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CHAPTER |

INTRODUCTION

1.1 Motivation

Software maintenance phase is frequently concerned as less important than the
design and development phases of the system life cycle. In fact, many researches
report that 50-70% of the total software life cycle is spent on software maintenance
[1,2,3].

Object-oriented techniques have become increasingly popular as a software
developing methodology. More empirical research is needed to investigate that
objected-oriented techniques provide significant advantages over other techniques.
One particular area which warrants immediate investigations is maintainability of object-
oriented software. Object-oriented development techniques are promised to increase
maintainability through the better data encapsulation. If this statement is true, an
organization switching to object-oriented techniques will be likely to save large amounts
of money through the lifetime of an object-oriented software. Usually, maintainability is
the external quality characteristic that can be evaluated once the software is finished or
nearly finished. In order to improve the quality and reduce the increasing high cost of
software maintenance, measuring maintainability should be done at the early phase.

Software metrics can be used to capture software maintainability. Bandi and his
colleagues reported. the experimental-result of validating three-existing object-oriented
design complexity metrics. The result showed that each of the three metrics can be a
useful indicator for predicting - maintenance: performance [4]. Genero et al. investigated
the possibility that structural complexity and size metrics can be used as good
predictors of class diagram maintainability by constructing maintainability prediction
models based on metrics of UML class diagrams [5]. Some software maintainability
metrics which can be applied to UML specification are also proposed by [6,7,8].

The Unified Modeling Language (UML) [9] is accepted as an industrial standard

for modeling object-oriented design. It defines notations and semantics of modeling



elements and the relationships among these elements. In its current form, class and
sequence diagrams are two major artifacts acted as the blueprints of object-oriented
software. Class diagram, a conceptual model of object-oriented software, shows the
classes of the system, their inter-relationships, and the operations and attributes of the
classes. Meanwhile, class diagram represents static structure, dynamic structure of
software is represented by sequence diagram. Sequence diagram is utilized for
modeling software behavior in each scenario. Therefore, the quality of object-oriented
software ultimately implemented is heavily dependent on the quality of both diagrams.
From now on, the term UML class and sequence diagrams will be interchanged with the
term software design model.

This thesis proposes methodology for constructing maintainability models from
metrics called structural complexity metrics and aesthetics metrics. These metrics can
be measured from class and sequence diagrams produced at early phase of software
life cycle. Software developers can utilize the models to identify 3 maintainability levels
of software design model: easy, medium and difficult. When a software design model is
categorized into medium or difficult level, software developers can decide whether to
redesign it or not in order to improve its maintainability. An automated tool for predicting

maintainability of software design model is also constructed.

1.2 Objectives

The objectives of this research are as follows:

1. To investigate whether structural complexity metrics and aesthetic metrics
can be indicators of class and- sequence diagrams maintainability and its
sub-characteristics: understandability-and modifiability.

2. To create understandability, modifiability- and" maintainability models from
structural complexity metrics and aesthetic metrics using classification
techniques.

3. To develop an automated tool for measuring structural complexity metrics
from UML class and sequence diagrams and predicting understandability,

modifiability and maintainability by using the obtained prediction models.



4,

To propose a new set of structural complexity metrics for measuring

understandability and modifiability from class diagrams.

1.3 Scope and Limitation

1.

This work focuses on only two sub-characteristics of maintainability namely
understandability and modifiability.

Metrics used in this work are structural complexity metrics and aesthetic
metrics.

This work will use more than 30 software design models for constructing
understandability, modifiability and maintainability models.

Class and sequence diagrams used in this work must be constructed using
Rational Rose.

The tool for transforming class and sequence diagrams into XML document
is Unisys Rose XML Tool.

This work will construct an automated tool for measuring structural
complexity metrics from UML class and sequence diagrams. This tool can
predict understandability, modifiability and maintainability from structural

complexity metrics by using the obtained prediction models.

1.4 Contribution

The outcomes of this research will be the followings:

1.

2.

3.

Models for predicting ‘understandability,- modifiability and maintainability of
UML class and sequence diagrams.

An automated tool for measuring structural complexity metrics and
predicting understandability, modifiability and maintainability by using the
obtained prediction models.

A new set of structural complexity metrics for measuring understandability

and modifiability from class diagrams.



1.5 Research Methodology

1. Review and study the research papers related to metrics and maintainability
of object-oriented design.

2. Study XML, Rational Rose and Unisys Rose XML Tool.

3. Study Discriminant analysis, Decision tree and MLP neural network.

4. Set up and perform an experiment in order to capture understandability,
modifiability and maintainability of sample software design models.

5. Construct understandability, modifiability and maintainability models using
Discriminant analysis, Decision tree and MLP neural network.

6. Compare models constructed using Discriminant analysis, Decision tree and
MLP neural network.

7. Analyze the result and make conclusions.

8. Develop a tool for measuring structural complexity metrics and predicting
understandability, modifiability and maintainability by using the obtained
prediction models.

9. Define and derive a new set of structural complexity metrics for measuring
understandability and modifiability from class diagrams.

10. Write thesis.

1.6 Organization of the Thesis

The remainder of the thesis is organized into six chapters as follows.

Chapter Il describes  theoretical background  including introduction of UML,
software measurement and some statistical and classification techniques used in this
work.-This chapter also reviews the literature in UML metrics, maintainability of object-
oriented software and aesthetic criteria of class and sequence diagrams.

Chapter lll presents a controlled experiment for constructing maintainability
models from structural complexity and aesthetic metrics using 3 techniques:
Discriminant analysis, Decision tree and MLP neural network.

Chapter IV proposes a new set of structural complexity metrics for measuring

maintainability from class diagrams. Validating the proposed metrics is also presented.



Finally, chapter V concludes research work and presents some directions for the

future work.
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CHAPTER I

BACKGROUND AND LITERATURE REVIEW

2.1 Background

This section reviews the theoretical background used in this thesis including

UML, software measurement, MANOVA and classification techniques.

2.1.1 UML

The Unified Modeling Language (UML) is a standard language for specifying,
visualizing, constructing, and documenting the artifacts of software systems, as well as
for business modeling and other non-software systems [9]. The UML is a very important
tool for modeling object-ariented software design. Using the UML helps project teams
communicate, explore potential designs, and validate the architectural design of the
software.

Each UML diagram is designed to let developers and customers view the
software from different perspective and varying degrees of abstraction. UML diagrams
commonly created in visual modeling tools include Use case diagram, Class diagram,
Object diagram, Sequence diagram, Collaboration diagram, State diagram, Activity

diagram, Component diagram and Deployment diagram.

2.1.1.1 Class Diagram

The purpose of a class diagram is to depict-the classes within a model. In an
object-oriented application, classes have attributes (member variables), operations
(member functions) and relationships with other classes. The fundamental element of

the class diagram is an icon that represents a class. This icon is shown in Figure 2.1.

Class

Attributes

Operations

Figure 2.1: The class icon.



Class icon is simply a rectangle divided into three compartments. The top

compartment contains the name of the class. The middle compartment contains a list of

attributes, and the bottom compartment contains a list of operations. In many diagrams,

the bottom two compartments are omitted. The goal is to show only those attributes and

operations that are useful for the particular diagram.

The static relationships and their notations are as follows:

Association is a relationship between classes which concerns the
connection between its instances. An association is denoted by a line drawn
between the participating classes.

Aggregation and composition are relationships between an aggregate A and
a component B, “B is a part of A”. Aggregation is also called a "has a"
relationship. A weak form of aggregation is denoted with an open diamond. It
denotes that the aggregate class (the class with the diamond touching it) is
someway the “whole”, and the other class in the relationship is somehow the
“part” of that whole. Composition is a strong form of aggregation. It is
represented by the black diamond. Component cannot exist without
aggregate and dies with its aggregate.

Generalization is a relationship between a general concept A (superclass)
and a more special concept B (subclass). The generalization relationship in
UML is depicted by a triangular arrowhead. This arrowhead points to the
base class. One or more lines proceed from the base of the arrowhead
connecting it to-the derived classes. Generalization is also called an "is a"
relationship, because the subclass is a type of the super class.

Dependency is a relationship that onerclass instantiates-another or that it
uses the other as an input parameter. It is represented by a dotted line with
an open arrowhead.

Realization is a relationship that one entity (normally an interface) defines a
set of functionalities as a contract and the other entity (normally a class)
"realizes" the contract by implementing the functionality defined in the

contract. It is represented by a dotted line with a triangular arrowhead.



Table 2.1: Notation of class relationships.

Relationship

Notation

Association

Generalization

Aggregation

Composition

Dependency

Realization

The UML notation for class diagram is shown below.

Class
\A ListofBidders
List
=17 NEid(
\ [MtimeElapsed()
Class Name e .
Generalization Modifier ? — Aggregation
Attributes ltem ‘ Bidder
\ E8currentBid : Money BEid
EEbidincrement : Money EEmaxBidAmount
BEdescription : String :
@ photo : Picture FEbid()
EEbidUp(
Operations #setWinningBid() 8y ouAreHighBidder()

\ MsetHighBidder() Association
MgetCurrentBid() Role Name :
BgetBidAmount() <« BidTimer

(e
. . .
. highBidder setTimer()
Multiplicity/ // g

Cardinality

Figure 2.2: Notation for class diagram.

domain.

- Class :

behavior, and relationships.

meaning within the application domain.

Object : A specific entity.-or concept that has meaning in an application

A definition of a set of potential objects that have the same data,

Attribute : A data value defined in a class and held within an object that has

- Behavior : A service defined in a class and provided by an object.
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Operation : The implementation of a behavior in an object-oriented
programming language.

Modifier : Modifier of an operation or attribute defines the level of access that
objects have to it.

Multiplicity/ Cardinality : The minimum and maximum number of objects that
participate in an association or aggregation. The common ones are 0..*, 0..1,
1..%,and 1..1.

Role Name : It is a name describing the participation of the class in the

association more exactly.

.1.2 Sequence Diagram

A sequence diagram depicts the sequence of actions that occur in a software.

The invocation of methods in each object, and the order in which the invocation occurs

are captured in a sequence diagram. It is a very useful diagram to easily represent the

dynamic behavior of a software. Typically, a sequence diagram describes the detailed

implementation of a single use case (or one variation of a single use case). A sequence

diagram is two-dimensional in nature. The horizontal axis shows the life of the

represented object, while the vertical axis shows the sequence of the creation or

invocation of these objects. The UML notation for sequence diagram is shown below.
Object
——5| :Bidder iListof dtem :BidTimer
; Bidders ‘
- Condition "
Bidder j setTimer()
i i newBidder(item, Active
bid(item,maxBidAmount) m idAmE)unt) \ f
> | | [validBidder] j Message
] 1
_ bidUp()
Lifeline _w *[for each Bidder] | | Until
< noAddedBbidUps
. itemElapsed()
Iteration <
Reg‘m setWinningBidr()
. . (currentBid)
ouAreHighBidder
youAreHighBidder() {y g 0 /V ><
(. .................................................
|| Deletion

Figure 2.3: Notation for sequence diagram.
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- Object : Each of the objects that participate in the processing represented in
the sequence diagram is drawn across the top.

- Lifeline: A dotted line is dropped from each object in the sequence diagram.
Arrows terminating on the lifeline indicate messages (commands) sent to the
object. Arrows originating on the lifeline indicate messages sent from this
object to another object. Time flows from top to bottom on a sequence
diagram.

- Active : To indicate that an object is executing, i.e., it has control of the CPU,
the lifeline is drawn as a thin rectangle.

- Message : A horizontal arrow represents a message (command) sent from
one object to another.

- Return : When one object commands another, a value is often returned. This
may be a value computed by the object as a result of the command or a
return code indicating whether the object completed processing the
command successfully.

- Condition : Square brackets are used to indicate a condition, i.e., a Boolean
expression. The message is sent only if the expression is TRUE.

- lteration : Square brackets proceeded by an asterisk (*) indicate iteration.
The message is sent multiple times. The expression within the brackets
describes the iteration rule.

- Deletion : An X is used to indicate the termination (deletion) of an object.

2.1.2 Software Measurement

Measurement 'is the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them according to
clearly defined rules [10]. In the assessment process prescribed by 1ISO-9126 [11], the
goals of measurement must first be defined, then the measurement itself is specified,
the means of measurement are implemented and the measurement is carried out. In the
final step, the measurement results are evaluated.

Software metrics have been classified by Fenton [10] into three classes.



11

- Process metrics are used to measure characteristics of software processes
such as development process, maintenance process and testing process.
Typical process characteristics are effort involved, costs occurred, tasks
accomplished and elapsed time.

- Product metrics are used to measure characteristics of software products
such as programs, components, system and databases. Typical product
characteristics are size, complexity and various qualities.

- Resource metrics are used to measure characteristics of software resources
which may be hardware, software or person. Typical resource
characteristics are performance, availability, reliability and productivity.

Fenton distinguishes further between internal and external characteristics.

- Internal attributes of a product, process or resource are those which can be
measured purely in terms of the product, process or resource themselves.
Internal attributes of software products are, for example, complexity,
modularity, testability and reusability. They can be measured by examining
source code themselves.

- External attributes are those which can only be measured with respect to
how the product, process or resource relates to their environment. External
attributes of software products are, for example, reliability, security, usability
and performance. They can only be measured by testing the product in a

particular environment.

2.1.3 MANOVA

MANOVA .is simply-an-ANOVA with several dependent variables [12]. This is a
test of overall relationship between groups and predictors by considering variance in the
set of predictors that effects on group classification. MANOVA follows the model of
ANOVA where variation in samples is partitioned into between-group variation and
within-group variation. In MANOVA, however, each sample has a score on each of
several independent variables. When several independent variables of each sample are

measured, there is a matrix of scores (subjects by independent variables) rather than a
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simple set of independents within each group. Matrices of different scores are formed
by subtracting from each score and appropriate mean. Then the matrix of differences is
squared. When the squared differences are summed, a sum-of-squares-and-cross-
products matrix, SS matrix, is formed, analogous to a sum of squares in ANOVA.
Determinants of the various SS matrices are found, and ratios between them provide
tests of hypotheses about the effects of the dependent variables on the linear
combination of independent variables.

The between-group sums of squares and cross-products matrix can be shown
as below. Itis denoted by SS,, .
(ss,, SP.,, SP R

b;1,2 513 . e S ™EN

b;2,p

SSbg = SPb;tZ SSb;Z SPSb;z,s .,....SP
SPb;1,3 SPb;2,3 SSb;3 ........ SP

b;3,p

\Spbﬂ,p SPb;Z,p SPb;3,p Ssbp_/

where

S s = SN, (X jr =X )X 15 = Xa) = S (T, T,,/n,)~T,T,/N
and

$Sy, = Py, 30N (X jr = X 1) = S (T2 /n,)=T2/N
where Tj’r is the sum of observations on independent variable Iin group J and T, is
the sum of all observations in all groups on independent variable I .

The within-group covariance matrix can be.shown as below. It is denoted by

SSg .
q 15,
SPW;M SI:)vv;1,2 SPW;1,3 SPW;W,p
SSWg = SPW;1,2 SSvv:2,2 SPSW;ZS SPW:Z,p
SPW;1,3 SPW;Z,S SSW;S,B ....... SPW;S,p
g SP.ip SPuop SPuap ”_SSW;p'p/

where
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SPWr,s=> > (X, =X )Xo =Xs)=D D X, X = > (T, T,./n))
In ANOVA, ratios of variances are formed to test main effects and interactions. In

MANOVA, ratios of determinants are formed to test main effects and interactions when
using Wilks’ lambda. These ratios follow the general form
sl
Sy, + S,
An approximation to F has been derived that closely fits A.  The following
procedure for calculating approximate F is based on Wilks’ lambda and the various

degrees of freedom associated with it.

. 1-vy | df
A te F(df,,df,)=|—= | =%
pproximate ( 1 2) [ ’ J[ dflj

where df, and df, are defined below as the degrees of freedom for testing the F ratio,
and Yis

y e Al/S

g — pz(dfbg)2_4
p? +(df, )* -5

dfl - p(dfbg)

df, = s[(dfwg)— p—dh, +1}_{ p(dfbg)_z}

2 2

where P is the number of independent variables,
df,,-is the number of groups minus one or k-1,
dfWg is the number of groups times the quantity n -1, where n is the number of
cases per group. Because n is often not equal for all groups, an alternative equation for
df,, is N —k, where N is the total number of cases in all groups.
If obtained F exceed critical F, we can conclude that groups of sample can be

distinguished on the basis of the combination of the independent variables or predictors.
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2.1.4 Classification Techniques

In this research, prediction models are constructed by applying three

techniques: Discriminant analysis, Decision tree and MLP neural network.

2.1.4.1 Discriminant Analysis

Discriminant analysis is multivariate technique concerned with separating
distinct groups of object (or observations) and with allocating new objects to previously
defined groups [13]. With deriving a variation, the linear combination of the two or more
independent variables will discriminate best between defined groups. Linear
combination for discriminant analysis is also known as discriminant function.

This thesis applies a technique which uses Fisher’s linear discriminant function.
To assign cases into groups, a classification function is developed for each group. Data
for each case are inserted into each classification function to develop a classification
score for each group for the case. The case is assigned to the group for which it has the
highest classification score.

In its simplest form, the basic classification equation for the j th group
(j=12,.k)is

S;=Cjp+CuX +Cj Xyttt Cpp X
where SJ- is the classification score for group j,
X is the independent variable 1,
Cji isthe classification coefficient for independent variable i of group j,
C,o s @ constant:

The row matrix of classification coefficients for group | Cj =Cj;,Cjp,Cyp is
found by multiplying the inverse-of the within-group variance-covariance 'matrix (W _1)
by a column matrix of means for group J on the pindependent variables (M;= le,
ng, ..... , Yjp). In matrix form,

C; =W‘1Mj
The within-group covariance matrix (W) is produced by dividing each element

in the cross-products matrix of differences within groups by the within-group degrees of

freedom (N —k) as the follows:
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W =S, /(N-k)
where N is the total number of cases in all groups and K is the number of groups.

The constant for group J, €, , is found as follows:

1
Cjo :(_EjCij

2.1.4.2 Decision Tree

Decision tree classifies objects by sorting them down the tree from the root to
some leaf node, which provides the classification of the object [14]. Each node in the
tree specifies a test of some attribute of the object, and each branch descending from
the node corresponds to one of the possible values for this attribute. An object is
classified by starting at the root node of the tree, testing the attribute specified by this
node, then moving down the tree branch corresponding to the value of the attribute in
the given example. This process is then repeated for the subtree rooted at the new node.

The basic algorithm for decision tree is a greedy algorithm that constructs
decision trees in a top-down recursive divide-and-conquer manner. The algorithm is a
version of ID3, a well-known decision tree algorithm. The basic strategy is as follows.

- The tree starts as a single node representing the training samples.

- If the samples are all of the same class, then the node becomes a leaf and is

labeled with that class.

- Otherwise, the algorithm uses an entropy-based measure known as
information gain'as a-heuristic for selecting the attribute that will best
separate the samples into individual classes. This attribute becomes the
‘test’ or ‘decision’ attribute-at the node.-In this version of the algorithm, all
attribute ' are' categorical, = that ' is, discrete-valued. = Continuous-valued
attributes must be discretized.

- A branch is created for each known value of the test attribute, and the
samples are partitioned accordingly.

- The algorithm uses the same process recursively to form a decision tree for

the samples at each partition.
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- The recursive partitioning stops only when any one of the following

conditions is true:

O All samples for a given node belong to the same class, or

O There are no remaining attributes on which the samples may be further
partitioned. In this case, majority voting is employed. This involves
converting the given node into a leaf and labeling it with the class in
majority among samples. Alternatively, the class distribution of the node
samples may be stored.

O There are no samples for the branch test-attribute = a;. In this case, a
leaf is created with the majority class in samples.

The information gain measure is used to select the test attribute at each node in
the tree. Such a measure is referred to as an attribute selection measure or a measure
of the goodness of split. The attribute with the highest information gain (or greatest
entropy reduction) is chosen as the test attribute for the current node. This attribute
minimizes the information needed to classify the samples in the resulting partitions and
reflects the least randomness or ‘impurity’ in these partitions. Such an information-
theoretic approach minimizes the expected number of tests needed to classify an object
and guarantees that a simple (but not necessarily the simplest) tree is found.

Let S be a set consisting of S data samples. Suppose the class label attribute
has m distinct values defining m distinct classes, C, (for i=1,...,m). Let s, be the
number of samples of S in class C,. The expected information needed to classify a

given sample is given by

m

1S, 75,00 Sp) == i 109, (p; ),

i=1

where p;is the probability that an arbitrary sample belongs to class C, and is estimated
by s;/s. Note that a log function to the base 2 is used since the information is encoded
in bits.

Let attribute A have Vv distinct values, (al,az,...,av). Attribute A can be used
to partition S into Vv subsets, {81,82,...,SV}, where Sj contains those samples in S that
have value a; of A. If A were selected as the test attribute (i.e., the best attribute for

splitting), then these subsets would correspond to the branches grown from the node
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containing the set S . Let s;; be the number of samples of class C;in a subset S;. The

entropy, or expected information based on the partitioning into subsets by A, is given by

V. Sy .+ Sy

E(A)=2

2. S I(slj,...,smj).

Syj +..tS

The term M acts as the weight of the J th subset and is the number

of samples in the subset (i.e., having value a; of A) divided by the total number of
samples in S. The smaller the entropy value, the greater the purity of the subset
partitions. Note that for a given subset S,
|(Slj 1S7j ""’Smj)= ‘izml: Pjj Ing(F’ij)
Sij , / .
where p; =M and is the probability that a sample in S; belongs to class C;.
j
The encoding information that would be gained by branching on A is
Gain(A) = 1(s;,S,,..-,S,, )— E(A) .
In the other words, Gain(A) is the expected reduction in entropy caused by
knowing the value of attribute A.
The algorithm computes the information gain of each attribute. The attribute with
the highest information gain is chosen as the test attribute for the given set S. A node is
created and labeled with the attribute, branches are created for each value of the

attribute, and the samples are partitioned accordingly.

2.1.4.3 Multilayer Perceptron and Backpropagation Learning

Output Class

Output Layer

Hidden Layer

Connection Weights ——»

Input Layer

Input pattern features value

Figure 2.4: Multilayer perceptron neural network.
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Multilayer perceptron (MLP) neural network is multilayer feed-forward network as
shown in Figure 2.4 [15]. The network consists of a set of sensory units that constitute
the input layer, one or more hidden layers of computation nodes, and output layer of
computation nodes. The input signal propagates through the network in a forward
direction on a layer-by-layer basis. This network uses backpropagation learning
algorithm. The algorithm consists of two phases, namely, learning phase and working
phase. In learning phase, a set of input patterns (training set) are presented to the input
layer together with their corresponding desired output patterns.

A small random initial weight value is assigned to each connection between
nodes in the input layer and the hidden layer. As each input pattern is applied, the
actual output is recorded. The weights between the output layer and the previous layer
(hidden layer) are recaleulated using the generalized delta rule. The adjustment reduces
the difference between the network actual outputs and the desired outputs for a given
input pattern.

The input to each node for successive layers is the sum of the scalar products of
the incoming vector components with their respective weights. Thus the input to a node
J is given in the following equation.

input; = > w;out,

i
where Ww;;is the weight connecting node i to node j and out; is the output of node i.
No calculation is performed at the input layer since it is just feeding the value of input
patterns to the network. The output of a node | is, therefore,
out; = f(inputj)

and this output is sent to all nodes in subsequent layer. This computation is continued
through all layers of the network until the output layer-is reached. At that point, the output
vector is generated.

Based on the different error term or & term in the output layer, the weight can
be computed by the following equation.

W (N+1) = W, (n)+n(s.0ut,)
where W, (n+1) and w,;(n) are the weights connecting nodes k and j at iteration

(n+1) and n, respectively, 1 is a learning rate parameter. The & terms of hidden
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layer nodes are computed and the weights connecting the hidden layer to the previous
layer (another hidden layer or input layer) are updated accordingly.

The ¢ term in previous equation is often referred to as the rate of change of
error with respect to the input of node k , and can be written as

5, =(d, —out, )f(input, ) for nodes in the output layer, and o, = f (input, )25ka1
k

for nodes in the hidden layers, where d, is the desired output of node Kk .
This calculation is repeated until
- all Wji(n +1)—Wji (n) in the previous epoch (iteration) were so small as to
be below some specified threshold, or
- the percentage of samples misclassified in the previous epoch is below
some threshold, or

- a prespecified number of epochs has expired.

2.2 Literature Review

This section reviews UML metrics, some controlled experiments carried out in
order to investigate maintainability of object-oriented software. Aesthetic criteria of class

and sequence diagrams are also reviewed in this section.

2.2.1 UML Metrics

UML metrics were proposed by many researchers. Kim and Boldyreff proposed
27 software metrics that-can be applied to UML modeling elements [6]. Metrics
proposed in this paper consist of
- Metrics for Model : Model -metrics are for estimating the size or the amount of
information contained in a model. Model metrics are, for example, Number of
the packages in a model (NPM) and Number of classes in a model (NCM).
- Metrics for Class : Class metrics concern with various characteristics of a
class such as attribute, relationship and object instantiation. Class metrics
are, for example, Number of the attributes in a class-unweighted (NATC1)

and Number of the operations in a class-unweighted (NOPC1).
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Metrics for Message : This paper proposes message metrics in order to
measure the degree of interactions. An example of message metrics is
Number of the directly dispatched messages of a message (NDM).

Metrics for Use Case : Use case captures contracts among the stakeholders
about their behavior. The stakeholders are also called primary actors of a
system. Use case gathers the different sequences of behavior or scenarios
together. An example of use case metrics is Number of actors associated

with a use case (NAU).

Genero and her colleagues introduced and analyzed a set of an existent object -

oriented metrics that can be applied for assessing class diagrams complexity at the

initial phases of the object oriented development life cycle [5]. They introduced and

analyzed existing metrics as follows.

Chidamber and Kemerer's metrics : Chidamber and Kemerer proposed a set
of six object-oriented design metrics which were well-known in the field of
object-oriented metrics.

Lorenz and Kidd’s metrics : Lorenz and Kidd proposed a group of metrics
called ‘design metrics’, which dealt with the static characteristics of software
design. They categorized their metrics into class size metrics, class
inheritance metrics and class internal metrics.

Brito e Abreu and Melo’s metrics : Brito e Abreu and Melo proposed the
MOOD (Metrics for Object Oriented Design) set of metrics. These metrics
allowed the measurement of the main-mechanisms of the OO paradigm,
such as, encapsulation, inheritance, polymorphism and message passing.
Marchesi’s metrics : Marchesi proposed a set of metrics to measure UML
class diagrams at the analysis phase. These metrics consisted of metrics for

single classes, metrics for packages and metrics for system.

Genero and her research team also proposed metrics for statechart diagram in

[7]. Sheldon et al. suggested new metrics for measuring maintainability of a class

inheritance hierarchy [8]. The proposed metrics were categorized into metric of

understandability and metric of modifiability.
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2.2.2 Maintainability of Object-Oriented Software

Controlled experiments carried out for investigating maintainability of object-
oriented software were presented in many papers. Briand et al. presented a controlled
experiment focusing on comparison of the maintainability of object-oriented and
structured design document [16]. This experiment concentrated solely on the
investigation of the use of quality design principal and their influence on a developer’s
ability to understand and modify design documents. Results strongly suggested that
‘good’ object-oriented design is easier to understand and modify than ‘bad’ object-
oriented design. However, there was no strong evidence regarding the alleged higher
maintainability of object-oriented design documents over structured design documents.
Their next experiment showed that the system designed according to Coad and
Yourdon's object-oriented design principle is significantly easier to maintain [17].
Deligiannis et al. presented a controlled experiment which investigated the impact of a
single design heuristic, dealing with the ‘god class’ problem, on understandability and
maintainability of object-oriented designs [18]. The result of this experiment accepted
the hypothesis that it is easier to maintain a heuristic compliant object-oriented design
than a heuristic non-compliant object-oriented design. They also proposed the new
metrics to quantify the basis criteria for object-oriented design quality assessment:
completeness, correctness, and consistency.

The effect of inheritance on the maintainability of object-oriented software was
investigated by Daly and Brook [19]. Subjects of their empirical study were asked to
modify object-oriented software with a hierarchy of 3 levels of inheritance depth and
equivalent object-oriented software with no-inheritance ‘called ‘flat’ version. The collected
timing. data showed that maintaining. object-oriented. software. with inheritance, on
average, approximately 20% quicker-than maintaining flat version. While Harrison and
Counsell reported that it is not clear that system using inheritance will necessarily be
more maintainable than those that do not [20]. The data analyzed from two out of five
systems of their experiment suggested that deeper inheritance trees are attributes of
systems which are harder to understand and maintain. Some of empirical studies of
object-oriented metrics for maintenances and its sub-characteristic were summarized in

Table 2.2.



22

Table 2.2: Some of empirical studies of object-oriented metrics for

maintenances and its sub-characteristic.

Studies Dependent Independent variables Technique Object System
variables
BS[21] Maintenance effort Number of clients, Fan-in, Spearman rank A patient
Simple Class Coupling, RFC, | correlation collaborative care
Fan-out, WMC, CHNL, NCIM, system
NOD, NOC, CDM
WD[22] Maintenance time DIT Standard significant Six systems
testing, Wilcoxon ran | developed in C++
sum test
HC[23] Modifiability, DIT Chi-square analysis Two systems, each
understandability with two versions
BB[17] Understanding, Coad and Yourdon quality 2x2 factorial Kruskal- | Replication package
modification design principles(Coupling, Wallis test
Cohesion, Clarity of design,
Generalization-Specialization
depth): DIT, NOC, and CBO
FN[24] Adaptive NCL, NRC, TNM, TLOC, Multilinear Music object-
maintenance effort MCC, MNA, MNM regression analysis oriented distributed
system coded in
C++
PU[25] The completeness The number of the levels in ANOVA, parametric Four models of a
and correctness of the inheritance structure t-test hotel administration,
the modifications written in MERODE
GJ[26] Understandability, NC, NA, NM, NAssoc, NAgg, | Fuzzy classification, Twenty-eight UML
analyzability, NAggH, NDep, NGen, regression trees, class diagrams
modifiability NGenH, MaxHAgg, MaxDIT Spearman rank related to Bank
correlation, Information Systems,
Kolmogrov-smirnov nine different UML
test, Principal class of diagrams
Component Analysis
BV[4] Maintenance Time Interaction Level(IL), ANOVA, correlation, Quadrilateral,
Interface Size(1S), and single and multiple tractor-trailer
Operation Argument regression analysis
Complexity(OAC)

2.2.3 Aesthetic Criteria of Class and Sequence Diagrams

As a modeling standard, the UML does not say anything on how to produce
readable programs. Especially when larger diagrams are shared, an agreement on
aesthetics has to be made in order to produce the cost of communication and to
minimize misunderstanding resulted from drawing the same diagram in many different
ways.

Purchase and his colleagues presented an empirical study attempting to identify
the most important aesthetics for class diagrams from human comprehension point of

view [27]. Aesthetic criteria considered in their work were Minimize bends, Node
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distribution, Edge variation, Direction of flow, Orthogonality, Edge lengths and Symmetry.
In [28], they carried out an experiment aiming to determine which variant of each of five
notations used in class diagrams is the more suitable with respect to human
performance. Five notations comprised of Inheritance direction, Inheritance arcs,
Association representation, Association names and Cardinalities. They also performed
preference experiment by assessing the effect of individual aesthetic in the application
domain of class and collaboration diagrams [29]. The results showed that two most
preference aesthetic criterion for class diagram were fewer crosses and fewer bends.
Two most preference aesthetic criteria for collaboration diagrams were fewer crosses
and no adjacent arrows. Eichelberger proposed some aesthetic criterion that reflect the
highly sophisticated structural and semantic features of class diagrams in [30]. In this
work, class diagram was described in terms of graph theory. It is obvious that classes,
packages, rhombs representing n-ary association and ovals in pattern notations map to
nodes. Associations, dependencies as well as inheritance relations map to edges. So, in
his paper, properties which describe the graph and its embedding were given in terms
of nodes and edges. Some examples of class diagram aesthetic criteria suggested in
this paper are listed as follows.

- Edges should not overlap nodes.

- Edges should have not too much bends.

- Nodes on the same hierarchy level should have the same vertical or

horizontal coordinate.

Gutwenger et al. 'suggested a new approach for visualizing class diagrams
leading to a balanced mixture of the following aesthetic criteria : crossing minimization,
bend minimization, uniform direction within each class hierarchy, no nesting of one class
hierarchy within another, orthogonal layout, merging of multiple inheritance edges, and
good edge labeling [31]. The traditional graph drawing aesthetic criteria and new
aesthetic criteria applicable to sequence diagrams were proposed by Paranen et al.

[32].
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CHAPTER IlI
CONSTRUCTING MAINTAINABILITY MODELS

This chapter presents a controlled experiment carried out in order to construct
maintainability models from structural complexity and aesthetic metrics. Figure 3.1

shows activity diagram of this work. The detail of each activity will be described in later

’

@r sample of software design mode

(Create exam questions>
Collect understandability an
modifiability scores

Calculate maintainability scores )
from the sum of understandability Select structural complexity
and modifiability scores and aesthetic metrics

sections.

Convert understandability, modifiability and
maintainability scores into understandability,
modifiability and maintainability levels

\

alidate structural complexity and aesthetic metrics
whether they can be indicators of understandability,
modifiability and maintainability

Construct understandability, modifiability and
maintainability models using structural complexity
and aesthetic metrics
Validate and compare models constructed by applying
Discriminant-analysis, Decision tree and MLP neural network

Construct an automate tool for predicting
understandability, modifiability and maintainability

Figure 3.1: Activity diagram of the research.
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3.1 Metric Selection

An important step to analyze software quality using metrics is to identify a
collection of metrics that reflect on software characteristics which are being analyzed.

Metrics used in this work consist of structural complexity metrics and aesthetics metrics.

3.1.1 Structural Complexity Metrics

It is widely accepted that the greater complex software design model is, the
greater complex finally implemented software is. Thus more effort is needed to develop
and maintain it.

Table 3.1: Structural complexity metrics.

Metrics for class diagram

Group Metric Description
Classes NC * The total number of classes.
Attributes ANAUW i The total number of attributes divided by the total number of
classes.
ANAW ** It is the weighted version of ANAUW. Each attribute is

weighted depending on its visibility, i.e. 1.0 for public, 0.5 for
protected and 0.0 for private attributes.

Methods ANMUW "3 The total number of methods divided by the total number of
classes.
ANMW ] It is the weighted version of ANMUW. Each method is weighted
depending on its visibility as same as weighting attribute in
ANAW,
Association ANASssoc gek The total number of association relationships divided by the total
number of classes.
ANAgg F The total number of association relationships divided by the total
number of classes.
Aggregation NAggH * The number of aggregation hierarchies.

. MaxHAgg — It is the maximum among the HAgg values obtained for each
Relation- class of the class diagram. The HAgg value for a class within an
ships aggregation hierarchy-is the longest path from the class to the

leaves.
ANGen ** The total number of generalization relationships divided by the
total number of classes.
Generalization NGenH * The number of generalization hierarchies.
MaxDIT * It is the maximum among the DIT values obtained for each class

of the class diagram. The DIT value for a class within a
generalization hierarchy is the longest path from the class to the
root of the hierarchy.

Metrics for sequence diagrams

Scenarios NOS The total number of scenarios.
WMBO The total of average number of messages per instance objects in
all scenarios divided by the total number of scenarios.
Messages ANRM The total number of return messages in all scenarios divided the
total number of scenarios.
ANDM ** It is calculated from the total number of directly dispatched

messages (NDM) of each message in all scenarios divided by the
total number of scenarios. According to the UML semantics, a
message can be an activator of other messages. For example, in
Figure 3.2, the message a() activates the message c(), the NDM
value of message a() is 1.

Conditions ANCM The total number of condition messages in all scenarios divided
by the total number of scenarios.

*  Metrics are proposed by Genero et al.[33].
**  Metrics are modified from metrics proposed by Genero et al. [33] and Kim & Boldreff [6].
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Figure 3.2: An example of sequence diagram.

Structural complexity metrics used in this work are shown in Table 3.1. Metrics
for class diagram are categorized into metrics related to classes, attributes, methods
and relationships. Metrics for sequence diagrams are categorized into metrics related to
scenarios, messages and conditions. Existing metrics symbolized by ™' are proposed

kK

by Genero et al. [33]. Metrics symbolized by are modified from the metrics
proposed by Genero et al. [33] and Kim & Boldreff [6]. NOS, WMBO, ANRM and ANCM
are four new proposed metrics.

Metrics symbolized by *; NC, NAggH, MaxHAgg, NGenH and MaxDIT; related
to components in a class diagram including classes, aggregation relationship and
generalization relationship, were used in an empirical study [33]. An experiment was
carried out in order to validate that these metrics can be good indicators of class
diagram maintainability. The analysis result obtained from technique of Fuzzy
Deformable Prototype indicated that these metrics can be good indicators for classifying
maintainability levels. In the same experiment, metrics related to methods and
association relationship were validated. The results showed that they also could be
good indicators of class diagram maintainability.

The followings are the reasons why metrics presented in Table 3.1 are chosen:

NC: This metric counts the number of classes in a class diagram. It is
comparable to the traditional LOC (lines of code) or a more advance McCabe's
cyclomatic complexity (MVG) metric for estimating the size of a software [6]. Thus, in
object-oriented paradigm this metric can be used to compare sizes of software. The
greater size, the more effort put to maintain.

ANAW and ANAUW: These metrics are the average number of attributes in each

class with weight and un-weight respectively. If most of classes contain many attributes
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both metric values will be high. It captures the idea that a class containing more
attributes makes maintenance more complex.

ANMW and ANMUW: These metrics are calculated from the average number of
methods in each class with weight and un-weight respectively. If most of classes contain
many methods, both metric values will be high. The number of methods in a class
indicates the class size that related to the amount of collaboration being used. The more
methods a class has, the more complex the class’s interface. Hence, these metrics
should be considered when analyzing maintainability.

ANAsso: This metric is the average number of association relationships. An
association is a connection, or a link, between classes. This metric is useful for
estimating the scale of relationships between classes. The higher number of
associations renders more coupling between classes. So, this metric may affect
maintainability.

ANAgg, NAggH and MaxHAgg: These metrics are aggregation metrics. An
aggregation is a special form of association that specifies a whole-part relationship
between the aggregate (whole) and component parts. Although the parts may exist
independently of the whole, their existence is primarily to form the whole. The higher
number of aggregations indicates more coupling between part and whole classes which
makes software harder to maintain.

ANGen, NGenH and MaxDIT: These metrics are inheritance metrics. The higher
the value of inheritance metrics, the greater the chance of reuse becomes. However, it
can cause comprehension problem. Moreover, changing something in a superclass can
affect the subclasses in a none desirable way. _Hence inheritance can affect the
maintainability of a software.

NOS: It is the total number of scenarios. A scenario represents a sequence of
behavior of a software. More scenarios means more complexity of software behavior
which affects maintainability.

WMBO and ANRM: These measures capture the property of how many
messages call from and return to other classes. Messages are exchanged between

objects manifesting various interactions. Since higher coupling leads to higher
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complexity, it will also make the class more difficult to modify and understand. So these
metrics are essential when analyzing maintainability.

ANDM: It is calculated from the total number of directly dispatched messages of
each message in all scenarios divided by the total number of scenarios. According to
UML semantics, a message can be an activator of other messages. The more number of
dispatched messages, the harder maintenance. Since, it is more difficult to trace with a
lot of messages.

ANCM: It is the average number of condition messages in each scenario. A
message with condition is easier to maintain than the one without condition. The more
number of condition messages is, the more effort put to understand. Moreover, the

conditions may be changed in the future, this leads to put more effort to modify them.

3.1.2 Aesthetic Metrics

An aesthetic criterion is a general graphical property of the layout that we would
like to have. Drawing graph layout algorithms by conforming to aesthetic criteria is
claimed that the resultant graph drawing is improved its readability. In this work, a set of
aesthetic criteria is selected. Then a set of aesthetic metrics corresponding to the
selected aesthetic criteria are defined. The aesthetic metrics consist of metrics for class
diagram and metrics for sequence diagrams which are shown in Table 3.2.

In this table, the metrics corresponding to aesthetic criteria for traditional graph
drawing that can be applied to class diagram are Cross, UnifEdgelLen, TotEdgelen,
MaxEdgelen, UnifBends, TotBends, MaxBends, and Orthogonal [34,35]. Metrics
namely Join, Center, Below, SameCo and Indicator are metrics corresponding to
aesthetic. criteria for class diagrams. proposed _by. Purchase et al. [28,29] and
Eichelberger et al. [30,37]. The term hierarchy in 'description-of these metrics refers to
the relations in class diagram including generalizations, aggregations and compositions.

Metrics for sequence diagrams are adapted from metrics proposed by Paranen
et al. [32]. Figure 3.3 shows the example of drawings which conform and do not conform

to some aesthetic criteria.
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Table 3.2: Aesthetic metrics.

Metrics for Class Diagram

Metric Description Aesthetic Criterion

Cross The total number of edge crossings. The total number of edge crossings should be

minimized

UnifEdgeLen The standard deviation of the edge length. Edge lengths should be uniform.

(In this work, the edge length is measured in
unit of centimeter.)

TotEdgelen The total edge length. The total edge length should be minimized.

MaxEdgeLen The maximum edge length. The maximum edge length should be minimized.

UnifBends The standard deviation of the number of bends The standard deviation of the number of bends on
on the edges. the edges should be minimized.

TotBends The total number of bends in the drawing. The total number of bends should be minimized.

MaxBends The maximum number of bends on the edges. The maximum number of bends on the edges

should be minimized.

Orthogonal The total number of edges fixed to an Nodes and edges should be fixed to an orthogonal
orthogonal grid divided by the total number of grid.
edges.

Join The total number of joined hierarchies divided Generalizations, aggregations and compositions
by the total number of hierarchies. should be joined.

Center The total number of hierarchies that the parentis | A parent node should be positioned as close as
located as the center of its children divided by possible to the median position of its children.
the total number of hierarchies.

Below The total number of hierarchies that the parentis | A child node should be positioned below its
located above its children divided by the total parent.
number of hierarchies.

SameCo The total number of hierarchies that the children | Nodes on the same hierarchy level should have
nodes are located on the same vertical or the same vertical or horizontal coordinate.
horizontal coordinate divided by the total
number of hierarchies.

Indicator The total number of edges representing Edge should be clearly labeled and should have
association relationships that have clear label directional indicator.
and directional indicator divided by the total
number of edges representing association
relationships.

Metrics for Sequence Diagrams
Metric Description Aesthetic Criterion

AvgCrossS The average number of edge crossings. The total number of edge crossings should be
(The total number of edge crossings in all minimized.
sequence diagrams divided by the total number
of sequence diagrams.)

MaxEdgeLenS The maximum edge length of all sequence The maximum edge length should be minimized.
diagrams.

AvgUnifEdgeLenS The average standard deviation of edge length. Edge lengths should be uniform.

(Summation of standard deviation of edge
length of all sequence diagrams divided by the
total number of sequence diagrams.)

AvgSubsetSepS The average number of distinct subsets of The distinct subsets of participants should be
participants. maximized.
(The total number of distinct subsets of
participants of all sequence diagrams divided by
the total number of sequence diagrams.)

Many empirical studies were performed to determine which graph drawing
aesthetics are important for human comprehension. An experimental study of Purchase
and his colleagues revealed that increasing the number of crossings in a graph
decreases the understandability of the graph [36]. The same group of researchers also
presented an empirical study attempting to identify the most important aesthetics for
class diagrams from human comprehension point of view [27]. Aesthetic criteria

considered in their work were Edge bends, Edge lengths, Orthogonality and Direction of
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flow. The results suggested that these aesthetic criteria should be considered in order to
produce a graph drawing that is easy to understand. The experimental result presented
in [28] showed that joining inheritance arcs and placing a superclass above its

subclasses are preferable for human understanding.

Conform Not conform
Join
[ 1L ik L]
Center % %
Below %
Same
Coordinatg l—:| l—:| i t} i}
1 teachs 1..n
Indicator
Conform
teachs
Not conform

Figure 3.3: Example of the drawings which conform and do not conform to some
aesthetic criteria.

A class diagram can be described in terms of graph theory. It is obvious that
classes, packages and rhombs representing n-ary-associations are-mapped to nodes.
Associations, aggregations as. well as_inheritance relationships are. mapped to edges
[37]. Aesthetic criteria of class diagram considered in this work are listed as follows.

Cross: Different edges should not overlap, this means that every edge should be
visible and readable as an individual. In [36], the result of an empirical study of human
understanding of graphs drawn using various aesthetic layouts shows that increasing

the number of edge crossings in a graph decreases the understandability of the graph.
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So, the number of edge crossings should be minimized to make edges more continuous
and easier to follow.

UnifEdgelLen, TotEdgelLen, MaxEdgelLen: Edges should not be too long or too
short because it is hard to make grouping and separation. Edge lengths should be
uniform. Since it is difficult to follow long edges, the total edge length should be
minimized and the maximum edge length should be minimized.

UnifBends, TotBends, MaxBends: The number of bends in any edge should be
minimized to make edge more continuous and easier to follow. Therefore, the total
number of bends in polyline edges should be minimized and the maximum number of
bends on the edges should be minimized.

Orthogonal: Nodes and edges should be arranged to an orthogonal grid, i.e.,
maximize the number of orthogonal edges. Orthogonal drawing minimizes crossing
between edges and the number of bends of the edges, and leads to neatness and
readable layout.

Join: Inheritance relationships, aggregations and compositions should be joined
as described in [30]. This admits a kind of orthogonal layout for hierarchical
relationships. The experimental result presented in [28] showed that joined inheritance
arcs are preferable to separated arcs. The two main reasons were; first, the joined
inheritance notation demonstrates that the subclasses are on the same level of
specialization. Second, in larger diagrams with more inheritance relationships, there is a
potential for the diagram to "spraw!" and to look less "neat."

Center: Especially in-hierarchy relationships;-a parent node should be positioned
as close as possible to the median position of its children. They should be placed as
close as possible because they are closely related.

Below: A superclass should be placed above.its subclasses and the inheritance
arrows should be upwards because people usually are familiar with putting superior
objects on top of other objects. The result of an empirical study showed that pointing the
inheritance arrows upwards was preferred than pointing downwards, with the reason
that it appears more natural to have a parent above its children [28]. This result revealed
that most people would read from top-to-bottom, and it is important to identify the

superclasses before the subclasses.
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SameCoordinate: Nodes on the same hierarchy level should have the same
vertical or horizontal coordinate, respectively, according to the way (top-down, left-right,
e.g.) the hierarchy is drawn. This aesthetic makes the hierarchy easy to read.

Indicator: Edge should be clearly labeled and should have directional indicator.
All text labels should be horizontal, rather than a mixture of horizontal and vertical, so
that they can be read easily. For reasons of neatness and clarity, the label should be
placed beside the edge, it should not be placed over the edge. The experimental result
in [29] revealed that most subjects preferred having directional indicators associated
with every labeled relationship, rather than not having the directional indicators at all.
The reasons are “directional labels make edges more readable” and “clear, precise”.
Cardinalities should be defined explicitly for improvement of clarity and reduction of
ambiguity. It is clearer to put both upper and lower bounds to avoid confusion.

This thesis considers four aesthetic metrics for a sequence diagram proposed
by Poranen et al. [32] including Crossing, Maximum edge length, Uniform edge length
and Subset separation. The first three metrics are aesthetic metrics of the traditional
graph drawing which can be applied for a sequence diagram. For any software, it may
use many sequence diagrams to visualize software behaviors. So, this work proposes
the metrics for measuring all sequence diagrams described behaviors of the software
by adapting metrics of Poranen et al. [32]. These metrics are measured in concept of
average number (AvgCrossS, AvgUnifEdgelenS, AvgSubsetSepS) and maximum
number (MaxEdgelenS). Aesthetic criteria of sequence diagrams considered in this
work are listed as follows.

AvgCrossS: For sequence diagram, a message arrow can be viewed as an
edge. It is easy to measure the number of edge crossings and edge length by noticing
that each message whaose length L increses the number of edge crossings by L-1 (the
number of edge crossings are counted from the number of edge crossings with the
lifelines.). When laying out sequence diagram, the number of edge crossings should be
minimized.

MaxEdgelLenS: An aesthetic criterion for message arrows is to limit the

maximum length of the arrows, or at least to decrease the number of the longer arrows.
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It is corresponding to criterion for traditional graph drawing which is to minimize the
maximum edge length.

AvgUnifEdgelLenS: Edge lengths should be uniform. In fact, this criterion often
contradicts with the minimization of the total edge length. It might be impossible to
shorten some of the edges. Then, minimizing the variance of the edge lengths would
mean that the other edges should be made longer.

AvgSubsetSepS: Subset separation criterion plays an important role in
visualizing a system having such subsets of participants that do not communicate to
each other or do communicate very little. Suppose that there are two distinct sets of
participants, and one participant, a filter, who receives and forwards all messages
from/to those two sets. Now all communication between those two sets of participants
go first to the filter participant which forwards messages to a participant in the second
set. It is natural to place this filter participant in the middle of the diagram and then place
the other two sets of participants to the left and to the right side. The goal of the subset
separation property is to find out distinct subsets of participants that have as little

communication as possible.

3.2 A Controlled Experiment

This section describes the detail of an experiment including of experimental aim

and definitions, subjects, materials, tasks and data collection.

3.2.1 Experimental Aims and Definitions

The controlled experiment is carried out for two main objectives.

- To'validate the structural complexity and aesthetic metrics whether they can
be indicators of understandability, modifiability and maintainability.

- To construct understandability, modifiability and maintainability from
structural complexity and aesthetic metrics.

In this work, understandability and modifiability are defined as follows.

- Understandability is the degree to which the software design model can

provide its clear meaning to evaluator.
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- Modifiability is the ease with which a change or changes can be made to the

software design model.

3.2.2 Subjects

The experimental subjects used in this work were 60 graduate students from the
Department of Computer Engineering at Chulalongkorn University, Bangkok, Thailand,
who passed the classes on Software Requirements Engineering and Object-Oriented
Technology. During lectures, students were taught basic software engineering
principles and object-oriented development techniques. The lectures were
supplemented by practical lessons where the students had the opportunity to design
real-world object-oriented software using UML diagrams.

The information captured from the debriefing questionnaire based on the ordinal

scale of 1 to 5 revealed that the subjects had medium experience with

software engineering practice — median response 3 (min 2, max 4),

- design documents — median response 3 (min 2, max 4),

- modeling with UML — median response 3 (min 2, max 4) and

- software maintenance — median response 3 (min 2, max 4).

In order to control differences among students, the students were categorized
into A, B+ and B by considering the grades they obtained from 2 classes mentioned
above. Table 3.3 shows how to categorize the students. For example, if a student got A
in Software Requirements Engineering and got B+ in Object-Oriented Technology, that
student would be categoerized into A. After that, they were randomly grouped into 20

teams of three students. Each team had one A, one B+ and one B students.

Table 3.3: Subject category.

Software requirements engineering Object-Oriented Technology Subject Category
A A A
A B+ A
B+ A A
B+ B+ B+
B B+
B A B+
B+ B
B+
B B B
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Following Boehm model [10], this work focused on two sub-characteristics of

maintainability: understandability and modifiability. Forty software design models, listed

in Table 3.4, with different domains were used in this experiment. The documentation of

each software design model included of the general software description, the class

diagram, the sequence diagrams and a set of the examinations for assessing

understandability and modifiability.

validation are shown in Appendix B.

Table 3.4: Sample software.

No. Software Size (#Classes) No. Software Size (#Classes)
1 Payment | 6 21 Advertisement "
2 Seminar Registration 6 22 Tourist Agency (N
3 Discount System 6 3 Online Shop Il "
4 Online Shop | 7 24 Inventory I 12
5 Lift 7 25 Payment Il 12
6 Material 7 26 Transportation 13

Management
7 Course Registration 8 27 Online Book Shop 13
8 Drugstore 8 28 Export 13
9 Online Shop I 8 29 VDO Rental 14

10 Photo Gallery 8 30 Order System 14
" Pet Shop 8 3 Hospital 15
12 Stock Exchange 8 32 Pre-paid Mobile 15

Phone

13 Banking 9 88 Library Il 16
14 Stock Exchange | 34 VDO Shop 17
15 Online Movie Ticket 35 Petrol Station 18

Vending

16 Car Rental 9 36 Online CD Shop 24
17 Restaurant 10 37 ATM 24
18 Multiplex Cinema 10 38 Investment 24
19 Library.| 10 39 Garment 25
20 Inventory | 10 40 Calculator 36

An example of examination and examination

The subjects were joined in a room. Two monitors explained to them how to

carry out the tests. There were two tasks to be performed by the participants. First, each

subject team was asked to complete the examinations of 2 software design models that

were randomly assigned for the team. Assigning software design models to subject

team is shown in Table 3.5. Each subject sat next to a subject who was examining the
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other documentation. This was performed to reduce plagiarism, although this was by no
means a significant worry. Subjects were told verbally that there were different designs
being worked upon, but were not told anything about the nature of the study, i.e., what
hypotheses were being tested. During this time subjects were told not to talk among
themselves, but to direct any questions they had to the two monitors.

Time out periods of the examination for assessing understandability and the
examination for assessing modifiability were 30 minutes and 40 minutes respectively.
These timeout periods were determined from a pilot test. There was 20-minute break
between experimental tasks of 2 software design models. A pilot test was performed
using four experienced subjects. The pilot test was conducted in order to find mistakes
in the experimental procedure, to test that the experimental instructions are clear and to
check tasks have reasonable complexity, but that they can be completed within the
allotted time. No significant issues were encountered during the pilot test. The second
task was to complete a debriefing questionnaire. This questionnaire captured personal
information, experience, motivation, and subjective opinion of each subject. The

questionnaire used in this work is shown in Appendix C.

Table 3.5: Assigning software to subject groups.

Subjects Software No.
Group No. A B+ B
1 S1 S2 — 14 33
2 S4 SE S6 21 35
3 S7 S8 S9 39 31
4 S10 S11 S12 4 32
5 S13 S14 S15 5 36
6 S16 S17 S18 8 29
7 S19 S20 S21 17 26
8 S22 S23 S24 7 37
9 S25 S26 S27 13 18
10 S28 S29 S30 22 27
11 S31 S32 S33 9 23
12 S34 S35 S36 1" 28
13 S37 S38 S39 12 30
14 S40 S41 S42 1 34
15 S43 S44 S45 6 19
16 S46 S47 S48 16 25
17 S49 S50 S51 2 24
18 S52 S53 S54 10 38
19 S55 S56 S57 3 40
20 S58 S59 S60 15 20




37

3.2.4 Data Collection

In many studies [4,17,38], maintainability had been operationalized in terms of

understandability time (time required to understand) and modifiability time (time

required to make changes). In this work, time for performing experimental tasks was

restricted. So, maintainability was considered in terms of accuracy instead. For each

software design model, data collected from the experiment can be listed as follows:

Understandability score is quantified from the mean of 3 subjects’ score of
the examination for assessing understandability.

Modifiability score is quantified from the mean of 3 subjects’ score of the
examination for assessing modifiability.

Maintainability score is calculated from the sum of understandability score
and modifiability score.

Understandability level is captured by converting understandability score
into 0, 1 or 2 which indicates understandability levels: difficult, medium, and
easy respectively. Each understandability score can be converted using the

following condition:

If Understandability score < Average value of understandability scores —

W * Standard deviation value of understandability scores

Then Understandability level = 0

Else If Understandability score > Average value of understandability scores +

W * Standard deviation. value of understandability-scores
Then Understandability level = 2
Else Understandability level = 1

Modifiability level is captured by converting modifiability score using the
same approach of converting understandability score into understandability
level.

Maintainability level is captured by converting maintainability score using the
same approach of converting understandability score into understandability

level.
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Kolmogorov-Smirnov is a statistical technique used to decide if a sample comes
from a population with a specific distribution. The results of Kolmogorov-Smirnov test on
understandability, modifiability and maintainability scores showed that understandability
scores, modifiability scores and maintainability scores had normal distribution. Therefore,
this approach could be considered valid. The approach can be summarized as shown
in Figure 3.4.

W is a constant number. Its value is adjusted according to data distribution. In
this experiment, for finding understandability and maintainability levels, value of W is

0.75. For finding modifiability level, value of W is 0.5.

< Avg(scores)- W*Std(scores) Otherwise > Avg(scores) + W*Std(scores)
Score

) | |
0: Difficult 1: Medium 2: Easy Level

Figure 3.4: Converting understandability, modifiability and maintainability scores into
understandability, modifiability and maintainability levels.

For each software design model, structural complexity and aesthetic metrics
mentioned earlier in section 3.1 were measured. One discarded metric was Cross since
its values obtained from sample class diagrams were not different (more than 80% were
zero value). Therefore, it was useless for classifying understandability, modifiability and
maintainability levels. Table 3.6 - Table 3.11 show all data collected from 40 sample

software design models.



Table 3.6: Structural complexity metric values of sample software.

39

Software NC ANAUW | ANAW | ANMUW | ANMW | ANAssoc | ANAgg | NAggH | MaxHAgg | ANGen | NGenH | MaxDIT NOS WMBO ANRM ANDM | ANCM
No.
1 6.000 3.000 0.167 6.333 5.167 0.167 0.167 1.000 1.000 0.500 1.000 2.000 1.000 2.000 3.000 1.000 | 1.000
2 6.000 2.143 0.000 2.429 2.286 0.571 0.143 1.000 1.000 0.000 0.000 0.000 2.000 .889 7.000 2.000 | 0.500
3 6.000 2.833 0.000 1.500 1.500 0.500 0.167 1.000 1.000 0.000 0.000 0.000 1.000 1.400 3.000 2.000 | 0.000
4 7.000 2.857 0.214 1.571 1.571 0.429 0.000 0.000 .000 0.286 1.000 1.000 2.000 1.325 2.500 2.500 | 0.000
5 7.000 1.625 0.063 1.500 1.500 0.375 0.375 2.000 1.000 0.250 1.000 1.000 2.000 1.800 0.000 4.000 | 0.000
6 7.000 2.857 0.000 2.143 2.143 3.429 0.143 1.000 1.000 0.286 1.000 2.000 3.000 1.667 1.000 1.000 | 0.333
7 8.000 2.500 0.125 4.625 4.625 0.750 0.250 2.000 1.000 0.000 0.000 0.000 3.000 1.600 1.333 2.000 | 1.333
8 8.000 3.000 0.000 2.000 2.000 0.750 0.250 2.000 1.000 0.000 0.000 0.000 3.000 1111 0.000 1.333 | 0.667
9 8.000 1.875 0.186 3.000 3.000 0.625 0.250 1.000 1.000 0.250 1.000 1.000 1.000 2.167 2.000 7.000 | 1.000
10 8.000 3.125 1.125 3.500 3.500 0.500 0.000 0.000 .000 0.625 1.000 3.000 2.000 1.450 1.000 1.500 | 0.000
1" 8.000 4.250 0.375 3.750 3.750 0.500 0.375 2.000 1.000 0.250 1.000 1.000 4.000 1.938 2.250 2.000 | 0.000
12 8.000 2125 0.000 3.875 3.875 1.000 0.000 0.000 .000 0.000 0.000 0.000 3.000 2.022 2.333 2.667 | 3.000
13 9.000 2.222 0.333 3.667 3.667 0.556 0.222 2.000 1.000 0.333 2.000 1.000 5.000 1.250 0.200 0.800 | 1.400
14 9.000 0.889 0.333 3.222 3.222 0333 0.333 3.000 1.000 0.556 2.000 1.000 3.000 1111 3.333 1.333 | 1.667
15 9.000 1.778 0.000 5.333 5.333 0111 0.667 1.000 2.000 0.000 0.000 0.000 3.000 4.944 1.333 2.000 | 0.667
16 9.000 2.889 0.222 2.000 2.000 0.667 0.111 1.000 1.000 0.222 2.000 1.000 3.000 1.250 0.667 1.333 | 0.667
17 10.000 2.000 0.000 3.100 3.100 0.800 0.100 1.000 1.000 0.000 0.000 0.000 3.000 1.250 1.000 2.333 | 0.667
18 10.000 1.200 0.100 2.900 2.900 0.400 0.200 1.000 2.000 0.200 1.000 1.000 4.000 1.075 1.000 2.750 | 1.000
19 10.000 1.800 0.300 3.000 3.000 0.400 0.000 0.000 .000 0.500 2.000 1.000 2.000 1.500 1.000 3.000 | 1.000
20 10.000 2.000 0.000 3.000 2.950 0.800 0.000 0.000 .000 0.300 1.000 1.000 3.000 3.111 1.667 1.000 | 1.000
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Table 3.7: Structural complexity metric values of sample software (continued).

40

Software NC ANAUW | ANAW | ANMUW | ANMW | ANAssoc | ANAgg | NAggH | MaxHAgg | ANGen | NGenH | MaxDIT NOS WMBO | ANRM ANDM | ANCM
No.
21 11.000 2.727 0.409 4.364 4.364 0.364 0.364 1.000 2.000 0.364 2.000 1.000 2.000 1.875 0.000 2,500 | 0.000
22 11.000 4.545 0.000 1.364 1.364 0.909 0.272 3.000 1.000 0.000 0.000 0.000 2.000 1.571 0.500 2.000 | 1.000
23 11.000 2.636 0.000 3.091 3.091 1.000 0.455 4.000 1.000 0.000 0.000 0.000 2.000 1.875 0.500 2,500 | 0.500
24 12.000 1.438 0.219 2.813 2.813 0.188 0.188 2.000 2.000 0.188 2.000 1.000 4.000 2.458 0.000 2.250 | 0.250
25 12.000 1.583 0.000 3.667 3.667 0.250 0.250 1.000 2.000 0.000 0.000 0.000 3.000 1.806 0.667 0.667 | 0.333
26 13.000 2.000 0.077 2.462 2.462 0.846 0.154 2.000 1.000 0.308 1.000 1.000 3.000 2111 0.000 3.333 | 1.333
27 13.000 1.846 0.385 2.767 2.462 0.385 0.462 2.000 2.000 0.385 2.000 1.000 3.000 1.833 2.000 2.000 | 0.000
28 13.000 1.769 0.154 1.615 1.615 0.923 0.077 1.000 1.000 0.538 2.000 1.000 4.000 0.875 3.000 1.750 | 0.500
29 14.000 2.143 0.250 1.429 1.357 0.286 0.286 2.000 2.000 0.429 2.000 1.000 2.000 1.750 2.000 3.500 | 0.000
30 14.000 0.947 0.000 2.947 2.947 0.368 0.211 4.000 1.000 0.000 0.000 0.000 5.000 1.933 0.400 1.800 | 0.000
31 15.000 2.067 0.333 1.000 1.000 0.600 0.333 3.000 1.000 0.467 2.000 2.000 3.000 1.417 0.000 1.000 | 0.333
32 15.000 2.833 0.305 1.556 1.556 0.444 0.056 1.000 1.000 0.389 2.000 2.000 4.000 1.558 1.250 2.750 | 0.750
33 16.000 1.500 0.125 1.500 1.500 0.250 0.000 0.000 0.000 0.625 3.000 1.000 4.000 1.000 1.250 0.750 | 0.750
34 17.000 3.353 0.559 2.824 2.824 0.353 0.176 2.000 1.000 0.471 2.000 2.000 3.000 1.733 1.667 3.000 | 1.000
35 18.000 1.611 0.000 1.167 1.167 0.833 0.166 2.000 1.000 0.000 0.000 0.000 2.000 1.000 0.000 2.000 | 0.000
36 24.000 0.917 0.104 1.000 1.000 0.583 0.208 3.000 1.000 0.333 3.000 1.000 2.000 0.833 1.000 1.500 | 0.000
37 24.000 0.792 0.042 1.250 1.250 0.917 0.458 2.000 2.000 0.167 1.000 1.000 4.000 1.363 1.500 1.250 | 0.500
38 24.000 2.125 0.042 2.792 2.792 0.417 0.250 4.000 1.000 0.083 1.000 1.000 3.000 2.156 0.000 2.000 | 0.333
39 25.000 1.560 0.220 1.400 1.400 0.480 0.280 4.000 1.000 0.360 3.000 1.000 2.000 1.000 1.000 3.000 | 1.000
40 36.000 1.556 0.361 3.611 3.542 0.444 0.000 0:000 0.000 0.667 4.000 2.000 2.000 1.807 0.000 10.500 | 0.000
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Table 3.8: Aesthetic metric values of sample software.

41

Software Unif Tot Max Unif Tot Max Ortho- Join Center | Below | SameCo | Indicator Avg Max AvgUnif Avg
No. Edgelen | EdgelLen | EdgelLen | Bends Bends Bends gonal CrossS | Edgelens | EdgelLenS | SubsetSepS
1 0.635 12.500 3.000 1.200 4.000 2.000 1.000 | 1.000 1.000 | 0.750 1.000 0.000 3.000 2.000 0.220 2.000
2 4.673 16.300 7.000 0.000 0.000 0.000 0.400 | 1.000 1.000 1.000 1.000 1.000 15.000 5.000 1.090 1.000
3 0.387 9.600 3.300 0.000 0.000 0.000 0.000 | 1.000 1.000 1.000 1.000 1.000 6.000 3.000 0.710 2.000
4 0.906 17.800 3.700 1.143 6.000 2.000 1.000 | 1.000 1.000 1.000 1.000 0.750 4.500 3.000 0.380 2.000
5 5.898 32.900 9.300 0.786 6.000 2.000 1.000 | 0.667 1.000 0.800 0.667 1.000 2.000 2.000 0.190 3.000
6 6.018 69.800 9.700 0.555 9.000 2.000 0.231 | 1.000 1.000 1.000 1.000 4.500 1.667 2.000 0.280 1.333
7 0.468 14.700 2.800 0.000 0.000 0.000 0.625 | 1.000 1.000 1.000 1.000 1.000 3.000 4.000 0.470 2.000
8 6.174 24.800 8.900 0.000 0.000 0.000 0.625 | 1.000 1.000 | 0.500 1.000 1.000 0.667 2.000 0.110 2.333
9 10.041 41.300 10.900 0.778 5.000 2.000 0.778 | 0.500 1.000 | 1.000 0.500 0.600 11.000 4.000 0.780 2.000
10 1.678 25.700 5.100 1.143 8.000 2.000 0.875 | 1.000 1.000 1.000 1.000 0.667 6.000 4.000 0.710 1.500
11 1.133 20.700 4.600 0.952 4.000 2.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.750 3.000 0.290 1.750
12 6.440 40.300 9.100 0.722 5.000 2.000 0.700 | 1.000 1.000 1.000 1.000 0.286 9.000 4.000 0.590 1.333
13 7.645 33.500 10.900 0.711 4.000 2.000 1.000 | 1.000 1.000 | 0.600 1.000 1.000 0.400 2.000 0.090 1.600
14 6.703 42.200 10.100 0.000 0.000 0.000 0.364 | 0.600 0.800 | 0.750 0.800 1.000 2.667 3.000 0.410 2.333
15 2.155 22.500 6.100 0.143 1.000 1.000 0.571 | 0.333 0.667 | 0.833 0.667 1.000 6.000 6.000 0.820 1.000
16 2.091 22.800 5.100 0.857 4.000 2.000 0.875 | 1.000 1.000 1.000 1.000 0.167 2.000 2.000 0.260 1.667
17 1.847 22.700 5.000 0.000 0.000 0.000 0.778 | 1.000 1.000 1.000 1.000 1.000 1.667 3.000 0.350 2.667
18 4.438 26.500 6.900 0.444 2.000 0.000 0.667 |-1.000 1.000 1.000 1.000 1.000 0.750 2.000 0.140 2.750
19 0.572 25.800 3.900 1.111 10.000 2.000 1.000 | 1.000 1.000 1.000 1.000 0.000 1.500 2.000 0.100 3.500
20 0.920 29.900 4.600 0.873 6.000 2.000 0.818 | 1.000 1.000 1.000 1.000 1.000 0.333 2.000 0.070 2.333
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Table 3.9: Aesthetic metric values of sample software (continued).

42

Software Unif Tot Max Unif Tot Max Ortho- Join Center | Below | SameCo | Indicator Avg Max AvgUnif Avg
No. Edgelen | EdgelLen | EdgelLen | Bends Bends Bends gonal CrossS | Edgelens | EdgelLenS | SubsetSepS
21 2.570 30.800 5.500 1.091 12.000 2.000 0.833 | 0.750 1.000 | 0.750 0.500 1.000 2.000 2.000 0.230 2.000
22 9.336 41.700 11.900 0.769 6.000 2.000 0.615 | 1.000 1.000 | 0.000 1.000 0.600 5.500 7.000 2.210 1.500
23 4.835 63.200 10.300 1.140 16.000 3.000 0.316 | 0.750 1.000 | 0.600 0.750 0.000 7.000 4.000 1.400 1.500
24 1.470 27.300 4.900 0.778 4.000 2.000 0.778 | 1.000 1.000 | 0.667 1.000 0.000 5.500 2.000 0.260 2.750
25 0.370 10.900 2.500 0.000 0.000 0.000 0.667 | 0.500 1.000 | 0.667 1.000 1.000 6.000 4.000 0.580 1.667
26 1.447 45.600 5.500 0.059 1.000 1.000 0.471 | 0.667 0.667 | 0.500 0.667 0.818 3.333 4.000 0.420 1.667
27 1.561 36.000 5.700 0.117 2.000 1.000 0.313 | 0.400 1.000 | 0.182 0.800 0.000 3.667 5.000 0.620 2.000
28 12.576 92.100 12.600 0.889 | 22.000 2.000 0.944 | 1.000 1.000 1.000 1.000 1.000 4.500 5.000 0.850 1.750
29 1.366 33.600 4.400 0.879 8.000 2.000 0.857 | 0.800 1.000 | 0.700 0.800 0.750 10.000 4.000 0.860 1.500
30 1.047 27.100 4.400 0.000 0.000 0.000 0.818 | 1.000 1.000 | 0.750 1.000 1.000 3.600 3.000 0.510 2.000
31 4.740 60.300 10.800 0.912 12.000 2.000 0.684 | 0.800 1.000 | 0.600 0.800 0.875 4.000 3.000 0.830 2.000
32 6.159 59.900 9.300 0.996 | 15.000 2.000 0.500 | 1.000 0.750 1.000 0.750 1.000 6.500 5.000 1.570 2.250
33 1.868 44.500 5.500 0.917 | 10.000 2.000 0.625 | 0.667 1.000 | 0.600 1.000 0.800 2.750 3.000 0.400 1.750
34 2.358 52.800 6.300 1.053 | 18.000 2.000 0.895 | 1.000 0.857 | 0.833 1.000 1.000 3.333 3.000 0.420 2.333
35 0.874 33.100 3.600 0.000 0.000 0.000 0.778 | 0.500 1.000 | 0.000 1.000 0.125 1.000 2.000 0.200 3.000
36 1.054 45.300 6.000 0.560 8.000 2.000 0.600 | 0.667 2.000 | 0.846 2.000 0.917 5.000 4.000 1.045 2.000
37 2122 88.000 7.200 0.480 10.000 2.000 0.459 | 0.750 0.750 | 0.333 0.750 0.571 4.000 3.000 0.360 1.750
38 1.263 55.300 4.800 0.623 8.000 2.000 0.682 |-0.800 1.000. | +0.500 0.800 1.000 4.000 3.000 0.550 2.000
39 1.903 63.200 5.300 0.893 | 23.000 2.000 0.679 | 0.857 0.857 | 0.688 0.714 0.583 4.500 4.000 0.640 3.000
40 1.402 74.100 5.600 1.026 38.000 2.000 0.667 | 0.857 0.857 0.917 0.857 0.786 53.000 11.000 7.540 4.500
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Table 3.10: Understandability, Modifiability and Maintainability Scores and Levels of
sample software.

Software Understandability | Modifiability | Maintainability | Understandability | Modifiability | Maintainability
No. Score Score Score Level Level Level
1 15.33 15.33 30.67 2 2 2
2 13.00 8.67 21.67 1 0 0
3 14.00 14.00 28.00 1 2 2
4 17.33 10.67 28.00 2 1 2
5 12.67 11.00 23.67 1 1 1
6 13.50 12.00 25.50 1 1 1
7 14.00 ko, 574 29.67 1 2 2
8 13.00 16.00 29.00 1 2 2
9 13.33 11.00 24.33 " 1 1
10 11.33 f12.36 23.67 0 1 1
11 15.00 14.67 29.67 2 2 2
12 14.33 13.67 28.00 2 2 2
13 14.00 12.33 26.33 1 1 1
14 12.67 13.33 26.00 1 1 1
15 16.00 10.33 26.33 2 1 1
16 16.00 14.33 30.33 2 2 2
17 16.33 14.00 30.33 2 2 2
18 14.00 10.33 24.33 1 1 1
19 11.33 12.00 23.33 0 1 1
20 13.00 11.00 24.00 1 1 1
21 8.33 9.00 17.33 0 0 0
22 13.67 12.00 25.67 1 1 1
23 15.00 13.83 28.83 2 2 2
24 8.00 8.67 16.67 0 0
25 15.33 12.67 28.00 2 1 2
26 15.33 11.00 26.33 2 1 1
27 13.33 12.33 25.67 1 1 1
28 13.00 12.33 25.33 1 1 1
29 11.33 12.00 23.33 0 1 1
30 13.00 12.33 25.33 1 1 1
31 13.33 6.67 20.00 1 0 0
32 13.00 10.67 23.67 1 1 1
33 11.33 9.00 20.33 0 0 0
34 11.33 11.00 22.33 0 1 1
35 12.67 11.67 24.33 1 1 1
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Table 3.11: Understandability, Modifiability and Maintainability Scores and Levels of

sample software (continued).

Software Understandability | Modifiability | Maintainability | Understandability | Modifiability | Maintainability
No. Score Score Score Level Level Level
36 9.00 8.67 17.67 0 0 0
37 10.33 11.00 21.33 0 1 0
38 11.33 11.67 23.00 0 1 1
39 12.67 7.33 20.00 1 0 0
40 9.00 8.33 17.33 0 0 0

3.3 Experimental Analysis and Results

This section presents metric validation and construction of maintainability

models applying Discriminant analysis, Decision tree and MLP neural network.

3.3.1 Metric Validation

The main goal of the experiment is to analyze class and sequence diagrams for

the purpose of validating the possibility of structural complexity and aesthetic metrics

being used as good indicators of class and sequence diagrams maintainability.

Therefore, the following hypotheses are proposed:

H1, :

H1, :

H2

H2

H3,

Structural complexity metrics cannot be indicators for classifying
understandability level.
Structural complexity metrics can be indicators for classifying

understandability. level.

: Structural complexity metrics cannot be-indicators for classifying

modifiability level.

, - Structural complexity metrics can be indicators for classifying modifiability

level.

: Structural complexity metrics cannot be indicators for classifying

maintainability level.
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H3, : Structural complexity metrics can be indicators for classifying

maintainability level.

H4, : Aesthetic metrics cannot be indicators for classifying understandability
level.
H4, : Aesthetic complexity design metrics can be indicators for classifying

understandability level.

H5, : Aesthetic metrics cannot be indicators for classifying modifiability level.

H5, : Aesthetic metrics can be indicators for classifying modifiability level.

H6, : Aesthetic metrics cannot be indicators for classifying maintainability level.

H6, : Aesthetic metrics can be indicators for classifying maintainability level.

INE

H7, : Structural complexity and aesthetic metrics cannot be indicators for
classifying understandability level.
H7, : Structural complexity metrics and aesthetic can be indicators for

classifying understandability level.

H8, : Structural complexity and aesthetic metrics cannot be indicators for
classifying modifiability level.
H8, : Structural complexity and aesthetic metrics can be indicators for

classifying modifiability level.

H9, : Structural complexity and aesthetic metrics cannot be indicators for
classifying maintainability level.
H9, : Structural complexity and aesthetic metrics can be indieators for
classifying maintainability level.
In order to test these hypotheses, Multivariate analysis of variance (MANOVA) is
applied. MANOVA is simply an ANOVA with several dependent variables. This is a test
of overall relationship between groups and predictors by considering variance in the set

of predictors that effects on group classification. The results of MANOVA test are shown

in Table 3.12 - Table 3.14. Because all obtained P-value are less than significant level
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(0.001), all null hypotheses are rejected. This result can be concluded that three groups
of understandability, modifiability and maintainability levels can be distinguished on the
basis of structural complexity metrics, aesthetic metrics and combination of structural

complexity and aesthetic metrics.

Table 3.12: MANOVA test of structural complexity metrics.

Hypothesis | Source of Variance | Wilks’ Lambda df1 df2 Multivariate F P-value
H1 Understandability 0.006427 34 42 141734 <0.001
H2 Modifiability 0.005586 34 42 15.2927 <0.001
H3 Maintainability 0.005232 34 42 15.8427 <0.001

Table 3.13: MANOVA test of aesthetic metrics.

Hypothesis | Source of Variance | Wilks’ Lambda df1 df2 Multivariate F P-value
H4 Understandability 0.008599 32 44 13.4529 <0.001
H5 Modifiability 0.006765 32 44 15.3424 <0.001
H6 Maintainability 0.006473 32 44 15.7153 <0.001

Table 3.14: MANOVA test of structural complexity and aesthetic metrics.

Hypothesis | Source of Variance | Wilks’ Lambda df1 df2 Multivariate F P-value
H7 Understandability 0.009932 46 30 5.8919 <0.001
H8 Modifiability 0.006647 46 30 7.3471 <0.001
H9 Maintainability 0.005762 46 30 7.9395 <0.001

3.3.2 Constructing Understandability, Modifiability and Maintainability Models

This section presents how to construct understandability, modifiability and
maintainability models applying 3 techniques: Discriminant analysis, Decision tree and
MLP neural network.

In orderto-findthe best prediction models for understandability, modifiability and
maintainability, eighteen prediction models for each technique are constructed. So, the
number of models constructed-in-this work is 54 models.

Prediction models constructed by applying Discriminant analysis consist of the
following models.

DiscUnd1: Understandability model constructed from all structural complexity

metrics.

DiscMod1: Modifiability model constructed from all structural complexity metrics.
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DiscMain1: Maintainability model constructed from all structural complexity

metrics.

DiscUnd2: Understandability model constructed from structural complexity
metrics from which correlated metrics are discarded.

DiscMod?2: Modifiability model constructed from structural complexity metrics
from which correlated metrics are discarded.

DiscMain2: Maintainability model constructed from structural complexity metrics

from which correlated metrics are discarded.

DiscUnd3: Understandability model constructed from all aesthetic metrics.
DiscMod3: Modifiability model constructed from all aesthetic metrics.

DiscMain3: Maintainability model constructed from all aesthetic metrics.

DiscUnd4: Understandability model constructed from aesthetic metrics from
which correlated metrics are discarded.

DiscMod4: Modifiability model constructed from aesthetic metrics from which
correlated metrics are discarded.

DiscMain4: Maintainability model constructed from aesthetic metrics from which

correlated metrics are discarded.

DiscUndb5: Understandability model constructed from all structural complexity
and aesthetic metrics.

DiscMod5: Modifiability model constructed from all structural complexity and
aesthetic' metrics.

DiscMain5: Maintainability model constructed from all structural complexity and

aesthetic metrics.

DiscUnd6: Understandability model constructed from structural complexity and
aesthetic metrics from which correlated metrics are discarded.

DiscMod6: Modifiability model constructed from structural complexity and
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aesthetic metrics from which correlated metrics are discarded.
DiscMain6: Maintainability model constructed from structural complexity and

aesthetic metrics from which correlated metrics are discarded.

Prediction models constructed by applying Decision tree consist of DecUnd1 —
DecMain6 which using same approaches of DiscUnd1 — DiscMain6. Then, 18 prediction
models: MLPUnd1 — MLPMain6 are constructed using same approaches of DiscUnd1 —

DiscMain6 but they are constructed by applying technique of MLP neural network.

3.3.2.1 Correlation Analysis

As mentioned in section 3.3.2, prediction models can be categorized into 2
groups.

1) Prediction models constructed from all structural complexity metrics or from

all aesthetic metrics or from all structural complexity and aesthetic metrics
which are listed in Table 3.1 and Table 3.2.

2) Prediction models constructed from structural complexity metrics from which
correlated metrics are discarded or from aesthetic metrics from which
correlated metrics are discarded or from structural complexity and aesthetic
metrics from which correlated metrics are discarded.

For constructing the second group of prediction models, correlation analysis of
metrics are applied. Correlation between each pair of metrics is considered in order to
discard metrics that provide redundant information (i.e. the metric measures similar
property as other metrics). This can be automated by applying Pearson’s correlation test
with significant level at 0.01. For each couple of highly correlated metrics, only one of
them will be selected. Linear regression with one independent variable is performed for
each metric. Then, adjusted R square value is used to determine the best choice.
Adjusted R square value of independent variable indicates that it can explain the
variance of dependent variable well or not. The metric with higher adjusted R square
value (not consider sign) will be chosen. Results of correlation analysis are shown in

Table 3.15 — Table 3.22.
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Table 3.15: Pearson’s correlation of structural complexity metrics.

Pearson’s
Correlated Metrics Adjusted R Square
Correlation
ANAW & ANGen 0.678 0.01
ANAW & MaxDIT 0.729 0.01
ANMUW & ANMW 0.989 0.01
NAggH & MaxHAgg 0.766 0.01
NGenH & MaxDIT 0.862 0.01

Table 3.16: Adjusted R square of correlated structural complexity metrics where
dependent variable is understandability level. Discarded metrics are
ANAW, ANMW, NAggH, MaxDIT.

Correlated Metricé Adjusted R Square
ANAW & ANGen 0.068 & 0.123
ANAW & MaxDIT 0.068 & 0.080

ANMUW & ANMW 0.008& 0.004

NAggH & MaxHAgg -0.019 &-0.020

NGenH & MaxDIT 0.286 & 0.080

ANAW, ANMW, NAggH, MaxDIT.

Table 3.17: Adjusted R square of correlated structural complexity metrics where
dependent variable is modifiability level. Discarded metrics are

Correlated Metrics |

|

Adjusted Square

ANAW & ANGen -0.011 & 0.089
ANAW & MaxDIT -0.011 & 0.068
ANMUW & ANMW 0.101 & 0.090
NAggH & MaxHAgg -0.025 & -0.028
NGenH & MaxDIT 0.278 & 0.068

ANAW, ANMW, NAggH, MaxDIT.

Table 3.18. Adjusted R square of correlated structural complexity metrics where
dependent variable is maintainability level. Discarded metrics are

Correlated Metrics

Adjusted R Square

ANAW & ANGen 0.034 & 0.149
ANAW & MaxDIT 0.034 & 0.107
ANMUW & ANMW 0.073 & 0.063
NAggH & MaxHAgg -0.022 &-0.024

NGenH & MaxDIT

0.386 & 0.107




Table 3.19: Pearson’s correlation of aesthetic metrics.

Pearson’s Significance Level
Correlated Metrics
Correlation (2-tailed)
UnifEdgelLen & MaxEdgelLen 0.934 0.01
UnifBends & MaxBends 0.891 0.01
AvgCrossS & MaxEdgelLenS 0.812 0.01
AvgUnifEdgelLenS & MaxEdgelLenS 0.874 0.01

Table 3.20: Adjusted R square of correlated aesthetic metrics where dependent

variable is understandability level. Discarded metrics are
UnifEdgelen, UnifBends, MaxEdgel.enS.

Correlated Metrics: Adjusted R Square
UnifEdgelen & MaxEdgelLen -0.020 & -0.026
UnifBends & MaxBends 0.030 & 0.040
AvgCrossS & MaxEdgelenS 0.061 &-0.017
AvgUnifEdgelLenS & MaxEdgelLenS 0.047 &-0.017

Table 3.21: Adjusted R square of correlated aesthetic metrics where dependent

variable is modifiability level. Discarded metrics are
UnifEdgelen, UnifBends, MaxEdgelenS.

Qprrelated'Metrics ,/:.' " Adjusted R Square
UnifEdgeLen & MaxEdgelLen -0.016 & -0.017
UnifBends & MaxBends 0.037& 0.050
AvgCrossS & MaxEdgelLenS 0.065 & 0.032
AvgUnifEdgelenS & MaxEdgelLenS 0.052 & 0.032

Table 3.22: Adjusted R square of correlated aesthetic metrics where dependent

variable is maintainability level. Discarded metrics are
UnifEdgelen, UnifBends, MaxEdgelLenS.

Correlated Metrics Adjusted R Square
UnifEdgelen & MaxEdgelen -0.021 &-0.023
UnifBends & MaxBends 0.053 & 0.069
AvgCrossS & MaxEdgelLenS 0.093 & 0.013
AvgUnifEdgelLenS & MaxEdgelLenS 0.075 & 0.013




3.3.2.2 Discriminant Analysis

The understandability, modifiability and maintainability obtained by applying

Discriminant analysis are shown as Table 3.23 — Table 3.40. In order to classify a new

software design model into one of three understandability levels utilizing the obtained

understandability model presented in Table 3.23, the metrics presented in each function

will be measured from class and sequence diagrams. Function D_Und1, M_Und1 and

E_Und1 will be calculated. Then the software design model will be allocated to the

group that provides the highest value among 3 functions. For example, if E_Und1 value

is more than D_Und1 and M_Und1 values, understandability of the software design

model will be categorized into group 3 which is easy level. Other models can be utilized

in the same way.

Table 3.23: An understandability model: DiscUnd1.

Difficult level’s function:
D_Undl =1.286 X NC +7.626 X ANAUW -1.953 X ANAW -14.64 X ANMUW
+17.705 X ANMW +3.916 X ANAssoc-34.652 X ANAgg+2.737 X NAggH+10.796 X MaxHAgg
+52.974 X ANGen-3.6 X NGenH-5.627 X MaxDIT+2.222 X NOS+5.539 X WMBO
+2.854 X ANRM + 0.275X ANDM+0.011 X ANCM -41.146

Medium level’s function:

M_Undl =0.837 X NC +7.311 X ANAUW -4.58 X ANAW -7.526 X ANMUW

+9.387 X ANMW +5.151 X ANAssoc-25.543 X ANAgg+3.334 X NAggH+8.857 X MaxHAgg
+49.447 X ANGen-3.988 X NGenH-5.719 X MaxDIT+3.694 X NOS+4.814 X WMBO
+3.005X ANRM + 1.243 X ANDM+0.939 X ANCM -38.945

Easy level’s function:

E_Undl =0.933 X NC +8.222 X ANAUW -7.844 X ANAW -6.882 X ANMUW

+9.731 X ANMW +4.052 X ANAss0c-23.399 X ANAgg+2.542 X NAggH+8:315 X MaxHAgg
+46.902 X ANGen-3.81 X NGenH-5.485 X MaxDIT+3.39 X NOS+5.035 X WMBO

+2.76 X ANRM + 0.85 X ANDM+1.016 X ANCM -38.265

Table 3:24: An understandability. model: DiscUnd2.

Difficult level’s function:

D_Und2 =1.176 X NC +6.628 X ANAUW+1.27 X ANMUW+2.652 X ANAssoc
-8.927 X ANAgg+6.655 X MaxHAgg+19.603 X ANGen-1.792 X NGenH+3.662 X NOS
+3.876 X WMBO+2.4 X ANRM + 0.666 X ANDM+1.356 X ANCM -35.439

Medium level’s function:

M_Und2 =0.883 X NC +6.317 X ANAUW+0.703 X ANMUW+3.723 X ANAssoc
-0.004 X ANAgg+5.444 X MaxHAQg+16.499 X ANGen-2.25 X NGenH+4.361 X NOS
+2.946 X WMBO+2.683 X ANRM + 1.171 X ANDM+2.292 X ANCM -34.679

Easy level’s function:

E_Und2 =0.933 X NC +6.885 X ANAUW+1.582 X ANMUW+3.096 X ANAssoc
-2.773 X ANAgg+5.222 X MaxHAgg+13.048 X ANGen-1.954 X NGenH+4.007 X NOS
+3.753 X WMBO+2.581 X ANRM + 0.866 X ANDM+2.334 X ANCM -33.71




52

Table 3.25: An understandability model: DiscUnd3.

Difficult level’s function:

D_Und3 =-13.966 X UnifEdgeLen +0.958 X TotEdgeLen +14.545 X MaxLen +75.821

X UnifBends -3.752 X TotBends -23.729 X MaxBends +9.166 X Orthogonal +90.151 X Join
+127.356 X Center -30.013 X Below -65.209 X SameCo +17.276 X Indicator +5.072 X ACrossS
+34.099 X MaxEdgeLenS -75.41 X AUnifEdgeLenS+38.493 X ASubSetSeptS -196.65

Medium level’s function:

M_Und3 =-13.015 X UnifEdgeLen +0.863 X TotEdgeLen +14.699 X MaxLen +71.714

X UnifBends -3.643 X TotBends -24.513 X MaxBends +5.536 X Orthogonal +93.949 X Join
+129.478 X Center -29.798 X Below -70.557 X SameCo +17.981 X Indicator +4.641 X ACrossS
+34.455 X MaxEdgelLenS -73.932 X AUnifEdgeLenS+40.159 X ASubSetSeptS -195.253

Easy level’s function:

E_Und3 =-13.378 X UnifEdgeLen +0.871 X TotEdgeLen +14.178 X MaxLen +66.437

X UnifBends -3.72 X TotBends -20.691 X MaxBends +11.921 X Orthogonal +84.817 X Join
+114.802 X Center -21.617 X Below -61.394 X SameCo +15.354 X Indicator +4.355 X ACrossS
+32.547 X MaxEdgeLenS -68.231 X AUnifEdgeLenS+35.643 X ASubSetSeptS -175.241

Table 3.26: An understandability model: DiscUnd4.

Difficult level’s function:

D_Und4 =0.566 X TotEdgeLen -0.096 X MaxLen -1.538 X TotBends +1.379 X MaxBends
+10.882 X Orthogonal +31.092 X Join +54.877 X Center +1.846 X Below -22.151 X SameCo
+1.412 X Indicator +0.872 X ACrossS -2.709 X AUnifEdgeLenS+9.463 X ASubSetSeptS -55.513

Medium level’s function:

M_Und4 =0.504 X TotEdgeLen +0.977 X MaxLen -1.503 X TotBends -1.454 X MaxBends
+8.831 X Orthogonal +33.913 X Join +57.379 X Center +2.475 X Below -27.71 X SameCo +1.968
X Indicator +0.512 X ACrossS -0.955 X AUnifEdgeLenS+10.241 X ASubSetSeptS -55.5

Easy level’s function:

E_Und4 =0.545X TotEdgeLen +0.088 X MaxLen -1.762 X TotBends +1.294 X MaxBends
+12.411 X Orthogonal +27.2 X Join +45.916 X Center +8.095 X Below -19.74 X SameCo +0.417
X Indicator +0.409 X ACrossS +1.028 X AUnifEdgeLenS+7.92 X ASubSetSeptS -46.366

Table 3.27: An understandability model: DiscUnd5.

Difficult level’s function:

D_Und5 =28.665 X NC +166.883 X ANAUW +120.5X ANAW +198.404 X ANMUW-82.167

X ANMW -151.319 X ANAssoc-1001.203 X ANAgg -5.834 X NAggH+191.819 X MaxHAgg +765.242

X ANGen-9.137 X NGenH-422.046 X MaxDIT-104.145 X NOS-81.747 X WMBO0-99.606 X ANRM

- 37.411 X ANDM-163.904 X ANCM-121.976 X UnifEdgeLen +13.035 X TotEdgeLen+148.692 X MaxLen
+589.797 X UnifBends -54.364 X TotBends +3.274 X MaxBends -66.651 X Orthogonal -71.259 X Join
-734.778 X Center +466.853 X Below +559.955 X SameCo +104.586 X Indicator +58.029 X ACrossS
+133.067 X MaxEdgelLenS-554.49 X AUnifEdgeLenS+151.791 X ASubSetSeptS-1023.342

Medium level’s function:

M_Und5 =26.465 % NC +136.626 X ANAUW +47.449 X ANAW +148.76 X ANMUW-67.18

X ANMW -71.741 X ANAssoc-726.5 X ANAgg -0.742 X NAggH+148.004 X MaxHAgQg+715.851

X ANGen -27.007 X NGenH-315.466 X MaxDIT-66.704 X NOS-53.686 X WMBO-73.18 X ANRM
-34.295 X ANDM-123.532 X. ANCM-88.921 X UnifEdgeLen +8.017 X TotEdgeLen+116.301 X MaxLen
+446.496 X UnifBends -40.421 X TotBends -2.776 X MaxBends -74.07 X Orthogonal -41.191 X Join
-481,421 X Center +387.264 X Below +352.14 X SameCo +60.593 X Indicator +45.954 X ACrossS
+110.546 X MaxEdgeL enS-448.623 X AUnifEdgeLenS+136.897 X ASubSetSeptS-968.124

Easy level’s function:

E_Und5 =27.722 X NC +173.558 X ANAUW +90.636 X ANAW +237.82 X ANMUW-125.564

X ANMW -127.903 X ANAssoc-1015.575 X ANAgg -0.68 X NAggH+190.115 X MaxHAgg+725.956

X ANGen-7.11 X NGenH-416.565 X MaxDIT-98.692 X NOS-87.345 X WMBO0-100.473 X ANRM

- 39.427 X ANDM-161.196 X ANCM-124.521 X UnifEdgeLen +12.552 X TotEdgeLen+152.048 X MaxLen
+584.416 X UnifBends -53.452 X TotBends-1.138 X MaxBends -38.053 X Orthogonal -150.866 X Join
-777.813 X Center +522.0 X Below +562.693 X SameCo +89.711 X Indicator +56.987 X ACrossS

+135.231 X MaxEdgel enS-545.687 X AUnifEdgelLenS+149.302 X ASubSetSeptS-964.687




Table 3.28: An understandability model: DiscUnd6.
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Difficult level’s function:
D_Und6 =8.509 X NC +31.982 X ANAUW -16.898 X ANMUW +38.808 X ANAssoc +34.451 X ANAgg
+23.43 X MaxHAQg +277.816 X ANGen -46.387 X NGenH+24.881 X NOS+38.545 X WMBO
+10.463 X ANRM-9.143 X ANDM+22.483 X ANCM -1.418 X TotEdgeLen+6.638 X MaxLen-
0.067 X TotBends -13.723 X MaxBends-33.6 X Orthogonal +61.708 X Join+305.959 X Center
+18.882 X Below -173.195 X SameCo -16.656 X Indicator +5.917 X ACrossS -
40.814 X AUnifEdgelenS+46.72 X ASubSetSeptS -299.51

Medium level’s function:

M_Und6 =8.751 X NC +30.577 Xx ANAUW-18.646 X ANMUW +49.963 X ANAssoc +39.266 X ANAgg
+21.645 X MaxHAgg +278.040 X ANGen-45.885 X NGenH+26.458 X NOS

+41.5X WMBO+13.392 X ANRM-9.37 X ANDM+22.931 X ANCM-1.772 X TotEdgeLen

+8.234 X MaxLen+0. 406 X TotBends -19.706 X MaxBends-29.636 X Orthogonal

+64.793 X Join+321.403 X Center +17.864 X Below-196.469 X SameCo-19.585 X Indicator

+4.656 X ACrossS -33.398 X AUnifEdgelLenS+48.055 X ASubSetSeptS-298.65

Easy level’s function:

E_Und6 =7.794 X NC +32.889 X ANAUW-16.3 X ANMUW +43.461 X ANAssoc +40.142 X ANAgg
+22.44 X MaxHAgg +250.484 X ANGen-43.535 X NGenH+24.18 X NOS

+35.474 X WMBO+10.47 X ANRM-10.36 X ANDM+23.712 X ANCM-1.276 X TotEdgeLen

+5.865 X MaxLen-0.376 X TotBends-13.199 X MaxBends-20.713 X Orthogonal

+38.764 X Join+282.232 X Center +33.707 X Below-164.092 X SameCo-20.148 X Indicator

+5.226 X ACrossS -32.615 X AUnifEdgelenS+45.764 X ASubSetSeptS-264.343

Table 3.29: A modifiability model: DiscMod1.

Difficult level’s function:
D_Modl =0.936 X NC +6.417 X ANAUW -6.512 X ANAW -13.391 X ANMUW
+15.359 X ANMW +4.584 X ANAssoc-30.105 X ANAgg+3.528 X NAggH+9.824 X MaxHAgg
+49.941 X ANGen-2.509 X NGenH-4.886 X MaxDIT+2.983 X NOS+5.865 X WMBO
+3.446 X ANRM + 0.872 X ANDM+0.034 X ANCM -38.307

Medium level’s function:

M_Mod1l =0.915X NC +6.706 X ANAUW -4.018 X ANAW -11.837 X ANMUW

+12.444 X ANMW +5.307 X ANAssoc-32.341 X ANAgg+3.695 X NAggH+11.507 X MaxHAgg
+71.485 X ANGen-8.45 X NGenH-5.794 X MaxDIT+4.199 X NOS+7.225 X WMBO

+2.912X ANRM + 1.479 X ANDM+1.56 X ANCM -38.126

Easy level’s function:

E_Modl =0.771 X NC +8.412 X ANAUW -4.158 X ANAW -2.064 X ANMUW

+4.125 X ANMW +5.296 X ANAss0c-20.626 X ANAgg+2.914 X NAggH+7.796 X MaxHAgg
+48.234 X ANGen-5.254 X NGenH-6.356 X MaxDIT+4.254 X NOS+3.991 X WMBO

+2546 X ANRM + 1.459 X ANDM+1.781 X ANCM -37.654

Table 3.30: A -modifiability model: DiscMod?2.

Difficult level’s function

D_Mod2 =0.931 X NC +5.532 X ANAUW+0.474 X ANMUW+3.659 X ANAssoc
-1.594 X ANAQQg+5.579 X MaxHAgg+13.127 X ANGen-0.223 X NGenH+4.035 X NOS
+3.63 X WMBO+2.954 X ANRM + 0.981 X ANDM+1.497 X ANCM -33.578

Medium level’s function:

M_Mod2 =0.926 X NC +5.889 X ANAUW-0.608 X ANMUW+3.879 X ANAssoc
-2.547 X ANAQQg+7.263 X MaxHAgg+34.367 X ANGen-6.212 X NGenH+5.084 X NOS
+4.621 X WMBO+2.474 X ANRM + 1.492 X ANDM+3.003 X ANCM -33.504

Easy level’s function:

E_Mod2 =0.8 X NC +7.342 X ANAUW+1.404 X ANMUW+3.738 X ANAssoC

+2.731 X ANAQQ+4.655 X MaxHAgg+14.421 X ANGen-3.363 X NGenH+4.522 X NOS
+1.847 X WMBO+2.459 X ANRM + 1.281 X ANDM+3.058 X ANCM -32.828




Table 3.31: A modifiability model: DiscMod3.
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Difficult level’s function:

D_Mod3 =-16.514 X UnifEdgeLen +0.787 X TotEdgeLen +17.637 X MaxLen +80.527

X UnifBends -3.236 X TotBends -25.927 X MaxBends +18.89 X Orthogonal +67.151 X Join
+116.325 X Center -30.324 X Below -54.141 X SameCo +19.317 X Indicator +5.746 X ACrossS
+36.236 X MaxEdgeLenS -82.177 X AUnifEdgeLenS+35.994 X ASubSetSeptS -198.841

Medium level’s function:

M_Mod3 =-15.089 X UnifEdgeLen +0.946 X TotEdgeLen +15.915 X MaxLen +82.853

X UnifBends -4.014 X TotBends -24.72 X MaxBends +22.559 X Orthogonal +62.255 X Join
+101.355 X Center -26.496 X Below -49.053 X SameCo +20.02 X Indicator +5.142 X ACrossS
+36.444 X MaxEdgeLenS -77.607 X AUnifEdgeLenS+37.029 X ASubSetSeptS -188.184

Easy level’s function:

E_Mod3 =-14.734 X UnifEdgeLen +0.8 X TotEdgeLen +15.535 X MaxLen +67.992

X UnifBends -3.52 X TotBends -20.851 X MaxBends +18.654 X Orthogonal +70.676 X Join
+105.091 X Center -19.777 X Below -53.195 X SameCo +15.798 X Indicator +4.628 X ACrossS
+33.195 X MaxEdgeLenS -70.249 X AUnifEdgeLenS+33.328 X ASubSetSeptS -172.95

Table 3.32: A modifiability model: DiscMod4.

Difficult level’s function:

D_Mod4 = 0.415 X TotEdgeLen +0.209 X MaxLen -1.114 X TotBends +0.297 X MaxBends
+6.775 X Orthogonal +30.481 X Join +63.164 X Center +3.844 X Below -25.455 X SameCo
-0.132 X Indicator +1.091 X ACrossS -3.555 X AUnifEdgeLenS+7.394 X ASubSetSeptS -56.381

Medium level’s function:

M_Mod4 =0.527 X TotEdgeLen +0.07 X MaxLen -1.69 X TotBends +1.363 X MaxBends
+13.124 X Orthogonal +24.952 X Join +46.278 X Center +8.199 X Below -19.295 X SameCo
+0.402 X Indicator +0.509 X ACrossS +0.631 X AUnifEdgeLenS+7.472 X ASubSetSeptS -46.955

Easy level’s function:

E_Mod4 =0.476 X TotEdgeLen -0.008 X MaxLen -1.577 X TotBends +1.248 X MaxBends
+7.699 X Orthogonal +31.106 X Join +51.318 X Center +9.607 X Below -21.616 X SameCo
-1.211 X Indicator +0.484 X ACrossS +0.682 X AUnifEdgeLenS+6.806 X ASubSetSeptS -46.832

Table 3.33: A modifiability model: DiscMod>.

Difficult level’s function:
D_Mod5 =11.185X NC +31.694 X ANAUW -40.408 X ANAW +15.273 X ANMUW-16.367
X ANMW +68.89 X ANAssoc-7.508 X ANAgg -3.385 X NAggH+29.323 X MaxHAgg
+309.818 X ANGen -30.092 X NGenH-36.828 X MaxDIT+8.236 X NOS+15.187 X WMBO
+3.894 X ANRM - 1.689 X ANDM+0.493 X ANCM-13.395 X UnifEdgeLen
-1.692 X TotEdgeLen +22.71 X MaxLen -16.394 X UnifBends -1.895 X TotBends -10.497 X MaxBends
+16.203 X Orthogonal +73.031 X Join +152.272 X Center +117.071 X Below -129.3 X SameCo -
43.527 X Indicator -1.045 X ACrossS -240.208

Medium level’s function:

M_Mod5 =12,993 X NC +32.339 X ANAUW -35.826 X ANAW +26.089 X ANMUW-29.117

X ANMW +78.004 X ANAssoc+7.668 X ANAgQ -2.917 X NAggH+31.583 X MaxHAgg

+376.347 X ANGen -45.025 X NGenH-42.177 X MaxDIT+10.858 X NOS+13.42 X WMBO

+2.068 X ANRM +1.308 X ANDM-0.491 X ANCM-9.954 X UnifEdgeLen

-2.179 X TotEdgeLen +20.645 X MaxLen -25.558 X UnifBends -2.154 X TotBends -0.199 X MaxBends
+5.862 X Orthogonal +67.489 X Join +111.721 X Center +138.375 X Below -103.181 X SameCo -
47.109 X Indicator -1.810 X ACrossS -237.167

Easy level’s function:

E_Mod5 =11.121 X NC +53.048 X ANAUW +10.32 X ANAW +131.102 X ANMUW-138.881

X ANMW +76.334 X ANAssoc+85.145 X ANAgQ -5.656 X NAggH+18.487 X MaxHAQg

+319.414 X ANGen -31.547 X NGenH-74.012 X MaxDIT+9.892 X NOS+3.491 X WMBO

-11.640 X ANRM -2.510 X ANDM+6.841 X ANCM-13.183 X UnifEdgeLen

-0.336 X TotEdgeLen +19.309 X MaxLen -12.345 X UnifBends -5.226 X TotBends -12.506 X MaxBends
+4.525 X Orthogonal +67.265 X Join +119.255 X Center +230.358 X Below -110.516 X SameCo -
56.388 X Indicator -0.072 X ACrossS -234.157




Table 3.34: A modifiability model: DiscMod6.
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Difficult level’s function:
D_Mod6 =4.558 X NC +44.64 X ANAUW -12.658 X ANMUW +36.519 X ANAssoc +84.392 X ANAgg
+14.676 X MaxHAgg +160.953 X ANGen -27.629 X NGenH+20.07 X NOS+26.06 X WMBO
+4.358 X ANRM-17.656 X ANDM+29.333 X ANCM+0.063 X TotEdgeLen+0.632 X MaxLen
-1.697 X TotBends-14.862 X MaxBends-8.52 X Orthogonal +13.688 X Join+274.625 X Center
+68.509 X Below-149.978 X SameCo-28.865 X Indicator +7.87 X ACrossS -
35.531 X AUnifEdgelLenS+47.506 X ASubSetSeptS -262.591

Medium level’s function:

M_Mod6 = 4.8 X NC +43.886 Xx ANAUW -12.905 X ANMUW +37.729 X ANAssoc +78.186 X ANAgg
+17.823 X MaxHAgg +184.161 X ANGen -35.698 X NGenH+21.059 X NOS+24.932 X WMBO

+5.051 X ANRM-14.612 X ANDM+29.481 X ANCM+0.063 X TotEdgeLen+0.548 X MaxLen

-2.119 X TotBends-11.217 X MaxBends-4.677 X Orthogonal +4.203 X Join+250.427 X Center

+72.169 X Below-133.22 X SameCo0-28.156 X Indicator +6.541 X ACrosssS -

29.219 X AUnifEdgeLenS+47.698 X ASubSetSeptS -256.186

Easy level’s function:

E_Mod6 =2.269 X NC +55.912 X ANAUW -11.21 X ANMUW +32.305 X ANAssoc +126.701 X ANAgg
+10.219 X MaxHAgg +137.396 X ANGen-26.621 X NGenH+19.44 X NOS+20.185 X WMBO

+0.503 X ANRM-19.566 X ANDM+35.365 X ANCM+1.231 X TotEdgeLen-3.443 X MaxLen

-3.205 X TotBends-17.48 X MaxBends-5.271 X Orthogonal +9.044 X Join+279.994 X Center

+93.09 X Below-140.87 X SameCo0-35.707 X Indicator +8.889 X ACrossS -

35.262 X AUnifEdgelLenS+53.535 X ASubSetSeptS -241.537

Table 3.35: A maintainability model: DiscMain1.

Difficult level’s function:
D_Mainl =1.013X NC +5.546 X ANAUW -0.595 X ANAW -11.506 X ANMUW
+12.098 X ANMW +6.303 X ANAssoc-29.149 X ANAgg+3.969 X NAggH+10.753 X MaxHAgg
+57.695 X ANGen-3.788 X NGenH-5.46 X MaxDIT+3.66 X NOS+7.595 X WMBO
+3.577 X ANRM + 1.241 X ANDM+1.213 X ANCM -45.413

Medium level’s function:

M_Mainl =0.769 X NC +6.091 X ANAUW +2.742 X ANAW -10.675 X ANMUW

+10.264 X ANMW +7.383 X ANAssoc-42.592 X ANAgg+5.481 X NAggH+12.83 X MaxHAgg
+82.179 X ANGen-8.622 X NGenH-7.772 X MaxDIT+4.524 X NOS+10.134 X WMBO

+2.949 X ANRM +2.08 X ANDM+2.232 X ANCM -44.466

Easy level’s function:

E_Mainl =0.73XNC +7.787 X ANAUW -3.797 X ANAW -6.797 X ANMUW

+8.386 X ANMW +5.439 X ANAssoc-31.11 X ANAgg+3.88 X NAggH+9.639 X MaxHAgg
+60.072 X ANGen-6.206 X NGenH-6.752 X MaxDIT+4.065 X NOS+5.965 X WMBO
+2.658 X ANRM +1.575X ANDM+1.439 X ANCM -37.02

Table 3.36: A maintainability model: DiscMain2.

Difficult level’s function

D_Main2 =1.086 X NC +4.959 X ANAUW -0.218 X ANMUW+4.454 X ANAssoc
+1.927 X ANAgg+6.263 X MaxHAgg+19.706 X ANGen-0.757 X NGenH+4.347:x NOS
+4.297 X WMBO+3.2 X ANRM + 1.036 X ANDM+2.036 X ANCM -35.464

Medium-level’s-function:

M_Main2 =0.915 X NC +5.575 X ANAUW -0.896 X ANMUW+4.391 X ANAssoc
-0.546 X ANAgg+7.157 X MaxHAgg +34.317 X ANGen -4.807 X NGenH+5.061 X NOS
+5.235 X WMBO+2.541 X ANRM + 1.599 X ANDM+3.211 X ANCM -35.387

Easy level’s function:

E_Main2=0.816 X NC +6.681 X ANAUW +0.88 X ANMUW+3.568 X ANAssoc
-0.413X ANAQg+5.278 X MaxHAgg +16.703 X ANGen -2.912 X NGenH+4.432 X NOS
+2.801 X WMBO+2.526 X ANRM + 1.246 X ANDM+2.506 X ANCM -30.679




Table 3.37: A maintainability model: DiscMain3.
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Difficult level’s function:

D_Main3 =-17.458 X UnifEdgeLen +1.025 X TotEdgeLen +18.495 X MaxLen +78.769

X UnifBends -3.743 X TotBends -24.977 X MaxBends +18.767 X Orthogonal +75.598 X Join
+119.119 X Center -29.647 X Below -60.318 X SameCo +17.971 X Indicator +5.845 X ACrossS
+36.618 X MaxEdgeLenS -83.08 X AUnifEdgeLenS+37.491 X ASubSetSeptS -206.491

Medium level’s function:

M_Main3 =-15.951 X UnifEdgeLen +1.055 X TotEdgeLen +17.021 X MaxLen +78.398

X UnifBends -4.216 X TotBends -23.114 X MaxBends +21.388 X Orthogonal +71.173 X Join
+107.553 X Center -25.463 X Below -56.67 X SameCo +18.81 X Indicator +5.138 X ACrossS
+36.786 X MaxEdgelLenS -78.122 X AUnifEdgeLenS+38.74 X ASubSetSeptS -197.663

Easy level’s function:

E_Main3 =-15.455 X UnifEdgeLen +0.949 X TotEdgeLen +16.303 X MaxLen +69.888

X UnifBends -3.859 X TotBends -21.115 X MaxBends +19.163 X Orthogonal +74.183 X Join
+107.345 X Center -21.116 X Below -56.606 X SameCo +16.028 X Indicator +4.819 X ACrossS
+34.244 X MaxEdgeLenS -72.769 X AUnifEdgeLenS+35.229 X ASubSetSeptS -179.291

Table 3.38: A maintainability model: DiscMain4.

Difficult level’s function:

D_Main4 =0.547 X TotEdgelLen -0.041 X MaxLen -1.504 X TotBends +1.405 X MaxBends
+9.896 X Orthogonal +25.849 X Join +49.546 X Center +4.916 X Below -18.757 X SameCo
+0.087 X Indicator +0.892 X ACrossS -2.332 X AUnifEdgelLenS+7.441 X ASubSetSeptS -50.774

Medium level’s function:

M_Main4 =0.57 X TotEdgeLen +0.113 X MaxLen -1.872 X TotBends +1.83 X MaxBends
+14.863 X Orthogonal +22.771 X Join +40.867 X Center +9.179 X Below -17.303 X SameCo
+0.697 X Indicator +0.329 X ACrossS +1.823 X AUnifEdgeLenS+7.857 X ASubSetSeptS -47.165

Easy level’s function:

E_Main4 =0.526 X TotEdgeLen -0.118 X MaxLen -1.804 X TotBends +1.551 X MaxBends
+11.645 X Orthogonal +27.694 X Join +44.047 X Center +10.858 X Below -18.717 X SameCo
-0.659 X Indicator +0.308 X ACrossS +2.074 X AUnifEdgeLenS+6.717 X ASubSetSeptS -46.709

Table 3.39: A maintainability model: DiscMainb.

Difficult level’s function

D_Main5 =21.999 X NC +9.409 X ANAUW -337.633 X ANAW -209.383 X ANMUW+250.244
X ANMW +114.890 X ANAssoc -47.616 X ANAgg -4.729 X NAggH+26.855 X MaxHAgg
+486.436 X ANGen-17.264 X NGenH+31.865 X MaxDIT-6.643 X NOS+18.310 X WMBO

+7.418 X ANRM+3.919 X ANDM-71.346 X ANCM-22.392 X UnifEdgeLen -5.158 X TotEdgeLen
+55.315 X MaxLen +98.768 X UnifBends -1.571 X TotBends -58.207 X MaxBends -53.670

X Orthogonal +266.690 X Join+92.735 X Center -42.126 X Below -103.882 X SameCo -69.079

X Indicator +8.137 X ACrossS+52.070 X MaxEdgelLenS-175.310 X AUnifEdgelLenS-417.689

Medium level’s function:

M_Main5 =23.624 X NC +6.824 X ANAUW -300.362 X ANAW-197.772 X ANMUW+232.154
X ANMW +126.813 X ANAssoc-75.271 X ANAgg -0.923 X NAggH+34.966 X MaxHAQgg
+569.702 X ANGen-39.013 X NGenH+25.194 X MaxDIT-0.484 X NOS+25.604 Xx WMBO

+10.902 X ANRM+8.858 X ANDM-65.508 X ANCM-16.413 X UnifEdgeLen-6.152 X TotEdgeLen
+50.591 X MaxLen +62.489 X UnifBends -0.475 X TotBends -37.859 X MaxBends-57.327

X Orthogonal +237.782 X Join+70.912 X Center -25.845 X Below -90.892 X SameCo -69.520

X Indicator +4.502 X ACrossS +44.409 X MaxEdgelenS-146.909 X AUnifEdgelLenS-387.102

Easy level’s function:

E_Main5 =19.417 X NC +27.125 X ANAUW-273.173 X ANAW-122.521 X ANMUW+152.081
X ANMW +104.491 X ANAssoc-17.669 X ANAgg -3.027 X NAggH+23.832 X MaxHAgg
+465.745 X ANGen-24.265 X NGenH+3.289 X MaxDIT-1.895 X NOS+10.106 X WMBO

-2.584 X ANRM+1.457 X ANDM-55.750 X ANCM-19.270 X UnifEdgeLen-4.016 X TotEdgeLen
+46.296 X MaxLen +91.115 X UnifBends-2.476 X TotBends-52.539 X MaxBends-49.062

X Orthogonal +190.167 X Join+63.376 X Center +38.545 X Below -70.107 X SameCo -67.107

X Indicator +9.021 X ACrossS +41.953 X MaxEdgelLenS-156.174 X AUnifEdgelLenS-342.923




57

Table 3.40: A maintainability model: DiscMain6.

Difficult level’s function:
D_Main6 =9.942 X NC +24.464 X ANAUW -14.603 X ANMUW +55.289 X ANAssoc +20.179 X ANAgg
+25.593 X MaxHAgg +259.156 X ANGen-42.469 X NGenH+22.729 X NOS+38.076 X WMBO
+12.444 X ANRM-7.55X ANDM+17.413 X ANCM-1.997 X TotEdgeLen+8.773 X MaxLen
-0.228 X TotBends-7.686 X MaxBends-15.02 X Orthogonal +31.467 X Join+230.229 X Center
+35.345 X Below-143.128 X SameCo0-23.218 X Indicator +3.596 X ACrossS -
27.3 X AUnifEdgelLenS+36.159 X ASubSetSeptS -266.059
Medium level’s function:
M_Main6 =10.426 X NC +23.538 X ANAUW -14.385 X ANMUW +59.105 X ANAssoc +5.443 X ANAgg
+27.302 X MaxHAgg +282.659 X ANGen-47.683 X NGenH+23.694 X NOS+40.553 X WMBO
+13.418 X ANRM-3.571 X ANDM+16.04 X ANCM-2.201 X TotEdgeLen+9.753 X MaxLen
-0.203 X TotBends-7.802 X MaxBends-13.873 X Orthogonal +27.558 X Join+216.64 X Center
+33.859 X Below-132.892 X SameCo0-23.541 X Indicator +1.978 X ACrossS -
21.759 X AUnifEdgeLenS+34.256 X ASubSetSeptS -265.501
Easy level’s function:
E_Main6 =6.694 X NC +35.042 X ANAUW -14.038 X ANMUW +42.118 X ANAssoc +41.682 X ANAgg
+22.757 X MaxHAgg +215.83 X ANGen-40.804 X NGenH+22.118 X NOS+29.278 X WMBO
+8.382 X ANRM-11.18 X ANDM+24.813 X ANCM-0.84 X TotEdgeLen+3.719 X MaxLen
-1.178 X TotBends-7.769 X MaxBends-5.303 X Orthogonal +3.107 X Join+233.770 X Center
+55.251 X Below-131.067 X SameC0-22.889 X Indicator +4.93 X ACrossS-
25.762 X AUnifEdgeLenS+42.96 X ASubSetSeptS -248.146

3.3.2.3 Decision Tree

The understandability, modifiability and maintainability prediction models
obtained by applying Decision tree are shown in Figure 3.5 - Figure 3.13. In order to
classify a new software design model utilizing the decision tree, the new software design
model is classified by starting at the root node of the desired tree, testing the attribute
specified by this node (in this work attribute is metric), then moving down the tree
branch corresponding to the value of the attribute. This process is then repeated for the
subtree root at the new node until leaf node is reached. The leaf node will provide the
predicted class (in this work, class is understandability level or modifiability level or
maintainability-level). The decision tree has a process of selecting metrics that are useful
for classifying classes. So, after constructing the prediction model, -only useful metrics

are appeared in the prediction model.
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3.3.2.4 Multilayer Perceptron Neural Network

Eighteen prediction models are constructed applying MLP neural network as
already mentioned in section 3.3.2. MLP neural network does not has a process of
selecting metrics during constructing the prediction model. Therefore, the obtained
prediction model still contains all metrics used to construct it. These metrics are used as
input values in the input layer. Each prediction model also contains a set of connection
weights and other parameters of neural network. The prediction model in a form of
neural network can be viewed like a black box. In order to classify understandability
level, modifiability level or maintainability level of a new software design model, all
metrics used in each prediction model are measured from the software design model.
They are used to be input values of the prediction model. Then the prediction model
provides the output as the predicted level of understandability, modifiability or

maintainability.

3.3.3 Comparison between Prediction Models Obtained by Applying

Discriminant Analysis, Decision Tree and MLP Neural Network

There is a number of different approaches which can be used for estimating the
accuracy of a prediction model, for example, using a hold-out sample, bootstrapping, or
leave-one-out cross-validation. It has been recommended that in studies where sample
sizes are less than 100, as in this case, a leave-one-out approach provides reliable
estimates of accuracy [39]. Therefore this approach is applied for accuracy estimation.
Leave-one-out cross validation is simply n-fold cross validation, where n is a number of
instances in the dataset. Each sample in turn is left out, and the learning scheme is
trained on all‘the remaining instances. It is'judged by its correctness on the remaining
instance, success or failure. The results of all n judgments, one for each member of the
dataset, are averaged, and that average represents the final error estimate.

Table 3.41 — Table 3.43 summarize each prediction model in terms of the

metrics used to construct each model and the model accuracy.



Table 3.41: Result summation of understandability models.

Model Metric Number Fit Validate
Structural complexity Aesthetic metrics Structural complexity of Accuracy Miss rate (%) Accuracy Miss rate (%)
metrics and aesthetic metrics metrics rate (%) rate (%)
All Discard All Discard All Discard Type A | Type B | Sum Type A | Type B | Sum
metrics correlated metrics correlated metrics correlated
metrics metrics metrics

DiscUnd1 X 17 85.0 15.0 0.0 15.0 70.0 22.5 7.5 30.0
DecUnd1 X v/ 95.0 5.0 0.0 5.0 72.5 225 5.0 27.5
MLPUnNd1 X 17 100.0 0.0 0.0 0.0 82.5 15.0 25 175
DiscUnd2 X 13 85.0 15.0 0.0 15.0 67.5 25.0 7.5 325
DecUnd2 X 7 95.0 5.0 0.0 5.0 72.5 225 5.0 27.5
MLPUNd2 X i) oS 25 0.0 2.5 75.0 22.5 2.5 25.0
DiscUnd3 X 16 925 5.0 25 7.5 70.0 225 7.5 30.0
DecUnd3 X 'S 95.0 5.0 0.0 5.0 75.0 17.5 7.5 25.0
MLPUNd3 X 16 97.5 2.5 0.0 2.5 80.0 17.5 2.5 20.0
DiscUnd4 X 13 90.0 7.5 25 10.0 725 225 5.0 27.5
DecUnd4 X 5 95.0 5.0 0.0 5.0 75.0 17.5 7.5 25.0
MLPUnd4 X 13 975 2\5 0.0 25 72.5 27.5 0.0 27.5
DiscUnd5 X 33 97.5 15 0.0 2.5 72.5 225 5.0 27.5
DecUnd5 X 5 90.0 7.5 25 10.0 70.0 27.5 2.5 30.0
MLPUnd5 X 33 100.0 0.0 0.0 0.0 82.5 17.5 0.0 175
DiscUnd6 X 27 95.0 5.0 0.0 5.0 72.5 27.5 0.0 27.5
DecUnd6 X 5 90.0 7.5 2.5 10.0 75.0 17.5 7.5 25.0
MLPUnd6 X 27 100.0 0.0 0.0 0.0 80.0 17.5 25 20.0
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Table 3.42: Result summation of modifiability models.

Model Metric Number Fit Validate
Structural complexity Aesthetic metrics Structural complexity of Accuracy Miss rate (%) Accuracy Miss rate(%)
metrics and aesthetic metrics metrics rate (%) rate (%)
All Discard All Discard All Discard Type A | Type B | Sum Type A | Type B | Sum
metrics correlated metrics correlated metrics correlated
metrics metrics metrics

DiscMod1 X 17 90.0 7.5 2.5 10.0 67.5 25.0 7.5 32.5
DecMod1 X r/ 95.0 5.0 0.0 5.0 80.0 20.0 0.0 20.0
MLPMod1 X 17 QA5 2.5 0.0 2.5 80.0 20.0 0.0 20.0
DiscMod?2 X 13 92.5 W0 2.5 7.5 75.0 17.5 7.5 25.0
DecMod2 X 7 95.0 5.0 0.0 5.0 80.0 20.0 0.0 20.0
MLPMod2 X 13 100.0 0.0 0.0 0.0 82.5 175 0.0 175
DiscMod3 X 16 87.5 12.5 0.0 12.5 70.0 25.0 5.0 30.0
DecMod3 X fa 97.5 2.5 0.0 2.5 72.5 22.5 5.0 27.5
MLPMod3 X 16 100.0 0.0 0.0 0.0 80.0 15.0 5.0 20.0
DiscMod4 X 13 87.5 10.0 25 12.5 67.5 25.0 7.5 325
DecMod4 X 7 97.5 2.5 0.0 2.5 72.5 22.5 5.0 27.5
MLPMod4 X 13 100.0 0.0 0.0 0.0 80.0 15.0 5.0 20.0
DiscMod5 X 30 97.5 15 0.0 2.5 72.5 25.0 25 27.5
DecMod5 X 6 925 5.0 25 7.5 70.0 25.0 5.0 30.0
MLPMod5 X 33 97.5 0.0 25 2.5 80.0 20.0 0.0 20.0
DiscMod6 X 27 97.5 2.5 0.0 2.5 77.5 15.0 7.5 22.5
DecMod6 X 6 925 5.0 2.5 7.5 72.5 20.0 7.5 27.5
MLPMod6 X 27 97.5 2.5 0.0 2.5 80.0 17.5 25 20.0
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Table 3.43: Result summation of maintainability models.

Model Metric Number Fit Validate
Structural complexity Aesthetic metrics Structural complexity of Accuracy Miss rate (%) Accuracy Miss rate (%)
metrics and aesthetic metrics metrics | rate (%) rate (%)
All Discard All Discard All Discard Type A | Type B | Sum Type A | Type B | Sum
metrics correlated metrics correlated metrics correlated
metrics metrics metrics

DiscMain1 X 17 87.5 10.0 2.5 12.5 70.0 22.5 7.5 30.0
DecMain1 X v/ 97.5 25 0.0 25 77.5 15.0 7.5 225
MLPMain1 X 17 Q75 0.0 2.5 2.5 82.5 15.0 2.5 17.5
DiscMain2 X 13 87.5 10.0 2.5 12.5 72.5 20.0 7.5 27.5
DecMain2 X 7 97.5 25 0.0 25 75.0 20.0 5.0 25.0
MLPMain2 X 13 100.0 0.0 0.0 0.0 85.0 12.5 25 15.0
DiscMain3 X 16 85.0 12.5 25 15.0 70.0 25.0 5.0 30.0
DecMain3 X 'S 97.5 2.5 0.0 2.5 77.5 17.5 5.0 22.5
MLPMain3 X 16 97.5 0.0 2.5 2.5 80.0 15.0 5.0 20.0
DiscMain4 X 13 85.0 12.5 25 15.0 725 20.0 7.5 27.5
DecMain4 X 5 97.5 2.5 0.0 2.5 80.0 15.0 5.0 20.0
MLPMain4 X 13 975 2\5 0.0 25 82.5 17.5 0.0 17.5
DiscMain5 X 32 97.5 15 0.0 2.5 77.5 17.5 5.0 225
DecMainb X 7 97.5 2.5 0.0 2.5 80.0 12.5 7.5 20.0
MLPMain5 X 33 97.5 0.0 25 2.5 80.0 20.0 0.0 20.0
DiscMain6 X 27 95.0 5.0 0.0 5.0 75.0 20.0 5.0 25.0
DecMain6 X 7 97.5 25 0.0 25 75.0 17.5 7.5 25.0
MLPMain6 X 27 100.0 0.0 0.0 0.0 82.5 15.0 25 17.5
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Table 3.41 - Table 3.43 show the result summation of all prediction models.
Model accuracy is presented in Fit column and Validate column. The result in Fit column
is captured from using the prediction models classify 40 software design models which
are used to construct the prediction models. The result in Validate column is captured
from leave-one-out cross-validation.

Percent of Type A error can be computed from the total number of cases that
meet the following conditions divided by the total number of cases.

- Case in group of 0 is classified into group of 1.

- Case in group of 1 is classified into group of 0.

- Case in group of 1 is classified into group of 2.

- Case in group of 2 is classified into group of 1.

Percent of Type B error can be computed from the total number of cases that
meet the following conditions divided by the total number of cases.

- Case in group of 0 is classified into group of 2.

- Case in group of 2 is classified into group of 0.

It is obvious that Type B error is more fatal than Type A error. For example a
case in group of 0 is classified into group of 2 means a software design model which is
difficult to understand/modify/maintain is predicted that it is easy to understand/modify
/maintain.

Prediction models obtained by applying Discriminant analysis, Decision tree and
MLP neural network can be compared as follows.

- Prediction modelin a form of decision tree can obviously indicate that which
metrics can be good indicators of each quality. A metric placed in upper node
shows that it is better than other metrics placed in lower nodes for being
indicator. Prediction maodels presented in Figure 3.5 - Figure 3.13 show that
the best indicators for understandability are NGenH and TotBends. While
NGenH and TotEdgelLen are the best indicators for modifiability and
maintainability. For prediction models in a form of discriminant functions
presented in Table 3.23 - Table 3.40, we cannot conclude that which metrics
can be the best indicator of each quality. The classification function coefficient

of each metric cannot indicate that which metric is better because of
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difference of metric unit. For finding better indicators, we have to normalize
value of each metric and reconstruct prediction models. Then, we can find
which metric is the best indicator by considering the most classification
function coefficient (not consider sign). Neural network does not provide any
information which can indicate that which metrics are better indicators for each
quality.

- Decision tree and Discriminant analysis have a process of selecting metrics
which are significant for classifying level of each quality. While MLP neural
network does not has this process during constructing prediction models.
Therefore, MLP neural network uses all metrics for constructing prediction
model without discarding any metrics. The experimental results show that the
number of metrics used in each prediction model obtained from Decision tree
is less than the number of metrics used in the prediction model constructed
from the same metric set applying Disciminant analysis and MLP neural
network. The number of metrics used in each prediction model is listed in
Table 3.41 — Table 3.43.

- Consider model accuracy presented in Table 3.41 — Table 3.43, the average
accuracy in Fit column and Validate column of prediction models obtained
from MLP neural network is higher than that of prediction models obtained
from Discriminant analysis and Decision tree.

- Concerns with the usage of prediction model, prediction model in a form of
decision tree can be used easily and manually. Prediction model in a form of
discriminant functions_is not too difficult for calculating. While prediction model
in a form of neural network is very difficult for manually-use because its
algorithm, " is' very complex.. However, this problem can be solved by

implementing a tool for utilizing the prediction model automatically.

3.3.4 Conclusion and Discussion

The obtained prediction models can be concluded and discussed as follows:
- For the understandability prediction models obtained from Decision tree

presented in Figure 3.5 — Figure 3.7, we can find that DecUnd1 is similar to
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DecUnd2, DecUnd3 is similar to DecUnd4, and DecUnd5 is similar to
DecUnd6. As already mentioned in section 3.3.2, DecUnd1 is constructed
from all structural complexity metrics. DecUnd2 is constructed from the same
metric set discarded correlated metrics. After finishing constructing both
prediction models, metrics appeared in decision trees of DecUnd1 and
DecUnd2 are similar. This result implies that correlated metrics are not
significant for classifying level of understandability. The similarity of DecUnd3
and DecUnd4, DecUnd5 and DecUnd6, DecMod1 and DecMod2, DecMod3
and DecMod4, DecMod5 and DecMod6, DecMain1 and DecMain2, DecMain3
and DecMain4, DecMain5 and DecMain6 can be described in the same way.

Prediction models obtained from Decision tree show that the best indicators for
understandability are NGenH and TotBends. While NGenH and TotEdgelen
are the best indicators for modifiability and maintainability. NGenH is a
structural complexity metric. It is the number of generalization hierarchies
which is one of inheritance metrics. The experimental result in [40] showed that
NGenH is the best indicator for predicting modifiability correctness for the
maintenance process. Another experimental result of the same researcher
group confirmed that NGenH is the good indicator for predicting modifiability
time [38]. Inheritance increases reuseability and improves similarity of
implementation. On the other hand, it also increases the complexity of a
software and the coupling between classes leading to the increasing of effort
put for maintenance. This result is supported in the following studies. An
experimental investigation found that making changes to a C++ program with
inheritance consumes moreeffort than a program without inheritance [41].
Another controlled experiment was conducted to establish the effects of
varying levels of inheritance on understandability and modifiability [23]. Result
of the experiment indicated that a software without inheritance was easier to
modify than a corresponding software containing three or five levels of
inheritance. It was also easier to understand a software without inheritance
than a corresponding version containing three levels of inheritance. TotBends

(the total number of bends) and TotEdgelen (the total edge length) are
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aesthetic metrics. The result corresponds to their aesthetic criterion that is the
total number of bends and the total edge length should be minimized. It is
supported by experimental results presented in [27,36]. Both experimental
results showed that decreasing the number of edge bends and the total
number of edge length in a graph increases the understandability of the graph.

- Fit column of Table 3.41 — Table 3.43 show that the model accuracy of every
prediction model obtained from MLP neural network is greater than or equal to
that of prediction models obtained from Discriminant analysis and Decision
tree. The accuracy of each prediction model obtained from MLP neural
network is 97.5 or 100. The accuracy value of 97.5 means the 39 out of 40
samples are correctly classified. In other words, only 1 sample is incorrectly
classified. The reason may be that for constructing a prediction model using
MLP Neural Network, we can change some parameters in neural network, for
instance learning rate, the number of epochs and the number of nodes in
hidden layer. For the same set of samples, we can run neural network many
times with different parameters to find the best model which has the highest
accuracy.

- In case of automated utilizing the prediction models, the best prediction
models for understandability, modifiability and maintainability should be
MLPUNnd1, MLPMod2 and MLPMain2 respectively. The reason is that these
prediction models use structural complexity metrics which can be measured
by an automated tool. While aesthetic metrics is very difficult for automated
measuring. Another reason is that these prediction models provide the most

model accuracy.

3.4 Threats to Validity

Following several empirical studies [17,18,33], this section discusses the various

issues that threaten the validity of the experiment.
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3.4.1 Threats to Internal Validity

The internal validity is the degree of confidence in a cause-effect relationship

between factors of interest and the observed results.

- Differences among subjects. Each software design model was evaluated by
group of 3 subjects. Although the ability to understand and to modify the
software design with UML was not exactly equivalent among groups.
Differences among groups were reduced by assigning one A, one B+ and one
B students to each group.

- Knowledge of the universe of discourse among software design models.
Software design models were designed from different universe of discourse,
but they were simple enough to be easily understood by the subjects. So,
knowledge of the domain did not affect internal validity.

- Accuracy of subject responses. Subjects had medium experience in modeling
the software design with UML. Their responses to examination were
considered valid.

- Learning effects. Learning effect was little relevant because each subject
performed experimental task of only 2 software design models.

- Fatigue effects. Each subject performed experimental tasks of 2 software
design models with 20-minute break between them. The fatigue was little
relevant.

- Persistence effects. Subjects had never performed a similar experiment. So,
persistence effect was avoided.

- Other factors. Plagiarism and influence between subjects were controlled. Two
subjects-who sat-adjacently performed- different examinations. The test was

controlled by 2 monitors. Subjects were asked to avoid talking to each other.

3.4.2 Threats to External Validity

External validity is the degree to which the research results can be generalized

to the population under study and to other research settings.
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- Materials and tasks used. Examination questions tried to capture
understandability and modifiability of software design models. All questions
were approved by experts. Class and sequence diagrams used in this work
represented real software, but the software were small and simple. The
software which had maximum number of classes contained only 36 classes.
This is a limitation of the study since it is not easy to find software design
models of real world software.

- Experimental Subject. To solve the problem of lacking expert participation,
students were used as experimental subjects. We are aware that more
experiments with experts should be carried out in order to be able to
generalize the results. Nevertheless, this experiment did not require high level
of industrial experience. Students are usually accepted as valid subjects

[17,18,33].


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Domotor+E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sipos+I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kittel+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Abbott+NJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Adam%2DVizi+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Dorovini%2DZis+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Huynh+HK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fiala+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Liu+QN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sayre+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Pop+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Brahmandam+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Graves+MC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Vinters+HV%22%5BAuthor%5D

CHAPTER IV

A NEW PROPOSED SET OF STRUCTURAL COMPLEXITY METRICS FOR
MAINTAINABILITY

Chapter Il proposed constructing the maintainability prediction models by using
3 classification techniques. Independent variables or predictors are structural
complexity metrics and/or aesthetic metrics. Dependent variables are understandability,
modifiability and maintainability levels which are measured subjectively from the
experimental subjects. Therefore, this chapter proposes a new set of structural
complexity metrics to measured maintainability objectively in early phase of object-
oriented software life cycle.

Objective measurement is the repetition of a unit amount that stays constant
and unchanging (within the allowable error) across the persons measured, across
different brands of instruments, and across instrument users [42].

There are two important things for software maintenance: in-depth
understanding the structure and behavior of the software, and the ability to make
changes easily. So, this chapter introduces a new set of structural complexity metrics for
understandability and modifiability as constituting the metrics for maintainability.
Programming is sometimes called the art. In this sense, programming may be viewed as
a technique completed with heuristics such as with the art [43]. It follows from this that
software metrics should consider heuristic properties. Accordingly, it is not reasonable
to measure the software product.and process, which is actually a labor-intensive
industry, only by mathematical and logical metrics without considering the human
aspects. Therefore, the measurement of understandability and modifiability should be

considered in a heuristic way.

4.1 Metric Definition

Sheldon et al. proposed the metrics for maintainability of class inheritance
hierarchies in [43]. Their work focused on maintainability related to inheritance only. We

adapt their idea and extend their work by considering maintainability related to other
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relationships. This section begins with defining the new proposed metrics. Section 4.2

describes how to compute these metrics.

4.1.1 Metrics for Understandability

Metrics for understandability consist of 8 metrics for a class and 1 metric for a
software.

Metrics for understandability of a class

- Undg,, (X) is the degree of understandability of class X related to
generalization.

- UndAgg(X) is the degree of understandability of class X related to aggregation.

- Und,,,(X) is the degree of understandability of class X related to
composition.

- Undga..(X) is the degree of understandability of class X related to common
association.

- Und,..c (X) is the degree of understandability of class X related to
association class.

- Und,_ (X) is the degree of understandability of class X related to

Dep

dependency.
- Undg.,(X) is the degree of understandability of class X related to realization.

- Und ...(X) is the degree of understandability of class X.

Class

Metric for understandability of a software

- AngndSyS(S) is the average degree of understandability of software S.

4.1.2 Metrics for Modifiability

Metrics for modifiability consist of 8 metrics for a class and 1 metric for a
software.

Metrics for Modifiability of a Class

- Modg,, (X) is the degree of modifiability of class X related to generalization.

- Mod,_.(X) is the degree of modifiability of class X related to aggregation.

Agg

- Mod,. (X) is the degree of modifiability of class X related to composition.

Com
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- Mod,...(X) is the degree of modifiability of class X related to common
association.

- Mod,..c (X) is the degree of modifiability of class X related to association
class.

- Mod,, . (X) is the degree of modifiability of class X related to dependency.

Dep
- Mod,,(X) is the degree of modifiability of class X related to realization.

- Mod X) is the degree of modifiability of class X.

Class(

Metric for Modifiability of a Software

- Avgl\/lodSyS(S) is the average degree of modifiability of software S.

4.1.3 Terms and Functions

In order to compute metrics introduced in section 4.1.1 and 4.1.2, terms and

functions used to compute them are defined as follows.

Head and Tail Classes

For each relationship, let arrowhead of relationship line indicates the position of
each class. If relationship line points from class A to class B, then class B is called a
head class of class A and class A is called a tail class of class B.

Consider a hierarchy of i relationship related to class X, where i can be
Gen(Generalization), CAssoc(Common association),  AssocC(Association class),
Agg(Aggregation), Com(Composition), Dep(Dependency) or Real (Realization).

- ImHead, (X) is immediate-head classes of class X related to class X by i

relationship.

- ImTail (X) is immediate tail classes of class X related to class X by i

relationship.

- AllHead, (X) is all head classes of class X related to class X by i relationship.

- AllTail, (X) is all tail classes of class X related to class X by i relationship.

For better understanding, please see examples of the usage of these metrics.
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Figure 4.1: A hierarchy of generalization Figure 4.2: A hierarchy of generalization
related to class X. and aggregation related to class X.

For Figure 4.1, ImHead,,,(X) = B,C. ImTail,_.(X) = D,E. AllHead,,(X) = A,B,C.
and AllTail,,, (X) = D,EF,G.
For Figure 4.2,

ImTail, (AllHead,,., (X)) = ImTail,,(A,B,C)

Agg(
= ImTail,  (A) + ImTail, (B) + ImTail,(C)
={}+4D,E +F.G

=D,EFG

Class Complexity

C(X) is the complexity of class X. It is simply defined as follows [43].

C(X) = number of methods of class X + number of attributes of class X.

In case of many classes in parenthesis, the value of the complexity is sum of the
complexity of all classes. For example

C(X,Y,Z) = C(X) + C(Y) + C(2).

Dependency Weight Value of Relationships

W, is dependency weight value of i relationship. The dependency between
classes: is the main cause of the amount of the complexity on understanding and
modifying the relationships between the classes. Different kinds of relationship influence
the dependency between classes in different degrees. So, dependency weight value of
each relationship should be defined in order to indicate its dependency degree. This
thesis considers 7 kinds of relationship consisting of dependency, common association,

association class, aggregation, composition, generalization and realization. Table 4.1


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9247194&query_hl=40&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9247194&query_hl=40&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Huber+JD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hau+VS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Borg+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Campos+CR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Egleton+RD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Davis+TP%22%5BAuthor%5D

75

shows dependency weight value of relationships proposed by Kang et al. [44].
Relationships in this table are sorted from weak to strong dependency degree.

Dependency is the most common relationship. A dependency shows that there
is dependency between two classes without any explanations and restrictions, so Wy,
should be the minimum. Common association denotes the relationship between
instances of classes; it cannot be weaker than dependency relationship. Association
class adds restrictions to association, it may be more complex and the dependency
between classes with this relationship may be stronger than between classes with
common association. Aggregation is a specific association, and composition is a
specific aggregation. For example, A is a composite of B; when A is destroyed, B should
be destroyed or given to another object. Aggregation does not has this restriction, but it
is more restrict than dependency relationship, as one object cannot aggregate itself
directly or indirectly. In generalization, subclasses inherited all characteristics of the
parent classes, and composition classes can only access the public elements of the
nested classes. When parent classes are concrete, subclass can add new elements
and override inherited operations. When parent classes are abstract, subclasses should
implement the virtual operations of the parent classes or they cannot have any instances.
Considering realization, when realizing a class (usually interface), an implementation
class must realize all the operations of the interface. So realization has the highest
weight value.

Table 4.1: Dependency weight value of relationships.

No: Relationship Weight
1 Dependency Woep
2 Common association Weassoo
3 Association.class Wossoee
4 Aggregation Wage
5 Composition Weom
6 Generalization Ween
7 Realization Weea

In [44], all weight values are summarized in the following form:

W, <= W, <=W <=Wq,, (1)

AssocC

Gen < WReaI (2)

CAssoc

<W

Dep

WDep < WAgg Com < W
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Following [44], each relationship is given a weight value satisfying Equations (1)

7

Real — .

and 2): W, =1, W,

. Dep

=2, W =3, W

AssocC

=4W., =5 W, =6 W

CAssoc Com Gen

Agg

4.2. Metric Derivation

This section describes derivation of all metrics defined in sections 4.1.1 and

4.1.2.

4.2.1. Metrics for Understandability
4.2.1.1 Understandability of a Class

Metrics for understandability of a class proposed with an idea that if we want to
understand class X, we should not only read class X, but also read classes related to
class X. Therefore, in order to find the degree of understandability of class X, we should
consider efforts put for both understanding class X and understanding classes related
to class X.

In this work, the effort put for understanding class X is represented by
complexity of class X or C(X) because if class X has high complexity, we should put
much effort to understand it. The effort put for understanding classes related to class X

will be represented by 7 metrics: Undg,,, Und, ,, Undg, ., Undq, .., Undagoeer Undp,

and Und They are calculated according to the kind of relationships that class X and

Real .

the others are related. The degree of understandability of class X is summation of the
efforts put for understanding class X and classes related to class X as follows.

UNdg s X) = COOH Und (%) F/Und L 0X) +Undg,, () + Und,go.(X) +

Und sge0ec(X) + Und, (X) + Undg,, (X)

In this work, relationships between 2 classes are classified-into 2 kinds: direct
and indirect relationships. If there is a relationship line connecting between class A and
class B, then class A and class B have direct relationship. If class A is a descendant
class of class B and there is a relationship line connecting between class A and class C,
then class B and class C have indirect relationship. In other words, indirect relationship

is relationship through inheritance.
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Understandability Related to Generalization

Consider classes related to class X by generalization. We should understand its
ancestor classes because class X inherits characteristics of its ancestor classes. These
classes can be represented by AllHead,,(X) as an example shown in dotted oval area
of Figure 4.3. Undg, can be defined in expression of multiplication between
dependency weight value of generalization and complexity of classes related to

generalization as follows.

Undg,.(X) = W, C(AllHead,,, (X))

Figure 4.3: Generalization.

Understandability Related to Aggregation

Aggregation is a stronger form of association. It is used to show a logical
containment relationship. Consider classes related to class X by aggregation. We
should understand classes which are parts of class X. These classes can be

represented by ImTail, (X) as an example shown in dotted oval area of Figure 4.4.

Agg(
Furthermore, we should understand all classes related to class X by indirect
aggregation as an example shown in dotted rectangle area of Figure 4.4. Two classes
are the parts of a descendant class of class X. Therefore, they are the parts of class X
as well. These classes can be represented by ImTailAgg(AIIHeadGen (X)). Und,,(X) is
defined as follows.

Und,X) = Wy, [-C(mTail, (X)) +C(ImTail, (AllHeads,, (X)) ]

Agg Agg Agg Agg

Dir

Figure 4.4: Aggregation.
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Understandability Related to Composition

Composition is specific aggregation. Classes related to class X by composition
can be considered similar to classes related to class X by aggregation with different
dependency weight value. Examples of these classes are shown in Figure 4.5. Und,_,(X)
is defined as follows.

Und.(X) = W, [ C(ImTail.,, (X)) + C(ImTail,, (AllHead,, (X)) ]

Com Com Com Com

Indirect

Figure 4.5: Composition.

Understandability Related to Common Association

Conceptually, an association between two classes signifies that some sort of
structural relationship exists between the classes. Associations may be unidirectional or
bidirectional. A unidirectional association implies that an object of the class which the
arrow is originating from may invoke methods on the class towards which the arrow is
pointing to. This manifests itself as an instance variable on the class that may invoke
methods. A bidirectional association simply means that either object in the association
may invoke methods on the other.

Consider classes related to class X by unidirectional common association. We
should understand structure of classes invoked by class X (i.e., classes that has the
arrowhead side of the relationship). These classes are represented by ImHead ... (X)
as an example shown in dotted oval are of Figure 4.6. We should also understand all
classes related to class X by indirect common association as an example shown in
dotted rectangle area of Figure 4.6. These classes can be represented by ImHead ...

(AllHead,(X)). Und (X) is defined as follows.

CAssoc

Und X) = Wepeoo [ CllmHead ... (X)) + C(ImHead ... (AllHead,,(X))) ]

CAssoc(
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Indirect

Direct

Figure 4.6: Common association.

For bidirectional common association, we transform the relationship to
unidirectional common association as an example shown in Figure 4.7 before measuring

understandability using the same formula.

= )

H

Figure 4.7: Transforming bidirectional association to unidirectional association.

Understandability Related to Association Class

Information relevant to the association roles cannot always reside with the
classes involved in the association. In this situation, an association class may be used to
model the relationship. In order to measuring understandability, we will transform
association class to unidirectional association form. Then we will consider each pair of
relationship.  Figure 4.8 shows an example of classes related to class X by direct
association class and Figure 10 shows an example of classes related to class X by
indirect association class. In order to measure understandability related to direct and
indirect association class of class X, Figure 4.8 will be transformed to Figure 4.9, and
Figure 4.10 will be transformed to Figure 4.11. Then, Und, . will be measured from
Consider boxes of Figure 4.9 and Figure 4.11. For example in Consider box of Figure
4.9, if we want to understand class X, we should also read class A and class B. Und,_ .
(X) is defined in similar way of defining Und.,.,,. as follows.

Und,,.c (X) =W,oc [ CllimHead ... (X)) + C(ImHead ,.... (AllHead,,(X))) ]

Direct Not consider

Consider

Figure 4.8: Direct association class. Figure 4.9: Transformed direct association class.
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Figure 4.10: Indirect association Figure 4.11: Transformed indirect association class.
class.

Understandability Related to Dependency

Anytime a class uses another class in some fashion, a dependency exists
between the two. The relationship is that of the user depending on the class that it is
using. A dependency exists if a class has a local variable based on another class, a
reference to an object directly, or a reference to an object indirectly, for example via
some operation parameters, or uses a class’s static operation.

Consider classes related to class X by dependency. If class X directly
depended on any classes, we should also understand these classes as an example
shown in dotted oval area of Figure 4.12. These classes can be represented by

ImHead,__(X). Moreover, we should understand all classes related to class X by indirect

Dep

dependency as an-example shown in dotted rectangle of Figure 4.12. These classes

can be represented by ImHead, (AllHead,, (X)). Und, (X) is defined as follows.

Dep

UndDep(X) = Woep [ C(ImHeadDep(X)) + C(ImHeadDep (AllHead,,(X))) ]

Indirect

Figure 4.12: Dependency.
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Understandability Related to Realization

Consider classes related to class X by realization. We should understand
interface classes which are defined a set of functionalities as a contract and class X
realizes that contract by implementing the functionality. The classes related to class X
by direct realization are shown in dotted oval area of Figure 4.13. These classes can be

represented by ImHead,,__(X). We should also understand classes related to class X by

Real
indirect realization as an example shown in dotted rectangle of Figure 4.13. These
classes can be represented by ImHead._,(AllHead,,, (X)). Und..,(X) is defined as
follows.

Undg.,(X) = Wg, [ CllmHead,, (X)) + C(ImHead,,, (AllHead,,(X))) ]

Real

Indirect

Figure 4.13: Realization.

4.2.1.2 Understandability of a Software

Understandability of a software will be calculated from understandability of all
classes in the software. Generally, large software is more complex than small one.
Accordingly, it is more reasonable to compare understandability of a software to
understandability of another software of the same size. For comparing understandability
of software-with different size, we should introduce the concept of averages. The
average degree of understandability of @ software is defined as follows.

iundclass(xi)

AvgUnd  (S) =| =

Where X is a class of software S; i =1,2,...,n.

n is the total number of classes of software S.
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4.2.2. Metrics for Modifiability
4.2.2.1 Modifiability of a Class

Metrics for modifiability of a class proposed with an idea that if we want to
modify class X, class X will be modified. Moreover, if class X affects other classes, these
classes will be modified too. In the best case, only class X will need to be modified. In
the worst case, class X and all classes affected from class X must be modified. In the
average case, class X will be modified and half of classes affected from class X should
be modified. In this work, maodifiability will be measured in the average case.

In order to measure modifiability of class X, we will consider the efforts put for
modifying class X and modifying classes affected from class X.

In this work, the effort put for modifying class X is represented by complexity of
class X or C(X) because if class X has high complexity, we should put much effort to
modify it. The effort put for modifying classes related to class X will be represented by 7
Mod Mod Mod and Mod

metrics: Mod Mod Mod

Gen’ Agg’

They are

Com? CAssoc’ AssocC’ Dep Real .

calculated according to the kind of relationships that class X and the others are related.
The degree of modifiability of class X is summation of the efforts put for
modifying class X and modifying classes related to class X as follows.

Mod,,(X) = C(X) + Mod,, (X) + Mod,,(X) + Mod (X) + Modguge(X) +

Class(

Mod,__._..(X) + Mod,,_ (X) + Mod,,,(X)

Dep

Modifiability Related to Generalization

Consider classes related to-class X by generalization. If we modified class X, we
may need to modify descendant classes of class X. These classes can be represented
by AllTail,,, (X) as-an example shown in Figure 4.14. In the average case; half of them
will be. modified. Mod,,, can be defined in expression of multiplication between
dependency weight value of generalization and complexity of classes related to
generalization considering in the average case as follows.

Mod,,, (X) = W,,, C(AllTail,, (X)) /2
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Figure 4.14: Generalization.

Modifiability Related to Aggregation

Consider classes related to class X by aggregation. If we modify class X,
classes which compose of class X may be modified. These classes can be represented
by ImHead,, (X) as an example shown in dotted oval area of Figure 4.15. Classes in
dotted rectangle area of Figure 4.15 are classes related to class X by indirect
aggregation. If class X is changed, they may be affected. These classes can be
represented by AllTail,,, (ImHead, , (X)). Considering in the average case, Mod, (X) is
defined as follows.

Mod, (X)= W

[C(ImHead, (X)) + C(AllTail,,, (ImHead, , (X)))1/2

Agg

Agg Agg

' Direct

-
PEEE )
i A Indirect

Figure 4.15: Aggregation.

Modifiability Related to Composition
Classes affected from class X by composition can ‘be considered similar to
classes affected from class X by aggregation. Considering in the average case,

Mod._(X) is defined as follows.

Com

Mod,,(X) = W, [ C(ImHead,,_ (X)) + C(AllTail,,, (ImHead,, (X)) 1/2

Com
Modifiability Related to Common Association
Consider classes related to class X by unidirectional common association. If we
modify class X, classes which directly invoke methods of class X may be affected.

These classes can be represented by ImTail X) as an example shown in dotted oval

CAssoc(


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11306551&query_hl=39&itool=pubmed_docsum

84

area of Figure 4.16. Furthermore, classes related to class X by indirect common
association may be affected as an example shown in dotted rectangle area of Figure
4.16. These classes can be represented by AllTail,,, (ImTail.,.... (X)). Considering in the
average case, Mod,..,. (X) is defined as follows.

(X)) + C(AllTailg,, (ImTail .. (X)) 1/2

Modg ey (X) = We,ooo [ C(IMTail

CAssoc CAssoc

Direct !

Figure 4.16: Common association.

For bidirectional common association, we will transform the relationship to
unidirectional common association before measuring modifiability with the same

approach.

Modifiability Related to Association Class

For classes related to class X by association class, we will transform association
class to unidirectional association form. Then we will consider each pair of relationships.
For examples, in order to measure modifiability related to direct and indirect association
class of class X, Figure 4.17 will be transformed to Figure 4.18, and Figure 4.19 will be
transformed to Figure 4.20. Then Mod, .. will be measured from Consider boxes of
Figure 4.18 and Figure 4.20. For example in Consider box of Figure 4.18, if we want to
modify class X, we may also modify class A and B. Mod,..... (X) is defined in similar way

of defining Mod . as follows.

Assoc

Mod,.,oc (X) = W,ooe [ ClmTail, . (X)) + C(AllTailg,, (ImTail, .. (X)) 1/2

___________ 1 A Not consider
’—‘A ‘ ’—‘B | — | —
S . =
3 1 I
(s | .
— ] ] Consider
Figure 4.17: Direct association class. Figure 4.18: Transformed direct association

class.
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Figure 4.19: Indirect association class. Figure 4.20: Transformed indirect association
class.

Modifiability Related to Dependency

Consider classes related to class X by dependency. If we modify class X,
classes depending on class X may be modified. These classes can be represented by
ImTail,,(X) as an example shown in dotted oval area of Figure 4.21. Furthermore,
classes related to class X by indirect dependency may be modified as an example
shown in dotted rectangle area of Figure 4.21. These classes can be represented by
AllTailg,, (ImTail,, (X)). Considering in the average case, Mod,,(X) is defined as follows.

Mod

(X) = Wy, [ ClimTail,,, (X)) + C(AllTail,,, (ImTaily,, (X))) 1/2

X

=
—

A

4’-_’—~‘~

¢ E \

/

‘\\ &

Dep

% Direct

i Indirect

Figure 4.21: Dependency.

Modifiability Related to'Realization

Consider classes related to class X by realization. If we modify class X,
implementation classes of class X must be modified. These classes can be represented

by ImTail, . (X) as an example shown in dotted oval area of Figure 4.22. Furthermore,

Real

classes related to class X by indirect realization may be modified as an example shown
in dotted rectangle area of Figure 4.22. These classes can be represented by AllTailg,,

(ImTail,,, (X)). Considering in the average case, Mody,, (X) is defined as follows.
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Mod,,,, (X) = W, [ ClImTail,_,(X) (X)) + C(AllTail.,, (ImTailg_, (X)) 1/2

Real

% Direct

Figure 4.22: Realization.

4.2.2.2 Modifiability of a Software

Modifiability of a software will be calculated from modifiability of all classes in the
software. It is defined with concept of average as same as understandability. The
average degree of modifiability of a software is defined as follows.

Zn: I\/IOdCIass (X i )

AvgMod . (S) =| =

n

Where X is a class of software S;i=1,2,...,n.

n is the total number of classes of software S.

4.3 Metric Validation

The previous section introduced metrics for understandability and modifiability,
which still needs empirical validation in order to validate their usability. Generally, a
metric will be invalid in practice while be valid in theoretical argument, and vice versa.
Whether a metric is valid depends on whether it is consistent with human beings’
intuition or not. This section describes validating the proposed metrics.

In section 3.2, we presented an experiment captured degree of
understandability and modifiability of 40 software in human beings’ view. We collected
the degree of understandability in terms of Understandability score and the degree of
modifiability in terms of Modifiability score. In order to validate the proposed metrics, the
degree of understandability and modifiability of the same 40 software were measured
To find out the correlation

using the proposed metrics: AvgUnd,,. and AvgUnd

Sys Sys*
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between the degree of understandability and modifiability measured by the proposed

metrics and human beings’ intuition, 2 hypotheses were formulated:

H1, : There is no correlation between AvgUndg , and Understandability score.

H1, : There is correlation between AvgUndg . and Understandability score.

Sys

H2, : There is no correlation between AvgMod, . and Modifiability score.

H2, : There is correlation between AvgModg . and Modifiability score.

In order to test both hypotheses, the Pearson’s correlation test was applied. The
correlation between two variables reflects the degree to which the variables are related.
Correlation value ranges from -1 to +1. Value of 1 means that there is a perfect positive
relationship between both variables. Value of -1 indicates a perfect negative
relationship and value of 0 indicates no relationship. The result of correlation analysis is
shown in Table 4.2 and Table 4.3.

The result shown in Table 4.2 and Table 4.3 can be concluded that H1, and H2,
are rejected. The correlation values of -0.651 and —0.685 indicate that

- AvgUnd

ss and Understandability score have negative correlation, and

- AvgMod,,,. and Modifiability score have negative correlation.

Sys
So, this result can be concluded that new proposed metrics are correlated with

human beings’ intuition at significant level 0.01.

Table 4.2: Correlation relationships between AvgUndg . and Understandability score.

AvgUndg ¢ UndScore
AvgUndg ; < | Pearson Correlation 1 -.651(*)
Sig. (2-tailed) : .000
N 40 40
UndScore Pearson Correlation -.651(*%) 1
Sig. (2-tailed) .000
N 40 40

** Correlation is significant at the 0.01 level (2-tailed).
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Table 4.3: Correlation relationships between AvgMod,,. and Modifiability score.

Sys

AvgModg ¢ ModScore
AvgModg | Pearson Correlation 1 -.685(*)
Sig. (2-tailed) ) .000
N 40 40
ModScore Pearson Correlation -.685(**) 1
Sig. (2-tailed) .000
N 40 40

** Correlation is significant at the 0.01 level (2-tailed).

Understandability and modifiability captured by two new proposed metrics and
by human beings’ intuition have negative correlation because of the following reason.
AvgUnd

and AvgMod,,. measure the degree of understandability and modifiability of

Sys Sys

a software considering the efforts put for understanding and for modifying the software.
Understandability and Modifiability scores capture the degree of understandability and
modifiability of a software using examinations. If the software is easy to understand and
modify, AvguUnd

and AvgMod. . values will be low but Understandability and

Sys Sys

Modifiability scores will be high. In contrast, if the software is difficult to understand and
modify, AvgUndg . and AvgMod,  values will be high but Understandability and

Modifiability scores will be low.

4.4 Metric Threshold

To estimate thresholds or value ranges of AvgUndg, that lie in 3
understandability levels: easy, medium and difficult,-we calculate lower confidence limit
(L) and upper confidence limit (U) values of mean ()of population of AvgUndg  for
each understandability levels. Range of mean of population can be expressed as the
follows [45].

L<u<U

Where L and U can be computed from the following formula.
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o) O
x—2_, —<U<x+z_, —

—a/2 ,\/F —a/2 \/;

where X is the mean of samples,

Z is the probability value in Z table, and

1—a/2

9 is the standard deviation.

n

At significant level( o ) 0.05, we compute lower and upper confidence limit
values: L2 and U2, L1 and U1, and LO and UO, for easy, medium and difficult levels of

understandability respectively as shown in Figure 4.23.

Medium

Easy Difficult

Min2 L2 U2 Minl Max2 L1 Ul Min0 Max1 LO uo Max0

Figure 4.23: Lower and upper confidence limit values.

From this figure, we can imply that if a software has AvgUndg < U2, it should be
classified to easy level of understandability. If a software has AvgUndg (> LO, it should
be classified to difficult level of understandability. Estimating value ranges of AvgModg

can be performed in the same way. The preliminary result obtained from our

experimental data is shown-in Table 4.4

Table 4.4: Value ranges of AvgUndg, and AvgMod

Sys*

Metric Level Value range
Avgundg ¢ Easy <21
(understandability) Medium 21-33
Difficult >33
AvgModg Easy <13
(modifiability) Medium 13-18
Difficult >18
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These thresholds are used to classify understandability and modifiability levels
of 40 sample software design models. The result shows that the accuracy of
Avgundg . is 95% and the accuracy of AvgModg  is 97.5%. Although the accuracy
of AvgUndg , and AvgModg is less than 100% which is the accuracy of MLPUnd2
and MLPMod1, the best prediction models for understandability and modifiability
presented in Chapter Ill, MLPUnd1 and MLPMod2 use 17 metrics and 13 metrics
for classifying understandability and modifiability. For future work, the experiment
should be repeated with more number of sample software design models in order to

improve the threshold accuracy of AvgUndg . and AvgMod

Sys*



CHAPTER V

CONCLUSION AND FUTURE WORK

This chapter concludes the research work and presents some directions for the

future work.

5.1 Conclusion

Software quality has become essential to good software development. One
quality which should be concerned in early phase is maintainability. Predicting
maintainability in early phase will help software designers to alter the design of the
software for better performance which will lead to the ease of implementation and
reduction of maintenance cost.

This thesis selects two metric sets: structural complexity and aesthetic metrics.
These metrics are expected that they can be predictors of maintainability and its two
sub-characteristics: understandability and modifiability. MANOVA test are performed to
validate the expectation. The result shows that the structural complexity metrics and the
aesthetic metrics .can be good indicators of understandability, modifiability and
maintainability.

Understandability, modifiability and maintainability prediction models are
constructed from structural complexity and aesthetic metrics applying 3 techniques
called Discriminant-analysis, Decision tree:and MLP- neural network. The experimental
result shows that the model accuracy of every prediction model obtained from MLP
neural network-is-higher than-or-equal to that of the prediction models obtained from
Discriminant analysis and Decision tree. The trade-off is that the number of metrics used
in every prediction model obtained from MLP neural network is greater than or equal to
that of the prediction models obtained from Discriminant analysis and Decision tree.
However, if all metrics used in prediction model can be measured automatically, the

problem of using greater number of metrics can be solved.
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In case of automated utilizing the prediction models, the experimental result can
be conclude that best prediction models for understandability, modifiability and
maintainability are MLPUNnd1, MLPMod2 and MLPMod3 respectively.

An automated tool for measuring structural complexity metrics from UML class
and sequence diagrams is also constructed and this tool can predict understandability,
modifiability and maintainability utilizing the prediction models obtained from the
experiment.

This thesis also proposes two set of structural complexity metrics to assess
understandability and modifiability objectively. These metrics are developed considering
the number and the kind of relationships among classes. To validate the new proposed
metrics, correlation analysis between understandability and modifiability measured by
the proposed metrics and measured by human beings’ intuition are performed. The
result from the experiment can be concluded that the new proposed metrics are
significantly correlated with human beings’ intuition at significant level 0.01. The new

proposed metrics could be used as early maintainability indicators.

5.2 Future Work

1. The experiment uses only forty simple software design models. This is a
limitation of the research, since it is difficult to find software design models in
real world software. The experiment should be repeated with more number of
sample software design models in order to increase reliability of
experimental result.

2. Size of software design:models should be increased. By increasing size of
software design models, we will have examples that are closer to reality. In
addition, if we are‘working with professionals, we can make better use of
their potential capability and conclude that the results are more general.

3. This work considers only 2 types of UML diagrams: class and sequence
diagrams. It may be considered as the preliminary approach for constructing
maintainability models from UML diagrams. For future work, other type of

UML diagrams may be considered.
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Understandability, modifiability and maintainability levels can be tried on
more than 3 levels.

The understandability, modifiability and maintainability models obtained from
the experiment can predict understandability, modifiability and
maintainability levels of a software design model, but they cannot suggest
how to improve understandability, modifiability and maintainability. Research
on improving these qualities should be further considered.

Concerns with the new proposed objective structural complexity metrics
presented in Chapter IV, the AvgUndg  and AvgModg, metrics are
developed in order to measure the maintainability of class diagram during
the design phase of the software life cycle. One function used for computing
AvgUnd

and AvgMod, . is the complexity of a class. The metrics compute

Sys Sys

the complexity of a class roughly from the summation of the number of
attributes and the number of methods in the class. These metrics can be
extended to comprehend the complexity of a class. For example, visibility of
attributes and methods (i.e. public, protected and private) should be
considered.

As mentioned in heading 4.1.3, we can order dependency degree of each
relationship but we don’t know exact weight values. Ideally, these weight
values should be assigned by experts or captured from empirical study with
enough supported data. In this work, each relationship is given a weight

Va|Ue: WDep :1’ WCAssoc - 2’ WAssocC = 3’ WAgg = 4’ WCom = 5’ WGen = 6’ and

W, . = 7. Different weight values should be used in the future experiment to

Real
find proper dependency weight values of each relationship.

An automated tool for measuring the proposed objective structural
complexity metrics for understandability and modifiability should be

constructed.
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APPENDIX B

EXAMINATIONS

B.1 Validating the Examinations

The development of measuring instruments is a process which includes both a)
the development of the item and subscale components and b) the qualitative and
quantitative assessments of the item and subscale parameters. In order to appropriately
use and interpret data obtained from a measuring instrument, there must be operational
definitions of the constructs being measured and information on the reliability and
validity of the scores. This information assists users in placing appropriate meaning to
the results obtained and interpreting the scores within the confines of the assessment
parameters identified.

Content validity is the degree of confidence that the items are measuring what
they are intended to measure. Evidence of content validity can be obtained from an
evaluation, conducted by independent experts, of the effectiveness of items in
measuring one or more objectives. An efficient measure for numerically assessing
content experts’ evaluations of items is the index of item-objective congruence (IOC)
[46].

An evaluation using the I0OC is a process where content experts, at least 3
experts [47], rate individual items on the degree to which they do or do not measure
specific objectives listed by the test developer. More specifically, a content expert will
evaluate each-item by giving the item a rating of 1 (for clearly measuring), -1 (clearly not
measuring), or-0 (degree to which it measures the content area is-unclear) for each
objectives. The experts are not told which constructs the individual items are intended to
measure, thus they remain independent and unbiased evaluators.

After the experts complete an evaluation of the items, the ratings are combined
to provide indices of item-objective congruence measures for each item on each
objective. The range of the index score for an item is -1 to 1 where a value of 1 indicates
that all experts agree that the item is clearly measuring only the objective that it is

hypothesized to measure and is clearly not measuring any other objective. A value of -1
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would indicate that the experts believe the item is measuring all objectives that it was
not defined to measure and is not measuring the hypothesized objective. The item will
be accepted if its index score is greater than or equal 0.5.

The 10C is computed using the following equation.

oc = &F
N

where |0OC is consistency between item & the objective,
R is sum of scores from experts,

N is the number of experts.

B.2 Applying the 10C to the Examinations

In order to validate the examinations used in this work applying the 10C, we
prepare validation documents including of document for validating the template
questions shown in Table B.1 — Table B.8 and general description, class diagram and
sequence diagrams of a sample software named ‘Online CD shop system’ shown in
Table B.10 and Figure B.1 — Figure B.3. In this work, we cannot validate examination
questions of all software design models (40 software) because of a lot of examination
questions. However, examination questions of each software design model are
constructed from the same template questions. So, we decide to validate the template
questions instead. The validation documents are sent to three experts in modeling with
UML. The IOC values of all template questions obtained from all evaluators are shown in

Table B.9. The result shows that all template questions are accepted.



Table B.1: Validation form of template questions for assessing understandability of class diagram.
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Table B.2: Validation form of template questions for assessing understandability of class diagram (continued).
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Table B.3: Validation form of template questions for assessing understandability of class diagram (continued).
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Table B.4: Validation form of template questions for assessing understandability of sequence diagram.
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dautlsznay nniszaen NAELAY ANDNNANLLIL AR ARAL ANNAAAARRITRIgLLIL
AN anszuunIsTedaaaulay Aonnudngiszaen
¥ v ) I
AUl danARaY | i 1ai
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Table B.5: Validation form of template questions for assessing understandability of sequence diagram (continued).

108
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Table B.6: Validation form of template questions for assessing modifiability of class diagram.

ADINIRANEINITE b UNsU S ReunE AT WARE

dautlsznay ngiszasan NNELAY ERITSTHIT LRt FasNAIN AmaL ANNAAAARRITRIgLLIL
AN anszuunIsTedhaaula Aannuingseaen
v v ] 1
ALY AaAARAY | L3 lai
v
wila | danAfag
1 . PR A 5 N - o A
Classes WwadnANa il MCA1 Wlsuasunana Inan1siiad | MNNAedNITaaNLsILaZiaeATas - ANAA1E Receipt WATAANG
nsUsuasumang AU v wila MsuAuAN (3n) angane CDltem
(Supplier) Inadaganthuianiu | - ainduanudnRnguLL
Trananlude@udn uazindays Association $279N9AaN4
2B9N1IAARIAINANINLTLIL 99 Receipt fiu Supplier
o ddn‘ld 1 % ¥ o o I'd
AuInedanet iy avseq - anduANANRUS LU
LLfﬂ“ﬂLLNHﬂWWﬂ@’M@ﬂNIi‘ ENPM Association 7517 NAANG
nnaaaen lugaunneades Receipt U CDItem
- ANEUAMNANAUS UL
Association $51INAAE
CDltem it CD
Attributes WadaAauaNnsalu MA1 Vrlsulasmuensdad Inanas | wnsesnislifidasiduddanan Wnuavistan discountPercent:
AsUsuasuuenstos W AU viTe wily dwmiugnafilugnAniszan Tae | Integer aslumana Customer
% 1 a T @ & 4‘
anAusiazALililesauAduani
WANANNTY AzaauA LN
Aagatingls
Methods iadaAmaINnsnlu MM VWilsulasuwameen Iranns | wndesnnsianAngnnnzainnig WNLUNEaA update_order agbu

AsUFuasuungen

W AU vide wily

a
"y

wilasannsdetels avdequdly

BRUNNAANdRNle

AA14A Order

109

601


chula
Text Box
109


Table B.7: Validation form of template questions for assessing modifiability of class diagram (continued).
ADNARANNAINTTA LN FUF UL At uLN AT WARE
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Table B.8: Validation form of template questions for assessing modifiability of sequence diagram.

ANDNNIAANNAINIFD L UNNFUS L REULNUATWARNE
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Table B.9: The IOC values of all template questions.

Template The 10C Validation result Template question The 10C Validation result
question No. value No. value
uc1 1 accepted UMs4 1 accepted
UA1 1 accepted UCo1 1 accepted
UA2 0.67 accepted UCo2 1 accepted
UA3 1 accepted US1 1 accepted
UM1 1 accepted us2 1 accepted
um2 1 accepted uUs3 1 accepted
UM3 0.67 accepted MC1 1 accepted
um4 1 accepted MA1 1 accepted
UR1 1 accepted MM1 1 accepted
UR2 1 accepted MR1 1 accepted
UR3 1 accepted MR2 1 accepted
UR4 1 accepted MMs1 1 accepted
UMs1 1 accepted MMs2 1 accepted
UMs2 i accepted MCo1 1 accepted
UMs3 1 accepted MS1 1 accepted

B.3 An Example of the Examinations

The examination of each software design model contained 20 questions for
assessing understandability of the class and sequence diagrams. All of questions
related to understanding of software structure and behavior described by the elements
in class and sequence diagrams including attributes, methods, classes, relationships,
messages and conditions. There are 10 questions for assessing modifiability of the class
and sequence diagrams. Subjects were asked to modify design diagrams with tasks
covering on changing and adding software functionality. The following is the

examination of a sample software named ‘Online CD.shop system’.

Table B.10: General description of Online CD shop system.
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Credit Card Clearance

Center
ShoppingCart
icheckCredit
= 0 MaddCD()
0.n 1 |[MshoppingCart()
[display()
checks
Supplier
EEsupplierName : String
0..n @EsupplierAddress : String
Customer [ -
— f@8customerID : Number Order "
Individual f@8customerName : String [EorderiD : Number distrib
— | @8password : String aces @ date : Date oludes B istributes
fiemalil : String P [E¥shippingFee : Number EEamount - Number
Organizational > @llcreditcardNO : Number 1 0..n|E8totalPrice : Number k on
ithorizeN: : Stril
BBauthorizeName : String MupdateCustomer() create_order() . C_D
[Morder() [Mdisplay() [Htitle : String
[Msearch() 1| @Bartist : String
2.0 @Eprice : Number
es @Eamount : Number
" n |B8get_basic_info()
0..nN c Mupdatelnfo()
Search REQ CD List o.n 1
Address results in "
[HcreateSR() 1 0..1|create_cd_list() pro
8search() [#iind_cd()
@¥zipcode : String ' ‘
[getAddress() TitleSearch ArtistSearch CategorySearch
[MupdateAddress() 1 oy use CDCategories
‘.search() [Msearch() ¥search() 1
‘ ‘ ‘ ‘ Review
‘ Pop ‘ ‘ Rock ‘ ‘ Jazz ‘ ‘ Classical ‘
1 | | | | | [BRget reviewo

Figure B.1: Class diagram of Online CD shop system.
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: Customer

aSR : Search REQ

aCDL : CD List cds : CD List

aSC : ShoppingCart anOrder : Order

* [for each search] ‘
createSR()

R

find_cd() ‘

X

addcD()

create_order( )

|
|
|
|
|
|
/LH

L

{ [if found]create_cd_lth( )
I

UNUNINTIAIUT25udayan17mATA

|
|
*
|
|
|
|
|

X

|
|
|
|
|
|
“
|

Figure B.2: Sequence diagram of searching and ordering CD.

: Customer

aCh : CD

mi : MKT Info

aR : Revew

aA : Artist Info

sc : Sample Clip

get_basic_info()

get_mk_info( ) ‘

—

<

title, price

get_review( ) ‘

get_artist |nfo()‘

amst

get_sample_ Cllp(‘
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|
|
|
|
|
|

Figure B.3: Sequence diagram of marketing information.
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APPENDIX C

QUESTIONNAIRE

Personal Details and Experience

1.
2.

What is your age?

How long have you worked in field of software engineering?

Please answer the following 4 questions based on this experience scale:

None Little Average Substantial Professional

1 2 3 4 5

What is your experience with software engineering practice?

What is your experience with design documents in general?

What is your experience with modeling with UML for objected-oriented
design?

What is your experience with software maintenance?

Motivation and Performance

Please answer the following 3 questions based on this scale:

10.
11.
12.

Not Poorly . Fairly Well Highly
1 2 3 4 5
Estimate how motivated you were to perform well in this experiment.
Estimate how well you understood what was required of you.

Estimate your overall understanding of the design documents.

Can you complete all the tasks within time out period?
If you could not complete all the tasks, please indicate why.
In your opinion, what caused you the most difficulty to understand the design

documents?
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13. In your opinion, what caused you the most difficulty to modify the design
documents?

14. Estimate the accuracy (in percent) of your answer to the examinations.

Miscellaneous
15. Have you learned anything from participating in this experiment? Please
specify.

16. Any additional comments?
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APPENDIX D

USER MANUAL OF A TOOL FOR MEASURING STRUCTURAL
COMPLEXITY METRICS AND PREDICTING
MAINTAINABILITY

D.1 Tool Installation
Steps for installing a Java tool for Measuring structural complexity metrics And
Predicting maintainability (JMAP) are listed as follows.

1) Install Java'" 2 Standard Edition Runtime Environment (JRE). This program
can be downloaded from http://java.sun.com.

2) Copy folder MLP to C:\

3) Copy folder JIMAP to C:\

4) Open C:\JMAP\setEnv.bat with Notepad or other text editors. The window as
shown in Figure D.1 will be appeared. Edit value of JAVA_HOME in line 2 to
identify the directory in which JRE is installed. In this case, value of
JAVA_HOME is C:\j2sdk1.4.2_03.

5) Double click C:\UMAP\run.bat for running the tool. The window as shown in

Figure D.2 will be displayed.

& setEnv.bat - Notepad
File Edit Farmat  Wiew Help

imecho off
set JAWA_HOME=C:\Zsdk.4.2_03
set Pathz % JAVA _HOME hin: % Path%

Figure D.1: Content of JIMAP.bat.
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= - = e = oax s | = | [ |
= Java tool for Measuring structural complexity metrics And Predicting maintinability ... |;J[E|E|
File Calculation Prediction Help

_[f' Calculate Metrics r Predict Understandability |/ Predict Modifiability |/ Predict Maintainability |

File Name :

hietrics Yalue

NC
ANALWY
ANAW
ANMUW
AN
ANAss
ANAGY
MaggH
MaxHAgg
ANGen
NGenH
MaxDIT
NOS
WMBO
ANRM
ANDM
ANCHM

Figure D.2: A tool for measuring structural complexity metrics and predicting
maintainability.

D.2 User Manual for Utilizing a Tool for Measuring Structural Complexity Metrics and

Predicting Maintainability

D.2.1 Open Input File

Input file of this tool is in a format of XML file which contains the detail of class
and sequence diagrams of a software. From Figure D.2, choose File> Open or click
to open an input file. The window as shown in Figure D.3 will be displayed. Select an

input file and click Open.

%@nﬂn TR T AAAANIA | 7= N o =

Look In: |@MAINDRNE(C:). , ' v| @ @ @ E

3 Documents and Settings [T WINDOWS
] drnoom [ Payment.xml
I flexim

3 MTO0P2

=7 My Doccuments

1 Program Files

7 03Ademo

File Name: | |

Files of Type: | XML file ~ |

| Open || Cancel |

Figure D.3: Window for open input file.
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D.2.2 Measuring Structural Complexity Metrics

Choose Calculation > Calculate Metrics. The window as shown in Figure D.4 will
be displayed. Input value of ANCM and click Ok. The values of structural complexity

metrics will be computed and shown as Figure D.5.

£ INPUT ANCM YALUE

Please input the value of metric ANCM

I |
L 0Ok | i Cancel |

Figure D.4; Window for input value of ANCM.

< Java tool for Measuring structural complexitymetrics ind Predicting maintinability ... |:||E|fg|

File Calculation Pred!_l:tiun Help
[]’ Calculate Metrics r Predict Understandability |/-Predic‘t Modifiability r Predict Maintainability |
File Hame : C:‘L)(_ML Eilgs 4h systems‘tﬁ'i']—Paymentl.xml ,___
hietrics WValue

NC 6

ANALIY 3

AN 0.167

ANMUWY 6.333

AN 5.167

ANAsS 0.167

ANAgy 0.167

MaggH 1

MaxHAgg 1

ANGen 0.5

NGenH 1

MaxDIT 2

NOS 1

WMEO 2

ANRM 8

ANDM 1

ANCM 1

Figure D.5: Window for display the values of structural complexity metrics.

D.2.3 Predicting Understandability, Modifiability and Maintainability

Choose  Prediction > Predict Understandability or Prediction > Predict
Modifiability or Prediction > Predict Maintainability according to a quality that you want

to predict. Select a prediction technique by choosing Discriminant Analysis or Decision
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Tree or MLP Neural Network. The result of prediction will be presented as Figure D.6 —

Figure D.8.

p——

= _Java tool for Measuring structural complexity metrics And Predicting maintina... |

File Calculation Prediction Help

{ Calculate Metrics | Predict Understandability | Predict Modifiability | Predict Maintainability_|

l/ Discriminant Analysis r Decision Tree r MLP Heural Network |

Function for difficult Function for medium Function for easy
Wariahle Coefficient | Metrics value | Coeflicient | Metrics value)| Coefficient | Metrics value
NC 1.086 6 0.915 6 0.816 6
ANALWY 4,959 3 5.575 3 6.681 3
ANMUWY -0.218 6.333 -0.896 6.333 0.88 6.333
ANAsSSOC 4.454 0.167 4.391 0.167 3.568| 0.167
ANAgy 1.927 1 0546 1 .0.413| 1
MaxHAgg 6.263 1 7.157 1 5.278 1
ANGen 19.706 0.5 34.317 0.5 16.703 0.5
NGenH -0.757 1 -4.807 1 -2.0912 1
NOS 4347 1 5.061 1 4432 1
WMBO 4.297 2 5.235 2 2.801 2
ANRM 3.2 3 2.5 3 2.526 3
ANDM 1.036 1 1.599 1 1.246 1
ANCM 2.I]3l3| 1 321 1 2.506 1
{Constant) -35.4ﬁ| -35.387 -30.679
SUM | 26.584 29.267 32.441
This system is easy to maintain

Figure D.6: Window for display the result of prediction by technique of Discriminant
Analysis.

4 Java tool for Measuring structural complexity metrics And Predicting maintina... E||E||z|
File Calculation Prediction Help ’

Calculate Metrics r Predict Understandability r Predict Mud'rﬁahility_lr"l:?reuict Maintainahility |
MLP Neural Network | Y j

This system is easy to maintain

Discriminant Analysis | Decision Tree

Figure D.7: Window for display the result of prediction by technique of Decision Tree.
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= Java tool for Measuring structural complexity metrics And Predicting maintina... |L||E||'>_<|
File Calculation Prediction Help

[ Calculate Metrics |  Predict Understandability | Predict Modifiability || Predict Maintainability |

[ Discriminant Analysis | Decision Tree | MLP Neural Network |

This system is easy to maintain

Figure D.8: Window for display the result of prediction by technique of Neural Network.

D.2.4 Exit Program

Choose File > Exit
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