the truth of P(n).

From the above proposition, we have

An bnAn—l + An—2
A g = by, b1, ba, ..., by >1).
B, b.B. 1+ B, [ 0, 01, 02, ) ] (n = )

An
We call o the n™* convergent of the RCF to &.

n

If (&) = 0 for some n, then & = [by, by, ba,..., b,_1] i.e. the RCF of £ is

finite. If (§,) # 0 for all n, we will show that its RCF converges.
Proposition 3.2. A,B, 1 — A, 1B, = (-1)""' (n>0).

Proof. Let P(n): A,B, 1 — A,_1B, = (—=1)""L

Since AgB_1 — A 1By =0—1=—1=(=1)°" then P(0) is true.
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Suppose that P(n — 1) holds. Consider
ApBny — Ap 1By = (bpAn—1 + An2)Bn1 — Ay 1(bnBr—1 + Br_2)
= Ap 2By — ByyAnq = (—1)",
and so P(n) holds. O
Proposition 3.3. |B,| > |B,—1| (n>0).
Proof. We have |By| =1 > 0= |B_4|. Suppose |B,,_1| > |B,_2|. Since |b,| > 1,
for n > 1, then by strong triangle inequality

|B’n| 7 ‘ann—l T Bn—2| 2 |ann—1| > |Bn—1|‘

Proposition 3.4. |B,| > 2" (n>1)andso B, #0 (n>1).

Proof. Let P(n): |B,| > 2"
Since |By| = |b1By + B_1| = [b1By| = |by| > 2%, then P(1) is true. Suppose that
P(k?) holds. Consider P(k+1) Since Bk—H = bk+1Bk—|—Bk_1 and |bk+1Bk| > |Bk_1|,

then |Bk+1| = |bk+1Bk| Z 2k+1.

Ay AP
Proposition 3.5. £ — EL r B (18 )+ pu
n n\Sn+ n n—

Proof. By Proposition 3.1

(n>1).

gn—i—lAn + An—l
— by, by, by by, Enen] = |
g [ 0, Y1, V2, ) 5 -‘rl] £n+1Bn + Bn—l

and so by Proposition 3.2,

An  GnAn A A,

<~ B, §ni1Bn + Bna B,
~ Bul§nr1An+ Any) — An(€nr1Bn + Bua)
B Bn(gnJran + Bn71>
_ —(AyBy1 — Ay 1By) (—1)"

Bn(&nqtan + anl) B Bn(5n+1Bn + anl) .
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Since |£,| = |b,| > 2! and |B,| > |B,_1|, then by Proposition 3.4

|B,(£n1Bn + Br1)| = | Bul?|buy1| > 2271 Tt follows that

1 1
<
|Bn(§n+an + Bn—1>| — 2%l

6 51 = ~0 (1)

A : :
and so 5 converges to & which enables us to write & = [by, by, by, bs,...].

Example 3.6. Case of F,((2))
Take K = Fy((2)), the completion of F,(x) with respect to the infinite non-
Archimedean valuation | - |s so normalized that |z71| = 271

Each ¢ € Fq((%)) can be uniquely written as
5 = fnzl’m + fmflxmfl =L f() + f71x71 4.

where f; € F,, f,, #0, m € Z. Specializing the construction in Section 3.1, we
have [€] := fra™ 4 fma2™ L4+ fo € Fyla], (€)= faa™ + faa™? + -

and so & has a unique RCF of the form
f - [b()a bla b27 b37 .- '}7

where bO = fmxm+fm—1xm_1 + - +f0 — [5] € FQ[$]> bz = gmixmi +gmi—1xmi_1 +

o+ g0 =[] € Fola] —Fy, gm, # 0, [bils> 1 (i 21).

Example 3.7. Case of F,((z))
Take K = F,((x)), the completion of F,(x) with respect to the z-adic non-
Archimedean valuation | - |, so normalized that |z|, = 27'. Each £ € F,((z))

can be uniquely written as
§=fomt™™ + fompaT " 4 fo+ fiat

where f; € F,, f_,, #0, m € Z. Specializing the construction in Section 3.1, we

have [€] = fom™™ + fompe™™ ot fo € Fy[2], () = fiad + foa® + -
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and so ¢ has a unique RCF of the form
g - [b07 b17 b27 b37 .- '}7

where by = fopa ™ 4 o™ 4+ fo = [€] € Fol2], bi = gopmaT™ +

g—mi+1ximi+1 + ... +90 = [5@] S Fq[%] | J Fq: 9—m; 7& Oa ’bz‘x > 1 (Z Z 1)

3.2 Characterization of rationals

In this section the word "rational” refers to elements of IF,(z).
Theorem 3.8. Let & € F,((2)). Then & is rational < its RCF is finite.

Proof. Tt is easy to see that if the RCF of £ € F,((%)) is finite, then £ is rational.

Assume £ € F,((2)) is rational and using the notation of Example 3.6, let its
RCF be [bo, bl, bg, ceey bn, .. ]
Writing & = [bo, b1, ba, ..., by_1, &) Since & is rational, then ¢, is rational and

|€nloo = |bn|oo > 1. Writing &, as fraction

Tn,
Tn+1 Tn+41

We see that 1 < [Z,41]00 < 0|0 It follows that(z,,) is a sequence of polynomials

Tn+42

with @, Tpi1, Tneo € Fylx].

in F,[z] with strictly decreasing degrees and must then terminate. O

Remark 3.9. Theorem 3.8 can be proved using Euclid algorithm as follows: let

_ Ar)
&= B(x)

€ F,(z). By Euclid algorithm, 3Q1, Q2,..., Qunt1, Ri,..., R, € Fy[z],
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0<deg R, <deg R,_1 <...<deg Ry <deg B such that

A(r) = Q1(7)B(x) + Ryi(x)
B(z) = Qa2(x) Ry () + Ra(x)

Ri(z) = Q3(z) Ry(2) + Rs(w)

R, 2(x) = Q.(x)Rn_1(x) + R, (x)

Rn_l(x) = Qn+1Rn($)

Thus the RCF of £ = 22@3 i$ finite of the form
L

[Ql) QQ: Ry 2 ) Qn+1]-
Theorem 3.10. Let £ € F,((2)). Then £ is rational < its RCF is finite.

Proof. 1t is easy to see that if the RCF of £ is finite then ¢ is rational. Assume
¢ € Fy((x)) is rational and using the notation of Example 3.7, let its RCF be
[bo, bl, bg, . ) bnfl, o ] ertlng g - [b(), bl, bg, e bn,h én]

Since ¢ is rational, then &, is rational and |&,|, = |ba|. > 1. Writing &, as fraction

Tn
Tn+1 Tn+41

Since |&,]; > 1, then |z,41|, < |2,].-Considering as polynomials in i, this implies

Tn42

WIth' Ty Tni1, Tnto € Fo[2].

that degi (T,41) < degi(z,)i.e. (xy)isasequence of polynomialsin L with strictly

1

decreasing degree (in ) and must then terminate. Il

3.3 Quadratic irrationals

In this section, the word ”irrational” refers to elements of Fy((1)) (or F,((x)))
which are not in Fy(x).

An infinite continued fraction of the shape [bg, by, b, ...] is said to be periodic
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if there is an integer k such that b, = b, for all sufficiently large integer n and

is denoted by [bg, b1,...,bp_1, bny busty - buik_1]-

Theorem 3.11. Let £ € Fy((2)), [€|o < 1. If the continued fraction expansion
of £ is periodic, then ¢ is a nonrational root of a quadratic equation of the form

at? + bt + ¢ = 0 where a,b,¢ € F,[z], a # 0.

PT'OOf. Let f = [b07 b17 * ) bn—h bna bn+1> N 7bn+k]7 and fn = [bTw bn—i—la s >bn+k]
= [bn, bpsii,---,bnin & be the n™ complete quotient of the periodic RCF of &.

Then by Proposition 3.1,
Alé‘ + A// A// A/
Sn = o

= W Where —ﬁ = [bn, bn+17 A% bn—i—k—l]; E = [bn, bn+1> e abn+k]7
and A, A", B', B" €T |z].

It follows that

BB A, A" =0 (3.3)

nAn—14 An- Apn 2 —EBn
Since £ = gB 113 z’and806":§“l321—i4?

(3.3), and clear of fraction to obtain an equation a&? + b¢ + ¢ = 0, where

. We substitute for &, in

a=DB'B? ,— A"B?_| — B"By 3B, + A'By_sB_, %0,
b= —-2B'A; 2B, s +2B, 1A, A"+ B"A, 5B, 1+ B"A,_ 1B, _o—
A'Ap 9By 1 — A'B,_9A, 1,
c="B'A%2 , - B'A, 34,y +AA, A, | — ATA% |
Since A;, B; (1 > 0), A", A", B', B" € F,[z], then a, b, ¢ € Fy[x] and a # 0

because ¢ is irrational. O]

Theorem 3.12. Let £ € Fy((1)), €| < 1.If & is a nonrational root of a quadratic
equation of the form at?+bt+c = 0 where a, b, ¢ € F [z], a # 0, then the continued

fraction expansion of £ is periodic.

Proof. Let € € Fy((2)) with [by, by, bs,...] being its RCF. Assume that £ is a
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root of a quadratic equation
at> +bt+c=0 (3.4)

where a, b, c € F,[z] and a # 0. Writing
€ =lbo, b1, ba,..., bp_1, &) where &, = [b,, bpi1, bpio,.. .|
Then by Proposition 3.1
£ = Endn-1+ An-p where 2 is the n'" convergent to the RCF of &.

B gan—l + Bn—2 Bn,
Substituting into (3.4), we get

- TS, N\ =0

where R, = aA% | +bA, 1B, 1+ cB2

Sp =2aA, 1A, 2+ b(A,_1B, 5+ B,_1A,_3)+ 2¢B,_1B,_»,

T, =aA?_,+bA, 3B, 5+ cB? ,.
Observe that a, b, ¢, A;, and B; all belong to IF,[z] which yields R,,, S,, T, € F,[z].
If R, = 0 then &, is rational, contradicting the fact that ¢ is irrational. Hence

R, # 0. Note that

S? — 4R, T, = (V¥ — 4ac)(Ay_1Bn_o — Bu_14,_2)* = b* —4ac.  (3.5)

An—l B (_1)n—1

By Proposition 3.5, § — Bn1— Bp1(£4Bpo1+ By s)!

and so
(_1)71_137171
B,_1—A,_.1= )
g ! ! anl(ganfl + Bn72)
Therefore
(_1)an—1 6n—1
An— = Bn— + - Bn— + =
IB 5 ! Bn—l(gan—l _'_ Bn—2) 5 ! Bn—l
here 6, = nl . Since |Bp_1loo > |Bn_2leo and [&nle = |bnloo > 1,
where 8,01 = L Since [Buil > [Buale and G = [
then
BTL* oo an (o)
|5n—1|oo = ‘ 1’ = ’ 1‘ <1

|§an—1 + Bn—2|oo B |ann—1|oo ‘
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Next

51
)2+ bBpy1(EBp_y + ——

5, _
R, = a(¢By_1 + - B

B ) +cB: |

2

5
= a(§B) 1 + 260,01 + ) + 0B + b + By,
n—1

52
= (a€® + b¢ + € B2 + 20,2+ a2

2
n

1

L b6,
n—1

= 2a€6,_1 +a

=L+ b1,

n=l

which gives | Ry, |00 < max{|2a€|s; [@]oos |b]eo } := .

Since T,, = R,,—1, then |1} = |Ri—1|o < max{|2a€|, |a|c0, |b]oc} = £

From (3.5), |S?|oc = |4R.T,, + b* — dacls, < max{4* |b* — 4ac|s.}.

Hence | Ry |00, |Sn]oos [Th|se are bounded by a constant independent of n. It follows
that, being elements in [F,[z], there are only a finite number of different triplets
(R,, Sp, T,) and we can find a triplet (R, S, T') which occurs at least three
times, say (Rny, Snyy Tny)y (Rugs Snay Tny)y (Rags Sns, Tns). These &, &nyy Ens

are roots of

R2+St+T=0

and at least two of them must be equal. But if; for example, &,, = &,,, then

bn, = bny, bngti = by, 41, ... and the RCF is periodic. ]

Next, we consider (IF,((z)), |- |z): By the same proof of Theorem 3.11 and

Theorem 3.12, respectively, we have:

Theorem 3.13. Let { € F,((x)), €|, < 1. If the continued fraction expansion
of ¢ is periodic, then ¢ is a nonrational root of a quadratic equation of the form

at? + bt + ¢ = 0 where a,b, ¢ € F[1], a # 0.

PT'OOf. Let f = [b07 bla ) bn—17 bna bn+1> s 7bn+k]a and fn = [bTw bn—i—la s >bn+k]

= [bn, bpii,---,bnik, €] be the n complete quotient of the periodic RCF of &.
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A/€n+A/l A//
Then Sn = m where ﬁ = [bn, bn+1; ey bn+k—1]7
A/
o= [bry bui1, .-y bosi), A, A”, B, B” € Fy[1]. Tt follows that
B'ﬁi +(B"- A, —A"=0 (3.6)
nAnf Anf Anf 11 an . .
But £ = & L 2 & 2= & 2 We substitute for &, in (3.6), and

ganfl + Bn72’ = an~1 — An*l
clear of fraction to obtain an equation a&? + b€ + ¢ = 0 where

a=BB2,— A"B?

n—1

" B"By, B,y + A'By 3By_1 #0

b= —2B'A,_2B,_>+2B, A, A" + B"A, sB,_1 + B"A,_1B,_o—
A A, 9B, 1 — A'B, A, 1,

c=B'A%2_,— B"A, 3A, | +A'A, A, 1 — A"A% .
Since A;, B; (i > 0), A, A", B', B" ¢ Fq[%], then a, b, ¢ € Iﬁ‘q[%] and a # 0
because ¢ is irrational. O]
Theorem 3.14. Let £ € F,((x)), {£], < 1. If § is a nonrational root of a quadratic

equation of the form at?+bt+c = 0 where a, b, c € Fq[%], a # 0, then the continued

fraction expansion of £ is periodic.

Proof. Let € € F,((x)) with [by, b1, ba,...] being its RCF. Assume that £ is a

root of a quadratic-equation

at’ + bt +c=0 (3.7)
where a,b,c € Fq[%] and a # 0. Writing & = [bg, b1, bs,..., by 1, &] where
énAnfl + An72

A,
&n = [bn, bny1, buga,.... Then & = c B i B where oI the n'" convergent
ntn—1 n—2 n

to the RCF of £. Substituting into (3.7), we get

where R,, = aA? | +bA, 1B, 1+ cB?_,
Sn = 2&14”,114“,2 + b(Anlen72 + anlAn72) + QCananf%

T, =aA% 5 +bA, 3B, o+ cB?_,.
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Observe that A;, B; (i > 0), a, b, and ¢ all belong to Fq[%] which yields
R,, S,, T, € Fq[%]. If R, = 0 then &, is rational, contradicting the fact that ¢ is

irrational. Hence R,, # 0. Note that

S2 — 4R, T, = (V¥ — 4ac)(A, 1B,-o — B, 1A, 5)* =b>—4dac.  (3.8)

. An—l (_1)n—1
By Proposition 3.5, £ — = , and so
Y P f Bn—l Bn—l(lgan—l i Bn—2)
(_1)n_ By
B,_.1—A,_1 = i
5 ! 2 Bn71(£7LB'rL-1 =+ an2)
Therefore
<_1)an~1 51171
An— =E&B,_ 1+ =&B,1 +
! 6 y Bn—l(Sanfl + an2) 5 ! anl

(_1)an—1
gan—l + Bn—2

where 6,,_1 = .Since |Bpilz > [Bn2le and |,z = |bu]z > 1,

then

Bn—x Bn—x
| Bn-1 o ABuale.

5n— T = = .
‘ 1| |£an—1 ¥ Bn—2|z |ann—1|:t

Next

Oy
V2 b BBy

5n71
R, = a(&By=1+
G 5

BZ
B )+c

n—1

2

5
= a(§B)_y + 20,1+ 5 o) 0B,k bu + Bl
n—1

52
= (a€? + b+ ) B2, + 206, 1 +a B’;

-1
-1

+ b1

2
n—

L + ban—h
—1

=2ald,_1 +a

.
which gives |R,|. < max{|2a|., |al., [bl.} := ¢.

Since T,, = R,_1, then |T,,|, = |Rn—1]. < max{|2a€|,, |al|., |bl.} = ¢.

From(3.8), |S2|o = [4R, T, + b* — 4ac|, < max{4¢* |b*— 4ac|,}.

Hence |R,|., |Sulz, |Tn|. are bounded by a constant independent of n. It follows
that, being elements in Iﬁ‘q[%], there are only a finite number of different triplets
(R,, Sn, T,) and we can find a triplet (R, S, T') which occurs at least three

times7 Say (Rn17 Sn17 Tnl)a (Rn27 Snga Tn2)7 (Rn3a Sn3a Tn3)~ These €n17 £n27 €n3
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are roots of

Rt?+St+T =0

and at least two of them must be equal. But if, for example, §,, = &,,, then

bng = bn1a bn2+1 = bn1+1) s U

AONUUINYUINNS )
ANRINITUNINE AL



CHAPTER IV

SCF

In 1970, Schneider [16] developed an algorithm to compute continued frac-
tions for p-adic numbers, &, which we may assume without loss of general-

ity that [¢], < 1. Writing £ = o€ . where u is a p-adic unit. Setting

ordp(

!
p7 &) = q_ its first partial numerator and rewriting — = b+ &, with |¢;], < 1 and
u

be{l, 2,..., p— 1}, we see that

a

£:b+§1'

Now repeat the process with &; in place of &. Clearly, the steps can also be done in
any local field and we shall describe more fully in the first section. The continued

fractions so obtained will be referred to as Schneider continued fractions, SCF.

4.1 Construction and Basic Properties

Let (K, |-]) be alocal field , R its set of representatives of the residue

class field of K. Every element { € K — {0} can be uniquely written in the form

(o]
=2 car”
n=r
with prime element 7 so normalized that || = 27"%™ = 271 r € Z and a; € R,

a, # 0. We assume that 0 € R.
0

Define by = chwn. Hence |by| > 1.

If £ = by, the E)rocess stops.

o0
Otherwise, write £ — by = Z e, where a; > 1, ¢, # 0.

n=auaj



oo
Define a; = 7, &' = Z cam™ ™. Then |a;| =27, |71 =1, and

n=auai

E=bo+ Y _ e = [bo; a1, &.

n=o1
Write & = Z cWDpn-e csl) e\
n=o

Let b = c&ll). Hence by € R and |by] = 1.

If & = by, the process stops.

Otherwise, write & — b, = Z 7™ where ay > 1, &) # 0.

n=aos
Define a, = 72, &' = Z cD7r=92 Then |ay| =272, |6, = 1, and

n=as

§ = [bo; a1, &) = [bo; a1, b1; ag, &)

Write & = Z cDpn-ez, 0322) =
n=as

Let by = c((fz). Hence by € R and |by| = 1.

If & = by, the process stops:

Otherwise, write & — by = Z 7" where ag > 1, ng) # 0.
n=aos

Define a3z = 7%, &' = Z c@gn=os Then fas| = 273, |& 1] = 1, and

n=as

§= [bo; ay, bi; as, 52] = [bo; ai, bi; as, be; as, 53]-

In general if &, = b, the process stops.

o0
Otherwise, write &, — b, = E CS")WT where a1 > 1, cgl)“ # 0.
T=0Qn+1
(0.0}
Define a,, = mo+1, &1 = E M=t Then |ay 4| = 27+,
T=0n+1
-1 o
|£n+1’_'17and
§=[bo; ar, bi; az, ba;...; an, bu; any1, Enial,

where |bg] > 1, |by| =1, |ap] =27 (n > 1).

25
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We call the uniquely constructed b, and a, the partial denominators and
numerators of the SCF of £&. We also called &, the n'* complete quotient of its

SCF.

In order to establish convergence, we define two sequences A,,, B, as follows:

A =1, Ag=by, Ani1 =bpg1An+ api1An_q1 (n>0) (4.1)

B,l = 0, BO — 1, Bn+1 = anran == GnJran,l (n Z O) (42)

Proposition 4.1. For any n > 0, o« € K — {0}, we have

aAn + An+1 An— 1

= |by; a1, by; as, bo;...; an, by ani1, ol
OéBn‘f'CLn_HBn_l [0 1 1 2 2 n n n+1
Proof. By induction on n,

oA +a +1A 5
let P(n) : = [by; a1,y by as, baj.. 5 Gn, by Gnyr, al.

aBn + Canran,l
O./AO + 0,114_1 . O./b() -+ aq

(IBO + alB_l N (0]
Suppose that P(n — 1) holds. Consider

Since = [by; a1, af, P(0) is true.

(bn == aT?TJrl)Anfl + anAnf2

[bo; a1, b1; ag, bas...5 Gy bp; Gnir, @f :<bn T®B, , + anB s
Ca(bpAn it apAn o) + a1 An
_Oé(ann_l + aan_g) + an+1Bn_1
0Agt - Apa
_OéBn -+ an+1Bn_1 ’
which gives the truth of P(n). O

From the above proposition, we have

An o bnAn—l + anAn—2

Bn ann_1+aan_2 [07 ai, 01; G2, 02; , a ] (n )

A
We call B_n the n'" convergent of SCF to & (n > 0). If the SCF of € is finite, i.e.

&n = by, for some n, then the SCF of € terminates as [by; a1, b1; as, bo;...; ay, byl

In what follows we assume that &, # b, for all n.

Proposition 4.2. A,B, 1 — A, 1B, = (-1)"tajay---a, (n > 1).



Proof. By induction on n,

let P(n): A,Bn1— A, 1B, =(-1)""taay--a,. Since

A1By+ AgBy = biAg+ a1 Ay — by(b1 By + a1 B_4)

=5 blbg + @ Fa bobl —0= (—1)1_16L1,
P(1) is true. Suppose that P(n — 1) holds. Consider

Aan—l + An—an = (bnAn—l fi anAn—Q)Bn—l . An—l(ann—l + aan—Z)
4 anAn—QBn—l » aan—2)An—1

74 —a,n(_].)n_2ala/2 e Qp—1 = (—]_)n_lalalz c Q.

and so P(n) holds.
Proposition 4.3. |B,| =1 (n>1)1e. B, #0 (n>1).

Proof. Let P(n) : |b,| = 1.

Since |By| = |b1By +a1B_1| = |b1By| = 1, then P(1) is true.
Suppose that P(k) holds. Consider P(k + 1),

Since |Byy1 = bgr1 By + aky1Br_1l-and |bgy1 Bg| > |ag1Br_1],

then |Bk+1| = |bk+1Bk| =1.

By proposition 4.2 ‘and proposition 4.3, we have

An+1 An (—1)na1a2 s Ap4l

Bn+1 a B_n B Ban—H
A, A,
Proposition 4.4. (i) | =222 — 22| = 2~ (ataattani) (> 1)
Bn+1 Bn
Am . & An+1 An

11 e = _ — > >1).

(@) |5 = Gl =I5t = 5 m>n =)
An+1 An _ An+an - Aan—i-l _ (_1>na1a2 Tt Apyl
Bn+1 Bn Ban+1 Ban+1 '
An—f—l Ap _ |(_1)na1a2 o an+1| — 9—(a1tag++ant1) (TL > 1)
Bn+1 Bn |Ban+1| -

27

(4.3)
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This proves (i).

For each m > n > 1, from part (i), since o; € N, we get by the strong triangle

inequality
Am An Am Am—l Am—l Am—2 An+1 An
B e (L e R )
B Bn Bm Bm~1 Bmfl Bme Bn+1 Bn
o |An+1 An
B Bn+1 Bn
L]
- . . . Ay,
The sequence (2~ (v1F@2+Fant1)) is decreasing and by (i), the sequence (B—)
is convergent in the complete field K.
. An (—1)"ayag - - ny
Proposition 4.5. £ — — = n>1).
p 5 Bn Bn(gn—w—an + an+an—1) ( - )
Proof. By Proposition 4.1 and Proposition 4.2,
én—i—lAn + an—l—lAn—l
:b;a>b;a>b;"-;a’nabn;an7n = 5
£ = [bo; ar, bi; as, by 41, &nvi] boo1Bo + a1 By
and so
g_ é o €n+1An + an+lAn71 — ﬁ — an—i—lAn—an - an+1Bn71An
Bn §n+1Bn + an—i—an—l Bn Bn(§n+1Bn + CLn—&-an—l)
_ —Qnp+1 (An—an i Bn—lAn) - (_1)nala2 s Gp4
Bn(fn—l—an + an+1Bn—1) Bn(§n+1Bn + an—i—an—l)-
L]

By Proposition 4.3 and the construction, we see that |a,.1B,_1| < |{,41Bx],

and 80§, 118, + @ns1Bn_1| =541 By| = 1o It follows that
A,

€ — B_| — 9—(artaztFant1) _, (n — 00)

A, : .
and so 5. converges to £ enabling us to write £ = [bo; aq, b1; as, ba;...].

Example 4.6. Case of F,((2))
Take K = F,((2)), the completion of Fy(x) with respect to the infinite non-

Archimedean valuation | - |, so normalized that |z| = 2. Let

E= Fat™ 4 fura™ 4 fot a4 € Fy((1)
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where f; € F,, f., #0, m € Z. Specializing the construction in Section 4.1, we

have a unique SCF for £ of the form

£ = [bo; a1, &) = [bo; a1, bi; az, &] = -+ = [bo; a1, br; ag, ba; .. .5 any bns Gngrs Entl,
1 .

where by € Fy[z], b; € F, — {0} and a; = —, o; € N (i >1).
re

Example 4.7. Case of F,((2))
Take K = F,((x)), the completion of F,(z) with respect to the z-adic non-

Archimedean absolute valuation | - |, so normalized that |z|, = 27!. Let
€= fomt™ W flnn@ " b fo ok fiad 4 € Fy((2)

where f; € Fy, f_,, #0, m € Z. Specializing the construction in Section 4.1, we

have a unique SCF for ¢ of the form

€: [b07 ay, 61] = [b07 ay, bla a2, 52] — = [bO; ay, b17 a2, b??a A, bn7 Ap+1, gn—‘rl]v

where by € Fy[1], b€ F,— {0} and a; = 2%, o, €N (i > 1).

4.2 Characterization of rationals

In this section the word ”rational” refers to element in F ().
Theorem 4.8. Let & € F,((2)). Then ¢ is rational < its SCF is finite.

Proof. 1t is easy to see that if the SCF for £ is finite, then £ is rational. The
converse also holds as we now show.

Let the SCF for £ be

§= [bo; ay, bi; ag, be;...; ap, fn]

1
where by € Fylz], b, € F, — {0}, a; = —, o € N (i > 1), so that || = 1.
T

Since ¢ and by are rational, §, is rational. For n > 1 write £, = , Where
Tpt1
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T, Tpi1 € ]Fq[%] and the constant terms of both x,, and x,; are non zero. Since

a x x UpTpio  bpTpi1 + GpTpio
§n+1 Tp+1 Tn+1 Tn+1 Tp+1

and so x, = b,x,11 + a,Tp1o. Instead of using the infinite valuation, we estimate

the size of z; € Fq[%] using x-adic valuation, using also the fact that for ¢ > 1,

|bi|. = 1, |a;|, = 2% > 1. Thus

— bnxn+1

| max{|Znls, [bnZnile}
T 3

L
T yale = |
Uy, |an|z

< max{'xn'm ‘xn—l-llx}-

Thus the elements of sequences (2,,) C Fy[+], considered as sequence of polynomi-
als in 91?7 have bounded degree strictly decreasing after every two successive ones.

This sequence must then terminate yielding a finite SCF. n
Theorem 4.9. Let £ € Fy((z)). Then ¢ is rational < its SCF is finite.

Proof. 1t is easy to see that if the SCF to € is finite then ¢ is rational. The
converse also holds as we now show.

Let the SCF for £ be

§= [bo; ar, by ag, by. .5 ap, §n]

where by € Fy[2], b; € F,—{0}, a; =2, oy € N (i > 1). Since &isrational, &, is

L

rational and |¢, |, = 1. For n > 1, we can write &, = with @y, 41 € Fylz]
Tni1
and are polynomials in x of the same degree.
. x a UnTnt2
Since —— =&, = by + —— = b, + —"2 and 80 zn, = bpTni1 + AnTnio.
Tn+1 £n+1 Tn+1

In contrast to the last theorem, we use the infinite valuation to estimate the size
of z;, keeping in mind that |b;|c = 1, |ai|ec = 2% > 1. Thus

Tn — bn$n+1

max{|Zn|oo, |bnTniiloo}
oo <

|xn+2|oo = |
an ||

< max{|Tn|oo; [Tni1loo};
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and so considering (z,,) as a sequence of polynomials in F,[x], we observe as in

the last theorem that it must terminate, yielding a finite SCF to &. O]

4.3 Quadratic irrationals

In this section, the word ”irrational” refers to elements in Fy((2)) (or Fy((z)))
which are not in Fy(x).

An infinite continued fraction
[bo; a1, b1; as, ba;...]

is said to be periodic if there is an integer k such that a,, = a, 11 and b, = b1 x41

for all sufficiently large integer n and is denoted by

[bO; ay, bl%--; Ap—1, bn—l; Ap, bn; Ap+1, bn-l—l;'”;a/n—&-ka bn+k]~

Theorem 4.10. Let £ € Fy((2)), €|~ < 1. If the SCF of ¢ is periodic, then ¢ is
a non rational root of a quadratic equation of the form az? + bx + ¢ = 0 where

a,b,c € F,lz], a #0.

Proof. Let & = [bo; a1, b1;...; Gn_1, bu1; an, bu; @ni1, bpits -5 Gnak, buakl,s
and &, = [bn; @uit1s bugii- - Guik, Dpik; an] be the n'™ complete quotient of the
- .. A&, + a, A"
periodic SCF of £. Then by Proposition 4.1 £, = W where
A// A/
ﬁ = [bru Ap+t1, bn+1; e Ay k—1, bn—l—kfl]a E = [bn7 Apt1y bn+1; c 5 ks anrk];
the last two convergents to [bn; Gni1, bnsts-- -3 naks Onikl-
It follows that
B'& + (a,B" — A)¢, — a, A" = 0. (4.4)

But

6 _ annq + alnAnf2 5 _ an(Aan - anfZ)
é‘anfl + (Ian,27 " &-anl - Anfl
Substituting for &, in (4.4), we obtain an equation a’¢? + b’ 4+ ¢/ = 0 where
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a=a’B'B? ,—a,A"B? | —a?B"B, 2B, 1+ a,B, 2B, 1

bV =—2a2B'A, 2B, 2+ a2:B"A, 2B, 1 — a,AA, 2B, 1 +a>*B"B, 2A, 1 —
anA'A,_1B,_s + 2a,A"B, _1A,_1,

d=a’B'A2 , —a’B"A, 2A, 1+ anA'A, 2 A, 1 —a, ATAZ .
Since & is irrational, then a’ # 0. After clearing the fraction the new coefficients

a, b, carein F [z]. O
Theorem 4.11. Let £ € F,((2)), £~ < 1. Let the SCF of £ be of the form
[bo: a1, bi; @z, ba;..]

where a; = m% and let (7;) be defined by 71 = a1, 72 = as —ay, 73 = ag—as+ay,
s Y= — g+ (1) ey (i > 1), Assume ; >0 (1> 1). If £is a
nonrational root of a quadratic equation of the form at? + bt + ¢ = 0 where

a,b,c € F,[z], a # 0, then the SCF of ¢ is periodic.

Proof. Assume that & is a root of a quadratic equation of the form at?> +bt4+c =0
where a, b, ¢ € F,[z], a # 0. Let £ = [bo; =%, by; %%, bo;...]. Then inverting

the ﬁ’s, we see that

§=[bo; =4 bryaT™, bajl. ]
—rby; ,cbyr%s ary $23°V0 by a7 ,0b5; 0 |

= [bo; 1, bya®;1, bya®2~; g(@e—(@2=a) po. ]

= [bo, bix™, ..., bz™,..]

which is just the RCF of £. Being a quadratic irrationals, by Theorem 3.12, we

deduce that this RCF of £ must be periodic, say

[b07 b1$717 R bixqﬂa bi-l—lx’yi-'—l? bi+2x%+27 s )bi-i-rx%_’_r .
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Reverting this RCF, we get

[bo, by, .o b by ikt byox it L byt
O . —x . .
= [bo,ZL‘ 1,b1,I 1,b2$72,1,b31'737...]

= [bo; x™, by; g @t2) b T2 a8 i

_ . (Mt : w o (Yitr—1+7 (. ; . e = (Vi — ;
— [b07 T '71’ 617 T (71 72), b27 — 73: (72+7‘ 1 'YhLT)’ bi+7‘) €T (71+r+77,+1)7 bi+17 R €T (’Yz+r 1+'Y7,+r)’ bi+7‘]
_ . . . U S . eyl
- [b07 ay, bla ey Qg bi+7‘7 ai+7’+17 b’i+7”+17 a”i+7‘+2’ bi+r+27 ey ai+27" bi+2T]7
/ _ 1 / A 1 / _ 1 : .
where Qipry1 = 2 Yitr T ¥it1 Qipryo = Ykl TYVit2 7 " Bigor = 2Yitr—1FYitr which is a
periodic SCF. O

Theorem 4.12. Let £ € Fy((x)), |£]. < 1. If the SCF of ¢ is periodic, then £
is a nonrational root of a quadratic equation of the form ax? 4 bz + ¢ = 0 where

a,b,c € Fq[%], a # 0.

PT’OOf. Let 6 = [b07 ar, blaa an—1, bn—l; Qs bn7 An+1s bn+1;--~; An+k, bn+k]7
and &, = [by; @ni1, bpst;-- - @uiks buik; @] be the n' complete quotient of the

A/ _|_ a A//
periodic continued fraction &. Then &, = A&+ anA” where

B, ¥a,B"
g_x - [b’n7 Qp41, bn—‘rl; cee 3 Apyk—1, bn—l—k—l]a %: J [bna Ap+1, bn-‘,—l; coo s Opyky bn+k]7
the last two convergents to [b,; Gni1, bnits-- -3 Gniks Onikl-
It follows that

B'ii + (a,B" — A&, —a, A" =0 (4.5)

But £ =

gnAnfl + anAnf2 f _ an<An72 - anfQ)
éanfl + aan72’ " é-anl - Anfl
we obtain an equation a/¢? + b’ + ¢ = 0 where

. Substituting for &, in (4.5),

a=a’B'B? ,—a,A"B? | —a?B"B,, 2B, 1+ a,B,, 2B, 1A
V= —QGZB/An,QBn,Q + aiB”An,an,l - anA’An,an,l + aiB”Bn,QAn,1 -

anA,An—an—Q + 2anA//Bn—1An—1
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d = CI%B/A72172 — CL%B”AH,QAH,1 + anA,An,QAn,1 — a/nA”Aifl-
Since £ is irrational, then a’ # 0. After adjusting the fraction the new coefficients

a, b, c € Fy[2]. O

Theorem 4.13. Let £ € F,((2)), [£|. < 1. Let the SCF of £ be [by; ay, by az, be; .. ]
where a; = x® and let (v;) be defined by v1 = ay, 72 = as—ay, 73 = ag—as+ay,

o Yi=a— g+ o+ (=) ag(i > 1) Assume y; >0 (1> 1). If s a
nonrational root of a quadratic equation of the form at? + bt + ¢ = 0 where

a,b,c € Fq[%], a # 0, then the SCF of ¢ is periodic.

Proof. Assume that € is a oot of a quadratic equation of the form at?> +bt4+c =0
where a, b, ¢ € Fq[%], a # 0. Let & = [bg; x™, by; %2, by; .. .]. Then inverting the

r’s, we see that

§ = [bo; 2, by; 9% by . . ]
= [bo; 1, byw™ ™ 227 by; %%, bg; . . ]

= [bo/ 1, bll'ial; 1, be—(Olz—al); Z’as_(a2-a1), bg, .. ]

¥ [bo, blflf_%, N I biZL‘_%, ; | ]

which.is just the RCF of £. Being a quadratic irrationals, by Theorem 3.14, we

deduce that this RCF of £ must be periodic, say

[b(), bll’_’yl, C ,bil’_%, bi+1$_7i+1, bi+25L‘_7i+2, R ,bH_TJZ_%‘H].
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Reverting this RCF, we get

(o, bz, by b T Do T2 L by Vi ]

= [bo; " s bl; .’Ew, ng_w; ]., ng_73; .. ]

— . . + . \
= [bo, ™ N bl, " 72, b2, LL"Y2, b C 5.

_ . . + . . ; ;
— [bO) x’h,bl, x71 'YZ, [ 7bi+17 R x'}’z+r—l+’)’z+r, bZ+T]

— . . . . e ol
= [bo; ar, bi;...; @iy Oitr+25 -5 Qo bitar],

where af | = a7+t o = xitr=1Y4r which is a

periodic SCF. O
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CHAPTER V

Best Approximations

Baum and Sweet (2] showed how to construct continued fractions for Fy((2))
from the sequence of best approximations. The purpose of this chapter is to

generalize this to any local field.

5.1 Definition

Let (K, |-|) be alocal field, R its set of representatives of the residue class

field of K. Every element £ € K — {0} can be uniquely written as
=3 a

0
where [{| =277, r € Z, a, € Rand a, # 0. Set [§] = Zanﬂ" and |[[&|| = 1€—[¢]l-

Then
1 0
R 2 € Kya= a
LT] {a a ;a "}
the set of the head parts of elements in K.
0

For any a € R[2], o = Zanﬂ" with a, # 0. The leading coefficient a, of «

is denoted by h(a).

Lemma 5.1. Let £ € K. We have ||£]| < | — 3] for all 8 € R[%] and 3 # [¢].

00 0
Proof. Let & = Za,m”. Then ||€]] <271 Let 8 = chﬂ“ € R[] be such that

n=s

B4 €) Thus |€— 8] > 1> |i]. m
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Lemma 5.2. Let £ = Zanﬂn € K. For any d € N, there exists a non-zero

n=r

0
element B = Z ¢, € R[] such that || BE|| <274
n=—(d—1)

0
Proof. Let d € N. We find B = Z ¢, € R[X] which satisfies
n=—(d—1)
| BE|| < 27¢ by considering
B£ = CLTTI'TB + ar+17TT+IB =
= arc_(d_l)w"’(d‘l) e arc_(d_g)ﬂr*(d—m + o Fape "+ apcon”
+1

+ ar+1C(d—1)7TT7(d72) + Gr+1C—(d—2)7Tr7(d73) + oA F appicom

Equating the coefficients of 7@+, 792 .. 72, 7! to 0, we get the system

C_(d—1)0d + C=(4-2)d—1 + ..+ coa; =0
C(d=1)@d+1 + C=(@g=2)aq + -~ -+ coag =0

C_(d-1)024-2 t C—(@—2)a24-1 + . .-+ Coaq—1 = 0.
By solving for ¢; from the d — 1 equations above, the result follows. O

Definition 5.3. A sequence <&) is said to be a sequence of best approximations
n

to £ € K provided:

1. ¢, and p, = [¢:.&] € R[%]

2. qo = 1
3. IQn’ < ‘Qn—i-l‘
Al gna8l < llangll <1

(@)

Nansa€ll < llan€ll < Bl for all B € R[7] satisfying |g.| < [B| < |gns1]-
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5.2 Constructing continued fractions from best approxi-

mations

Given ¢ € K and starting from go = 1, pg = [£], we first construct a sequence
of best approximations to £&. Note that we need only to construct the sequence
(qn)-

If ||go&|| = O then the process stops.
If not, write ||qoéll = [|&]| =27% for some dy > 1. By Lemma 5.2, 3B € R[%]
such that |B| < 2% and ||B¢|| < 27D < 2% = | 4€||. Choose ¢, from such B

with |g;| least and h(q;) = 1 (if h(q) # 1 then choose h(qqll) in place of ¢;). Now

we verify that ¢, satisfies all relevant properties of Definition 5.3.
Lemma 5.4. ¢ is uniquely determined.

Proof. Suppose that there exists ¢; # q; € R[%] such that h(q;) = 1,
@il = lqu], ldi| < 2% and [|@i€]| < 27*Y. Let ¢ = ¢ — @i
Then |q| < max{|q]; |¢1|}. Hence by Lemma 5.1

g€l < g€ = ([a:€] = [ €Dl = |nn€ = 1€ = ([0€] = [1€])]

<max{lloig]l, flailf <2747

which contradicts the minimality of ¢ |. O
Lemma 5.5. |q| < |q1]-
Proof. We have that |q;| > 1 = |qo|. If |;a] = 1 and h(q1) = 1 then ¢; = 1 = qo,
and [|¢1&|| = ||q0€]|, which is a contradiction. O
Lemma 5.6. VQ € R[], (lqo| < 1Q| < |a1] = [lao€]| < [|Q¢]))-

Proof. Let Q € R[1],]Q| < |g1| < 2%. Without loss of generality let h(Q;) = 1.
If | Q€| < |lqo€]| = 2% then ||Q¢|| < 27 (@oFD) | contradicting with the minimality

of |q1’ ]
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Having verified ¢;, we now continue the construction.
If ||g1&|| = 0, the process stops.
If not, write ||qi&|| = 27 for some d; > 1.Then by Lemma 5.2, 3B € R[1]

such that |B| < 2% and ||B¢|| < 27+ < 274 — ||¢1£]|. Choose ¢, from such B

with |go| least and h(qe) = 1 ( if h(gz) # 1 then choose hiy in place of ¢2). By

the same proofs of as Lemma 5.4, see that, ¢s is uniquely determined.
Lemma 5.7. |¢1| < |ga].
Proof. If |ga] < |q1] < 2% and we have that ||g2€|| < ||g:€]| then it contradicts with

the minimality of |¢;|. Hence |¢| < |g2|. Suppose |¢a] = |¢1]. Let ¢* = ¢ — ¢1.

Thus |¢*| < |q1],|¢2| and by Lemma 5.1

g€l < 1q°§ = ([g2€] — [@€])| = @26 = [@2€] — (1€ — [ €])]
= max{||@&|l [laéll} = llagll,

which contradicts the minimality of |q¢/|. O

By the same proof as Lemma 5.6, we see that

1
vQ € R[], (lao| < Q] < lao| = llangll < [1Q€]D,

and so |qz| possesses the relevant properties of Definition 5.3.

If ||g2&|| = 0, the process stops.

If not, we continue the process in the same manner.

In general, write ||¢,—1|| = 27%-*. Then by Lemma 5.2, 3 B € R[] such that
|B| < 2%t and ||B¢|| < 271t < 27dn-1 = ||, _1£||. Choose g, from such B
with |g,| least and h(g,) = 1. We deduce as above that, g, is uniquely determined,
|gn-1] < lgn| and VQ € R[7], (|gn—1] < |Q] < lgal = [lga1€]l < |QE]).

By so doing, we have a sequence of a best approximations Pn s & possessing

the relevant properties as in Definition 5.3. In order to fix notation, we collect

most of the facts here.
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Fact 1. |go| =1 <|q1| <@ < -+ <|gn] < ---

Fact 2. |06 = 3 > i€l = g > - > |6l = g > -, where d; € N
are such that d, < d; <dy < -+

Fact 3. (€]l = 557 < lgun| ™" (2 2 0).

Fact 4. Recalling that p, = [¢.&] (n > 0), then

|Qn(qn+1§ _pn-i-l)[ — |Qn|||Qn+1§|| ~ |Qn|(2dn+1)_1 < |Qn+1|(2dn)_1

|QR+1(Q7L§ _pn)| — ‘QTL+1|||Q7L§H N |q”+1|(2dn)_1 <L

Fact 5. [pngnt1 — Put19n|l = 1 (n > 0). This is so because by Fact 4

1Pntnt1 = Pr1dn] = 100(@ns1€ — Prs1) — @1 (@€ — )| = |gnsa |l @€l < 1.

If Pnlni+1 — Pn+1Gn = 0 then Zﬁ Z pn+17 implying that
an An+1
||Qn§|| _ DPn, Prnt+1 ||qn+1£||
|Qn | dn Gn+1 IQn-i-l |

which is a contradicts the description in Fact 4, and so being in R[%], we have
|Pndns1 — Pnr1qn| =1, yielding the result of Fact 5.

Fact 6. ||g.&|| = 2% = |g.41|"t (n > 0). This follows from Fact 3 and the
description in the proof of Fact 5.

From such a sequence of best approximations, we now proved to construct its
associated continued fraction.
Since [ppdnit — Pra1dn] = 1 and ppgnst — Pry1n € R[Z], then pugnii — prs1dn €
R — {0}, which yield g.c.d. (pn+1, Gns1) = 1.
Similarly, ppi1Gn+2 — Prs2@nir € R —{0}.
We can then write —a,12(Pngni1 — Pni1Gn) = Prni1dnie — Dni2Gni1  Where a, 0 €
R — {0}, and 50 Gni1(Pnt2 — @ns2Pn) = Pnt1(Gniz — Gni2dn).
Since g.c.d.(Ppi1,Gni1) = 1, then puiq|(Ppio — Gniopn), i-e., there exists

bpi2 € R[] such that p,io — apiopsn = buyopni1. Now



41

Qn+1(bn+2pn+1> = Qn+1(pn+2 - an+2pn) = pn+1<Qn+2 - anJrQQn);

Le. dn+2 — An424n = bn+2Qn+1-

We have thus found unique a,+2 € R — {0} and b, 15 € R[%] such that

Pn+2 = bn+2pn+l + An+2Pns 4n+2 = bn+2Qn+1 + An+2Qn (TL 2 O)

This result continues to hold for n = —1 if we put ¢_1 = 0, p_1 = 1, by = po,
by = q1 and a1 = p; — biby € R[;l;] Since 1 = 1]90611 —p1QO| = |b0b1 —p1| = |a1|,

then a; € R — {0}.

Lemma 5.8. For n > 0,a € K — {0}, we have

QaPp, + Ap+1Pn—1
adn + Ap4+1G9n—1

b [bo; a1, by; az, bo;...;an, by; Qp+1, (1]

QaPn, + Ap41Pn—1

adn, =+ Ap4+1G9n-—1

_ b
Since 20 Vi WL L /76 [bo; a1, al, P(0) is true.
aqo + a1q—1 «

Suppose that P(n — 1) holds. Consider P(n),

Proof. Let P(n) :

= [bo; a1, by; as, bo;...;an, by ani1, Q.

b+ “5)Pp1 + AnPr2
b + ) Gn1 + GnGn—2
~a(bpppyt @npn2) + anp1Pn1
 abpGn1 + GnGn—2) + Gn1Gn—1
0 %P + (np1Pn=1

1 QU+ An+19n-1 '

(
[bo; ai, bl, ag, bg;...;an, bn, Ant1, Oé] :(

Hence P(n) holds. O

By Lemma 5.8,

Zﬁ _ bnpn—l + AnPn—2

= |by; a1, bi; as, bo;...;a,, byl
an ann—1+anQn—2 [ a1, 015 A2, 02 anp, n]

It follows that 22 (n > 0) is the n'™ convergent of a continued fraction of &,
4n

with b,, as partial denominators and a,, (n > 1) as partial numerators to £. Since

|2:€ll = |gns1| ™! and a sequence d; is increasing, for n > 1

Pn - -
€ - ! (4 " @]l = lanréllllgné | = 27~ — 0 (n — o0).

n



42

This convergence allows us to call [by; a1, bi; ag, ba;...;an, by;...] a continued
fraction to &.
Next we will show that the above continued fraction is just the RCF to &,

This relies mainly on the fact that all a, € R. Putting (5, = by and

gn = [bna Ap+1, bn+1; an42, bn+2; .- ']7 then
aq 1 1
§=po+ e = Do = U0 T
by + =2 as/a as/a
1 & A S br+ &2
1 1
= fo+ / —fof e

B+ o+ ——
baay fay + a1/ a3 B2 + asa1/az

&3 &3

It is clear that Vi > 0, 3; € R[=] —{0} C and |3;| > 1. Since ¢ has a unique RCF,
the continued fraction constructed from best approximation of ¢ and its RCF are

the same.
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