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CHAPTER 1

| Introduction

A considerable amount of study in fixed point theory has been done on the -
| existence of a fixed point of various kinds of maps. In this thesis, we add one -
“more diménsion to vthe problem by considering a certain kind of ma;ps between
: thé cylinder of a compact metric space and try to prove the existénce of a path
| fixed by such a map.
- More precisely, let X be a compact metric space and [ a level-contraction
_v m_.ap;_ of the cylinder X x [; i.e., a continuous map f : X x I — X x I such that -
: f(X X {t}) C X x {t} and fixxq is a contraction map for each ¢ € 1. Then we try
" to prove that there exists a unique path p: I — X x I such that p(t) € X x {t} .-
: for each ¢ € I which is fixed by f; i.e.,, fop=p. |

- The thesis is organized as follows. In Chapter 2, we give some notations, -
.de‘ﬁrvlitions and basic theorems that will be used throughout. In Chapter 3, V\;e
prov.e the special caée for a-level-contraction maps. In Chapter 4, we prove the

 general case for level-contraction maps.



CHAPTER 1I

Preliminalies

= Notations.
- R = The set of all real numbers.
| ‘N = The set of all positive integers.
T=00,1.
CYX={f|f: XY}
C(X, Y)={feYX | f is. continuous}.
2 (X XY, ZxY)={f e C(XxY,ZxY) | f(Xx{y}) CZx{y} ,vyeY}

When X is a one-point space, we will identify Ci(X x Y, Z x Y') with
C(Y,ZxY)={f€C(,ZxY) | ) € ZxY ,VyeY}.

" Foramap f: X — X and n > 1, we will use f" to denote fo fo..of

- (n times) and f° denotes the identity map.

Definition 2.1. For a topological space X, the cylinder of X is defined to be
= XX f_and denoted by CX.

Definition 2.2. A metric on a set X is a map d : X x X — R satisfying the -

followihg conditions for z,y,z € X,

L d(z,y) > 0.

9 d(z,y) =0if and only if z = y.



5 d(ey) = dly.a).
| B 4.- d(z,z) < d(fE., y) + d(y, z).

" The pair (X, d) is called a metric space.

7 E.xample 2.3.
‘1. The usual metric on R is defined by d(z,y) = |z — y| for 2,y € R.

9. For any space X, taken with the discrete metric defined by

0 if z=y
Cd(z,y) =

1 if z#y

~ forz,y € X.

~ Let (X, dx) and (Y, dy) be metric spaces. Define dxyy : (X XY)x(XxY) =R
by

dXxY((fEl_, y1), (39, y2)) = /dx (21, 22)2 + dy (Y1, y2)?

f_or 1,22 € X and y1,y2 € Y.
Then, it is not hard to show that (X x Y,dxxy) is a metric space. We will

call dxxy the product metric on X x Y because of the following theorem.

fl‘heotem 2.4. The metric dxxy induces the product topology on X x V.

.Pro_of. Let (X,dx) and (Y, dy) be metric spaces and define dxxy as above.
2 _For__r; >0,z € X and y € Y, the open ball centered at (z,y) € X x Y of

radius 7 is given by



By ((z,9)i7) = {(@,y) € X XY [ dxxy((2,9), (27y)) <7}

Let (z,y) e X XY and_’r,r’ > 0. We need to show that there exist open balls-
in X and Y whose product is a subset of Bx.y((x,y);r) and conversely, there
' e§<is_ts_ an open ball in X x Y with respect to the metric dx«y which is a subset.
of Bx(z;r) x By (y;r'). |

© Claim that Bx(z; g) X By( 9) C Bxxy((z,y); 7).

&

Let (¢',9") € Bx(z; g) x By (y; 5)- Then, dx(z,4') < 5 and dy (y,y') <

t\.’H‘?

Hence,

dxxy ((2,9), (&,9)) = Vdx(2,2)? + dy (y,y)?
72 2
. N4
:%ﬁw
< -3 472
=17

= r 7
' _ThUS, Bx (z; 5) x By (y; 5) C Bxxy((z,y);7).
Conversely, let 7o = min{r,r'}. |
Claim that Bixywy((z,y);70) C Bx(x;7) X By (y;1').

Let (2", y") € Bxxy((z,y);70). Then, dxxv((z,v), (2",9")) < rg and hence,

<¢@ 22+ dy (0, 1" = dxxy ((z,9), (2", y")) <710 < 1.

- Similarly, we have dy (y,y") <1’
Hence, (z";y") € Bx(z;7) vay(y;r’).
Thus, Bxxy({(2,y);70) € Bx(z;7) x By (y;7').

- Therefore, the metric d m induces the product topology as required.



_ Deﬁnitiqn: 2.5. A subset ¥ of a metric space (X,dx) is said to be bounded if :

“there is some positive number M such that dx(y1,y.) < M, for each y, yg cY.

- Definition 2.6. A sequence in a metric space (X,dx) is a map z: N — X. We
will denote its value at n € N by ac.n instead of z(n). And we denoté © itself by
the symbol (ml,xg,:ég, v} OT T | | |

~ We say that (zn) converges to xy, denoﬁed by (z,) — v:vo,.if for each ¢ > 0,

there éxists N € N such that dx(z,,xy) < € for all n > N.

Definition 2.7. Let (X,dx) be a metric space. A sequence (z,) in X is said
to be a Cauchy sequence in X if for each ¢ > 0, there exists NV € N such that-

dX(:cn,xm) <eforalln,m> N.

Definition 2.8. A metric space (X,dx) is said to be complete if every Cauchy |

~ sequence in X converges.

v Deﬁnition 2.9. Let (X, dx) and (Y, dy) be metric spaces and (f,) a sequence of
v | maps from X to Y;ie., f, € YX for each n € N.
| We say that (f,) converges pointwise to f € YX if for each z € X and € > 0,
there exists N € N such that dy(f,(z), f(z)) < e foralln > N. | |
 And we say that (f,) converges uniformly to f € YX if for each € > 0, theré_

exists N € N such that for each z € X, dy(f,.(z), f(z)) <eforalln > N. -

" Theorem 2.10. Let (X,dx) and (Y,dy) be metric spaces and (f,) a sequence
of continuous maps from X to Y. If (f,) converges uniformly to f, then f is

- continuous.

Proof. The proof can be found in [2]. : mj



Definition 2.11. A collection A of subsets of a space X is said to cover X, for: to
be a coveringof X, if (JA=X.

A covering A of X is called an open covering of X if each element »_of_v .A is bpen
in X.
- Definition 2.12. A space X is said to be compact if every open Cove:ring A of X

contains a finite subcollection that also covers X.

" Definition 2.13. Let (X,d ) and (Y, dy) be metric spaces and fe YX V\/e say - |

that f is uniformly continuous on X if for each € > 0, there exists '§ > 0 such that :

for z,z" € X with dx(z,2") < §, we have Ciy(f(ﬁl?),f(.’)’)’)). <€

Theorem 2.14. Let (X, dx) and (Y, dy) be metric spaces and f € C(Xi Y) _. .'. o

~ If X is compact, then f is uniformly continuous..

Proof. The proof can be found in [2].

 ZEEREE

¢ Definition 2.15. A metric space X is said to be totally bounded_if‘_fdr _evefyf v>-O‘, A

there is a finite covering of X by e-balls.
Theorem 2.16.. A totally bounded metric space is always bounded.

Proof. The proof can be found in [1].

] Theorem 2.17. A metric space X is compact if and only if it is complete and

T totally bounded.
: " Proof. The proof can be found in [2]. - _ : i | '_ i _D‘_ i

' Definition 2.18. A point z € X is said to be a fized point of the map - .

fiX = X if flz) =



vExample 2.19.

1. Let f : R — R be the map defined by f(_:v) = z. Then the fixed point set of

fis R.
2. Let f: 1~ I be the map deﬁ_ned by f(z) = 2?. Then the fixed point set of -
fis{01}.
3. Let f : [-m, 7] = R be the map defined by f(z) = sin(x). Then the fixced
point set of fis { 0 }.

Definition 2.20. Let (X, d) be a metric space. A map f: X — X is said to be

‘a contraction map if there is a constant 0 < « < 1 such that for all 2,y € X,

d(f(2), /) < ad(z,y).

The constant « in -the above inequality is called a contraction factor
of f, and we will call a contraction map whose contraction factor is « an
a-contraction map. The smallest o for which the above inequality holds is called

_ the Lipschitz constant of f.

Theorem 2.21. Every contraction map is uniformly continuous.

Proof. Let (X, d) be a metric space and f: X — X an a-contraction map.
If @« =0, then f is a constant map. Clearly, f is uniformly continuous.
If v # 0, then let € > 0 and choose § = ‘. Hence, forz,y € X with d(z,y) <9, |

_ oY%
" we have

d(f(z), f(v)) < ad(z,y) < e

“Thus, f is uniformly continuous.



Theorem 2.22. Let (X, dx) be a metric space and f X—=>Xa  map.
The map f is a contraction map whose Lipschitz constant is « if and only if

a:sqp{ gx((; y)( v) | z,y€ X and z £y} €0,1).
) Clearly, by assumption, we have for each z,y € X

P'roof. (=
dx (f(2), f(¥)) < adx(z,y).

Hence, f is a contraction map.
Let A={0<p<1]|dx(f(a),f(y) < Bdx(z,y) forallz,yec X} #@

Since A is bounded below by 0, let & = inf A. Clearly, & is the Lipschitz

constant and hence, & < o .
For each 8 € A, we have for each z,y € X and z # v,
(@, 1) _ 4
dX(”%@/)
x(f(z), /()
Hence, 3 is an upper bound of{ | =,y €X andz 75 y}
dx(z,y)
By the definition of o, we have a < f for each 8 € A. Therefore, o is a lower

bound of A.(.
By the definition of &, we have a < &
Thus, o = &; i.e., o is the Lipschiti constant of f.
| (=) Assume that f is a contraction whose Lipschitz constant is o . Then, for
each z,y € X, dX(f(a:),f(y))' < adx(z,y). |
Let B = {* (dx(z 5/( W | zyex and 2 # y}.
Since B is bounded above by «, sup B exists and 0 <supB < a <1
O

Example 2.23.
f01 x € 1. Clearly, fisa

1. Let f: T — 1 be the map defined by f(z )

ol "‘w] 8

contraction map whose Lipschitz constant i



v 1 . :

2. Let f:[1,00) = [1,00) be the map defined by f(z) = %—F - for z € [1,00).
_ 17 '
Then, f is a contraction map whose Lipschitz constant is 5 This is because -

for z,y € [1', 00), we have

T—Yy Y-z
=15t + T

N R

1 1
215_@‘1'””*3/‘
and sup{ Il—i| | z,y €[1,00) and.:c#y}:}.
' 2 1y ; ' >

Then, by the previous theorem, f is a contraction map whose Lipschitz -

1
constant is 5

Let f: X xT — X x I beamapsuch that foreach t € I, f(X x{t}) C X x {t}
and fixx(y 1s a contraction map. We will see from Example 2.24.1 that f may
not be continuous. Even though the continuity of f is also assumed, we will see

from Example 2.24.2 that f can not be a contraction map.
Example 2.24.

L. Let f: I xI—1Ix1I bedefined by

(0,0) ift=0
f(s,t) =
(;@ if £ 0

Theﬁ, firxqey is va contraction map for all t € I , but f is not continuous.
2. Leﬁ fiIxI—I X I be defined by f(s,t) = (%,t)(for (s,1) E I ><I
| Then, f is continuous and f‘[x{t}’is a contr_ac.tion map for eéch tel _'
.HOVVQYBI, f is not a contraction map because

1

A1) = S0l =115, 1) - (5,01 =1 = 11(1,1) ~ @)l
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Definition 2.25. Let X be a metric Space; Amap f € Ci(X x I, X x I)is said ‘

to be a level-contraction map if fixx;) is a contraction map for each t € [.

Definition 2.26. Let X be a metric space and o« € [0,1). A map
f e C(X xI,X x I) is said to be an o-level-contraction map if fixxgy is

an «a-contraction map for each t € /.

Theorem 2.27. (Banach Fized Point Theorem): Consider a nonempty metric
space (X,d). Suppose that X is complete and f : X — X is a contraction
map. Then, - f has precisely one fixed point z,. Moreover, for each z € X,

im f"(2) = Too.
n~—>00

Proof. The proof can be found in [3]. 0.
Example 2.28.

1. Let f: I — I be defined by f(z) = 3 Then f is a contraction map. Since [
is a complete metric space, then Banach Fized Point Theorem implies that
f has a unique fixed point. By direct calculation, it is not difficult to see

that the fixed point of f is 0.

2. Let f.: (0,1) — (0,1) be defined by f(z) = g— . Then f is a contraction
map. But (0,1) is not a complete metric space, so it does not guarantée- :

that f has a fixed point. In fact, f does not have a fixed point in this case.



CHAPTER 111

The Fixed Path of an a-Level-Contraction Map

In this chapter, wé will prove that every a-level-contraction map of the cylinder
of a compact metric space has precisely one fixed path.

Firsf, we Will.prove that the sequence of the a-level-contraction maps (f™)
convergés uniformly. And then, we will construct a unique path p € {1, X x I)

~which is fixed by f; i.e, fop=p.

Throughout the rest of this thesis, we will assume that (X, dx) is a nonempty

metric space.

Lemma 3.1. Let (X,dx) be a bounded complete metric space, « € [0,1) and
f e C(X xI,X xI) an a-level-contraction map, then the sequence (f") converges

uniformly to the map f*° : X x [ = X x [ defined by

fe(e,t) = lim f*(z,1) = (2, 1)

n—0o0

where Z; is the fixed point of fixx (.

Proof. Since X is a complete metric space and f is an a-level-contraction map,

it is clear that f as above is well-defined. |
Since X is bo‘uvnded, there exists M > 0 such that d;;(x,:v’) < M for each

- z,2' € X. In particular; dx«/((z,t), (24,t)) = dx(z, %) < M for eéch T E X aﬂd

tel.



12 Fartts

Let ¢ > 0. Since'_ 0<a<l1,thereis N € N such that o™ < % foralln> N

Then, for n > N and (z,t) € X x I, we have

dxxi(f*(2,1), [z, 8)) = dxa (f* (2, 1), (2,1))
T dXXI(fn_(xa t)v fn(:%fdt))
< adxxr((z,t), (Z4,1))

< —A%—(JV[) = €.

Hence, the convergence is uniform.

"Theorem 3.2. Let X be a bounded complete metric 'space, ac 0,1) and
[ € C{X xI,X xI) an a-level-contraction map, then there is a unique path

p € Ci(I, X x I) which is fixed by f.

{(to}X[

| Proof. Choose any zp € X and let p = f|°° : I — X x I where f* is the limit
map defined in the previous lemma. |

Clearly, p(t) = f®(zo,t) € X x {t} and

F(o(0)) = F(F* (@0, 1) = f(Jim f(zo,1)) = lim f* (o, 1) = /®(z0,1) = o)

n—00
for all teljie, pis fixed by f.
| By the previous lemma, the sequence (f") converges uniformly to f_°°; Since
- f™ is continuous for each n € N, then f* is continuous by Theorem 2.10 and -
hence, so is p.
The uniqueness of p follows directly from the uniqueness of the fixed point of

" a contraction map. : ' O

Corollary 3.3. Let X be a compact metric space, o € [0,1) and f € C)(X X
I, X x I) an a-level-contraction map, then there is a unique path p € C)(I, X x I)

which is fixed by f.



AT

Proof. Since X is compact, X is complete and bounded. The result then follows

directly from Theorem 3.2.

o

_ t 1 S
Example 3.4. Let f : I xI — Ix I be defined by f(s,¢) = (—82—+Z,t) fors,t € I.. -
Then, we have for each t € 1 ahd 51,82 € 1,
. " 81t 1 Sgt 1
)~ flspd)l = ||G=+ 5,8 — (= + =
108 = Foall = N + 3,0 = C2 + 20

. é||(sl,t) (52, 8)]]

1
L

5ll(s1,%) = (52, 2)]].

IA

By Corollary 3.3, there is a unique path p € Cy(I, I x I) fixed by f. Also, by

. . =1
direct calculation, we have p(t) = (Q(t %)’ t) for t € I.
1
0.75
0.5
0.25
o 025 0.5 0.75 1

Figure 3.1: The image of pin I x 1.



14

F_of the case where f is a level-contraction map, if we know that the Lips-
chitz constant &; of fixx{; depends continuously on ¢, we can simply use the
compactness of I to make f is an é-level-contraction map by letting

& = max{d&lt € I} € [0,1).

Then, Corollary 3.3 implies that there is a path p € Cy(I,X x I) which is
fixed by f. Unfortunately, this situation fails in general as we will see in the

following example.

Example 3.5. Let f: 1 x I — I x [ be defined by

Cein(),0) it t#£0
fle,ty=4 2 ¢
(0,1) it pr=p

Then, f is a level-contraction because it is clearly continuous and for each

t € (0,1] and s,s" € I, we have

S

176, 8) = £ )1 = Il sin 5,2) — (5 sin -, )

:%H(sm—j—, )_(Slns?vtﬂl i
t,,8 § '

<3G - (Gl

:%H(s,t}—(slatm

= 2l 1) — (5,2l

!

| Clearly, &; = % for all ¢ € (0,1] and &, = 0.

Thus, the map ¢ — & is not continuous at 0.

Therefore, if we assume the continuity of the map t — G, we will get the

following results:
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Theorem 3.6. Let X be a compact metric space and f € C)(X x I, X x I) a
level-contraction map where the Lipschitz constant of fixxy is &. If the map

t +» & is continuous, then there is a unique path p € C;(I, X x I) which is fixed

by f.

Proof. As described before Example 3.5.

Corollary 3.7. Let X be a compact metric space and f € Cl (X xI,X x1I).
dxx1(f (1), f(y, 1))

dXXI((x7 t)? (Z/, t))
then there is a unique path p € C)(I, X x I) which is fixed by f.

If sup{

| z,y € X and z # y} € [0,1) and contmuous on t,

.Proof. By Theoremn 2.22 | f is a level-contraction map where the Lipschitz con-
stant of f|X><{t} 1S

dxxi(f(z,1), f(y,1))
dxx1((z,1), (¥, 1))

From the continuity of the map ¢ +— &; and Theorem 3.6, there is a unique

Gy = sup{ | ¢,y € X and z #y}.

path p € Cy(I, X x I) which is ﬁked by f as desired. o 0o

‘Without the continuity of ¢ — &, we hope to show directly that
sup{aylt € I} < 1, but it still fails when considering the following exam-

ple.

- Example 3.8. Let g: I x I — I x I be defined by

(1 —t)—st,t) if 0<s<1-t
g(g,t) = .
(0,7) i 1-t<s<l

Then, g' e I xI1,IxI and ¢ is a leve]—contractio_n; This is because for

eacht € (0,1) and s,s" € I.
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fO0<s<l-tand 0<s <1-—1, then we have

lg(s,t) = g(", Ol = [[(¢(X = 8) = st,8) = (¢(1 = t) = s, ) || = t]|(s,2) — (5", ).

fl—-t<s<land0<s <1-t, then we have

< ty/(s — §)?
= t]|(s,t) = (s, 1)][-
f1-2<s<1 and 1 -1t < ¢ <1, then we have
lg(s,t) — g(s", )] = [1(0,2) = (0, 8){] = O < ¢f[(s, 1) — (s, 2)]].

So, & =1t for each t € (0,1) and &y = 0 = &;.

Hence, sup{@ | t€ [} =1.

However, there is still a fixed path p : I — I x I defined by p(t) = (t(llltt) ,t)
fort e 1. |
-
0.75
0.5
0.25
0 0.25 0.5 0.75

Figure 3.2: The image of pin I x [I.



CHAPTER IV

The Fixed Path of a Level-Contraction Map

In this chapter we will prové that every level-contraction map of the cylinder

of a compact metric space has precisely one fixed path.

Lemma 4.1. Let (X,dx) be a metric space and f € Cy(X x I, X x I). If f is
uniformly continuous, then for each e > 0, there exists § > 0 such that for t,t'el

with d;(t,t') < J, we have dx«;(f(z,1t), f(z, 1)) <e¢, for all z € X.

Proof. Let € > 0. By the uniform continuity of f, there exists § > 0 such that
for any (z,t),(z,t') € X x I with d;(t,t") = dxx/((z,1),(z,t)) < §, we have =~
dxx1(f(z,t), f(z,t')) < e. Hence, for any ¢,¢' € I with d;(t,t') < §, we have

dxxr(f(z,t), f(z,t) < eforall z € X.

O

Theorem 4.2. Let (X, dx) be a complete metric space and f € C)(X x [, X x 1)
a level-contraction map. If f is uniformly continuous, then there is a unique path

p € C/(I,X x I) which is fixed by f.

Proof. Since X is a complete metric space and f is a level-contraction map, then _
for each t € I, fix«y has a unique fixed point, says ;.
Define the map p: I — X x I by p(t) = (&4, 1) fbr z € X and It el 'Clearly,
pis fixed by f. So, it remains to show that p is continuous.
" Suppose that .p is not continuous-at some ty € 1.

Then there exists €; > 0 such that for each ¢ > 0, there exists t; € I with
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dr(ts,t0) < 6 and dxw;((81,,t6), (Z19,t0)) > €0. . . (1)
- Since fixx{zo) i.s.a contraction map, let cz, € [0, 1) be its contraction factor.
Since (1 — oy, )ég > 0, then by Lemma 4.1, there exists d, > 0 such that for

t € I with d;(t,ty) < &y, we have for each z € X,
Lt (F(2,1), F(2,80)) < (1= an)eo. (@)
By .(1), there éxis_ts ts, € I such that
| di(tsy, t0) < 6o and dXxf((:?:tdngn), (Zt,t0)) > €0, .

and hence, by (2), we obtain for each z € X,

dXXI(.f(:Ea tﬁo)) f(x)tﬂ)) < (1 5 O"to)GG < (1 = af())dXXI(('fjtaoa%o)v (jtm tD))' (3) |

Note that if £;;, = %4, then by (3), we will have

Exx1 (155 ts0)s (B, t0)) < (1~ g )dxx (B, 65 )s (E205 t0)
= dXXT((:?"t&O  t50) (Cﬁtoa to))
which is a contradiction. Hence, &4, # &4,. In particular, is, # to.

Now, for any n € N, we have

Axx1((Zesyr o) (£to:t0)) = dxscr (f"(Bisys tao) s [ (Et5 t0))
< At (" (Besy s To0)s [ (Be5 5 0)) + Ao ([ (g, to)s f™ (E25, T0) |
.. dxxr(f" (Z15,, t60), [™(Zt5, 0 T0)) + Ay dxxa{(E15, 5 o), (10, T0))
< doxr ([ (B too)s [ Egy50)) + dacxr (f (5, 20), f”(itdo,to)v)
0 dxscs (B, o), (Bror o)

S dXXI(f(j}tdo ) téo)) f(i.t(;o ) tO)) + atodXX]((‘,Etgo 3 t0)7 fﬂ—l (:%tfso) tO))

+ a?odXxI((jtao ) to)u (i"to; tO))
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: vBy'letting_ n — 0, we have of — 0 and f"‘l'(i"téo,to) — (Z4y,T0). Hence,

dXVXI((:%th ) t(fo): (-f:to; t())) S dXX[(f(‘%tﬁo J_téo_)7 .f("i‘t(s.o ) tO)) + atodXXI((itgo ) to): ("i"tmto))' :

Since dxx1((Z15, t0), (F10,t0)) < dxser((Zesy0), (810, 20)), 1t follows from (3)

' that

dXXI((aA:taottJo_)i (i_tov tO)) < (1 = &Lo>dx><]((§5t50 ) t%)? (ﬁtmto)) o atodXxI((fitaoatdo)) (itm_to))

= dXXI(("i‘t(yO)tdo)? (i'tm [/0))

which is a contradiction.
Therefore, p must be continuous.

O

Corollary 4.3. Let X be a compact metric space and feC(X xI,Xx1I)a
level-contraction map. Then there is a unique path p € Ci(I, X x I') which is fixed
by f.

Proof. Since f is continuous and X x 7 is compact, f is uniformly continuous by

Theorem 2.14. 'Then, the result follows from the previous theorem.
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