msuendlsznovvesiummzluilad luateasian

WeF e (TOVIDANTTY

a a 4 yd 1 § [ a a Y% a
Ineriwus iiludumivesnsansmunangasUiganimenmaasuniiuda
Magamaas  Madsndamaas

a 4 a @
AUINOITAT  IWAINTAINMIINAD

Umsfny 2549
ISBN 974-14-2618-6
AvANFYeIpaINIalNMIINNAY



DECOMPOSITION OF RATIONAL PRIMES IN BIQUADRATIC FIELDS

Mr. Chaiya Riablershirun

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2006
ISBN 974-14-2618-6
Copyright of Chulalongkorn University



Thesis Title Decomposition of Rational Primes in Biquadratic Fields

By Mr. Chaiya Riablershirun
Field of Study Mathematics
Thesis Advisor Associate Professor Ajchara Harnchoowong, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in
Partial Fulfillment of the Requirements for the Master’s Degree

A oD

..................................... «.Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

Thesis Committee

Avmeove Mlasameaiehi- Chairman

.......................................

(Assistant Professor Amorn Wasanawichit, Ph.D.)

.........................

(Associate Professor Ajchara Harnchoowong, Ph.D.)

...... gﬂ??..@?ﬁ%ﬁ.................Member

(Assistant, Professor Sajee Pianskool, Ph.D:)



iv

Fovz Gouidaniy: mauvndlsznevvesiwaunmzhuilad luateanan
(DECOMPOSITION OF RATIONAL PRIMES IN BIQUADRATIC FIELDS)
0. MJTnw1 : 57 A5.69051 MIYYIIF, 42 Wi, ISBN. 974-14-2618-6

& o & [ = ad ' ol
2vesdnnuduvemnuimauenee lidulawuhuondnlsznoy ldetiden
] & - ] o ] - ] = ] ..u[ i -
viufe sandni hiduguiuaz hidumndmniwenzdouegluglmoguitandiaiues
andnfinaneu bilduddmivssdugaund ez ladmngaunduii lddugudannsoumy
Wunaguuesgaundmme Idmdes msfinuimsuendnlszrouvesiunummeassnoslu
= & - & & & a &
nanuawsiavesmnudwaniiuiidoihaulsiadeoniia msuondnlsznevvoadmon
mwzassnos lumnuideeesidinnuedamyseiuds
o
Tuineiinuiadui_swsAnnummwndidsznouvssinummizassos luemi

- a o [ P
Tumeandn K = Q(vim, i) Tavh m, n uinwduidsao e

MAY . AdRmanT... mﬂﬂﬂ%"ﬂﬁﬁm........C.......................,...,.................
i .adamand.. muﬁaﬂﬂmmﬂ'ﬂﬂ?nm.@ﬂm.mN.‘?iﬁ‘:..
Umisinur .....2549. ...



## 4772268523 : MAJOR MATHEMATICS
KEY WORDS : BIQUADRATIC FIELDS / DECOMPOSITION

CHAIYA RIABLERSHIRUN : DECOMPOSITION OF RATIONAL
PRIMES IN BIQUADRATIC FIELDS THESIS ADVISOR :
ASSOC. PROF. AJCHARA HARNCHOOWONG, Ph.D., 42 pp.
ISBN 974-14-2618-6

The ring of integers of a number field may be not a UFD, i.e. a nonzero nonunit
element may be written as different products of irreducible elements. But for the
ideal levels, we have that every nonzero proper ideal can be represented uniquely
as the product of prime ideals. The study of the decomposition of the rational
primes in various types of number fields is one of the interesting topics. The de-
composition of rational primes in a quadratic field can be determined completely.

In this thesis we will determie the decomposition of rational primes in a bi-

quadratic field K = Q(y/m, /), where m, n are squarefree integers,

Department  ...Mathematics... Student’s Signature,.% A %ﬂl’!‘eﬂl‘ e

Field of Study ...Mathematics... Advisor’s Signature.%qem .PD"'"‘EP'L"W""-B/

Academic Year .........2006............



vi

ACKNOWLEDGEMENTS

I am indebted to Associate Professor Dr.Ajchara Harnchoowong, my thesis
supervisor, for her kind and helpful advice in preparing and writing my thesis.
Moreover, I would like to thank Assistant Professor Dr.Amorn Wasanawichit and
Assistant Professor Dr.Sajee Pianskool, the chairman and member of the commit-
tee of this thesis. Besides, [ feel thankful to all of my teachers who have taught
me for my knowledge and skills. Finally, I feel thankful to all of problem which
have taught me for presence of mind and responsibility.

In particular, I would like to express my appreciation to my beloved parents

for their encouragement throughout my study.



CONTENTS

page
ABSTRACT IN THAT .. iv
ABSTRACT IN ENGLISH ... A
ACKNOWLEDGEMENTS .. vi
CONTENTS ........ 000l . . . - W ..., vii
CHAPTER

I INTRODUGHEIO NS . i i e 1
II BASIC DEFINITIONS AND RESULTS OF NUMBER FIELDS ....... 3
2.1 RINGS OF INTEGERS AND DISCRIMINANTS .................. 3
2.2 PRIME DECOMPOSITION OF IDEALS ......................... 6

III INTEGRAL BASES AND DECOMPOSITION OF RATIONAL
PRIMES IN BIQUADRATIC FIELDS ........ ...t 12
3.1 ALGEBRAIC PROPERTIES ...... ... ... . 12
3.2 INTEGRAL BASES AND DISCRIMINANTS .................... 13
3.3 DECOMPOSITION OF RATIONAL PRIMES ................... 29
REFE RENCE S e e e 41



CHAPTER I

INTRODUCTION

Let K be a number field, i.e. a finite extension over Q. An element @ € K
is an algebraic integer if and only if « satisfies a monic polynomial in Z[z]. The
set of all algebraic integers in K is a subring of K, called the ring of integers of K
and denoted by Og. The ring of integers in Q is Z, sometimes we call elements of
Z rational integers.

Of is a free Z-module of rank equal to the degree [K : Q]. The study of the
form of integral bases in various types of number fields is one of the interesting
topics. The form of integral basis in a quadratic field (an extension of degree 2
over Q) can be determined completely (see Theorem 2.1.20). In this thesis we wish
to determine the form of integral basis in a biquadratic field.

Even the ring of integers Z of Q is a UFD, the ring of integers of a number
field may not be a UFD, i.e. a nonzero nonunit element may be written as differ-
ent products of irreducible elements. But for the ideals level, we have that every
nonzero proper ideal can be represented uniquely as the product of prime ideals.
For a prime number p, the principal ideal pZ of Z generated by p is a prime ideal
of Z. But the principal ideal pOg of Ok generated by p may not be a prime ideal
of Ok.

The study of the decomposition of the principal ideals generated by rational
primes in various types of number fields is one of the interesting topics. The de-
composition of the principal ideals generated by rational primes in a quadratic field
can be determined completely (see Theorem 2.2.27 and 2.2.28) and the decompo-

sition of the principal ideals generated by rational primes in a cubic field can be



determined completely in [1], [2] and [3].
In this thesis we wish to determine the decomposition of the principal ideals

generated by rational primes in a biquadratic field.

AONUUINBUINT )
ANRINTUNINEAE



CHAPTER 11

BASIC DEFINITIONS AND RESULTS OF
NUMBER FIELDS

In this chapter, we collect definitions and basic results of number fields, mainly

without proofs, to be used throughout the entire thesis. Details and proofs can be

found in [4], [5] and [6].

2.1 Rings of Integers and Discriminants

Definition 2.1.1. A npumber field is a finite extension of Q (in C).

Definition 2.1.2. A quadratic extension is a field extension E over F' of degree

2, and a quadratic field is a quadratic extension of Q.

Let K be a quadratic field. Then [K: Q]=2 and K = Q[a] where « is a root of
monic irreducible polynomial of degree 2, say f(x) = z? + ax + b where a,b € Q,
i.e, a = (—a+ a2 —4b)/2. Since a,b € Q, a* — 4b = d; /dy = (dydy/d3) for some
dy,dy € 7 and then there exist d.c € Z such that-d,ds = c?d where d is a squarefree
integer. Hence K = Q[a] = Qa2 = 4b] = Q[/d,ds] = Q[V/d] for some squarefree

integer d.

Definition 2.1.3. Let K be a field and A a subring of K. o € Kis an algebraic integer

in K if and only if there exist n € N and ag, ay,...,a,_1 € Z such that
a4+ ap 10"+ .+ aa+ay=0.

Remark 2.1.4. « € QQ is an algebraic integer if and only if « € Z.



Definition 2.1.5. The set of all algebraic integers in K is a subring of K, called
the ring of integers in K and denoted by Ok.

Theorem 2.1.6. The additive structure of Ok is a free Z-module of rank
n(=[K:Q]).

Definition 2.1.7. An embedding of L over K in C is a one to one homomorphism
o : L — C fixing K pointwise (it is called a A~-monomorphism). An embedding of

L in C is an embedding of L over Q in C.

Example 2.1.8. Let K = Q[\/a] where d is a squarefree integer. Then minimal
polynomial of v/d over @ are f(z) = 2% — d = (z — Vd)(z + V/d).
Therefore embeddings of A in C are

o1 : Vd — v/d and fixes Q pointwise, i.e, oq=id,

09 1 Vd — —/d and fixes Q pointwise.

Theorem 2.1.9. Let K and L be number fields with K C L and [L : K| =n. Then

there exist n embeddings of L over K in C.

If L/ K is a Galois extension, then all embeddings of L over K are K-automorphisms
and the set of all embeddings of L over K is the Galois group of L over K, denoted
by Gal(L/K).

From now on, let L over K be a number field extension of degree n and

o1 =idy, 09, ... ,0, be all embeddings of L over K.

Definition 2.1.10. For a € L, define the relative trace of « =Try i (o) = o1 (o) +

oy () +.. . F0, (@) and the relative norm of « = Ny i (o) = o1 (o) 02 () . .. 0 (v).

If K =Q, then we write Tr;, and Ny, for Tr; g and N ,q and call the absolute

trace and absolute norm, respectively.

Remark 2.1.11. For each o € L, Try/kx(a) and Np/gx(a) € K. Moreover, if
a € O, then Try(a) and Nz (a) € Z.



Example 2.1.12. Let L = (Q)(\/E) and o = a + bv/d where a,b € Q. Then

Trrg(a +bVd) = (a +bVd) + (a —bVd) =2a  and
Nysola+bVd) = (a+bVd)(a — bVd) = a® — Vd.

Definition 2.1.13. Let a3, ao,...,a, € L. The discriminant of aq, s, ..., a, in

L over K denoted by discy i (a1, as,. .. o) := deto;(a;)]2

Example 2.1.14. Let K = Q(\/d).
Then discy g (1, 2544) = d and discx/o(1, Vd) = 4d.

72

Proposition 2.1.15. For any oa,...,a, € L, discy/x(oq,...,a,) € K. More-

over, if ay, ..., 0, € Opydiscyglon, .. ., an) € Z.

Theorem 2.1.16. Let K be a number field of degree n over Q. The additive
structure of the ring of integers O of K is a free abelian group (or Z-module)
of rank n, i.e, it is isomorphic to the direct sum of n subgroups each of which is

1somorphic to 7.

Suppose that K = Q(+/5), we have {1, \/_5} is a basis of K over Q, but it is

not a Z-basis of Oy since % =5 ‘/75, which satisfies z2 = ¢ — 1 = 0, is in Ok but is

notinZ-1+7-/5.
Definition 2.1.17. A Z-basis {ay,...,a,} of Ok is called an integral basis of K.
Note. An integral basis of K is also a basis of K over Q.

Proposition 2.1.18. Let {a;-. ., an} cand {Lr,. By} ‘be any integral bases of
K. Then discg(ay, ..., an) = disck (B1, .-, Bn)-

Definition 2.1.19. The discriminant of the field K = disck(ay, ..., a,) where

{ai,...,a,} is an integral basis of K over Q, we denote it by disc(K) or dg.



Theorem 2.1.20. Let K = Q(v/d) where d is a squarefree integer.
(i) If d = 1(mod4), then

d
Ok = {%]u,v €Zandu = U(mon)}

1+ Vd
2

:Z :Z'l@Z‘

1++d
9

Consequently, {1, 1+2‘/3} 1s an integral basis of K and 0 = d

(i) If d = 2 or 3(mod4), then

OK:{u+v\/E|u,v€Z}:Z~1@Z-\/E

Consequently, {1, \/Zl} 1s an integral basis of K and dx = 4d.

2.2 Prime Decomposition of Ideals

As we have known that the ring of integers Z in QQ is a UFD. But for general
number field K, the ring of integers may not be a UFD.

Example 2.2.1. Let K = Q(y/—5). Then by Theorem 2.1.20, O = Z[v—5].
Ok isnot a UFDfor 2-3 =6 = (1 + v—5)(1 — /—5) where 2,3,1 + v/—5 and

1 — +/—5 are nonassociate irreducible elements in Ox.

Theorem 2.2.2. Every nonzero proper ideal in the ring of integers Ok of a

number field K s a prime ideal if and only if it 1s a maximal ideal.
Corollary 2.2.3. If P is a prime ideal in Ok, then Ok /P is a field.

Theorem 2.2.4. Fvery nonzero proper ideal in O can be written uniquely as a

product of prime ideals.

Recall that (2)(3) =6 = (1 ++/=5)(1 —+v/—=5) in K = Q[v/—5]. But for the
ideal levels, we will show that they can be represented uniquely as the product of

prime ideals.



Example 2.2.5. Let K = Q[v/—5]. Then O = Z[/—5].
Recall that Ok is not a UFD for 2-3 =6 = (1 + v/—5)(1 — v/—5). Pass this to

ideals: (2) (3) = (6) = (1 4+ +v/=5) (1 —+/=5). But

(2,1+V=5)(2,1+V=5) = (4,2 +2v/=5, -4+ 2/=5)
= (4,2 +2v-5,-6)
(2,2/-5)

(2)

(9,3 +3y-5,3=3V-5,6)
= (9,3 + 3v/—5,6)
=4
=
{
(
(
(

(3,1+V=5) (3,1 =/=5) =

3,3v/-5)

3)

6.2(1 +v=5),3(1 + vV=5), (1 + vV-5)%)
5>

6,2(1 ).3(1+V=5), (1= V=5)*)
1—

(2,1+V=5) (3,1 +V=5) =

—
+

(2,14+v-5)(3,1= V=5) =

i

O‘!
=4 o4

Then we obtain that

(2,1+V=5) (3,14 V=5) (3,1 — vV=5) = (2) (3)
= (6)
< (14 VIR V)
— (214 V=B (3,14 V=5) (3,1 — V=5).
Definition 2.2.6. Let A and B be integral ideals in a number field K. We say

that A divides B, denoted by A | B if there exists an integral ideal C' such that
B = AC.

Proposition 2.2.7. Let A and B be integral ideals in a number field K. Then
A | B if and only if A D B.



Next, we will define the norm of ideals and use the properties of norm of ideals
to check whether an ideal P is a prime ideal or an ideal A divides ideal B. From

now on, let K be a number field of degree n over Q.

Definition 2.2.8. The norm of a nonzero ideal A in Ok, denoted by N(A), is
defined to be |Ok/A|.

Proposition 2.2.9. If A is a nonzero ideal of Ok, then A is a free Z-submodule
of Ok of rank n.

Theorem 2.2.10. Let A be a nonzero ideal in Ok with Z-basis {a, ..., can}. Then

disci(any ...y Qy)
N .
() -

Corollary 2.2.11. For any a # 0 in Ok, N(() )= [Nk ()|

Theorem 2.2.12. For any nonzero ideals A and B, N(AB)=N(A)N(B).
The following corollary is used to check that an ideal A divides an ideal B or not.
Corollary 2.2.13. If N(A) 1 N(B), then A1 B.

Remark 2.2.14. If P is an ideal such that N(P) = p a prime number, then P is
a prime ideal in Og. The converse is not true, i.e. there is a prime ideal whose

norm is not a prime number.

Example 2.2.15. Let K = Q[v/—5].
From Example 2.2.5, we have N({2,1+4+/=5)) = 2, N((3,14+/=5))=3 and
N((3,1+4 v/=5))=3. Hence (2,1 +/=5),(3,1+/=5) and (3,1 — \/—5) are prime

ideals.

Let L D K be a finite extension of number fields. Let P be a prime ideal in
Ok. Then POy is a nonzero ideal in Op,. It is not necessary a prime ideal in O,
e.g. let K =Q and L = Q(v/=5). Then O = Z and Oy, = Z[\/—5]. We have 2Z
is a prime ideal in Z but 20, is not a prime ideal in Oy, since it is not maximal.
For 20, C (2,1 + v/~=5) € Or. We will consider the prime factorization of POy,
in Oy,



Definition 2.2.16. Let PO, = ﬁPf" be the prime decomposition in Oy where
P is a prime ideal in Ok. -
(1) g is called the decomposition number of P in L.
(2) For each i, e; is called the ramification index of P; over P in L over K,
denoted by e(P;/P).
P is ramified in Oy, (in L) if there exists i such that e; > 1.

Pisinertin L if g=1 and e; =1, w.e. POy is a prime ideal.

Remark 2.2.17. For P and P as in Definition 2.2.16, we say that P lies over/above
P or P lies under P. The field Ok /P is embedded in the field O /P so it can be
considered as a subfield of Oy, /P.

Definition 2.2.18. The degree of Op/P; over Ok /P is called the residue class
degree or inertial degree of P; over P, denoted by f(P;/P).

Remark 2.2.19. N(P;) =N(P)/ where f = f(P;/P).

Theorem 2.2.20. Let L. O K be a number field extension of degree n and let
Py, ..., Py be primes in O lying above a prime P of Ok with ramification indices
g

e, ...,eq and residue class degrees fi,..., fq. Thenn = E e fi.

i=1
Definition 2.2.21. Let L O K be a number field extension of degree n and P be
a prime ideal in O such-that POy = Pt P52 Py® where P; are distinct prime
ideals of Oy..
(1) P is totally ramified in L if'g =1 and ey = n, so PO, =P7.
(2) P splits completely in L.if g =n, so e; =1 and PO, =Py ... P,.

Example 2.2.22. From Example 2.2.5 and Definition 2.2.16, P, = 2Z in Z is
ramified in Q[v/—5] while P3 = 3Z in Z splits completely in Q[v/—5].
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Theorem 2.2.23. Let L O K be a Galois extensions number field of degree n and
P;, P; be primes in O, lying above a prime P of Ok. Then e(P;/P) = e(P;/P) and
f(Pi/P) = f(P;/P), i.e. POy = (P1...P,)°, hence n = efg where e = e(P;/P)
and f = f(P:i/P).

Theorem 2.2.24. Let p be a prime in Z. Then pZ is ramified in K if and only if
POk

Example 2.2.25. We have seen that in K = Q[/=5],20k = (2,1 + \/—5>2 and
30k = (3,1++/=5)(3,1 —+/=F). Then 2Z is ramified in K while 3Z is not.
Notice that dx = —20 and 2 | 0 while 3 1 0.

Definition 2.2.26. Let p be an odd prime and let a be a nonzero integer not a

multiple of p. We define the Legendre symbol <ﬂ) of a, relative to p, as follows:
P

) 1, when a 1s a quadratic residue modulo p,

—1, when a is a quadratic nonresidue modulo p.

a
For typographical reasons, we also use the notation (—) = (a/p). Next, the
p
decomposition of rational primes in quadratic fields can be determined completely

as follows.

Theorem 2.2.27. Let K = Q[\/d] where d is a squarefree integer. Then
(i) 27 is totally ramified in O if and only if d =2 or3 (mod 4).
(ii) 27 splits completely in Ok if and only if d =1 (mod 8).

(#12) 27 is inert in Ok ifand only if d =5 (mod 8).
(2,Vd)? if d=2 (mod 4),
(2,1+Vd)?> ifd=3 (mod 4).

(ii) 20 = (2, ¥4y (2 1Vd) jf § =1 (mod 8).

Moreover, (i) 20k =
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Theorem 2.2.28. Let K = Q[\/c_i] where d is a squarefree integer, p be any odd
prime number. Then
(i) pZ is totally ramified in Ok if and only if p | d.
(i) pZ splits completely in Ok if and only if ptd and (d/p) = 1.
(i11) pZ is inert in Ok if and only if ptd and (d/p) = —1.
Moreover, (i) pOx = (p,v/d)?
(ii) pOx = (p,n+ Vd)(p,n = Vd) if d = n* (mod p).

From these two theorems we can see that p is ramified in Ok if and only if p | k.
In the next chapter we will find integral bases and discriminants of biquadratic

fields.



CHAPTER II1

INTEGRAL BASES AND DECOMPOSITION OF
RATIONAL PRIMES IN BIQUADRATIC FIELDS

In this chapter, we collect results of biquadratic fields which is an extension of
degree 4 over Q of the form Q[y/m, v/n] where m, n are distinct squarefree integer.
The first section deals with algebraic properties of biquadratic fields . The second
section deals with the integral bases and discriminant of biquadratic fields. The

third section deals with the decomposition of rational primes in biquadratic fields.

3.1 Algebraic Properties

Let K = Q[v/m, v/n| be any biquadratic field where m and n are distinct squarefree
integers. Let k = "zt where d = (m,n) and since \/m = @, N @ and
VE = Y2/ we obtain that K = Q[v/m, v/n] = Qly/n, Vk] = Q[Vk, /m]. The
degree of K over @ is 4 and a basis of K over Q is {1,/m, /n, Vk}. Then every
element « of K is written uniquely in the form o = ry-14ry-/m+rs-/n+ry- Vk
where r; € Q. Since char(Q)=0 and K is the splitting filed of the polynomial
(z2—m)(z%—n) over K, so K is a normal and separable extension, and hence Galois

extension over Q with the Galois group G =Gal(K/Q) consists of the following

Q-automorphisms of K:

Ulz’id.

o3 1 Vmi— Vm,Vn = —V/n,
03 1 Vmi— —vVm, Vn = V/n,
o4t Vmi— —Vm, V= —V/n.
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All subfields of K of degree 2 over Q are Q[v/m], Q[v/n] and Q[v/k], and Gal(K/Q[y/m]) =
{017 702}7 Gal(K/@[\/ﬂ) = {017 703} and GaI(K/@[\/E]) = {01’ ’0-4}‘

3.2 Integral Bases and Discriminants

In this section we will find the integral bases and discriminants for biquadratic
fields. First, we will show that 3 cases as follow cover all cases except for
rearrangements of m,n and k.

(i)m=3,n=k=2 (mod 4).
(ii)m=1,n=k=2o0r3 (mod 4).
(iii) m=n=k=1 (mod 4).
Since m and n are squarefree integers, m,n =1, 2 or 3 (mod 4).
Casel. m =3 (mod 4) and n = 3 (mod 4).
Since m and n are odd, d is odd and so d* =1 (mod 4). Hence k = kd*> =mn =1
(mod 4). This case is supported by (ii).
Case2. m =3 (mod 4) and n = 2 (mod 4).
Since m is odd, d is odd and so d*> = 1 (mod 4). Hence k = kd*> = mn = 2
(mod 4). This case is supported by (i).
Case3. m =3 (mod 4) and n =1 (mod 4).
Since m and n are odd, d is odd and so d* = 1 (mod 4). Hence k = kd*> = mn = 3
(mod 4). This case is supported by (ii).
Case4. m =2 (mod 4) and n = 2 (mnod 4).

Since m = 2 (mod 4) and n = 2 (mod 4) and d is even, so &

n
. and 7 are odd.

mn
d2

Caseb5. m =2 (mod 4) and n =1 (mod 4).
Since n is odd, d is odd and so d*> = 1 (mod 4). Hence k = kd*> = mn = 2

Hence k= ¢ =1 or 3 (mod 4). This case is supported by (i) or (ii).

(mod 4). This case is supported by (ii).
Case6. m =1 (mod 4) and n =1 (mod 4).

Since m and n are odd, d is odd and so d* = 1 (mod 4). Hence k = kd* = mn =1



14

(mod 4). This case is supported by (iii).
Hence (i), (ii) and (iii) cover all cases except for rearrangements of m, n and k.

Next, we will find the integral basis of K = Q[\/m,/n] in 3 cases above.

Theorem 3.2.1. Let K = Q[\/m,/n] where m and n are distinct squarefree

integers and k = % where d = (m.,n).

(i) Ifm=3,n=k=2 (mod 4), then
k
{1,v/m,/n, M} is an integral basis of K, i.e.

k
OK—Z~1€9Z-\/E@Z~\/E€BZ-\/E+\/_.
(i) Ifm=1,n=k=2 or3 (mod 4), then

1
(o, L g R

1
Ox=72Z-1B7- +2\/ﬁ@z-ﬂ@z-

(i) fm=n=k=1 (mod 4), then
1+vm 14+4/mn 1+vm 1+Vk
{1’ 2 ? 2 7( 2 )( 2
OK:Z&@Z.1+2¢m@z'1+2\/5@Z'<1+2\/m)(1+2¢%)'

} is an integral basis of K, i.e.

v+ Vk
N

)} is an integral basis of K, i.e.

Proof. Recall that K has 4 embeddings, namely o =id, oy : /m — /m,/n —
—\/n,03 1 /m = —\/m,\/n — /n and g4 : \/m — —/m,\/n — —/n and all
embeddings of K over Q[y/m] are o; and o9, of K over Q[y/n| are o1 and o3 and
of K over Q[\/mn] are o1 and oy.

(i)m=3,n=k=2 (mod 4).

Let o € Ok, 50 & = 19 4+ 713/m + r37/n + 13/k where 1, 71,75, 73 € Q. Then

aa(a) =g + Vi —ry/n = 7“3\/E;
O'3<Oé> =70 — 7’1\/%4‘ 7’2\/% — Tg\/E,
os(a) = 1o — riv/m — roy/n + raVk.

Since a € Ok, TTK/Q[m](a) S OQ[\/R]a TrK/Q[\/m<05) S OQ[\/@, TrK/Q[\/E](a> S
Ogiva-
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We express these conditions in terms of the coefficients of a:

Tr g gpym (@) = o+ oa(a) = 2r¢ + 2r1v/m € Ogym)»
Triqym(@) = a + o3(a) = 2rg + 2r2v/n € Ogpya,

Tr e oy (@) = @+ 0a(a) = 2r + 2r3VEk € O .

Taking into account that Ogpm = Z -1 Z - /m, Ogm = Z-1® Z - /n and

2ro + 2r1v/m € Z- 1 ® Z+/m,
2rg+2r\/n €Z- 1B 7Z - \/n,

270+2T3\/EEZ-1@Z-\/E,

Hence 2rg € 7Z,2r, € 7,21y € Z and 2r3 € Z. From these relations we deduce o =
ro+riy/mtroy/ntrsyk = %(w—i—x\/m—i-y\/ﬁ—i—z\/g) for some w, x,y, z € Z. Since

We express these conditions in terms of the coefficients of a:

Nicraiym(@) =+ 03(a) =~ + ayimP= 2/ + V)

1 1
= (@ +2°m —y*n — 2°K) + 5 Qwry/m — 2y2V/nk)
1 1
= Z(uﬂ +22m — y2n — sz) + Z(Zwaj — 2yzg)\/ﬁ,
1 1
Ni/gim(@) = @ as(a) = 2 (w+ yy/m)* = - (zy/m + 2Vk)?
1 1
= Z(MZ —zm + yzn — sz) + Z(2wy\/_ — 2zzvmk)
1 1
S (P —ahn % P2 S YRl ~ 25 v,
1 1
Nig/gm(@) = a-ou(a) = 2 (w + 2Vk)* = J(wv/m +yv/n)?
— 1 2,2 .2 2 1 \/— B
_4( rm—yn+z k)—{—4(2wz k — 2xy/mn)
1

1
= é_l( —2'm—y’n+ k) + Z(sz — 2zyd)Vk.
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Taking into account that Ogp/m = Z -1 ®Z-/m, Og;ym = Z- 1@ Z - \/n and
OQ[\/E] =7-1®7 -k again, then

1 1
Z(w2+x2m—y2n—22k)—l—4(2wm—2yz WmeZ-1®7Z-/m,

1 1

Z(w2 —z*m +y*n — 2%k) + Z(wa — 2ng)\/ﬁ €ELZ-1®7Z /n,
1 1

Z(w2 —o*m —y’n + 2%k) + ZL(QMZ —2ayd)Vk e Z - 10 Z-Vk.

Hence we have

4| (w? + #*m — y°n — 2%k) (1)
4| (w® = ®m +yPn — 2°k) (2)
4| (W = 2®m — y?n + 2%k) (3)
2 | (we <yz-) (4)
2| (wy = 227) (5)
and 2| (w2 =ayd). (6)

Since n is even and m is odd, d is odd and % is even, by (4) so we have 2 | wa.
Hence 2 | w or 2 | . By (2) and (3) we have 4 | (2w? — 22°m), so 2 | (w? — z%m).
Since one of w or @ is divided by 2, and m is odd, then another one must be divided
by 2. Hence w and x are even. From (2) we have 4 | (y?n — z*k), which means
that y?n = 2%k (mod 4). .Since n = k = 2 (mod 4), we obtain that 2y? = 22>
(mod 4), i.e. y* = 2% (mod 2) which means that y = 2z (mod 2). Thus in this case,
we have that every element in Ok is of the form ag + a;/m + %(ag\/ﬁ + ag\/E)
whete ‘a; '€ Z and as = a3 (mod 2).  ‘Since dag + ajv/m + Saxy/n + azVk) =
ao + aiy/m + 2500+ ay (VY Ox CZ 1B L MmO L@ L LY
For the converse we can see that @ satisfies (2% — (24£))? — 2 ¢ Z[z]. Then
@ € Ok. Since {1,y/m,/n, @} is linearly independent over Q (so over
7), it is an integral basis of Q[v/m,\/n].
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(i) m=1,n=k=2or 3 (mod 4).
Let o € Ok, 50 a = 19 4+ r17/m + 19/n + 73Vk where 7o, 71,75, 73 € Q. Then

os(a) = rg + riv/m — ro/n — 7“3\/Ea
os3(a) = 1o — riv/m + rov/n — r3Vk,
oi(a) =19 — riv/m — rav/n + rsVk.

Since a € OK, TrK/Q[M(Oé) € OQ[M, TI'K/Q[\/ﬂ(Oé) S OQ[\/@, TrK/Q[\/E}(Oé) S

OQ[\/E]' We express these conditions in terms of the coefficients of a:

1+ v/m
Trg qym) (@) = @ +02(a) = 21 + 2rv/m = (2r9 — 2r1) + 47 ( 2\/_) € Oqglymy;

TI‘K/Q[\/E](OZ) = @ i 0'3(01) — 27’0 sl 2T2\/ﬁ - OQ[\/ﬂ7
TrK/Q[\/E](Oé) = a+ ou(a) = 2rp + 2rsVk € OQ[\/E]'

1
Taking into account that Og/m =Z-1DZ- +T\/ﬁ’ Oglym = Z-1®7Z-+/n and
OQ[\/E] =7Z-1®Z-\Vk, we obtain that

1 1
+2\/E)EZ-1@Z- +2\/E’

2ro+2ran/n-c -1 & Z-\/n,
oo+ 2rsVk €Z- 107 - Vk.

(27"0 — 27"1) < 47’1(

Hence 2rqg — 2ry € Z,4ry € Z,2r9 € 7Z and 2rs3 € Z. Since 2rq — 2r; € 7Z and
4ry € Z, we implies 4rg € Z. From these relations we deduce o = rg + ri/m +

rov/n+r3vVk = w4+ zv/m+ 2y\/n + 22vk) where w, z,y, 2 € Z. Since a € Ok,

Ni/anml(@) € Ogpym, Nijaim (@) € O Nxjoiva (@) € Oga-
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We express these conditions in terms of the coefficients of a:

1 1
Nicsorym)(@) = - oa(a) = zp(w+ av/m)? — 1—6(2y\/ﬁ +22Vk)?
1 1
—(w?® + 2®m — dy*n — 42%k) + —6(2wx\/m — 8yzvnk)

" 16
= (0 +am — P — 457K) + o (2un — Sy Vim
= cWw *m — dy°n — 4z 5 (Qwr — 8yz)V/m
1 n
16(w + x?m — 4y’ — 422k—2wx+8y23)
1 ne l+vm
16(4101;— 16yzd)( = ),
1
Ni/qrym(a) =a o3(a) = E(w +2yv/n)* = —(iv\/m +2:VE)?
1
= S0 4 +ytn — 42) £ o (VT — da=VmF)
. il
7 4 422 4 Azt
16(w w*m-4gyn — 42%k) + 16(wy g;-zd)\/ﬁ
1
NK/Q[\/E](O‘) = - oy(a) = 16(w—|—22\/_) —_(% /m + 2y\/n)?

1

" 16
1

~ 16

—(w? —2®m —dy’n ¥ 42°k) + 6(4wz\/E — 4xy\/mn)
1
—(w? = 2*m — dy’n F42°k) + 16(4wz — dzyd)Vk.
1
Taking into account that Ogy/m =Z- 1B Z- %ﬁ, Ogpym = Z-1®7Z-+/n and
OQ[\/E] =7-1® 7k again, then

1
— (w® + 2*m — dy*n — 42°k — 2wz + 8yzg)

16
1 1+ 1++/m
qwx — 1 Z-1D7Z-
+ L ey A e o1 gz YT
1 1
16(w2—x m + 4y’n — 42°k) + 16(4wy 4932—)\/_62 1B Z-+/n,

1

1
16(w —xfm < dyPn H42%k) £ 16(4wz—4xyd)\/E€Z~l@Z-\/E.
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Hence we have

16 | (w? + 2°m — 4y*n — 42°k — 2wz + 8yz%) (7)
16 | (w? — 2*m + 4y°n — 42%k) (8)
16 | (w? — 2°m — 49°n + 42°k) 9)
4] (we — 4yz%) (10)
4| (wy — :vz%) (11)
and 4] (wz — zyd). (12)

From (10) we have 4 | wz. Suppose that w and & do not have same parity, so
exactly one of them divided by 4. Without loss of generality say 4 | w. By (11)
and (12) we have 4 | z and 4 | y, respectively. Then w? y?, 22 are divided by 16,
then by (9) we have 16 | 2%m. Since m is odd and 16 | z>m, this means that w and
x have the same parity which is a contradiction. Hence w and z are even. Then
w = 2w and x = 22’ for some w', z" € Z.

Thus by (7)-(9) we have

4 | (W + z*m —"y*n — 22k — 2u'zs’ + 2yz§) (13)
41 (W' —2%m + y*n — 2%k) (14)
and 4| (W =2%m=y*n + 2%k). (15)

From (14) and (15), we have 47-(2w? — 22/?); then 2 | (w”? — z/?) which implies

|/ TA BT E |

that w' = 2/ (mod 2). Hence w”? = 2 = 1

m (mod 4) and so 4 | y’n — 2%k.
Since n = k = 2 (mod 4) and 4| y?n — 2%k, we obtain that 4 | 2y? — 222 so
y = z (mod 2). In this case, we have that every element in Ok is of the form
Lw' +2'/m + yy/n + 2Vk) where w',2',y,2 € Z, w' = 2’ (mod 2) and y = »
(mod 2). Since (w' + z'\/m +yy/n + 2VE) = 5T (1) + o/ (L) + 2 (V) +
z(@) € Z-l@Z-%@Z-\/ﬁ@Z-@. For the converse we can

see that M satisfies (22 — (24£))? — 2 € Z[z]. Then @ € Og. Since

{1, H;/ﬁ /1, \/ﬁ;ﬁ} is linearly independent over Q (so over Z), it is an integral
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basis of Q[/m, v/n].
(iii) m=n=k=1 (mod 4).
Let oo € O, 50 @ = 19 4 717/ + 19/n + 13V'k where 1o, 71,79, 73 € Q. Then

O'2<Oé> :T0+T1\/m—7’2\/ﬁ—7"3\/%,
Ug(Oé) =70 — T]\/ﬁ"’TQ\/ﬁ— 7"3\/E,
os(a) = 1o — 11V/m — rev/n + 7‘3\/%.

Since a € Ok, Trgqmi(@) € Ogiymp: Trrsenm (@) € Ogrym TTK/Q[\/E](O‘) €

OQ[ VA We express these conditions in terms of the coefficients of a:

14++/m
Triqrym (@) = @ +.02(q) = 270 + 2r1y/m = (210 = 2m1) + 4r1(——) € Ogpym,
14+ +n
Try qrm(@) = o+ a3(a) = 2rg + 2rav/n = (2rg — 2ry) + 4ry 2\/_) € Oglym;
1+Vk
Trg o (@) = o+ aa(a) = 2rg 4 2k = (20 = 2r3) + 4rs(—5—) € Ogpp.
144/ 1
Taking into account that Ogj/m = Z- 1S Z- +2 m, Ogrm=2Z-1®ZL- +2\/ﬁ
1 k
and OQ[\/E] =7Z-187- +2\/_. We obtain that
144/ 14+
(219 — 2r1) + 47 +2 m) €EZ-1®Z- +2 mn
1 1
(2rg — 2r3) + 4rs( +\/ﬁ) €EZ+1Z- +2\/ﬁ,
1 k 1 k
(2r¢g — 2r3) + 4rs( +2\/_) €EZ-1BZ- +2\/_.

Hence 2r¢ — 2ry € Z,2r¢ — 2ro € Zij2vg — 2r3 € Z,4r1 € Z,4ry € Z and 4rs € 7.
Since 2r¢g — 2ry € Z and 4ry € Z, 4ry € Z. From these relations we deduce o =

ro+r1V/m4+roy/n+rsVk = Z—i(w+x\/ﬁ—|—y\/ﬁ+2\/§) where w, z,y, 2z € Z. Since

a € Ok, N jqym) (@) € Ogpymp: Nijarm (@) € Ogyms Nijorm (@) € Ogrum-



We express these conditions in terms of the coefficients of a:
Niciam (@) = a - oa(a) = 15w +avm)? = {e(uvi + VE)*
m—y’n—z k)+i(2wx\/ﬁ—2yz\/%)

SWm

w +$2

16(

1
= —(w? + 2*m — y*n — 2°k) +

1
T — 2wz — 2yz—

16
w? + 2°m — yn—z2k—2wx+2yzd)

1 ny 14++/m
16(4wx — 4yzd)( . ),

Nisatvm(0) =6 gy(@) = o (w + v/ = (av/m + V)’

1

= 16(w2 < 1%m 4 i~ 22k + E(2wy\/_—2x,Z\/mk)
. = (w® — P*m+y*n — 2%k) + i(wa — sz@)\/ﬁ
16 16 d

1

16(w =T e — 2k—2wy+2mzm)

d
ml—i-\/—)

o 116 (dwy — 43:25)(
Ny o (@) = asoy(a) = 16(w +2vk)? - —(w\/ﬁJr yv/n)?
1

= 16(w —2*m — y’n+ 2°k) + 6(2wz\/E — 2zy\/mn)
1, 1

— —(w 16(2wz — 22yd)Vk
1

3 16(w —2*m —y’n+ 2°k — 2wz + 2wyd)
1+ vk
2

d

16(

—z’m —y’n+ 2%k) +

1
dwz— dxyd)(

s )-

14+ +m 1+

Taking int t that O =7-10%-———, O =2-1®7-
aking into account that Ogj, /m) <) 5 Yalval %
L+vE

and OQ[\/E] =7 1BZ- again, then

1
—(w® + 2°m — y’n — 2k — 2wz + 2yzg)

16
1 n. 14++ym
+ 16(4wx—4yzd)( 5

14+ +m

2 I

VEZ-1D7Z-

2

21

B
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1
—(w? — 2®m + y’n — 2%k — 2wy + 2&:2%)

16
+ 1—16(4wy - 4xz%)(1 +2\/ﬁ) €z 1671 +2‘/ﬁ,
%(w2 —2*m — y*n + 2%k — 2wz + 2zyd)
+ 1—16(4wz - 4xyd)(1 +2\/E) €EL-1BZ- ! +2\/E.
Hence we have
16 | (w* + 2*m — y*n — 2°k — 2wz + 2yz%) (16)
16 | (w* — 2°m + y°n — 2%k — 2wy + 2:1;2%) (17)
16| (w? = 2°m — y°n + 2°k — 2wz + 2zyd) (18)
4 (wz — yzg—) (19)
4| (wy — xZ%) (20)
and 4 | (wz —awyd). (21)

Casel w is odd. From (19) and 7 is odd, we obtain that z and yz have the same
parity. Suppose that z is even. By (20) and (21) y and z are even, so we have
4 | yz. Through this result to (19) we have that 4 | . Similarly, by (20) and (21)
we have 4 | y and 4| z. Then by (16) we obtain that 16 | w* — 2wz, i.e. w? — 2wz
is even which contradicts the fact that w is odd. Thus z is odd. Similarly we can
show that y and z are also odd.
Case2 w is even. If one of @,y, z is odd, then anothers are even and similarly to
Casel, which leads to a contradiction. Thus x, %,z are even.
Hence in any cases, we havew =« =y = z (mod 2).

In this case, we have that every element in Ok is of the form }L(w + zy/m +

y\/n + 2Vk) where w =z =y = z (mod 2).
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S

Since %ﬁ and %E are in Ok, a =: o/ + z(lJ“;/ﬁ)(H2 ) € Ok, we have

o = i(w v+ g+ VE) — (- +2\/ﬁ)<1 +2\/E)

:1(w+x\/ﬁ—|—y\/ﬁ+z\/§—z—z\/ﬁ—z\/§—z@)

4

1 m

= (w2 (o= 2+ (g 2V

lw—2 =x-2 Y=z

—2(2 +2\/E+ g Vn).
Sincewz:czyzz(mod2),a:%EZ,b:%eZandc:yfg%GZ,We

have o = $(a + by/m+ cy/n). Claim that a+ b+ ¢=0 (mod 2).
Since o € OK,NK/Q[\/;,;](O&) & OQ[\/E]y NK/@[m(a) € OQ[ﬁ]) NK/Q[\/E](O“/) €

OQ[ VA We express these conditions in terms of the coefficients of a:

Ng/qivm (@) = o ~o2() = i(a +bym)* - i(C\/ﬁ)2

1 1
= Z(GZ + b®m = ¢°n) + Z(Zabﬁ)

! + - 1+

= Z(CLQ Wm — ¢2n — 2ab) + ab( 2\/%)’
= = 1

Nisolvm () = o’ o5(af) = 2(at cv/n)? - Z(b\/E)?

1 1
= Z(az + b®m — ®n) + Z(Qac\/ﬁ)

1
= 1(02 + b*m — n — 2ac) + ac( ‘1‘2\/%)7
1 1
Nijoa (@)= o - au(@’) = £(a)* = 2 (bv/m + cv/n)?
1
= —(a2 | I me e ! CQTL) - Z(2bcd\/E)

1 1
— Z(GQ — b’m ~ ¢*n+-2bed) — bed( +2\/E

)



o 14+ +/m 1++vn
Tak t t that O =Z2-10%2- ————, O =7-187Z-
aking into account tha @W\/@ @ 5 Calval % 5
1 k
and OQ[\/E] =7Z-187%Z- + again, then
4| (a* + b*m — ¢*n — 2ab) (22)
4] (a* = b*m + ¢*n — 2ac) (23)
4] (a® = b*m = ¢*n + 2bcd). (24)

By (22), (23) and (24),we obtain that

Hence (a —b—¢) =0 (mod 2), also we have (a + b+ c¢) =0 (mod 2).

In this case, we have that every element in Ok is of the form o = o +
z(%ﬁ)(%), we have
1 1+vVEk
ool o +2\/m)( +2f)
1 1+ym 1+Vk
= la+bym+evn) +2(—5—)(—5—)
1 1++/m 1+ /n 1+vm. 1+Vk
= MR b Y £ oy L LV
a—b—c 1+vm 1++/n 1+ vm 1+ Vk
Y B S Ct L] N e D fann L e L
ez-maz-HQm@z-%ﬁ@z-(”Qm)(”zﬁ).

Hence O CZ-187Z- %ﬁ ®Z- %ﬁ ®Z- (1+ﬁ)(1+2*/§). For the converse

we can see that (%)(%ﬁ) € Ok, since %ﬁ € Ok and %E € Ok. Since
{1, Ltv2 (Ltym )(HQ‘/E)}is linearly independent over Q (so over Z), it is an

integral basis of Q[y/m, v/n]. The proof is complete. O




Next, we will find the discriminant in all cases.

1 a b c
1 a -b —c
Lemma 3.2.2. Let a,b,c € R. Then = —16abc.
1 —a b -—c
1 —a -b ¢

Proof.

1 a b ® 4 0 0 0 R1+R2+R3+R4

4

2 0 —2b O|R;+ Ry
2 —2a 0 OR5+R4
1

2b
== a2 PRV N (=" = —16abc.
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Theorem 3.2.3. Let K = Q[\/m,/n] where m and n are distinct squarefree
integers and k = d—;l where d = (m,n).

(i) If m=3,n=k=2 (mod 4), then dx = 64mnk,

(i) fm=1n=k=2 or3 (mod 4), then i = 16mnk,

(i) Ifm=n=k=1 (mod 4), then §x = mnk.

Proof. Recall that 6 =discg(aq,...,a,) where {ay,...,a,} is an integral basis
of K over Q.
Casel. m=3,n=k=2 (mod 4).
Then {1,/m,/n, f—; \/_} is an integral basis, so we compute discriminant as
follows:
2
k
Ll n \/ﬁ+\/—
/=
5 1. vm —Jn \/_T\/—
K:
1 VR P ﬁ“/’%
k
, Wriem \/ﬁ;\/_
2
1 vm n  Jn+vk
1l vm =y ==k
Hi —vm  yn A=k
1 —ym —yn —/n+Vk
2
Lo vm | ~van ok
1L Vmo =y —Vk|[ Cy— Cs
A1 = imewing FeVE
1 —vm =i Vk

1
— Z(_16\/ﬁ¢ﬁ\/@2 — 64mnk  (by Lemma 3.2.2).



Case2. m=1,n=k=2or 3 (mod 4).

Then {1, L +2\/m, v, \/ﬁ; vk
as follows:
. 1+2\/ﬁ Ji \/ﬁ;r\/E
ok = ! 1—’_2\/% AN ] \/_Qf
| 1—2\/ﬁ W \/ﬁ; k
X 1—2\% i —\/ﬁ;ﬂ
114 yn \/ﬁ+\/E2
L A —yn R VE
B L S R
U 1=ym —n —/n+Vk
1f i /i R |
_il Vma=/n =vk| C—Cy
16— v VR G-
1 —/m —/n vk

.
3 1_6(_16\/E\/ﬁ\/é)2 = 16mnk  (by Lemma 3.2.2).

} is an integral basis, so we compute discriminant
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Case3. m=n=k=1 (mod 4).

1+vm 1+yn 1+yvm 1+Vk
2 72 7 ( 2 N 2

pute discriminant as follows:

) 1++v/m 1++n

Then {1,

)} is an integral basis, so we com-

1+vm  1+Vk
2 2 (==
L Evm o 1-va 1+ym 1-Vk
5 5 ( ) (—5—)

2
X 1—2\/777 1+2\/ﬁ (1—m)(1—\/E)

L L=V 1-vh 1—2\% 1+2\/E
> - 5 )

Lt m 1+yn 1+ ym+Vk+mVk
I +ym 1—yn 1+m~Vk—mVk
1—ym 1+vn 1—ym—Vk+ymVk
I—vm 1—yn 1—m+Vk—vmVEk
Vi i VR S |
VI i =k -
—Vm i == VE+ 2/
—Vim i = VE
Jm
Jm
—/m
1y

2356

1
1
1
1

ju—

Cy— O
Cs — (4
Cy—Cy

= 256,

—_

+vn  Vk :

Vi =VE Ci—Cy— 20,

+vn —VE d
—vn - Vk

1

= i (~16vimVAVE)? = mnk ~(by Lemma 32.9)

1
256

— = = =
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3.3 Decomposition of Rational Primes

In this section we will find the decomposition of rational primes in biquadratic
fields. We will use the following theorem from [6] to a biquadratic field which is a

quadratic extension of a quadratic field.

Theorem 3.3.1. [6] Let p be a prime number, F' an algebraic number field con-
taining a primaitive pth root of unity ¢, a € £ such that a is not the pth power of
an element of F', t is a root of a? —a and K = F(t).
(i) If aOp = P¢J, where J is an ideal of Op not a multiple of P and e > 0 is
an integer not a multiple of p, then P is ramified in K/F.
(ii) Assume that P divides neither aOp nor pOp.
(tia) If the congruence X* = a (mod P) has a solution in Op, then P splits
completely in K /F.
(iib) If the congruence XP = a (mod P) has no solution in Op, then P is
inert in K/F.
(iii) Assume that P does not divide aOp but (1 — ()Op = P°¢J where J is an
ideal of Or not a multiple of P and e > 0.
(iiia) If the congruence X? = a (mod PP has a solution in OF, then P
splits completely in K/F.
(iiib) If the congruence XP = a (mod PP*™') has no solution in O but the
congruence X? = a-(mod P?¢) has a solution in O, then P inert in
K/
(iiic) If the congruence XP = a (mod PP®) has no solution in Op, then P

ramified in K/ F.

Next, we will apply this theorem with case p = 2.
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Theorem 3.3.2. Let F' be a quadratic field, K = F[\/a] where a is a squarefree
integer which is not a square of an element of F'. Let P be any nonzero prime ideal
of Op.
(i) If aOp = P¢J, where J is an ideal of Op not a multiple of P and e > 0 is
odd, then P is ramified in K/F.
(ii) Assume that P divides neither aOp nor 20p.
(iia) If the congruence X* = a (mod P) has a solution in O, then P splits
completely in K/F.
(iib) If the congruence X* = a (mod P) has no solution in O, then P is
inert in K/ F.
(7ii) Assume that P does not divide aOp but 20p = P°J where J is an ideal
of O not a multiple of P and e > 0.
(iiia) If the congruence X? = a (mod P?***") has a solution in OF, then P
splits completely in K/F.
(iiib) If the congruence X* = a (mod P%**') has no solution in Op but the
congruence X2 = a (mod P?¢) has a solution in Op, then P inert in
K/F.

(iiic) If the congruence X? = a (mod P?*) has no solution in O, then P
ramified in K/F.

From Theorem 3.3.2, we can find the decomposition of rational primes in bi-

quadratic fields by choosing F to satisfy one of three conditions as above.
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Theorem 3.3.3. Let K = Q[\/m,/n] where m and n are distinct squarefree

integers and k = % where d = (m,n). Then
(
Pr ,if m=3,n=2 (mod 4)
PiP; ,if m=1 (mod8) andn=2 or3 (mod4)
20Kk = { P? ,if m=5 (mod8) andn =2 or3 (mod 4)

PiPoPsPy , if m=1 (mod8),n=1 (mod 8)

k771732 ,if m=1 (mod8&),n=5 (mod 8).

Proof. Casel m =3,n= k=2 (mod 4).

Take F' = Q[v/n]. By Theorem 2.1.20 and Theorem 2.2.27 we have Op
—7Z-1+7Z-/n and 205 = (2, /n)" = P2. Since N(205)=|Np(2)|=4, N(P,)?
=N(P%) =N(20r)=4, and so N(P;)=2. Note that K = F[\/m| and N(mOp)=
INp(m)| = m?. Sinee 2 4 m, by Corollary 2.2.13 P, { mOp. This shows that P,
satisfies Theorem 3.3.2(iii) with e = 2, then we have to check that the congruence

X? =m (mod Py) has a solution in Op or not.
Since Op =Z -1+ Z - \/n, we have
P= e

= (20F)*

= 40

—d(Zp1 & Bey/n)

=7Z-4+7- 4y/n.
Claim that X? = m_ (mod Py) has no solution in Op. Suppose not, i.e. there
exists an X = u+wvy/n for some u, v € Z which is a solution of X? =m (mod Py).
Then X2 —m € Z -4+ Z - 4y/n. Since X? —m = (uv® + v’n —m) + (2uv)/n, we
have 4 | u? +v*n —m and 4 | 2uv, and so 2 | uv. If 2 | u, from 4 | u? +v*n —m we

obtain that 4 | v?>n — m which contradicts the fact that v?n —m is odd. If 2 | v,

from 4 | u? + v?®n — m we obtain that 4 | u> — m which contradicts the fact that
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2? = 3 (mod 4) has no solution in Z. Hence we have the claim. This shows that
P, satisfies Theorem 3.3.2(iiic). Hence P is ramified, i.e. P,Ox = P? where P; is
a prime ideal of Ok. Thus 20k = Pi.

Case2m=1,n=k=2or 3 (mod 4).

Case2.1 m=1 (mod 8) and n =%k =2 or 3 (mod 4).

Take F' = Q[v/n]. By Theorem 2.1.20 and Theorem 2.2.27 we have Op =
Z-1+Z-\/n and 205 = (2,y/n)’ = P2 Since N(205)=|Np(2)|=4, N(P,)2=N(P2)
=N(20r)=4, and so N(P;)=2. Note that K = F[\/m] and N(mOp)=|Ng(m)| =
m?. Since 2 t m, by Corollary 2.2.13 P> £ mOp. This shows that P satisfies
Theorem 3.3.2(iii) with e = 2, then we have to check that the congruence X2 = m
(mod P3) has a solution in O or not.

Since Op =Z -1+ Z-\/n, we have

Py = (P,)(P)
—(4) (2.v)
= (8.4y/n)
=80r + 4ynOp
=78+ L-8\/u+L-d\/u+7Z - dn
=7 -8+ Z-4+/n.

Choose X = 1 as a solution of X? = m (mod PJ). Since m = 1 (mod 8), then
1-meZ-8CZ:-8+Z-4/n. This shows that P, satisfies Theorem 3.3.2(iiia),
Hence Ps splits completely, i.e. PoOx = PPy where Py, Py are distinct prime
ideals of O . Thus 20k = P P3.
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Case2.2 m =5 (mod 8) and n =k =2 (mod 4).

Take F' = Q[/m]. By Theorem 2.1.20 and Theorem 2.2.27 we have Op =Z -1+
Z - %ﬁ and 20p = P, is inert. Since n = 4a + 2 = 2(2a + 1) for some a € Z,
then nOp = 20p(2a+ 1)Op = P,J. This shows that P satisfies Theorem 3.3.2(i)
with e = 1 which is odd, so P, is ramified, i.e. POy = P? where P; is a prime
ideal of Of. Hence 20f = P?

Case2.3 m =5 (mod 8) and n = k = 3 (mod 4).

Take F = Q[y/m]. By Theorem 2.1.20 and Theorem 2.2.27 we have Op = Z -1 +
Z- Y™ and 20 = Py is inert. Since N(205)=|Np(2)|=4, N(P;)=4. Note that

K = F[y/n] and N(nOr)=|Ng(n)| = n* Since 4 { n, by Corollary 2.2.13 P, { nOp.
This shows that P, satisfies Theorem 3.3.2(iii) with e = 1, then we have to check

that the congruence X? = n (mod P3) has a solution in O or not.

Since OF:Z-1+Z-1+;/E,We have

P} = (20p)?
=405
1+\/%)
2
:Z.4+Z.4(1+2\/m).

SN 1T

Claim that X? = n (mod P§) has no solution in Or. Suppose not, i.e. there exists
an X = u + U(%ﬁ) for' some 4, v € Z which is a solution of X? = n (mod P%).
Then X? —n'€ Z -4+ Z - 4(15/7).

Consider X? — n = u2 + 2uv( 252y 4 2 (Hmi2/my

SO H ot (3 L Ak (2u 3 17) (FR2)

=+ 02 (2) — ot ou o) () € 244 2 4(HE)
m’

1
we have 4 | u? + v¥( ) —n and 4 | v(2u + v). Then v is even, and so we

have 4 | u?> — n which contradicts the fact that 22 = 3 (mod 4) has no solution
in Z. This shows that P, satisfies Theorem 3.3.2(iiic), then P, is ramified, i.e.
PO = P? where Py is a prime ideal of Of. Hence 20§ = P?.
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Case3 m=n=k=1 (mod 4). We have only 2 subcases as follows:
(I)m=n=k=1 (mod 8),

(2) m=1,n=k=5 (mod 8).

Take F' = Q[y/m]. By Theorem 2.1.20 and Theorem 2.2.27 we have Op = Z -1 +
Z- ™ and 20p = (2,57 (2, Y™ = PPy, Since N(205)=|Ng(2)|=4 and
N(P;)=N(R,), N(P,)=2 and N(/7%) = 2. Note that K = F[\/n] and N(nOp)=
INg(n)| = n2. Since 2 {n, by Corollary 2.2.13 P, t nOr and P, { nOp. This shows

that P, and P, satisfy Theorem 3.3.2(iii) with e = 1, then we have to check that

the congruence X? =mn (mod P?) has a solution in O or not.

Since Op =7Z-1+Z- 1Jrg/m,wehawe

Pyl Ay 1V,

2 Y
1+m+2ym
:@J+¢ﬁ———ZJ£§

Since m = 1 (mod 8),™=+ € Z and so 1 + /m = (52)(4) + (2)(%), we
obtain that

1+m+2ym

o

1 +m+2y/m

4

1+ /m
2

=7 -4+7Z - (2+2/m)+7Z

Py = (4,
— 40k + T

=7 A4+ 7-4A(

)+ Z

I1+m+2ym 1L+m+2ym, 1++/m
e L () ()
1+m+2\/ﬁ+z (3m+1+(m+3)\/ﬁ

4 8 )

Since m =1 (mod 8), =L € Z and so we have 2+2/m = (:57)(4) +4(—1+m12\/7”)

and (W) =2 (75 (1) (mf’)(HmZZ‘/m), this shows that

1+m+2ym

P2=7-4+7. y

Choose X = 1 as a solution of X? = n (mod P§). Since n = 1 (mod 4), then
1l-nmeZ-ACZ-A+7Z- (M) This shows that P, does not satisfy Theorem

3.3.2(iiic). Hence we have to check that the congruence X? = n (mod P3) has a
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solution in O or not. Since Op =Z -1+ 7 - 1+ﬁ, we have

P = (o, LR 12
_ <8’2_’_2\/E’7’17,—1—1;—2\/57 (3m+1)+8(m+3)\/ﬁ>.

Since m = 1 (mod 8), % € Z and so 2 + 2y/m = (1Z%)(8) + (2)(%), we

obtain that

m+1+2y/m (B3m+ 1)+ (m+ 3)y/m

P23:<& 9 ) 3 >
:<8’m+1;—2\/ﬁ7(3m+1)+8(m+3)\/m_(m8—1)(m+1;2\/ﬁ)>
o m+1+42ym (—=m®+ 6m + 3) + 8V/m
=& 2 ’ 16 )

Sincem =1 (mod 8), mT_l € Z and so m+1;2\/m — (m8—1)2(8)—1—(2)(*’”2%”;;3*8‘/7”),

we obtain that

m+1+42ym (—m?+6m+3) +8/m

P} =
2 <87 2 ) 16 >
(—m? +6m + 3) + 8y/m
= (8, = )
et
:8OK+( m +6mlg3)+8\/m0K
1 —m? +6m + 3) + 8
78478 +2\/m)+Z.(( m? + m2—|— ) + \/ﬁ)
—m?+6m+3)+8ym, 1+ vm
vz (¢ - L
2
4 5 1
=Z-8+4Z-(4+4ym)+Z-( o ﬁgm 5+ +2‘/m)
—m? 4+ 14m+3  (—m*+6m+ 11)y/m
AR 32 - 32 )
—m246m =5 1
=7Z-8+7Z-(44+4ym)+7Z-( m +16m + +2\/ﬁ>
m—1_ (m?>—6m—11) 1+/m

+Z (= T ()



Since m = 1 (mod 8), %=1 € Z and so we have 4 + 4\/m = (W)(S) -
—m m— m— m2—6m— — m—1)3
B(=pomss 4 L) and (i — (gl () — (Smelpadme il (s) —

( 2—61521—11)(—”1 J{Gﬁm—f’ + H\F) this shows that

—m?+6m—5 1
PP=7-8+7-( m+16m +2\/ﬁ)

:Z.8+Z.(4(m_1)—(m1—61)2—|—8—|—8\/ﬁ).

Suppose X = u + v(XY™) where u,v € Zis a solution of X? = n (mod P}) in
Op. Then X2—neZ -8+7- (4(m—1)*(m1—61)2+8+8\/ﬁ).

Since X2 —n = u® + qu(lh/ﬁ) 4 U2(1+m+2f>

=u?+uv+o (%
+

=u ~|—uv—|—fu( (T\F)

n+ (2uv +v )(ﬁ)
)
)

2uv + v? ( (m— 1) (m— 1)2+8)

(
i (
+(2uw + v2)(4(m—1)—(m—1) +8+8f)

16
+ 92 (m 61) L

-
) —n+ (2uv + v?
= wiF w2 EET) —n -

— u2 . uv((m—lg(m—i-?;))

+(2uv + vQ)(4(m‘1) (m161)2+8+8f)

cZ-8S+7- (4(m*1)*(m1*61)2+8+8\/%)7

we have
2 (m—1)(m+ 3) 2(m—1)2_

8| u® — u( ? ) - p
__4| _12 1 _1 3

8|U2—2uvm +vz(m ) +2uvm —uv((m Jm )) n
4 16

m= 1 9 (m—1)2
8| (-l H T £ I

Since-m =1 (mod 8),8 | m so.-we have 8 |-(u—v(Z:2))%— n.

Casel n = 1 (mod 8). We choose u = 1,v = 0. Then the congruence X? = n
(mod P3) has a solution in Op and so P, satisfies Theorem 3.3.2(iiia). Hence
P, splits completely. Similarly we can prove that P, also splits completely. Thus
PO = PPy and POy = P3P, where Py, Ps, Ps and P, are distinct prime ideals
of Ok. Hence 20 = P1PaP3Py.
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Case2 n =5 (mod 8). Since 22 =5 (mod 8) has no solution in Z, we obtain that
the congruence X? = n (mod Pj) has no solution in Op and so then P, satisfies
Theorem 3.3.2(iiib). Hence P is inert. Similarly we can prove that P, is also inert.
Then 20k = PP, where P; and P, are distinct prime ideals of Ok.

That completes the proof. n

Lemma 3.3.4. Let p be an odd prime number, m,n be squarefree integers not a

: mn
multiple of p and k = 2 where d = (m,n). Then (m/p)(n/p) = (k/p).

Proof. Recall the fact that (a/p)(b/p) = (ab/p), then apply this fact by a = d?,

b= 1. Since (d?/p) = Ly (m/p)(n/p) = (mn/p) = (%% /p)(d*/p) = (k/p), so we
complete the proof. O

Next, we will use Theorem 3.3.2 and Lemma 3.3.4 to compute explicitly factors

of p in each case.

Theorem 3.3.5. Let K = Q[\/m, \/n| where m and n are distinct squarefree

integers and k = T here/d = (m,n). Then

d2
PiP; , ifplm,p|n,ptk and (k/p) =1
P2 , ifp|mp|nptk and (k/p) = —1

POk = <
PiPPsPy , if ptmnk, (m/p) =1, and (n/p) =1

P1Ps ,if ptmnk, (m/p) = —1 and (n/p) = —1

Proof. Since m,n are squarefree integers, we have only 2 cases as follows:

Casel p divides at least one of m,n or k.

Without loss of generality, we say p | m. Claim that p divides exactly one of n or
k. Suppose that ptn. Then p{d. Since p | m, p | d*k so p | k.

Next, suppose that p | n. Since m and n are squarefree, m = pr and n = py for

some x,y € Z such that p{x and pty. Hence p | d and kd?/p* = xy. Since ptx
and pty, pik.
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In this case we assume that p | m and p | n so we have p 1t k.
Casel.1 (k/p) = 1. Take F' = Q[v'k]. By Theorem 2.2.28 pOr = (p, a+Vk)(p, a—
Vk) = PP where a € Z such that k = a? (mod p). Since p | m and m is
a squarefree integer, m = pz for some x € Z such that p t . Then mOp =
pOrzOp = PPxOp. So we have mOp = PJ where J = PxOp and P { PxOp.
Similarly we have mOp = P.J' where J' = PzOp and P { PrOp. Hence P and
P satisfy Theorem 3.3.2(i) with e = 1 which is odd, so P and P are ramified, i.e.
POy = P? and PO = P2 where P; and P, are distinct prime ideals of Ok-.
Hence pOy = P¥P3.
Casel.2 (k/p) = —1. By Theorem 2.2.28 pOp = P is inert. Since p | m and m
is a squarefree integer, m = px for some x € Z such that p f x. Then mOp =
pOpzOp = PxOp and P { xOp. Hence P satisfies Theorem 3.3.2(i) with e = 1
which is odd, so P is ramified, i.e. POy = P{ where P; is a prime ideal of O.
Hence pOf = P}
Case2 p does not divide m,n and k.
By Lemma 3.3.4 we have only 2 cases as follows:
(1) (m/p) = (n/p) = (k/p) =1,
(2) exactly one of (m/p), (n/p) and (k/p) equals 1.
Case2.1 (m/p) = (n/p) = (k/p) = 1.
Take F' = Q[/m], by Theorem 2.2.28 pOr = (p,a++/m)(p,a—/m) = PP where
a € Z such that m = a® (mod p). Since N(pOz)=|Nrg(p)| = p* and N(P)=N(P),
N(P)=N(P) = p. Note that K = F[\/n] and N(nOp)=|Ng(n)| = n? Since
ptnand p {2, by Corollary 2.2:13 we have P4 nOp, P { 20z, P { nOp and
P+ 20p. Hence P and P satisfy. Theorem 3.3.2(ii).  Then we have to check
that X? = n (mod P) has solution in O or not. Since (n/p) = 1, there exists
b € Z such that b> = n (mod p). Then we choose X = b, so X € Z C Op and
X2 —-n€eZ- -pC pOr C P. This means that P satisfies Theorem 3.3.2(iia),
so P splits completely. Similarly we can prove that P splits completely. Then
POy = PP, and POy = P3P, where Py, P, Ps and P, are distinct prime ideals
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of Ok. Hence pOx = P1PyP3Py.

Case2.2 Exactly one of (m/p), (n/p) and (k/p) equals 1.

Without loss of generality, we say (m/p) =1 and (n/p) = —1.

Take F' = Q[v/n], by Theorem 2.2.28 pOp = P is inert. Since N(pOp)=

INp(p)| = p?, N(P) = p. Note that K = F[\/m] and N(mOpg)=|Np(m)| = m?.
Since p 4 m and p 1 2, by Corollary 2.2.13 we have P { mOp and P { 20p. This
shows that P satisfies Theorem 3.3.2(ii). Then we have to check that X? = m
(mod P) has solution in O or not. Since (m/p) = 1, there exists ¢ € Z such that
2 =m (mod p). Then we choose X =¢, 80 X € ZC Op and X2—m € Z-p C P.
This means that P satisfies Theorem 3.3.2(iia), so P splits completely, i.e. POy =
PPy where Py and Ps are distinct prime ideals of Qk. Hence pOx = P1Ps. The

proof is completed. n

Corollary 3.3.6. Let K = Q[\/m,/n] where m and n are distinct squarefree

integers and k = % where d = (m,n). Then

(i) No prime p is inert in K,

(i) If a prime p is ramified in each of the quadratic subfields, then p is totally
ramified in K, and

(iii) If a prime p splits completely in each of the quadratic subfields, then p splits

completely in K.

Proof. (i) Follows by Theorem 3.3.3 and Theorem 3.3.5.

(ii) Suppose a prime p is ramified in each of the quadratic subfields.

Casel p = 2.

Since 2 is ramified in each of the quadratic subfields, m = 2 or 3 -(mod 4), n =
20or3(mod4) and k =2o0r3 (mod4). If m =n =%k =3 (mod 4), then d is
odd, so 3 =k = kd* = mn =1 (mod 4) which is a contradiction. Hence exactly
one of m,n and k =3 (mod 4) and the others = 2 (mod 4). By Theorem 3.3.3, 2

is totally ramified.
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Case2 p is odd.

Since p is ramified in each of the quadratic subfields, p | m, p | n and p | k, which
is impossible. Hence this case never occur.

(iii) Suppose a prime p splits completely in each of the quadratic subfields.
Casel p = 2.

Il
B
Il
—_

Since 2 splits completely in each of the quadratic subfields, m = n
(mod 8). By Theorem 3.3.3, 2 splits completely.

Case2 p is odd.

Since p splits completely in each of the quadratic subfields, p f m,(m/p) = 1,
ptn,(n/p) =1and p1k, (k/p)=1. Hence p{ mnk,(m/p) =1 and (n/p) = 1.
By Theorem 3.3.5, p splits completely. O]
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