
การวัดความสามารถในการบํารุงรักษาซอฟตแวรเชิงวัตถุในขั้นตอนการออกแบบ

โดยใชมาตรวดัความซับซอนของโครงสรางและมาตรวดัสุนทรียภาพ

 นางสาวเมทิน ี เขียวกนัยะ

วิทยานิพนธนี้เปนสวนหนึง่ของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2549

ลิขสิทธิ์ของจฬุาลงกรณมหาวทิยาลยั

MEASURING OBJECT-ORIENTED SOFTWARE MAINTAINABILITY IN DESIGN PHASE

USING STRUCTURAL COMPLEXITY AND AESTHETIC METRICS

 Miss Matinee Kiewkanya

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2006

Copyright of Chulalongkorn University

vi

ACKNOWLEDGEMENTS

I am especially deeply grateful to my thesis advisor, Associate Professor Dr.

Pornsiri Muenchaisri, who provided me the great deal of guidance in the area of

software measurement. She always motivates me throughout this research period and

taught me how to be a good advisor. Without her, my thesis would have never been

accomplished. Moreover, she also gave me an opportunity to get the fund to participate

international conferences in oversea. This opportunity made me open my vision widely.

I also wish to express my special thanks to the thesis committee, Associate

Professor Dr. Prabhas Chongstitvatana, Associate Professor Dr. Wanchai Rivepiboon,

Associate Professor Dr. Boonserm Kijsirikul and Dr. Songsak Rongviriyapanich, for their

valuable advices, reading and criticizing the manuscript. They helped me focus on my

research activities. Thanks are also extended to Lecturer Nakornthip Prompoon and

Lecturer Chate Patanothai.

I wish to thank the graduate students within the Computer Engineering

Department at Chulalongkorn University who spent their time to participate in my

experiment. This research work is the part of “Object-Oriented Software Metrics” project,

financed by Chulalongkorn University - Stock Exchange of Thailand (SET) Linkage

Research Fund. I would like to thank the Royal Thai Government Scholarship for the

financial support during my study. This fund also gave me a chance to have research

collaboration at National ICT Australia (NICTA). I also would like to thank Professor Dr.

Ross Jeffery and Elsa Colella who looked after me when I did my research at NICTA.

I would like to thank all my colleagues and friends at the Software Engineering

Laboratory, especially Nongyao Jindasawat, for helps and discussions on my thesis. I

would like to thank my best friend, Benjamas Panyangam, for her everlasting friendship.

My thanks also go to all my past and present lecturers for their valuable lectures

and instructions. Finally, I would like to express my sincere gratitude to my parents and

family members for their everlasting love, supports and hearty encouragements

throughout my life.

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ..iv

ABSTRACT (ENGLISH)..v

ACKNOWLEDGEMENTS ..vi

TABLE OF CONTENTS....... ... vii

LIST OF TABLES..x

LIST OF FIGURES... xiii

Chapter

I INTRODUCTION... 1

1.1 Motivation .. 1

1.2 Objective ... 2

1.3 Scope and Limitation... 3

1.4 Contributeion ... 3

1.5 Research Methodology ... 4

1.6 Organization of the Thesis... 4

II BACKGROUND AND LITERATURE REVIEW... 6

2.1 Background... 6

2.1.1 UML... 6

2.1.1.1 Class Diagram.. 6

2.1.1.2 Sequence Diagram... 9

2.1.2 Software Measurement ... 10

2.1.3 MANOVA... 11

2.1.4 Classification Techniques ... 14

2.1.4.1 Discriminant Analysis ... 14

2.1.4.2 Decision Tree.. 15

2.1.4.3 Multilayer Perceptron and Backpropagation Learning..................... 17

2.2 Literature Review... 19

2.2.1 UML Metrics.. 19

2.2.2 Maintainability of Object-Oriented Software.. 21

 viii

Chapter Page

2.2.3 Aesthetic Criteria of Class and Sequence Diagrams 22

III CONSTRUCTING MAINTAINABILITY MODELS.. 24

3.1 Metric Selection... 25

3.1.1 Structural Complexity Metrics ... 25

3.1.2 Aesthetic Metrics... 28

3.2 A Controlled Experiment.. 33

3.2.1 Experimental Aims and Definitions.. 33

3.2.2 Subjects .. 34

3.2.3 Experimental Materials and Tasks .. 35

3.2.4 Data Collection.. 37

3.3 Experimental Analysis and Results.. 44

3.3.1 Metric Validation.. 44

3.3.2 Constructing Understandability, Modifiability and Maintainability Models .. 46

3.3.2.1 Correlation Analysis.. 48

3.3.2.2 Discriminant Analysis ... 51

3.3.2.3 Decision Tree.. 57

3.3.2.4 Multilayer Perceptron Nueral Network .. 61

3.3.3 Comparison between Prediction Models Obtained by Applying

 Discriminant Analysis, Decision Tree and MLP Neural Network................. 61

3.3.4 Conclusion and Discussion... 66

3.4 Threats to Validity .. 68

3.4.1 Threats to Internal Validity... 69

3.4.2 Threats to External Validity.. 69

IV A NEW PROPOSED SET OF STRUCTURAL COMPLEXITY METRICS FOR

MAINTAINABILITY ... 71

4.1 Metric Definition... 71

4.1.1 Metrics for Understandability .. 72

4.1.2 Metrics for Modifiability ... 72

4.1.3 Terms and Functions... 73

 ix

Chapter Page

4.2 Metric Derivation ... 76

4.2.1 Metrics for Understandability .. 76

4.2.1.1 Understandability of a Class... 76

4.2.1.2 Understandability of a Software.. 81

4.2.2 Metrics for Modifiability ... 82

4.2.2.1 Modifiability of a Class.. 82

4.2.2.2 Modifiability of a Software... 86

4.3 Metric Validation.. 86

4.4 Metric Theshold... 88

V CONCLUSION AND FUTURE WORK .. 91

5.1 Conclusion... 91

5.2 Future Work ... 92

REFERENCES ... 94

APPENDICES.. 99

APPENDIX A. PUBLICATIONS .. 100

APPENDIX B. EXAMINATION.. 102

APPENDIX C. QUESTIONNAIRE ... 118

APPENDIX D. USER MANUAL OF A TOOL FOR MEASURING STRUCTURAL

 COMPLEXITY METRICS AND PREDICTING MAINTAINABILITY....... 120

BIOGRAPHY ... 125

 x

LIST OF TABLES

Table Page

2.1 Notation of class relationships ... 8

2.2 Some of empirical studies of object-oriented metrics for maintenances and its

sub-characteristic ... 22

3.1 Structural complexity metrics .. 25

3.2 Aesthetic metrics .. 29

3.3 Subject category.. 34

3.4 Sample software .. 35

3.5 Assigning software to subject groups.. 36

3.6 Structural complexity metric values of sample software 39

3.7 Structural complexity metric values of sample software (continued)..................... 40

3.8 Aesthe metric values of sample software .. 41

3.9 Aesthe metric values of sample software (continued) ... 42

3.10 Understandability, Modifiability and Maintainability Scores and Levels of

sample software .. 43

3.11 Understandability, Modifiability and Maintainability Scores and Levels of

sample software (continued) ... 44

3.12 MANOVA test of structural complexity metrics .. 46

3.13 MANOVA test of aesthetic metrics... 46

3.14 MANOVA test of structural complexity and aesthetic metrics................................ 46

3.15 Pearson’s correlation of structural complexity metrics .. 49

3.16 Adjusted R square of correlatedd structural complexity metrics where

dependent variable is understandability level. Discarded metrics are ANAW,

ANMW, NAggH, MaxDIT .. 49

3.17 Adjusted R square of correlatedd structural complexity metrics where

dependent variable is modifiability level. Discarded metrics are ANAW,

ANMW, NAggH, MaxDIT .. 49

 xi

Table Page

3.18 Adjusted R square of correlatedd structural complexity metrics where

dependent variable is maintainability level. Discarded metrics are ANAW,

ANMW, NAggH, MaxDIT .. 49

3.19 Pearson’s correlation of aesthetic complexity metrics .. 50

3.20 Adjusted R square of correlatedd aesthetic metrics where dependent variable

is understandability level. Discarded metrics are UnifEdgeLen, UnifBends,

MaxEdgeLens.. 50

3.21 Adjusted R square of correlatedd aesthetic metrics where dependent variable

is modifiability level. Discarded metrics are UnifEdgeLen, UnifBends,

MaxEdgeLens.. 50

3.22 Adjusted R square of correlatedd aesthetic metrics where dependent variable

is maintainability level. Discarded metrics are UnifEdgeLen, UnifBends,

MaxEdgeLens.. 50

3.23 An understandability model: DiscUnd1 ... 51

3.24 An understandability model: DiscUnd2 ... 51

3.25 An understandability model: DiscUnd3 ... 52

3.26 An understandability model: DiscUnd4 ... 52

3.27 An understandability model: DiscUnd5 ... 52

3.28 An understandability model: DiscUnd6 ... 53

3.29 A modifiability model: DiscMod1 ... 53

3.30 A modifiability model: DiscMod2 ... 53

3.31 A modifiability model: DiscMod3 ... 54

3.32 A modifiability model: DiscMod4 ... 54

3.33 A modifiability model: DiscMod5 ... 54

3.34 A modifiability model: DiscMod6 ... 55

3.35 A maintainability model: DiscMain1 ... 55

3.36 A maintainability model: DiscMain2 ... 55

3.37 A maintainability model: DiscMain3 ... 56

3.38 A maintainability model: DiscMain4 ... 56

3.39 A maintainability model: DiscMain5 ... 56

 xii

Table Page

3.40 A maintainability model: DiscMain6 ... 57

3.41 Result summation of understandability models ... 62

3.42 Result summation of modifiability models.. 63

3.43 Result summation of maintainability models .. 64

4.1 Dependency weight value of relationships .. 75

4.2 Correlation relationships between AvgUndSys and Understandability score.......... 87

4.3 Correlation relationships between AvgModSys and Modifiability score 88

4.4 Value ranges of AvgUndSys and AvgModSys ... 89

B.1 Validation form of template questions for assessing understandability of class

diagram ... 104

B.2 Validation form of template questions for assessing understandability of class

diagram (continued) .. 105

B.3 Validation form of template questions for assessing understandability of class

diagram (continued) .. 106

B.4 Validation form of template questions for assessing understandability of

sequence diagram .. 107

B.5 Validation form of template questions for assessing understandability of

sequence diagram (continued) ... 108

B.6 Validation form of template questions for assessing modifiability of class

diagram ... 109

B.7 Validation form of template questions for assessing modifiability of class

diagram (continued) .. 110

B.8 Validation form of template questions for assessing modifiability of sequence

diagram ... 111

B.9 The IOC values of all template questions .. 112

B.10 General description of Online CD shop system .. 112

 xiii

LIST OF FIGURES

Figure Page

2.1 The class icon.. 6

2.2 Notation of class diagram .. 8

2.3 Notation of sequence diagram .. 9

2.4 Multilayer perceptron neural network... 17

3.1 Activity diagram of the research .. 24

3.2 An example of sequence diagram... 26

3.3 Example of drawings which conform and do not conform to some aesthetic

criteria.. 30

3.4 Converting understandability, modifiability and maintainability scores into

understandability, modifiability and maintainability levels 38

3.5 Understandability model: DecUnd1, DecUnd2 ... 58

3.6 Understandability model: DecUnd3, DecUnd4 ... 58

3.7 Understandability model: DecUnd5, DecUnd6 ... 58

3.8 Modifiability model: DecMod1, DecMod2.. 59

3.9 Modifiability model: DecMod3, DecMod4.. 59

3.10 Modifiability model: DecMod5, DecMod6.. 59

3.11 Maintainability model: DecMain1, DecMain2... 60

3.12 Maintainability model: DecMain3, DecMain4... 60

3.13 Maintainability model: DecMain5, DecMain6... 60

4.1 A hierarchy of generalization related to class X... 74

4.2 A hierarchy of generalization and aggregation related to class X 74

4.3 Generalization.. 77

4.4 Aggregation ... 77

4.5 Composition... 78

4.6 Common association ... 79

4.7 Transforming bidirectional association to unidirectional association..................... 79

4.8 Direct association class ... 79

4.9 Transformed direct association class .. 79

 xiv

Figure Page

4.10 Indirect association class .. 80

4.11 Transformed indirect association class .. 80

4.12 Dependency .. 80

4.13 Realization ... 81

4.14 Generalization.. 83

4.15 Aggregation ... 83

4.16 Common association ... 84

4.17 Direct association class ... 84

4.18 Transformed direct association class .. 84

4.19 Indirect association class .. 85

4.20 Transformed indirect association class .. 85

4.21 Dependency .. 85

4.22 Realization ... 86

4.23 Lower and upper confidence limit values .. 89

B.1 Class diagram of Online CD shop system... 113

B.2 Sequence diagram of searching and ordering CD .. 114

B.3 Sequence diagram of marketing information .. 114

D.1 Content of JMAP.bat ... 120

D.2 A tool for measuring structural complexity metrics and predicting

maintainability.. 121

D.3 Window for open input file... 121

D.4 Window for input value of ANCM... 122

D.5 Window for display the values of structural complexity metrics 122

D.6 Window for display the result of prediction by technique of Discriminant

Analysis ... 123

D.7 Window for display the result of prediction by technique of Decision Tree......... 123

D.8 Window for display the result of prediction by technique of MLP Neural

Network.. 124

CHAPTER I

INTRODUCTION

1.1 Motivation

Software maintenance phase is frequently concerned as less important than the

design and development phases of the system life cycle. In fact, many researches

report that 50-70% of the total software life cycle is spent on software maintenance

[1,2,3].

Object-oriented techniques have become increasingly popular as a software

developing methodology. More empirical research is needed to investigate that

objected-oriented techniques provide significant advantages over other techniques.

One particular area which warrants immediate investigations is maintainability of object-

oriented software. Object-oriented development techniques are promised to increase

maintainability through the better data encapsulation. If this statement is true, an

organization switching to object-oriented techniques will be likely to save large amounts

of money through the lifetime of an object-oriented software. Usually, maintainability is

the external quality characteristic that can be evaluated once the software is finished or

nearly finished. In order to improve the quality and reduce the increasing high cost of

software maintenance, measuring maintainability should be done at the early phase.

Software metrics can be used to capture software maintainability. Bandi and his

colleagues reported the experimental result of validating three existing object-oriented

design complexity metrics. The result showed that each of the three metrics can be a

useful indicator for predicting maintenance performance [4]. Genero et al. investigated

the possibility that structural complexity and size metrics can be used as good

predictors of class diagram maintainability by constructing maintainability prediction

models based on metrics of UML class diagrams [5]. Some software maintainability

metrics which can be applied to UML specification are also proposed by [6,7,8].

The Unified Modeling Language (UML) [9] is accepted as an industrial standard

for modeling object-oriented design. It defines notations and semantics of modeling

 2

elements and the relationships among these elements. In its current form, class and

sequence diagrams are two major artifacts acted as the blueprints of object-oriented

software. Class diagram, a conceptual model of object-oriented software, shows the

classes of the system, their inter-relationships, and the operations and attributes of the

classes. Meanwhile, class diagram represents static structure, dynamic structure of

software is represented by sequence diagram. Sequence diagram is utilized for

modeling software behavior in each scenario. Therefore, the quality of object-oriented

software ultimately implemented is heavily dependent on the quality of both diagrams.

From now on, the term UML class and sequence diagrams will be interchanged with the

term software design model.

This thesis proposes methodology for constructing maintainability models from

metrics called structural complexity metrics and aesthetics metrics. These metrics can

be measured from class and sequence diagrams produced at early phase of software

life cycle. Software developers can utilize the models to identify 3 maintainability levels

of software design model: easy, medium and difficult. When a software design model is

categorized into medium or difficult level, software developers can decide whether to

redesign it or not in order to improve its maintainability. An automated tool for predicting

maintainability of software design model is also constructed.

1.2 Objectives

The objectives of this research are as follows:

1. To investigate whether structural complexity metrics and aesthetic metrics

can be indicators of class and sequence diagrams maintainability and its

sub-characteristics: understandability and modifiability.

2. To create understandability, modifiability and maintainability models from

structural complexity metrics and aesthetic metrics using classification

techniques.

3. To develop an automated tool for measuring structural complexity metrics

from UML class and sequence diagrams and predicting understandability,

modifiability and maintainability by using the obtained prediction models.

 3

4. To propose a new set of structural complexity metrics for measuring

understandability and modifiability from class diagrams.

1.3 Scope and Limitation

1. This work focuses on only two sub-characteristics of maintainability namely

understandability and modifiability.

2. Metrics used in this work are structural complexity metrics and aesthetic

metrics.

3. This work will use more than 30 software design models for constructing

understandability, modifiability and maintainability models.

4. Class and sequence diagrams used in this work must be constructed using

Rational Rose.

5. The tool for transforming class and sequence diagrams into XML document

is Unisys Rose XML Tool.

6. This work will construct an automated tool for measuring structural

complexity metrics from UML class and sequence diagrams. This tool can

predict understandability, modifiability and maintainability from structural

complexity metrics by using the obtained prediction models.

1.4 Contribution

 The outcomes of this research will be the followings:

1. Models for predicting understandability, modifiability and maintainability of

UML class and sequence diagrams.

2. An automated tool for measuring structural complexity metrics and

predicting understandability, modifiability and maintainability by using the

obtained prediction models.

3. A new set of structural complexity metrics for measuring understandability

and modifiability from class diagrams.

 4

1.5 Research Methodology

1. Review and study the research papers related to metrics and maintainability

of object-oriented design.

2. Study XML, Rational Rose and Unisys Rose XML Tool.

3. Study Discriminant analysis, Decision tree and MLP neural network.

4. Set up and perform an experiment in order to capture understandability,

modifiability and maintainability of sample software design models.

5. Construct understandability, modifiability and maintainability models using

Discriminant analysis, Decision tree and MLP neural network.

6. Compare models constructed using Discriminant analysis, Decision tree and

MLP neural network.

7. Analyze the result and make conclusions.

8. Develop a tool for measuring structural complexity metrics and predicting

understandability, modifiability and maintainability by using the obtained

prediction models.

9. Define and derive a new set of structural complexity metrics for measuring

understandability and modifiability from class diagrams.

10. Write thesis.

1.6 Organization of the Thesis

The remainder of the thesis is organized into six chapters as follows.

Chapter II describes theoretical background including introduction of UML,

software measurement and some statistical and classification techniques used in this

work. This chapter also reviews the literature in UML metrics, maintainability of object-

oriented software and aesthetic criteria of class and sequence diagrams.

Chapter III presents a controlled experiment for constructing maintainability

models from structural complexity and aesthetic metrics using 3 techniques:

Discriminant analysis, Decision tree and MLP neural network.

Chapter IV proposes a new set of structural complexity metrics for measuring

maintainability from class diagrams. Validating the proposed metrics is also presented.

 5

Finally, chapter V concludes research work and presents some directions for the

future work.

CHAPTER II

BACKGROUND AND LITERATURE REVIEW

2.1 Background

This section reviews the theoretical background used in this thesis including

UML, software measurement, MANOVA and classification techniques.

2.1.1 UML

The Unified Modeling Language (UML) is a standard language for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as well as

for business modeling and other non-software systems [9]. The UML is a very important

tool for modeling object-oriented software design. Using the UML helps project teams

communicate, explore potential designs, and validate the architectural design of the

software.

Each UML diagram is designed to let developers and customers view the

software from different perspective and varying degrees of abstraction. UML diagrams

commonly created in visual modeling tools include Use case diagram, Class diagram,

Object diagram, Sequence diagram, Collaboration diagram, State diagram, Activity

diagram, Component diagram and Deployment diagram.

2.1.1.1 Class Diagram

The purpose of a class diagram is to depict the classes within a model. In an

object-oriented application, classes have attributes (member variables), operations

(member functions) and relationships with other classes. The fundamental element of

the class diagram is an icon that represents a class. This icon is shown in Figure 2.1.

Class

Attributes

Operations

Figure 2.1: The class icon.

 7

Class icon is simply a rectangle divided into three compartments. The top

compartment contains the name of the class. The middle compartment contains a list of

attributes, and the bottom compartment contains a list of operations. In many diagrams,

the bottom two compartments are omitted. The goal is to show only those attributes and

operations that are useful for the particular diagram.

The static relationships and their notations are as follows:

- Association is a relationship between classes which concerns the

connection between its instances. An association is denoted by a line drawn

between the participating classes.

- Aggregation and composition are relationships between an aggregate A and

a component B, “B is a part of A”. Aggregation is also called a "has a"

relationship. A weak form of aggregation is denoted with an open diamond. It

denotes that the aggregate class (the class with the diamond touching it) is

someway the “whole”, and the other class in the relationship is somehow the

“part” of that whole. Composition is a strong form of aggregation. It is

represented by the black diamond. Component cannot exist without

aggregate and dies with its aggregate.

- Generalization is a relationship between a general concept A (superclass)

and a more special concept B (subclass). The generalization relationship in

UML is depicted by a triangular arrowhead. This arrowhead points to the

base class. One or more lines proceed from the base of the arrowhead

connecting it to the derived classes. Generalization is also called an "is a"

relationship, because the subclass is a type of the super class.

- Dependency is a relationship that one class instantiates another or that it

uses the other as an input parameter. It is represented by a dotted line with

an open arrowhead.

- Realization is a relationship that one entity (normally an interface) defines a

set of functionalities as a contract and the other entity (normally a class)

"realizes" the contract by implementing the functionality defined in the

contract. It is represented by a dotted line with a triangular arrowhead.

 8

Table 2.1: Notation of class relationships.

Relationship Notation

Association

Generalization

Aggregation

Composition

Dependency

Realization

The UML notation for class diagram is shown below.

Figure 2.2: Notation for class diagram.

- Object : A specific entity or concept that has meaning in an application

domain.

- Class : A definition of a set of potential objects that have the same data,

behavior, and relationships.

- Attribute : A data value defined in a class and held within an object that has

meaning within the application domain.

- Behavior : A service defined in a class and provided by an object.

List
ListofBidders

id()
timeElapsed()

Bidder
id
maxBidAmount

bid()
bidUp()
youAreHighBidder()

BidTimer

setTimer()

Item
currentBid : Money
bidincrement : Money
description : String
photo : Picture

setWinningBid()
setHighBidder()
getCurrentBid()
getBidAmount()

highBidder
0..*

Role Name
Association

Aggregation

Class

Class Name
Generalization Modifier

Attributes

Operations

Multiplicity/
Cardinality

 9

- Operation : The implementation of a behavior in an object-oriented

programming language.

- Modifier : Modifier of an operation or attribute defines the level of access that

objects have to it.

- Multiplicity/ Cardinality : The minimum and maximum number of objects that

participate in an association or aggregation. The common ones are 0..*, 0..1,

1..*, and 1..1.

- Role Name : It is a name describing the participation of the class in the

association more exactly.

2.1.1.2 Sequence Diagram

A sequence diagram depicts the sequence of actions that occur in a software.

The invocation of methods in each object, and the order in which the invocation occurs

are captured in a sequence diagram. It is a very useful diagram to easily represent the

dynamic behavior of a software. Typically, a sequence diagram describes the detailed

implementation of a single use case (or one variation of a single use case). A sequence

diagram is two-dimensional in nature. The horizontal axis shows the life of the

represented object, while the vertical axis shows the sequence of the creation or

invocation of these objects. The UML notation for sequence diagram is shown below.

Figure 2.3: Notation for sequence diagram.

:Listof
Bidders

:Bidder

Bidder

bid(item,maxBidAmount)

new()

 bidUp()
*[for each Bidder]

 youAreHighBidder()

setWinningBidr()
(currentBid)

setTimer()
newBidder(item,
maxBidAmount)
[validBidder]

:BidTimer

Until
noAddedBbidUps

itemElapsed()

 youAreHighBidder()

:Item

Return

Lifeline

Iteration

Deletion

Message

Active

Condition

Object

 10

- Object : Each of the objects that participate in the processing represented in

the sequence diagram is drawn across the top.

- Lifeline: A dotted line is dropped from each object in the sequence diagram.

Arrows terminating on the lifeline indicate messages (commands) sent to the

object. Arrows originating on the lifeline indicate messages sent from this

object to another object. Time flows from top to bottom on a sequence

diagram.

- Active : To indicate that an object is executing, i.e., it has control of the CPU,

the lifeline is drawn as a thin rectangle.

- Message : A horizontal arrow represents a message (command) sent from

one object to another.

- Return : When one object commands another, a value is often returned. This

may be a value computed by the object as a result of the command or a

return code indicating whether the object completed processing the

command successfully.

- Condition : Square brackets are used to indicate a condition, i.e., a Boolean

expression. The message is sent only if the expression is TRUE.

- Iteration : Square brackets proceeded by an asterisk (*) indicate iteration.

The message is sent multiple times. The expression within the brackets

describes the iteration rule.

- Deletion : An X is used to indicate the termination (deletion) of an object.

2.1.2 Software Measurement

Measurement is the process by which numbers or symbols are assigned to

attributes of entities in the real world in such a way as to describe them according to

clearly defined rules [10]. In the assessment process prescribed by ISO-9126 [11], the

goals of measurement must first be defined, then the measurement itself is specified,

the means of measurement are implemented and the measurement is carried out. In the

final step, the measurement results are evaluated.

Software metrics have been classified by Fenton [10] into three classes.

 11

- Process metrics are used to measure characteristics of software processes

such as development process, maintenance process and testing process.

Typical process characteristics are effort involved, costs occurred, tasks

accomplished and elapsed time.

- Product metrics are used to measure characteristics of software products

such as programs, components, system and databases. Typical product

characteristics are size, complexity and various qualities.

- Resource metrics are used to measure characteristics of software resources

which may be hardware, software or person. Typical resource

characteristics are performance, availability, reliability and productivity.

Fenton distinguishes further between internal and external characteristics.

- Internal attributes of a product, process or resource are those which can be

measured purely in terms of the product, process or resource themselves.

Internal attributes of software products are, for example, complexity,

modularity, testability and reusability. They can be measured by examining

source code themselves.

- External attributes are those which can only be measured with respect to

how the product, process or resource relates to their environment. External

attributes of software products are, for example, reliability, security, usability

and performance. They can only be measured by testing the product in a

particular environment.

2.1.3 MANOVA

MANOVA is simply an ANOVA with several dependent variables [12]. This is a

test of overall relationship between groups and predictors by considering variance in the

set of predictors that effects on group classification. MANOVA follows the model of

ANOVA where variation in samples is partitioned into between-group variation and

within-group variation. In MANOVA, however, each sample has a score on each of

several independent variables. When several independent variables of each sample are

measured, there is a matrix of scores (subjects by independent variables) rather than a

 12

simple set of independents within each group. Matrices of different scores are formed

by subtracting from each score and appropriate mean. Then the matrix of differences is

squared. When the squared differences are summed, a sum-of-squares-and-cross-

products matrix, SS matrix, is formed, analogous to a sum of squares in ANOVA.

Determinants of the various SS matrices are found, and ratios between them provide

tests of hypotheses about the effects of the dependent variables on the linear

combination of independent variables.

The between-group sums of squares and cross-products matrix can be shown

as below. It is denoted by bgSS .

SSb;1 SPb;1,2 SPb;1,3 …….. SPb;1,p

SPb;1,2 SSb;2 SPSb;2,3 ……SPb;2,p

SPb;1,3 SPb;2,3 SSb;3 …….. SPb;3,p

:

SPb;1,p SPb;2,p SPb;3,p …….. SSb;p

where

∑ ∑ −=−−= NTTnTTXXXXnSP srjsjrjssjrrjjsrb /)/())((,,,,,;

and

NTnTXXnSPSS rjrjrrjjrrbrb /)/()(22
,

2
,,;; −=−= ∑ ∑

where rjT , is the sum of observations on independent variable r in group j and rT is

the sum of all observations in all groups on independent variable r .

The within-group covariance matrix can be shown as below. It is denoted by

wgSS .

SPw;1,1 SPw;1,2 SPw;1,3 …….. SPw;1,p

SPw;1,2 SSw;2,2 SPSw;2,3 …… SPw;2,p

SPw;1,3 SPw;2,3 SSw;3,3 …….SPw;3,p

:

SPw;1,p SPw;2,p SPw;3,p …….. SSw;p,p

where

wgSS =

bgSS =

 13

∑∑ ∑∑ ∑−=−−=)/())((,; ,,,, jsjrjsrssjrrj nTTXXXXXXsrSPw

In ANOVA, ratios of variances are formed to test main effects and interactions. In

MANOVA, ratios of determinants are formed to test main effects and interactions when

using Wilks’ lambda. These ratios follow the general form

wgbg

wg

SSSS

SS

+
=Λ

An approximation to F has been derived that closely fits Λ . The following

procedure for calculating approximate F is based on Wilks’ lambda and the various

degrees of freedom associated with it.

Approximate () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

1

2
21

1,
df
df

y
ydfdfF

where df1 and df2 are defined below as the degrees of freedom for testing the F ratio,

and y is
sy /1Λ=

5)(
4)(

22

22

−+

−
=

bg

bg

dfp
dfp

s

)(1 bgdfpdf =

⎥
⎦

⎤
⎢
⎣

⎡ −
−⎥

⎦

⎤
⎢
⎣

⎡ +−
−=

2
2)(

2
1

)(2
bgbg

wg

dfpdfp
dfsdf

where p is the number of independent variables,

bgdf is the number of groups minus one or 1−k ,

wgdf is the number of groups times the quantity 1−n , where n is the number of

cases per group. Because n is often not equal for all groups, an alternative equation for

bgdf is kN − , where N is the total number of cases in all groups.

If obtained F exceed critical F , we can conclude that groups of sample can be

distinguished on the basis of the combination of the independent variables or predictors.

 14

2.1.4 Classification Techniques

 In this research, prediction models are constructed by applying three

techniques: Discriminant analysis, Decision tree and MLP neural network.

2.1.4.1 Discriminant Analysis

Discriminant analysis is multivariate technique concerned with separating

distinct groups of object (or observations) and with allocating new objects to previously

defined groups [13]. With deriving a variation, the linear combination of the two or more

independent variables will discriminate best between defined groups. Linear

combination for discriminant analysis is also known as discriminant function.

This thesis applies a technique which uses Fisher’s linear discriminant function.

To assign cases into groups, a classification function is developed for each group. Data

for each case are inserted into each classification function to develop a classification

score for each group for the case. The case is assigned to the group for which it has the

highest classification score.

In its simplest form, the basic classification equation for the j th group

()kj ,..,2,1= is

pjpjjjj XcXcXccS ++++=22110

where jS is the classification score for group j ,

iX is the independent variable i ,

jic is the classification coefficient for independent variable i of group j ,

0jc is a constant.

The row matrix of classification coefficients for group j jpjjj cccC ,...,, 21= is

found by multiplying the inverse of the within-group variance-covariance matrix ()1−W

by a column matrix of means for group j on the p independent variables (Mj= X j1,

X j2,....., X jp). In matrix form,

jj MWC 1−=

The within-group covariance matrix ()W is produced by dividing each element

in the cross-products matrix of differences within groups by the within-group degrees of

freedom ()kN − as the follows:

 15

()kNSW wg −= /

where N is the total number of cases in all groups and k is the number of groups.

The constant for group j , joc , is found as follows:

jjjo MCc ⎟
⎠
⎞

⎜
⎝
⎛−=

2
1

2.1.4.2 Decision Tree

 Decision tree classifies objects by sorting them down the tree from the root to

some leaf node, which provides the classification of the object [14]. Each node in the

tree specifies a test of some attribute of the object, and each branch descending from

the node corresponds to one of the possible values for this attribute. An object is

classified by starting at the root node of the tree, testing the attribute specified by this

node, then moving down the tree branch corresponding to the value of the attribute in

the given example. This process is then repeated for the subtree rooted at the new node.

The basic algorithm for decision tree is a greedy algorithm that constructs

decision trees in a top-down recursive divide-and-conquer manner. The algorithm is a

version of ID3, a well-known decision tree algorithm. The basic strategy is as follows.

- The tree starts as a single node representing the training samples.

- If the samples are all of the same class, then the node becomes a leaf and is

labeled with that class.

- Otherwise, the algorithm uses an entropy-based measure known as

information gain as a heuristic for selecting the attribute that will best

separate the samples into individual classes. This attribute becomes the

‘test’ or ‘decision’ attribute at the node. In this version of the algorithm, all

attribute are categorical, that is, discrete-valued. Continuous-valued

attributes must be discretized.

- A branch is created for each known value of the test attribute, and the

samples are partitioned accordingly.

- The algorithm uses the same process recursively to form a decision tree for

the samples at each partition.

 16

- The recursive partitioning stops only when any one of the following

conditions is true:

o All samples for a given node belong to the same class, or

o There are no remaining attributes on which the samples may be further

partitioned. In this case, majority voting is employed. This involves

converting the given node into a leaf and labeling it with the class in

majority among samples. Alternatively, the class distribution of the node

samples may be stored.

o There are no samples for the branch test-attribute = ia . In this case, a

leaf is created with the majority class in samples.

The information gain measure is used to select the test attribute at each node in

the tree. Such a measure is referred to as an attribute selection measure or a measure

of the goodness of split. The attribute with the highest information gain (or greatest

entropy reduction) is chosen as the test attribute for the current node. This attribute

minimizes the information needed to classify the samples in the resulting partitions and

reflects the least randomness or ‘impurity’ in these partitions. Such an information-

theoretic approach minimizes the expected number of tests needed to classify an object

and guarantees that a simple (but not necessarily the simplest) tree is found.

Let S be a set consisting of s data samples. Suppose the class label attribute

has m distinct values defining m distinct classes, iC (for i=1,…,m). Let is be the

number of samples of S in class iC . The expected information needed to classify a

given sample is given by

() ()∑
=

−=
m

i
iim ppsssI

1
221 log,...,, ,

where ip is the probability that an arbitrary sample belongs to class iC and is estimated

by ssi / . Note that a log function to the base 2 is used since the information is encoded

in bits.

 Let attribute A have v distinct values, ()vaaa ,...,, 21 . Attribute A can be used

to partition S into v subsets, { }vSSS ,...,, 21 , where jS contains those samples in S that

have value ja of A . If A were selected as the test attribute (i.e., the best attribute for

splitting), then these subsets would correspond to the branches grown from the node

 17

containing the set S . Let ijs be the number of samples of class iC in a subset jS . The

entropy, or expected information based on the partitioning into subsets by A, is given by

() ()mjj

v

j

mjj ssI
s

ss
AE ,...,

...
1

1

1∑
=

++
= .

The term
s

ss mjj ++ ...1 acts as the weight of the j th subset and is the number

of samples in the subset (i.e., having value ja of A) divided by the total number of

samples in S . The smaller the entropy value, the greater the purity of the subset

partitions. Note that for a given subset jS ,

() ()∑
=

−=
m

i
ijijmjjj ppsssI

1
221 log,...,,

where
j

ij
ij s

s
p = and is the probability that a sample in jS belongs to class iC .

 The encoding information that would be gained by branching on A is

())(,...,,)(21 AEsssIAGain m −= .

 In the other words,)(AGain is the expected reduction in entropy caused by

knowing the value of attribute A .

 The algorithm computes the information gain of each attribute. The attribute with

the highest information gain is chosen as the test attribute for the given set S . A node is

created and labeled with the attribute, branches are created for each value of the

attribute, and the samples are partitioned accordingly.

2.1.4.3 Multilayer Perceptron and Backpropagation Learning

Output Class

Input pattern features value

Output Layer

Hidden Layer

Input Layer

Connection Weights

Figure 2.4: Multilayer perceptron neural network.

 18

Multilayer perceptron (MLP) neural network is multilayer feed-forward network as

shown in Figure 2.4 [15]. The network consists of a set of sensory units that constitute

the input layer, one or more hidden layers of computation nodes, and output layer of

computation nodes. The input signal propagates through the network in a forward

direction on a layer-by-layer basis. This network uses backpropagation learning

algorithm. The algorithm consists of two phases, namely, learning phase and working

phase. In learning phase, a set of input patterns (training set) are presented to the input

layer together with their corresponding desired output patterns.

A small random initial weight value is assigned to each connection between

nodes in the input layer and the hidden layer. As each input pattern is applied, the

actual output is recorded. The weights between the output layer and the previous layer

(hidden layer) are recalculated using the generalized delta rule. The adjustment reduces

the difference between the network actual outputs and the desired outputs for a given

input pattern.

The input to each node for successive layers is the sum of the scalar products of

the incoming vector components with their respective weights. Thus the input to a node

j is given in the following equation.

∑=
i

ijij outwinput

where jiw is the weight connecting node i to node j and iout is the output of node i .

No calculation is performed at the input layer since it is just feeding the value of input

patterns to the network. The output of a node j is, therefore,

()jj inputfout =

and this output is sent to all nodes in subsequent layer. This computation is continued

through all layers of the network until the output layer is reached. At that point, the output

vector is generated.

Based on the different error term or δ term in the output layer, the weight can

be computed by the following equation.

() ()kkkjkj outnwnw δη+=+)1(

where)1(+nwkj and)(nwkj are the weights connecting nodes k and j at iteration

)1(+n and n , respectively, η is a learning rate parameter. The δ terms of hidden

 19

layer nodes are computed and the weights connecting the hidden layer to the previous

layer (another hidden layer or input layer) are updated accordingly.

The δ term in previous equation is often referred to as the rate of change of

error with respect to the input of node k , and can be written as

() ()kkkk inputfoutd −=δ for nodes in the output layer, and ()∑=
k

kjkkj winputf δδ

for nodes in the hidden layers, where kd is the desired output of node k .

This calculation is repeated until

- all ()nwnw jiji −+)1(in the previous epoch (iteration) were so small as to

be below some specified threshold, or

- the percentage of samples misclassified in the previous epoch is below

some threshold, or

- a prespecified number of epochs has expired.

2.2 Literature Review

 This section reviews UML metrics, some controlled experiments carried out in

order to investigate maintainability of object-oriented software. Aesthetic criteria of class

and sequence diagrams are also reviewed in this section.

2.2.1 UML Metrics

UML metrics were proposed by many researchers. Kim and Boldyreff proposed

27 software metrics that can be applied to UML modeling elements [6]. Metrics

proposed in this paper consist of

- Metrics for Model : Model metrics are for estimating the size or the amount of

information contained in a model. Model metrics are, for example, Number of

the packages in a model (NPM) and Number of classes in a model (NCM).

- Metrics for Class : Class metrics concern with various characteristics of a

class such as attribute, relationship and object instantiation. Class metrics

are, for example, Number of the attributes in a class-unweighted (NATC1)

and Number of the operations in a class-unweighted (NOPC1).

 20

- Metrics for Message : This paper proposes message metrics in order to

measure the degree of interactions. An example of message metrics is

Number of the directly dispatched messages of a message (NDM).

- Metrics for Use Case : Use case captures contracts among the stakeholders

about their behavior. The stakeholders are also called primary actors of a

system. Use case gathers the different sequences of behavior or scenarios

together. An example of use case metrics is Number of actors associated

with a use case (NAU).

Genero and her colleagues introduced and analyzed a set of an existent object -

oriented metrics that can be applied for assessing class diagrams complexity at the

initial phases of the object oriented development life cycle [5]. They introduced and

analyzed existing metrics as follows.

- Chidamber and Kemerer’s metrics : Chidamber and Kemerer proposed a set

of six object-oriented design metrics which were well-known in the field of

object-oriented metrics.

- Lorenz and Kidd’s metrics : Lorenz and Kidd proposed a group of metrics

called ‘design metrics’, which dealt with the static characteristics of software

design. They categorized their metrics into class size metrics, class

inheritance metrics and class internal metrics.

- Brito e Abreu and Melo’s metrics : Brito e Abreu and Melo proposed the

MOOD (Metrics for Object Oriented Design) set of metrics. These metrics

allowed the measurement of the main mechanisms of the OO paradigm,

such as, encapsulation, inheritance, polymorphism and message passing.

- Marchesi´s metrics : Marchesi proposed a set of metrics to measure UML

class diagrams at the analysis phase. These metrics consisted of metrics for

single classes, metrics for packages and metrics for system.

Genero and her research team also proposed metrics for statechart diagram in

[7]. Sheldon et al. suggested new metrics for measuring maintainability of a class

inheritance hierarchy [8]. The proposed metrics were categorized into metric of

understandability and metric of modifiability.

 21

2.2.2 Maintainability of Object-Oriented Software

 Controlled experiments carried out for investigating maintainability of object-

oriented software were presented in many papers. Briand et al. presented a controlled

experiment focusing on comparison of the maintainability of object-oriented and

structured design document [16]. This experiment concentrated solely on the

investigation of the use of quality design principal and their influence on a developer’s

ability to understand and modify design documents. Results strongly suggested that

‘good’ object-oriented design is easier to understand and modify than ‘bad’ object-

oriented design. However, there was no strong evidence regarding the alleged higher

maintainability of object-oriented design documents over structured design documents.

Their next experiment showed that the system designed according to Coad and

Yourdon’s object-oriented design principle is significantly easier to maintain [17].

Deligiannis et al. presented a controlled experiment which investigated the impact of a

single design heuristic, dealing with the ‘god class’ problem, on understandability and

maintainability of object-oriented designs [18]. The result of this experiment accepted

the hypothesis that it is easier to maintain a heuristic compliant object-oriented design

than a heuristic non-compliant object-oriented design. They also proposed the new

metrics to quantify the basis criteria for object-oriented design quality assessment:

completeness, correctness, and consistency.

The effect of inheritance on the maintainability of object-oriented software was

investigated by Daly and Brook [19]. Subjects of their empirical study were asked to

modify object-oriented software with a hierarchy of 3 levels of inheritance depth and

equivalent object-oriented software with no inheritance called ‘flat’ version. The collected

timing data showed that maintaining object-oriented software with inheritance, on

average, approximately 20% quicker than maintaining flat version. While Harrison and

Counsell reported that it is not clear that system using inheritance will necessarily be

more maintainable than those that do not [20]. The data analyzed from two out of five

systems of their experiment suggested that deeper inheritance trees are attributes of

systems which are harder to understand and maintain. Some of empirical studies of

object-oriented metrics for maintenances and its sub-characteristic were summarized in

Table 2.2.

 22

Table 2.2: Some of empirical studies of object-oriented metrics for

maintenances and its sub-characteristic.

Studies Dependent
variables

Independent variables Technique Object System

BS[21] Maintenance effort Number of clients, Fan-in,
Simple Class Coupling, RFC,
Fan-out, WMC, CHNL, NCIM,
NOD, NOC, CDM

Spearman rank
correlation

A patient
collaborative care
system

WD[22] Maintenance time DIT Standard significant
testing, Wilcoxon ran
sum test

Six systems
developed in C++

HC[23] Modifiability,
understandability

DIT Chi-square analysis Two systems, each
with two versions

BB[17] Understanding,
modification

Coad and Yourdon quality
design principles(Coupling,
Cohesion, Clarity of design,
Generalization-Specialization
depth): DIT, NOC, and CBO

2x2 factorial Kruskal-
Wallis test

Replication package

FN[24] Adaptive
maintenance effort

NCL, NRC, TNM, TLOC,
MCC, MNA, MNM

Multilinear
regression analysis

Music object-
oriented distributed
system coded in
C++

PU[25] The completeness
and correctness of
the modifications

The number of the levels in
the inheritance structure

ANOVA, parametric
t-test

Four models of a
hotel administration,
written in MERODE

GJ[26] Understandability,
analyzability,
modifiability

NC, NA, NM, NAssoc, NAgg,
NAggH, NDep, NGen,
NGenH, MaxHAgg, MaxDIT

Fuzzy classification,
regression trees,
Spearman rank
correlation,
Kolmogrov-smirnov
test, Principal
Component Analysis

Twenty-eight UML
class diagrams
related to Bank
Information Systems,
nine different UML
class of diagrams

BV[4] Maintenance Time Interaction Level(IL),
Interface Size(IS), and
Operation Argument
Complexity(OAC)

ANOVA, correlation,
single and multiple
regression analysis

Quadrilateral,
tractor-trailer

2.2.3 Aesthetic Criteria of Class and Sequence Diagrams

As a modeling standard, the UML does not say anything on how to produce

readable programs. Especially when larger diagrams are shared, an agreement on

aesthetics has to be made in order to produce the cost of communication and to

minimize misunderstanding resulted from drawing the same diagram in many different

ways.

Purchase and his colleagues presented an empirical study attempting to identify

the most important aesthetics for class diagrams from human comprehension point of

view [27]. Aesthetic criteria considered in their work were Minimize bends, Node

 23

distribution, Edge variation, Direction of flow, Orthogonality, Edge lengths and Symmetry.

In [28], they carried out an experiment aiming to determine which variant of each of five

notations used in class diagrams is the more suitable with respect to human

performance. Five notations comprised of Inheritance direction, Inheritance arcs,

Association representation, Association names and Cardinalities. They also performed

preference experiment by assessing the effect of individual aesthetic in the application

domain of class and collaboration diagrams [29]. The results showed that two most

preference aesthetic criterion for class diagram were fewer crosses and fewer bends.

Two most preference aesthetic criteria for collaboration diagrams were fewer crosses

and no adjacent arrows. Eichelberger proposed some aesthetic criterion that reflect the

highly sophisticated structural and semantic features of class diagrams in [30]. In this

work, class diagram was described in terms of graph theory. It is obvious that classes,

packages, rhombs representing n-ary association and ovals in pattern notations map to

nodes. Associations, dependencies as well as inheritance relations map to edges. So, in

his paper, properties which describe the graph and its embedding were given in terms

of nodes and edges. Some examples of class diagram aesthetic criteria suggested in

this paper are listed as follows.

- Edges should not overlap nodes.

- Edges should have not too much bends.

- Nodes on the same hierarchy level should have the same vertical or

horizontal coordinate.

Gutwenger et al. suggested a new approach for visualizing class diagrams

leading to a balanced mixture of the following aesthetic criteria : crossing minimization,

bend minimization, uniform direction within each class hierarchy, no nesting of one class

hierarchy within another, orthogonal layout, merging of multiple inheritance edges, and

good edge labeling [31]. The traditional graph drawing aesthetic criteria and new

aesthetic criteria applicable to sequence diagrams were proposed by Paranen et al.

[32].

http://www.answers.com/topic/enzyme
http://www.answers.com/topic/phosphodiesterase

CHAPTER III

CONSTRUCTING MAINTAINABILITY MODELS

 This chapter presents a controlled experiment carried out in order to construct

maintainability models from structural complexity and aesthetic metrics. Figure 3.1

shows activity diagram of this work. The detail of each activity will be described in later

sections.

 Figure 3.1: Activity diagram of the research.

Collect understandability and
modifiability scores

Gather sample of software design models

Create exam questions

Convert understandability, modifiability and
maintainability scores into understandability,

modifiability and maintainability levels

Calculate maintainability scores
from the sum of understandability

and modifiability scores
Select structural complexity

and aesthetic metrics

Validate and compare models constructed by applying
Discriminant analysis, Decision tree and MLP neural network

Construct understandability, modifiability and
maintainability models using structural complexity

and aesthetic metrics

Validate structural complexity and aesthetic metrics
whether they can be indicators of understandability,

modifiability and maintainability

Construct an automate tool for predicting
understandability, modifiability and maintainability

25

3.1 Metric Selection

An important step to analyze software quality using metrics is to identify a

collection of metrics that reflect on software characteristics which are being analyzed.

Metrics used in this work consist of structural complexity metrics and aesthetics metrics.

3.1.1 Structural Complexity Metrics

It is widely accepted that the greater complex software design model is, the

greater complex finally implemented software is. Thus more effort is needed to develop

and maintain it.

Table 3.1: Structural complexity metrics.
Metrics for class diagram

Group Metric Description
Classes NC * The total number of classes.

ANAUW ** The total number of attributes divided by the total number of
classes.

Attributes

ANAW ** It is the weighted version of ANAUW. Each attribute is
weighted depending on its visibility, i.e. 1.0 for public, 0.5 for
protected and 0.0 for private attributes.

ANMUW ** The total number of methods divided by the total number of
classes.

Methods

ANMW ** It is the weighted version of ANMUW. Each method is weighted
depending on its visibility as same as weighting attribute in
ANAW.

Association ANAssoc ** The total number of association relationships divided by the total
number of classes.

ANAgg ** The total number of association relationships divided by the total
number of classes.

NAggH * The number of aggregation hierarchies.

Aggregation

MaxHAgg * It is the maximum among the HAgg values obtained for each
class of the class diagram. The HAgg value for a class within an
aggregation hierarchy is the longest path from the class to the
leaves.

ANGen ** The total number of generalization relationships divided by the
total number of classes.

NGenH * The number of generalization hierarchies.

Relation-
ships

Generalization

MaxDIT * It is the maximum among the DIT values obtained for each class
of the class diagram. The DIT value for a class within a
generalization hierarchy is the longest path from the class to the
root of the hierarchy.

Metrics for sequence diagrams
Scenarios NOS The total number of scenarios.
 WMBO The total of average number of messages per instance objects in

all scenarios divided by the total number of scenarios.
Messages ANRM The total number of return messages in all scenarios divided the

total number of scenarios.
 ANDM ** It is calculated from the total number of directly dispatched

messages (NDM) of each message in all scenarios divided by the
total number of scenarios. According to the UML semantics, a
message can be an activator of other messages. For example, in
Figure 3.2, the message a() activates the message c(), the NDM
value of message a() is 1.

Conditions ANCM The total number of condition messages in all scenarios divided
by the total number of scenarios.

 * Metrics are proposed by Genero et al.[33].
 ** Metrics are modified from metrics proposed by Genero et al. [33] and Kim & Boldreff [6].

26

Structural complexity metrics used in this work are shown in Table 3.1. Metrics

for class diagram are categorized into metrics related to classes, attributes, methods

and relationships. Metrics for sequence diagrams are categorized into metrics related to

scenarios, messages and conditions. Existing metrics symbolized by ‘*’ are proposed

by Genero et al. [33]. Metrics symbolized by ‘**’ are modified from the metrics

proposed by Genero et al. [33] and Kim & Boldreff [6]. NOS, WMBO, ANRM and ANCM

are four new proposed metrics.

Metrics symbolized by ‘*’; NC, NAggH, MaxHAgg, NGenH and MaxDIT; related

to components in a class diagram including classes, aggregation relationship and

generalization relationship, were used in an empirical study [33]. An experiment was

carried out in order to validate that these metrics can be good indicators of class

diagram maintainability. The analysis result obtained from technique of Fuzzy

Deformable Prototype indicated that these metrics can be good indicators for classifying

maintainability levels. In the same experiment, metrics related to methods and

association relationship were validated. The results showed that they also could be

good indicators of class diagram maintainability.

The followings are the reasons why metrics presented in Table 3.1 are chosen:

 NC: This metric counts the number of classes in a class diagram. It is

comparable to the traditional LOC (lines of code) or a more advance McCabe’s

cyclomatic complexity (MVG) metric for estimating the size of a software [6]. Thus, in

object-oriented paradigm this metric can be used to compare sizes of software. The

greater size, the more effort put to maintain.

ANAW and ANAUW: These metrics are the average number of attributes in each

class with weight and un-weight respectively. If most of classes contain many attributes

 Figure 3.2: An example of sequence diagram.

27

both metric values will be high. It captures the idea that a class containing more

attributes makes maintenance more complex.

ANMW and ANMUW: These metrics are calculated from the average number of

methods in each class with weight and un-weight respectively. If most of classes contain

many methods, both metric values will be high. The number of methods in a class

indicates the class size that related to the amount of collaboration being used. The more

methods a class has, the more complex the class’s interface. Hence, these metrics

should be considered when analyzing maintainability.

ANAsso: This metric is the average number of association relationships. An

association is a connection, or a link, between classes. This metric is useful for

estimating the scale of relationships between classes. The higher number of

associations renders more coupling between classes. So, this metric may affect

maintainability.

ANAgg, NAggH and MaxHAgg: These metrics are aggregation metrics. An

aggregation is a special form of association that specifies a whole-part relationship

between the aggregate (whole) and component parts. Although the parts may exist

independently of the whole, their existence is primarily to form the whole. The higher

number of aggregations indicates more coupling between part and whole classes which

makes software harder to maintain.

ANGen, NGenH and MaxDIT: These metrics are inheritance metrics. The higher

the value of inheritance metrics, the greater the chance of reuse becomes. However, it

can cause comprehension problem. Moreover, changing something in a superclass can

affect the subclasses in a none desirable way. Hence inheritance can affect the

maintainability of a software.

NOS: It is the total number of scenarios. A scenario represents a sequence of

behavior of a software. More scenarios means more complexity of software behavior

which affects maintainability.

WMBO and ANRM: These measures capture the property of how many

messages call from and return to other classes. Messages are exchanged between

objects manifesting various interactions. Since higher coupling leads to higher

28

complexity, it will also make the class more difficult to modify and understand. So these

metrics are essential when analyzing maintainability.

ANDM: It is calculated from the total number of directly dispatched messages of

each message in all scenarios divided by the total number of scenarios. According to

UML semantics, a message can be an activator of other messages. The more number of

dispatched messages, the harder maintenance. Since, it is more difficult to trace with a

lot of messages.

ANCM: It is the average number of condition messages in each scenario. A

message with condition is easier to maintain than the one without condition. The more

number of condition messages is, the more effort put to understand. Moreover, the

conditions may be changed in the future, this leads to put more effort to modify them.

3.1.2 Aesthetic Metrics

An aesthetic criterion is a general graphical property of the layout that we would

like to have. Drawing graph layout algorithms by conforming to aesthetic criteria is

claimed that the resultant graph drawing is improved its readability. In this work, a set of

aesthetic criteria is selected. Then a set of aesthetic metrics corresponding to the

selected aesthetic criteria are defined. The aesthetic metrics consist of metrics for class

diagram and metrics for sequence diagrams which are shown in Table 3.2.

In this table, the metrics corresponding to aesthetic criteria for traditional graph

drawing that can be applied to class diagram are Cross, UnifEdgeLen, TotEdgeLen,

MaxEdgeLen, UnifBends, TotBends, MaxBends, and Orthogonal [34,35]. Metrics

namely Join, Center, Below, SameCo and Indicator are metrics corresponding to

aesthetic criteria for class diagrams proposed by Purchase et al. [28,29] and

Eichelberger et al. [30,37]. The term hierarchy in description of these metrics refers to

the relations in class diagram including generalizations, aggregations and compositions.

Metrics for sequence diagrams are adapted from metrics proposed by Paranen

et al. [32]. Figure 3.3 shows the example of drawings which conform and do not conform

to some aesthetic criteria.

29

Table 3.2: Aesthetic metrics.
Metrics for Class Diagram

Metric Description Aesthetic Criterion
Cross The total number of edge crossings. The total number of edge crossings should be

minimized
UnifEdgeLen The standard deviation of the edge length.

(In this work, the edge length is measured in
unit of centimeter.)

Edge lengths should be uniform.

TotEdgeLen The total edge length. The total edge length should be minimized.
MaxEdgeLen The maximum edge length. The maximum edge length should be minimized.
UnifBends The standard deviation of the number of bends

on the edges.
The standard deviation of the number of bends on
the edges should be minimized.

TotBends The total number of bends in the drawing. The total number of bends should be minimized.
MaxBends The maximum number of bends on the edges. The maximum number of bends on the edges

should be minimized.
Orthogonal The total number of edges fixed to an

orthogonal grid divided by the total number of
edges.

Nodes and edges should be fixed to an orthogonal
grid.

Join The total number of joined hierarchies divided
by the total number of hierarchies.

Generalizations, aggregations and compositions
should be joined.

Center The total number of hierarchies that the parent is
located as the center of its children divided by
the total number of hierarchies.

A parent node should be positioned as close as
possible to the median position of its children.

Below The total number of hierarchies that the parent is
located above its children divided by the total
number of hierarchies.

A child node should be positioned below its
parent.

SameCo The total number of hierarchies that the children
nodes are located on the same vertical or
horizontal coordinate divided by the total
number of hierarchies.

Nodes on the same hierarchy level should have
the same vertical or horizontal coordinate.

Indicator The total number of edges representing
association relationships that have clear label
and directional indicator divided by the total
number of edges representing association
relationships.

Edge should be clearly labeled and should have
directional indicator.

Metrics for Sequence Diagrams
Metric Description Aesthetic Criterion

AvgCrossS The average number of edge crossings.
(The total number of edge crossings in all
sequence diagrams divided by the total number
of sequence diagrams.)

The total number of edge crossings should be
minimized.

MaxEdgeLenS The maximum edge length of all sequence
diagrams.

The maximum edge length should be minimized.

AvgUnifEdgeLenS The average standard deviation of edge length.
(Summation of standard deviation of edge
length of all sequence diagrams divided by the
total number of sequence diagrams.)

Edge lengths should be uniform.

AvgSubsetSepS The average number of distinct subsets of
participants.
(The total number of distinct subsets of
participants of all sequence diagrams divided by
the total number of sequence diagrams.)

The distinct subsets of participants should be
maximized.

Many empirical studies were performed to determine which graph drawing

aesthetics are important for human comprehension. An experimental study of Purchase

and his colleagues revealed that increasing the number of crossings in a graph

decreases the understandability of the graph [36]. The same group of researchers also

presented an empirical study attempting to identify the most important aesthetics for

class diagrams from human comprehension point of view [27]. Aesthetic criteria

considered in their work were Edge bends, Edge lengths, Orthogonality and Direction of

30

Join

Center

Below

Same
Coordinate

Indicator

1 teachs 1..n

 teachs

Conform Not conform

Conform

Not conform

Figure 3.3: Example of the drawings which conform and do not conform to some
 aesthetic criteria.

flow. The results suggested that these aesthetic criteria should be considered in order to

produce a graph drawing that is easy to understand. The experimental result presented

in [28] showed that joining inheritance arcs and placing a superclass above its

subclasses are preferable for human understanding.

A class diagram can be described in terms of graph theory. It is obvious that

classes, packages and rhombs representing n-ary associations are mapped to nodes.

Associations, aggregations as well as inheritance relationships are mapped to edges

[37]. Aesthetic criteria of class diagram considered in this work are listed as follows.

Cross: Different edges should not overlap, this means that every edge should be

visible and readable as an individual. In [36], the result of an empirical study of human

understanding of graphs drawn using various aesthetic layouts shows that increasing

the number of edge crossings in a graph decreases the understandability of the graph.

31

So, the number of edge crossings should be minimized to make edges more continuous

and easier to follow.

UnifEdgeLen, TotEdgeLen, MaxEdgeLen: Edges should not be too long or too

short because it is hard to make grouping and separation. Edge lengths should be

uniform. Since it is difficult to follow long edges, the total edge length should be

minimized and the maximum edge length should be minimized.

UnifBends, TotBends, MaxBends: The number of bends in any edge should be

minimized to make edge more continuous and easier to follow. Therefore, the total

number of bends in polyline edges should be minimized and the maximum number of

bends on the edges should be minimized.

Orthogonal: Nodes and edges should be arranged to an orthogonal grid, i.e.,

maximize the number of orthogonal edges. Orthogonal drawing minimizes crossing

between edges and the number of bends of the edges, and leads to neatness and

readable layout.

Join: Inheritance relationships, aggregations and compositions should be joined

as described in [30]. This admits a kind of orthogonal layout for hierarchical

relationships. The experimental result presented in [28] showed that joined inheritance

arcs are preferable to separated arcs. The two main reasons were; first, the joined

inheritance notation demonstrates that the subclasses are on the same level of

specialization. Second, in larger diagrams with more inheritance relationships, there is a

potential for the diagram to "sprawl" and to look less "neat."

Center: Especially in hierarchy relationships, a parent node should be positioned

as close as possible to the median position of its children. They should be placed as

close as possible because they are closely related.

Below: A superclass should be placed above its subclasses and the inheritance

arrows should be upwards because people usually are familiar with putting superior

objects on top of other objects. The result of an empirical study showed that pointing the

inheritance arrows upwards was preferred than pointing downwards, with the reason

that it appears more natural to have a parent above its children [28]. This result revealed

that most people would read from top-to-bottom, and it is important to identify the

superclasses before the subclasses.

32

SameCoordinate: Nodes on the same hierarchy level should have the same

vertical or horizontal coordinate, respectively, according to the way (top-down, left-right,

e.g.) the hierarchy is drawn. This aesthetic makes the hierarchy easy to read.

Indicator: Edge should be clearly labeled and should have directional indicator.

All text labels should be horizontal, rather than a mixture of horizontal and vertical, so

that they can be read easily. For reasons of neatness and clarity, the label should be

placed beside the edge, it should not be placed over the edge. The experimental result

in [29] revealed that most subjects preferred having directional indicators associated

with every labeled relationship, rather than not having the directional indicators at all.

The reasons are “directional labels make edges more readable” and “clear, precise”.

Cardinalities should be defined explicitly for improvement of clarity and reduction of

ambiguity. It is clearer to put both upper and lower bounds to avoid confusion.

This thesis considers four aesthetic metrics for a sequence diagram proposed

by Poranen et al. [32] including Crossing, Maximum edge length, Uniform edge length

and Subset separation. The first three metrics are aesthetic metrics of the traditional

graph drawing which can be applied for a sequence diagram. For any software, it may

use many sequence diagrams to visualize software behaviors. So, this work proposes

the metrics for measuring all sequence diagrams described behaviors of the software

by adapting metrics of Poranen et al. [32]. These metrics are measured in concept of

average number (AvgCrossS, AvgUnifEdgeLenS, AvgSubsetSepS) and maximum

number (MaxEdgeLenS). Aesthetic criteria of sequence diagrams considered in this

work are listed as follows.

AvgCrossS: For sequence diagram, a message arrow can be viewed as an

edge. It is easy to measure the number of edge crossings and edge length by noticing

that each message whose length L increses the number of edge crossings by L-1 (the

number of edge crossings are counted from the number of edge crossings with the

lifelines.). When laying out sequence diagram, the number of edge crossings should be

minimized.

MaxEdgeLenS: An aesthetic criterion for message arrows is to limit the

maximum length of the arrows, or at least to decrease the number of the longer arrows.

33

It is corresponding to criterion for traditional graph drawing which is to minimize the

maximum edge length.

AvgUnifEdgeLenS: Edge lengths should be uniform. In fact, this criterion often

contradicts with the minimization of the total edge length. It might be impossible to

shorten some of the edges. Then, minimizing the variance of the edge lengths would

mean that the other edges should be made longer.

AvgSubsetSepS: Subset separation criterion plays an important role in

visualizing a system having such subsets of participants that do not communicate to

each other or do communicate very little. Suppose that there are two distinct sets of

participants, and one participant, a filter, who receives and forwards all messages

from/to those two sets. Now all communication between those two sets of participants

go first to the filter participant which forwards messages to a participant in the second

set. It is natural to place this filter participant in the middle of the diagram and then place

the other two sets of participants to the left and to the right side. The goal of the subset

separation property is to find out distinct subsets of participants that have as little

communication as possible.

3.2 A Controlled Experiment

This section describes the detail of an experiment including of experimental aim

and definitions, subjects, materials, tasks and data collection.

3.2.1 Experimental Aims and Definitions

 The controlled experiment is carried out for two main objectives.

- To validate the structural complexity and aesthetic metrics whether they can

be indicators of understandability, modifiability and maintainability.

- To construct understandability, modifiability and maintainability from

structural complexity and aesthetic metrics.

In this work, understandability and modifiability are defined as follows.

- Understandability is the degree to which the software design model can

provide its clear meaning to evaluator.

34

- Modifiability is the ease with which a change or changes can be made to the

software design model.

3.2.2 Subjects

The experimental subjects used in this work were 60 graduate students from the

Department of Computer Engineering at Chulalongkorn University, Bangkok, Thailand,

who passed the classes on Software Requirements Engineering and Object-Oriented

Technology. During lectures, students were taught basic software engineering

principles and object-oriented development techniques. The lectures were

supplemented by practical lessons where the students had the opportunity to design

real-world object-oriented software using UML diagrams.

The information captured from the debriefing questionnaire based on the ordinal

scale of 1 to 5 revealed that the subjects had medium experience with

- software engineering practice – median response 3 (min 2, max 4),

- design documents – median response 3 (min 2, max 4),

- modeling with UML – median response 3 (min 2, max 4) and

- software maintenance – median response 3 (min 2, max 4).

In order to control differences among students, the students were categorized

into A, B+ and B by considering the grades they obtained from 2 classes mentioned

above. Table 3.3 shows how to categorize the students. For example, if a student got A

in Software Requirements Engineering and got B+ in Object-Oriented Technology, that

student would be categorized into A. After that, they were randomly grouped into 20

teams of three students. Each team had one A, one B+ and one B students.

Table 3.3: Subject category.

Software requirements engineering Object-Oriented Technology Subject Category
A A A
A B+ A

B+ A A
B+ B+ B+
A B B+
B A B+

B+ B B
B B+ B
B B B

35

 3.2.3 Experimental Materials and Tasks

Following Boehm model [10], this work focused on two sub-characteristics of

maintainability: understandability and modifiability. Forty software design models, listed

in Table 3.4, with different domains were used in this experiment. The documentation of

each software design model included of the general software description, the class

diagram, the sequence diagrams and a set of the examinations for assessing

understandability and modifiability. An example of examination and examination

validation are shown in Appendix B.

Table 3.4: Sample software.

No. Software Size (#Classes) No. Software Size (#Classes)

1 Payment I 6 21 Advertisement 11
2 Seminar Registration 6 22 Tourist Agency 11
3 Discount System 6 23 Online Shop III 11
4 Online Shop I 7 24 Inventory II 12
5 Lift 7 25 Payment II 12
6 Material

Management
7 26 Transportation 13

7 Course Registration 8 27 Online Book Shop 13
8 Drugstore 8 28 Export 13
9 Online Shop II 8 29 VDO Rental 14
10 Photo Gallery 8 30 Order System 14
11 Pet Shop 8 31 Hospital 15
12 Stock Exchange II 8 32 Pre-paid Mobile

Phone
15

13 Banking 9 33 Library II 16
14 Stock Exchange I 9 34 VDO Shop 17
15 Online Movie Ticket

Vending
9 35 Petrol Station 18

16 Car Rental 9 36 Online CD Shop 24
17 Restaurant 10 37 ATM 24
18 Multiplex Cinema 10 38 Investment 24
19 Library I 10 39 Garment 25
20 Inventory I 10 40 Calculator 36

The subjects were joined in a room. Two monitors explained to them how to

carry out the tests. There were two tasks to be performed by the participants. First, each

subject team was asked to complete the examinations of 2 software design models that

were randomly assigned for the team. Assigning software design models to subject

team is shown in Table 3.5. Each subject sat next to a subject who was examining the

36

other documentation. This was performed to reduce plagiarism, although this was by no

means a significant worry. Subjects were told verbally that there were different designs

being worked upon, but were not told anything about the nature of the study, i.e., what

hypotheses were being tested. During this time subjects were told not to talk among

themselves, but to direct any questions they had to the two monitors.

Time out periods of the examination for assessing understandability and the

examination for assessing modifiability were 30 minutes and 40 minutes respectively.

These timeout periods were determined from a pilot test. There was 20-minute break

between experimental tasks of 2 software design models. A pilot test was performed

using four experienced subjects. The pilot test was conducted in order to find mistakes

in the experimental procedure, to test that the experimental instructions are clear and to

check tasks have reasonable complexity, but that they can be completed within the

allotted time. No significant issues were encountered during the pilot test. The second

task was to complete a debriefing questionnaire. This questionnaire captured personal

information, experience, motivation, and subjective opinion of each subject. The

questionnaire used in this work is shown in Appendix C.

Table 3.5: Assigning software to subject groups.
Subjects

Group No. A B+ B
Software No.

1 S1 S2 S3 14 33
2 S4 S5 S6 21 35
3 S7 S8 S9 39 31
4 S10 S11 S12 4 32
5 S13 S14 S15 5 36
6 S16 S17 S18 8 29
7 S19 S20 S21 17 26
8 S22 S23 S24 7 37
9 S25 S26 S27 13 18

10 S28 S29 S30 22 27
11 S31 S32 S33 9 23
12 S34 S35 S36 11 28
13 S37 S38 S39 12 30
14 S40 S41 S42 1 34
15 S43 S44 S45 6 19
16 S46 S47 S48 16 25
17 S49 S50 S51 2 24
18 S52 S53 S54 10 38
19 S55 S56 S57 3 40
20 S58 S59 S60 15 20

37

3.2.4 Data Collection

In many studies [4,17,38], maintainability had been operationalized in terms of

understandability time (time required to understand) and modifiability time (time

required to make changes). In this work, time for performing experimental tasks was

restricted. So, maintainability was considered in terms of accuracy instead. For each

software design model, data collected from the experiment can be listed as follows:

- Understandability score is quantified from the mean of 3 subjects’ score of

the examination for assessing understandability.

- Modifiability score is quantified from the mean of 3 subjects’ score of the

examination for assessing modifiability.

- Maintainability score is calculated from the sum of understandability score

and modifiability score.

- Understandability level is captured by converting understandability score

into 0, 1 or 2 which indicates understandability levels: difficult, medium, and

easy respectively. Each understandability score can be converted using the

following condition:

 If Understandability score < Average value of understandability scores –

 W * Standard deviation value of understandability scores

 Then Understandability level = 0

 Else If Understandability score > Average value of understandability scores +

 W * Standard deviation value of understandability scores

 Then Understandability level = 2

 Else Understandability level = 1

- Modifiability level is captured by converting modifiability score using the

same approach of converting understandability score into understandability

level.

- Maintainability level is captured by converting maintainability score using the

same approach of converting understandability score into understandability

level.

38

Kolmogorov-Smirnov is a statistical technique used to decide if a sample comes

from a population with a specific distribution. The results of Kolmogorov-Smirnov test on

understandability, modifiability and maintainability scores showed that understandability

scores, modifiability scores and maintainability scores had normal distribution. Therefore,

this approach could be considered valid. The approach can be summarized as shown

in Figure 3.4.

W is a constant number. Its value is adjusted according to data distribution. In

this experiment, for finding understandability and maintainability levels, value of W is

0.75. For finding modifiability level, value of W is 0.5.

Figure 3.4: Converting understandability, modifiability and maintainability scores into
understandability, modifiability and maintainability levels.

For each software design model, structural complexity and aesthetic metrics

mentioned earlier in section 3.1 were measured. One discarded metric was Cross since

its values obtained from sample class diagrams were not different (more than 80% were

zero value). Therefore, it was useless for classifying understandability, modifiability and

maintainability levels. Table 3.6 - Table 3.11 show all data collected from 40 sample

software design models.

Score

Level

< Avg(scores)– W*Std(scores) Otherwise > Avg(scores) + W*Std(scores)

0: Difficult 1: Medium 2: Easy

Table 3.6: Structural complexity metric values of sample software.

Software

No.

NC ANAUW ANAW ANMUW ANMW ANAssoc ANAgg NAggH MaxHAgg ANGen NGenH MaxDIT NOS WMBO ANRM ANDM ANCM

1 6.000 3.000 0.167 6.333 5.167 0.167 0.167 1.000 1.000 0.500 1.000 2.000 1.000 2.000 3.000 1.000 1.000

2 6.000 2.143 0.000 2.429 2.286 0.571 0.143 1.000 1.000 0.000 0.000 0.000 2.000 .889 7.000 2.000 0.500

3 6.000 2.833 0.000 1.500 1.500 0.500 0.167 1.000 1.000 0.000 0.000 0.000 1.000 1.400 3.000 2.000 0.000

4 7.000 2.857 0.214 1.571 1.571 0.429 0.000 0.000 .000 0.286 1.000 1.000 2.000 1.325 2.500 2.500 0.000

5 7.000 1.625 0.063 1.500 1.500 0.375 0.375 2.000 1.000 0.250 1.000 1.000 2.000 1.800 0.000 4.000 0.000

6 7.000 2.857 0.000 2.143 2.143 3.429 0.143 1.000 1.000 0.286 1.000 2.000 3.000 1.667 1.000 1.000 0.333

7 8.000 2.500 0.125 4.625 4.625 0.750 0.250 2.000 1.000 0.000 0.000 0.000 3.000 1.600 1.333 2.000 1.333

8 8.000 3.000 0.000 2.000 2.000 0.750 0.250 2.000 1.000 0.000 0.000 0.000 3.000 1.111 0.000 1.333 0.667

9 8.000 1.875 0.186 3.000 3.000 0.625 0.250 1.000 1.000 0.250 1.000 1.000 1.000 2.167 2.000 7.000 1.000

10 8.000 3.125 1.125 3.500 3.500 0.500 0.000 0.000 .000 0.625 1.000 3.000 2.000 1.450 1.000 1.500 0.000

11 8.000 4.250 0.375 3.750 3.750 0.500 0.375 2.000 1.000 0.250 1.000 1.000 4.000 1.938 2.250 2.000 0.000

12 8.000 2.125 0.000 3.875 3.875 1.000 0.000 0.000 .000 0.000 0.000 0.000 3.000 2.022 2.333 2.667 3.000

13 9.000 2.222 0.333 3.667 3.667 0.556 0.222 2.000 1.000 0.333 2.000 1.000 5.000 1.250 0.200 0.800 1.400

14 9.000 0.889 0.333 3.222 3.222 0.333 0.333 3.000 1.000 0.556 2.000 1.000 3.000 1.111 3.333 1.333 1.667

15 9.000 1.778 0.000 5.333 5.333 0.111 0.667 1.000 2.000 0.000 0.000 0.000 3.000 4.944 1.333 2.000 0.667

16 9.000 2.889 0.222 2.000 2.000 0.667 0.111 1.000 1.000 0.222 2.000 1.000 3.000 1.250 0.667 1.333 0.667

17 10.000 2.000 0.000 3.100 3.100 0.800 0.100 1.000 1.000 0.000 0.000 0.000 3.000 1.250 1.000 2.333 0.667

18 10.000 1.200 0.100 2.900 2.900 0.400 0.200 1.000 2.000 0.200 1.000 1.000 4.000 1.075 1.000 2.750 1.000

19 10.000 1.800 0.300 3.000 3.000 0.400 0.000 0.000 .000 0.500 2.000 1.000 2.000 1.500 1.000 3.000 1.000

20 10.000 2.000 0.000 3.000 2.950 0.800 0.000 0.000 .000 0.300 1.000 1.000 3.000 3.111 1.667 1.000 1.000

39

chula
Text Box
39

Table 3.7: Structural complexity metric values of sample software (continued).

Software
No.

NC ANAUW ANAW ANMUW ANMW ANAssoc ANAgg NAggH MaxHAgg ANGen NGenH MaxDIT NOS WMBO ANRM ANDM ANCM

21 11.000 2.727 0.409 4.364 4.364 0.364 0.364 1.000 2.000 0.364 2.000 1.000 2.000 1.875 0.000 2.500 0.000

22 11.000 4.545 0.000 1.364 1.364 0.909 0.272 3.000 1.000 0.000 0.000 0.000 2.000 1.571 0.500 2.000 1.000

23 11.000 2.636 0.000 3.091 3.091 1.000 0.455 4.000 1.000 0.000 0.000 0.000 2.000 1.875 0.500 2.500 0.500

24 12.000 1.438 0.219 2.813 2.813 0.188 0.188 2.000 2.000 0.188 2.000 1.000 4.000 2.458 0.000 2.250 0.250

25 12.000 1.583 0.000 3.667 3.667 0.250 0.250 1.000 2.000 0.000 0.000 0.000 3.000 1.806 0.667 0.667 0.333

26 13.000 2.000 0.077 2.462 2.462 0.846 0.154 2.000 1.000 0.308 1.000 1.000 3.000 2.111 0.000 3.333 1.333

27 13.000 1.846 0.385 2.767 2.462 0.385 0.462 2.000 2.000 0.385 2.000 1.000 3.000 1.833 2.000 2.000 0.000

28 13.000 1.769 0.154 1.615 1.615 0.923 0.077 1.000 1.000 0.538 2.000 1.000 4.000 0.875 3.000 1.750 0.500

29 14.000 2.143 0.250 1.429 1.357 0.286 0.286 2.000 2.000 0.429 2.000 1.000 2.000 1.750 2.000 3.500 0.000

30 14.000 0.947 0.000 2.947 2.947 0.368 0.211 4.000 1.000 0.000 0.000 0.000 5.000 1.933 0.400 1.800 0.000

31 15.000 2.067 0.333 1.000 1.000 0.600 0.333 3.000 1.000 0.467 2.000 2.000 3.000 1.417 0.000 1.000 0.333

32 15.000 2.833 0.305 1.556 1.556 0.444 0.056 1.000 1.000 0.389 2.000 2.000 4.000 1.558 1.250 2.750 0.750

33 16.000 1.500 0.125 1.500 1.500 0.250 0.000 0.000 0.000 0.625 3.000 1.000 4.000 1.000 1.250 0.750 0.750

34 17.000 3.353 0.559 2.824 2.824 0.353 0.176 2.000 1.000 0.471 2.000 2.000 3.000 1.733 1.667 3.000 1.000

35 18.000 1.611 0.000 1.167 1.167 0.833 0.166 2.000 1.000 0.000 0.000 0.000 2.000 1.000 0.000 2.000 0.000

36 24.000 0.917 0.104 1.000 1.000 0.583 0.208 3.000 1.000 0.333 3.000 1.000 2.000 0.833 1.000 1.500 0.000

37 24.000 0.792 0.042 1.250 1.250 0.917 0.458 2.000 2.000 0.167 1.000 1.000 4.000 1.363 1.500 1.250 0.500

38 24.000 2.125 0.042 2.792 2.792 0.417 0.250 4.000 1.000 0.083 1.000 1.000 3.000 2.156 0.000 2.000 0.333

39 25.000 1.560 0.220 1.400 1.400 0.480 0.280 4.000 1.000 0.360 3.000 1.000 2.000 1.000 1.000 3.000 1.000

40 36.000 1.556 0.361 3.611 3.542 0.444 0.000 0.000 0.000 0.667 4.000 2.000 2.000 1.807 0.000 10.500 0.000

40

chula
Text Box
40

Table 3.8: Aesthetic metric values of sample software.

Software
No.

Unif
EdgeLen

Tot
EdgeLen

Max
EdgeLen

Unif
Bends

Tot
Bends

Max
Bends

Ortho-
gonal

Join Center Below SameCo Indicator Avg
CrossS

Max
EdgeLens

AvgUnif
EdgeLenS

Avg
SubsetSepS

1 0.635 12.500 3.000 1.200 4.000 2.000 1.000 1.000 1.000 0.750 1.000 0.000 3.000 2.000 0.220 2.000

2 4.673 16.300 7.000 0.000 0.000 0.000 0.400 1.000 1.000 1.000 1.000 1.000 15.000 5.000 1.090 1.000

3 0.387 9.600 3.300 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 6.000 3.000 0.710 2.000

4 0.906 17.800 3.700 1.143 6.000 2.000 1.000 1.000 1.000 1.000 1.000 0.750 4.500 3.000 0.380 2.000

5 5.898 32.900 9.300 0.786 6.000 2.000 1.000 0.667 1.000 0.800 0.667 1.000 2.000 2.000 0.190 3.000

6 6.018 69.800 9.700 0.555 9.000 2.000 0.231 1.000 1.000 1.000 1.000 4.500 1.667 2.000 0.280 1.333

7 0.468 14.700 2.800 0.000 0.000 0.000 0.625 1.000 1.000 1.000 1.000 1.000 3.000 4.000 0.470 2.000

8 6.174 24.800 8.900 0.000 0.000 0.000 0.625 1.000 1.000 0.500 1.000 1.000 0.667 2.000 0.110 2.333

9 10.041 41.300 10.900 0.778 5.000 2.000 0.778 0.500 1.000 1.000 0.500 0.600 11.000 4.000 0.780 2.000

10 1.678 25.700 5.100 1.143 8.000 2.000 0.875 1.000 1.000 1.000 1.000 0.667 6.000 4.000 0.710 1.500

11 1.133 20.700 4.600 0.952 4.000 2.000 1.000 1.000 1.000 1.000 1.000 1.000 1.750 3.000 0.290 1.750

12 6.440 40.300 9.100 0.722 5.000 2.000 0.700 1.000 1.000 1.000 1.000 0.286 9.000 4.000 0.590 1.333

13 7.645 33.500 10.900 0.711 4.000 2.000 1.000 1.000 1.000 0.600 1.000 1.000 0.400 2.000 0.090 1.600

14 6.703 42.200 10.100 0.000 0.000 0.000 0.364 0.600 0.800 0.750 0.800 1.000 2.667 3.000 0.410 2.333

15 2.155 22.500 6.100 0.143 1.000 1.000 0.571 0.333 0.667 0.833 0.667 1.000 6.000 6.000 0.820 1.000

16 2.091 22.800 5.100 0.857 4.000 2.000 0.875 1.000 1.000 1.000 1.000 0.167 2.000 2.000 0.260 1.667

17 1.847 22.700 5.000 0.000 0.000 0.000 0.778 1.000 1.000 1.000 1.000 1.000 1.667 3.000 0.350 2.667

18 4.438 26.500 6.900 0.444 2.000 0.000 0.667 1.000 1.000 1.000 1.000 1.000 0.750 2.000 0.140 2.750

19 0.572 25.800 3.900 1.111 10.000 2.000 1.000 1.000 1.000 1.000 1.000 0.000 1.500 2.000 0.100 3.500

20 0.920 29.900 4.600 0.873 6.000 2.000 0.818 1.000 1.000 1.000 1.000 1.000 0.333 2.000 0.070 2.333

41

chula
Text Box
41

Table 3.9: Aesthetic metric values of sample software (continued).

Software
No.

Unif
EdgeLen

Tot
EdgeLen

Max
EdgeLen

Unif
Bends

Tot
Bends

Max
Bends

Ortho-
gonal

Join Center Below SameCo Indicator Avg
CrossS

Max
EdgeLens

AvgUnif
EdgeLenS

Avg
SubsetSepS

21 2.570 30.800 5.500 1.091 12.000 2.000 0.833 0.750 1.000 0.750 0.500 1.000 2.000 2.000 0.230 2.000

22 9.336 41.700 11.900 0.769 6.000 2.000 0.615 1.000 1.000 0.000 1.000 0.600 5.500 7.000 2.210 1.500

23 4.835 63.200 10.300 1.140 16.000 3.000 0.316 0.750 1.000 0.600 0.750 0.000 7.000 4.000 1.400 1.500

24 1.470 27.300 4.900 0.778 4.000 2.000 0.778 1.000 1.000 0.667 1.000 0.000 5.500 2.000 0.260 2.750

25 0.370 10.900 2.500 0.000 0.000 0.000 0.667 0.500 1.000 0.667 1.000 1.000 6.000 4.000 0.580 1.667

26 1.447 45.600 5.500 0.059 1.000 1.000 0.471 0.667 0.667 0.500 0.667 0.818 3.333 4.000 0.420 1.667

27 1.561 36.000 5.700 0.117 2.000 1.000 0.313 0.400 1.000 0.182 0.800 0.000 3.667 5.000 0.620 2.000

28 12.576 92.100 12.600 0.889 22.000 2.000 0.944 1.000 1.000 1.000 1.000 1.000 4.500 5.000 0.850 1.750

29 1.366 33.600 4.400 0.879 8.000 2.000 0.857 0.800 1.000 0.700 0.800 0.750 10.000 4.000 0.860 1.500

30 1.047 27.100 4.400 0.000 0.000 0.000 0.818 1.000 1.000 0.750 1.000 1.000 3.600 3.000 0.510 2.000

31 4.740 60.300 10.800 0.912 12.000 2.000 0.684 0.800 1.000 0.600 0.800 0.875 4.000 3.000 0.830 2.000

32 6.159 59.900 9.300 0.996 15.000 2.000 0.500 1.000 0.750 1.000 0.750 1.000 6.500 5.000 1.570 2.250

33 1.868 44.500 5.500 0.917 10.000 2.000 0.625 0.667 1.000 0.600 1.000 0.800 2.750 3.000 0.400 1.750

34 2.358 52.800 6.300 1.053 18.000 2.000 0.895 1.000 0.857 0.833 1.000 1.000 3.333 3.000 0.420 2.333

35 0.874 33.100 3.600 0.000 0.000 0.000 0.778 0.500 1.000 0.000 1.000 0.125 1.000 2.000 0.200 3.000

36 1.054 45.300 6.000 0.560 8.000 2.000 0.600 0.667 2.000 0.846 2.000 0.917 5.000 4.000 1.045 2.000

37 2.122 88.000 7.200 0.480 10.000 2.000 0.459 0.750 0.750 0.333 0.750 0.571 4.000 3.000 0.360 1.750

38 1.263 55.300 4.800 0.623 8.000 2.000 0.682 0.800 1.000 0.500 0.800 1.000 4.000 3.000 0.550 2.000

39 1.903 63.200 5.300 0.893 23.000 2.000 0.679 0.857 0.857 0.688 0.714 0.583 4.500 4.000 0.640 3.000

40 1.402 74.100 5.600 1.026 38.000 2.000 0.667 0.857 0.857 0.917 0.857 0.786 53.000 11.000 7.540 4.500

42

chula
Text Box
42

43

Table 3.10: Understandability, Modifiability and Maintainability Scores and Levels of
sample software.

Software

No.
Understandability

Score
Modifiability

Score
Maintainability

Score
Understandability

Level
Modifiability

Level
Maintainability

Level

1 15.33 15.33 30.67 2 2 2

2 13.00 8.67 21.67 1 0 0

3 14.00 14.00 28.00 1 2 2

4 17.33 10.67 28.00 2 1 2

5 12.67 11.00 23.67 1 1 1

6 13.50 12.00 25.50 1 1 1

7 14.00 15.67 29.67 1 2 2

8 13.00 16.00 29.00 1 2 2

9 13.33 11.00 24.33 1 1 1

10 11.33 12.33 23.67 0 1 1

11 15.00 14.67 29.67 2 2 2

12 14.33 13.67 28.00 2 2 2

13 14.00 12.33 26.33 1 1 1

14 12.67 13.33 26.00 1 1 1

15 16.00 10.33 26.33 2 1 1

16 16.00 14.33 30.33 2 2 2

17 16.33 14.00 30.33 2 2 2

18 14.00 10.33 24.33 1 1 1

19 11.33 12.00 23.33 0 1 1

20 13.00 11.00 24.00 1 1 1

21 8.33 9.00 17.33 0 0 0

22 13.67 12.00 25.67 1 1 1

23 15.00 13.83 28.83 2 2 2

24 8.00 8.67 16.67 0 0 0

25 15.33 12.67 28.00 2 1 2

26 15.33 11.00 26.33 2 1 1

27 13.33 12.33 25.67 1 1 1

28 13.00 12.33 25.33 1 1 1

29 11.33 12.00 23.33 0 1 1

30 13.00 12.33 25.33 1 1 1

31 13.33 6.67 20.00 1 0 0

32 13.00 10.67 23.67 1 1 1

33 11.33 9.00 20.33 0 0 0

34 11.33 11.00 22.33 0 1 1

35 12.67 11.67 24.33 1 1 1

44

Table 3.11: Understandability, Modifiability and Maintainability Scores and Levels of
sample software (continued).

Software

No.
Understandability

Score
Modifiability

Score
Maintainability

Score
Understandability

Level
Modifiability

Level
Maintainability

Level

36 9.00 8.67 17.67 0 0 0

37 10.33 11.00 21.33 0 1 0

38 11.33 11.67 23.00 0 1 1

39 12.67 7.33 20.00 1 0 0

40 9.00 8.33 17.33 0 0 0

3.3 Experimental Analysis and Results

This section presents metric validation and construction of maintainability

models applying Discriminant analysis, Decision tree and MLP neural network.

3.3.1 Metric Validation

The main goal of the experiment is to analyze class and sequence diagrams for

the purpose of validating the possibility of structural complexity and aesthetic metrics

being used as good indicators of class and sequence diagrams maintainability.

Therefore, the following hypotheses are proposed:

H10 : Structural complexity metrics cannot be indicators for classifying

understandability level.

H1A : Structural complexity metrics can be indicators for classifying

understandability level.

H20 : Structural complexity metrics cannot be indicators for classifying

modifiability level.

H2A : Structural complexity metrics can be indicators for classifying modifiability

level.

H30 : Structural complexity metrics cannot be indicators for classifying

maintainability level.

45

H3A : Structural complexity metrics can be indicators for classifying

maintainability level.

H40 : Aesthetic metrics cannot be indicators for classifying understandability

level.

H4A : Aesthetic complexity design metrics can be indicators for classifying

understandability level.

H50 : Aesthetic metrics cannot be indicators for classifying modifiability level.

H5A : Aesthetic metrics can be indicators for classifying modifiability level.

H60 : Aesthetic metrics cannot be indicators for classifying maintainability level.

H6A : Aesthetic metrics can be indicators for classifying maintainability level.

H70 : Structural complexity and aesthetic metrics cannot be indicators for

classifying understandability level.

H7A : Structural complexity metrics and aesthetic can be indicators for

classifying understandability level.

H80 : Structural complexity and aesthetic metrics cannot be indicators for

classifying modifiability level.

H8A : Structural complexity and aesthetic metrics can be indicators for

classifying modifiability level.

H90 : Structural complexity and aesthetic metrics cannot be indicators for

classifying maintainability level.

H9A : Structural complexity and aesthetic metrics can be indicators for

classifying maintainability level.

In order to test these hypotheses, Multivariate analysis of variance (MANOVA) is

applied. MANOVA is simply an ANOVA with several dependent variables. This is a test

of overall relationship between groups and predictors by considering variance in the set

of predictors that effects on group classification. The results of MANOVA test are shown

in Table 3.12 - Table 3.14. Because all obtained P-value are less than significant level

46

(0.001), all null hypotheses are rejected. This result can be concluded that three groups

of understandability, modifiability and maintainability levels can be distinguished on the

basis of structural complexity metrics, aesthetic metrics and combination of structural

complexity and aesthetic metrics.

Table 3.12: MANOVA test of structural complexity metrics.
Hypothesis Source of Variance Wilks’ Lambda df1 df2 Multivariate F P-value

H1 Understandability 0.006427 34 42 14.1734 <0.001
H2 Modifiability 0.005586 34 42 15.2927 <0.001
H3 Maintainability 0.005232 34 42 15.8427 <0.001

Table 3.13: MANOVA test of aesthetic metrics.

Hypothesis Source of Variance Wilks’ Lambda df1 df2 Multivariate F P-value
H4 Understandability 0.008599 32 44 13.4529 <0.001
H5 Modifiability 0.006765 32 44 15.3424 <0.001
H6 Maintainability 0.006473 32 44 15.7153 <0.001

Table 3.14: MANOVA test of structural complexity and aesthetic metrics.

Hypothesis Source of Variance Wilks’ Lambda df1 df2 Multivariate F P-value
H7 Understandability 0.009932 46 30 5.8919 <0.001
H8 Modifiability 0.006647 46 30 7.3471 <0.001
H9 Maintainability 0.005762 46 30 7.9395 <0.001

3.3.2 Constructing Understandability, Modifiability and Maintainability Models

 This section presents how to construct understandability, modifiability and

maintainability models applying 3 techniques: Discriminant analysis, Decision tree and

MLP neural network.

 In order to find the best prediction models for understandability, modifiability and

maintainability, eighteen prediction models for each technique are constructed. So, the

number of models constructed in this work is 54 models.

 Prediction models constructed by applying Discriminant analysis consist of the

following models.

DiscUnd1: Understandability model constructed from all structural complexity

 metrics.

DiscMod1: Modifiability model constructed from all structural complexity metrics.

47

DiscMain1: Maintainability model constructed from all structural complexity

 metrics.

DiscUnd2: Understandability model constructed from structural complexity

 metrics from which correlated metrics are discarded.

DiscMod2: Modifiability model constructed from structural complexity metrics

 from which correlated metrics are discarded.

DiscMain2: Maintainability model constructed from structural complexity metrics

 from which correlated metrics are discarded.

DiscUnd3: Understandability model constructed from all aesthetic metrics.

DiscMod3: Modifiability model constructed from all aesthetic metrics.

DiscMain3: Maintainability model constructed from all aesthetic metrics.

DiscUnd4: Understandability model constructed from aesthetic metrics from

 which correlated metrics are discarded.

DiscMod4: Modifiability model constructed from aesthetic metrics from which

 correlated metrics are discarded.

DiscMain4: Maintainability model constructed from aesthetic metrics from which

 correlated metrics are discarded.

DiscUnd5: Understandability model constructed from all structural complexity

 and aesthetic metrics.

DiscMod5: Modifiability model constructed from all structural complexity and

 aesthetic metrics.

DiscMain5: Maintainability model constructed from all structural complexity and

 aesthetic metrics.

DiscUnd6: Understandability model constructed from structural complexity and

 aesthetic metrics from which correlated metrics are discarded.

DiscMod6: Modifiability model constructed from structural complexity and

48

 aesthetic metrics from which correlated metrics are discarded.

DiscMain6: Maintainability model constructed from structural complexity and

 aesthetic metrics from which correlated metrics are discarded.

 Prediction models constructed by applying Decision tree consist of DecUnd1 –

DecMain6 which using same approaches of DiscUnd1 – DiscMain6. Then, 18 prediction

models: MLPUnd1 – MLPMain6 are constructed using same approaches of DiscUnd1 –

DiscMain6 but they are constructed by applying technique of MLP neural network.

3.3.2.1 Correlation Analysis

As mentioned in section 3.3.2, prediction models can be categorized into 2

groups.

1) Prediction models constructed from all structural complexity metrics or from

all aesthetic metrics or from all structural complexity and aesthetic metrics

which are listed in Table 3.1 and Table 3.2.

2) Prediction models constructed from structural complexity metrics from which

correlated metrics are discarded or from aesthetic metrics from which

correlated metrics are discarded or from structural complexity and aesthetic

metrics from which correlated metrics are discarded.

For constructing the second group of prediction models, correlation analysis of

metrics are applied. Correlation between each pair of metrics is considered in order to

discard metrics that provide redundant information (i.e. the metric measures similar

property as other metrics). This can be automated by applying Pearson’s correlation test

with significant level at 0.01. For each couple of highly correlated metrics, only one of

them will be selected. Linear regression with one independent variable is performed for

each metric. Then, adjusted R square value is used to determine the best choice.

Adjusted R square value of independent variable indicates that it can explain the

variance of dependent variable well or not. The metric with higher adjusted R square

value (not consider sign) will be chosen. Results of correlation analysis are shown in

Table 3.15 – Table 3.22.

49

Table 3.15: Pearson’s correlation of structural complexity metrics.

Correlated Metrics
Pearson’s
Correlation

Adjusted R Square

ANAW & ANGen 0.678 0.01

ANAW & MaxDIT 0.729 0.01

ANMUW & ANMW 0.989 0.01

NAggH & MaxHAgg 0.766 0.01

NGenH & MaxDIT 0.862 0.01

Table 3.16: Adjusted R square of correlated structural complexity metrics where

dependent variable is understandability level. Discarded metrics are
ANAW, ANMW, NAggH, MaxDIT.

Correlated Metrics Adjusted R Square

ANAW & ANGen 0.068 & 0.123

ANAW & MaxDIT 0.068 & 0.080

ANMUW & ANMW 0.008& 0.004

NAggH & MaxHAgg -0.019 & -0.020

NGenH & MaxDIT 0.286 & 0.080

Table 3.17: Adjusted R square of correlated structural complexity metrics where

dependent variable is modifiability level. Discarded metrics are
ANAW, ANMW, NAggH, MaxDIT.

Correlated Metrics Adjusted Square

ANAW & ANGen -0.011 & 0.089

ANAW & MaxDIT -0.011 & 0.068

ANMUW & ANMW 0.101 & 0.090

NAggH & MaxHAgg -0.025 & -0.028

NGenH & MaxDIT 0.278 & 0.068

Table 3.18. Adjusted R square of correlated structural complexity metrics where

dependent variable is maintainability level. Discarded metrics are
ANAW, ANMW, NAggH, MaxDIT.

Correlated Metrics Adjusted R Square

ANAW & ANGen 0.034 & 0.149

ANAW & MaxDIT 0.034 & 0.107

ANMUW & ANMW 0.073 & 0.063

NAggH & MaxHAgg -0.022 & -0.024

NGenH & MaxDIT 0.386 & 0.107

50

Table 3.19: Pearson’s correlation of aesthetic metrics.

Correlated Metrics
Pearson’s
Correlation

Significance Level
(2-tailed)

UnifEdgeLen & MaxEdgeLen 0.934 0.01

UnifBends & MaxBends 0.891 0.01

AvgCrossS & MaxEdgeLenS 0.812 0.01

AvgUnifEdgeLenS & MaxEdgeLenS 0.874 0.01

Table 3.20: Adjusted R square of correlated aesthetic metrics where dependent

variable is understandability level. Discarded metrics are
UnifEdgeLen, UnifBends, MaxEdgeLenS.

Correlated Metrics Adjusted R Square

UnifEdgeLen & MaxEdgeLen -0.020 & -0.026

UnifBends & MaxBends 0.030 & 0.040

AvgCrossS & MaxEdgeLenS 0.061 & -0.017

AvgUnifEdgeLenS & MaxEdgeLenS 0.047 & -0.017

Table 3.21: Adjusted R square of correlated aesthetic metrics where dependent

variable is modifiability level. Discarded metrics are
UnifEdgeLen, UnifBends, MaxEdgeLenS.

Correlated Metrics Adjusted R Square

UnifEdgeLen & MaxEdgeLen -0.016 & -0.017

UnifBends & MaxBends 0.037& 0.050

AvgCrossS & MaxEdgeLenS 0.065 & 0.032

AvgUnifEdgeLenS & MaxEdgeLenS 0.052 & 0.032

Table 3.22: Adjusted R square of correlated aesthetic metrics where dependent

variable is maintainability level. Discarded metrics are
UnifEdgeLen, UnifBends, MaxEdgeLenS.

Correlated Metrics Adjusted R Square

UnifEdgeLen & MaxEdgeLen -0.021 &-0.023

UnifBends & MaxBends 0.053 & 0.069

AvgCrossS & MaxEdgeLenS 0.093 & 0.013

AvgUnifEdgeLenS & MaxEdgeLenS 0.075 & 0.013

51

3.3.2.2 Discriminant Analysis

 The understandability, modifiability and maintainability obtained by applying

Discriminant analysis are shown as Table 3.23 – Table 3.40. In order to classify a new

software design model into one of three understandability levels utilizing the obtained

understandability model presented in Table 3.23, the metrics presented in each function

will be measured from class and sequence diagrams. Function D_Und1, M_Und1 and

E_Und1 will be calculated. Then the software design model will be allocated to the

group that provides the highest value among 3 functions. For example, if E_Und1 value

is more than D_Und1 and M_Und1 values, understandability of the software design

model will be categorized into group 3 which is easy level. Other models can be utilized

in the same way.

Table 3.23: An understandability model: DiscUnd1.
Difficult level’s function:
 D_Und1 =1.286×NC +7.626×ANAUW -1.953×ANAW -14.64 ×ANMUW
+17.705×ANMW +3.916×ANAssoc-34.652×ANAgg+2.737×NAggH+10.796×MaxHAgg
+52.974×ANGen-3.6×NGenH-5.627×MaxDIT+2.222×NOS+5.539×WMBO
+2.854×ANRM + 0.275×ANDM+0.011× ANCM -41.146
Medium level’s function:
M_Und1 =0.837×NC +7.311×ANAUW -4.58×ANAW -7.526 ×ANMUW
+9.387×ANMW +5.151×ANAssoc-25.543×ANAgg+3.334×NAggH+8.857×MaxHAgg
+49.447×ANGen-3.988×NGenH-5.719×MaxDIT+3.694×NOS+4.814×WMBO
+3.005×ANRM + 1.243×ANDM+0.939× ANCM -38.945
Easy level’s function:
E_Und1 =0.933×NC +8.222×ANAUW -7.844×ANAW -6.882 ×ANMUW
+9.731×ANMW +4.052×ANAssoc-23.399×ANAgg+2.542×NAggH+8.315×MaxHAgg
+46.902×ANGen-3.81×NGenH-5.485×MaxDIT+3.39×NOS+5.035×WMBO
+2.76×ANRM + 0.85×ANDM+1.016× ANCM -38.265

Table 3.24: An understandability model: DiscUnd2.
Difficult level’s function:
 D_Und2 =1.176×NC +6.628×ANAUW+1.27×ANMUW+2.652×ANAssoc
-8.927×ANAgg+6.655×MaxHAgg+19.603×ANGen-1.792×NGenH+3.662×NOS
+3.876×WMBO+2.4×ANRM + 0.666×ANDM+1.356× ANCM -35.439

Medium level’s function:
M_Und2 =0.883×NC +6.317×ANAUW+0.703×ANMUW+3.723×ANAssoc
-0.004×ANAgg+5.444×MaxHAgg+16.499×ANGen-2.25×NGenH+4.361×NOS
+2.946×WMBO+2.683×ANRM + 1.171×ANDM+2.292× ANCM -34.679
Easy level’s function:
E_Und2 =0.933×NC +6.885×ANAUW+1.582×ANMUW+3.096×ANAssoc
-2.773×ANAgg+5.222×MaxHAgg+13.048×ANGen-1.954×NGenH+4.007×NOS
+3.753×WMBO+2.581×ANRM + 0.866×ANDM+2.334× ANCM -33.71

52

Table 3.25: An understandability model: DiscUnd3.
Difficult level’s function:
 D_Und3 = -13.966×UnifEdgeLen +0.958×TotEdgeLen +14.545×MaxLen +75.821
×UnifBends -3.752×TotBends -23.729×MaxBends +9.166×Orthogonal +90.151× Join
+127.356×Center -30.013×Below -65.209×SameCo +17.276× Indicator +5.072×ACrossS
+34.099×MaxEdgeLenS -75.41×AUnifEdgeLenS+38.493×ASubSetSeptS -196.65
Medium level’s function:
M_Und3 =-13.015×UnifEdgeLen +0.863×TotEdgeLen +14.699×MaxLen +71.714
×UnifBends -3.643×TotBends -24.513×MaxBends +5.536×Orthogonal +93.949× Join
+129.478×Center -29.798×Below -70.557×SameCo +17.981× Indicator +4.641×ACrossS
+34.455×MaxEdgeLenS -73.932×AUnifEdgeLenS+40.159×ASubSetSeptS -195.253
Easy level’s function:
E_Und3 =-13.378×UnifEdgeLen +0.871×TotEdgeLen +14.178×MaxLen +66.437
×UnifBends -3.72×TotBends -20.691×MaxBends +11.921×Orthogonal +84.817× Join
+114.802×Center -21.617×Below -61.394×SameCo +15.354× Indicator +4.355×ACrossS
+32.547×MaxEdgeLenS -68.231×AUnifEdgeLenS+35.643×ASubSetSeptS -175.241

Table 3.26: An understandability model: DiscUnd4.
Difficult level’s function:
 D_Und4 = 0.566×TotEdgeLen -0.096×MaxLen -1.538×TotBends +1.379×MaxBends
+10.882×Orthogonal +31.092× Join +54.877×Center +1.846×Below -22.151×SameCo
+1.412× Indicator +0.872×ACrossS -2.709×AUnifEdgeLenS+9.463×ASubSetSeptS -55.513
Medium level’s function:
M_Und4 = 0.504×TotEdgeLen +0.977×MaxLen -1.503×TotBends -1.454×MaxBends
+8.831×Orthogonal +33.913× Join +57.379×Center +2.475×Below -27.71×SameCo +1.968
× Indicator +0.512×ACrossS -0.955×AUnifEdgeLenS+10.241×ASubSetSeptS -55.5

Easy level’s function:
E_Und4 = 0.545×TotEdgeLen +0.088×MaxLen -1.762×TotBends +1.294×MaxBends
+12.411×Orthogonal +27.2× Join +45.916×Center +8.095×Below -19.74×SameCo +0.417
× Indicator +0.409×ACrossS +1.028×AUnifEdgeLenS+7.92×ASubSetSeptS -46.366

Table 3.27: An understandability model: DiscUnd5.
Difficult level’s function:
 D_Und5 =28.665×NC +166.883×ANAUW +120.5×ANAW +198.404 ×ANMUW-82.167
×ANMW -151.319×ANAssoc-1001.203×ANAgg -5.834×NAggH+191.819×MaxHAgg +765.242
×ANGen-9.137×NGenH-422.046×MaxDIT-104.145×NOS-81.747×WMBO-99.606×ANRM
 - 37.411×ANDM-163.904× ANCM-121.976×UnifEdgeLen +13.035×TotEdgeLen+148.692×MaxLen
+589.797×UnifBends -54.364×TotBends +3.274×MaxBends -66.651×Orthogonal -71.259× Join
 -734.778×Center +466.853×Below +559.955×SameCo +104.586× Indicator +58.029×ACrossS
+133.067×MaxEdgeLenS-554.49×AUnifEdgeLenS+151.791×ASubSetSeptS-1023.342
Medium level’s function:
M_Und5 =26.465×NC +136.626×ANAUW +47.449×ANAW +148.76 ×ANMUW-67.18
×ANMW -71.741×ANAssoc-726.5×ANAgg -0.742×NAggH+148.004×MaxHAgg+715.851
×ANGen -27.007×NGenH-315.466×MaxDIT-66.704×NOS-53.686×WMBO-73.18×ANRM
 - 34.295×ANDM-123.532× ANCM-88.921×UnifEdgeLen +8.017×TotEdgeLen+116.301×MaxLen
+446.496×UnifBends -40.421×TotBends -2.776×MaxBends -74.07×Orthogonal -41.191× Join
-481.421×Center +387.264×Below +352.14×SameCo +60.593× Indicator +45.954×ACrossS
+110.546×MaxEdgeLenS-448.623×AUnifEdgeLenS+136.897×ASubSetSeptS-968.124
Easy level’s function:
E_Und5 = 27.722×NC +173.558×ANAUW +90.636×ANAW +237.82 ×ANMUW-125.564
×ANMW -127.903×ANAssoc-1015.575×ANAgg -0.68×NAggH+190.115×MaxHAgg+725.956
×ANGen-7.11×NGenH-416.565×MaxDIT-98.692×NOS-87.345×WMBO-100.473×ANRM
 - 39.427×ANDM-161.196× ANCM-124.521×UnifEdgeLen +12.552×TotEdgeLen+152.048×MaxLen
+584.416×UnifBends -53.452×TotBends-1.138×MaxBends -38.053×Orthogonal -150.866× Join
-777.813×Center +522.0×Below +562.693×SameCo +89.711× Indicator +56.987×ACrossS
+135.231×MaxEdgeLenS-545.687×AUnifEdgeLenS+149.302×ASubSetSeptS-964.687

53

Table 3.28: An understandability model: DiscUnd6.
Difficult level’s function:
 D_Und6 = 8.509×NC +31.982×ANAUW -16.898 ×ANMUW +38.808×ANAssoc +34.451×ANAgg
 +23.43×MaxHAgg +277.816×ANGen -46.387×NGenH+24.881×NOS+38.545×WMBO
+10.463×ANRM-9.143×ANDM+22.483× ANCM -1.418×TotEdgeLen+6.638×MaxLen-
0.067×TotBends -13.723×MaxBends-33.6 ×Orthogonal +61.708× Join+305.959×Center
+18.882×Below -173.195×SameCo -16.656× Indicator +5.917×ACrossS -
40.814×AUnifEdgeLenS+46.72×ASubSetSeptS -299.51
Medium level’s function:
M_Und6 = 8.751×NC +30.577×ANAUW-18.646 ×ANMUW +49.963×ANAssoc +39.266×ANAgg
+21.645×MaxHAgg +278.040×ANGen-45.885×NGenH+26.458×NOS
+41.5×WMBO+13.392×ANRM-9.37×ANDM+22.931× ANCM-1.772×TotEdgeLen
+8.234×MaxLen+0. 406×TotBends -19.706×MaxBends-29.636 ×Orthogonal
+64.793× Join+321.403×Center +17.864×Below-196.469×SameCo-19.585× Indicator
+4.656×ACrossS -33.398×AUnifEdgeLenS+48.055×ASubSetSeptS-298.65
Easy level’s function:
E_Und6 = 7.794×NC +32.889×ANAUW-16.3 ×ANMUW +43.461×ANAssoc +40.142×ANAgg
+22.44×MaxHAgg +250.484×ANGen-43.535×NGenH+24.18×NOS
+35.474×WMBO+10.47×ANRM-10.36×ANDM+23.712× ANCM-1.276×TotEdgeLen
+5.865×MaxLen-0.376×TotBends-13.199×MaxBends-20.713 ×Orthogonal
+38.764× Join+282.232×Center +33.707×Below-164.092×SameCo-20.148× Indicator
+5.226×ACrossS -32.615×AUnifEdgeLenS+45.764×ASubSetSeptS-264.343

Table 3.29: A modifiability model: DiscMod1.
Difficult level’s function:
 D_Mod1 =0.936×NC +6.417×ANAUW -6.512×ANAW -13.391 ×ANMUW
+15.359×ANMW +4.584×ANAssoc-30.105×ANAgg+3.528×NAggH+9.824×MaxHAgg
+49.941×ANGen-2.509×NGenH-4.886×MaxDIT+2.983×NOS+5.865×WMBO
+3.446×ANRM + 0.872×ANDM+0.034× ANCM -38.307
Medium level’s function:
M_Mod1 =0.915×NC +6.706×ANAUW -4.018×ANAW -11.837 ×ANMUW
+12.444×ANMW +5.307×ANAssoc-32.341×ANAgg+3.695×NAggH+11.507×MaxHAgg
+71.485×ANGen-8.45×NGenH-5.794×MaxDIT+4.199×NOS+7.225×WMBO
+2.912×ANRM + 1.479×ANDM+1.56× ANCM -38.126
Easy level’s function:
E_Mod1 =0.771×NC +8.412×ANAUW -4.158×ANAW -2.064 ×ANMUW
+4.125×ANMW +5.296×ANAssoc-20.626×ANAgg+2.914×NAggH+7.796×MaxHAgg
+48.234×ANGen-5.254×NGenH-6.356×MaxDIT+4.254×NOS+3.991×WMBO
+2546×ANRM + 1.459×ANDM+1.781× ANCM -37.654

Table 3.30: A modifiability model: DiscMod2.
Difficult level’s function
 D_Mod2 =0.931×NC +5.532×ANAUW+0.474×ANMUW+3.659×ANAssoc
-1.594×ANAgg+5.579×MaxHAgg+13.127×ANGen-0.223×NGenH+4.035×NOS
+3.63×WMBO+2.954×ANRM + 0.981×ANDM+1.497× ANCM -33.578
Medium level’s function:
M_Mod2 =0.926×NC +5.889×ANAUW-0.608×ANMUW+3.879×ANAssoc
-2.547×ANAgg+7.263×MaxHAgg+34.367×ANGen-6.212×NGenH+5.084×NOS
+4.621×WMBO+2.474×ANRM + 1.492×ANDM+3.003× ANCM -33.504
Easy level’s function:
E_Mod2 =0.8×NC +7.342×ANAUW+1.404×ANMUW+3.738×ANAssoc
+2.731×ANAgg+4.655×MaxHAgg+14.421×ANGen-3.363×NGenH+4.522×NOS
+1.847×WMBO+2.459×ANRM + 1.281×ANDM+3.058× ANCM -32.828

54

Table 3.31: A modifiability model: DiscMod3.
Difficult level’s function:
 D_Mod3 = -16.514×UnifEdgeLen +0.787×TotEdgeLen +17.637×MaxLen +80.527
×UnifBends -3.236×TotBends -25.927×MaxBends +18.89×Orthogonal +67.151× Join
+116.325×Center -30.324×Below -54.141×SameCo +19.317× Indicator +5.746×ACrossS
+36.236×MaxEdgeLenS -82.177×AUnifEdgeLenS+35.994×ASubSetSeptS -198.841
Medium level’s function:
M_Mod3 = -15.089×UnifEdgeLen +0.946×TotEdgeLen +15.915×MaxLen +82.853
×UnifBends -4.014×TotBends -24.72×MaxBends +22.559×Orthogonal +62.255× Join
+101.355×Center -26.496×Below -49.053×SameCo +20.02× Indicator +5.142×ACrossS
+36.444×MaxEdgeLenS -77.607×AUnifEdgeLenS+37.029×ASubSetSeptS -188.184
Easy level’s function:
E_Mod3 = -14.734×UnifEdgeLen +0.8×TotEdgeLen +15.535×MaxLen +67.992
×UnifBends -3.52×TotBends -20.851×MaxBends +18.654×Orthogonal +70.676× Join
+105.091×Center -19.777×Below -53.195×SameCo +15.798× Indicator +4.628×ACrossS
+33.195×MaxEdgeLenS -70.249×AUnifEdgeLenS+33.328×ASubSetSeptS -172.95

Table 3.32: A modifiability model: DiscMod4.
Difficult level’s function:
 D_Mod4 = 0.415×TotEdgeLen +0.209×MaxLen -1.114×TotBends +0.297×MaxBends
+6.775×Orthogonal +30.481× Join +63.164×Center +3.844×Below -25.455×SameCo
-0.132× Indicator +1.091×ACrossS -3.555×AUnifEdgeLenS+7.394×ASubSetSeptS -56.381
Medium level’s function:
M_Mod4 = 0.527×TotEdgeLen +0.07×MaxLen -1.69×TotBends +1.363×MaxBends
+13.124×Orthogonal +24.952× Join +46.278×Center +8.199×Below -19.295×SameCo
+0.402× Indicator +0.509×ACrossS +0.631×AUnifEdgeLenS+7.472×ASubSetSeptS -46.955

Easy level’s function:
E_Mod4 = 0.476×TotEdgeLen -0.008×MaxLen -1.577×TotBends +1.248×MaxBends
+7.699×Orthogonal +31.106× Join +51.318×Center +9.607×Below -21.616×SameCo
-1.211× Indicator +0.484×ACrossS +0.682×AUnifEdgeLenS+6.806×ASubSetSeptS -46.832

Table 3.33: A modifiability model: DiscMod5.
Difficult level’s function:
 D_Mod5 = 11.185×NC +31.694×ANAUW -40.408×ANAW +15.273 ×ANMUW-16.367
×ANMW +68.89×ANAssoc-7.508×ANAgg -3.385×NAggH+29.323×MaxHAgg
+309.818×ANGen -30.092×NGenH-36.828×MaxDIT+8.236×NOS+15.187×WMBO
+3.894×ANRM - 1.689×ANDM+0.493× ANCM-13.395×UnifEdgeLen
-1.692×TotEdgeLen +22.71×MaxLen -16.394×UnifBends -1.895×TotBends -10.497×MaxBends
+16.203×Orthogonal +73.031× Join +152.272×Center +117.071×Below -129.3×SameCo -
43.527× Indicator -1.045×ACrossS -240.208
Medium level’s function:
M_Mod5 = 12.993×NC +32.339×ANAUW -35.826×ANAW +26.089 ×ANMUW-29.117
×ANMW +78.004×ANAssoc+7.668×ANAgg -2.917×NAggH+31.583×MaxHAgg
+376.347×ANGen -45.025×NGenH-42.177×MaxDIT+10.858×NOS+13.42×WMBO
+2.068×ANRM +1.308×ANDM-0.491× ANCM-9.954×UnifEdgeLen
-2.179×TotEdgeLen +20.645×MaxLen -25.558×UnifBends -2.154×TotBends -0.199×MaxBends
+5.862×Orthogonal +67.489× Join +111.721×Center +138.375×Below -103.181×SameCo -
47.109× Indicator -1.810×ACrossS -237.167
Easy level’s function:
E_Mod5 = 11.121×NC +53.048×ANAUW +10.32×ANAW +131.102 ×ANMUW-138.881
×ANMW +76.334×ANAssoc+85.145×ANAgg -5.656×NAggH+18.487×MaxHAgg
+319.414×ANGen -31.547×NGenH-74.012×MaxDIT+9.892×NOS+3.491×WMBO
-11.640×ANRM -2.510×ANDM+6.841× ANCM-13.183×UnifEdgeLen
-0.336×TotEdgeLen +19.309×MaxLen -12.345×UnifBends -5.226×TotBends -12.506×MaxBends
+4.525×Orthogonal +67.265× Join +119.255×Center +230.358×Below -110.516×SameCo -
56.388× Indicator -0.072×ACrossS -234.157

55

Table 3.34: A modifiability model: DiscMod6.
Difficult level’s function:
 D_Mod6 = 4.558×NC +44.64×ANAUW -12.658 ×ANMUW +36.519×ANAssoc +84.392×ANAgg
+14.676×MaxHAgg +160.953×ANGen -27.629×NGenH+20.07×NOS+26.06×WMBO
+4.358×ANRM-17.656×ANDM+29.333× ANCM+0.063×TotEdgeLen+0.632×MaxLen
-1.697×TotBends-14.862×MaxBends-8.52 ×Orthogonal +13.688× Join+274.625×Center
+68.509×Below-149.978×SameCo-28.865× Indicator +7.87×ACrossS -
35.531×AUnifEdgeLenS+47.506×ASubSetSeptS -262.591
Medium level’s function:
M_Mod6 = 4.8×NC +43.886×ANAUW -12.905 ×ANMUW +37.729×ANAssoc +78.186×ANAgg
+17.823×MaxHAgg +184.161×ANGen -35.698×NGenH+21.059×NOS+24.932×WMBO
+5.051×ANRM-14.612×ANDM+29.481× ANCM+0.063×TotEdgeLen+0.548×MaxLen
-2.119×TotBends-11.217×MaxBends-4.677 ×Orthogonal +4.203× Join+250.427×Center
+72.169×Below-133.22×SameCo-28.156× Indicator +6.541×ACrossS -
29.219×AUnifEdgeLenS+47.698×ASubSetSeptS -256.186
Easy level’s function:
E_Mod6 = 2.269×NC +55.912×ANAUW -11.21 ×ANMUW +32.305×ANAssoc +126.701×ANAgg
+10.219×MaxHAgg +137.396×ANGen-26.621×NGenH+19.44×NOS+20.185×WMBO
+0.503×ANRM-19.566×ANDM+35.365× ANCM+1.231×TotEdgeLen-3.443×MaxLen
-3.205×TotBends-17.48×MaxBends-5.271 ×Orthogonal +9.044× Join+279.994×Center
+93.09×Below-140.87×SameCo-35.707× Indicator +8.889×ACrossS -
35.262×AUnifEdgeLenS+53.535×ASubSetSeptS -241.537

Table 3.35: A maintainability model: DiscMain1.
Difficult level’s function:
 D_Main1 =1.013×NC +5.546×ANAUW -0.595×ANAW -11.506 ×ANMUW
+12.098×ANMW +6.303×ANAssoc-29.149×ANAgg+3.969×NAggH+10.753×MaxHAgg
+57.695×ANGen-3.788×NGenH-5.46×MaxDIT+3.66×NOS+7.595×WMBO
+3.577×ANRM + 1.241×ANDM+1.213× ANCM -45.413
Medium level’s function:
M_Main1 =0.769×NC +6.091×ANAUW +2.742×ANAW -10.675 ×ANMUW
+10.264×ANMW +7.383×ANAssoc-42.592×ANAgg+5.481×NAggH+12.83×MaxHAgg
+82.179×ANGen-8.622×NGenH-7.772×MaxDIT+4.524×NOS+10.134×WMBO
+2.949×ANRM +2.08×ANDM+2.232× ANCM -44.466
Easy level’s function:
E_Main1 =0.73×NC +7.787×ANAUW -3.797×ANAW -6.797 ×ANMUW
+8.386×ANMW +5.439×ANAssoc-31.11×ANAgg+3.88×NAggH+9.639×MaxHAgg
+60.072×ANGen-6.206×NGenH-6.752×MaxDIT+4.065×NOS+5.965×WMBO
+2.658×ANRM +1.575×ANDM+1.439× ANCM -37.02

Table 3.36: A maintainability model: DiscMain2.
Difficult level’s function
 D_Main2 =1.086×NC +4.959×ANAUW -0.218×ANMUW+4.454×ANAssoc
+1.927×ANAgg+6.263×MaxHAgg+19.706×ANGen-0.757×NGenH+4.347×NOS
+4.297×WMBO+3.2×ANRM + 1.036×ANDM+2.036× ANCM -35.464

Medium level’s function:
M_Main2 =0.915×NC +5.575×ANAUW -0.896×ANMUW+4.391×ANAssoc
-0.546×ANAgg+7.157×MaxHAgg +34.317×ANGen -4.807×NGenH+5.061×NOS
+5.235×WMBO+2.541×ANRM + 1.599×ANDM+3.211× ANCM -35.387
Easy level’s function:
E_Main2=0.816×NC +6.681×ANAUW +0.88×ANMUW+3.568×ANAssoc
-0.413×ANAgg+5.278×MaxHAgg +16.703×ANGen -2.912×NGenH+4.432×NOS
+2.801×WMBO+2.526×ANRM + 1.246×ANDM+2.506× ANCM -30.679

56

Table 3.37: A maintainability model: DiscMain3.
Difficult level’s function:
 D_Main3 = -17.458×UnifEdgeLen +1.025×TotEdgeLen +18.495×MaxLen +78.769
×UnifBends -3.743×TotBends -24.977×MaxBends +18.767×Orthogonal +75.598× Join
+119.119×Center -29.647×Below -60.318×SameCo +17.971× Indicator +5.845×ACrossS
+36.618×MaxEdgeLenS -83.08×AUnifEdgeLenS+37.491×ASubSetSeptS -206.491
Medium level’s function:
M_Main3 =-15.951×UnifEdgeLen +1.055×TotEdgeLen +17.021×MaxLen +78.398
×UnifBends -4.216×TotBends -23.114×MaxBends +21.388×Orthogonal +71.173× Join
+107.553×Center -25.463×Below -56.67×SameCo +18.81× Indicator +5.138×ACrossS
+36.786×MaxEdgeLenS -78.122×AUnifEdgeLenS+38.74×ASubSetSeptS -197.663
Easy level’s function:
E_Main3 =-15.455×UnifEdgeLen +0.949×TotEdgeLen +16.303×MaxLen +69.888
×UnifBends -3.859×TotBends -21.115×MaxBends +19.163×Orthogonal +74.183× Join
+107.345×Center -21.116×Below -56.606×SameCo +16.028× Indicator +4.819×ACrossS
+34.244×MaxEdgeLenS -72.769×AUnifEdgeLenS+35.229×ASubSetSeptS -179.291

Table 3.38: A maintainability model: DiscMain4.
Difficult level’s function:
 D_Main4 = 0.547×TotEdgeLen -0.041×MaxLen -1.504×TotBends +1.405×MaxBends
+9.896×Orthogonal +25.849× Join +49.546×Center +4.916×Below -18.757×SameCo
+0.087× Indicator +0.892×ACrossS -2.332×AUnifEdgeLenS+7.441×ASubSetSeptS -50.774
Medium level’s function:
M_Main4 = 0.57×TotEdgeLen +0.113×MaxLen -1.872×TotBends +1.83×MaxBends
+14.863×Orthogonal +22.771× Join +40.867×Center +9.179×Below -17.303×SameCo
+0.697× Indicator +0.329×ACrossS +1.823×AUnifEdgeLenS+7.857×ASubSetSeptS -47.165

Easy level’s function:
E_Main4 = 0.526×TotEdgeLen -0.118×MaxLen -1.804×TotBends +1.551×MaxBends
+11.645×Orthogonal +27.694× Join +44.047×Center +10.858×Below -18.717×SameCo
-0.659× Indicator +0.308×ACrossS +2.074×AUnifEdgeLenS+6.717×ASubSetSeptS -46.709

Table 3.39: A maintainability model: DiscMain5.
Difficult level’s function
 D_Main5 =21.999×NC +9.409×ANAUW -337.633×ANAW -209.383× ANMUW+250.244
×ANMW +114.890×ANAssoc -47.616×ANAgg -4.729×NAggH+26.855×MaxHAgg
+486.436×ANGen-17.264×NGenH+31.865×MaxDIT-6.643×NOS+18.310×WMBO
+7.418×ANRM+3.919×ANDM-71.346× ANCM-22.392×UnifEdgeLen -5.158×TotEdgeLen
+55.315×MaxLen +98.768×UnifBends -1.571×TotBends -58.207×MaxBends -53.670
×Orthogonal +266.690× Join+92.735×Center -42.126×Below -103.882×SameCo -69.079
× Indicator +8.137×ACrossS +52.070×MaxEdgeLenS-175.310×AUnifEdgeLenS-417.689

Medium level’s function:
M_Main5 = 23.624×NC +6.824×ANAUW -300.362×ANAW-197.772 ×ANMUW+232.154
×ANMW +126.813×ANAssoc-75.271×ANAgg -0.923×NAggH+34.966×MaxHAgg
+569.702×ANGen-39.013×NGenH+25.194×MaxDIT-0.484×NOS+25.604×WMBO
+10.902×ANRM+8.858×ANDM-65.508× ANCM-16.413×UnifEdgeLen-6.152×TotEdgeLen
+50.591×MaxLen +62.489×UnifBends -0.475×TotBends -37.859×MaxBends-57.327
×Orthogonal +237.782× Join+70.912×Center -25.845×Below -90.892×SameCo -69.520
× Indicator +4.502×ACrossS +44.409×MaxEdgeLenS-146.909×AUnifEdgeLenS-387.102
Easy level’s function:
E_Main5 = 19.417×NC +27.125×ANAUW-273.173×ANAW-122.521 ×ANMUW+152.081
×ANMW +104.491×ANAssoc-17.669×ANAgg -3.027×NAggH+23.832×MaxHAgg
+465.745×ANGen-24.265×NGenH+3.289×MaxDIT-1.895×NOS+10.106×WMBO
-2.584×ANRM+1.457×ANDM-55.750× ANCM-19.270×UnifEdgeLen-4.016×TotEdgeLen
+46.296×MaxLen +91.115×UnifBends-2.476×TotBends-52.539×MaxBends-49.062
×Orthogonal +190.167× Join+63.376×Center +38.545×Below -70.107×SameCo -67.107
× Indicator +9.021×ACrossS +41.953×MaxEdgeLenS-156.174×AUnifEdgeLenS-342.923

57

Table 3.40: A maintainability model: DiscMain6.
Difficult level’s function:
 D_Main6 = 9.942×NC +24.464×ANAUW -14.603 ×ANMUW +55.289×ANAssoc +20.179×ANAgg
+25.593×MaxHAgg +259.156×ANGen-42.469×NGenH+22.729×NOS+38.076×WMBO
+12.444×ANRM-7.55×ANDM+17.413× ANCM-1.997×TotEdgeLen+8.773×MaxLen
-0.228×TotBends-7.686×MaxBends-15.02 ×Orthogonal +31.467× Join+230.229×Center
+35.345×Below-143.128×SameCo-23.218× Indicator +3.596×ACrossS -
27.3×AUnifEdgeLenS+36.159×ASubSetSeptS -266.059
Medium level’s function:
M_Main6 = 10.426×NC +23.538×ANAUW -14.385 ×ANMUW +59.105×ANAssoc +5.443×ANAgg
+27.302×MaxHAgg +282.659×ANGen-47.683×NGenH+23.694×NOS+40.553×WMBO
+13.418×ANRM-3.571×ANDM+16.04× ANCM-2.201×TotEdgeLen+9.753×MaxLen
-0.203×TotBends-7.802×MaxBends-13.873 ×Orthogonal +27.558× Join+216.64×Center
+33.859×Below-132.892×SameCo-23.541× Indicator +1.978×ACrossS -
21.759×AUnifEdgeLenS+34.256×ASubSetSeptS -265.501
Easy level’s function:
E_Main6 = 6.694×NC +35.042×ANAUW -14.038 ×ANMUW +42.118×ANAssoc +41.682×ANAgg
+22.757×MaxHAgg +215.83×ANGen-40.804×NGenH+22.118×NOS+29.278×WMBO
+8.382×ANRM-11.18×ANDM+24.813× ANCM-0.84×TotEdgeLen+3.719×MaxLen
-1.178×TotBends-7.769×MaxBends-5.303 ×Orthogonal +3.107× Join+233.770×Center
+55.251×Below-131.067×SameCo-22.889× Indicator +4.93×ACrossS-
25.762×AUnifEdgeLenS+42.96×ASubSetSeptS -248.146

3.3.2.3 Decision Tree

The understandability, modifiability and maintainability prediction models

obtained by applying Decision tree are shown in Figure 3.5 - Figure 3.13. In order to

classify a new software design model utilizing the decision tree, the new software design

model is classified by starting at the root node of the desired tree, testing the attribute

specified by this node (in this work attribute is metric), then moving down the tree

branch corresponding to the value of the attribute. This process is then repeated for the

subtree root at the new node until leaf node is reached. The leaf node will provide the

predicted class (in this work, class is understandability level or modifiability level or

maintainability level). The decision tree has a process of selecting metrics that are useful

for classifying classes. So, after constructing the prediction model, only useful metrics

are appeared in the prediction model.

58

NGenH <=0 >0

ANRM >2 <=2

NGenH
>1 <=1

ANGen
>0.467 <=0.467

Und =0 ANCM Und=2 Und=1
<=0.5 >0.5

Und=2

ANRM
> 0.667 <=0.667

ANMUW
>3

 Und=1 Und=2

<=3

Und=0

MaxHAgg
<=1 >1

Und=1

Und=1

NC
> 18 <=18

Und=0

Und (Understandability level)
 0: Difficult
 1: Medium
 2: Easy

Figure 3.5: Understandability model: DecUnd1, DecUnd2.

TotBends >6 <=6

Center <=0.667 >0.667

<=0.625 >0.625

Und =1

 Und=2

>22 <=22

Und=1

>7.2 <=7.2

Und=0 Und=1 Orthogonal

MaxEdgeLen

TotEdgeLen

Und=2

Figure 3.6: Understandability model: DecUnd3, DecUnd4.

>6 <=6

<=0.667 >0.667

<=0.286 >0.286

Und =2 ANAgg

 Und=2

>0.111 <=0.111

Und=2

TotBends

>7.2

Und=1 Und=0

<=7.2

ANAssoc

MaxEdgeLen
Center

Und=1

Figure 3.7: Understandability model: DecUnd5, DecUnd6.

59

<=24.8 >24.8

<=1.667 <=1.667

<=1 >1

Mod =1 Below Mod=2
>0.917 <=0.917

Indicator
>0.286 <=0.286

Mod=1

Mod=1

TotEdgeLen

>0.75

Mod=2 Mod=1

<=0.75
AvgSubsetSepS

MaxBends

Join

Below
>0.5 <=0.5

Mod=1
<=0.857 >0.857

Mod =0

Orthogonal

Mod =1

Figure 3.9: Modifiability model: DecMod3, DecMod4.

NGenH >2 <=2

MaxHAgg >1 <=1

ANRM
>0.2 <=0.2

ANMUW
>3.667 <=3.667

Mod =2 ANGen Mod=0 Mod=1
>0.222 <=0.222

Mod=2

NC
> 10 <=10 Mod=1

Mod=1

Mod (Modifiability level)
 0: Difficult
 1: Medium
 2: Easy

Figure 3.8: Modifiability model: DecMod1, DecMod2.

ANDM
>=0.75

 Mod=1 Mod=0

< 0.75

>2 <=2

<=0.667 >0.667

<=24.8 >24.8

Mod =2 ANRM

 Mod=1

<=0 >0

NGenH

Join

Mod=0

TotEdgeLen

>0.286 <=0.286

Mod=2 Mod=1

Indicator

Figure 3.10: Modifiability model: DecMod5, DecMod6.

ANDM
>=0.75

 Mod=0

< 0.75

60

<=24.8 >24.8

<=1.667 <=1.667

<=1 >1

Main =1 Below Main=2
<=0.917 >0.917

Indicator
>0.286 <=0.286

Main=1

Main=1

TotEdgeLen

>1.333

Main=2 Main=0

<=1.333
AvgSubsetSepS

MaxBends

 Main=0

Indicator
>0.917 <=0.917

Main=1

AvgSubsetSepS

Figure 3.12: Maintainability model: DecMain3, DecMain4.

>2 <=2

>24.8 <=24.8

>0 <=0
NGenH

NGenH

Main=2

TotEdgeLen

>2.25

Main=1 Main=2

ANDM

<=1.333 >1.333

Main=0
<=2.25 >1.25

ANMUW
<=1.25

<=1
MaxHAggMain=0

Main=1 Main=0

WMBO
<=1.833

Main=1
>1.833

AvgSubsetSepS

>1

Figure 3.13: Maintainability model: DecMain5, DecMain6.

ANDM
>=0.75

 Main=1 Main=0

< 0.75

NGenH >2 <=2

ANDM >2.667 <=2.667

MaxHAg
>1 <=1

ANDM

 Main=1

<=2 >2

Main=2 Main=0

ANAgg
> 0.458 <=0.458

Main=1
ANAUW

>2.222 <=2.222

ANAUW
>2 <=2

Main=1 Main=2

ANAsoc
> 0.8 <=0.8

Main=1

Main=0

ANMUW
> 2.462 <=2.462

Main=1

Main (Maintainability level)
 0: Difficult
 1: Medium
 2: Easy

Figure 3.11: Maintainability model: DecMain1, DecMain2.

ANDM
>=0.75

 Main=1 Main=0

< 0.75

61

3.3.2.4 Multilayer Perceptron Neural Network

 Eighteen prediction models are constructed applying MLP neural network as

already mentioned in section 3.3.2. MLP neural network does not has a process of

selecting metrics during constructing the prediction model. Therefore, the obtained

prediction model still contains all metrics used to construct it. These metrics are used as

input values in the input layer. Each prediction model also contains a set of connection

weights and other parameters of neural network. The prediction model in a form of

neural network can be viewed like a black box. In order to classify understandability

level, modifiability level or maintainability level of a new software design model, all

metrics used in each prediction model are measured from the software design model.

They are used to be input values of the prediction model. Then the prediction model

provides the output as the predicted level of understandability, modifiability or

maintainability.

3.3.3 Comparison between Prediction Models Obtained by Applying
 Discriminant Analysis, Decision Tree and MLP Neural Network

There is a number of different approaches which can be used for estimating the

accuracy of a prediction model, for example, using a hold-out sample, bootstrapping, or

leave-one-out cross-validation. It has been recommended that in studies where sample

sizes are less than 100, as in this case, a leave-one-out approach provides reliable

estimates of accuracy [39]. Therefore this approach is applied for accuracy estimation.

Leave-one-out cross validation is simply n-fold cross validation, where n is a number of

instances in the dataset. Each sample in turn is left out, and the learning scheme is

trained on all the remaining instances. It is judged by its correctness on the remaining

instance, success or failure. The results of all n judgments, one for each member of the

dataset, are averaged, and that average represents the final error estimate.

Table 3.41 – Table 3.43 summarize each prediction model in terms of the

metrics used to construct each model and the model accuracy.

Table 3.41: Result summation of understandability models.
Metric Fit Validate

Structural complexity
metrics

Aesthetic metrics Structural complexity
and aesthetic metrics

Miss rate (%) Miss rate (%)
Model

All
metrics

Discard
correlated

metrics

All
metrics

Discard
correlated

metrics

All
metrics

Discard
correlated

metrics

Number
of

metrics

Accuracy
rate (%)

Type A Type B Sum

Accuracy
rate (%)

Type A Type B Sum

DiscUnd1 X 17 85.0 15.0 0.0 15.0 70.0 22.5 7.5 30.0

DecUnd1 X 7 95.0 5.0 0.0 5.0 72.5 22.5 5.0 27.5

MLPUnd1 X 17 100.0 0.0 0.0 0.0 82.5 15.0 2.5 17.5

DiscUnd2 X 13 85.0 15.0 0.0 15.0 67.5 25.0 7.5 32.5

DecUnd2 X 7 95.0 5.0 0.0 5.0 72.5 22.5 5.0 27.5

MLPUnd2 X 13 97.5 2.5 0.0 2.5 75.0 22.5 2.5 25.0

DiscUnd3 X 16 92.5 5.0 2.5 7.5 70.0 22.5 7.5 30.0

DecUnd3 X 5 95.0 5.0 0.0 5.0 75.0 17.5 7.5 25.0

MLPUnd3 X 16 97.5 2.5 0.0 2.5 80.0 17.5 2.5 20.0

DiscUnd4 X 13 90.0 7.5 2.5 10.0 72.5 22.5 5.0 27.5

DecUnd4 X 5 95.0 5.0 0.0 5.0 75.0 17.5 7.5 25.0

MLPUnd4 X 13 97.5 2.5 0.0 2.5 72.5 27.5 0.0 27.5

DiscUnd5 X 33 97.5 2.5 0.0 2.5 72.5 22.5 5.0 27.5

DecUnd5 X 5 90.0 7.5 2.5 10.0 70.0 27.5 2.5 30.0

MLPUnd5 X 33 100.0 0.0 0.0 0.0 82.5 17.5 0.0 17.5

DiscUnd6 X 27 95.0 5.0 0.0 5.0 72.5 27.5 0.0 27.5

DecUnd6 X 5 90.0 7.5 2.5 10.0 75.0 17.5 7.5 25.0

MLPUnd6 X 27 100.0 0.0 0.0 0.0 80.0 17.5 2.5 20.0

62

chula
Text Box
62

Table 3.42: Result summation of modifiability models.
Metric Fit Validate

Structural complexity
metrics

Aesthetic metrics Structural complexity
and aesthetic metrics

Miss rate (%) Miss rate(%)
Model

All
metrics

Discard
correlated

metrics

All
metrics

Discard
correlated

metrics

All
metrics

Discard
correlated

metrics

Number
of

metrics

Accuracy
rate (%)

Type A Type B Sum

Accuracy
rate (%)

Type A Type B Sum

DiscMod1 X 17 90.0 7.5 2.5 10.0 67.5 25.0 7.5 32.5

DecMod1 X 7 95.0 5.0 0.0 5.0 80.0 20.0 0.0 20.0

MLPMod1 X 17 97.5 2.5 0.0 2.5 80.0 20.0 0.0 20.0

DiscMod2 X 13 92.5 5.0 2.5 7.5 75.0 17.5 7.5 25.0

DecMod2 X 7 95.0 5.0 0.0 5.0 80.0 20.0 0.0 20.0

MLPMod2 X 13 100.0 0.0 0.0 0.0 82.5 17.5 0.0 17.5

DiscMod3 X 16 87.5 12.5 0.0 12.5 70.0 25.0 5.0 30.0

DecMod3 X 7 97.5 2.5 0.0 2.5 72.5 22.5 5.0 27.5

MLPMod3 X 16 100.0 0.0 0.0 0.0 80.0 15.0 5.0 20.0

DiscMod4 X 13 87.5 10.0 2.5 12.5 67.5 25.0 7.5 32.5

DecMod4 X 7 97.5 2.5 0.0 2.5 72.5 22.5 5.0 27.5

MLPMod4 X 13 100.0 0.0 0.0 0.0 80.0 15.0 5.0 20.0

DiscMod5 X 30 97.5 2.5 0.0 2.5 72.5 25.0 2.5 27.5

DecMod5 X 6 92.5 5.0 2.5 7.5 70.0 25.0 5.0 30.0

MLPMod5 X 33 97.5 0.0 2.5 2.5 80.0 20.0 0.0 20.0

DiscMod6 X 27 97.5 2.5 0.0 2.5 77.5 15.0 7.5 22.5

DecMod6 X 6 92.5 5.0 2.5 7.5 72.5 20.0 7.5 27.5

MLPMod6 X 27 97.5 2.5 0.0 2.5 80.0 17.5 2.5 20.0

63

chula
Text Box
63

Table 3.43: Result summation of maintainability models.
Metric Fit Validate

Structural complexity
metrics

Aesthetic metrics Structural complexity
and aesthetic metrics

Miss rate (%) Miss rate (%)
Model

All
metrics

Discard
correlated

metrics

All
metrics

Discard
correlated

metrics

All
metrics

Discard
correlated

metrics

Number
of

metrics

Accuracy
rate (%)

Type A Type B Sum

Accuracy
rate (%)

Type A Type B Sum

DiscMain1 X 17 87.5 10.0 2.5 12.5 70.0 22.5 7.5 30.0

DecMain1 X 7 97.5 2.5 0.0 2.5 77.5 15.0 7.5 22.5

MLPMain1 X 17 97.5 0.0 2.5 2.5 82.5 15.0 2.5 17.5

DiscMain2 X 13 87.5 10.0 2.5 12.5 72.5 20.0 7.5 27.5

DecMain2 X 7 97.5 2.5 0.0 2.5 75.0 20.0 5.0 25.0

MLPMain2 X 13 100.0 0.0 0.0 0.0 85.0 12.5 2.5 15.0
DiscMain3 X 16 85.0 12.5 2.5 15.0 70.0 25.0 5.0 30.0

DecMain3 X 5 97.5 2.5 0.0 2.5 77.5 17.5 5.0 22.5

MLPMain3 X 16 97.5 0.0 2.5 2.5 80.0 15.0 5.0 20.0

DiscMain4 X 13 85.0 12.5 2.5 15.0 72.5 20.0 7.5 27.5

DecMain4 X 5 97.5 2.5 0.0 2.5 80.0 15.0 5.0 20.0

MLPMain4 X 13 97.5 2.5 0.0 2.5 82.5 17.5 0.0 17.5

DiscMain5 X 32 97.5 2.5 0.0 2.5 77.5 17.5 5.0 22.5

DecMain5 X 7 97.5 2.5 0.0 2.5 80.0 12.5 7.5 20.0

MLPMain5 X 33 97.5 0.0 2.5 2.5 80.0 20.0 0.0 20.0

DiscMain6 X 27 95.0 5.0 0.0 5.0 75.0 20.0 5.0 25.0

DecMain6 X 7 97.5 2.5 0.0 2.5 75.0 17.5 7.5 25.0

MLPMain6 X 27 100.0 0.0 0.0 0.0 82.5 15.0 2.5 17.5

64

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
chula
Text Box
64

65

Table 3.41 - Table 3.43 show the result summation of all prediction models.

Model accuracy is presented in Fit column and Validate column. The result in Fit column

is captured from using the prediction models classify 40 software design models which

are used to construct the prediction models. The result in Validate column is captured

from leave-one-out cross-validation.

Percent of Type A error can be computed from the total number of cases that

meet the following conditions divided by the total number of cases.

- Case in group of 0 is classified into group of 1.

- Case in group of 1 is classified into group of 0.

- Case in group of 1 is classified into group of 2.

- Case in group of 2 is classified into group of 1.

Percent of Type B error can be computed from the total number of cases that

meet the following conditions divided by the total number of cases.

- Case in group of 0 is classified into group of 2.

- Case in group of 2 is classified into group of 0.

It is obvious that Type B error is more fatal than Type A error. For example a

case in group of 0 is classified into group of 2 means a software design model which is

difficult to understand/modify/maintain is predicted that it is easy to understand/modify

/maintain.

Prediction models obtained by applying Discriminant analysis, Decision tree and

MLP neural network can be compared as follows.

- Prediction model in a form of decision tree can obviously indicate that which

metrics can be good indicators of each quality. A metric placed in upper node

shows that it is better than other metrics placed in lower nodes for being

indicator. Prediction models presented in Figure 3.5 - Figure 3.13 show that

the best indicators for understandability are NGenH and TotBends. While

NGenH and TotEdgeLen are the best indicators for modifiability and

maintainability. For prediction models in a form of discriminant functions

presented in Table 3.23 - Table 3.40, we cannot conclude that which metrics

can be the best indicator of each quality. The classification function coefficient

of each metric cannot indicate that which metric is better because of

66

difference of metric unit. For finding better indicators, we have to normalize

value of each metric and reconstruct prediction models. Then, we can find

which metric is the best indicator by considering the most classification

function coefficient (not consider sign). Neural network does not provide any

information which can indicate that which metrics are better indicators for each

quality.

- Decision tree and Discriminant analysis have a process of selecting metrics

which are significant for classifying level of each quality. While MLP neural

network does not has this process during constructing prediction models.

Therefore, MLP neural network uses all metrics for constructing prediction

model without discarding any metrics. The experimental results show that the

number of metrics used in each prediction model obtained from Decision tree

is less than the number of metrics used in the prediction model constructed

from the same metric set applying Disciminant analysis and MLP neural

network. The number of metrics used in each prediction model is listed in

Table 3.41 – Table 3.43.

- Consider model accuracy presented in Table 3.41 – Table 3.43, the average

accuracy in Fit column and Validate column of prediction models obtained

from MLP neural network is higher than that of prediction models obtained

from Discriminant analysis and Decision tree.

- Concerns with the usage of prediction model, prediction model in a form of

decision tree can be used easily and manually. Prediction model in a form of

discriminant functions is not too difficult for calculating. While prediction model

in a form of neural network is very difficult for manually use because its

algorithm is very complex. However, this problem can be solved by

implementing a tool for utilizing the prediction model automatically.

3.3.4 Conclusion and Discussion

 The obtained prediction models can be concluded and discussed as follows:

- For the understandability prediction models obtained from Decision tree

presented in Figure 3.5 – Figure 3.7, we can find that DecUnd1 is similar to

67

DecUnd2, DecUnd3 is similar to DecUnd4, and DecUnd5 is similar to

DecUnd6. As already mentioned in section 3.3.2, DecUnd1 is constructed

from all structural complexity metrics. DecUnd2 is constructed from the same

metric set discarded correlated metrics. After finishing constructing both

prediction models, metrics appeared in decision trees of DecUnd1 and

DecUnd2 are similar. This result implies that correlated metrics are not

significant for classifying level of understandability. The similarity of DecUnd3

and DecUnd4, DecUnd5 and DecUnd6, DecMod1 and DecMod2, DecMod3

and DecMod4, DecMod5 and DecMod6, DecMain1 and DecMain2, DecMain3

and DecMain4, DecMain5 and DecMain6 can be described in the same way.

- Prediction models obtained from Decision tree show that the best indicators for

understandability are NGenH and TotBends. While NGenH and TotEdgeLen

are the best indicators for modifiability and maintainability. NGenH is a

structural complexity metric. It is the number of generalization hierarchies

which is one of inheritance metrics. The experimental result in [40] showed that

NGenH is the best indicator for predicting modifiability correctness for the

maintenance process. Another experimental result of the same researcher

group confirmed that NGenH is the good indicator for predicting modifiability

time [38]. Inheritance increases reuseability and improves similarity of

implementation. On the other hand, it also increases the complexity of a

software and the coupling between classes leading to the increasing of effort

put for maintenance. This result is supported in the following studies. An

experimental investigation found that making changes to a C++ program with

inheritance consumes more effort than a program without inheritance [41].

Another controlled experiment was conducted to establish the effects of

varying levels of inheritance on understandability and modifiability [23]. Result

of the experiment indicated that a software without inheritance was easier to

modify than a corresponding software containing three or five levels of

inheritance. It was also easier to understand a software without inheritance

than a corresponding version containing three levels of inheritance. TotBends

(the total number of bends) and TotEdgeLen (the total edge length) are

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Akiyama+T%22%5BAuthor%5D

68

aesthetic metrics. The result corresponds to their aesthetic criterion that is the

total number of bends and the total edge length should be minimized. It is

supported by experimental results presented in [27,36]. Both experimental

results showed that decreasing the number of edge bends and the total

number of edge length in a graph increases the understandability of the graph.

- Fit column of Table 3.41 – Table 3.43 show that the model accuracy of every

prediction model obtained from MLP neural network is greater than or equal to

that of prediction models obtained from Discriminant analysis and Decision

tree. The accuracy of each prediction model obtained from MLP neural

network is 97.5 or 100. The accuracy value of 97.5 means the 39 out of 40

samples are correctly classified. In other words, only 1 sample is incorrectly

classified. The reason may be that for constructing a prediction model using

MLP Neural Network, we can change some parameters in neural network, for

instance learning rate, the number of epochs and the number of nodes in

hidden layer. For the same set of samples, we can run neural network many

times with different parameters to find the best model which has the highest

accuracy.

- In case of automated utilizing the prediction models, the best prediction

models for understandability, modifiability and maintainability should be

MLPUnd1, MLPMod2 and MLPMain2 respectively. The reason is that these

prediction models use structural complexity metrics which can be measured

by an automated tool. While aesthetic metrics is very difficult for automated

measuring. Another reason is that these prediction models provide the most

model accuracy.

3.4 Threats to Validity

Following several empirical studies [17,18,33], this section discusses the various

issues that threaten the validity of the experiment.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10341207&query_hl=37&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bolton+SJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Anthony+DC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Perry+VH%22%5BAuthor%5D

69

3.4.1 Threats to Internal Validity

The internal validity is the degree of confidence in a cause-effect relationship

between factors of interest and the observed results.

- Differences among subjects. Each software design model was evaluated by

group of 3 subjects. Although the ability to understand and to modify the

software design with UML was not exactly equivalent among groups.

Differences among groups were reduced by assigning one A, one B+ and one

B students to each group.

- Knowledge of the universe of discourse among software design models.
Software design models were designed from different universe of discourse,

but they were simple enough to be easily understood by the subjects. So,

knowledge of the domain did not affect internal validity.

- Accuracy of subject responses. Subjects had medium experience in modeling

the software design with UML. Their responses to examination were

considered valid.

- Learning effects. Learning effect was little relevant because each subject

performed experimental task of only 2 software design models.

- Fatigue effects. Each subject performed experimental tasks of 2 software

design models with 20-minute break between them. The fatigue was little

relevant.

- Persistence effects. Subjects had never performed a similar experiment. So,

persistence effect was avoided.

- Other factors. Plagiarism and influence between subjects were controlled. Two

subjects who sat adjacently performed different examinations. The test was

controlled by 2 monitors. Subjects were asked to avoid talking to each other.

3.4.2 Threats to External Validity

External validity is the degree to which the research results can be generalized

to the population under study and to other research settings.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Citi+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Volberg+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bershadsky+AD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Denisenko+N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Geiger+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Conacci%2DSorrell+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Zhurinsky+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ben%2DZe%27ev+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Crone+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Christensen+O%22%5BAuthor%5D

70

- Materials and tasks used. Examination questions tried to capture

understandability and modifiability of software design models. All questions

were approved by experts. Class and sequence diagrams used in this work

represented real software, but the software were small and simple. The

software which had maximum number of classes contained only 36 classes.

This is a limitation of the study since it is not easy to find software design

models of real world software.

- Experimental Subject. To solve the problem of lacking expert participation,

students were used as experimental subjects. We are aware that more

experiments with experts should be carried out in order to be able to

generalize the results. Nevertheless, this experiment did not require high level

of industrial experience. Students are usually accepted as valid subjects

[17,18,33].

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Domotor+E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sipos+I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kittel+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Abbott+NJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Adam%2DVizi+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Dorovini%2DZis+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Huynh+HK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fiala+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Liu+QN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sayre+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Pop+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Brahmandam+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Graves+MC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Vinters+HV%22%5BAuthor%5D

CHAPTER IV

A NEW PROPOSED SET OF STRUCTURAL COMPLEXITY METRICS FOR
MAINTAINABILITY

Chapter III proposed constructing the maintainability prediction models by using

3 classification techniques. Independent variables or predictors are structural

complexity metrics and/or aesthetic metrics. Dependent variables are understandability,

modifiability and maintainability levels which are measured subjectively from the

experimental subjects. Therefore, this chapter proposes a new set of structural

complexity metrics to measured maintainability objectively in early phase of object-

oriented software life cycle.

 Objective measurement is the repetition of a unit amount that stays constant

and unchanging (within the allowable error) across the persons measured, across

different brands of instruments, and across instrument users [42].

There are two important things for software maintenance: in-depth

understanding the structure and behavior of the software, and the ability to make

changes easily. So, this chapter introduces a new set of structural complexity metrics for

understandability and modifiability as constituting the metrics for maintainability.

Programming is sometimes called the art. In this sense, programming may be viewed as

a technique completed with heuristics such as with the art [43]. It follows from this that

software metrics should consider heuristic properties. Accordingly, it is not reasonable

to measure the software product and process, which is actually a labor-intensive

industry, only by mathematical and logical metrics without considering the human

aspects. Therefore, the measurement of understandability and modifiability should be

considered in a heuristic way.

4.1 Metric Definition

Sheldon et al. proposed the metrics for maintainability of class inheritance

hierarchies in [43]. Their work focused on maintainability related to inheritance only. We

adapt their idea and extend their work by considering maintainability related to other

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fischer+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Wobben+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Marti+HH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Renz+D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Schaper+W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Flesher+JW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Horn+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lehner+AF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Flesher+JW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Horn+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lehner+AF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Furuse+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Itoh+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hirase+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Nagafuchi+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Yonemura+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Tsukita+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Tsukita+S%22%5BAuthor%5D

 72

relationships. This section begins with defining the new proposed metrics. Section 4.2

describes how to compute these metrics.

4.1.1 Metrics for Understandability

Metrics for understandability consist of 8 metrics for a class and 1 metric for a

software.
Metrics for understandability of a class
- UndGen (X) is the degree of understandability of class X related to

generalization.

- UndAgg(X) is the degree of understandability of class X related to aggregation.

- UndCom(X) is the degree of understandability of class X related to

composition.

- UndCAssoc(X) is the degree of understandability of class X related to common

association.

- UndAssocC (X) is the degree of understandability of class X related to

association class.

- UndDep(X) is the degree of understandability of class X related to

dependency.

- UndReal(X) is the degree of understandability of class X related to realization.

- Und Class(X) is the degree of understandability of class X.
Metric for understandability of a software
- AvgUndSys(S) is the average degree of understandability of software S.

4.1.2 Metrics for Modifiability

Metrics for modifiability consist of 8 metrics for a class and 1 metric for a

software.
Metrics for Modifiability of a Class
- ModGen (X) is the degree of modifiability of class X related to generalization.

- ModAgg(X) is the degree of modifiability of class X related to aggregation.

- ModCom(X) is the degree of modifiability of class X related to composition.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Gottardi+CJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Gumbiner+BM%22%5BAuthor%5D

 73

- ModCAssoc(X) is the degree of modifiability of class X related to common

association.

- ModAssocC (X) is the degree of modifiability of class X related to association

class.

- ModDep(X) is the degree of modifiability of class X related to dependency.

- ModReal(X) is the degree of modifiability of class X related to realization.

- Mod Class(X) is the degree of modifiability of class X.
Metric for Modifiability of a Software
- AvgModSys(S) is the average degree of modifiability of software S.

4.1.3 Terms and Functions

In order to compute metrics introduced in section 4.1.1 and 4.1.2, terms and

functions used to compute them are defined as follows.

Head and Tail Classes
For each relationship, let arrowhead of relationship line indicates the position of

each class. If relationship line points from class A to class B, then class B is called a

head class of class A and class A is called a tail class of class B.

Consider a hierarchy of i relationship related to class X, where i can be

Gen(Generalization), CAssoc(Common association), AssocC(Association class),

Agg(Aggregation), Com(Composition), Dep(Dependency) or Real (Realization).

- ImHeadi (X) is immediate head classes of class X related to class X by i

relationship.

- ImTaili (X) is immediate tail classes of class X related to class X by i

relationship.

- AllHeadi (X) is all head classes of class X related to class X by i relationship.

- AllTaili (X) is all tail classes of class X related to class X by i relationship.

For better understanding, please see examples of the usage of these metrics.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hamann+GF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Okada+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fitridge+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22del+Zoppo+GJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Haorah+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Knipe+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Gorantla+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Zheng+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Persidsky+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hassan+BA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bellen+HJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Heo+JH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Han+SW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lee+SK%22%5BAuthor%5D

 74

For Figure 4.1, ImHeadGen(X) = B,C. ImTailGen(X) = D,E. AllHeadGen(X) = A,B,C.

and AllTailGen(X) = D,E,F,G.

For Figure 4.2,

 ImTailAgg((AllHeadGen(X))) = ImTailAgg(A,B,C)

 = ImTailAgg(A) + ImTailAgg(B) + ImTailAgg(C)

 = {} +D,E + F,G

 = D,E,F,G

Class Complexity
C(X) is the complexity of class X. It is simply defined as follows [43].

C(X) = number of methods of class X + number of attributes of class X.

In case of many classes in parenthesis, the value of the complexity is sum of the

complexity of all classes. For example

 C(X,Y,Z) = C(X) + C(Y) + C(Z).

Dependency Weight Value of Relationships
Wi is dependency weight value of i relationship. The dependency between

classes is the main cause of the amount of the complexity on understanding and

modifying the relationships between the classes. Different kinds of relationship influence

the dependency between classes in different degrees. So, dependency weight value of

each relationship should be defined in order to indicate its dependency degree. This

thesis considers 7 kinds of relationship consisting of dependency, common association,

association class, aggregation, composition, generalization and realization. Table 4.1

Figure 4.1: A hierarchy of generalization
related to class X.

A

B C

X

D E

F G

Figure 4.2: A hierarchy of generalization
and aggregation related to class X.

A

X

D E

B

F G

C

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9247194&query_hl=40&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9247194&query_hl=40&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Huber+JD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hau+VS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Borg+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Campos+CR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Egleton+RD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Davis+TP%22%5BAuthor%5D

 75

shows dependency weight value of relationships proposed by Kang et al. [44].

Relationships in this table are sorted from weak to strong dependency degree.

Dependency is the most common relationship. A dependency shows that there

is dependency between two classes without any explanations and restrictions, so WDep

should be the minimum. Common association denotes the relationship between

instances of classes; it cannot be weaker than dependency relationship. Association

class adds restrictions to association, it may be more complex and the dependency

between classes with this relationship may be stronger than between classes with

common association. Aggregation is a specific association, and composition is a

specific aggregation. For example, A is a composite of B; when A is destroyed, B should

be destroyed or given to another object. Aggregation does not has this restriction, but it

is more restrict than dependency relationship, as one object cannot aggregate itself

directly or indirectly. In generalization, subclasses inherited all characteristics of the

parent classes, and composition classes can only access the public elements of the

nested classes. When parent classes are concrete, subclass can add new elements

and override inherited operations. When parent classes are abstract, subclasses should

implement the virtual operations of the parent classes or they cannot have any instances.

Considering realization, when realizing a class (usually interface), an implementation

class must realize all the operations of the interface. So realization has the highest

weight value.

Table 4.1: Dependency weight value of relationships.
No. Relationship Weight

1 Dependency WDep

2 Common association WCAssoc

3 Association class WAssocC

4 Aggregation WAgg

5 Composition WCom

6 Generalization WGen

7 Realization WReal

 In [44], all weight values are summarized in the following form:

WDep <= WCAssoc <= WAssocC <= WCom (1)

WDep < WAgg < WCom < WGen < WReal (2)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ke+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Eisenhour+CM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bencherif+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lukas+RJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kovacic+P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kovacic+P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kovacic+P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Cooksy+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Cooksy+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Cooksy+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Krizbai+IA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bauer+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Amberger+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hennig+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Szabo+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fuchs+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bauer+HC%22%5BAuthor%5D

 76

Following [44], each relationship is given a weight value satisfying Equations (1)

and (2): WDep =1, WCAssoc = 2, WAssocC = 3, WAgg = 4,WCom = 5, WGen = 6, WReal = 7.

4.2. Metric Derivation

 This section describes derivation of all metrics defined in sections 4.1.1 and

4.1.2.

4.2.1. Metrics for Understandability

4.2.1.1 Understandability of a Class

Metrics for understandability of a class proposed with an idea that if we want to

understand class X, we should not only read class X, but also read classes related to

class X. Therefore, in order to find the degree of understandability of class X, we should

consider efforts put for both understanding class X and understanding classes related

to class X.

In this work, the effort put for understanding class X is represented by

complexity of class X or C(X) because if class X has high complexity, we should put

much effort to understand it. The effort put for understanding classes related to class X

will be represented by 7 metrics: UndGen, UndAgg, UndCom, UndCAssoc, UndAssocC, UndDep

and UndReal . They are calculated according to the kind of relationships that class X and

the others are related. The degree of understandability of class X is summation of the

efforts put for understanding class X and classes related to class X as follows.

 UndClass(X) = C(X) + UndGen(X) + UndAgg(X) + UndCom(X) + UndCAssoc(X) +

 UndAssocC(X) + UndDep(X) + UndReal(X)

In this work, relationships between 2 classes are classified into 2 kinds: direct

and indirect relationships. If there is a relationship line connecting between class A and

class B, then class A and class B have direct relationship. If class A is a descendant

class of class B and there is a relationship line connecting between class A and class C,

then class B and class C have indirect relationship. In other words, indirect relationship

is relationship through inheritance.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10618704&query_hl=12&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lampugnani+MG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Resnati+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Raiteri+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Pigott+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Pisacane+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Houen+G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ruco+LP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Dejana+E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15183461&query_hl=16&itool=pubmed_docsum

 77

Understandability Related to Generalization
Consider classes related to class X by generalization. We should understand its

ancestor classes because class X inherits characteristics of its ancestor classes. These

classes can be represented by AllHeadGen(X) as an example shown in dotted oval area

of Figure 4.3. UndGen can be defined in expression of multiplication between

dependency weight value of generalization and complexity of classes related to

generalization as follows.

UndGen(X) = WGen C(AllHeadGen(X))

Understandability Related to Aggregation
Aggregation is a stronger form of association. It is used to show a logical

containment relationship. Consider classes related to class X by aggregation. We

should understand classes which are parts of class X. These classes can be

represented by ImTailAgg(X) as an example shown in dotted oval area of Figure 4.4.

Furthermore, we should understand all classes related to class X by indirect

aggregation as an example shown in dotted rectangle area of Figure 4.4. Two classes

are the parts of a descendant class of class X. Therefore, they are the parts of class X

as well. These classes can be represented by ImTailAgg(AllHeadGen (X)). UndAgg(X) is

defined as follows.

UndAgg(X) = WAgg [C(ImTailAgg(X)) + C(ImTailAgg(AllHeadGen (X))]

Direct

Indirect

X

Figure 4.4: Aggregation.

Figure 4.3: Generalization.

X

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Liaw+CW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Cannon+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Power+MD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kiboneka+PK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Rubin+LL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22McAllister+MS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Krizanac%2DBengez+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Macchia+F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Naftalin+RJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Pedley+KC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Mayberg+MR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Marroni+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Leaman+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Stanness+KA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Janigro+D%22%5BAuthor%5D

 78

Understandability Related to Composition
Composition is specific aggregation. Classes related to class X by composition

can be considered similar to classes related to class X by aggregation with different

dependency weight value. Examples of these classes are shown in Figure 4.5. UndCom(X)

is defined as follows.

UndCom(X) = WCom [C(ImTailCom(X)) + C(ImTailCom(AllHeadGen (X))]

Understandability Related to Common Association

 Conceptually, an association between two classes signifies that some sort of

structural relationship exists between the classes. Associations may be unidirectional or

bidirectional. A unidirectional association implies that an object of the class which the

arrow is originating from may invoke methods on the class towards which the arrow is

pointing to. This manifests itself as an instance variable on the class that may invoke

methods. A bidirectional association simply means that either object in the association

may invoke methods on the other.

 Consider classes related to class X by unidirectional common association. We

should understand structure of classes invoked by class X (i.e., classes that has the

arrowhead side of the relationship). These classes are represented by ImHead CAssoc (X)

as an example shown in dotted oval are of Figure 4.6. We should also understand all

classes related to class X by indirect common association as an example shown in

dotted rectangle area of Figure 4.6. These classes can be represented by ImHead CAssoc

(AllHeadGen(X)). UndCAssoc(X) is defined as follows.

UndCAssoc(X) = WCAssoc [C(ImHead CAssoc (X)) + C(ImHead CAssoc (AllHeadGen(X)))]

Figure 4.5: Composition.

Direct

Indirect

X

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Megard+I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Garrigues+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Orlowski+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Jorajuria+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Clayette+P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ezan+E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Mabondzo+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Mitic+LL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Anderson+JM%22%5BAuthor%5D

 79

For bidirectional common association, we transform the relationship to

unidirectional common association as an example shown in Figure 4.7 before measuring

understandability using the same formula.

Understandability Related to Association Class
Information relevant to the association roles cannot always reside with the

classes involved in the association. In this situation, an association class may be used to

model the relationship. In order to measuring understandability, we will transform

association class to unidirectional association form. Then we will consider each pair of

relationship. Figure 4.8 shows an example of classes related to class X by direct

association class and Figure 10 shows an example of classes related to class X by

indirect association class. In order to measure understandability related to direct and

indirect association class of class X, Figure 4.8 will be transformed to Figure 4.9, and

Figure 4.10 will be transformed to Figure 4.11. Then, UndAssocC will be measured from

Consider boxes of Figure 4.9 and Figure 4.11. For example in Consider box of Figure

4.9, if we want to understand class X, we should also read class A and class B. UndAssocC

(X) is defined in similar way of defining UndCAssoc as follows.

UndAssocC (X) = WAssocC [C(ImHead AssocC (X)) + C(ImHead AssocC (AllHeadGen(X)))]

Figure 4.6: Common association.

Indirect

XDirect

Figure 4.9: Transformed direct association class.

Not consider

Consider

B X

A X

X B

X A

Figure 4.8: Direct association class.

X

BA

Direct

Figure 4.7: Transforming bidirectional association to unidirectional association.

AX

A X

X A

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Nitta+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hata+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Gotoh+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Seo+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sasaki+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hashimoto+N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Furuse+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Tsukita+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Nordskog+BK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fields+WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hellmann+GM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Okey+AB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Riddick+DS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Harper+PA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Oliver+JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Oliver+JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Opdenakker+G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Nelissen+I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Van+Damme+J%22%5BAuthor%5D

 80

Understandability Related to Dependency
Anytime a class uses another class in some fashion, a dependency exists

between the two. The relationship is that of the user depending on the class that it is

using. A dependency exists if a class has a local variable based on another class, a

reference to an object directly, or a reference to an object indirectly, for example via

some operation parameters, or uses a class’s static operation.

Consider classes related to class X by dependency. If class X directly

depended on any classes, we should also understand these classes as an example

shown in dotted oval area of Figure 4.12. These classes can be represented by

ImHeadDep(X). Moreover, we should understand all classes related to class X by indirect

dependency as an example shown in dotted rectangle of Figure 4.12. These classes

can be represented by ImHeadDep(AllHeadGen (X)). UndDep(X) is defined as follows.

UndDep(X) = WDep [C(ImHeadDep(X)) + C(ImHeadDep (AllHeadGen(X)))]

X

Figure 4.12: Dependency.

Direct

Indirect

Figure 4.10: Indirect association
 class.

A B

C

D

X

Indirect

Figure 4.11: Transformed indirect association class.

Not consider

Consider

 CA

AC

DA

AD

BD

CB

XA

DB

BC

AX BX

B X

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Petty+MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lo+EH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ramachandran+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Moellering+D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Go+YM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Shiva+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Levonen+AL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Jo+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Patel+RP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Patel+RP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Parthasarathy+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Darley%2DUsmar+VM%22%5BAuthor%5D

 81

Understandability Related to Realization
Consider classes related to class X by realization. We should understand

interface classes which are defined a set of functionalities as a contract and class X

realizes that contract by implementing the functionality. The classes related to class X

by direct realization are shown in dotted oval area of Figure 4.13. These classes can be

represented by ImHeadReal(X). We should also understand classes related to class X by

indirect realization as an example shown in dotted rectangle of Figure 4.13. These

classes can be represented by ImHeadReal(AllHeadGen (X)). UndReal(X) is defined as

follows.

UndReal(X) = WReal [C(ImHeadReal(X)) + C(ImHeadReal (AllHeadGen(X)))]

4.2.1.2 Understandability of a Software

Understandability of a software will be calculated from understandability of all

classes in the software. Generally, large software is more complex than small one.

Accordingly, it is more reasonable to compare understandability of a software to

understandability of another software of the same size. For comparing understandability

of software with different size, we should introduce the concept of averages. The

average degree of understandability of a software is defined as follows.

()

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑
=

n

XUnd
SAvgUnd

i

n

i
Class

Sys
1)(

 Where Xi is a class of software S; i = 1,2,…,n.

 n is the total number of classes of software S.

Figure 4.13: Realization.

Direct

Indirect

X

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Saitou+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fujimoto+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Doi+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Itoh+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fujimoto+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Furuse+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Takano+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Noda+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Tsukita+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bultmann+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Wahl+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22St+Croix+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sheehan+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Rak+JW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Florenes+VA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Slingerland+JM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kerbel+RS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Stevenson+BR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Keon+BH%22%5BAuthor%5D

 82

4.2.2. Metrics for Modifiability

4.2.2.1 Modifiability of a Class

Metrics for modifiability of a class proposed with an idea that if we want to

modify class X, class X will be modified. Moreover, if class X affects other classes, these

classes will be modified too. In the best case, only class X will need to be modified. In

the worst case, class X and all classes affected from class X must be modified. In the

average case, class X will be modified and half of classes affected from class X should

be modified. In this work, modifiability will be measured in the average case.

 In order to measure modifiability of class X, we will consider the efforts put for

modifying class X and modifying classes affected from class X.

In this work, the effort put for modifying class X is represented by complexity of

class X or C(X) because if class X has high complexity, we should put much effort to

modify it. The effort put for modifying classes related to class X will be represented by 7

metrics: ModGen, ModAgg, ModCom, ModCAssoc, ModAssocC, ModDep and ModReal . They are

calculated according to the kind of relationships that class X and the others are related.

The degree of modifiability of class X is summation of the efforts put for

modifying class X and modifying classes related to class X as follows.

 ModClass(X) = C(X) + ModGen(X) + ModAgg(X) + ModCom(X) + ModCAssoc(X) +

 ModAssocC(X) + ModDep(X) + ModReal(X)

Modifiability Related to Generalization
Consider classes related to class X by generalization. If we modified class X, we

may need to modify descendant classes of class X. These classes can be represented

by AllTailGen(X) as an example shown in Figure 4.14. In the average case, half of them

will be modified. ModGen can be defined in expression of multiplication between

dependency weight value of generalization and complexity of classes related to

generalization considering in the average case as follows.

ModGen(X) = WGen C(AllTailGen(X)) / 2

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Torii+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kubota+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ishihara+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Suzuki+M%22%5BAuthor%5D

 83

Modifiability Related to Aggregation
Consider classes related to class X by aggregation. If we modify class X,

classes which compose of class X may be modified. These classes can be represented

by ImHeadAgg (X) as an example shown in dotted oval area of Figure 4.15. Classes in

dotted rectangle area of Figure 4.15 are classes related to class X by indirect

aggregation. If class X is changed, they may be affected. These classes can be

represented by AllTailGen (ImHeadAgg (X)). Considering in the average case, ModAgg(X) is

defined as follows.

ModAgg(X) = WAgg [C(ImHeadAgg(X)) + C(AllTailGen (ImHeadAgg (X)))] /2

Modifiability Related to Composition
Classes affected from class X by composition can be considered similar to

classes affected from class X by aggregation. Considering in the average case,

ModCom(X) is defined as follows.

ModCom(X) = WCom [C(ImHeadCom(X)) + C(AllTailGen (ImHeadCom (X)))] /2

Modifiability Related to Common Association
Consider classes related to class X by unidirectional common association. If we

modify class X, classes which directly invoke methods of class X may be affected.

These classes can be represented by ImTailCAssoc(X) as an example shown in dotted oval

Figure 4.14: Generalization.

X

Figure 4.15: Aggregation.

Indirect

Direct

X

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11306551&query_hl=39&itool=pubmed_docsum

 84

area of Figure 4.16. Furthermore, classes related to class X by indirect common

association may be affected as an example shown in dotted rectangle area of Figure

4.16. These classes can be represented by AllTailGen (ImTailCAssoc (X)). Considering in the

average case, ModCAssoc (X) is defined as follows.

ModCAssoc (X) = WCAssoc [C(ImTailCAssoc (X)) + C(AllTailGen (ImTailCAssoc (X)))] /2

For bidirectional common association, we will transform the relationship to

unidirectional common association before measuring modifiability with the same

approach.

Modifiability Related to Association Class
For classes related to class X by association class, we will transform association

class to unidirectional association form. Then we will consider each pair of relationships.

For examples, in order to measure modifiability related to direct and indirect association

class of class X, Figure 4.17 will be transformed to Figure 4.18, and Figure 4.19 will be

transformed to Figure 4.20. Then ModAssocC will be measured from Consider boxes of

Figure 4.18 and Figure 4.20. For example in Consider box of Figure 4.18, if we want to

modify class X, we may also modify class A and B. ModAssocC (X) is defined in similar way

of defining ModAssocC as follows.

ModAssocC (X) = WAssocC [C(ImTailAssocC (X)) + C(AllTailGen (ImTailAssocC (X)))] /2

Figure 4.18: Transformed direct association
 class.

Not consider

Consider
B X

A X

X B

X A

Figure 4.17: Direct association class.

X

BA

Direct

Figure 4.16: Common association.

Direct

Indirect

X

 85

Modifiability Related to Dependency
Consider classes related to class X by dependency. If we modify class X,

classes depending on class X may be modified. These classes can be represented by

ImTailDep(X) as an example shown in dotted oval area of Figure 4.21. Furthermore,

classes related to class X by indirect dependency may be modified as an example

shown in dotted rectangle area of Figure 4.21. These classes can be represented by

AllTailGen (ImTailDep (X)). Considering in the average case, ModDep(X) is defined as follows.

ModDep (X) = WDep [C(ImTailDep (X)) + C(AllTailGen (ImTailDep (X)))] /2

Modifiability Related to Realization
Consider classes related to class X by realization. If we modify class X,

implementation classes of class X must be modified. These classes can be represented

by ImTailReal(X) as an example shown in dotted oval area of Figure 4.22. Furthermore,

classes related to class X by indirect realization may be modified as an example shown

in dotted rectangle area of Figure 4.22. These classes can be represented by AllTailGen

(ImTailReal (X)). Considering in the average case, ModReal(X) is defined as follows.

Figure 4.19: Indirect association class.

Indirect

X C

D

A B

Figure 4.20: Transformed indirect association
 class.

Not consider

Consider

 XA

AX

BX

XC

CX

DX

XD

B X

Figure 4.21: Dependency.

X

Direct

Indirect

 86

ModReal (X) = WReal [C(ImTailReal(X) (X)) + C(AllTailGen (ImTailReal (X)))] /2

4.2.2.2 Modifiability of a Software

Modifiability of a software will be calculated from modifiability of all classes in the

software. It is defined with concept of average as same as understandability. The

average degree of modifiability of a software is defined as follows.

()

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑
=

n

XMod
SAvgMod

i

n

i
Class

Sys
1)(

 Where Xi is a class of software S; i = 1,2,…,n.

 n is the total number of classes of software S.

4.3 Metric Validation

The previous section introduced metrics for understandability and modifiability,

which still needs empirical validation in order to validate their usability. Generally, a

metric will be invalid in practice while be valid in theoretical argument, and vice versa.

Whether a metric is valid depends on whether it is consistent with human beings’

intuition or not. This section describes validating the proposed metrics.

In section 3.2, we presented an experiment captured degree of

understandability and modifiability of 40 software in human beings’ view. We collected

the degree of understandability in terms of Understandability score and the degree of

modifiability in terms of Modifiability score. In order to validate the proposed metrics, the

degree of understandability and modifiability of the same 40 software were measured

using the proposed metrics: AvgUndSys and AvgUndSys. To find out the correlation

Figure 4.22: Realization.

Direct

Indirect

X

 87

between the degree of understandability and modifiability measured by the proposed

metrics and human beings’ intuition, 2 hypotheses were formulated:

H10 : There is no correlation between AvgUndSys and Understandability score.

H1A : There is correlation between AvgUndSys and Understandability score.

H20 : There is no correlation between AvgModSys and Modifiability score.

H2A : There is correlation between AvgModSys and Modifiability score.

 In order to test both hypotheses, the Pearson’s correlation test was applied. The

correlation between two variables reflects the degree to which the variables are related.

Correlation value ranges from -1 to +1. Value of 1 means that there is a perfect positive

relationship between both variables. Value of -1 indicates a perfect negative

relationship and value of 0 indicates no relationship. The result of correlation analysis is

shown in Table 4.2 and Table 4.3.

The result shown in Table 4.2 and Table 4.3 can be concluded that H10 and H20

are rejected. The correlation values of -0.651 and –0.685 indicate that

- AvgUndSys and Understandability score have negative correlation, and

- AvgModSys and Modifiability score have negative correlation.

So, this result can be concluded that new proposed metrics are correlated with

human beings’ intuition at significant level 0.01.

Table 4.2: Correlation relationships between AvgUndSys and Understandability score.

 AvgUndSys UndScore

Pearson Correlation 1 -.651(**)

Sig. (2-tailed) . .000

AvgUndSys

N 40 40

Pearson Correlation -.651(**) 1

Sig. (2-tailed) .000 .

UndScore

N 40 40
** Correlation is significant at the 0.01 level (2-tailed).

 88

Table 4.3: Correlation relationships between AvgModSys and Modifiability score.

 AvgModSys ModScore

Pearson Correlation 1 -.685(**)

Sig. (2-tailed) . .000

AvgModSys

N 40 40

Pearson Correlation -.685(**) 1

Sig. (2-tailed) .000 .

ModScore

N 40 40
** Correlation is significant at the 0.01 level (2-tailed).

Understandability and modifiability captured by two new proposed metrics and

by human beings’ intuition have negative correlation because of the following reason.

AvgUndSys and AvgModSys measure the degree of understandability and modifiability of

a software considering the efforts put for understanding and for modifying the software.

Understandability and Modifiability scores capture the degree of understandability and

modifiability of a software using examinations. If the software is easy to understand and

modify, AvgUndSys and AvgModSys values will be low but Understandability and

Modifiability scores will be high. In contrast, if the software is difficult to understand and

modify, AvgUndSys and AvgModSys values will be high but Understandability and

Modifiability scores will be low.

4.4 Metric Threshold

To estimate thresholds or value ranges of AvgUndSys that lie in 3

understandability levels: easy, medium and difficult, we calculate lower confidence limit

(L) and upper confidence limit (U) values of mean (μ)of population of AvgUndSys for

each understandability levels. Range of mean of population can be expressed as the

follows [45].

 L < μ < U

Where L and U can be computed from the following formula.

 89

n
Zx

n
Zx 2/12/1

σμσ
αα −− +<<−

 where x is the mean of samples,

 2/1Z α− is the probability value in Z table, and

n
σ is the standard deviation.

 At significant level(σ) 0.05, we compute lower and upper confidence limit

values: L2 and U2, L1 and U1, and L0 and U0, for easy, medium and difficult levels of

understandability respectively as shown in Figure 4.23.

From this figure, we can imply that if a software has AvgUndSys < U2, it should be

classified to easy level of understandability. If a software has AvgUndSys > L0, it should

be classified to difficult level of understandability. Estimating value ranges of AvgModSys

can be performed in the same way. The preliminary result obtained from our

experimental data is shown in Table 4.4

Table 4.4: Value ranges of AvgUndSys and AvgModSys.

Metric Level Value range

Easy <21

Medium 21 - 33

AvgUndSys

(understandability)

Difficult >33

Easy <13

Medium 13-18

AvgModSys

(modifiability)

Difficult >18

Min2 L2 U2 Min1 Max2 L1 U1 Min0 Max1 L0 U0 Max0

Figure 4.23: Lower and upper confidence limit values.

Easy

Medium

Difficult

 90

 These thresholds are used to classify understandability and modifiability levels

of 40 sample software design models. The result shows that the accuracy of

AvgUndSys is 95% and the accuracy of AvgModSys is 97.5%. Although the accuracy

of AvgUndSys and AvgModSys is less than 100% which is the accuracy of MLPUnd2

and MLPMod1, the best prediction models for understandability and modifiability

presented in Chapter III, MLPUnd1 and MLPMod2 use 17 metrics and 13 metrics

for classifying understandability and modifiability. For future work, the experiment

should be repeated with more number of sample software design models in order to

improve the threshold accuracy of AvgUndSys and AvgModSys.

CHAPTER V

CONCLUSION AND FUTURE WORK

This chapter concludes the research work and presents some directions for the

future work.

5.1 Conclusion

Software quality has become essential to good software development. One

quality which should be concerned in early phase is maintainability. Predicting

maintainability in early phase will help software designers to alter the design of the

software for better performance which will lead to the ease of implementation and

reduction of maintenance cost.

This thesis selects two metric sets: structural complexity and aesthetic metrics.

These metrics are expected that they can be predictors of maintainability and its two

sub-characteristics: understandability and modifiability. MANOVA test are performed to

validate the expectation. The result shows that the structural complexity metrics and the

aesthetic metrics can be good indicators of understandability, modifiability and

maintainability.

Understandability, modifiability and maintainability prediction models are

constructed from structural complexity and aesthetic metrics applying 3 techniques

called Discriminant analysis, Decision tree and MLP neural network. The experimental

result shows that the model accuracy of every prediction model obtained from MLP

neural network is higher than or equal to that of the prediction models obtained from

Discriminant analysis and Decision tree. The trade-off is that the number of metrics used

in every prediction model obtained from MLP neural network is greater than or equal to

that of the prediction models obtained from Discriminant analysis and Decision tree.

However, if all metrics used in prediction model can be measured automatically, the

problem of using greater number of metrics can be solved.

 92

In case of automated utilizing the prediction models, the experimental result can

be conclude that best prediction models for understandability, modifiability and

maintainability are MLPUnd1, MLPMod2 and MLPMod3 respectively.

An automated tool for measuring structural complexity metrics from UML class

and sequence diagrams is also constructed and this tool can predict understandability,

modifiability and maintainability utilizing the prediction models obtained from the

experiment.

This thesis also proposes two set of structural complexity metrics to assess

understandability and modifiability objectively. These metrics are developed considering

the number and the kind of relationships among classes. To validate the new proposed

metrics, correlation analysis between understandability and modifiability measured by

the proposed metrics and measured by human beings’ intuition are performed. The

result from the experiment can be concluded that the new proposed metrics are

significantly correlated with human beings’ intuition at significant level 0.01. The new

proposed metrics could be used as early maintainability indicators.

5.2 Future Work

1. The experiment uses only forty simple software design models. This is a

limitation of the research, since it is difficult to find software design models in

real world software. The experiment should be repeated with more number of

sample software design models in order to increase reliability of

experimental result.

2. Size of software design models should be increased. By increasing size of

software design models, we will have examples that are closer to reality. In

addition, if we are working with professionals, we can make better use of

their potential capability and conclude that the results are more general.

3. This work considers only 2 types of UML diagrams: class and sequence

diagrams. It may be considered as the preliminary approach for constructing

maintainability models from UML diagrams. For future work, other type of

UML diagrams may be considered.

 93

4. Understandability, modifiability and maintainability levels can be tried on

more than 3 levels.

5. The understandability, modifiability and maintainability models obtained from

the experiment can predict understandability, modifiability and

maintainability levels of a software design model, but they cannot suggest

how to improve understandability, modifiability and maintainability. Research

on improving these qualities should be further considered.

6. Concerns with the new proposed objective structural complexity metrics

presented in Chapter IV, the AvgUndSys and AvgModSys metrics are

developed in order to measure the maintainability of class diagram during

the design phase of the software life cycle. One function used for computing

AvgUndSys and AvgModSys is the complexity of a class. The metrics compute

the complexity of a class roughly from the summation of the number of

attributes and the number of methods in the class. These metrics can be

extended to comprehend the complexity of a class. For example, visibility of

attributes and methods (i.e. public, protected and private) should be

considered.

7. As mentioned in heading 4.1.3, we can order dependency degree of each

relationship but we don’t know exact weight values. Ideally, these weight

values should be assigned by experts or captured from empirical study with

enough supported data. In this work, each relationship is given a weight

value: WDep =1, WCAssoc = 2, WAssocC = 3, WAgg = 4, WCom = 5, WGen = 6, and

WReal = 7. Different weight values should be used in the future experiment to

find proper dependency weight values of each relationship.

8. An automated tool for measuring the proposed objective structural

complexity metrics for understandability and modifiability should be

constructed.

REFERENCES

(1) Brantley, C. L. and Osajima, Y. R. Continuing Development of Centrally

Developed and Maintained Software Systems. IEEE Computer Society,

45,1(1975):285-288.

(2) Riggs, R. Computer System Maintenance. Datamation, November 15, 1969:227-

235.

(3) Sterns, S. Experience with Centralized Maintenance of a Large Application

System. IEEE Computer Society, 45,3(1975):114-120.

(4) Bandi, R., Vaishnavi, V. and Turk, D. Predicting Maintenance Performance Using

Object-Oriented Design Complexity Metrics. IEEE Transactions on

Software Engineering, 29,1(2003):77-87.

(5) Genero, M., Piattini, M. and Calero, C. Early Measures for UML Class Diagrams.

L’ Object, 6,4(2000):489-515.

(6) Kim, H. and Boldyreff, C. Developing Software Metrics Applicable to UML

Models. Proceedings of the 6th ECOOP Workshop on Quantitative

Approaches in Objected-Oriented Software Engineering, June 11, 2002.

(7) Genero, M., Miranda, D. and Piattini, M. Defining and Validating Metrics for UML

Statechart Diagrams. Proceedings of the 6th ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software Engineering, 11

June 2002.

(8) Sheldon, F. T., Jerath, K. and Chung, H. Metrics for Maintainability of Class

Inheritance Hierarchies. Journal of Software Maintenance and Evolution:

Research and Practice, 14,1(2002):147-160.

(9) Booch, G., Rumbuagh, J. and Jacobson, I. The Unified Modeling Language

User Guide. Addison Wesley Longman,1999.

(10) Fenton, N. E. and Pfleeger, S. L. Software Metrics: A Rigorous and Practical

Approach. PWS Publishing, 1997.

(11) ISO/IEC: Standard 9126-Software Product Evaluation-Quality Characteristics and

Guidelines for Their Use. Geneva, 1995.

 95

(12) Harris, R. J. A Primer of Multivariate Statistics. Third Edition, Lawrence Erlbaum

Associates, 2001.

(13) Tabachnick, B. G. and Fidell, L. S. Using Multivariate Statistics. Allyn & Bacon,

2001.

(14) Mitchell, T. M. Machine Learning. The McGraw-Hill Companies, Inc., 1997.

(15) Haykin, S. Neural Networks: A Comprehensive Foundation. Prentic-Hall,

Inc.1990.

(16) Briand, L. C., Bunse, C., Daly, J. W. and Differding C. An Experimental

Comparison of the Maintainability of Object-Oriented and Structured

Design Document. Proceedings of International Conference on Software

Maintenance, 1977:130-138.

(17) Briand, L. C., Bunse, C. and Daly, J. W., A Controlled Experiment for Evaluating

Quality Guidelines on the Maintainability of Object-Oriented Designs.

IEEE Transactions on Software Engineering, 27,6(2001):513-530.

(18) Deligiannis, I., Stamelos, I., Angelis, L., Roumeliotis, M. and Shepperd, M., A

Controlled Experiment Investigation of an Object-Orited Design Heuristic

for Maintainability. ESERG Technical Reports, ESERG: Empircal Software

Engineering Research Group at Bournemouth University, May 22, 2002.

(19) Daly, J. and Brook, A. The Effect of Inheritance on the Maintainability of Object-

Oriented Software: An Empirical Study. Proceedings of the International

Conference on Software Maintenance, 1995.

(20) Harrison, R. and Counsell, S. The Role of Inheritance in Maintainability of Object-

Oriented Systems. Proceedings of the 11th European Software Control

and Metrics Conference, Munich, Germany, April 2000.

(21) Binkley, A. and Schach, S. Inheritance-Based Metrics for Predicting

Maintenance Effort: an Empirical Study. Technical Report TR97-05,

Computer Science Department, Vanderbilt University, 1997.

(22) Wood, M., Daly, J. and Miller, J. Multi-Method Research: an Empirical

Investigation of Object-Oriented Technology. Journal of System and

Software, 48,1(1999):13-26.

 96

(23) Harrison, R., Counsell, S. and Nithi, R. Experimental Assessment of the Effect of

Inheritance on the Maintainability of Object-Oriented Systems. Journal of

Systems and Software, 44,2(2000):173-176.

(24) Fioravanto, F. and Nesi, P. Estimation and Prediction Metrics for Adaptive

Maintenance Effort of Object-Oriented Systems. IEEE Transactions on

software Engineering, 27,12(2001):1062-1084.

(25) Prechelt, L., Unger, B., Phillippsen, M. and Tichy, W. A Controlled Experiment on

Inheritance Depth as a Cost Factor for Code Maintenance. Journal of

Systems and Software, 65,2(2003):115-126.

(26) Genero, M., Jiménez, L. and Piattini, M. A Controlled Experiment for Validating

Class Diagram Structural Complexity Metrics. Proceedings of the 8th

International Conference on Object-Oriented Information Systems,

September 2002:372-383.

(27) Purchase, H. C., Mcgill, M., Colpoys, L. and Carrington, D. Graph Drawing

Aesthetics and the Comprehension of UML Class Diagrams: an Empirical

Study. Proceedings of the Australian Symposium on Information

Visualisation, Australian Computer Society, 2001.

(28) Purchase, H. C., Colpoys, L. and Mcgill, M., UML Class Diagram Syntax: An

Empirical Study of Comprehension. Proceedings of the Australian

Symposium on Information Visualisation, Sydney, Australia, 2001.

(29) Purchase, H. C., Allder, J. and Carrington, D. Graph Layout Aesthetic in UML

Diagrams: User Preferences. Journal of Graph Algorithms and

Applications, 6,3(2002):255-279.

(30) Eichelberger, H. Aesthetics of Class Diagrams. Proceedings of the 1st IEEE

Interation Workshop on Visualizing Software for Understanding and

Analysis, Paris, France, 2002:23-31.

(31) Gutwenger, C., Junger, M., Klein, K., Kupke, J., Leipert, S. and Mutzel, P. A New

Approach for Visualizing UML Class Diagrams. Proceedings of the 2003

ACM Symposium on Software Visualization, ACM Press, 2003:179-188.

 97

(32) Poranen, T., Makinen, E. and Nummenmaa, J. How to Draw a Sequence

Diagram. Proceedings of the 8th Symposium on Programming

Languages and Software Tools, 2003.

(33) Genero, M., Olivas, J., Piattini, M., and Romero, F. Using Metrics to predict OO

Information Systems Maintainability. Proceedings of the 13th International

Conference on Advanced Information Systems Engineering (CAiSE

2001), Interlaken, Switzerland, June 4-8, 2001.

(34) Battista, G. D., Eades, P., Tamassia, R. and Tollis, I.G. Graph Drawing. Prentice

Hall, 1999.

(35) Purchase, H. C., Cohen, R. F. and James, M. Validating Graph Drawing

Aesthetics. Lecture Notes in Computer Science, 1027,1(1996):435-446.

(36) Purchase, H. C., Cohen, R. F. and James, M. An Experimental Study of the Basis

for Graph Drawing Algorithms. Journal of Experimental Algorithmics

(JEA), 2,4(1997):111-119.

(37) Eichelberger, H. Nice class diagrams admit good design? Proceedings of the

2003 ACM Symposium on Software Visualization, ACM Press, 2003:159–

168.

(38) Genero, M., Paittini, M. and Manso, E. Finding ‘Early’ Indicators of UML Class

Diagrams Understandability and Modifiability. Proceedings of the 2004

International Symposium on Empirical Software Engineering, 2004.

(39) Weiss, S. and Kulikowski, C. Computer Systems that Learn: Classification and

Prediction Methods from Statistics, Neural Nets, Machine Learning, and

Expert Systems, Morgan Kaufmann Publishers, 1991.

(40) Genero, M., Piattini, M., Manso, E. and Cantone, G. Building UML Class Diagram

Maintainability Prediction Models Based on Early Metrics. Proceedings of

the 9th International Software Metrics Symposium, 2003.

(41) Cartwright, M. An Empirical View of Inheritance. Information and Software

Technology, 1998:795-799.

(42) Program Committee of the Institute for Objective Measurement. Definition of

Objective Measurement. Available from: http://www.rasch.org/define.htm

[2007, 1 January]

 98

(43) Sheldon, F. T., Jerath, K. and Chung, H. Metrics for Maintainability of Class

Inheritance Hierarchies. Journal of Software Maintenance and Evolution:

Research and Practice, 14,1(2002):147-160.

(44) Kang, D., Xu, B., Lu, J. and Chu, W. C. A Complexity Measure for Ontology

Based on UML. Proceedings of the 10th IEEE International Workshop on

Future Trends of Distrubuted Computing Systems, Suzhou, Chaina, May

2004:222-228.

(45) กัลยา วานิชยบัญชา. การวิเคราะหสถิต:ิ สถิติสําหรับการบริหารและวิจัย. โรงพิมพแหง

จุฬาลงกรณมหาวิทยาลัย, 2546.

(46) Rovinelli, R. J. and Hambleton, R. K. On the Use of Content Specialists in the

Assessment of Criterion-Referenced test Item Validity. Dutch Journal of

Educational Research, 2,1(1977):49-60.

(47) พิชิต ฤทธิ์จรูญ. หลักการวดัและประเมินผลการศึกษา. กรุงเทพฯ: เฮาส ออฟ เคอรมีสท,

2548.

APPENDICES

 100

APPENDIX A

PUBLICATIONS

A.1 International Journal

1) Kiewkanya, M. and Muenchaisri, P. Measuring Maintainability in Early Phase

Using Aesthetic Metrics. WSEAS Transaction on Computers, 4,2(2005): 227-

232.

A.2 International Conferences

1) Kiewkanya, M. and Muenchaisri, P. Measuring Maintainability in Early Phase

Using Aesthetic Metrics. Proceedings of the 6th WSEAS International

Conference on Software Engineering, Parallel & Distributed Systems

(SEPADS 2005), Salzburg, Austria, February 13-15, 2005.

2) Kiewkanya, M. and Muenchaisri, P. Predicting Modifiability of UML Class and

Sequence Diagrams. Proceedings of the 2nd Workshop on Software Quality

in conjunction with the 26th International Conference on Software

Engineering (ICSE 2004), Edinburgh, Scotland, UK, May 24-28, 2004.

3) Jindasawat, N., Kiewkanya, M. and Muenchaisri, P. Investigating Correlation

between the Object-Oriented Design Maintainability and Two Sub-

Characterictics: Understandability and Modifiability. Proceedings of the 13th

ISCA International Conference on Intelligent and Adaptive Systems and

Software Engineering (IASSE 2004), Nice, France, July 1-3, 2004.

4) Kiewkanya, M., Jindasawat, N. and Muenchaisri, P. A Methodology for

Constructing Maintainability Model of Object-Oriented Design. Proceedings

of the 4th International Conference on Quality Software (QSIC 2004),

Braunschweig, Germany, September 8-10, 2004.

5) Kiewkanya, M., Jindasawat, N., Prompoon, N. and Muenchaisri, P.

Constructing Understanding Model using Design Metrics. Proceedings of the

2003 International Conference on Software Engineering and Knowledge

 101

Engineering (SEKE 2003), Hotel Sofitel San Francisco Bay, CA, USA, July 1-

3, 2003.

6) Kiewkanya, M. and Muenchaisri, P. Measuring Internal Reuse of Object-

Oriented Software Using Metrics Applicable to UML Class and Sequence

Diagrams. Proceedings of the ISCA 12th International Conference on

Intelligent and Adaptive Systems and Software Engineering (IASSE-2003),

Canterbury hotel, San Francisco, CA, USA, July 9-11, 2003.

 102

APPENDIX B

EXAMINATIONS

B.1 Validating the Examinations

The development of measuring instruments is a process which includes both a)

the development of the item and subscale components and b) the qualitative and

quantitative assessments of the item and subscale parameters. In order to appropriately

use and interpret data obtained from a measuring instrument, there must be operational

definitions of the constructs being measured and information on the reliability and

validity of the scores. This information assists users in placing appropriate meaning to

the results obtained and interpreting the scores within the confines of the assessment

parameters identified.

Content validity is the degree of confidence that the items are measuring what

they are intended to measure. Evidence of content validity can be obtained from an

evaluation, conducted by independent experts, of the effectiveness of items in

measuring one or more objectives. An efficient measure for numerically assessing

content experts’ evaluations of items is the index of item-objective congruence (IOC)

[46].

An evaluation using the IOC is a process where content experts, at least 3

experts [47], rate individual items on the degree to which they do or do not measure

specific objectives listed by the test developer. More specifically, a content expert will

evaluate each item by giving the item a rating of 1 (for clearly measuring), -1 (clearly not

measuring), or 0 (degree to which it measures the content area is unclear) for each

objectives. The experts are not told which constructs the individual items are intended to

measure, thus they remain independent and unbiased evaluators.

After the experts complete an evaluation of the items, the ratings are combined

to provide indices of item-objective congruence measures for each item on each

objective. The range of the index score for an item is -1 to 1 where a value of 1 indicates

that all experts agree that the item is clearly measuring only the objective that it is

hypothesized to measure and is clearly not measuring any other objective. A value of -1

 103

would indicate that the experts believe the item is measuring all objectives that it was

not defined to measure and is not measuring the hypothesized objective. The item will

be accepted if its index score is greater than or equal 0.5.

The IOC is computed using the following equation.

N
R

IOC ∑=

where IOC is consistency between item & the objective,

R is sum of scores from experts,

N is the number of experts.

B.2 Applying the IOC to the Examinations

 In order to validate the examinations used in this work applying the IOC, we

prepare validation documents including of document for validating the template

questions shown in Table B.1 – Table B.8 and general description, class diagram and

sequence diagrams of a sample software named ‘Online CD shop system’ shown in

Table B.10 and Figure B.1 – Figure B.3. In this work, we cannot validate examination

questions of all software design models (40 software) because of a lot of examination

questions. However, examination questions of each software design model are

constructed from the same template questions. So, we decide to validate the template

questions instead. The validation documents are sent to three experts in modeling with

UML. The IOC values of all template questions obtained from all evaluators are shown in

Table B.9. The result shows that all template questions are accepted.

Table B.1: Validation form of template questions for assessing understandability of class diagram.
คําถามวัดความสามารถในการทําความเขาใจแผนภาพคลาส

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

คําถามตนแบบ ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

Classes

เพื่อวัดความเขาใจโดยรวม

เกี่ยวกับคลาส

UC1 คลาส C สามารถใหบริการ อะไร

ไดบาง

คลาส Order สามารถใหบริการอะไร

ไดบาง

สรางและแสดงผลรายการสั่งซื้อ

UA1 แอทริบิวต A ของคลาส C

สามารถเรียกใชหรือแกไขจาก

คลาสอื่นโดยตรงไดหรือไม

แอทริบิวต artist ของคลาส CD

สามารถถูกเรียกใชหรือแกไขจาก

คลาสอื่นโดยตรงไดหรือไม เพราะเหตุ

ใด

ไมได เพราะเปน private

UA2 แอทริบิวตใดของคลาสใดบาง ที่

มีผลตอคาของแอทริบิวต A ของ

คลาส C

แอทริบิวตใดของคลาสใดบาง ที่มีผล

ตอคาของแอทริบิวต totalPrice ของ

คลาส Order

shippingFee ของคลาส Order ,

price ของคลาส CD, amount ของ

คลาส OrderItem

Attributes เพื่อวัดความเขาใจเกี่ยวกับ

แอตทริบิวต ไดแก ขอมูลที่

จัดเก็บ คาขอมูล การ

เขาถึง และ การมีอยูของ

แอทริบิวตในคลาสซึ่งเปน

ผลมาจากการสืบทอด

คุณสมบัติ

UA3 คลาส C มีแอทริบิวตอะไรบาง คลาส Organization มีแอทริบิวต

อะไรบาง

aurthorizeName, customerID,

customerName, password, email

และ creditcardNo โดย 5 แอทริบิวต

หลังเปนผลมาจากการสืบทอด

คุณสมบัติจากคลาส Customer

104

chula
Text Box
104

Table B.2: Validation form of template questions for assessing understandability of class diagram (continued).
คําถามวัดความสามารถในการทําความเขาใจแผนภาพคลาส

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

คําถามตนแบบ ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

UM1 เมทธอด M ของคลาส C ทํางาน

อะไร

เมทธอด Search() ของคลาส

ArtistSearch ทํางานอะไร

ทําการคนหาขอมูล cd ตามชื่อ

ศิลปน

UM2 เมทธอด M ของคลาส C

สามารถเรียกใชจากคลาสอื่น

โดยตรงไดหรือไม

เมทธอด search() ของคลาส

SearchREQ สามารถถูกเรียกใชจาก

คลาสอื่นไดหรือไม เพราะเหตุใด

ได เพราะเปน public

UM3 เมทธอดใดของคลาสใด ควรจะ

เรียกใชเมทธอด M ของคลาส C

เมทธอดใดของคลาสใดควรจะเรียกใช

เมทธอด find_CD() ของคลาส

CDList

เมทธอด search() ของคลาส

SearchREQ

Methods เพื่อวัดความเขาใจเกี่ยวกับ

เมทธอด ไดแก การทํางาน

การเรียกใช และ การมีอยู

ของเมทธอดในคลาสซึ่ง

เปนผลมาจากการสืบทอด

คุณสมบัติ

UM4 คลาส C มีเมทธอดอะไรบาง คลาส Individual มีเมทธอดใดบาง updateCustomer, order() และ

search() โดยเมทธอดทั้งหมดเปน

ผลมาจากการสืบทอดคุณสมบัติ

จากคลาส Customer

105

chula
Text Box
105

Table B.3: Validation form of template questions for assessing understandability of class diagram (continued).
คําถามวัดความสามารถในการทําความเขาใจแผนภาพคลาส

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

คําถามตนแบบ ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

Relationships เพื่อวัดความเขาใจเกี่ยวกับ

ความสัมพันธประเภทตาง

ๆ และ multiplicity ของ

ความสัมพันธ

UR1 จงอธิบายความสัมพันธระหวาง

คลาส ที่มีความสัมพันธแบบ

Generalization

จงอธิบายความสัมพันธระหวางคลาส

CDCategories และ Jazz

หมวดหมูของซีดีมี 4 หมวด ซึ่ง

Jazz เปนหมวดหมูหนึ่ง หรือ Jazz

เปนแบบเฉพาะของ

CDCagegories นั่นเอง

UR2 จงอธิบายความสัมพันธระหวาง

คลาส ที่มีความสัมพันธแบบ

Association

จงอธิบายความสัมพันธระหวางคลาส

Supplier และ CD

Supplier จะเปนผูจัดสงซีดีมาใหแก

ระบบ โดยสามารถสงซีดีไดหลาย

แผนหรือไมสงเลยก็ได

UR3 จงอธิบายความสัมพันธระหวาง

คลาส ที่มีความสัมพันธแบบ

Aggregation/Composition

จงอธิบายความสัมพันธระหวางคลาส

ShoppingCart และ Order Item

ShoppingCart หนึ่งประกอบไป

ดวย Order Item หลายรายการ

หรือไมมีเลย

 UR4 จากความสัมพันธ R ระหวาง

คลาส C1 และคลาส C2 จง

อธิบายความหมายของ

multiplicity

จากความสัมพันธ Places ระหวาง

คลาส Customer และคลาส Order

ลูกคาจะตองสั่งซื้อซีดีอยางนอยกี่แผน

ลูกคาไมตองสั่งซื้อเลยก็ได (0 แผน)

แตเมื่อสั่งซื้อจะตองซื้ออยางนอย 1

แผน

106

chula
Text Box
106

Table B.4: Validation form of template questions for assessing understandability of sequence diagram.
คําถามวัดความสามารถในการทําความเขาใจแผนภาพซีเควนซ

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

คําถามตนแบบ ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

UMs1 การทํางาน W มีเมสเสจใดบางที่

เกี่ยวของ

จากแผนภาพซีเควนซ การคนหาและ

สั่งซื้อซีดี ในการสรางรายการสั่งซื้อ มี

เมสเสจใดบางที่เกี่ยวของ

addCD() และ createOrder()

UMs2 เมสเสจใดบางที่สามารถมีการสง

ซ้ําไดหลาย ๆ ครั้ง และมี

ความหมายวาอยางไร

จากแผนภาพซีเควนซ การคนหาและ

สั่งซื้อซีดี เมสเสจใดที่สามารถมีการสง

ซ้ําไดหลาย ๆ ครั้ง

createSR() หมายความวาการ

คนหาซีดีสามารถทําไดหลาย ๆ ครั้ง

UMs3 การเรียกใชเมสเสจ สามารถ

สลับลําดับการเรียกใชไดหรือไม

จากแผนภาพซีเควนซ การรับขอมูล

การตลาด การสง message

get_reveiw(), get_artist() และ

get_sample_clip สามารถสลับลําดับ

การเรียกใชไดหรือไม

ได

Messages เพื่อวัดความเขาใจเกี่ยวกับ

เมสเสจ ไดแก การทํางาน

การเรียกใช และการคืน

คาแอทริบิวต

UMs4 ผลมาจากการเรียกใชเมสเสจ M

จะมีการคืนคาแอทริบิวตใดกลับ

จากแผนภาพซีเควนซ การรับขอมูล

การตลาด ผลของการเรียกใชเมสเสจ

get_basic_info จะไดรับขอมูล (แอทริ

บิวต) ใดกลับมาบาง

title, price และ artist

107

chula
Text Box
107

Table B.5: Validation form of template questions for assessing understandability of sequence diagram (continued).
คําถามวัดความสามารถในการทําความเขาใจแผนภาพซีเควนซ

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

คําถามตนแบบ ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

UCo1 จงอธิบายความหมายของ

เงื่อนไข C

จากแผนภาพซีเควนซ การคนหาและ

สั่งซื้อซีดี จงอธิบายความหมายของ

เงื่อนไข [if found]

เงื่อนไข [if found] หมายถึงใน

กรณีที่คนหาซีดีแลวคนพบซีดีที่

ตองการคนหา

 Conditions เพื่อวัดความเขาใจเกี่ยวกับ

เงื่อนไข

UCo2 ถาเงื่อนไข C เปนจริง จะมีการ

สงเมสเสจใด

จากแผนภาพซีเควนซ การคนหาและ

สั่งซื้อซีดี ถาเงื่อนไข [if found] เปน

จริง จะมีการสง message ใด

create_cd_list()

US1 จงอธิบายแผนภาพซีเควนซนี้

แบบคราว ๆ

จงอธิบายแผนภาพซีเควนซ การคนหา

และสั่งซื้อซีดี แบบคราว ๆ

แผนภาพซีเควนซนี้เปนการคนหา

ซีดีของลูกคา ซึ่งสามารถทําการ

คนหาไดหลาย ๆ ครั้ง ตามเงื่อนไขที่

ตองการ จากนั้นจะทําการสั่งซื้อซีดี

โดยการเลือกซีดีลงในรถเข็นชอปปง

แลวจึงสรางรายการสั่งซื้อซีดี

US2 มีคลาสใดบางที่เกี่ยวของกับ

แผนภาพซีเควนซนี้

มีคลาสใดบางที่เกี่ยวของกับแผนภาพ

ซีเควนซ การคนหาและสั่งซื้อซีดี

Customer, CD, MKTInfo,Review,

Artist Info และ SampleClip

 Scenarios เพื่อวัดความเขาใจโดยรวม

เกี่ยวกับแผนภาพซีเควนซ

US3 จากแผนภาพซีเควนซนี้ คลาส
ใดบางที่จะถูกทําลาย หลังสิ้นสุด
การทํางาน

จากแผนภาพซีเควนซ การคนหาและ
สั่งซื้อซีดี คลาสใดบางที่จะถูกทําลาย
หลังสิ้นสุดการทํางาน

CD List และ ShoppingCart

108

chula
Text Box
108

Table B.6: Validation form of template questions for assessing modifiability of class diagram.
คําถามวัดความสามารถในการปรบัเปลี่ยนแผนภาพคลาส

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

รูปแบบคําถาม ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

Classes เพื่อวัดความสามารถใน

การปรับเปลี่ยนคลาส

MC1 ใหปรับเปลี่ยนคลาส โดยการเพิ่ม

ลบ หรือ แกไข

หากตองการจัดเก็บรายละเอียดของ

การรับสินคา (ซีดี) จากผูขาย

(Supplier) โดยขอมูลที่นํามาจัดเก็บ

ไดมาจากใบสงสินคา และนําขอมูล

ของการจัดสงดังกลาวมาปรับปรุง

จํานวนของซีดีที่มีอยูในราน จะตอง

แกไขแผนภาพคลาสอยางไร จงวาด

ภาพคลาสเฉพาะในสวนที่เกี่ยวของ

- เพิ่มคลาส Receipt และคลาส

CDItem

- ลากเสนความสัมพันธแบบ

 Association ระหวางคลาส

Receipt กับ Supplier

- ลากเสนความสัมพันธแบบ

 Association ระหวางคลาส

Receipt กับ CDItem

- ลากเสนความสัมพันธแบบ

 Association ระหวางคลาส

CDItem กับ CD

Attributes เพื่อวัดความสามารถใน

การปรับเปลี่ยนแอทริบิวต

MA1 ใหปรับเปลี่ยนแอทริบิวต โดยการ

เพิ่ม ลบ หรือ แกไข

หากตองการใหเปอรเซ็นตสวนลด

สําหรับลูกคาที่เปนลูกคาประจํา โดย

ลูกคาแตละคนมีเปอรเซ็นตสวนลดที่

แตกตางกัน จะตองแกไขแผนภาพ

คลาสอยางไร

เพิ่มแอทริบิวต discountPercent:

Integer ลงในคลาส Customer

Methods เพื่อวัดความสามารถใน

การปรับเปลี่ยนเมทธอด

MM1 ใหปรับเปลี่ยนเมทธอด โดยการ

เพิ่ม ลบ หรือ แกไข

หากตองการใหลูกคาสามารถทําการ

แกไขรายการสั่งซื้อได จะตองแกไข

แผนภาพคลาสอยางไร

เพิ่มเมทธอด update_order ลงใน

คลาส Order

109

chula
Text Box
109

Table B.7: Validation form of template questions for assessing modifiability of class diagram (continued).
คําถามวัดความสามารถในการปรบัเปลี่ยนแผนภาพคลาส

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

รูปแบบคําถาม ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

MR1 ใหปรับเปลี่ยนความสัมพันธ โดย

การเพิ่ม ลบ หรือ แกไข

หากรานขาย ซีดี แหงนี้ ตองการจะเพิ่ม

การขายเทปเพลงดวย โดยลูกคา

สามารถจะคนหาขอมูลของเทปเพลง

และกลวิธีทางการตลาดของเทปเพลง

เหมือนกับของซีดี ทุกประการ จะตอง

แกไขแผนภาพคลาสอยางไร

- เพิ่มคลาส Product และคลาส

Tape

- สรางความสัมพันธแบบ

Generalization โดยใหคลาส

CD และคลาส Tape เปนซับ

คลาสของคลาส Product

- ยายเสนความสัมพันธทุกเสนที่
เคยเชื่อมกับคลาส CD มาเชื่อม

กับคลาส Product แทน

 Relationships เพื่อวัดความสามารถใน

การปรับเปลี่ยน

ความสัมพันธ

MR2 ใหแกไข multiplicity ของ

ความสัมพันธ

หากตองการใหคนที่มาสมัครสมาชิก

เพื่อเปนลูกคาของทางราน ตองสั่งซื้อ

ซีดี และสั่งซื้ออยางนอยคราวละ 10

แผน จะตองแกไขแผนภาพคลาส

อยางไร

- แกไข multiplicity ของ

ความสัมพันธระหวางคลาส

Customer กับ Order เปน 1

และ 1..n

- แกไข multiplicity ของ

ความสัมพันธระหวางคลาส

Order กับ Order Item เปน 1

และ 10..n

110

chula
Text Box
110

Table B.8: Validation form of template questions for assessing modifiability of sequence diagram.
คําถามวัดความสามารถในการปรบัเปลี่ยนแผนภาพคลาส

ความสอดคลองของรูปแบบ

คําถามกับวัตถุประสงค
สวนประกอบ วัตถุประสงค หมายเลข

คําถาม

ตนแบบ

รูปแบบคําถาม ตัวอยางคําถาม
จากระบบการขายซีดีออนไลน

คําตอบ

สอดคลอง ไม

แนใจ
ไม

สอดคลอง

MMs1 ใหปรับเปลี่ยนการสงเมสเสจ โดย

การเพิ่ม ลบ หรือแกไข

จากแผนภาพซีเควนซ การคนหาและ

สั่งซื้อซีดี ภายหลังการสรางรายการ

สั่งซื้อ ถาตองการใหลูกคาทราบ

รายละเอียดของการสั่งซื้อทั้งหมด จะ

แกไขแผนภาพซีเควนซอยางไร จง

อธิบาย

หลังเมสเสจ create_order() เพิ่ม

การสง เมสเสจ display() จาก

คลาส Customer มายังคลาส

Order

 Messages เพื่อวัดความสามารถใน

การปรับเปลี่ยนเมสเสจ

MMs2 ใหปรับเปลี่ยนการคืนคาแอทริ

บิวต โดยการเพิ่ม ลบ หรือแกไข

จากคําถามขอ MA1 หากตองการให

ลูกคาสามารถทราบเปอรเซ็นตสวนลด

ของตัวเองได จะมีการสรางแผนภาพซี

เควนซอยางไร

- สรางเมสเสจ

getDiscountPercent

- คืนคา discountPercent จาก

คลาส Customer

Conditions เพื่อวัดความสามารถใน

การปรับเปลี่ยนเงื่อนไข

MCo1 ใหปรับเปลี่ยนเงื่อนไข โดยการ

เพิ่ม ลบ หรือแกไข

จากแผนภาพซีเควนซ การคนหาและ

สั่งซื้อซีดี ลูกคาที่จะทําการสั่งซื้อซีดี ได

จะตองผานการตรวจสอบเครดิตการด

กอนวาใชไดจริงหรือไม จะแกไข

แผนภาพซีเควนซอยางไร

- หลังเมสเสจ create_order

เพิ่มการสงเมสเสจ

checkCredit()

- ตอจากนั้นสงเมสเสจ

confirm_order () โดยบนเมส

เสจนี้ ใหเพิ่มเงื่อนไข [if

checkCredit is ok]

Scenarios เพื่อวัดความสามารถใน

การปรับเปลี่ยน scenario

MS1 ใหสรางแผนภาพซีเควนซตาม

scenario ที่เกิดขึ้นใหม

จากคําถามขอ MC1 จงสรางแผนภาพ

ซีเควนซเพื่ออธิบาย scenario ดังกลาว

 (คําตอบขึ้นอยูกับการออกแบบ)

111

chula
Text Box
111

 112

Table B.9: The IOC values of all template questions.
Template

question No.
The IOC

value
Validation result Template question

No.
The IOC

value
Validation result

UC1 1 accepted UMs4 1 accepted
UA1 1 accepted UCo1 1 accepted
UA2 0.67 accepted UCo2 1 accepted
UA3 1 accepted US1 1 accepted
UM1 1 accepted US2 1 accepted
UM2 1 accepted US3 1 accepted
UM3 0.67 accepted MC1 1 accepted
UM4 1 accepted MA1 1 accepted
UR1 1 accepted MM1 1 accepted
UR2 1 accepted MR1 1 accepted
UR3 1 accepted MR2 1 accepted
UR4 1 accepted MMs1 1 accepted

UMs1 1 accepted MMs2 1 accepted
UMs2 1 accepted MCo1 1 accepted
UMs3 1 accepted MS1 1 accepted

B.3 An Example of the Examinations

 The examination of each software design model contained 20 questions for

assessing understandability of the class and sequence diagrams. All of questions

related to understanding of software structure and behavior described by the elements

in class and sequence diagrams including attributes, methods, classes, relationships,

messages and conditions. There are 10 questions for assessing modifiability of the class

and sequence diagrams. Subjects were asked to modify design diagrams with tasks

covering on changing and adding software functionality. The following is the

examination of a sample software named ‘Online CD shop system’.

Table B.10: General description of Online CD shop system.
ขอมูลระบบรานขายซีดีออนไลน
ฟงกชันการทํางานของระบบ

 ระบบนี้เปนระบบจัดการการขายซีดีเพลงทางอินเทอรเนต โดยลูกคาสามารถสั่งซื้อสินคาผาน

ทางเว็บไซตของระบบ โดยมีฟงกชันรองรับการทํางานดังนี้ ฟงกชันการคนหาขอมูลสินคา ,ฟงกชัน

การสั่งซื้อสินคา และฟงกชันการโฆษณาสงเสริมสินคา ลูกคาทุกคนจะตองทําการกรอกขอมูล

สวนตัว และสามารถสั่งซื้อสินคาโดยใชบัตรเครดิต

 แผนภาพคลาส

Individual

Organizational
authorizeName : String

TitleSearch

search()

ArtistSearch

search()

Rock Jazz Classical

Credit Card Clearance
Center

checkCredit()

Address
street : String
city : String
state : String
country : String
zipcode : String

getAddress()
updateAddress()

Customer
customerID : Number
customerName : String
password : String
email : String
creditcardNO : Number

updateCustomer()
order()
search()

0..n

0..n

0..n

0..n

checks

11 Search REQ

createSR()
search()

0..n

0..n

0..n

0..n

makes

Review

get_review()

Artist Info

get_artist_info()

Sample Clip

get_sample_clip()

Order
orderID : Number
date : Date
shippingFee : Number
totalPrice : Number

create_order()
display()

0..n1 0..n1

places

ShoppingCart

addCD()
shoppingCart()
display()

1

1

1

1

of

CD List

create_cd_list()
find_cd()

0..11 0..11
results in

Supplier
supplierName : String
supplierAddress : String

MKT Info

get_mk_info()

Order Item
amount : Number

1..n1 1..n1

includes

0..n0..n

CategorySearch

search()

CD
title : String
artist : String
price : Number
amount : Number

get_basic_info()
updateInfo()

0..n

0..n

0..n

0..n

consists of

0..n

1..n

0..n

1..n

distributes

0..n

1

0..n

1

promotes

1

0..n

1

0..n
contains

CDCategories
11

use

0..n

1..n

0..n

1..n

classifies

Pop

Figure B.1: Class diagram of Online CD shop system.

113

chula
Text Box
113

 114

แผนภาพซีเควนซ

แผนภาพซีเควนซการคนหาและสั่งซื้อซีด ี

Figure B.2: Sequence diagram of searching and ordering CD.

แผนภาพซีเควนซการรับขอมูลการตลาด

Figure B.3: Sequence diagram of marketing information.

 : Customer aSR : Search REQ aCDL : CD List cds : CD List aSC : ShoppingCart anOrder : Order

createSR()

find_cd()

addCD()

create_order()

create_cd_list()[if found]

* [for each search]

 : Customer aCD : CD mi : MKT Info aR : Review aA : Artist Info sc : Sample Clip

get_basic_info()
get_mk_info()

get_review()

get_artist_info()

get_sample_clip()

artist

title, price

 115

ชื่อ ..นามสกุล...

เวลาเริ่มทําเวลาสิ้นสุดการทํา

 ชุดที่ 1 ขอละ 1 คะแนน

ช่ือระบบ: รานขายซีดีออนไลน

คําถามที่เกี่ยวของกับแผนภาพคลาส
จงเติมคําตอบลงในชองวาง

1. คลาส Order สามารถใหบริการอะไรไดบาง

 ……...

2. แอทริบิวต artist ของคลาส CD สามารถถูกเรียกใชหรือแกไขจากคลาสอื่นโดยตรงไดหรือไม

 ……...

3. แอทริบิวตใดของคลาสใดบาง ที่มีผลตอคาของแอทริบิวต totalPrice ของคลาส Order

 ……...

4. คลาส Organization มีแอทริบิวตอะไรบาง

 ……...

5. เมทธอด Search() ของคลาส ArtistSearch ทํางานอะไร

 ……...

6. เมทธอด search() ของคลาส SearchREQ สามารถถูกเรียกใชจากคลาสอื่นไดหรือไม

 ……...

7. เมทธอดใดของคลาสใดควรจะเรียกใชเมทธอด find_CD() ของคลาส CDList

 ……...

8. คลาส Individual มีเมทธอดใดบาง

 ……...

9. จงอธิบายความสัมพันธระหวางคลาส CDCategories และ Jazz

 ……...

10. จงอธิบายความสัมพันธระหวางคลาส Supplier และ CD

 ……...

11. จงอธิบายความสัมพันธระหวางคลาส ShoppingCart และ Order Item

 ……...

12. จากความสัมพันธ Places ระหวางคลาส Customer และคลาส Order ลูกคาจะตองส่ังซื้อซีดี อยาง

นอยกี่แผน

 ……...

 116

คําถามที่เกี่ยวของกับแผนภาพซีเควนซ
จงเติมคําตอบลงในชองวาง

13. จากแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี ในการสรางรายการสั่งซื้อ มีเมสเสจใดบางที่เกี่ยวของ

 ……...

14. จากแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี เมสเสจใดที่สามารถมีการสงซ้ําไดหลาย ๆ ครั้ง และมี

ความหมายวาอยางไร

 ……...

15. จากแผนภาพซีเควนซ การรับขอมูลการตลาด การสง message get_reveiw(), get_artist() และ

get_sample_clip สามารถสลับลําดับการเรียกใชไดหรือไม

 ……...

16. จากแผนภาพซีเควนซ การรับขอมูลการตลาด ผลของการเรียกใชเมสเสจ get_basic_info จะไดรับ

ขอมูล (แอทริบิวต) ใดกลับมาบาง

 ……...

17. จากแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี จงอธิบายความหมายของเงื่อนไข [if found]

 ……...

18. จากแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี ถาเงื่อนไข [if found] เปนจริงจะมีการสง message

ใด

 ……...

19. จงอธิบายแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี แบบคราว ๆ

 ……...
20. จากแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี คลาสใดบางที่จะถูกทําลาย หลังส้ินสุดการทํางาน

 ……...

 117

ชื่อ ..นามสกุล...

เวลาเริ่มทําเวลาสิ้นสุดการทํา

 ชุดที่ 2

ชื่อระบบ: รานขายซีดีออนไลน

จงเขียนอธิบาย หรือวาดแผนภาพในสวนที่เกี่ยวของ
คําถามที่เกี่ยวของกับแผนภาพคลาส

1. หากตองการจัดเก็บรายละเอียดของการรับสินคา (ซีดี) จากผูขาย (Supplier) โดยขอมูลที่นํามาจัดเก็บ

ไดมาจากใบสงสินคา และนําขอมูลของการจัดสงดังกลาวมาปรับปรุงจํานวนของซีดีที่มีอยูในราน

จะตองแกไขแผนภาพคลาสอยางไร จงวาดภาพคลาสเฉพาะในสวนที่เกี่ยวของ (3 คะแนน)

2. หากตองการใหเปอรเซ็นตสวนลดสําหรับลูกคาที่เปนลูกคาประจํา โดยลูกคาแตละคนมีเปอรเซ็นต

สวนลดที่แตกตางกัน จะตองแกไขแผนภาพคลาสอยางไร (1 คะแนน)

3. หากตองการใหลูกคาสามารถทําการแกไขรายการสั่งซื้อได จะตองแกไขแผนภาพคลาสอยางไร

 (1 คะแนน)

4. หากรานขายซีดีแหงนี้ ตองการจะเพิ่มการขายเทปเพลงดวย โดยลูกคาสามารถจะคนหาขอมูลของเทป

เพลง และกลวิธีทางการตลาดของเทปเพลง เหมือนกับของซีดีทุกประการ จะตองแกไขแผนภาพคลาส

อยางไร (3 คะแนน)

5. หากตองการใหระบบสามารถใหขอมูลทางการตลาดเพิ่มเติม โดยใหลูกคาสามารถเขามาตั้งคําถาม

เพื่อขอขอมูลตามที่ตองการได จะตองแกไขแผนภาพคลาสอยางไร (2 คะแนน)

6. หากตองการใหคนที่มาสมัครสมาชิกเพื่อเปนลูกคาของทางราน ตองส่ังซื้อซีดี และส่ังซื้ออยางนอย

คราวละ 10 แผน จะตองแกไขแผนภาพคลาสอยางไร (2 คะแนน)

คําถามที่เกี่ยวของกับแผนภาพซีเควนซ
หมายเหตุ : กรณีที่ไมมีแอทริบิวตหรือเมทธอดในแผนภาพคลาส สามารถเพิ่มเติมไดเอง โดยใหเขียนอธิบาย

การเพิ่มเติมดังกลาวดวย

7. จากแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี ภายหลังการสรางรายการสั่งซื้อ ถาตองการใหลูกคา

ทราบรายละเอียดของการสั่งซื้อทั้งหมด จะแกไขแผนภาพซีเควนซอยางไร (1 คะแนน)

8. จากคําถามขอ 2) หากตองการใหลูกคาสามารถทราบเปอรเซ็นตสวนลดของตัวเองได จะมีการสราง

แผนภาพซีเควนซอยางไร (2 คะแนน)

9. จากแผนภาพซีเควนซ การคนหาและสั่งซื้อซีดี ลูกคาที่จะทําการสั่งซื้อซีดี ได จะตองผานการตรวจสอบ

เครดิตการดกอนวาใชไดจริงหรือไม จะแกไขแผนภาพซีเควนซอยางไร (2 คะแนน)

10. จากคําถามขอ 1) จงวาดแผนภาพซีเควนซเพื่ออธิบาย scenario ดังกลาว (3 คะแนน)

 118

APPENDIX C

QUESTIONNAIRE

Personal Details and Experience

1. What is your age?

2. How long have you worked in field of software engineering?

Please answer the following 4 questions based on this experience scale:

 None Little Average Substantial Professional

 1 2 3 4 5

3. What is your experience with software engineering practice?

4. What is your experience with design documents in general?

5. What is your experience with modeling with UML for objected-oriented

design?

6. What is your experience with software maintenance?

Motivation and Performance

Please answer the following 3 questions based on this scale:

 Not Poorly Fairly Well Highly

 1 2 3 4 5

7. Estimate how motivated you were to perform well in this experiment.

8. Estimate how well you understood what was required of you.

9. Estimate your overall understanding of the design documents.

10. Can you complete all the tasks within time out period?

11. If you could not complete all the tasks, please indicate why.

12. In your opinion, what caused you the most difficulty to understand the design

documents?

 119

13. In your opinion, what caused you the most difficulty to modify the design

documents?

14. Estimate the accuracy (in percent) of your answer to the examinations.

Miscellaneous

15. Have you learned anything from participating in this experiment? Please

specify.

16. Any additional comments?

 120

APPENDIX D

USER MANUAL OF A TOOL FOR MEASURING STRUCTURAL
COMPLEXITY METRICS AND PREDICTING

MAINTAINABILITY

D.1 Tool Installation
Steps for installing a Java tool for Measuring structural complexity metrics And

Predicting maintainability (JMAP) are listed as follows.

1) Install JavaTM 2 Standard Edition Runtime Environment (JRE). This program

can be downloaded from http://java.sun.com.

2) Copy folder MLP to C:\

3) Copy folder JMAP to C:\

4) Open C:\JMAP\setEnv.bat with Notepad or other text editors. The window as

shown in Figure D.1 will be appeared. Edit value of JAVA_HOME in line 2 to

identify the directory in which JRE is installed. In this case, value of

JAVA_HOME is C:\j2sdk1.4.2_03.

5) Double click C:\JMAP\run.bat for running the tool. The window as shown in

Figure D.2 will be displayed.

Figure D.1: Content of JMAP.bat.

 121

Figure D.2: A tool for measuring structural complexity metrics and predicting

maintainability.

D.2 User Manual for Utilizing a Tool for Measuring Structural Complexity Metrics and
 Predicting Maintainability

D.2.1 Open Input File
Input file of this tool is in a format of XML file which contains the detail of class

and sequence diagrams of a software. From Figure D.2, choose File> Open or click

to open an input file. The window as shown in Figure D.3 will be displayed. Select an

input file and click Open.

Figure D.3: Window for open input file.

 122

 D.2.2 Measuring Structural Complexity Metrics
Choose Calculation > Calculate Metrics. The window as shown in Figure D.4 will

be displayed. Input value of ANCM and click Ok. The values of structural complexity

metrics will be computed and shown as Figure D.5.

Figure D.4: Window for input value of ANCM.

Figure D.5: Window for display the values of structural complexity metrics.

D.2.3 Predicting Understandability, Modifiability and Maintainability
Choose Prediction > Predict Understandability or Prediction > Predict

Modifiability or Prediction > Predict Maintainability according to a quality that you want

to predict. Select a prediction technique by choosing Discriminant Analysis or Decision

 123

Tree or MLP Neural Network. The result of prediction will be presented as Figure D.6 –

Figure D.8.

Figure D.6: Window for display the result of prediction by technique of Discriminant

Analysis.

Figure D.7: Window for display the result of prediction by technique of Decision Tree.

 124

Figure D.8: Window for display the result of prediction by technique of Neural Network.

D.2.4 Exit Program
Choose File > Exit

125

BIOGRAPHY

Name Matinee Kiewkanya

Sex Female

Date of Birth November 8,1974

Place of Birth Chiang Mai
Education:
2006 Ph.D. in Computer Engineering, Chulalongkorn University

Funding source : The Royal Thai Government Scholarship

2001 M.Sc. in Computer Science, Prince of Songkla University

Funding source : The Royal Thai Government Scholarship

1996 B.Sc. in Computer Science, Chiang Mai University

Funding source : The Royal Thai Government Scholarship
Experience:
Jun 2004 – Sep 2004 National ICT Australia, Sydney, Australia

 Function: Research Student

Apr 2002 – Jul 2003 Department of Computer Engineering, Chulalongkorn

University, Thailand

Project: Object-Oriented Software Metrics

(A Collaborative Project between Stock

Exchange of Thailand and Department of

Computer Engineering)

Function: Research Assistant

Apr 1998 – Mar 1999 Department of Computer Science

 Faculty of Science, Prince of Songkhla University,

Thailand

 Function: Teacher Assistant

Jun 1996 – Present Department of Computer Science,

 Faculty of Science, Chiang Mai University, Thailand

 Function: Lecturer

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Scope and Limitation
	1.4 Contribution
	1.5 Research Methodology
	1.6 Organization of the Thesis

	Chapter II Background and Literature Review
	2.1 Background
	2.2 Literature Review

	Chapter III Constructing Maintainability Models
	3.1 Metric Selection
	3.2 A Controlled Experiment
	3.3 Experimental Analysis and Results
	3.4 Threats to Validity

	Chapter IV A New Proposed Set of Structural Complexity Metrics for Maintainability
	4.1 Metric Definition
	4.2. Metric Derivation
	4.3 Metric Validation
	4.4 Metric Threshold

	Chapter V Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	References
	Appendix
	Vita

