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2.3 The Emerging of Lévy Models . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Copula Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Correlated Structural Models . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Risk Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Potential Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER III MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 CDO Pricing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Copula Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 A One-Factor Copula Model . . . . . . . . . . . . . . . . . . . . . . 15



viii

Page

3.2.2 Gaussian Copula Model . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Double-t Copula Model . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.4 Meixner Copula Model . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Correlated Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 A Correlated Structural Model . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 The Correlated-Brownian Motion Structural Model . . . . . . . . . 22

3.3.3 The Structural Correlated Meixner Model . . . . . . . . . . . . . . 22

3.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Copula Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1.1 Implying the hazard rate function . . . . . . . . . . . . . . . 24

3.4.1.2 Calibrating the correlation parameter . . . . . . . . . . . . . 24

3.4.1.3 Calibrating the copula’s parameters . . . . . . . . . . . . . . 24

3.4.2 Correlated Structural Models . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2.1 Implying the default barriers . . . . . . . . . . . . . . . . . . 25

3.4.2.2 Calibrating the correlation parameter and the process’s

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Risk Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Expected Discount Loss . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER IV DATA AND METHODOLOGY . . . . . . . . . . . . . . . . . . . 28
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Mean Absolute Pricing Error (MAPE) . . . . . . . . . . . . . . . . 30

4.3.2 Hypothesis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.3 Hypothesis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.4 Hypothesis III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.5 Hypothesis IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER V RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Results I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Results II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Results III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



ix

Page

5.4 Results IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER VI CONCLUSION AND RECOMMENDATION . . . . . . . . . . 55
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
APPENDICES

APPENDIX A Collateralized Debt Obligations . . . . . . . . . . . . . . . 63
APPENDIX B Meixner Distribution/Process . . . . . . . . . . . . . . . . 65
APPENDIX C Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
APPENDIX D A Simplified Correlated Structural Model . . . . . . . . 70

BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



x

List of Tables
Table Page

5.1 The optimal parameters of each model calibrated from the market quotes

of CDX NA IG index and its CDOs. . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 The minimum MAPEs and their standard deviations of each model for

all time series using the optimal parameter shown in Table 5.1. . . . . . . . 35

5.3 The results of the paired z-test among the copula models. . . . . . . . . . . . 35

5.4 The results of the pair z-test between BS and MS models . . . . . . . . . . . 40

5.5 Paired Z-test for the copula models and BS . . . . . . . . . . . . . . . . . . . 45

5.6 Paired Z-test for the copula models and MS . . . . . . . . . . . . . . . . . . . 45

5.7 The risk measures for various Tranches . . . . . . . . . . . . . . . . . . . . . . 50

B.1 The moments of the Meixner distribution . . . . . . . . . . . . . . . . . . . . . 66

B.2 The moments of the zero-mean and unit-variance Meixner distribution . . . . 66

D.1 Traditional BS vs Simplified BS . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



xi

List of Figures
Figure Page

5.1 The movement of hazard rates implied from CDX NA IG 5YS6 . . . . . . . 37

5.2 The probability density function of the normal, unit-variance student-t,

and Meixner distribution behind the copula models that optimally fit the

whole samples of the market quotes of CDX NA IG 5YS6 . . . . . . . . . . 37

5.3 The dependence structure of Gaussian copula, double-t copula with df=3,

and Meixner copula with parameters α = 2.6753, β = −0.70036. . . . . . . . 38

5.4 The movement of ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 The probability distribution of the increments over period [0,1] of Brown-

ian motion and Meixner process (-1.0472, 0.05) implied from 5YS6 . . . . . 41

5.6 The movement of barrier parameters of BS for CDX NA IG 5YS6 . . . . . 42

5.7 The movement of barrier parameters of MS for CDX NA IG 5YS6 . . . . . 42

5.8 The paths of the cumulative asset returns of two sample firms that fol-

low correlated Brownian motion and correlated Meixner process(-1.0472,

0.05) with different degree of dependency. . . . . . . . . . . . . . . . . . . . . 43

5.9 The movement of ρ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.10 The portfolio loss distribution of CDX NA IG Series 6 . . . . . . . . . . . . 47



CHAPTER I

INTRODUCTION

1.1 Background and Problem Review

Collateralized Debt Obligation (CDO) is a type of credit derivatives written on a

portfolio of defaultable instruments such as bonds, loans, credit default swaps (CDSs).

It is divided into a number of tranches defined by a set of lower and upper bounds

called attachment points and detachment points. When some firms in the portfolio

defaults, the investors holding CDO tranches are responsible for only the loss incurs in

between the attachment and detachment points of their holding tranches. For example,

an investor holding an equity CDO tranche must be responsible for the portfolio default

loss that incurs in between 0% and 3% of the whole portfolio value. Because of the

non-existence of free lunch, the investors get compensated with periodic fees, called

premium, until the expiry or the notional principal of that tranche reaches zero.

CDOs have been growing rapidly in the industry for recent years. “The market

size for CDOs was estimated to be $2 trillion by the end of 2006 which covers around

40% of the total credit derivative market.” (Hull et al.; 2005) Banks use this kind of

financial instruments to mitigate their exposure toward credit risk by transferring some

parts of the risk to others. Because of its popularity, pricing and risk management

for CDOs are essential for market participants. However, the industry’s standard model

that is widely used to price CDOs is still questionable. It cannot capture the premium

structure of CDO tranches well enough. Hence, many researchers attempt to extend

this standard model in various ways.

In general, there are two major approaches to model credit risk. The first one

is called reduced-form model; for example, Duffie and Singleton (1999); Jarrow and

Turnball (1995). The other is called structural model such as Merton (1974); Black

and Cox (1976). There are a lot of controversial toward which model is better. Some

shows that reduced-form and structural models are almost the same except information

perceived. (Arora et al.; 2005; Jarrow and Protter; 2004)

CDOs require the model of credit portfolios, which can be modeled directly or

indirectly. Top-down approaches model the portfolio losses directly and find the mar-
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ginal entities that are consistent if necessary. On the other hand, bottom-up approaches

model each individual entity and combined together to construct the joint default risk.

In this paper, we focus on the later approaches.

In bottom-up approaches, the marginals can be joined via a dependence function

called copula or via a factor model. In most copula models, the marginal default

probabilities are estimated via a reduced-form model and then are combined using a

copula to derive the portfolio loss distributions, although the marginals from structural

model can be used. By contrast, most correlated structural models are based on Monte

Carlo by which the paths of each firm value are simulated by assuming that they have

some correlations in their values. When the firm value falls below some thresholds,

the firm defaults. In some cases, the analytical solution for the structural models is

available. These two approaches are used to construct the portfolio loss distributions

and hence the fair premiums of CDOs.

Both copula models and correlated structural models are based on many assump-

tions that researchers attempt to relax to improve the performance of the models. On

the one hand, one of the most imperative assumptions for copula models is the choice

of copulas. In addition to Gaussian copula which is the standard one, there are Student-

t, double-t, Clayton, Marshall-Olkin, and Lévy copulas. On the other hand, one of the

most important assumptions for structural models is the choice of firm value processes.

Not to mention the geometric Brownian motion, or generally Wiener processes, which

is the standard one, there are a lot of Lévy processes that can be applied to structural

models.

Lévy distributions/processes provide more flexibility to the models. Most of the

Lévy distribution’s properties are that they can have skewness and excess kurtosis,

known as fat-tails. Therefore, when applying to copula, the Lévy copula can capture

not only the symmetric co-dependence structure but also the asymmetric e.g. left heavy

tail. When considering its associated process, Lévy process has three components i.e.

deterministic, Brownian, Lévy measure which can be interpreted as a mixture of drift,

diffusion, and jump parts. Meanwhile, the Wiener process has only drift and diffusion

parts. See Schoutens (2003) for Lévy distributions/processes and its applications in

finance.

As well as pricing, risk management is imperative. Investors need to be aware
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of both the expected credit loss that can incur and the potential losses in extreme

cases. In general, Value-at-Risk (VaR), the maximum potential loss in a period at a

confident level, is the most popular tool for this affair; nevertheless, VaR, or credit VaR

in this setting, fails to apply in CDOs. The expected shortfall, known as conditional

VaR which is the expected loss given an occurrence of extreme case is used in this

paper. It is interesting to note that these risk measures depend on the loss distribu-

tion assumptions. Calculating risk measures with the loss distribution implied from

market quotes is believed to provide more sensible risk measures. In this case, Lévy

distributions/processes can handle this issue.

There are many choices of Lévy distributions1 and Lévy processes to be ap-

plied such as Compound Poisson, Normal Inverse Gaussian, Variance Gamma, CGMY,

Generalized Hyperbolic, Meixner, Generalized Z and etc. In jump-diffusion (Merton;

1976), the diffusion which is of infinite variation represents the very active small moves

while the jump of finite activity represents rare large moves. However, both small and

large moves can be modeled simultaneously by using infinite activity jump processes.

Carr et al. (2002) using an extended CGMY model found the Brownian component in

individual stock returns are insignificant and that in stock indices are absent because the

diffusions are diversifiable. Moreover, they found the empirical risk-neutral processes

derived from option prices lack diffusions too. Hence, they argued that asset returns

essentially follow pure jump processes with infinite activity.2 Although market risk

derived from frequent small moves seems to be diversifiable, it may or may not be in

credit risk. The reason is that the part of credit risk originated from active small moves

may not be diversifiable as in market risk, though it may has little attention from the

market when compared with large jumps. In this study, we model asset returns with a

pure jump process of infinite activity and infinite variation, called Meixner, to capture

frequent small moves, rare large moves, and also very high degree of activity near zero.

By using Meixner process in first passage models, it is equivalent to assume that the

firm value is driven completely by jumps. When new information arrives, the firm value

jumps. Firms can default unexpectedly anytime because the firm values can jump over

the barrier suddenly. Another advantage is that Meixner distribution is one of the not

many Lévy distributions that its density function is analytically expressible. Usually,

only analytical characteristic functions are available and need Fourier Transformation.

Hence, it is considered less complicated and more convenient to implement than the
1Or in general, infinitely divisible distributions.
2Furthermore, the results show that the jump processes are mainly finite variation.
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other distributions with the similar features. Another reason we choose Meixner is

that it is has not yet been studied in this field before while the alternatives such as

Generalized Hyperbolic and their special cases have been investigated by Kalemanova

et al. (2005); Moosbrucker (2006b); Brunlid (2006); Baxter (2006).

This study is an exploratory investigation of the pricing models of CDOs. The

objective is to provide a framework for incorporating the Meixner distributions into the

copula and structural approaches in modeling credit risk. The paper also examines the

performance of the Meixner-based models comparing to the traditional ones (Gaussian

copula, double-t copula, correlated-Brownian motion structural) in pricing the CDOs.

In addition, it compares the performances between copula models and the structural

models too. Furthermore, it also investigates the characteristics of the risk measures

based on expected discounted loss (EDL), Value-at-Risk (VaR), and expected shortfall

(ES) for each model.

1.2 Statement of Problem / Research Questions

1. Are Meixner-based models superior to the traditional ones in pricing CDOs?

2. Which model is the best in pricing CDOs, copula models or correlated structural

models?

3. How about the risk measures? Are there any significant differences in the risk

measures derived by each model?

1.3 Objective of the Study

• To investigate the incremental performance of the models used Meixner distrib-

ution and its associated Lévy process in the extension of the standard models.

• To investigate a number of CDO pricing models and to figure out which model

is the best in pricing CDOs.

• To investigate risk measures computed from each of the five models as to whether

they are significantly different.
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1.4 Scope of the Study

In this study, we investigate prices and risk measures from five CDO pricing

models i.e. Gaussian copula (GC), double-t copula (DC), Meixner copula (MC),

correlated-Brownian motion structural (BS), and correlated-Meixner structural models

(MS). GC, DC, and BS have been proposed by Li (2000), Hull and White (2004), and

Hull, Predescu and White (2005), respectively, but the other two (MC and MS), to the

best of our knowledge, have not yet been investigated. Furthermore, the risk measures

investigated are expected discounted loss (EDL), Value-at-Risk (VaR), and expected

shortfall (ES).

Our study is based on the U.S. credit derivative market. Only the synthetic

CDOs having the North American investment-graded CDS index (CDX NA IG) as

the underlying portfolio are investigated. Although there are many other underlying

portfolios such as CDX NA HY (High Yield), iTraxx Asia and iTraxx CJ (Japan),

the CDX NA IG tranches seem the most actively traded, while the others are being

improved over the last few years.

1.5 Contributions

• Investigate a new alternative distribution/process called Meixner.

– Extend the Gaussian copula approach to capture tail-dependence using

Meixner copula.

– Extend the standard structural model to capture the fat-tail of credit events

using Meixner process.

• Comprehensively inform decision-makers at credit desks and academicians about

the empirical performance of a number of CDO pricing models comparing with

the industry’s standard model.

• Inform and discuss the risk measures derived from the Meixner-based models

and other models to risk managers and academicians.



CHAPTER II

LITERATURE REVIEW

2.1 Single-Name Credit Risk Modeling

To model credit risk, there are generally two different types of models: reduced-

form models and structural models. For the reduced-form model, we implies the default

probability directly from the market quotes of such defaultable securities as bonds or

CDSs by modeling a hazard rate function. On the other hand, the structural model

estimates the probability of firm default from the likelihood of an event that the firm’s

asset value falls below a threshold called a default barrier.

2.1.1 Reduced-Form Models

Jarrow and Turnball (1995) assume that the stopping time (default time) follows

a Cox process. When the information sets are given, it becomes a Poisson process in

which the intensity is equal to hazard rate function. By using this process, the stopping

time is unpredictable.

Duffie and Singleton (1999) extend the reduced-form approach by modeling the

losses as a fractional reduction in the market value at the time of default. By using this

approach, credit securities are valued by discounting the pay-off with the new adjusted

short rate that also takes into account the losses in market value at default in the risk

neutral settings.

Hull and White (2000) uses the reduced-form model to price credit default swaps.

They argue that the ways the two above papers assuming on recovery rate are not

consistent with bankruptcy laws in most country. When the default occurs, the face

value of the bond plus its accrued interest rate should be claimed.

2.1.2 Structural Models

Merton (1974) views the firm’s equity as an European call option written on the

firm value with the strike price of the debt. Therefore, the probability of default is

the likelihood of the events that the firm value is below the debt level at the maturity.

This model is celebrated but is unrealistic. The major flaw is that the firm can default
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anytime in between a period not just at the end of the considering period.

Black and Cox (1976) extend the Merton’s model with the first passage time. By

using this model, a firm is considered default immediately when the firm value fall

below the threshold. Note also that the default barrier of this model is invent to grow

over time.

Geske (1977) extends the Merton’s model to risky coupon bonds by viewing it as

compound options, whereas Longstaff and Schwartz (1995) assume stochastic interest

rate when value risky coupon bonds. Leland and Toft (1996) assume that the firm

continuously issues a fixed amount of debt so that the debt structure is stationary;

by contrast, Collin-Dufresne and Goldstein (2001) let the debt structure follows the

mean-reverting process. For empirical comparison of these models, see Eom et al.

(2003).

2.1.3 Reconciliation of These Two Models

Jarrow and Protter (2004) show that the reduced-form and structural model are

the same. The only differences are the assumptions on information. The reduced-form

model assumes that investors cannot observe some information such as the current

level of firm value and the default boundary, while these information are known to firm

managers which are used in structural model.

2.2 Multiple-Name Credit Risk Modeling

2.2.1 Earlier Works

Gupton et al. (1997) invented the JPMorgan’s CreditMetrics asset correlation

approach. In this methodology, the default probabilities are derived from the transition

matrix. However, since they also assume that the asset value follows the normal

distribution, the probability of credit quality migration is interpreted as the likelihoods

that the asset value falls below a threshold. Hence, the probability that the firms will

jointly default can be computed by simulating from the multi-variate normal distribution

by using the equity correlations as an estimate of the asset correlations.
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2.2.2 Copula Models

Li (2000) proposed the default (survival) time copula model which has become

the industry’s standard model. The default probabilities are implied from the default-

able instruments such as bonds, and linked those marginal default probabilities together

with the standard normal Gaussian copula. Similar to the CreditMetrics, the equity cor-

relation matrix is used as the Gaussian copula’s parameter. This method is equivalent

to the simulation method in the CreditMetrics in marginal-probability joining perspec-

tive. In spite of the Gaussian copula, other copulas such as t-student and Archimedean

have been studied in this framework as in, for example, Galiani (2003). Until now, the

copula has been used in the form of a single factor copula as in Laurent and Gregory

(2003); Schönbucher (2000); Finger (1999).

Elizalde (2005) explained the model, called Vasicek asymptotic single factor

model, proposed by Vasicek (1987, 1991) and Vasicek (2002). It said that under the

Vasicek (1987)’s model if the underlying portfolio was assumed to be a homogeneous

infinitely large portfolio (LHP), the distribution function of the portfolio loss would

have a closed-form formula.

Hull and White (2004) proposed the one-factor double-t copula model to price

CDOs and nth-to-default CDSs. They found it could fit the prices reasonably well since

it can capture the fat-tail of a pool of credit risk. Instead of assuming some forms

of copula and implying the copula parameters, Hull and White (2006b) implied the

copula itself from the tranche’s quotes. They called it the perfect copula because it can

perfectly fit the market quotes. However, this model is suitable for pricing non-standard

CDO tranches.

Burtschell et al. (2005) compared Gaussian, stochastic correlation, Student-t,

double-t, Clayton and Marshall-Olkin copula models. They found the Student-t and

Clayton copula models’ results are similar to the Gaussian copula, whereas Marshall-

Olkin copula model results in overly fattening of the tail of the loss distributions.

The double-t model lies in between and gives a better fit to market quotes, while the

stochastic correlation copula model can also achieve a reasonable skew as in the market.
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2.2.3 Correlated-Structural Models

For the structural model, Hull, Predescu and White (2005) proposed the struc-

tural correlated-Brownian motion model based on the first passage model suggested by

Black and Cox (1976). They assume that the firm’s asset value followed the geometric

Brownian motion, while the Wiener components of each firm are correlated. Moreover,

they also extended the model to incorporate the empirical evidences that default correla-

tions are positively dependent on the default rates, and the recovery rates are negatively

dependent on the default rates. This study found that the stochastic correlation version

of the structural model make the model much improve. The stochastic recovery rate

version also has some improvements but less than the stochastic correlation.

2.2.4 Reconciliation of These Two Models

Not only the reduced-form model that can be based on the copula approach,

but also the structural models because the survival time can be modeled by both

reduced-form and structural models. (see Giesecke; 2004)

Nevertheless, joining the probability of survival time with copula is far from

economic support as to which copula should be used. In Appendix D, we show that,

under some restrictions, a correlated structural model which is usually based on Monte

Carlo can be simplified to a Bernoulli mixture framework like in a one-factor copula

model. As a result, a correlated structural model can be used without simulation and

provides more economic underpinnings than copula approaches.

2.3 The Emerging of Lévy Models

2.3.1 Copula Models

Kalemanova et al. (2005) are ones who used a Lévy distribution called the Normal

Inverse Gaussian (NIG). They followed the large homogeneous portfolio assumptions

(LHP) which are much popular in practice. In the study, they extended the Gaussian

copula model and the t-student copula model to the Normal Inverse Gaussian copula.

The model fitted the market quotes reasonably well.

Albrecher et al. (2006) pointed out that one can use any Lévy processes and

their associated distributions such as Shifted Gamma, Shifted Inverse Gaussian, Vari-
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ance Gamma, Normal Inverse Gaussian, Meixner, and many more for the one-factor

copula model. Like Albrecher et al. (2006), Moosbrucker (2006a) showed a num-

ber of infinitely divisible processes/distributions can be used in the one-factor copula

framework.

Brunlid (2006) compares a number of Hyperbolic Lévy copula models i.e. Nor-

mal Inverse Gaussian, Variance Gamma, Skewed Student t copula models. The results

suggest that the distribution of credit risk should have negative skewness and high

kurtosis.

2.3.2 Correlated Structural Models

Luciano and Schoutens (2005) modeled the correlated default by using a modified

structural model. In a single-factor setting, they assumed that the factor component fol-

lowed the Gamma process, whereas the idiosyncratic part followed the Wiener process.

Hence, they can estimate the conditional default probabilities by using the Merton

(1974) and Black and Cox (1976) models. Then, they computed the joint uncondi-

tional default probability using the Gamma distribution. A Brownian motion with drift

time-changed by a Gamma process leads to the Variance Gamma process which is in

the Lévy process’s family.

Moosbrucker (2006b) investigated a number of CDOs pricing models by extend-

ing the structural model of Luciano and Schoutens (2005) by using some variations

of the correlated Variance Gamma process. Luciano and Schoutens (2005) used iden-

tical Gamma process with independent Brownian motions, while his study examined

correlated Gamma processes with independent Brownian motions, identical Gamma

processes with dependent Brownian motions, and sum of two independent Variance

Gamma processes. In addition, he also examined the pricing of CDOs via the Variance

Gamma copula model. By using the structural Variance Gamma model, they found

the model is better in fitting the market quotes than the Gaussian and double-t copula.

Moreover, their Variance Gamma copula model is the best in his study for fitting the

market quotes over the period.

Baxter (2006) studies a number of Lévy structural models such as Catastrophe

Gamma, Variance Gamma, Gamma, Brownian Gamma structural models, and many

combinations, etc. toward single-name and multi-name credits.
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2.4 Risk Measurement

There are not many literatures that study the risk measurement for basket credit

portfolio especially CDOs.

Mashal et al. (2003) investigate Value-at-Risk and Expected Shortfall of CDO

tranches using Gaussian copula and t copula. The results from different models are

substantially different.

Antonov et al. (2005) calculate the portfolio risk measures, VaR and ES, under

the saddlepoint approach. They also assess the marginal contributions of individual

assets to these two risk measures. In addition, Moosbrucker (2006a) investigates the

credit VaR of a credit portfolio under different Lévy copula models.

2.5 Potential Extensions

Schoutens (2002) uses Meixner distribution to fit the daily stock returns. It can

fit accurately well. Furthermore, he extended the Black and Scholes (1973) model by

using the Meixner process instead of the Brownian motion to price a plain vanilla call

option. Then, he put the price derived from the Meixner process to the Black and

Scholes (1973) model and back the implied volatility out for different strike prices. The

model results in volatility smiles familiar to backing the implied volatility out from

the market quotes. This concludes that the Meixner distribution is more realistic than

Gaussian distribution.

In this study, we extend the standard models in credit risk field with Meixner

distribution/process and calculate their risk measures. The next chapter discusses the

models.



CHAPTER III

MODELS

In this section, the models used in this study are discussed. The first one

is Gaussian copula model proposed by Li (2000), which has become the industry’s

standard model. The second model is double-t copula proposed by Hull and White

(2004), which has the capability to capture the premium structure via the fat-tails. The

third model is called Meixner copula model which we make use of Meixner distribution

to relax the assumption of normality in Gaussian copula model. These three models

are considered as static models which are not suitable in pricing some instruments such

as an option on a CDO tranche.

For the fourth model, we are based on the structural model proposed by Hull,

Predescu and White (2005) which has the economic rationale supported and is con-

sidered as a dynamic model. By using this model, one can simulate possible paths of

each firm value in the future and hence the evolution of the likelihoods of default; ulti-

mately, we can value the instruments that the static models cannot. For the last model,

we apply Meixner process to relax the assumption of path continuity to the standard

structural model. However, we use an approximation approach for long-maturity series

to avoid using Monte Carlo simulation which is cost expensive. This model is called

correlated-Meixner structural model, or generally a correlated-Lévy structural model.

For more details on Meixner distribution and process, see Appendix B.

In short, we extend Gaussian copula model to Meixner copula model, or generally

a Lévy copula model, and extend Hull, Predescu and White (2005)’s structural model

by using Meixner process instead of the Brownian motion.

3.1 CDO Pricing Framework

Credit derivatives have a similar structure to interest rate swaps: both have a

floating leg and a fixed leg. The floating leg for credit derivatives, also known as the

default leg, represents the amount of losses the investors have to pay when defaults

occur; while the fixed leg, also known as the premium leg, represents the amount

investors receive periodically1. At initiation, a parameter called a spread is chosen so
1CDOs have fixed payment dates which are on 20th of March, June, September and December of
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that these legs have equal value.

Let ti denote the time at the end of an arbitrary period i, and P (ti) the corre-

sponding notional principal of one of the tranches. The value of the default leg at time

ti is the sum of discounted change of the expected notional principal of the tranche

from the period before.

default leg =
n∑

i=1

{E[P (ti−1)]− E[P (ti)]}e−rti

For the premium leg, the premium paid at time ti is an annualized fixed proportion

s, called spread, to the sum of the expected outstanding notional principal at that

particular default time and the accrued premium. The accrued premium arises because

the investors need compensation for the protection they provide from the end of the

previous period up until the default time. For the purpose of illustration, suppose as

in Hull and White (2006b) that the defaults, if any, occur at the middle of each period

. The value of the premium leg is the present value of all the cash flows:

premium leg = s
n∑

i=1

(ti − ti−1)E[P (ti)]e
−rti

+ s

n∑
i=1

(
ti − ti−1

2
){E[P (ti−1)]− E[P (ti)]}e−r(

ti+ti−1
2

)

Then, s is chosen to equate the value of the two legs:

s =

∑n
i=1{E[P (ti−1)]− E[P (ti)]}e−rti∑n

i=1(ti − ti−1)E[P (ti)]e−rti + ( ti−ti−1

2
)(E[P (ti−1)]− E[P (ti)])e

−r(
ti+ti−1

2
)

(3.1)

Now we explain how E[P (ti)] can be computed. Let Pj(ti) denote the outstanding

notional principal of tranche j at time ti, while KLj
and KUj

denote the lower and

upper loss limits of tranche j, respectively. Let Zti stand for the portfolio loss rate

at time ti, it represents the percentage of the cumulative loss in the portfolio value at

time ti. Given Zti , the value of the outstanding notional principal of tranche j is:

Pj(ti; Zti) = Pj(0)×min

(
1, max

(
0,

(
KUj

− Zti

)(
KUj

−KLj

))) (3.2)

each year.



14

where Pj(0) is the initial notional principal of tranche j.

The expected outstanding notional principal of the tranche j at the future time ti

is then:

E[Pj(ti)] =

∫ z=1

z=0

Pj(ti; z)dFti(z) ≈
∑

z

Pj(ti; z) · Pr(Z = z) (3.3)

where Fti is the cumulative distribution function of the portfolio losses z at time ti.

See Elizalde (2005); Hull and White (2006b); Laurent and Gregory (2003) for more

details.

It is apparent that the component that drives the value of CDOs is the distribution

of portfolio loss rate. All models follow the above framework, but they differ on how

the portfolio loss distributions are modeled. In this study, we will rely on the following

assumptions which are common in practice

1. The underlying portfolio is homogeneous, so their recovery rates, marginal default

probabilities, and their default correlations are the same among all firms.

2. The default correlations ρ are assumed to be constant over time.

3. The recovery rates R of each firm are all constant at 40%, conforming the

research of Varma and Cantor (2004).

4. The weights of firms in the portfolio are equal and are constant over time.

As a consequence, the portfolio loss rate Zti at time ti can be expressed as follows

Zti =
1

N
× (1−R)×

N∑
k=1

1k,ti,{default} (3.4)

where 1k,ti,{default} is the indicator function of the default event of firm k by time ti

and N is the number of firms in the portfolio. The portfolio loss distribution function

Fti can be derived from the distribution function of the number of defaults or the

default rate2.

In the next two sections, we will discuss how the default rate are derived, and
2Note that the loss rate and default rate are not the same. The loss rate is the percentage of loss

over the notional principal value whereas the default rate is the ratio of the number of defaulted firm to
the number of all firms in the portfolio.
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hence the portfolio loss distribution, by a single-factor copula and a correlated structural

model.

3.2 Copula Models

3.2.1 A One-Factor Copula Model

The first three models are based on a one-factor copula model. see Appendix

C for briefly discussion of copula. Now, we explain the general framework for copula

approaches. We introduce the model in an independent world and then extend to the

more realistic one. Gaussian copula, double-t copula and Meixner copula model are

formulated afterward.

Let X be the default rate i.e. X =
∑N

k=1 1k,ti,{default}. If we assume that the

individual default probabilities at time ti are all pti and the defaults occur independently

among each other, the probability that m out of N firms default will follow a binomial

distribution.

Pr(X = m) =

 N

m

 pm
ti

(1− pti)
N−m (3.5)

Pr(X ≤ m) =
m∑

k=1

 N

k

 pk
ti
(1− pti)

N−k (3.6)

As a result, the portfolio loss distribution becomes

Fti(z) = Pr(X ≤
⌊

zN

(1−R)

⌋
) =

bzN/(1−R)c∑
k=1

 N

k

 pk
ti
(1− pti)

N−k (3.7)

Though the assumption of default independence is extremely unrealistic, we will

explain later on how it can work in pricing CDOs.

In the real world, the default is dependent. We model the default dependence via

a single-factor model. Let ρ be the degree of dependency. The proxy of the default

of firm j, Xj , which can represent the survival time, the first passage time, the firm

value, or the asset return, etc., can be decomposed into the common factor M and the
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unsystematic part Zj:

Xj =
√

ρM +
√

1− ρZj

If M is given, each pair of Xj is conditionally independent. If the distribution

function of the random variables Xj, M and Zj are FM+Z , FM , and FZ respectively,

the probability distribution of the random variable Xj conditioned on M is as follows

Pr (Xj ≤ x|M) = Pr
(√

ρM +
√

1− ρZj ≤ x
∣∣∣M)

= Pr

(
Zj ≤

x−√ρM
√

1− ρ

∣∣∣∣M)
Pr(Xj ≤ x|M) = FZ

(
F−1

M+Z (Pr(Xj ≤ x))−√ρM
√

1− ρ

)

Since the conditional defaults are independent, the margins can be multiplied

together forming a copula shown below

C(u1, u2, . . . , uN) =

∫ m=+∞

m=−∞

N∏
j=1

FZ

(
F−1

M+Z (uj)−
√

ρm
√

1− ρ

)
dFM(m)

When FM and FZ are the Gaussian distribution, FM+Z also become the Gaussian

distribution. The copula becomes the multivariate Gaussian copula as follows

CGa
a (u1, u2, . . . , uN) =

∫ m=+∞

m=−∞

N∏
j=1

Φ

(
Φ−1 (uj)−

√
ρm

√
1− ρ

)
dΦ(m)

It is imperative to note that although FM and FZ are the same probability

distribution, the probability distribution function of the sum of those two random

variables FM+Z is not necessary to be that same distribution. For example, if FM

and FZ are Student-t distributions. FM+Z is not the Student-t distribution since this

distribution is not stable under convolution3. Hence, the empirical distribution of Xj

must be used instead.

Due to the conditional independence in this framework, the equation (3.7) can

be used by its nature. Thus, the portfolio loss distribution based on our assumptions
3The distribution function of the sum of two random variables is a convolution of their distribution

functions.



17

becomes4

Fti(z) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kdFM(m) (3.8)

pti|m = FZ

(
F−1

M+Z (pti)−
√

ρm
√

1− ρ

)
(3.9)

Furthermore, if we assume that the portfolio is infinitely large, a closed-form

formula to approximate the price of CDOs exists. See Elizalde (2005) for more details.

3.2.2 Gaussian Copula Model

For modeling the default probability marginally, we follow Li (2000) who pro-

posed the model called the survival time Gaussian copula. A random variable called

“time-until-default” is defined as the survival time of each firm before it defaults and

the default correlation is defined as the correlation of those survival times. Default

events are assumed to follow a Poisson process with a parameter λ(t) called a haz-

ard rate function which interpreted as an instantaneous default probability at that time

t. The probability that a firm survives beyond time ti is q(ti) = e−
∫ ti
0 λ(t)dt. If we

assume that the hazard rate function is constant, we will get the survival probability

q(ti) = e−λti and thus the default probability of a firm in time ti is

p(ti) = 1− q(ti) = 1− e−λti (3.10)

Like many studies such as Finger (1999); Schönbucher (2000); Laurent and Gre-

gory (2003), we used one-factor Gaussian copula to price CDOs, thereby specialize

the arbitrary distributions to the normal distributions. When the unconditional de-

fault probability in the equation (3.9) is substituted with (3.10), the conditional default

probability is

Pr(τ ≤ ti|M) = p(ti|M) = Φ

(
Φ−1

(
1− e−λti

)
−√ρM

√
1− ρ

)
(3.11)

where Φ(.) is the standardized normal distribution function. As a result, the portfolio
4Note also that we use the quadratures called Gaussian-Hermite and Gaussian-Laguerre for numerical

integration.
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loss distribution function becomes

Fti(z) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kdΦ(m) (3.12)

Although this model is the industry standard, it cannot capture the capital struc-

ture of CDOs well enough. This model needs some extensions. However, this model

is the simplest in implementation and fastest in speed of computation.

3.2.3 Double-t Copula Model

Hull and White (2004) proposed this model. In this context, we specialize the

arbitrary distributions of M and Zj to the Student-t distributions, while the others

remain the same. In this study, we will find the degree of freedom ν that make the

model best fit to all of the market quotes observed. Thus, the model becomes

p(ti|M) = Tυ

( υ

υ − 2

) 1
2 F−1

T+T

(
1− e−λti

)
−√ρ

(
υ−2

υ

) 1
2 M

√
1− ρ

 (3.13)

Fti(z) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kdTυ(m) (3.14)

where FT+T is the empirical distribution of the sum of two independent Student-t

random variables since the sum of them does not distribute as Student-t, whileTυ is

a standard Student-t distribution. Note also that we find the empirical distribution by

convolution.

The advantage of this model is that it is more consistent with the capital struc-

ture of CDO quotes; nonetheless, it is not perfect fit. This model requires a lot of

computation time since each time we change the value of correlation in the model, we

must perform convolution and inversion.

3.2.4 Meixner Copula Model

For the Meixner copula, we specialize the distributions of M and Zj to the

Meixner distributions, while the others remain the same. Actually, the distributions of

M and Zj are not necessary to be the same. However, if the distribution of M and
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Zj are the same, the distribution of Xj i.e. FM+Z is a Meixner distribution since it is

stable under convolution. In this study, we will find the Meixner’s parameters α and

β that minimize the pricing error among all of the market quotes. Consequently, the

portfolio loss distribution function (3.8) and (3.9) becomes

p(ti|M) = Υα,β

(
Υ−1

α,β

(
1− e−λti

)
−√ρM

√
1− ρ

)
(3.15)

Fti(z) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kdΥα,β(m) (3.16)

where Υα,β(.) is the zero-mean and unit-variance Meixner distribution function as

described in Appendix B.

This model is the second to Gaussian copula model in speed of computation

given that we know the optimal parameters. Before the computation starts, two look-up

tables are constructed for a cumulative probability function and a inverse function from

the analytical probability density function. Although the speed is faster than double-t

copula model in run-time, when we consider calibration time, it consumes a lot because

the two parameters are real numbers with bounds.

3.3 Correlated Structural Models

In this section, we discuss a generalized correlated structural model. Then, the

correlated-Brownian motion structural and the correlated-Meixner structural models

are presented. The approximation approach for the correlated structural model is in

Appendix D.

3.3.1 A Correlated Structural Model

To begin with, a generalized correlated structural model adapted from the frame-

works in Hull, Predescu and White (2005); Schoutens (2002, 2003); Luciano and

Schoutens (2005); Black and Cox (1976); Hull and White (2001) is presented. Let

consider the structural model in an independent world first. Then, we extends to the

correlated structural case.

Assuming that the firm’s asset value follows an exponential of a Lévy process,
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under the risk-neutral setting, the asset value follows

Vj(t) = Vj(0)exp
(
(µj − θj)t + Z(L)

j (t)
)

(3.17)

where Vj(t) is the value of firm j at time t

µj is the adjusted risk-neutral rate of return

θj is the mean-correcting parameter that makes the firm

value process becomes a martingale

Z(L)
j is a Lévy process

By factorizing the scaling factor of Lévy process, the redundant parameters of

the model can be reduced. Hence,

Vj(t) = Vj(0)exp
(
(µj − θj)t + αX

(L)
j (t)

)
where α is the scaling factor of the process and X

(L)
j (t) is the scaled Lévy process

of Z(L)
j . When viewing the scaled Lévy component as a proxy of the asset return’s

process, the equation becomes

X
(L)
j (t) =

lnVj(t)− lnVj(0)

α
+
−(µj − θj)

α
t

We change the focus to the proxy because it will be easy for simulation.

Based on our assumptions that the firms are homogeneous, the parameters are

the same. The equation rewrites as

X
(L)
j (t) =

lnVj(t)− lnV (0)

α
+
−(µ− θ)

α
t (3.18)

Also, the default barriers for each firm are the same. According to Black and Cox

(1976), the default barrier K can grow over time

K(t) = Kexp(γt)

where γ is the growth parameter. Hence, the new default barrier that corresponds to
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the proxy of asset return becomes

K∗ =
lnK(t)− lnV (0)

α
+
−(µ− θ)

α
t

=
lnK − lnV (0)

α
+

γ − (µ− θ)

α
t

= a + bt

where a = lnK−lnV (0)
α

and b = γ−(µ−θ)
α

. Whenever X
(L)
j (t) falls below a + bt, the firm

j is considered default. Thus, the default time of firm j is

τj = inf
t

{
X

(L)
j (t) ≤ a + bt

}

When the firm values are dependent, the model need modifications. The proxy

of asset return is assumed to follow a correlated Lévy process with the degree of

dependency ρ. Based on our assumptions, the formulas become

X
(L)
j (t + dt) = X

(L)
j (t) + dX

(L)
j (t) (3.19)

dX
(L)
j (t) =

√
ρdM(t) +

√
1− ρdZj(t)

where M and Zj are independent Lévy processes which M(0) = Zj(0) = 0 and they

have independent and stationary increments. To construct the portfolio loss distribution,

the distribution of default rate is converted via (3.4). To construct the default rate

distribution, we sample the paths of M and Zj and calculate X
(L)
j ; whenever the X

(L)
j

falls below K∗, the firm j is considered default after that time. The default rate is

counted to create a frequency table representing the default rate distribution.

Economically, if we model the market factor with heavier-downsided jumps, while

the firm specific is heavier-upsided jumps. It is interpreted as the firm values tend to

decrease dependently, while they rise independently. However, if we model the market

factor with Brownian motion but the firm specific as heavier-downsided jumps, that

means the large plunge/soar represents market crash/boom is unlikely to occur, yet a

firm can suffer from large loss individually. To sum up, the market factor determine

how firm will act interdependently, while the idiosyncratic indicates how firm will act

independently.
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3.3.2 The Correlated-Brownian Motion Structural Model

For the standard multi-variate structural model, we follow Hull et al. (2005).

Thus, in this context, we specialize the correlated Lévy process X
(L)
j to a correlated

Brownian motion Xj , replace the drift parameter with rf
5, and specify the mean-

correcting parameter θ to σ2

2
:

Vj(t) = V (0)exp

(
(rf −

σ2

2
)t + σXj(t)

)
(3.20)

where rf is the risk-free rate, σ is the asset volatility of the homogeneous firm. After

some arithmetic transformations,

Xj(t) =
lnVj(t)− lnV (0)− (rf − σ2

2
)t

σ

and then the default barrier becomes

K∗
i =

lnKi − lnV (0)− (rf − σ2

2
)t

σ

=

(
lnKi − lnV (0)

σ

)
+

(
−

(rf − σ2

2
)

σ

)
t (3.21)

= a + bt

where a = lnK−lnV (0)
σ

and b = − (rf−σ2

2
)

σ
.

We can use this continuous default barrier; nevertheless, as suggested in Hull et al.

(2005); Hull and White (2001), a discrete version of the default barrier is constructed

thereafter to reduce the computation time.

3.3.3 The Structural Correlated Meixner Model

Unlike the structural model proposed by Hull, Predescu and White (2005), we

assume that the firm’s asset value follows a Lévy process called the Meixner process

with parameters of α, β, δ. Hence, we specialize the correlated Lévy process X
(L)
j to

a correlated Meixner process X
(Meixner)
j , replace the drift parameter with rf

6, and

5Note that if the firm pays dividends, rf − qj must be used where qj is dividend yield of firm j.
6Note that if the firm pays dividends, rf − qj must be used where qj is dividend yield of firm j.
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specify the mean-correcting parameter θ:

Vj(t) = V (0)exp
(
(rf − θ)t + αX

(Meixner)
j

)
(3.22)

where θ = 2δ ln
(

cos(β/2)
cos((α+β)/2)

)
. The term θ corrects the firm’s asset value so that the

discounted asset value process become a martingale. However, since it is incomplete

model, the market participants may not view as this formula. Indeed, we need no

special care of how market participants view because we imply the parameters from

CDS quotes. As a consequence, we have

X
(Meixner)
j (t) =

lnVj(t)− lnV (0)

α
+
−(rf − θ)

α
t (3.23)

and the default barrier becomes

K∗ =
lnK(t)− lnV (0)

α
+
−(rf − θ)

α
t

=
lnK − lnV (0)

α
+

γ − (rf − θ)

α
t

= a + bt

where a = lnK−lnV (0)
α

and b =
γ−(rf−θ)

α
. When all parameters are known, we can

price CDOs by sampling the paths of each firm j, X
(Meixner)
j by sampling the paths of

market factor F and the firm specific Zj:

Xi(t + dt) = Xi(t) + dXi(t)

dXi(t) =
√

ρdF (t) +
√

1− ρdZi(t)

where F and Zj are independent Meixner processes which F (0) = Ui(0) = 0 and their

increments distribute as Meixner(αi,βi,δdt,−αδdt tan(β/2)).

3.4 Calibration

3.4.1 Copula Models

In copula models, there are generally three components to calibrate the model.

The first is a hazard rate function of each firm which can be implied from CDS
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market. The second are the correlation parameter which will be implied from the

equity tranche, and the last are copula’s parameters which will be chosen so that the

overall mean absolute pricing error are minimum.

3.4.1.1 Implying the hazard rate function

In this study, we assume that the underlying portfolio is homogeneous and finite.

Because of homogeneity and equally-weighted in the underlying portfolio, the firms’

spreads are all the same and equal to the CDS index spread. Thus, we can view the

CDS index as a CDS of a representative company. Assuming the recovery rate to be

40% for all companies and a constant hazard rate, by using a reduced-form model, we

can imply the hazard rate and, in turn, finding the default probability on any maturities

from the CDS index. To price a CDS, we can use the same concept as in section 3.1

with some modifications. The equation (3.1) will become

s =
(1−R)

∑n
i=1{E[P (ti−1)]− E[P (ti)]}e−rti∑n

i=1(ti − ti−1)E[P (ti)]e−rti +
∑n

i=1(
ti−ti−1

2
){E[P (ti−1)]− E[P (ti)]}e−r(

ti+ti−1
2

)

(3.24)

where E[P (ti)] = e−λti . For illustration, considering a day on 5YS6 series, one can

imply the hazard rate λ by setting s with a 5YS6 CDX NA IG quote as the input.

3.4.1.2 Calibrating the correlation parameter

We will imply the correlation parameter from the equity tranche since, as Hull,

Predescu and White (2005) described, this tranche is the most sensitive to the corre-

lation parameter. For each day and with the given copula parameters (if any), we will

equal the model price and the market price of equity tranche and back the correlation

parameter out. After that , we will use this parameter to price the other tranches on

that day.

3.4.1.3 Calibrating the copula’s parameters

We will choose the copula parameters i.e. υ of student t, and α and β of the

Meixner distribution so that the mean absolute pricing error across all data observed

is minimum.
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3.4.2 Correlated Structural Models

To calibrate the correlated structural models, instead of implying the hazard rate,

we imply the default barrier in which the firm defaults when the firm value falls below

on day-by-day basis. Despite the differences, the correlation parameter and the process’s

parameters will be estimated similar to the cases of the copula models.

3.4.2.1 Implying the default barriers

Like in the copula models, we view the CDS index as a CDS of a repre-

sentative company underlying the portfolio. For correlated-BS model, the parameter

a = lnK−lnV (0)
σ

and b =
γ−

(
rf−σ2

2

)
σ

of the default barrier K∗ will be estimated by using

5- and 10- year CDS spread and the equation (3.24) where E[P (ti)] = 1 − p(0, ti)

in which p(0, ti) is the probability of default from the first passage time’s equation

(Harrison; 1990) i.e. p(0, ti) = Φ
(

a+bti√
ti

)
+ exp (−2ab) Φ

(
a−bti√

ti

)
. If we need to know

the asset volatility σ and the relative difference between the default barrier and the

asset value K/V (0), we can calculate them when the USD zero curves and the decay

parameter γ are known. However, it is not necessary to further find these values, only

the values of a and b are sufficient to price CDOs.

For MS model, the parameters a = lnK−lnV (0)
α

and b =
γ−(rf−θ)

α
of the default

barrier K∗will be estimated similar to correlated-BS model. Unfortunately, we have to

estimate two more parameters which are the β and δ of the Meixner process. Moreover,

the first passage time distribution of the Meixner process has no closed-form as in the

case before; this makes calibration harder. To estimate a and b, we have to assume the

value of β and δ first and then simulate until we figure out the barrier parameters that

make the CDS prices match the market quotes. Note that in all cases we will use time

step ∆t = 0.25.

For illustration, considering a day on series 6 with maturity of 5 and 10 years,

we sample the paths that follow Meixner process(1, β, δ) over time horizon of 10 years

and then we find the probability of first hitting the barrier a+bti by time ti i.e. p(0, ti).

After that the 5Y and 10Y CDS premium are computed using the equation (3.24); we

adjust the barrier parameters (a, b) until these CDS premiums are matched with the

market quotes. However for 7YS6, we use the data from 5YS6 and 7YS6 to find the

suitable barrier.
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3.4.2.2 Calibrating the correlation parameter and the process’s parameters

We do the same way as in copula models. However, instead of calibrating copula’s

parameters, we find the process’ parameters β and δ that minimize the overall mean

absolute pricing error.

3.5 Risk Measurement

3.5.1 Expected Discount Loss

Expected Discount Loss is the first risk measure we compute. It is not a good

risk measure since it provides only the average of the present value of losses that can

be incurred. However, investors may want to know how much the expected loss is.

The expected discount loss is equal to the default leg in CDO pricing framework

i.e.

EDL = default leg =
n∑

i=1

{E[P (ti−1)]− E[P (ti)]}e−rti

where E[P (ti)] is the expected outstanding principal of a CDO tranche at time ti.

Recall that the default leg is equal to premium leg at initiation.

3.5.2 Value-at-Risk

From Moosbrucker (2006a), the VaR of the portfolio was computed under the

assumption of large homogeneous portfolio (LHP). In this study, we compute the VaR

of portfolios and each tranche based on the assumption of homogeneous finite portfolio.

Suppose Lp is a random variable of the portfolio loss and P (0)is the total value of the

portfolio. The maximum potential loss of the portfolio at a confidence level (1−α)%,

V aRp can be calculated as follows

Pr(Lp > V aRp) = α

Fp(
V aRp

P (0)
) = 1− α

V aRp = P (0)F−1
p (1− α)
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where Fp is the distribution of the portfolio loss rate. Let Pj(0) is the total value of

the single tranche j. The credit VaR of the tranche j is

V aRj = Pj(0)×min

(
1, max

(
0,

KUj
− V aRp

P (0)

KUj
−KLj

))

V aRj (1− α) = Pj(0)×min

(
1, max

(
0,

KUj
− F−1

p (1− α)

KUj
−KLj

))
(3.25)

3.5.3 Expected Shortfall

Mashal et al. (2003); Antonov et al. (2005) suggests that the expected shortfall

of CDOs can be calculated as:

ESj =

∫ 1

1−α
V aRj(x)dx

α

where ESj is the expected shortfall or known as conditional VaR of single tranche j

and α is the significant level.



CHAPTER IV

DATA AND METHODOLOGY

4.1 Data

Synthetic CDOs is a combination of the securitization techniques and credit

derivatives. There are many types of CDOs. The Synthetic CDOs is the CDOs written

on Credit Default Swaps (CDSs). In this study, the data is based on CDOs written on

the CDX NA IG, which is a credit default swap index consisting of the equally-weighted

of the most 125 actively-traded CDSs of investment-graded firms in North America.

Whenever a firm in the index default, the investor will get compensated and the firm

will be removed from the index, thereby reducing the outstanding value. CDX NA IG

is divided into five standard tranches: 0-3%, 3-7%, 7-10%, 10-15% and 15-30% which

one can buy or sell each tranche separately, called the single tranche trade. The market

is made by a global group of broker-dealers. In every six months—on September 20th

and March 20th, it will roll over into a new series which represents the firms that

currently have highest volumes in their CDS trades.

The historical data used in this study are the series 5 and 6 of CDX NA IG

which are issued on September 20, 2005 and March 23, 2006, respectively. For CDX

NA IG series 5, we use the daily mid bid-ask spreads of all standard tranches and the

index quotes between September 20, 2005 and October 13, 2006, whereas for series

6, the data observed are between March 23, 2006 and October 16, 2006. Not only

CDOs with maturity of 5-year but also the CDOs with maturity of 7- and 10-year

are investigated. These series are denoted as 5YS5, 7YS5, 10YS5, 5YS6, 7YS6, and

10YS6. Note further that we include only the data from the days in which there were

both bid and ask of all tranches quoted. Therefore, the number of observations for

5YS5 is 128, while 113 for 5YS6, 118 for 7YS5, 110 for 7YS6, 115 for 10YS5, and

101 for 10YS6. The CDO data are from Reuters (GFI), while CDS index and USD

Zero Curves are downloaded from DataStream. We use the linear interpolation for the

interest rates in between the available maturities.

4.2 Research Hypotheses

1. Meixner copula model is preferable to double-t and Gaussian copula mod-
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els.
This is because the Meixner distribution can have both non-zero skewness and

excess kurtosis conforming the real world. Although the double-t model can

capture the fat-tail, its distribution has zero skewness and, worse comes to worst,

the Gaussian distribution has none of these features.

2. The correlated-Meixner structural model is preferable to the correlated-
GBM structural model.
In reality, the asset value does not just drifts and diffuses; it can jump. Relaxing

the assumption of normality by using a Lévy process, which the firm value can

jump or be driven by jumps, is more sensible.

3. The copula models and the structural models are approximately equivalent
in performance.
Some may argue that the reduced-form models, or in this case the copula models,

are preferable to the structural models in pricing a defaultable security owing to

the information based perspective. (Jarrow and Protter; 2004) Others may, by

contrast, argue that some sophisticated structural models are surprisingly better

than the reduced-form models, although the basic structural model i.e. Merton

(1974) is worse. (Arora, Bohn and Zhu; 2005) In our opinion, the reduced-form

model is better in general since they can be calibrated to the market quotes which

reflect the credit risk that market participants expect, whereas the structural model

based on unobservable firm’s asset value. However, in pricing CDOs, we can

calibrate the structural model as well by following Hull and White (2001); Hull,

Predescu and White (2005). Thus, we anticipate the performance of these two

approaches should be approximately the same.

4. Risk measures derived from each model should be slightly different.
However, the EDL, VaR, and ES from the models which are able to capture the

fat-tail should be more pessimistic than the one from the Gaussian-based models,

especially in case of the high level of confidence.

4.3 Methodology

In this section, we describe the methodology to test our hypotheses. Recall

that GC represents the Gaussian copula model, DC is the double-t copula model,
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MC means the Meixner copula model, BS represents the correlated-Brownian motion

structural model, and finally, MS is the correlated-Meixner structural model.

4.3.1 Mean Absolute Pricing Error (MAPE)

MAPE indicates how well a model can capture the tranche’s premium structures.

The lower the MAPE, the better the model. The MAPE of each model will be

calculated from the formula as follows

MAPE =

∑n
i=1 APEti

n

where APEti =
∑tranche5

tranche2 |ModelSpreadti −MarketSpreadti|,
n is the number of period until maturity

To make sure that one model significantly outperforms the other, test statistics

should be used. According to Houweling and Vorst (2005), a paired Z-test is used to

compare the performance of Model A and Model B as follows

ZA,B =
√

n
¯dA,B

sA,B

where dA,B,ti = APEA,ti − APEB,ti ,

d̄A,B is the sample mean of dA,B,ti ,

sA,B is the sample standard deviation of dA,B,ti ,

n is the sample size.

ZA,B has asymptotically the standard normal distribution.

In addition, we use MAPE to measure the performance of each model for each

tranche by

MAPEj =

∑n
i=1 APEj,ti

n

where APEj,ti = |ModelSpreadj,ti −MarketSpreadj,ti|,
n is the number of period until maturity

j is the tranche j
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4.3.2 Hypothesis I

Meixner copula model is preferable to double-t and Gaussian copula models. We

will investigate two pairs of models i.e. MC vs. GC and MC vs. DC. Thus, the

hypotheses are

H0 : MAPEGC ≤ MAPEMC

H1 : MAPEGC > MAPEMC

and

H0 : MAPEDC ≤ MAPEMC

H1 : MAPEDC > MAPEMC

At the first place, we presume that GC is better so that its MAPE is less than

the MC’s. After that if MC model is better the null hypothesis will be rejected. The

same will be applied for the pair of DC and MC.

4.3.3 Hypothesis II

The correlated-Meixner structural model is preferable to the correlated-Brownian

motion structural model.

H0 : MAPEBS ≤ MAPEMS

H1 : MAPEBS > MAPEMS

At the first place, we presume that BS is better so that its MAPE is less than

MS’s. After that if BS model is better the null hypothesis will be rejected.

4.3.4 Hypothesis III

The copula models and the structural models are equivalent in performance. We

will investigate the MAPEs of the structural models and the copula models whether

which one is better.
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4.3.5 Hypothesis IV

Risk measures of each CDO from each model should be slightly difference or

roughly the same. We will investigate the results from each model whether they are

much different or not.



CHAPTER V

RESULTS

In this chapter, we discuss the results and the interpretations of the results. First,

we investigate the fitting performance of each model via MAPEs. Among the copula

models, which one is the best?, and among the two correlated structural models, which

one is the better?. After that, we discuss the results as to which approach between the

copula model and the correlated structural model is better. Next, we discuss the three

risk measures computed from each model.

According to our implementation, the degree of freedom of double-t copula model

that minimizes MAPE is 3 for all time series except 10YS5 and 10YS6 which are 6.

For Meixner copula model, the optimal parameters (α, β) are vary among the time

series; (2.6753,-0.70036) for 5YS6, (1.3724,-1.8162) for 7YS6, (0.013162,-3.0949) for

10YS6, and others shown in Table 5.1. Also, the optimal parameters for the correlated

Meixner structural model, (β, δ) are shown in Table 5.1; for example, (-0.6435, 0.0400)

for 5YS6, (-0.8261, 0.0280) for 7YS6, and (-1.3694, 0.0400) for 10YS6. Notice that

the βs of MC and MS are all negative. Note that some of the correlated Meixner

structural’s parameters i.e. 10YS5 and 10YS6 are best effort and not guaranteed the

global optimum since MS model is based on Monte Carlo which is hard to calibrate.

It is cost expensive that it consumes a lot of time in calibration compared with the

other models that are semi-analytic. Although MS model is not calibrated to its best in

some cases, with these parameters, MS model’s performance is sufficient to be judged.

Table 5.2 shows the MAPEs of each model for all time series. For 5YS6, the

MAPE of GC is 99.35, while DC has very low MAPE of 24.36. MC is even better

with MAPE of 13.74. BS’s is 78.84, whereas MS’s is 10.55. As a consequence, the

model’s rank is MS, MC, DC, BS, GC. The rank of each model for 7YS6 are the

same; they have MAPEs of 152.61, 39.98, 25.94, 146.60, and 25.81 from the top of

the table to the bottom. For 10YS6, the results are a bit more different; BS has MAPE

of 235.55 which is more than that of GC i.e. 185.40. Thus, the rank is MS, MC, DC,

GC, BS. The ranks for series 5 are similar except that the rank of MS and MC in 5YS5

and 7YS5 are swapped as compared with the series 6. Generally, the models based on

Meixner distribution/process i.e. MC and MS have the least MAPEs. Double-t copula

model, which takes into account the symmetric tail dependence, performs second to
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Table 5.1: The optimal parameters of each model calibrated from the market quotes
of CDX NA IG index and its CDOs.

CDX NA IG

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

GC NA NA NA NA NA NA

DC df 3 3 3 3 6 6

MC α 3.2225 2.6753 1.6657 1.3724 0.0180 0.0132
β -0.6911 -0.7004 -1.9726 -1.8162 -3.0644 -3.0949

BS NA NA NA NA NA NA

MS β -0.6435 -1.0472 -0.7499 -0.8261 -1.3694 -1.3694
δ 0.0400 0.0500 0.0268 0.0280 0.0400 0.0400

the two former models that incorporate asymmetric features. The standard models, GC

and BS, are the worst. The following statistical tests will prove these obvious results.

5.1 Results I

All of the copula models are compared using the paired z-test; the mean differ-

ences, their standard deviations, and their t-stats are shown in Table 5.3. Recall that a

significant positive t-stat means the fist model has MAPE more than the second model;

therefore, the first model underperforms the second significantly, and vice versa for a

significant negative t-stat.

According to the t-stats in the table, Meixner copula model significantly outper-

forms both Gaussian copula and double-t copula models in all cases. When double-t

copula model and Gaussian copula model are considered, the former is significantly

better in all cases too. For 5YS6, the t-stat of GC vs MC is 37.73 which means MC is

extremely significantly better than GC, while the t-stat of DC vs MC is 8.02, thereby

suggesting that MC is again better significantly. Between GC and DC, the t-stat of

65.01 also presents that DC is superior to GC. For 7YS6, the results is similar; the

t-stats of GC vs MC, DC vs MC, and GC vs DC are 51.26, 12.45, 74.60. This suggests

that MC is significantly superior to the other two, while DC is the second. Likewise,

the t-stats of 10YS6 shows that the rank is MC, DC, and GC, respectively. For series

5, the results are very similar as shown in Table 5.3.
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Table 5.2: The minimum MAPEs and their standard deviations of each model for all
time series using the optimal parameter shown in Table 5.1.

CDX NA IG

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

GC 102.65 99.35 168.31 152.61 200.15 185.40
(33.70) (19.18) (54.17) (26.00) (48.29) (24.01)

DC 25.53 24.36 59.98 39.98 158.47 158.15
(17.32) (9.91) (31.19) (16.13) (33.22) (43.64)

MC 21.93 13.74 43.76 25.94 154.66 151.11
(13.76) (8.02) (24.66) (13.00) (31.69) (42.81)

BS 84.68 78.84 156.72 146.60 255.14 235.55
(40.73) (37.36) (47.89) (73.78) (73.07) (44.50)

MS 22.12 10.55 53.86* 25.81* 98.53* 72.97*
(10.64) (6.34) (34.05) (17.13) (58.65) (32.97)

Note: All numbers are in basis point except the t-stats that is in unit of one.
* This results from the approximation approach.

Table 5.3: The results of the paired z-test among the copula models.

CDX NA IG

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

GC vs MC Mean Diff. 80.72 85.61 124.55 126.68 45.49 34.29
S.D. of Diff. (34.65) (24.12) (59.81) (25.92) (37.24) (42.76)

t-stats 26.36 37.73 22.62 51.26 13.10 8.06

DC vs MC Mean Diff. 3.60 10.63 16.22 14.04 3.81 7.05
S.D. of Diff. (16.22) (14.09) (26.65) (11.83) (9.22) (3.17)

t-stats 2.51 8.02 6.61 12.45 4.43 22.35

GC vs DC Mean Diff. 77.12 74.98 108.33 112.63 41.68 27.25
S.D. of Diff. (20.93) (12.26) (36.59) (15.84) (38.29) (43.00)

t-stats 41.68 65.01 32.16 74.60 11.67 6.37

Note: The number of observations of 5YS5 is 128, while 5YS6’s is 113 observations; 7YS5’s, 7YS6’s,
10YS5’s, and 10YS6’s are 118, 110, 115, and 101, respectively. All numbers are in basis point except
the t-stats that is in unit of one.
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This suggests that the model taking account of the tail dependence of each asset

in the baskets will improve the capability to capture the capital structure of CDOs.

Moreover, the more flexible model that can handle the asymmetric tail dependence

will further increase the performance. This confirms that the assets in the portfolio

are more correlated in lower tail than in upper tail because the parameters of MC that

makes the MAPE minimum has negative β for all data samples. We suggest that, for

CDO valuation, considering only the symmetric tail dependence is not sufficient since

firms tends to default together in downturn but be more independent in upturn.

To further discuss the results, we focus on CDX NA IG 5YS6 for all copula

models. The three copula models are based on the reduced-form model marginally.

They have the same hazard rate over time; Figure 5.1 shows the level of hazard

rate implied from the market quotes on day-by-day basis. However, the three models

use the different copulas which result in the differences in the dependence structures.

Recall that Gaussian copula has no tail dependence, while the double-t copula has

symmetric tail dependence, and Meixner copula has more flexibility that it can supports

an asymmetric dependence structure. Figure 5.2 represents the probability density

distributions used to construct the dependence structures (copulas), whereas Figure 5.3

reveals the dependence structures of Gaussian copula, double-t copula, and Meixner

copula, respectively. For illustration, we show the plots of two 3000-sample variates

with different degree of dependency—ρ = 0.2, 0.5, and 0.9. The more the degree of

dependency, the more noticeable the shapes of the dependence structures. For Gaussian

copula, the shape of bi-variate dependence structure is ellipse; on the other hand, in

case of double-t copula, it is more scattered in the middle but more clustered at the

both tails. This is known as the fat-tail. Moreover, Meixner copula has the shape

that even more scattered in the middle and even more clustered at the both tails like

star-shape. Due to the negative β, the PDF of Meixner has fatter left tail than the

right, and the lower tail of Meixner copula is, in turn, more clustered than the upper.

Focusing on the tail of the plot, double-t and Meixner copula have tail dependence

because their tails are quite sharp so that the trends at the tails are obvious.

Nevertheless, the figures of dependence structures above using the degree of

dependence (ρ) for illustration purposes, the actual degree of dependence over time

implied from the market quotes are shown in Figure 5.4. Note that ρ is not indeed

the default correlation, the asset correlation of firms, nor even the correlation of the

default times, though it may be estimated from those ways. It actually represents the
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Figure 5.1: The movement of hazard rates implied from CDX NA IG 5YS6

Figure 5.2: The probability density function of the normal, unit-variance student-t,
and Meixner distribution behind the copula models that optimally fit the whole samples
of the market quotes of CDX NA IG 5YS6
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Figure 5.3: The dependence structure of Gaussian copula, double-t copula with df=3,
and Meixner copula with parameters α = 2.6753, β = −0.70036.

(a) ρ = 0.2

(b) ρ = 0.5

(c) ρ = 0.9
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Figure 5.4: The movement of ρ

level of dependency in the copulas. As shown in the figure, the degrees of dependency

implied from each model are very highly correlated; the only difference is the overall

level of the paths.

5.2 Results II

Among correlated structural models, the results are similar to those of the copula

models as shown in Table 5.4. The correlated Meixner structural model significantly

outperforms the standard structural model in all cases. For 5YS6, the t-stat is 36.44,

while 7YS6’s is 13.30, and 10YS6’s is 14.89. Likewise, the t-stats in series 5 for 5Y,

7Y, and 10Y are 16.86, 18.91, and 14.98, respectively.

This suggests that, for CDO valuation, the assumption that firm value follows the

Brownian motion is not justified. The firm value can have rare large moves governed

by jumps in addition to the frequent small moves provided by diffusion, or in this

study, we assume that the firm value movement is driven wholly by jumps of infinite

activity and infinite variation which can capture both the rare events, small moves, and

the extremely frequent small moves. The result shows that modeling the asset return as

Meixner process is more realistic. Furthermore, the optimal parameters having negative

β’s for all cases, imply that a firm is more likely to suffer from large,down-sided jumps

than the large,up-sided jumps. The large,down-sided jumps can be from market factor

or firm specific. When it is from market factor, all firms tremendously increase the
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Table 5.4: The results of the pair z-test between BS and MS models

CDX NA IG

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

BS vs MS Mean Diff. 62.57 65.10 94.82 103.80 140.70 128.29
S.D. of Diff. (41.99) (18.99) (54.48) (81.85) (100.72) (86.61)

t-stats 16.86 36.44 18.91 13.30 14.98 14.89

Note: All numbers are in basis point except the t-stats that is in unit of one.

chance of default.

We further investigate CDX NA IG 5YS6 for both of the correlated structural

models. Both BS and MS are based on the first passage model marginally. However,

MS has more flexibility than BS in that it can adjust its process to have heavier/lighter

upper/lower tail, while BS has no fat-tail at both sides. Unfortunately, there is an

analytical solution for the probability of first hitting time in Brownian case derived via

Reflection principle but not in Meixner case. Because Meixner is a pure jump process,

this principle cannot be applied.

Figure 5.5 represents the probability distribution of the increments of Brownian

motion and Meixner process, whereas the movements of default barrier parameters

calibrated using one-by-one basis are shown in Figure 5.6 and 5.7. From the sketch

of PDF over time, there is more probability for Meixner process that the cumulative

asset return will be around the earlier level or have a large move than for Brownian

motion. This is known as leptokurtic of the return distribution which is found in reality.

Moreover, Meixner process moves asymmetrically which represents the skewness of the

actual return distribution. For the movements of default barrier’s parameter of both

models, they are highly correlated; the dramatic difference is the level of the values.

The sources of this differences are contributed to the different volatility, skewness, and

kurtosis of the asset return distribution. If we assume that K/V0 = 0.5, the volatility

σ can implied directly from (3.21) i.e. σ = 15.82% p.a. on 23-Mar-2006. In the case

of Meixner, the same procedure can be applied but not directly because the α is not

the volatility or variance; it is just a scaling factor of the process. To determine the

volatility of asset return, we must take β and δ into account. According to Table B.1,

volatility is equal to α
√

δ
1+cos(β)

= 11.03% p.a. on 23-Mar-2006 which is sensible.
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Figure 5.5: The probability distribution of the increments over period [0,1] of Brown-
ian motion and Meixner process (-1.0472, 0.05) implied from 5YS6

In multi-variate settings, correlated asset returns follows Brownian motion in BS

and Meixner process in MS. For illustration, Figure 5.8 shows the sample paths of the

asset return simulated from the correlated Brownian motion and the correlated Meixner

process (-1.0472, 0.05) with the degree of dependency of 0.2, 0.5, and 0.9. In BS,

both market factor and the idiosyncratic diffuse without jumps, whereas the market

factor and the idiosyncratic in MS jumps through the time.

Figure 5.9 shows the degree of dependency of all models over time; it is highly

correlated regardless the types of models. Note that it is not indeed the asset correlation;

it is just its proxy.

5.3 Results III

This section compares the copula models with the correlated structural models.

First, we compare the copula models with BS. Then, MS and the copula models are

compared.

The results of copula models and BS comparison reveals in Table 5.5. The

performance of BS is poorer in almost all of the cases. BS is only better than GC
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Figure 5.6: The movement of barrier parameters of BS for CDX NA IG 5YS6

(a) The intercepts of GBMS (b) The slopes of GBMS

Figure 5.7: The movement of barrier parameters of MS for CDX NA IG 5YS6

(a) The intercepts of GBMS (b) The slopes of GBMS

in 5YS5, 5YS6, 7YS5, and 7YS6 cases. For GC vs BS, the t-stats of 5YS6 is 36.72,

while 7YS6’s is 0.89; however, 10YS6’s is -18.17. This implies that BS performs better

than GC in short and medium maturity. For DC vs BS, the t-stats of 5YS6, 7YS6, and

10YS6, which are -40.30, -15.65, and -9.40, shows that DC significantly outperforms

BS in all cases. Likewise in MC vs BS, the t-stats of -28.88, -17.15, and -16.50 for

series 6 reveals the outperformance of MC. The results of series 5 is very consistent

with those of series 6. As a consequence, the models taking tail dependence into

account perform better regardless of the approaches. The results is almost what we

anticipated except the 10Y series. In our opinion, the BS should be better than GC

because it joins the dependency through the periods, while copula approach joins at

the end of periods.
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Figure 5.8: The paths of the cumulative asset returns of two sample firms that
follow correlated Brownian motion and correlated Meixner process(-1.0472, 0.05) with
different degree of dependency.

(a) ρ = 0.2

(b) ρ = 0.5

(c) ρ = 0.9
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Figure 5.9: The movement of ρ’s

The results of the comparison of the copula models and MS are shown in Table

5.6. MS can beat all the models in 5Y and 10Y series, while in 7Y series, it is

considerably worse only than MC.

The conclusion as to which approach between a copula model and a correlated

structural model is better is ambiguous; however, in most cases MC is the best, while

MS is the second; double-t is the third and the second to last and the last are BS

and GC. It seems that, from this study, the performance does not depend directly on

how the marginals are modeled but rather on the dependence structure the models

provide. As a consequence, modeling the marginals with either reduced-form approach

or structural approach does not quite different in CDOs.

In general, a copula model is faster in computation than a correlated structural

model, while the correlated structural model has economic underpinnings and usually

based on Monte Carlo. Economically, a correlated structural model is better than a

copula model in that it joins the firm value with market factor through out the time via

correlated first passage time, while the copula model joins the firm value via the level

of the market factor at the end of the time. Moreover, correlated structural models

are dynamic models in that the conditional default probability can evolve over time;
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Table 5.5: Paired Z-test for the copula models and BS

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

GC vs BS Mean Diff. 17.97 23.70 11.59 6.01 -54.99 -50.15
S.D. of Diff. (11.72) (6.86) (13.28) (70.50) (35.63) (27.74)

t-stats 17.35 36.72 9.48 0.89 -16.55 -18.17

DC vs BS Mean Diff. -59.15 -51.28 -96.74 -106.62 -68.88 -48.67
S.D. of Diff. (28.34) (13.52) (30.25) (71.45) (66.89) (52.06)

t-stats -23.61 -40.30 -34.74 -15.65 -11.04 -9.40

MC vs BS Mean Diff. -58.92 -61.91 -112.96 -120.66 -100.48 -84.45
S.D. of Diff. (47.11) (22.79) (53.20) (73.81) (57.09) (51.44)

t-stats -14.15 -28.88 -23.06 -17.15 -18.87 -16.50

Note: All numbers are in basis point except the t-stats that is in unit of one.

Table 5.6: Paired Z-test for the copula models and MS

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

GC vs MS Mean Diff. 80.54 88.80 114.45 126.80 101.62 112.44
S.D. of Diff. (35.78) (20.05) (57.68) (32.15) (79.79) (45.47)

t-stats 25.46 47.08 21.55 41.36 13.66 24.85

DC vs MS Mean Diff. 3.42 13.82 6.12 14.17 59.94 74.82
S.D. of Diff. (18.47) (10.04) (25.98) (18.89) (58.44) (40.93)

t-stats 2.09 14.63 2.56 7.86 11.00 18.37

MC vs MS Mean Diff. 3.65 3.19 -10.10 0.12 56.13 78.14
S.D. of Diff. (10.45) (9.10) (22.25) (10.93) (53.30) (30.07)

t-stats 3.95 3.73 -4.93 0.12 11.29 26.12

Note: All numbers are in basis point except the t-stats that is in unit of one.

they can price some exotic credit derivatives that a simple copula model cannot such

as Forward Starting CDO and Options on CDOs. However, copula models can also

increase the dynamics by modeling the evolution of hazard rates. (Hull and White;

2006a)

5.4 Results IV

This section discusses the risk measures derived from each model: EDL, VaR,

ESs of CDX NA IG by assuming that investors hold the CDOs until the expiry. First,

the portfolio loss distribution of 5YS6, 7YS6, and 10YS6 implied from each model are

investigated. Then, we discuss the risk measures of each CDO tranche at confidence
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level of 95%. It is important to bear in mind that we imply the risk measures under

risk-neutral world; the results may be different in the real world.

Figure 5.10 reveals the portfolio loss distribution of CDX NA IG 5YS6, 7YS6,

and 10YS6 implied from the market quotes on the issued date (23 Mar 2006) for each

model. For 5 years, GC is the most optimistic

Table 5.7 represents the risk measures for all data samples. Recall that these

risk measures have different interpretations. Expected Discount Loss (EDL) is the

expected loss derived from each model while VaR is the potential loss in extreme

case at a confidence level of 95%. In contrast, ES is the average of the potential

losses given that a extreme event occurs at the same confidence level. In addition,

the undiscount total premium (UTP) is an approximate indicating actually how much

investors get compensated totally. Therefore, VaR/EDL indicates how much the loss

in extreme case is relative to the expected loss. For ES/EDL, it indicates how much

the average potential loss given an extreme case is, compared to the expected loss.

Similarly, VaR/UTP and ES/UTP indicate how much the loss in extreme case and the

average loss given extreme case are relative to what market views.

The VaR and ES is relatively high in some tranches when comparing with EDL

and the market premiums (Undiscounted Total Premium). This is interesting because

EDL is what we expect in average and it indicates directly how much investors should

fairly get in compensation, but in extreme case, the investors can end up with a hugh

loss than what is expected. We will discuss the risk measures from 5YS6; however,

the other series have only slightly different interpretations.

For the equity tranches (0-3%), it is quite certain that in extreme cases the

investors holding this tranche will loss all of their investments. The risk measures

computed from different models provide approximately the same. In extreme cases, the

investors holding 5YS6 equity tranches can loss about twice of the expected loss while

it is around 1.8 times of what market views. Given an extreme event occur, it is quite

sure that all the value of the notional principal is wiped out.

For junior mezzanine tranches (3-7%), investors holding this tranche until the

expiry are exposure to large losses in extreme cases comparing to what they expect to

get in average. For 5YS6 as an example, investors can loss around 7-8 times of the
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Figure 5.10: The portfolio loss distribution of CDX NA IG Series 6

(a)

(b)

(c)
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expected loss while about 5-14 times of what market views. Given that the extreme

cases occur, the loss is approximately 12-18 times of the expected loss; whereas it is

about 14-20 times of what market views. For this tranche, each of the models provides

slightly different risk measures except GC and BS; they are the most pessimistic. It

is interesting that although tranche 0-3% can worthless in extreme case, the premium

is high. Even though this tranche losses less than tranche 0-3% in extreme cases, the

premium is even less.

For mezzanine tranche 7-10%, GC and DC provide similar higher risk measures;

whereas, MC’s and MS’s are close to each other; BS has significant less risk measures.

Though, the losses in extreme case are zeros at confidence level of 95%, the average

potential loss given the extreme events is about 24-26 times of the expected loss.

Moreover, it is about 11 times of what market views for BS but 20-28 times for the

other models. Notice that BS’s risk measures start to fall sharply because the model

neglects extreme cases.

For tranche 10-15% of 5YS6, DC provides the highest risk measures; whereas,

MC’s and MS’s is very similar. GC has less risk measures and BS has much less

ones. In extreme cases, investors holding this tranche is quite safe; the potential loss

are zeros for all models. However, given extreme events occur, the average potential

loss can be 24-26 times of the expected loss. For BS and GC, it is around 1.7 and 9

times of what market views; whereas, it is 18-35 times for MS, MC, and DC. Notice

that GC and BS fall sharply; the probable reason is they ignore the extreme cases.

Like in tranche 10-15%, DC provides the highest risk measures for tranche 15-

30%. MC’s and MS’s are very similar while GC has less risk measures. BS has much

less ones. Moreover, the potential losses in extreme cases are zeros. However, given

extreme events, the average potential loss is 24-26 times of the expected loss. When

comparing with what market views, BS and GC provide only 0.0330-0.2317 times;

whereas, MC and MS suggest about 12-14 times. It is 33 folds for DC. In this tranche,

the interpretation is similar to the previous tranche i.e. BS and GC neglect the extreme

cases; hence, the risk measures for later tranche is too low.

Risk measures derived from 5YS5 is very similar to the case of 5YS6. Moreover,

the risk measures for 7YS5, 7YS6, 10YS5, and 10YS6 reveal consistency with the

interpretation of 5YS6. Firstly, BS and GC neglect the extreme cases so that their risk
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measures are higher in earlier tranches and then plummet later. Secondly, DC provide

relatively high risk measures in most cases. Finally, both MC’s and MS’s risk measures

tend to be less than DC’s in most cases. However, the noticeable differences among

different series are: in case of 5Y, only tranche 0-3% is wiped out in extreme cases;

for 7Y, the first two tranches are wiped out much likely in rare cases; lastly, the first

three tranches of 10Y are worthless in extreme events quite surely, and rather surely

for the fourth tranche.
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Table 5.7: The risk measures for various Tranches

Panel A: Tranche 0-3%

Risk Measures (unit) Risk Measures / EDL Risk Measures / UTP

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

Mean Mkt. Quotes 0.3252 0.2970 0.4910 0.4635 0.5750 0.5501 NA NA NA NA NA NA NA NA NA NA NA NA

UTP 0.5752 0.5470 0.7410 0.7135 0.8250 0.8001 NA NA NA NA NA NA NA NA NA NA NA NA

GC 0.4718 0.4518 0.6491 0.6310 0.7417 0.7228 NA NA NA NA NA NA 0.8204 0.8259 0.8761 0.8844 0.8989 0.9034

DC 0.4731 0.4532 0.6508 0.6330 0.7412 0.7224 NA NA NA NA NA NA 0.8225 0.8285 0.8783 0.8871 0.8984 0.9030

EDL MC 0.4753 0.4554 0.6564 0.6377 0.7448 0.7267 NA NA NA NA NA NA 0.8264 0.8326 0.8859 0.8937 0.9028 0.9083

BS 0.4959 0.4744 0.6775 0.6618 0.7700 0.7531 NA NA NA NA NA NA 0.8622 0.8672 0.9143 0.9274 0.9332 0.9413

MS 0.4834 0.4633 0.6714 0.6569 0.7697 0.7520 NA NA NA NA NA NA 0.8405 0.8470 0.9061 0.9206 0.9329 0.9399

GC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.1193 2.2135 1.5405 1.5847 1.3483 1.3836 1.7387 1.8282 1.3496 1.4015 1.2121 1.2498

DC 0.9972 1.0000 1.0000 1.0000 1.0000 1.0000 2.1081 2.2065 1.5366 1.5798 1.3491 1.3842 1.7338 1.8282 1.3496 1.4015 1.2121 1.2498

VaR MC 0.9929 1.0000 1.0000 1.0000 1.0000 1.0000 2.0889 2.1959 1.5234 1.5682 1.3426 1.3760 1.7263 1.8282 1.3496 1.4015 1.2121 1.2498

BS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0165 2.1081 1.4761 1.5111 1.2988 1.3278 1.7387 1.8282 1.3496 1.4015 1.2121 1.2498

MS 0.9978 1.0000 1.0000 1.0000 1.0000 1.0000 2.0641 2.1583 1.4894 1.5224 1.2992 1.3298 1.7348 1.8282 1.3496 1.4015 1.2121 1.2498

GC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.1193 2.2135 1.5405 1.5847 1.3483 1.3836 1.7387 1.8282 1.3496 1.4015 1.2121 1.2498

DC 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 2.1130 2.2065 1.5366 1.5798 1.3491 1.3842 1.7379 1.8282 1.3496 1.4015 1.2121 1.2498

ES MC 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000 2.1012 2.1959 1.5234 1.5682 1.3426 1.3760 1.7365 1.8282 1.3496 1.4015 1.2121 1.2498

BS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0165 2.1081 1.4761 1.5111 1.2988 1.3278 1.7387 1.8282 1.3496 1.4015 1.2121 1.2498

MS 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 2.0679 2.1583 1.4894 1.5224 1.2992 1.3298 1.7381 1.8282 1.3496 1.4015 1.2121 1.2498

                    50
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Table 5.7: The risk measures for various Tranches (Continued)

Panel B: Tranche 3-7%

Risk Measures (unit) Risk Measures / EDL Risk Measures / UTP

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

Mean Mkt. Quotes 0.0088 0.0090 0.0227 0.0230 0.0572 0.0554 NA NA NA NA NA NA NA NA NA NA NA NA

UTP 0.0442 0.0452 0.1590 0.1613 0.5716 0.5542 NA NA NA NA NA NA NA NA NA NA NA NA

GC 0.0707 0.0727 0.1815 0.1828 0.3697 0.3591 NA NA NA NA NA NA 1.6006 1.6106 1.1421 1.1330 0.6467 0.6480

DC 0.0415 0.0402 0.1353 0.1317 0.3415 0.3290 NA NA NA NA NA NA 0.9396 0.8902 0.8510 0.8165 0.5974 0.5937

EDL MC 0.0361 0.0369 0.1169 0.1249 0.3460 0.3300 NA NA NA NA NA NA 0.8187 0.8179 0.7352 0.7743 0.6054 0.5954

BS 0.0598 0.0618 0.1860 0.1850 0.4508 0.4355 NA NA NA NA NA NA 1.3545 1.3686 1.1701 1.1469 0.7887 0.7859

MS 0.0409 0.0355 0.1315 0.1318 0.3772 0.3640 NA NA NA NA NA NA 0.9261 0.7860 0.8273 0.8170 0.6599 0.6568

GC 0.5513 0.6182 0.9786 1.0000 1.0000 1.0000 7.8008 8.5004 5.3902 5.4705 2.7050 2.7847 12.486 13.690 6.1563 6.1980 1.7494 1.8045

DC 0.2800 0.2905 0.9246 0.9844 1.0000 1.0000 6.7480 7.2272 6.8348 7.4725 2.9283 3.0393 6.3406 6.4334 5.8167 6.1013 1.7494 1.8045

VaR MC 0.2321 0.2604 0.8683 0.9752 1.0000 1.0000 6.4200 7.0514 7.4308 7.8058 2.8899 3.0306 5.2558 5.7675 5.4628 6.0440 1.7494 1.8045

BS 0.4326 0.4915 0.9317 0.9840 1.0000 1.0000 7.2344 7.9527 5.0098 5.3177 2.2181 2.2960 9.7988 10.8844 5.8617 6.0989 1.7494 1.8045

MS 0.2841 0.2497 0.8412 0.9283 1.0000 1.0000 6.9475 7.0348 6.3968 7.0430 2.6509 2.7473 6.4338 5.5297 5.2920 5.7538 1.7494 1.8045

GC 0.8385 0.8985 0.9960 1.0000 1.0000 1.0000 11.865 12.355 5.4862 5.4705 2.7050 2.7847 18.992 19.899 6.2660 6.1980 1.7494 1.8045

DC 0.6711 0.7200 0.9887 0.9990 1.0000 1.0000 16.176 17.913 7.3085 7.5835 2.9283 3.0393 15.199 15.946 6.2199 6.1919 1.7494 1.8045

ES MC 0.6064 0.6733 0.9765 0.9986 1.0000 1.0000 16.777 18.231 8.3564 7.9936 2.8899 3.0306 13.735 14.912 6.1433 6.1893 1.7494 1.8045

BS 0.7134 0.7837 0.9844 0.9982 1.0000 1.0000 11.930 12.681 5.2929 5.3943 2.2181 2.2960 16.159 17.356 6.1930 6.1867 1.7494 1.8045

MS 0.6608 0.6477 0.9651 0.9935 1.0000 1.0000 16.162 18.247 7.3389 7.5373 2.6509 2.7473 14.967 14.343 6.0714 6.1576 1.7494 1.8045
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Table 5.7: The risk measures for various Tranches (Continued)

Panel C: Tranche 7-10%

Risk Measures (unit) Risk Measures / EDL Risk Measures / UTP

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

Mean Mkt. Quotes 0.0021 0.0020 0.0043 0.0046 0.0110 0.0114 NA NA NA NA NA NA NA NA NA NA NA NA

UTP 0.0104 0.0100 0.0301 0.0321 0.1099 0.1144 NA NA NA NA NA NA NA NA NA NA NA NA

GC 0.0085 0.0109 0.0356 0.0404 0.1604 0.1608 NA NA NA NA NA NA 0.8182 1.0879 1.1805 1.2551 1.4587 1.4064

DC 0.0102 0.0118 0.0308 0.0330 0.1420 0.1411 NA NA NA NA NA NA 0.9819 1.1788 1.0226 1.0274 1.2920 1.2336

EDL MC 0.0081 0.0086 0.0282 0.0316 0.1451 0.1417 NA NA NA NA NA NA 0.7856 0.8596 0.9356 0.9833 1.3198 1.2386

BS 0.0028 0.0042 0.0191 0.0218 0.1418 0.1396 NA NA NA NA NA NA 0.2688 0.4182 0.6327 0.6781 1.2899 1.2209

MS 0.0097 0.0077 0.0221 0.0251 0.1077 0.1118 NA NA NA NA NA NA 0.9348 0.7653 0.7337 0.7807 0.9798 0.9773

GC 0.0000 0.0000 0.3148 0.4204 0.9948 1.0000 0.0000 0.0000 8.8443 10.419 6.2035 6.2170 0.0000 0.0000 10.440 13.077 9.0488 8.7435

DC 0.0000 0.0000 0.1714 0.1861 0.9967 1.0000 0.0000 0.0000 5.5585 5.6357 7.0165 7.0878 0.0000 0.0000 5.6840 5.7899 9.0657 8.7435

VaR MC 0.0000 0.0000 0.1357 0.1692 0.9949 1.0000 0.0000 0.0000 4.8112 5.3532 6.8570 7.0590 0.0000 0.0000 4.5013 5.2635 9.0495 8.7435

BS 0.0000 0.0000 0.0862 0.0982 0.9558 0.9946 0.0000 0.0000 4.5220 4.5039 6.7402 7.1227 0.0000 0.0000 2.8609 3.0542 8.6941 8.6959

MS 0.0000 0.0000 0.0796 0.0826 0.9572 1.0000 0.0000 0.0000 3.6000 3.2926 8.8854 8.9463 0.0000 0.0000 2.6412 2.5705 8.7063 8.7435

GC 0.2066 0.2692 0.7385 0.8502 0.9996 1.0000 24.375 24.706 20.752 21.071 6.2331 6.2170 19.943 26.877 24.497 26.447 9.0919 8.7435

DC 0.2413 0.2819 0.7264 0.8070 0.9998 1.0000 23.722 23.869 23.563 24.433 7.0382 7.0878 23.294 28.136 24.095 25.102 9.0937 8.7435

ES MC 0.1952 0.2099 0.6834 0.7823 0.9996 1.0000 23.982 24.370 24.228 24.748 6.8897 7.0590 18.839 20.949 22.668 24.334 9.0927 8.7435

BS 0.0703 0.1081 0.4608 0.5596 0.9861 0.9997 25.242 25.791 24.160 25.670 6.9535 7.1596 6.7858 10.7870 15.2846 17.407 8.9693 8.7409

MS 0.2358 0.1908 0.5791 0.6841 0.9886 1.0000 24.345 24.895 26.181 27.254 9.1776 8.9463 22.758 19.051 19.208 21.278 8.9926 8.7435
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Table 5.7: The risk measures for various Tranches (Continued)

Panel D: Tranche 10-15%

Risk Measures (unit) Risk Measures / EDL Risk Measures / UTP

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

Mean Mkt. Quotes 0.0010 0.0009 0.0022 0.0020 0.0054 0.0054 NA NA NA NA NA NA NA NA NA NA NA NA

UTP 0.0049 0.0047 0.0153 0.0140 0.0541 0.0544 NA NA NA NA NA NA NA NA NA NA NA NA

GC 0.0011 0.0018 0.0062 0.0080 0.0610 0.0640 NA NA NA NA NA NA 0.2196 0.3751 0.4079 0.5695 1.1283 1.1773

DC 0.0055 0.0070 0.0144 0.0162 0.0621 0.0642 NA NA NA NA NA NA 1.1361 1.4933 0.9458 1.1586 1.1480 1.1806

EDL MC 0.0041 0.0041 0.0141 0.0140 0.0605 0.0624 NA NA NA NA NA NA 0.8399 0.8675 0.9225 1.0008 1.1194 1.1475

BS 0.0002 0.0003 0.0014 0.0021 0.0231 0.0243 NA NA NA NA NA NA 0.0342 0.0697 0.0950 0.1464 0.4264 0.4478

MS 0.0049 0.0035 0.0091 0.0105 0.0365 0.0432 NA NA NA NA NA NA 1.0001 0.7383 0.5936 0.7517 0.6754 0.7939

GC 0.0000 0.0000 0.0000 0.0000 0.7798 0.8963 0.0000 0.0000 0.0000 0.0000 12.779 14.003 0.0000 0.0000 0.0000 0.0000 14.418 16.486

DC 0.0000 0.0000 0.0000 0.0000 0.8713 0.9635 0.0000 0.0000 0.0000 0.0000 14.032 15.011 0.0000 0.0000 0.0000 0.0000 16.110 17.723

VaR MC 0.0000 0.0000 0.0000 0.0000 0.8256 0.9366 0.0000 0.0000 0.0000 0.0000 13.636 15.013 0.0000 0.0000 0.0000 0.0000 15.264 17.227

BS 0.0000 0.0000 0.0000 0.0000 0.2319 0.2695 0.0000 0.0000 0.0000 0.0000 10.0543 11.0669 0.0000 0.0000 0.0000 0.0000 4.2867 4.9563

MS 0.0000 0.0000 0.0000 0.0000 0.5278 0.7634 0.0000 0.0000 0.0000 0.0000 14.447 17.686 0.0000 0.0000 0.0000 0.0000 9.7583 14.041

GC 0.0264 0.0439 0.1660 0.2170 0.9367 0.9847 24.582 24.945 26.662 27.183 15.349 15.385 5.3985 9.3570 10.876 15.480 17.318 18.113

DC 0.1311 0.1659 0.3649 0.4167 0.9663 0.9958 23.635 23.685 25.280 25.654 15.562 15.513 26.853 35.369 23.910 29.724 17.865 18.316

ES MC 0.0985 0.0993 0.3604 0.3673 0.9515 0.9920 24.015 24.396 25.596 26.177 15.716 15.902 20.170 21.165 23.612 26.197 17.593 18.247

BS 0.0042 0.0084 0.0400 0.0582 0.5451 0.6017 25.194 25.799 27.571 28.379 23.637 24.711 0.8611 1.7982 2.6185 4.1546 10.0778 11.0666

MS 0.1176 0.0855 0.2504 0.2997 0.8587 0.9687 24.084 24.692 27.637 28.438 23.504 22.442 24.088 18.229 16.406 21.378 15.876 17.817
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Table 5.7: The risk measures for various Tranches (Continued)

Panel E: Tranche 15-30%

Risk Measures (unit) Risk Measures / EDL Risk Measures / UTP

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6 5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

Mean Mkt. Quotes 0.0005 0.0005 0.0008 0.0007 0.0016 0.0015 NA NA NA NA NA NA NA NA NA NA NA NA

UTP 0.0025 0.0025 0.0053 0.0050 0.0160 0.0150 NA NA NA NA NA NA NA NA NA NA NA NA

GC 0.0000 0.0001 0.0002 0.0003 0.0070 0.0080 NA NA NA NA NA NA 0.0094 0.0234 0.0390 0.0634 0.4372 0.5333

DC 0.0025 0.0036 0.0057 0.0068 0.0151 0.0166 NA NA NA NA NA NA 0.9672 1.4175 1.0776 1.3392 0.9425 1.1077

EDL MC 0.0017 0.0015 0.0061 0.0046 0.0109 0.0129 NA NA NA NA NA NA 0.6657 0.5846 1.1412 0.9128 0.6781 0.8573

BS 0.0000 0.0000 0.0000 0.0000 0.0005 0.0004 NA NA NA NA NA NA 0.0013 0.0038 0.0039 0.0029 0.0318 0.0298

MS 0.0024 0.0013 0.0024 0.0028 0.0083 0.0116 NA NA NA NA NA NA 0.9273 0.5220 0.4570 0.5490 0.5207 0.7705

GC 0.0000 0.0000 0.0000 0.0000 0.0148 0.0106 0.0000 0.0000 0.0000 0.0000 2.1199 1.3291 0.0000 0.0000 0.0000 0.0000 0.9269 0.7087

DC 0.0000 0.0000 0.0000 0.0000 0.0444 0.0545 0.0000 0.0000 0.0000 0.0000 2.9434 3.2802 0.0000 0.0000 0.0000 0.0000 2.7741 3.6333

VaR MC 0.0000 0.0000 0.0000 0.0000 0.0292 0.0330 0.0000 0.0000 0.0000 0.0000 2.6864 2.5659 0.0000 0.0000 0.0000 0.0000 1.8217 2.1996

BS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MS 0.0000 0.0000 0.0000 0.0000 0.0011 0.0024 0.0000 0.0000 0.0000 0.0000 0.1334 0.2089 0.0000 0.0000 0.0000 0.0000 0.0695 0.1610

GC 0.0006 0.0015 0.0056 0.0088 0.2061 0.2437 24.768 25.178 27.019 27.579 29.427 30.449 0.2317 0.5883 1.0536 1.7477 12.867 16.237

DC 0.0583 0.0843 0.1434 0.1714 0.4160 0.4693 23.665 23.499 25.047 25.374 27.557 28.225 22.889 33.310 26.991 33.982 25.972 31.263

ES MC 0.0409 0.0363 0.1558 0.1209 0.3111 0.3783 24.132 24.513 25.697 26.261 28.637 29.401 16.064 14.330 29.326 23.970 19.420 25.204

BS 0.0001 0.0002 0.0006 0.0004 0.0162 0.0148 25.445 25.988 27.747 28.785 31.706 33.072 0.0330 0.0975 0.1081 0.0841 1.0089 0.9842

MS 0.0563 0.0321 0.0679 0.0799 0.2670 0.3825 23.835 24.257 27.976 28.835 32.011 33.073 22.103 12.663 12.785 15.831 16.667 25.483
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CHAPTER VI

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

This research concerns pricing and risk measurement of CDOs. We illustrate how

to apply a Lévy distribution/process named Meixner to the standard models for pric-

ing CDOs. Moreover, a comparative analysis among the copula models i.e. Gaussian

copula model, double-t copula model, Meixner copula model, and the correlated struc-

tural models i.e. correlated Brownian motion structural model and correlated Meixner

structural model is performed. Among the copula models, we hypothesize that MC

is the best while DC is the second, and the last is GC. The reason is that Meixner

distribution has fat-tail and skewness; hence, its associate copula provides asymmetric

dependence structure which is more flexible than the others. By contrast, double-t

copula provides only symmetric one and Gaussian copula has none of these features.

Furthermore, we hypothesize that MS is better than BS because of the similar rea-

son. MS assumes that firm values are driven by jumps which can be decomposed to

jumps from the market factor and from the firm specific; whereas, BS assumes that

firm values and also its common factor and firm specific parts continuously diffuse

over time. Modeling the market factor with jumps can be interpreted as unanticipated

market crashes/booms while modeling it with Brownian motion results in predictable

market movement which is not realistic. Moreover, modeling the firm specific with

jumps is interpreted as unanticipated independent movement of each firm caused by,

for instance, fraud, announcement, operation results, etc. in which the Brownian motion

is not suitable. In addition, we hypothesize that both copula and correlated structural

models are approximately equivalent in performance since in this setting both types of

models can be calibrated from the market quotes. For risk measurement, we think the

risk measures computed from each of the different models are approximately the same.

According to the results, Meixner-based models have the edge over the other

models. 12 out of 12 cases revels that Meixner copula model is the best while 6 out of

6 cases reveals that correlated Meixner structural model is the better. Meixner copula

model has negative β in all 6 cases which means that the dependence structure is

more intense in lower tail while less intense in upper tail. This is sensible because the

default seems more correlated in downturn and less correlated in the normal situations.



56

Correlated Meixner structural model has also negative β; this suggests that a firm

has more likelihood of large down-sided jumps than large up-sided jumps, and it can

be attribute to the market factor and the idiosyncratic component. Thus, neglecting

the tail dependence and/or fat-tail in pricing CDOs is unacceptable. On top of that,

considering also asymmetric dependence structures, particularly left skewness, can

enrich the performance. As we have shown in Copula, double-t copula model which

include only symmetric dependence structure are better than Gaussian copula model

while Meixner copula model is the best. Similarly, structural model used the correlated

Meixner structural model is the better than the standard one.

Next, the answer to the question which type of models are better between copula

models and correlated structural models is vary among the cases. Copula models

are better than correlated structural models 15 out of 36 cases while the reverse is

true for 18 out of 36 cases. The other 3 cases are insignificant. It seems that, in

pricing CDOs, the performance of the models does not directly depend on how we

model the marginals i.e. reduced-form approach or first passage time approach, nor

which approach to be used between copula models and correlated structural models. It

depends apparently on whether the dependence structure takes into account the extreme

events; the models taking account of fat-tail/tail dependence are superior to the others.

For risk measurement, different models provide different risk measures. It de-

pends majorly on how the extreme events are considered. DC considerably provides

higher risk measures in most cases; whereas, GC and BS claim higher likelihood of

losses in the earlier tranche and fall sharply afterward. MC’s and MS’s provides risk

measures that tend to be less than DC’s but still intuitive in most cases. Thus, including

tail dependence and/or fat-tail result(s) in more sensible risk measures.

In summary, in addition to fat-tails, skewness is also an important property which

should also be considered when valuing the credit dependent securities. Imposing a

negative skewness in the distribution of market factor results in more dependence in

lower tail of its associated copula and also more likelihood of common large-downsided

jumps in its associated process. These extensions using Meixner distribution/process

are more realistic and improve the performance of CDO pricing models. Moreover, the

risk measures have more validity because they are based on the portfolio distribution

that fits the CDO capital structure more than the standard approaches.



57

6.2 Recommendation

There are many issues relevant to modeling CDOs that is interesting and important

left for further studies. First of all, the performance of Meixner-based models in pricing

CDOs should be tested out of samples. Secondly, other Lévy models should also

be investigated and compared including in-samples and out-of-samples with Meixner

models. Thirdly, the copula models are known as the static models; there are some

extensions that makes them dynamic, called dynamic Lévy copula models. Fourthly,

it is interesting to investigate Meixner models with stochastic correlation. Fifthly,

Meixner distribution and process should be further investigated in other relevant areas

such as bonds, CDSs, and non-standard credit derivative such as CDO-Squard, options

on CDOs and forward starting CDOs etc. Finally, if the Meixner’s parameters can be

estimated from other sources, it will increase the fascination of this model.
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APPENDIX A

COLLATERALIZED DEBT OBLIGATIONS

A.1 What are CDOs?

For illustration, CDX NA IG is one of the most popular reference portfolios for

single tranche trading. It consists of 125 equally weighted North American investment

grade companies. It is divided into five standard tranches: 0-3%, 3-7%, 7-10%, 10-

15% and 15-30%. Suppose an initial notional principal of the underlying portfolio

is $100 million. The initial notional principle of each tranche will become $3, $4,

$3, $5 and $15 million respectively. When the cumulative losses incur at 3%, only

the investors holding the 0-3% tranche, called equity tranche, are responsible for those

losses. Suppose now the cumulative losses increase to 8%. The investors holding the

second tranche, called mezzanine tranche, are responsible for the additional cumulative

losses of 4%, while the ones holding the third tranche are responsible for the remaining

1% of those losses. Up to this point, the outstanding notional principals of the equity

and mezzanine tranches are both zero whilst the third tranche has $2 out of $3 million

left; however, the others are not affected.

On the other hand, the investors will receive the premiums at the end of each

period. The premiums will be calculated from the outstanding principle of each tranche

at that time1. For example, suppose the third tranche spread is 35.5 basis points per

year and the payments are made semi-annually. The outstanding notional principle of

the third tranche is $2 million left. At the end of this period, the investors holding this

tranche will receive the premium of .00355× .5×$2 million = $3,550.

It should be noted that the cumulative losses that we are considering here is not

the default rate in the portfolio. It is, in fact, the loss rate. By assuming the recovery

rate of 40%, when 10 out of 100 firms have defaulted, the cumulative losses should be

6% not 10%.

For more details about the mechanics of CDOs, see Synthetic CDO Primer

(2005); Hull (2006); Elizalde (2005).
1In addition to the regular premiums, there is also the accrual premiums which compensate for the

protection period just before the firms default.
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A.2 CDO Pricing Models

To price CDOs, there are, generally, three major steps as follows: estimate the

default probability of each firm; combine these default probabilities together to derive

a portfolio loss distribution; and finally, compute the CDO spreads. Let us explain

the first step first. The individual default probability estimation can be separated into

two major classes—an intensity-based model, also called a reduced-form model, and

a structural model. For the reduced-form model, we imply the default probability

directly from the market quotes of such defaultable securities as bonds or CDSs by

modeling a hazard rate function. On the other hand, the structural model estimates

the probability of firm default from the likelihood of an event that the firm’s asset

value falls below a threshold called a default barrier. Secondly, to derive the portfolio

loss distribution, there are many models ranging from a closed-form formula, semi-

analytical models to Monte Carlo simulation approaches depending on the level of

assumptions. Under some assumptions, Copula, a statistical tool, can be used to join

the default probabilities together instead of a Monte Carlo simulation, and so do some

other techniques. Ultimately, the fair CDO spreads can be computed in the same way

as an interest-rate derivative.

There are many models ranging from an analytical model, semi-analytical models

to Monte Carlo simulation approaches depending on the level of assumptions. Put

it another way, they can also be separated into two major classes of models—the

structural models and the intensity-based models, also called the reduced-form models.

The structural models use firms’ asset value and their default barrier to estimate the

default probabilities, whereas the reduced-form models use the market quotes of some

defaultable securities such as bonds and/or CDSs. The copula approach is ones of the

reduced-form models. Despite many models, the objectives are the same which is to

construct the distribution function of the portfolio losses in order to compute the fair

CDO spread.



APPENDIX B

MEIXNER DISTRIBUTION/PROCESS

B.1 Meixner Distribution

Alternative to the standard normal distribution, Meixner distribution can have

skewness and excess kurtosis. Meixner distribution is an infinitely divisible distrib-

ution. That means for each positive integer n, the Meixner characteristic function

φ(u) is the n-th power of a Meixner characteristic function i.e. φ(u; α, β, δ, µ) =

[φ(u; α, β, δ/n, µ/n)]n. Hence, it is stable under convolution i.e. the distribution

function of the sum of independent Meixner random variables is still the Meixner

distribution; see Schoutens (2003).

Meixner distribution is one of the not many Lévy distribution that has an analyt-

ical probability density function (PDF). The PDF of Meixner distribution is

fMeixner(x; α, β, δ, µ) =
(2cos(β/2))2δ

2απΓ(2δ)
exp

(
β(x− µ)

α

) ∣∣∣∣Γ(δ +
i(x− µ)

α

)∣∣∣∣2 , x ∈ R

where α > 0,−π < β < π, δ > 0 and µ ∈ R. In practice, we found that calculating the

probability density via an exponential of logarithmized PDF gives more arithmetically

accurate since it prevents from register overflows.

According to Schoutens (2003) and Albrecher et al. (2006), the moments of this

distribution is shown in table B.1 . In the case we want the Meixner distribution to have

zero mean and unit variance, we can set the parameters δ = 1+cos(β)
α2 and µ = − sin(β)

α
.

Now, we have two parameters left which are α that is mainly used to control kurtosis

or fat-tail, and β mainly used to control skewness. However, changing one parameter

affects both kurtosis and skewness as in table B.2

B.2 Meixner Process

Since Meixner distribution is infinitely divisible, we can find its associated Lévy

process, called Meixner process. Strictly speaking, a Meixner process X(Meixner) =

{X(Meixner)
t , t ≥ 0} is a stochastic process in which X

(Meixner)
0 = 0, and it has an

independent and stationary increments over [t, t + ∆t] i.e. X
(Meixner)
t+4t −X

(Meixner)
t dis-
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Table B.1: The moments of the Meixner distribution

Meixner(α,β,δ,µ)

mean µ + αδ tan(β/2)

variance α2δ/(1 + cos(β))

skewness sin(β/2)
√

2/δ

kurtosis 3 + (2− cos(β))/δ

Table B.2: The moments of the zero-mean and unit-variance Meixner distribution

Meixner(α,β,2 cos2(β/2)
α2 ,− sin(β)

α
)

mean 0

variance 1

skewness α tan(β/2)

kurtosis 3 + (3−2 cos2(β/2)
2 cos2(β/2)

)α2

tributes as Meixner(α, β, δ4t,µ4t). Because of its infinitely divisible, the distribution

of X
(Meixner)
t follows Meixner(α, β, δt,µt).

Each of Lévy process has a triplet characteristics [γ, σ2, ν (dx)]. The first one

is deterministic part; the second is Brownian components, and the last one is Lévy

measure that indicates how the jumps occur. In case of Meixner process, there is no

Brownian part, thereby being a pure jump process. Moreover, the first parameter in the

Lévy triplet is

γ = αδtan (β/2)− 2δ

∫ ∞

1

sinh (βx/α)

sinh (πx/α)
dx
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and the Lévy measure is

ν (dx) = δ
exp (βx/α)

xsinh (πx/α)
dx

Meixner process is of infinite variation since
∫ +1

−1
|x| ν (dx) = ∞. More detail

on the Meixner distribution and process see Schoutens (2003); Albrecher et al. (2006);

Schoutens (2002).



APPENDIX C

COPULA

Copula is a dependence structure linking a number of standard uniform random

variables together. The result is a multivariate distribution function. For n uniform

random variables, U1, U2, . . . , Un, the joint distribution function C, defined as

C(u1, u2, . . . , un; Σ) = Pr([U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un]

where Σ is an arbitrary set of dependence parameters.

Because any distribution functions of a random variable distribute as standard

uniform Fi(X) ∼ Ui. Thus, the copula function can be used to join any marginal

probability distribution functions together in order to generate a multivariate distribution

function.

C(F1(x1), F2(x2), . . . , Fn(xn); Σ) = Pr([U1 ≤ F1(x1), U2 ≤ F2(x2), . . . , Un ≤ Fn(xn)]

= Pr([F−1
1 (U1) ≤ x1, F

−1
2 (U2) ≤ x2, . . . , F

−1
1 (Un) ≤ xn]

= Pr([X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn]

= F (x1, x2, . . . , xn)

Product copula C⊥, for example, is a dependence structure reflecting indepen-

dence among margins.

C⊥(u1, u2, . . . , un) = u1u2 · · ·un

Or equivalently,

F (x1, x2, . . . , xn) = C⊥(F1(x1), F2(x2), . . . , Fn(xn)) = F1(x1)F2(x2) · · ·Fn(xn)

From Sklar (1959)’s theorem as explained in Cherubini et al. (2004), for a given

n-dimensional multivariate distribution function F with margins F1, F2, . . . , Fn, one

can find a copula C by



69

C(u1, u2, . . . , un) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
n (un))

Therefore, for a multivariate Gaussian copula, we get

CGa(u1, u2, . . . , un; Σ) = Φn

(
Φ−1(u1), Φ

−1(u2), . . . , Φ
−1(un); Σ

)
=

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(un)

−∞

exp
(
−1

2
xT Σ−1x

)
(2π)

n
2 |Σ| 12

dx1 . . . dxn

For more details on copula theories in a statistical perspective see Nelsen (1999), see

Cherubini et al. (2004) for how copulas be used in finance.

Copula, which can be used for deriving the joint default probability, can be

applied to the CDO pricing models. For example in equation (3.5), if the probabilities

that the survival time τ of each firm are less than time ti are all equal to pti , and

providing that the default correlations are all the same denoted by a correlation matrix

Σti . The probability that k out of N firms default will be

Pr(X = k) =

 N

k

Pr(τ1 ≤ ti, . . . , τk ≤ ti, τk+1 > ti, . . . , τN > ti; Σti) (C.1)

We can derive a modified Gaussian copula to be used for this purpose.

CGa∗

k (u1, u2, . . . , uN ; Σ) =∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(uk)

−∞

∫ +∞

Φ−1(uk+1)

. . .

∫ +∞

Φ−1(uN )

e(−
1
2
xT Σ−1x)

(2π)
N
2 |Σ| 12

dx1 . . . dxN

Therefore, the equation (C.1) becomes

Pr(X = k) =

 N

k

CGa∗

k (ptt , . . . , ptt ; Σti)

Consequently, the portfolio loss distribution become

Fti(z) = Pr(X ≤
⌊

zN

(1−R)

⌋
) =

bzN/(1−R)c∑
k=1

 N

k

CGa∗

k (ptt , . . . , ptt ; Σti) (C.2)
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A SIMPLIFIED CORRELATED STRUCTURAL MODEL

We explain the concepts of approximation, and the formulas are expressed. Note

that this is only a conjecture. However, when we compare the CDO pricing performance

of the approximation approach to the traditional one, the results in terms of mean

absolute pricing error (MAPE) look promising. The verification in terms of proof is

on progress.

Instead of using the correlated simulation approach as mentioned above, the

Bernoulli mixture framework can be applied when some restrictions are imposed. If

we assume that the path of the market factor ~M is given so that the firm values are

conditionally independent, the conditional default probability of a firm before time t

under first hitting time approach is

p(t| ~M) =
{

τ ≤ t | inf
τ

X(τ) ≤ K∗(τ)
}

=
{

τ ≤ t | inf
τ

√
ρM(τ) +

√
1− ρZ(τ) ≤ a + bτ

}
=

{
τ ≤ t | inf

τ
Z(τ) ≤

a + bτ −√ρM(τ)
√

1− ρ

}
Therefore, the probability that k out of N firms default before and at time t is as follows

Pr(N, k, t| ~M) =

 N

k

[p(t| ~M)
]k [

1− p(t| ~M)
]N−k

Hence, the portfolio loss distribution function is

Ft(z) = E ~M

bzN/(1−R)c∑
k=1

 N

k

[p(t| ~M)
]k [

1− p(t| ~M)
]N−k


where E ~M represents the expectation over all possible paths of the market factor.

Recall that ~M follows a Lévy process. One can find the portfolio loss distribution

function by first sampling a number of paths of the market factor and then calculate

that expected portfolio loss distribution function under all possible paths. Alternatively,

if the end point of the market factor is given, the conditional portfolio loss distribution

can be calculated in the expectation over all possible paths starting from 0 to that given
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end point. Then, we find the unconditional one by integrating over all the possible end

points. Therefore, we can reformulate the portfolio loss distribution function as follows

Ft(z) =

∫ +∞

−∞
E ~B(Mt)

bzN/(1−R)c∑
k=1

 N

k

[p(t| ~B(Mt))
]k [

1− p(t| ~B(Mt))
]N−k

φ(Mt)dMt

where Mt is an arbitrary point at the end of the path, ~B(Mt) is a path starting from 0

and ending at Mt, and the distribution of Mt depends on t i.e. Mt ∼ N(0, t) in case

of Brownian motion and Mt ∼ φMeixner (1, β, δt) in case of Meixner.

To approximate, we replace the paths starting from 0 to any given points in time

t with its expectation (as a line). Specifically, for time horizon t, the market factor at

the time s before t is M(s) = ms ; s ≤ t. Hence, the proxy of asset return becomes.

Xj(s) =
√

ρms +
√

1− ρZj(s) ; s ≤ t

and the conditional default probability under time t is

p(t|m) =
{

τ ≤ t | inf
τ

X(τ) ≤ K(τ)∗
}

=
{

τ ≤ t | inf
τ

√
ρmτ +

√
1− ρZ(τ) ≤ a + bτ

}
=

{
τ ≤ t | inf

τ
Z(τ) ≤

a +
(
b−√ρm

)
τ

√
1− ρ

}

=

{
τ ≤ t | inf

τ
Z(τ) ≤ a√

1− ρ
+

(
b−√ρm

)
√

1− ρ
τ

}

As a consequence, the portfolio loss distribution under time t is

Fti(z) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kφti (m) dm

pti|m = Pr

{
τ ≤ t | inf

τ
Z(τ) ≤ a√

1− ρ
+

(
b−√ρm

)
√

1− ρ
τ

}
(D.1)

where the probability distribution of m depends on 1
t
, i.e. m ∼ N(0, 1

t
) in case of

Brownian motion and m ∼ φMeixner

(
1
t
, β, δt

)
.

Interestingly, if there is a function that inverts a default probability to a set of

default barrier parameters i.e. g−1(pt) = {a, b, t}, then there will be a copula that
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represent this simplified correlated structural model. Assuming further that g−1
l (pt)

gives the l-th parameter e.g.g−1
1 (pt) = a, one can the portfolio loss distribution as

follows

Fti(z) = C(pti ; ρ)

where C is a copula that has the following expressions

C(pti) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kφti (m) dm

pti|m = Pr

{
τ ≤ t | inf

τ
Z(τ) ≤ a√

1− ρ
+

(
b−√ρm

)
√

1− ρ
τ

}
a = g−1

1 (pt)

b = g−1
2 (pt)

t = g−1
3 (pt)

Note also that there are some ways, under some copulas such as Brownian motion,to

normalize the time scale to t ∈ [0, 1] in the copula function so that the copula is

standardized. One may call it First Passage Time Copula, or FPT Copula. Moreover,

unlike copula models that join the marginals with an arbitrary dependence structure, It

has economic underpinnings on the choice of dependence structure. However, this is

only our conjecture; the proof is on progress.

D.1 Correlated-Brownian Motion Structural Model

Under the approximation correlated structure approach, the model has some sim-

ilarities to copula models as follows

Fti(z) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kφNormal

(
m; 0,

1

ti

)
dm

pti|m = Pr
{

τ ≤ t | inf
τ

Z(τ) ≤ a′ + b′τ
}

= Φ

(
a′ + b′t√

t

)
+ exp (−2a′b′) Φ

(
a′ − b′t√

t

)
(D.2)

where a′ = a√
1−ρ

and b′ =
b−√ρm√

1−ρ
. Since Harrison (1990) shows that the probability

of first hitting the barrier has analytical formula as above, our simplified correlated

structural model becomes semi-analytic as in copula models. This approach is much
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faster than the correlated simulation approach.

Table D.1 shows the MAPEs under the correlated simulation and the approxima-

tion approach for the case of Brownian motion. It reveals that our simplified approach

is a good approximation for the traditional approach in pricing CDOs.

D.2 Correlated-Meixner Structural Model

Under the approximation correlated structural approach, the Meixner model be-

comes

Fti(z) =

∫ m=+∞

m=−∞

bzN/(1−R)c∑
k=1

 N

k

 pk
ti|m(1− pti|m)N−kφMeixner

(
m;

1

ti
, β, δti

)
dm

pti|m = Pr
{

τ ≤ t | inf
τ

Z(τ) ≤ a′ + b′τ
}

(D.3)

where Z is a Meixner process with parameters of (1, β, δ), a′ = a√
1−ρ

and b′ =
b−√ρm√

1−ρ
.

Table D.1: Traditional BS vs Simplified BS

5YS5 5YS6 7YS5 7YS6 10YS5 10YS6

Traditional BS MAPE 84.68 78.84 156.72 146.60 255.14 235.55
S.D. (40.73) (37.36) (47.89) (73.78) (73.07) (44.50)

Simplified BS MAPE 63.32 50.62 141.93 121.21 231.50 206.82
S.D. (33.80) (13.41) (52.32) (21.39) (79.45) (50.69)

Note: The number of sample paths in simulation is 20,000 per entity.
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