การสกัดคืนโลหะสังกะสีจากผุ้นของเตาอาร์กไฟฟ้า

นางสาว สุรีรัตน์ สุคนธานิตย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

ภาควิชาวิศวกรรมโลหการ

ลาขาวิชาวิศวกรรมโลหการ

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2541

ISBN 974-639-998-5

ลิขสิทชิ้ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

ZINC METAL RECOVERY FROM ELECTRIC ARC FURNACE DUST

Miss Sureerat Sukonthanit

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Metallurgical Engineering

Department of Metallurgical Engineering

Graduate School
Chulalongkorn University
Academic Year 1998
ISBN 974-639-998-5

Thesis Title	Zinc Metal Recovery From Electric Arc Furnace Dust
Ву	Miss Sureerat Sukonthanit
Department	Metallurgy Engineering
Thesis Advisor	Associate Professor Chatchai Somsiri, Ph.D.
Accepted	by the Graduate School, Chulalongkorn University in
Partial Fulfillme	ent of the Requirements for the Master's Degree
1604	Some Dean of Graduate Schoo
	(Professor Supawat Chutivongse, M.D.)
THESIS COM	MITTEE
	Presont litellai. Chairman
	(Assistant Professor Prasonk Sricharoenchai, D.Eng.)
	Chateloi foi. Thesis Advisor
	(Associate Professor Chatchai Somsiri, Ph.D.)
	Member
	(Assistant Professor Charkorn Jarupisitthorn, M.E.)
	Short Nismutanyon Member

(Ekasit Nisaratanaporn, Ph.D.)

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

สุรีรัตน์ สุคนธานิตย์ : การสกัดคืนโลหะสังกะสีจากผุ้นของเตาอาร์กไฟฟ้า (ZINC METAL RECOVERY FROM ELECTRIC ARC FURNACE DUST) อ.ที่ปรึกษา : รศ. ดร. ฉัตรชัย สมศิริ : 131 หน้า, ISBN 974-639-998-5.

ผุ้นของเตาอาร์กไฟฟ้าประกอบด้วยธาตุลังกะสีเป็นส่วนประกอบสำคัญ ซึ่งลังกะสีในผุ้นของเตาอาร์กไฟฟ้าจะ อยู่ในรูปของทั้งซึ้งค์ออกไซด์ และซึ้งค์เฟอร์ไรท์ ผุ้นดังกล่าวมีส่วนประกอบของตะกั่ว แคดเมียม และโครเมียม ในระดับค่อน ข้างสูง จึงได้รับการจัดให้อยู่ในประเภทของของเสียมีพิษ ซึ่งธาตุดังกล่าวมีผลกระทบต่อสิ่งแวดล้อม ผุ้นของเตาอาร์กไฟฟ้าจึง ควรผ่านการบำบัดก่อนปล่อยออกสู่สิ่งแวดล้อม การบำบัดผุ้นของเตาอาร์กไฟฟ้าในกระบวนการคาร์บอเทอร์มิก รีดักขั้น (carbothermic reduction) ซึ่งได้มีผู้ทำการศึกษามาบ้างแล้ว พบว่าในระหว่างขั้นตอนการควบแน่นของไอลังกะสี ก๊าซ คาร์บอนโดออกไซด์ในกระบวนการจะทำปฏิกิริยากับไอลังกะสีเกิดเป็นซึ่งค์ออกไซด์ (ZnO) วิธีการหนึ่งที่จะหลีกเลี่ยงปัญหาดังกล่าวคือใช้วิธีการทำปฏิกิริยาของซึ้งค์ออกไซด์ที่อยู่ในผุ้นของเตาอาร์กไฟฟ้ากับโลหะเหล็ก ซึ่งผลิตภัณฑ์ที่เกิดขึ้นจะมีเพียง โอลังกะสีเท่านั้นที่อยู่ในรูปของก๊าซ

ในการศึกษานี้ การสกัดลังกะสีจากผุ้นของเตาอาร์กไฟฟ้าจะใช้กระบวนการใจออน รีดักขั่น ดิสทิลเลขั่น (iron-reduction distillation) ประกอบด้วยสองขั้นตอน ขั้นตอนแรกจะรีดิ้วข์เหล็กออกไซด์ให้เป็นโลหะเหล็ก ขั้นตอนที่สองจะใช้ โลหะเหล็กที่ได้จากขั้นตอนแรกในการรีดิ้วขึ้งค์ออกไซด์ให้เป็นโลหะลังกะสี ในขั้นตอนแรกจะทำการศึกษาถึงผลของอุณหภูมิ ระดับอัตราส่วนของก็าขผสมศาร์บอนมอนอกไซด์ต่อคาร์บอนโดออกไซด์ และกระบวนการซินเตอร์ริ่ง (sintening process) ที่ มีผลต่อการรีดักขั้นของเหล็กออกไซด์ ในขั้นตอนที่สองจะทำการศึกษาผลของอุณหภูมิ และความดัน (ในบรรยากาศของ ในโดรเจน และภายใต้ความดัน 2°10° บรรยากาศ) ที่มีผลต่อการรีดักขั้นของนี้งค์ออกไซด์

พบว่าในขั้นตอนแรก อัตราการรีดักขั้นของเหล็กออกไขด์ให้เป็นโลหะเหล็กมีค่าเพิ่มขึ้นเมื่อเพิ่มอุณหภูมิจาก 600 ถึง 800 เขลเขียส และเมื่อเพิ่มระดับอัตราล่วนของก็าชผสมคาร์บอนมอนอกไขด์ต่อคาร์บอนไดออกไขด์ ในอัตราจาก 3 ถึง 9 ในขั้นตอนที่สองพบว่าอัตราการรีดักขั่นของขึ้งค์ออกไขด์กับโลหะเหล็กที่ได้จากขั้นตอนแรกเป็นไอโลหะลังกะสีมีค่าเพิ่ม ขึ้น เมื่อเพิ่มอุณหภูมิจาก 900 ถึง 1100 เขลเขียส และภายใต้ความดัน 2*10⁻³ บรรยากาศ สำหรับอัตราการรีดักขั่นของขึ้งค์ ออกไขด์กับโลหะเหล็ก พบว่าไม่เป็นไปตามแบบจำลองอัตราการรีดักขั่นทางเคมีโดยทั่วไป คำพลังงานกระตุ้น (activation energy) ที่คำนวณได้จากการรีดักขั่นในขั้นตอนที่สองมีค่า 141±8.2กิโลจูล/โมล และ 70±8.2กิโลจูล/โมล สำหรับการรีดักขั่น ในในโตรเจน และภายได้ความดัน 2*10⁻³ บรรยากาศ ตามลำดับ ผลของการลกัดคืนโลหะลังกะสีมีค่า 95 เปอร์เซ็น นอกจากนี้ ยังพบว่า แคดเมียม ตะกั่ว และคลอรีน ในปริมาณมากกว่า 99 เปอร์เซ็น ได้รับการกำจัดออกจากผู้นของเตาอาร์กไฟฟ้าใน ระหว่างกระบวนการอีกด้วย

ภาควิชาวิสวกรรมโลหการ	ลายมือชื่อมิสิต
สาขาวิชาวิศวกรรมโลหการ	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2541	ลายมือชื่ออาจารย์ที่ปริกษาร่วม

พิมพ์ต้นฉบับบทคัดย่อวิทยาบิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

* *3972266121 : MAJORMETALLURGICAL ENGINEERING

**39/2266121 MAJORNIE FALLUROICAL ENGINEERITE / IRON OXIDE / IRON-REDUCTION
DISTILLATION PROCESS / REDUCTION KINETICS / KINETIC MODEL

SUREERAT SUKONTHANIT: ZINC METAL RECOVERY FROM ELECTRIC ARC FURNACE DUST. THESIS ADVISOR: ASSO. PROF. CHATCHAI SOMSIRI, Ph.D. 131pp.

ISBN 974-639-998-5.

Electric arc furnace (EAF) dusts contain significant quantities of zinc, which is found almost entirely as either zinc oxide, or zinc ferrite. The dust has been classified as a hazardous waste due to the relative high lead, cadmium and hexavalent chromium contents. It is important that environmentally acceptable processes be developed to treat this waste. A major problem with the current carbothermic reduction processes, which have been designed to treat the dust, is that during the zinc condensation stage, the carbon dioxide off-gas back-reacts with the zinc vapour to form zinc oxide. One possible alternative process would involve reacting the zinc oxide in the dust with metallic iron and thus, the off-gas would mainly consist of zinc.

In this study, the iron-reduction distillation process was used to extract zinc from EAF dust. This process consists of two reduction stages. The first stage is the reduction of iron oxide to iron and the second stage is the reduction of zinc oxide by the reduced metallic iron. The effects of operating variables such as temperature, CO/CO₂ gas composition and sintering process on the reduction of iron oxide in the first stage and temperature and pressure (in a nitrogen atmosphere and under vacuum at 2*10⁻³ atm) on the reduction of zinc oxide in the second stage from the EAF dust were investigated.

It was concluded that in the first reduction stage, the reduction of iron oxide was promoted by increasing the temperature from 600 to 800 °C, and by increasing CO/CO₂ gas ratio from 3 to 9. For the second reduction stage, the reduction of zinc oxide with metallic iron obtained from the first reduction stage was promoted by increasing the temperature from 900 to 1100 °C and under vacuum at 2*10⁻³ atm. The reduction of zinc oxide with metallic iron is not topochemical and has no well-defined interface. The activation energies of the reduction processes in the second stage were 141±8.2 kJ/mol and 70±8.2 kJ/mol for the reduction of EAF dust in nitrogen and under vacuum respectively. It was found that reaction occurs throughout the whole briquette. The zinc recovery was 95%. Greater than 99% of cadmium, lead and chlorine were removed from the EAF dust.

ภาควิชา วิศวกรรมโลหการ	ลายมือชื่อนิสิต
สาขาวิชาวิศวกรรมโลหการ	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา 2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

Many others have contributed greatly to the completion of my thesis and in particular, I would like to thank:

Associate Professor Dr. Neil B. Gray, Dr. Doug R. Swinbourne and Dr. Andrew Kyllo for their enthusiasm, experience, advice and guidance throughtout the course of the research.

Associate Professor Dr. Chatchai Somsiri for giving me the opportunity to carry out this research in Australia.

Technical services team at the G.K. Williams Cooperative Research Centre for Extractive Metallurgy for their technical assistance during the course of this work.

I wish to acknowledge that the research thesis was funded by the Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University and the G.K. Williams Cooperative Research Centre for Extractive Metallurgy, Department of Chemical Engineering, The University of Melbourne.

Thanks also to R. Douglas Wycherley and Sandro Costabile from Smorgon Steel Works for the information on the EAF dust.

Thanks to all the staff and postgraduate students at both the Department of Metallurgical Engineering, Chulalongkorn University and the G.K. Williams Cooperative Research Centre for Extractive Metallurgy for their support and assistance during this research.

Above all, this work is dedicated to my parents Wichai and Rangsinee, my sister Sarintra and my brother Pramote to whom I express my deepest gratitude and love for their support, assistance and encouragement during the course of my study.

CONTENTS

		137
ABSTRACT (IN T	IAI)	
ABSTRACT (IN E	NGLISH)	v
ACKNOWLEDGM	ENTS	VI
CONTENTS	••••••	V11
LIST OF TABLES.		хі
LIST OF FIGURES	S	xiii
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	LITERATURE REVIEW	5
2.1 NATURE OF	FELECTRIC ARC FURNACE (EAF) DUST	5
2.2 EAF DUST	TREATMENT METHODS	7
2,2,1 Recy	cling Methods	7
2.2.2 Meth	od for Recovery Zinc and/or Iron	9
2.3 PROCESS E	VALUATION	24
24 DETAIL AN	IALYSIS OF THE IRON-REDUCTION DISTILLATION	
PROCESS		28
2.5 SUMMARY		33
CHAPTER 3	OBJECTIVES	35
CHAPTER4	THERMODYNAMIC CONSIDERATIONS	37
4.1 FIRST RED	OUCTION STAGE	37
42 SECOND R	EDUCTION STAGE	42

CH	APTE	R 5 EXPERIMENTAL METHODS	46
5.1	CHAR	RACTERISATION OF SMORGON STEEL WORKS DUST	46
	5.1.1	Microscopic Examination	46
	5.1.2	Chemical Composition and Phase Analysis	47
5.2	FIRST	I REDUCTION STAGE EXPERIMENTS	48
	5.2.1	Materials	48
	5.2.2	Experimental Set-up	48
	5,2.3	Procedure	49
5.3	SECO	OND REDUCTION STAGE EXPERIMENTS	51
	5.3.1	Materials	51
	5.3.2	Experimental Set-up for Nitrogen Atmosphere	51
	5.3.3		52
	5.3.4	Experimental Set-up for Vacuum System	54
	5,3.5	Procedure in Vacuum System	55
CI	HAPT	ER 6 RESULTS	57
6.1	INT	RODUCTION	57
6.2	СНА	ARACTERISATION OF SMORGON STEEL WORKS DUST	57
0.2	6.2.1	1 Management	58
	6.2.2		60
	623	3 Phase Analysis	02
6.1	o EID	ST PEDUCTION STAGE RESULTS	63
6.	. 656	CONT. PEDITICION STAGE RESULTS	67
٥.	6.4.	1 In Nitrogen Atmosphere	6
	6.4.	2 Under Vacuum	68
C	НАРТ	TER 7 DISCUSSION	73
7	1 IN 7	TRODUCTION	73

7.2 FORMATION	AND CHARACTERISATION OF SMORGON STEEL WORKS
DUST	73
	CTION STAGE ANALYSIS74
7.3.1 Effect	of Temperature and Time74
7.3.2 Effect	of Gas Composition77
7.3.3 Effect	of Sintering Process
7.4 SECOND RE	DUCTION STAGE ANALYSIS78
7.4.1 Effect	of Temperature and Time78
7.4.2 Formu	lation of a Kinetic Model81
CHAPTER 8	CONCLUSIONS86
CHAPTER 9	RECOMMENDATIONS89
REFERENCES	90
APPENDIX A	DIAGNOSTIC LEACHING99
APPENDIX B	IRON ANALYSIS TECHNIQUE103
APPENDIX C	ZINC ANALYSIS TECHNIQUE105
APPENDIX D	X-RAY DIFFRACTION PATTERNS108
APPENDIX E	RESULTS OF THE FIRST REDUCTION
AFT ENDIA E	STAGE EXPERIMENTS117
A DOUBLE E	RESULTS OF THE SECOND REDUCTION
APPENDIX F	STAGE IN NITROGEN ATMOSPHERE120
9	CALCIU ATION FOD
APPENDIX G	
	ELEMENTAL COMPOSITION OF THE
	RESIDUES AFTER THE REDUCTION123
APPENDIX H	RESULTS OF THE SECOND REDUCTION
	STAGE IN VACUUM SYSTEM120

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

TABL	E TITLE	PAGE
2.1	rtial EAF Dust Composition	
2.2	Chemical Composition of some Typical Carbon and Steelmaking	
	Dust (McCrea and Pickles, 1995)	6
2.3	EAF Dust Pyrometallurgical Treatment Process Summary	26
2.4	EAF Dust Hydrometallurgical Treatment Process Summary	27
2.5	Chemical Composition of Zinc Calcine and Steelmaking dust, mass%	
	(Itoh and Azakami, 1994)	28
5.1	Summary of Experimental Conditions for the First Reduction Stage	50
5.2	Summary of Experimental Conditions for the Second Reduction Stage	
	in Nitrogen Gas	53
5.3	Summary of Experimental Conditions for the Second Reduction Stage	
	under Vacuum	56
6.1	Elemental Composition of Smorgon Steel Works Dusts	
	(Table obtained from Smorgon Steel Works)	60
6.2	Elemental Composition of Unreacted EAF Dust Generated at	
	the Smorgon Steel Works and Used in this Study	61
6.3	Estimated Concentration of the common Compounds in Smorgon Steel	
	Works Dust Used in this Study	62
6.4	Elemental Composition (wt%) of the EAF Dust and the Residue after	
	the First Reduction Stage	64
6.5	Elemental Composition (wt%) of the EAF Dust and the Residue after	
	the Second Reduction Stage	71
A 1	Results of Hot Water Leaching	99
A2	Results of Dilute sulphuric Leaching	101
C 1	Sample of the Calculation of Percent Zinc Reduction	100
E 1	Results of experiment A Series	117

TABL	E TITLE	PAGE
E2	Results of experiment B Series	117
E3	Results of experiment C Series	118
E 4	Results of experiment D Series	118
E5	Results of experiment E Series	119
F 1	Results of experiment F Series	120
F2	Results of experiment G Series	120
F3	Results of experiment H Series	121
F4	Results of experiment I Series	121
F5	Summary of Results for the Second reduction Stage	
	in Nitrogen Atmosphere	122
G1	Elemental composition (wt%) of the EAF Dust and the Residues after	
•	the First and Second Reduction Stage	123
G2	Elemental composition (wt%) of the EAF Dust and the Residues after	
	the First and Second Reduction Stage obtained from the Mass Balance	
	Calculation	124
Hl	Results of experiment J Series	127
H2	Results of experiment K Series	128
Н3	Results of experiment L Series	129
шл	Experimental Results for the Second Reduction Stage Under Vacuum	130

สถาบันวิทยบริการ

LIST OF FIGURES

FIGUI	RE TITLE	PAGE
2,1	Waelz kiln operation (Urger, 1986)	9
2.2	Schematic of INMETCO rotary hearth furnace	
	(Pargeter and Lehmkuehler, 1986)	10
2.3	Schematic view of the Plasma Smelting reaction zone (Eriksson, 1985)	13
2.4	Davy Hi-Plas furnace design (Stockham and Ayars, 1990)	14
2,5	Schematic of Cebedeau process (Frenay et al., 1986)	19
2.6	The generalised flowsheet for the UBC-Chaparral process	
_, -	(Dreisinger et al., 1990)	20
2.7	Schematic of Modified ZINCEX process (Di'az et al., 1995)	22
2.8	Schematic of EZINEX process (Olper, 1995)	24
2.9	Results of the first reduction stage for steelmaking dust, zinc calcine and	[
4.	regent grade samples at a) 700 °C and b) 800 °C (Itoh and Azakami, 19	
2,10.	Results of second reduction stage in successive treatment of the first and	
2,10	second reduction for steelmaking dust, zinc calcine and reagent grade	
	sample at a) 700 °C and b) 800 °C for successive first reduction	
	stage (Itoh and Azakami, 1994)	31
2.11	Reduction rates at 900 °C of the second stage with 700 and 800 °C	
2,11	reduction temperatures of the first stage for the steelmaking dust	32
0.10	Comparison of second reduction in vacuum (broken lines) and N ₂ gas	
2.12	stream (solid lines) for the steelmaking dust	32
4.1	The Iron-Carbon-Oxygen System (Ross, 1980)	39
4.1	Equilibrium ratio p _{CO2} p _{CO} for the reduction of iron oxides.	
4.2	Metastable equilbria for the formation of Fe ₃ C as well as equilibrium	
	carbon contents in austenite are given by dashed lines (Rosenqvist, 198	3) 4
4.3	The Iron-Zinc-carbon-Oxygen System (Rosenqvist, 1983)	4

FIGU	RE TITLE I	PAGE
4.4	Partial pressure of zinc for the reduction of zinc oxide with iron at	
	temperature between 700 and 1200 °C	44
5.1	Schematic diagram of experimental set-up for the first reduction stage	49
5.2	Schematic diagram of experimental set-up for the second reduction stage	
	for nitrogen atmosphere	52
5.3	Schematic diagram of experimental set-up for the second reduction stage	
	for vacuum system	55
6.1	Photomicrograph showing EAF Dust particles	58
6.2	Photomicrograph showing EAF Dust particles	59
6.3	1) Magnetite (light gray) sphere (about 48 micron-diameter),	
	2) Zinc oxide (dark gray)	59
6.4	Results of the first reduction stage for EAF dust with CO/CO2 gas ratio or	f9 63
6.5	Effect of CO/CO ₂ gas composition on the first reduction stage rates at 70	
6.6	Effect of sintering process on the first reduction stage rates at 700 °C and	
5.0	CO/CO ₂ gas ratio of 9	66
6.7	Results of the second reduction stage in a nitrogen atmosphere	68
6.8	Results of the second reduction stage under vacuum	69
6.9	Effect of nitrogen atmosphere and under vacuum on the second reduction	1
C.	stage rates at 900 and 1000 °C	70
6.10	The EDS analysis of zinc level at various positions on the briquette surfa-	ce 72
7.1	Comparison of the first reduction stage results	77
7.2	Comparison of the second reduction stage results	79
7.3	The grain model for zinc oxide reduction with metallic iron	81
7.4	Plot of experimental data in nitrogen atmosphere by the chemical control	
•••	mechanism	82
7.5	Plot of experimental data in nitrogen atmosphere by diffusion control	
	mechanism	83
7.6	Arrhenius plot of ln k vs 1000/T (in nitrogen atmosphere) obtained from	the
	chemical control mechanism	83

FIGURE TITLE		PAGE
7.7	Plot of experiment data in nitrogen atmosphere by the parabolic rate law	84
7.8	Arrhenius plot of ln k vs 1000/T (under vacuum)	85
D 1	X-ray diffraction patterns of unreacted EAF dust from Smorgon Steel W	orks109
D2	X-ray diffraction patterns of the hot water leached solid residue after	
	Evaporation	110
D3	X-ray diffraction patterns of EAF dust after hot water leaching	111
D4	X-ray diffraction patterns of EAF dust after dilute sulphuric acid leaching	g 112
D5	X-ray diffraction patterns of the first reduction stage briquette. The brique	
	was reduced at 700 °C for two and a half hours and with the CO2/CO ga	
	of 0.11	113
D6	X-ray diffraction patterns of unreacted sintering briquette. The briquette	: was
-	fired at 1100 °C for 24 hours in muffle furnace	114
D 7	X-ray diffraction patterns of the second reduction stage briquette. The b	riquette
Σ,	was reduced at 1000 °C for seven hours in a nitrogen atmosphere	115
D8	X-ray diffraction patterns of the second reduction stage briquette. The b	oriquette
100	was reduced at 900 °C for eighty minutes under vacuum	116