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CHAPTER I 

 

INTRODUCTION 
 

1.1 Statement of the Problems 

 

Groundwater, water found beneath the earth’s surface, is stored in the cracks 

of rocks or the spaces in soil and sand. It is a renewable resource by the natural 

process of the hydrological cycle. Because groundwater exists everywhere, it is a 

major source of the world’s supply of drinkable water.  The availability of 

groundwater varies from one region to another depending on the geology of the area. 

The quantity available and geologic materials and conditions control the occurrence 

of groundwater (Chester, 2000). The movement of groundwater is slower than the 

flow of surface water. It is governed by hydraulic gradients and aquifer permeability. 

Groundwater can be the subsurface transporting agent for dissolved chemicals, 

including contaminants. Materials dissolved from wastes may be transported from 

burial or disposal sites by groundwater flow. These chemical contaminants reduce the 

quality of the groundwater. Due to the slow rates of groundwater movement and the 

natural flushing of aquifers, contaminated areas commonly remain so for decades or 

longer. Most of the hazardous substances that contaminate groundwater are man-

made products such as gasoline, oil, road salts, and chemicals. Some of the major 

sources of these products are storage tanks, septic systems, hazardous waste sites, and 

landfills. Because of the volumes of hazardous substances and because of their 

stability in groundwater, such contamination can pose a serious threat to public health, 

groundwater-dependent economic activities, and the long-term welfare of valuable 

ecosystems. If groundwater becomes polluted, it becomes unsafe and unfit for human 

use (Geophysics Research Forum (U.S.), Geophysics Study Committee, 1984).   

Drinking or consuming contaminated groundwater can have serious health 

effects. Diseases or poisoning may be caused by toxins that have leached into well 
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water supplies. Other long-term effects, such as certain types of cancer, may result 

from exposure to polluted water. 

One of the major environmental concerns in many countries is the problem of 

groundwater contamination caused by the leachate from landfills or chemical leakage 

from underground storage tanks. It is desirable for the users and regulatory agencies 

to have a reliable, rapid and easy to use screening tool for estimating contaminant 

migration in order to identify critical sites and prioritize the clean-up and further 

investigative efforts. Such a tool would preclude a reliance solely on the traditional 

approach that involves time-consuming groundwater quality monitoring studies and 

complicated, computer intensive three-dimensional numerical analyses. An artificial 

neural network (ANN) is an efficient statistical technique used to develop an 

understanding of a complex physical system when an ample amount of data about the 

behavior of the system is present (Haykin, 1994).  

This research is a feasibility study on the utilization of an ANN for dealing 

with subsurface contamination problems. Visual MODFLOW will be used to create a 

database of spatial and temporal variations of the concentrations of typical 

contaminants in typical subsurface conditions. Then, the database will be used to train 

an ANN to predict the concentrations of a given chemical at a given location. If found 

to be a feasible and quick screening tool, the ANN could replace the time-consuming 

and complicated three-dimensional numerical analysis program during the initial 

monitoring phase. However, for a complex site, the ANN would probably require the 

combination of real data with simulations from three-dimensional groundwater 

contaminant transport programs. 

 

1.2 Objectives 

 

1. To investigate the feasibility of using an artificial neural network as a reliable, 

rapid, and easy to use screening tool for estimating contaminant migration at a 

hypothetical site for one selected contaminant. 

2. To determine the network architecture and components that provide the best 

prediction.  
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1.3 Expected Results 

 

An artificial neural network can be used as a quick screening tool to simulate 

the breakthrough curve of concentration versus time. 

 



CHAPTER II 

 

LITERATURE REVIEW 
 

2.1 Groundwater Contamination 

 

Water is essential to life; without it, life on the earth would not be possible. 

Water can be found in different forms and places. The three states of water are gas 

(e.g. water vapor), liquid, and solid (e.g. ice). The water that is found in the 

atmosphere is called atmospheric water. Water that exists above the ground surface is 

called surface water. The last place where water can be found is below the ground 

surface, which known as subsurface water.  Fig. 2-1 illustrates the hydrologic cycle. 

There are five processes involved in the movement of water through the cycle.  

 

1. Condensation:   The vapor water in the atmosphere condenses to form 

clouds. 

2. Precipitation:   The clouds release moisture in the form of rain, snow, etc. 

that falls onto the earth’s surface. 

3. Infiltration:   The precipitated water seeps into the ground and is the 

major source for plants. When it seeps deeper, it becomes 

groundwater. 

4. Runoff:   This process occurs when the rate of precipitation on a 

surface exceeds the rate at which the water seeps into the 

ground. Thus a portion of the precipitated liquid water 

runs off over the land and becomes surface runoff. Runoff 

flows on the ground and into steams and rivers. Finally, it 

is stored in various sizes of reservoirs such as lakes or 

oceans. 
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5. Evaporation and Transpiration:  In the evaporation process, liquid water 

changes into vapor by the motivation of the sun; whereas, 

transpiration occurs when water is transferred from plants 

into the atmosphere. 

 

 
 

Fig. 2-1. Hydrologic cycle  

(from Illinois State Geological Survey, 2004) 

 

A huge portion of the water on the earth exists as surface water ( Table 2-1). 

However, 97.2% of total water is salt water in oceans and cannot be used to support 

life. About 0.32% of total water is fresh liquid water that is readily able to be used by 

humans, animals, or plants. This percentage does not include the fresh water in the 

forms of glaciers and ice caps. Groundwater makes up about 94% of the readily used 

fresh liquid water (0.31% of total water).  It is the largest freshwater supply source in 

the world, since the groundwater below a depth of 0.8 km is saline (Bouwer, 1978). 
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Groundwater accounts for a small portion of the world’s total water, but it 

accounts for a major portion of the world’s freshwater resources (Liu and Liptak, 

2000). It has become a major source of water throughout the ages. 

 

Table 2-1. Estimated distribution of the world’s water 

 Volume 

1000 km3 

Percentage of 

Total Water 

Atmospheric water 13 0.001 

Surface water   

Salt water in oceans 1 320 000  97.2 

Salt water in lakes and inland seas 104 0.008 

Fresh water in lakes 125 0.009 

Fresh water in stream channels (average)   1.25 0.0001 

Fresh water in glaciers and icecaps 29 000 2.15 

Water in the biomass 50 0.004 

Subsurface water   

Vadose water 67 0.005 

Groundwater within depth of 0.8 km 4200 0.31 

Groundwater between 0.8 and 4 km depth 4200 0.31 

Total (rounded)  1 360 000   100 

(from Bouwer H., 1978) 

 

2.1.1 Groundwater Hydrology  

 

Groundwater is water found beneath the earth surface, but not all subsurface 

water is classified as “groundwater.” The water which exists in the unsaturated zone 

between the ground surface and water table is called “vadose water.” Vadose water is 

held to the soil particles by capillary forces and the forces of cohesion and adhesion. 

In this zone, the water pressure is less than the atmospheric pressure. The water found 

under the water table is “groundwater.” It is the portion of subsurface water that is 

contained in geological formations, called “aquifers.”  
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Aquifer 

 

This geological formation is permeable and it transmits and yields water. 

Hence, it is saturated. However, the capability of an aquifer to yield water depends on 

the porosity of the aquifer material.  Fig. 2-2 schematically shows the types of 

aquifers. Normally, there are two main types of aquifers: confined aquifers and 

unconfined aquifers. The former type is overlaid with impervious material. This 

material can be totally impermeable or permeable for water to transmit in a vertically 

direction, but not in a horizontal direction. A confined aquifer is completely filled 

with groundwater under a greater-than-atmospheric pressure. Therefore, it does not 

have a free water table, but a piezometric surface instead, which is characterized by 

the pressure condition (Liu and Liptak, 2000). The water flows into the confined 

aquifer through recharge zones and flows up from the ground through artesian wells. 

The latter type of aquifer, an unconfined aquifer, contains a layer that has no barrier 

on top of the groundwater and maintains a pressure equal to atmospheric pressure. 

Thus, it provides a free water surface, which is called a “groundwater table.” The 

water flows into this aquifer by seeping from the ground surface and discharges 

throughout springs, rivers, as well as water table wells.  

 
 

Fig. 2-2. Aquifer  

(from Environment Canada, 2004) 
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 As described above, groundwater is stored in aquifers. In an aquifer, 

groundwater can transmit and flow through from a higher level to a lower level of 

energy. It moves in response to gravity, pressure, and friction. The first two drive the 

water, and the latter restricts its motion (Pye, Patrick, and Quarles, 1983). The 

movement of groundwater can be described by Darcy’s Law. 

 

Darcy’s Law 

 

 In 1856, Henri Darcy investigated the flow of water through beds of 

permeable sand and provided a model for groundwater movement. Darcy's Law 

generalizes the relationship of flow in porous media. The law was formulated based 

on the results of his experiments on the flow of water through beds of sand.  Fig. 2-3 

depicts the experiment while Eq. (2-1) and Eq.  (2-2) state Darcy’s equations. 

 

 
Fig. 2-3. Darcy’s experiment  

(from Brown, 1995) 
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L
hAKQ ∆

=  (2-1)

where  Q  =  volumetric flow rate, [L3T-1] 

 A  =  flow area perpendicular to L, [L2] 

  K  =  hydraulic conductivity, [LT-1] 

 L  =  flow path length, [L] 

 h  =  hydraulic head, [L] 

∆   =  denotes the change in h over the path L 

dL
dhAKQ −=  (2-2)

when L 0⎯→⎯  

  

 Moreover, the Q/A can be defined as Darcy’s flux or Darcy’s velocity (V). It is 

the volumetric flow per unit area, which can be stated as Eq.  (2-3).  

 

dL
dhK

A
QV −==  (2-3)

 

Since groundwater always flows in the direction of the decreasing head or in 

other words from the higher energy to the lower energy, this is indicated by the 

negative sign. Likewise, this equation shows the relationship of the hydraulic gradient 

and the aquifer permeability that govern the velocity of groundwater. The hydraulic 

gradient is a derivative of the hydraulic head over the distance (dh/dL) where the 

measure of the permeability is the hydraulic conductivity (K). Note that this is an 

average discharge velocity through the entire cross section of the column, not the 

actual flow velocity. The actual flow is limited to the pore space only and is called 

seepage velocity (vs) as shown in Eq.  (2-4) . 
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e
s n

Vv =  (2-4)

where   ne   = effective porosity (%) 

 

Hydraulic Head 

 

 Hydraulic head is a specific measurement of water pressure or total energy per 

specific weight (the weight per unit volume of the material) at a specific point of 

interest. It is expressed in units of length, which can be described mathematically as 

shown in Eq.  (2-5). 

 

zph +=
γ

 (2-5)

gργ =  (2-6)

where   p  =  water pressure, [ML-1T-2] 

  γ  =  water specific weight, [ML-2T-2] 

   z  =  elevation, [L] 

   g  =  acceleration of gravity, [LT-2] 

  ρ  =  water density, [ML-3] 

 

The hydraulic head value can be used to determine a hydraulic gradient 

between two or more points over the length of the flow path. 

 

Hydraulic gradient (i) = 
Length

hh
dL
dh 12 −

=  (2-7)

 

Hydraulic Conductivity 

 

 Hydraulic conductivity is a measure of the permeability of the porous media 

(Bedient, Rifai, and Newell, 1994).  In other words, it is the property of soil or rock in 
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which water can transmit through. Therefore, the hydraulic conductivity value 

depends on the properties of the aquifer materials, which can vary over many orders 

of magnitude ( Table 2-2). As a result of this, the Darcy’s velocity can also vary over 

the same range. 

 

Table 2-2. Saturated hydraulic conductivity (K) values found in nature 

K (cm/s) K (m/s) 
Aquifer/ 

Permeability

Unconsolidated 

Sand & Gravel 

Unconsolidated 

Clay & Organic 

102 1 

101 10-1 
Well Sorted Gravel 

1 10-2 

10-1 10-3 

 

10-2 10-4 

Good 
Well Sorted Sand or 

Sand & Gravel 

10-3 10-5 
Peat 

10-4 10-6 

10-5 10-7 

10-6 10-8 

Poor 
Very Fine Sand, 

Silt, Loess, Loam Clay 

10-7 10-9 

10-8 10-10 

10-9 10-11 

10-10 10-12 

None  
Fat / Unweathered 

Clay 

(after Bear, 1972) 

 

2.1.2 Contaminant Transport 

 

Normally, groundwater is safer and more reliable for use than surface water. 

The reason is that surface water is more easily exposed to pollutants from many 

sources than groundwater is. Moreover, during the seepage of surface water through 

the ground to the aquifer, the ground material acts as a filter to purify the water. 

However, this does not mean that groundwater can not be contaminated. Once the 

contaminated substance is present in the groundwater, it is distributed far beyond the 
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site of contamination by the groundwater and may cause the aquifer to be unusable for 

decades. Additionally, a groundwater contaminant is difficult, and sometimes 

impossible to clean up. The remediation process is also an extremely costly operation. 

A groundwater contaminant can be defined as any physical, chemical, biological, or 

radiological substance or matter in groundwater. It can be introduced to the 

groundwater naturally or by human activities. However, the contamination from 

naturally occurring activities, such as the natural leaching of the soil and mixing with 

other groundwater sources with different chemistries, is usually small. Thus, human 

activities are the leading cause of groundwater contamination (Chester, 2000).  

 There are two categories of sources of groundwater contamination caused by 

human activity: point sources and non-point sources. Landfills, leaking underground 

storage tanks, leaking septic tanks, mining operations, and accidental spills are 

examples of point sources. Examples of non-point sources are agricultural operations 

and contaminated precipitation. 

 

 
Fig. 2-4. Sources of groundwater contamination  

(from Portneuf Valley Groundwater Guardian, 2001) 
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 As stated above, when a contaminant substance is introduced into 

groundwater, it spreads and moves with the groundwater. There are three processes 

that influence the movement of a contaminant which are advection, caused by the 

flow of groundwater; hydrodynamic dispersion, caused by mechanical mixing and 

molecular dispersion; and retardation, caused by adsorption to soil particles. 

 Note that the transport of a contaminant in groundwater appears in three 

dimensions (x, y, and z). Therefore, while the equations provided in this chapter may 

be used to calculate the parameters in all three dimensions, only the x-dimension of 

the contaminant transport is shown here to simplify the explanation of the equations. 

 

Advection 

 

 Advection is one of the processes of contaminant movement. In this process, 

the flowing groundwater causes the contaminant to move into porous media at the 

seepage velocity (Bedient et al., 1994). Therefore, when only advection is considered, 

a contaminant moves with the groundwater at the same rate as water due to the 

groundwater hydraulic gradient and no decrease in the concentration is observed. 

Then, the contaminant velocity equation can be written as shown in Eq.  (2-8), which 

is the same as seepage velocity according to the Darcy’s law. The mass flux equation 

can be written as seen in Eq.  (2-9). 

 

x
h

n
Kv

e
x ∂

∂
−=  (2-8)

CnvF exx =  (2-9)

where  K  = hydraulic conductivity, [LT-1] 

  x  =  flow path length in x-axis direction, [L] 

  h  =  hydraulic head, [L] 

  ne = effective porosity (%) 

 Fx = mass flux, [ML-2T-1] 

 C = contaminant concentration, [ML-3] 

 vx = seepage velocity in the direction of x, [LT-1]. 
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Hydrodynamic Dispersion 

  

 Hydrodynamic dispersion is the result of two processes: molecular diffusion 

and mechanical mixing. Freeze and Cherry (1979) defined hydrodynamic dispersion 

as the process in which solutes spread out and are diluted in contrast to simple 

advection alone. 

 Molecular diffusion is a molecular mass-transport process in which solutes 

move from areas of higher concentrations to areas of lower concentrations. The 

molecular diffusion process provides the term Dd, which is involved in calculating 

mass flux. 

 

Dd   =   molecular diffusion coefficient, [L2T-1] (2-10)

 

 Mechanical mixing dispersion is a mixing process caused by velocity 

variations in the porous media. It can occur both in the longitudinal direction of the 

flow as well as in the transverse direction. According to Bachmat and Bear (1964), the 

mechanical mixing component of dispersion can be assumed to be proportional to the 

seepage velocity as follows: 

 

vD LL α=  

vD TT α=  
(2-11)

where DL , DT  = mechanical mixing component of dispersion in 

longitudinal and transversal direction, [L2T-1] 

  TL αα ,  = longitudinal and transversal dispersivity, [L]   

         v = seepage velocity,  [LT-1] 
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 Finally, the hydrodynamic dispersion coefficient can be written as follows 

(Bear, 1972, 1979): 

 

e

d
Lx n

D
DD +=  

e

d
Ty n

D
DD +=  

(2-12)

where Dx = the hydrodynamic dispersion in the x direction, [L2T-1] 

 Dy = the hydrodynamic dispersion in the y direction, [L2T-1] 

 ne = effective porosity (%) 

 

Mass flux caused by dispersion can be expressed as the following equation: 

 

x
CDnF xex ∂

∂
−=  (2-13)

 

 The sum of the mass flux influenced by both advection and hydrodynamic 

dispersion can be written as the following equation: 

 

x
CDnCnvF xeexx ∂

∂
−=  (2-14)

 

Retardation 

 

 In this process, the migration of contaminants in groundwater is obstructed by 

the adsorption mechanism. The retardation coefficient can be calculated based on the 

distribution or adsorption coefficients of the contaminant and the characteristics of the 

porous medium. 
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⎟
⎠
⎞

⎜
⎝
⎛+=

n
KR d

d
ρ

1  (2-15)

where Kd = distribution or adsorption coefficient, [L3M-1] 

 dρ  = bulk density of the aquifer, [ML-3] 

   n = total porosity of soil [%] 

 

 The velocity of the contaminant in groundwater can be calculated as follows: 

 

R
vVc =  (2-16)

where Vc = mean chemical velocity, [L/T] 

  v = seepage velocity, [L/T] 

 R = retardation factor, note that if R = 1, Vc = v 

 

Governing Equation and Boundary Conditions 

 

The governing equation for one-dimensional chemical transport in 

groundwater with advection, dispersion, and retardation is (Van Genuchten and 

Alves, 1982) as follows: 

 

x
Cv

x
CD

t
CR

∂
∂

−
∂
∂

=
∂
∂

2

2

 (2-17)

where R = retardation factor  

 D = dispersion coefficient 

 v = seepage velocity [L/T] 

 

Boundary and initial conditions: 

              )0,( =txC  = 0 

          ),( tx
x
C

∞=
∂
∂  = 0 
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 From the governing equation and boundary conditions shown above, a one-

dimensional steady-state flow equation can be derived with the condition described 

below as shown in Eq.  (2-18) for a continuous source and Eq.  (2-19) for an 

instantaneous source (Bedient and Wayne, 1992; Van Genuchten and Alves, 1982). 

However, in a real situation, a contaminant flows in three directions: x, y, and z. A 

three-dimensional steady-state flow in the x-direction injected instantaneously can be 

written as shown in Eq.  (2-20) (Baetsle 1969; Bear, 1972).  
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where  M = chemical mass, [M] = C0V0  

 C0 = injected concentration at x=0, [M/L3] 

 V0 = the original volume, [L3] 

 

 

 Note that the concentration of contamination decreases as the plume moves 

away from the source and disperses in other directions. 

  Fig. 2-5 shows an example of a typical breakthrough curve plotted between 

C/C0 and time (days) at a point of interest, 60 meters from the source. C0 is the initial 

concentration at the source while C is the concentration at a time measured at 60 

meters from the source. As shown in the graph, the concentration is zero at the 

beginning of time = 0 days. After that, the relative concentration increases due to the 

dispersion in the flow direction and retardation of the soil particle. Finally, the relative 
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concentration reaches 1 and will continue with this number in the case of continued 

injection.  

 
 

Fig. 2-5. Breakthrough curve of C/C0 and time (days) at a point of interest  

(from Civil, Construction & Environmental Engineering, Oregon State University, 

2006) 

 

2.2 Artificial Neural Network 

 

2.2.1 Background 

 

In recent years, the interest in artificial neural networks (ANNs) has grown 

rapidly. Various applications of ANNs have become popular. They are being used in 

corporate financial analysis, currency price prediction, speech and facial recognition 

programs, stock trading advisory systems, and more.  

In 1943 (McCulloch and Pitts, 1943), the ANN was proposed by McCulloch 

and Pitts as a new way of modeling brain functions. According to Gurney (1997), a 

neural network is an interconnected assembly of simple processing elements, units, or 

nodes, whose functionality is loosely based on the animal neuron. The processing 

ability of the network is stored in the interunit connection strengths, or weights, 

obtained by a process of adaptation to, or learning from, a set of training patterns. 
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The inspiration for the development of ANNs came from the desire to produce 

artificial systems capable of intelligent computations similar to those that the human 

brain routinely performs. One of the most powerful features of neural networks is 

their ability to learn and generalize from a set of training data. They adapt the 

strengths/weights of the connections between neurons so that the final output 

activations are correct.  The ANN learns to develop a solution system by studying the 

examples of a large number of inputs associated with a resulting set of outputs.  

The key to successfully training an ANN is choosing the right network 

architecture and training algorithm. In this study, a feedforward backpropagation 

neural network will be used to predict the concentration of the contaminant as a 

function of time for the given locations and model parameters. 

 

2.2.2 Types of Artificial Neural Networks (ANNs) 

 

Here, the types of neural networks are summarized. There are many kinds of 

ANNs by now; however, nobody knows exactly how many as a result of the new 

inventory or modification of old ones.  

 

The main kinds of learning algorithms: 

• Supervised learning 

In supervised learning, the target values or the desired outputs are 

known and are given to the ANN during training so that the ANN can 

adjust its weights to try to match its outputs to the target values. After 

the training phase, the ANN is tested by giving it only input values and 

seeing how close the outputs given from the ANN are to the target 

values. 

• Unsupervised learning 

In unsupervised learning, the correct results are not introduced to 

the ANN during the training phase. Unsupervised ANNs usually 

perform some kind of data compression, such as dimensionality 

reduction or clustering. 
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 The major kinds of network topology: 

• Feedforward 

In a feedforward ANN, the connections between units do not form 

cycles. This kind of network topology usually generates a response to 

an input quickly. Moreover, it is able to be trained using a wide variety 

of efficient conventional numerical methods. 

• Feedback 

In a feedback or recurrent ANN, there are cycles in the 

connections. Each time an input is presented to some feedback ANN, 

the ANN must iterate for a potentially long time before it produces a 

response. Feedback ANNs are usually more difficult to train than 

feedforward ANNs. 

 The major kinds of accepted data are categorical and quantitative: 

• Categorical variables take only a finite number of possible values, and 

there are usually several or more cases falling into each category. 

Categorical variables may have symbolic values that must be encoded 

into numbers before being given to the network. Both supervised 

learning with categorical target values and unsupervised learning with 

categorical outputs are called “classification.” 

• Quantitative variables are numerical measurements of some attribute, 

such as length in meters. The measurements must be made in such a 

way that at least some of the arithmetic relations among the 

measurements reflect analogous relations among the attributes of the 

objects that are measured. Supervised learning with quantitative target 

values is called “regressing.” 

 

The neural network used in this study can be categorized as a feedforward 

neural network trained by a supervised learning algorithm. Quantitative data are also 

used in this study. 
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2.2.3 Feedforward Neural Network Architecture 

 

A Single-Layer Neural Network 

 

 

 

(a). (b). 

Fig. 2-6. (a). A single-layer network  (b). A single-layer network using abbreviated 

notation. 

(from MATLAB, 2005) 

   

 Fig. 2-6 depicts a single-layer network with R input elements in input vector 

and S neurons in the layer. Each element of the input vector p [Eq.  (2-21)] is 

transmitted through a connection that multiplies its strength by the scalar weight w. 

Since the number of the input elements is greater than 1, the weights become a matrix 

W [Eq.  (2-23)], which consists of the weights of each connection. Then, the ith neuron 

gathers its weighted inputs and bias to form its own scalar output ni [Eq.  (2-24)], 

which becomes an input to the transfer function. Finally, the transfer function f 

produces the scalar output ai [Eq. (2-26)]. Each node is connected to all the nodes in 

the adjacent layers and the signal fed at the input layer flows forward layer-by-layer to 

the output layer (Gurney, 1997). Note that the number of neurons in the layer (S) does 

not have to be equal to the number of input elements (R). 
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Input vector with R element: 
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Weight matrix: 

W 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

RSSS

R

R

www

www
www

,2,1,

,22,21,2

,12,11,1

K

MM

K

K

 
(2-23)

Output of neuron: 

iRRiiii bpwpwpwn ++++= ,22,11, K  (2-24)

n = Wp + b (2-25)

Output of transfer function: 

( )ii nfa =  (2-26)

a = f(n) (2-27)

where   R = input elements 

 S = number of neurons 

 N = number of patterns 

 Si ≤≤1  

 

 To explain the notation in  Fig. 2-6 (b), p is an R length input vector or 

element. Note that inputs can be more than one vector, which is denoted as P. P is an 

input matrix consisting of N input vectors or patterns [Eq.  (2-22)]. W is an S x R 

matrix as shown in Eq.  (2-23). The row indices on the elements of matrix W indicate 
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the destination neuron of the weight while the column indices indicate the input 

element for that weight. Thus, the indices in w2, 1 denote that the strength of the signal 

from the first input element to the second neuron. The values a, b and n are respective 

output vectors from the transfer function, bias vector, and output vector from the 

neuron with S length, see Eq.  (2-25) and  (2-27).  

 In conclusion, when an input vector p [Eq.  (2-21)] from an input matrix P [Eq. 

 (2-22)] is introduced to a layer of neurons, the layer of neurons provide the output 

vector a [Eq.  (2-27)]. A layer of neurons includes the weights matrix W [Eq.  (2-23)], 

the multiplication operation, the bias vector b, the summer n [Eq.  (2-25)], and the 

transfer functions f. 

 

A Multiple-Layer Neural Network 

 

A network can have several layers. The layer that produces the network output 

is called the output layer. The output layer generates the output vector and neurons are 

assigned according to the numbers of output or target elements. All other layers are 

called “hidden layers.” The hidden layers always exist before the output layer. The 

hidden neurons are assigned depending on the study. Each layer has a weight matrix 

W, a bias vector b, and an output vector a. Note that the outputs of each intermediate 

layer are the inputs to the following layer. For more understanding, the following 

diagrams ( Fig. 2-7) illustrate the feedforward neural network with multiple layers of 

neurons. 
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Fig. 2-7. Multiple-Layer Neural Network 

(from MATLAB, 2005) 

The network shown above consists of an output layer and 2 hidden layers. The 

first hidden layer receives the input vector of R elements and each element is 

connected to each neuron in the first hidden layer through the weight matrix IW1, 1. S 

indicates the number of neurons. Each neuron in the first hidden layer (n1
i) gathers the 

summation and sends it to a transfer function (f 1). Then the output vector (a1) is 

provided from the neuron layer, which becomes the input vector to the following 

layer. And the output of the network (in the figure, it is assumed to be the third layer) 

is labeled as y. The superscript to the variable indicates its association with that layer 

number. The weight matrix connected to inputs is called input weight (IW1,1) and the 

weight matrices coming from hidden layer outputs are called layer weights (LW2,1 or 

LW3,2). As the weight matrix is the relation between two layers, the superscript to the 

weight matrix variable indicates the destination and the source, respectively. For 

 = y1 

=  y2 

=  yS 

y 
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example, LW2,1 denotes the weights matrix that connect the output from the first 

hidden layer as a source of input to the second hidden layer. The output from each 

layer can be explained in following equations. 

 

a1 = f1 (IW1,1p1 + b1) (2-28)

a2 = f2 (LW2,1a1 + b2) (2-29)

a3 = f3 (LW3,2a2 + b3) (2-30)

 

 Multiple-layer networks are quite powerful. For instance, a network of 2 

hidden layers, where the first hidden layer is sigmoid and the second hidden layer is 

linear, can be trained to approximate any function arbitrarily well. This kind of 2-

hidden-layer network is used extensively in backpropagation (MATLAB, 2005). 

 

Transfer Function 

 

Many transfer functions can be associated with neurons. Nonlinear [Eq.  (2-

31),  (2-32)] and linear [Eq.  (2-33)] functions are commonly selected to be used as 

transfer functions. Transfer functions for the hidden neurons are needed to introduce 

nonlinearity into the network to make multiple-layer networks powerful. The transfer 

function must be differentiable, and it helps if the function is bounded. The sigmoid 

functions such as hyperbolic tangent and logistic function are the most common 

choices. Functions such as the hyperbolic tangent that produce both positive and 

negative values tend to yield faster training than functions that produce only positive 

values, such as logistic, because of better numerical conditioning. For the output 

neurons, the transfer function should be suited to the distribution of the target values. 

When the last layer of a multiple-layer network has sigmoid neurons, a linear transfer 

function is preferable at the output neuron. If the output layer of a multiple-layer 

network has sigmoid neurons, then the outputs of the network are limited to a small 

range. If linear output neurons are used, the network outputs can take on any values. 

Multiple layers of neurons with nonlinear transfer functions allow the network to 
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learn nonlinear and linear relationships between input and output vectors. The 

algorithms and graphs are shown below.  

 

Hyperbolic tangent: ( )( ) 11
2)( 2 −+

== − ne
nfa  (2-31)

Logistic: ne
nfa −+

==
1

1)(  (2-32)

Linear:  nnfa == )(  (2-33)

 

(a)  

(b)  

(c)  

 

Fig. 2-8. Three examples of the transfer function: (a) hyperbolic tangent, 

(b) logistic, and (c) linear 

(from MATLAB, 2005) 
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2.2.4 Feedforward Backpropagation Neural Network (FBNN) 

 

A FBNN is a supervised learning technique used for training artificial neural 

networks. Since this technique was introduced, FBNN has undergone many 

modifications to overcome its limitations. In general, FBNN is a feedforward network 

trained by backpropagation (Werbos 1974, 1994).  The FBNN, a gradient descent 

algorithm (Rumelhart, McClellan, and the PDP research group, 1986), consists of two 

passes: the forward pass and the backward pass. In the first pass, the input vectors and 

the corresponding target vectors are used to train the network. The later pass involves 

with the process of modifying weights to obtain a minimum error between the output 

from the network and the target related to the input. The error that was found in the 

former iteration or epoch is used to train each of the hidden neurons according to the 

gradient descent. After that the weights are updated. These processes involve 

performing computations backwards through the network ( Fig. 2-9), hence, the name 

backpropagation (Gurney, 1997). 

Technically, the input vectors and the corresponding target vectors are used to 

train a network until it can approximate a function. 

Standard backpropagation is a gradient descent algorithm. The gradient is 

computed for nonlinear multiple-layer networks, in which the network weights are 

moved along the negative of the gradient of the performance function. There are a 

number of variations on the basic algorithm that are based on other standard 

optimization techniques, such as conjugate gradient, Qausi-Newton, and Levenberg-

Marquardt. The optimization technique used in this study is going to be explained in 

Section 2.2.5.  

Properly trained feedforward backpropagation networks tend to give 

reasonable answers when presented with inputs that they have never seen. During 

training, the weights and biases of the network are iteratively adjusted to minimize the 

network output errors. The algorithms use the gradient of the performance function to 

determine how to adjust the weights to maximize performance. 
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Fig. 2-9. The structure of a feedforward backpropagation neural network 

 

Gradient Descent on an Error Algorithm 

 

 This approach is based on defining a measure of the difference between the 

actual network output and the target vector. This difference is then treated as an error 

(E) to be minimized by adjusting the weights (w), see Eq.  (2-34),  (2-35), and  (2-36) . 

Thus, the objective is to find the minimum sum of errors over the training set where 

this sum of errors is considered to be a function of the weights of the network ( Fig. 2-

10). 
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 py  =  output of pattern p 

 E  =  total mean square error 

 N  =  the number of pattern 

 iw  =  weight 

 α  =  learning rate 

 

 
 

Fig. 2-10. Gradient descent for a network 

(from Gurney, 1997) 

 

2.2.5 Bayesian Regularization: Improving Generalization  

 

One of the problems that occur during network training is called “overfitting.” 

When this type of problem occurs, the error on the training set is driven to a very 

small value, but when new data is presented to the network, the error is large. The 

network has memorized the training and overfit the data examples but it has not 

learned to generalize well enough to new situations. One method for improving the 

network’s generalization is to use a network that is just large enough to provide an 

adequate fit. The size of the network is depended on the number of hidden layers and 

their neuron (MATLAB, 2005). The larger the network, the more complex the 
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function the network creates. On the other hand, the smaller the network, the lower 

the ability of the network to overfit the data. Thus, it is difficult to know how large a 

network should be for a specific application.  

Regularization is one technique for improving generalization and avoiding 

overfitting. This method modifies the performance function as shown in Eq.  (2-37), 

 (2-38), and  (2-39). The mean of squares of the network errors on the training set is 

selected to be an example for explanation. The performance function can be written as 

shown in Eq.  (2-37). To improve generalization, the performance function is modified 

by adding a term that consists of the mean of the sum of squares of the network 

weights and biases Eq.  (2-38) and the performance ratio.  
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where N  =  number of pattern in input matrix 

  n  =  number of neuron in layer 

 

γ is the performance ratio which has to be optimized. However, the point is, it 

is difficult to determine the optimum value for the performance ratio parameter. The 

Bayesian framework of MacKay (1992) has solved this problem. In this framework, it 

is assumed that the weights and biases of the network are random variables with 

specified distributions, which the performance parameters are related to.  

Note that this Bayesian algorithm works best when the network inputs and 

targets are scaled to the range of -1 to +1. 
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2.3 Related Research 

 

 Ranjithan, Eheart, and Garrett (1993) used an ANN to simulate a pumping 

index for a hydraulic conductivity realization to remediate groundwater at a 

contaminated site. A two-layer feedforward backpropagation network with a sigmoid 

transfer function ANN was trained and tested. The appropriate number of hidden 

neurons, the sensitivity of the ANN to the number of hidden neurons, and training 

patterns were studied. The result showed that by increasing the number of hidden 

neurons the performance of the ANN in training increased, while the performance of 

ANN in testing was stable at an optimal number of hidden neurons.  

Roger and Dowla (1994) simulated a regulatory index for a multiple pumping 

realization containing multiple plumes at a contaminated site by using an ANN. The 

same technique used by the former researchers was used in this study. This research 

suggested that the number of training patterns should be greater than or equal to the 

number of weights to improve ANN performance.  

Singh, Datta, and Jain (2004) proposed the methodology of using an ANN to 

identify unknown groundwater pollution sources. A feedforward backpropagation 

ANN was developed and trained. The data set inputted into the network was the set of 

source flux data and the resulting concentration measurement data at specified 

observation locations in the aquifer. Two different scenarios were considered. The 

first had two potential sources and four observation wells while the other was more 

complex with multiple potential sources and a larger number of observation wells. 

The results showed that ANN can be used to solve the complex problem of unknown 

groundwater pollution source identification. 

Morshed and Kaluarachchi (1998) focused their research on improving the 

current understanding of ANN applications in groundwater flow and contaminant 

transport (GFCT). They studied the ANN concepts related to architecture, sampling, 

training, and multiple-function approximations. The backpropagation algorithm and 

genetic algorithm were compared. The results showed that the genetic algorithm 

performed less robustly than the backpropagation algorithm. The flow and transport 

of a trichloroethylene (TCE) dissolved in water through a partially saturated porous 

medium was studied. Data were generated for different scenarios (e.g., the 



 32

breakthrough curve with linear adsorption and with nonlinear adsorption) using the 

computer code, HYDRUS.  

The first scenario was a simulation of the breakthrough curve with linear 

adsorption. In this scenario, the only input was time and single-layer networks with 3, 

15, and 30 were used to simulate the concentrations corresponding to the time.  

Moreover, the sigmoid and the hyperbolic tangent function were used as the transfer 

functions. The results showed that training with a hyperbolic tangent transfer function 

provided a better performance than the sigmoid function and the 3-neuron network 

provided a better performance compared to the 15-neuron and the 30-neuron 

networks. 

The second scenario was a simulation of a breakthrough curve with nonlinear 

adsorption. Here, the applicability of ANN for predicting a concentration was studied 

when the mass transport was complicated due to non-linear solid phase adsorption. 

Thus, time and the linear Freundlich isotherm (n) were the input elements. The 

concentration was simulated with n = {0.5, 1, and 2}. A single-layer network with 5 

neurons was used while the hyperbolic tangent was used as the transfer function. The 

results showed that ANN prediction was poor. However, ANN performance increased 

when the number of patterns in the training data as well as the number of neurons in a 

hidden layer increased. 

The third scenario was the use of an ANN to simulate the breakthrough curve 

parameters of breakthrough time, t b; time to reach maximum concentration level, t 

MCL; time to maximum concentration, t max; and maximum concentration, C max. Thus, 

there were four output elements. The ANN was trained by using the flow and the 

transport parameters as inputs. In general, there are seven input elements which are 

the hydraulic conductivity, grain size distribution index, water flux, dispersivity, 

dissolved phase, Freundlich coefficient, and Freundlich exponent. The former three 

are the flow parameters while the later five are the transport parameters. The 

application of the ANN was divided into the effect of the flow parameters, the effect 

of the transport parameters, and the effect of both the flow and transport parameters. 

In order to study these three types of effects, the flow and transport parameters were 

varied in the domains of [15, 60], [0.025, 0.100], [5, 20], [0.8, 3.2], [0.0005, 0.0020], 

[0.15, 0.60], and [0.5, 1.0], respectively. However, when the effect of flow parameters 
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was of concern, the transport parameters were constant. Similarly, when the effect of 

transport parameters was of concern, the flow parameters were constant. A hidden 

layer with 7 neurons was used to study the effect of the flow parameters, while 11 

neurons were used to study the effect of the transport parameters. For the effect of 

both the flow and transport parameters, a hidden layer with 15 neurons was used. The 

results showed that when the correlation coefficient was between 0.98 and 1, the 

ANN could provide accurate predictions.  

However, while the third scenario made use of the flow and transport 

parameters, it did not produce breakthrough curves in relation to various distances 

from the contamination source.  

 



CHAPTER III 
 

METHODOLOGY 
 

 Before going step by step through the methodology, an overall picture of this 

approach might be useful. At the beginning, MODFLOW was used to create the data 

set. Then, the data set was used to train and test the ANN’s ability to predict the 

contaminant’s transportation in groundwater. This study is not trying to replace 

MODFLOW altogether, but trying to provide a more rapid option when less time or 

some unknown model parameters are present. In addition, using MODFLOW 

simulations together with ANN prediction trained by data collected from real sites 

might provide great results. 

 

3.1 The Methodology Framework 
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3.2 The Creation of the Hypothetical Site Using MODFLOW 

 

The data was generated using the three-dimensional finite-difference 

groundwater flow model, Visual MODFLOW version 2.8.2. This model is normally 

used to simulate systems for water supply, containment remediation, and mine 

dewatering. It is most appropriate in those situations where a relatively precise 

understanding of the flow system is needed to make a decision. To use MODFLOW, 

files must be prepared that contain hydraulic parameters (hydraulic conductivity, 

transmissivity, specific yield, etc.) and boundary conditions (locations of impermeable 

boundaries and constant heads). 

The simulations were performed to generate the breakthrough curve (i.e. the 

concentration of contaminant as a function of time). Many steps and model 

parameters were involved in order to simulate the one hypothetical site. These steps 

are described in the following sections. 

 

Step 1:  Create and define a flow model. 

  

 In this first step, the model dimensions and topology were defined as shown in 

 Table 3-1,  Table 3-1.Fig. 3-1, and  Table 3-1.Fig. 3-2. 

 

Table 3-1. Model Dimensions 

Model Dimensions Axis Meters 

Length (top to bottom) Y 2000 

Width  (left to right) X 1000 

Depth Z 10 

Slope Z:Y 10:2000 
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Fig. 3-1. Top view of the hypothetical site 

 

 

Fig. 3-2. Side view of the hypothetical site 
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Step 2: Assign model properties: hydraulic conductivity and 

dispersivity. 

 

Next, the model properties were assigned.  In order to create a set of data for 

training the ANN, the hydraulic conductivity was varied into 5 values and the 

longitudinal dispersivity was varied into 3 values. The reason for choosing these 

values is described in the next sections. The 5 values of hydraulic conductivities were 

varied as shown in  Table 3-2. Using the assumption of horizontal isotropy, the 

hydraulic conductivity in the 3 axes (x, y, and z) were set at the same value. This 

hypothetical site consisted of 1 type of soil from the top to bottom layer. The 3 values 

of longitudinal dispersivity are shown in  Table 3-3. The dispersivity variables of the 

other directions were automatically assigned by the MODFLOW program. The 

summary of these values are shown in  Table 3-4. Other model properties were set as 

default values given by MODFLOW. The model parameters or properties and their 

values are shown in  Table 3-5. 

 

Table 3-2. The varied values of hydraulic conductivity (m/s) 

C1 0.0001 

C2 0.0002 

C3 0.0003 

C4 0.0007 

C5 0.001 

 

Table 3-3. The varied values of longitudinal dispersivity (m) 

D1 1 

D2 50 

D3 500 
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Table 3-4. The summary of the dispersivity variables 

Longitudinal Dispersivity same as in  Table 3-3 

Horizontal to Longitudinal Ratio 0.1 

Vertical to Longitudinal Ratio 0.01 

Molecular Diffusion Coefficient 0.0 

 

Table 3-5. The default property values given by MODFLOW 

Specific Storage (1/m) 0.0001 

Specific Yield 0.2 

Effective Porosity 0.15 

Total Porosity 0.15 

 

 
 

Fig. 3-3. Assigning hydraulic conductivity and longitudinal dispersivity 
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Step 3: Assign model boundary conditions: constant head and recharge 

rate. 

 

 In this step, the model boundary conditions were assigned, beginning with the 

recharge boundary. Two recharge boundaries (i.e. recharge flux at the entire top layer 

of model and recharge flux at the source of contamination) were included in this 

hypothetical site. The recharge flux at the entire top layer of model was assigned at 

100 mm/year for 7300 days (20 years). This was assumed to be the precipitation to the 

area. The recharge flux at the source of contamination was assigned to be varied for 3 

values to create a data set for training the ANN. Those 3 values are shown in  Table 3-

6. The reason for choosing these 3 values is described in the next section.  

 

Table 3-6. The varied recharge rate at the source of contamination (mm/year) 

R1 25 

R2 500 

R3 2500 

 

 

Fig. 3-4.  Assigning the recharge boundaries 



 40

 Next, the constant head boundary conditions were assigned to the aquifer at 

the north and the south boundaries. The constant head along the southern boundary of 

the model was fixed at 18 meter whereas the constant head along the northern 

boundary of the model was varied from 21 to 28 meters (as shown in  Table 3-7) in 

order to vary the constant head difference between those two boundaries. All 4 layers 

had the same constant head boundary as the top layer had. 

 

Table 3-7. The varied values of constant head difference (m) 

 

The constant head 

at the northern 

boundary (m) 

The constant head 

at the southern 

boundary (m) 

The constant head 

difference (m) 

H1 21 18 3 

H2 23 18 5 

H3 25 18 7 

H4 28 18 10 

 

 
 

Fig. 3-5. Assigning the constant head boundaries 

(cross section of the hypothetical site) 

 

The northern boundary where the constant 
head was varied between 21 to 28 meters 

The southern boundary where the 
constant head was fixed at 18 meters
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Step 4: Assign model transport parameters and chemical reaction 

parameters. 

 

 This step was necessary to complete a simplified transport model. The 

transport engine and the initial conditions for the contaminant transport scenario were 

setup. All the transport and chemical reaction parameters were set as given in the 

Visual MODFLOW Tutorial (MODFLOW, 1999). In this study, jet fuel was the 

contaminant. The information is shown in  Table 3-8. 

 

Table 3-8. The model transport and chemical reaction parameters 

Transport Engine MT3DMS 

Sorption (or dual-domain transfer) Linear Isotherm (equilibrium-controlled) 

Reactions No Kinetic reactions 

Number of species (chemical) 1 

Distribution Coefficient [1/(mg/L)] 1.58E-7 

Mobility YES 

Initial Concentration (mg/L) 0 

 

 
  

Fig. 3-6. Setup of assigning the model transport parameters 
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Step 5:  Designate the contaminant source and concentration. 

 

 In this step, the recharge concentration was designated at the source of 

contamination. The concentration of this particular chemical was given at 5000 mg/L 

for 7300 days (20 years). 

 

 
 

Fig. 3-7. Assigning the concentration of the contaminant at the source of 

contamination 

 

Step 6:   Add observation wells. 

 

 In order to simulate the breakthrough curve (i.e. the concentration of the 

contaminant versus time), one or more observation wells have to be added to monitor 

the concentration at the specific locations. The locations of observation wells depend 

on where the concentration is needed to be monitored. In this research, 5 observations 

wells were added. All the simulated concentrations at those observation wells were 

used for training the ANN. The locations of the 5 observation wells are shown in 
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 Table 3-9 and Fig. 3-8. In order to obtain the average contaminant concentration from 

the bottom to the top of the wells, the screen depth of those 5 observation wells was 

fixed. 

 

 
 

Fig. 3-8. The locations of the observation wells 
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Source of 
contamination 



 44

Table 3-9. The locations of the observation wells 

Location on model X coordinate Y coordinate 

Distance from the 

center of the source 

of contamination. 

(m) 

The center of the source of 

contamination 
500 1500 - 

OW1 500 1400 100 

OW2 500 1200 300 

OW3 500 900 600 

OW4 500 600 900 

OW5 500 300 1200 

 

Step 7:   Run MODFLOW: Flow simulation and MT3DMS simulations. 

  

 After assigning all the model parameters, the next step is to run the model. 

“Steady State Flow” was selected as the type of flow for this hypothetical site. The 

run options for flow simulations and transport simulations were set the same as in the 

Visual MODFLOW Tutorial (MODFLOW, 1999). In addition, the solver options 

used to calculate the flow solution were selected as the WHS solver, the default solver 

developed by Waterloo Hydrogeologic Inc. It is the fastest and most stable 

MODFLOW solver available (Fig. 3-9). The upstream finite difference advection 

method was chosen to simulate the contaminant transport and the generalized 

conjugate gradient solver (GCG) was applied to find an implicit rather than explicit 

solution (Fig. 3-10). 
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Fig. 3-9. Setting the WHS solver parameters 

 

 
 

Fig. 3-10. Setting the transport simulation options 
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3.3 The Determination of the Inputs for the ANNs 

 

 At the beginning, the site_base was created. All the model parameters were set 

the same as in Section 3.1, except for some parameters that were varied. The model 

parameters assigned to the site_base are summarized in  Table 3-10. Many sites were 

generated by varying the value of one parameter while the other parameters remained 

fixed. Finally, the parameters were determined for the ANN. 

 To determine which values of hydraulic conductivity should be selected for 

input into the ANN model, every model parameter was fixed except for hydraulic 

conductivity. Then, 6 sites were created and the breakthrough curves of those 6 sites 

and site_base were compared as illustrated in Fig. 3-11 0. These values of hydraulic 

conductivity used for creating the 6 sites represent the aquifer with good permeability. 

This procedure was also used for longitudinal dispersivity, constant head difference 

and recharge flux at the source of contamination. Hence, 5, 7, and 5 sites for 

determining the value of longitudinal dispersivity, constant head difference, and 

recharge rate, respectively, were created and the breakthrough curves were compared 

as shown in Fig. 3-12 0, Fig. 3-13, and Fig. 3-14. The values of longitudinal 

dispersivity, constant head difference, and recharge rate at the source of 

contamination were chosen by trial and error until the site can not be created by 

MODFLOW. The monitored concentrations at the second observation well were used 

for plotting breakthrough curves.  Table 3-11 summarizes the sites that were created in 

this step and their values of hydraulic conductivity, longitudinal dispersivity, constant 

head difference, and the recharge rate at the source of contamination. 

After considering the plots of the breakthrough curves in  0Fig. 3-11, Fig. 3-12, 

Fig. 3-13, and Fig. 3-14, 5 hydraulic conductivities, 3 longitudinal dispersivities, 4 

constant head difference, and 3 recharge fluxes at the source of the contamination 

(mark with * in the figures) were selected to create the data set for training the ANNs. 

Those values were determined by selecting the highest, the lowest, and the values in 

between in the graphs.   
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Table 3-10. The parameters of the site_base 

Site dimensions (meters) 1000 x 2000 x 10 

Slope 10:2000 

Layers 4 

Type of soil 1 
*Hydraulic conductivity in three direction (m/s) 0.0001 

Specific Storage (1/m) 0.0001 

Specific Yield 0.2 

Effective Porosity 0.15 

Total Porosity 0.15 

Recharge rate through top layer (mm/year) 100 
*Recharge rate at the source of contamination 

(mm/year) 
250 

*Constant head at the north boundary (m) 22 

Constant head at the south boundary (m) 18 
*Constant head difference (m) 6 

Concentration of contaminant (mg/l) 5000 
*Longitudinal Dispersivity (m) 10 

Horizontal to Longitudinal Dispersivity ratio 0.1 

Vertical to Longitudinal Dispersivity ratio 0.01 

Molecular Diffusion Coefficient 0 

Sorption (or dual-domain transfer) 
Linear Isotherm 

(equilibrium-controlled) 

Reactions No Kinetic reactions 

Number of species (chemical) 1 

Distribution Coefficient [1/(mg/L)] 1.58E-7 

Mobility YES 

Initial Concentration (mg/L) 0 

Note: * the parameters with values that were varied 
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Table 3-11. The values of the 4 parameters at each site 

Site name 
Conductivity 

(m/s) 

Longitudinal 

Dispersion (m)

Constant Head 

Difference (m) 

Recharge Rate 

(mm/year) 

site_base 0.0001 10 4 250 

site_cd1 0.0002 10 4 250 

site_cd2 0.0003 10 4 250 

site_cd3 0.0005 10 4 250 

site_cd4 0.0007 10 4 250 

site_cd5 0.0008 10 4 250 

site_cd6 0.001 10 4 250 

site_dp1 0.0001 0.1 4 250 

site_dp2 0.0001 1 4 250 

site_dp3 0.0001 50 4 250 

site_dp4 0.0001 100 4 250 

site_dp5 0.0001 500 4 250 

site_ch1 0.0001 10 3 250 

site_ch2 0.0001 10 5 250 

site_ch3 0.0001 10 6 250 

site_ch4 0.0001 10 7 250 

site_ch5 0.0001 10 8 250 

site_ch6 0.0001 10 9 250 

site_ch7 0.0001 10 10 250 

site_re1 0.0001 10 4 25 

site_re2 0.0001 10 4 100 

site_re3 0.0001 10 4 500 

site_re4 0.0001 10 4 1000 

site_re5 0.0001 10 4 2500 
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Fig. 3-11. The comparison between 7 breakthrough curves from 7 values of hydraulic 

conductivity 

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (days)

C
/C

0

 
Fig. 3-12. The comparison between 6 breakthrough curves from 6 values of 

longitudinal dispersivity 
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Fig. 3-13. The comparison between 8 breakthrough curves from 8 values of constant 

head difference 
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Fig. 3-14. The comparison between 6 breakthrough curves from 6 values of recharge 

flux at the source of the contamination 
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3.4 The Generation of the Data  

 

After the determination of model input parameters and their values, the 

breakthrough curves of the combinations of the 4 parameters were generated.  Table 3-

12 summarizes the values of each parameter that was used to generate the 

breakthrough curve. To enhance the understanding of how the parameters were 

combined to create one hypothetical site, it can be graphically depicted as shown in 

 0Fig. 3-15. Finally, 180 sites were created as a result of the combination of the 4 

parameters (i.e. hydraulic conductivity, longitudinal dispersivity, constant head 

difference, and recharge rate at the source of the contamination). Each site contained 

the concentrations of the contaminant at 5 observation wells corresponding to time at 

the specific distance from the source of contamination. 

 

Table 3-12. The summary of the variation of the 4 parameters 

Parameters Values 

C1 0.0001 

C2 0.0002 

C3 0.0003 

C4 0.0007 

Hydraulic Conductivity (m/s) 

C5 0.001 

D1 1 

D2 50 Longitudinal Dispersivity (m) 

D3 500 

H1 3 

H2 5 

H3 7 
Constant Head Difference (m)

H4 10 

R1 25 

R2 500 
Recharge Rate at the Source 

of Contamination (mm/year) 
R3 2500 
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Fig. 3-15. The combination of the 4 parameters to create one site 

 

3.5 The Preparation of the Data Set 

 

The outputs (i.e. the breakthrough curve) of 180 sites from the MODFLOW 

simulation are given in the *.obs file. This file contains the numbers of time steps and 

the related concentration of the contaminant to each time step for each of the 

observation wells. The results are presented in column format. Before introducing the 

180 sites to the ANN, the training and the testing data set were prepared. The steps of 

data preparation are described in this section. From this point, every step was 

implemented by writing a computer code (MATLAB, 2005). 

 

Step 1: Translate the *.obs files given from MODFLOW into *.m files 

used in MATLAB (Organize the data to be available for 

training ANN). 

  

 In the first step, the concentrations (C) given from MODFLOW were divided 

by 5000 (C0), the initial concentration at the source of contamination. The C/C0 (i.e. 

the ratio of the measured concentration (C) at the specific location and the initial 
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concentration at the source (C0)) were included in the data set. The C/C0 of the 5 

observation wells were organized in the first five columns. The 6th column was the 

time duration (from the beginning of the contamination to the time of monitoring) 

corresponding to the C/C0. The next 4 columns were the values of the hydraulic 

conductivity, longitudinal dispersivity, constant head difference, and recharge rate at 

the source. The data from every site were reorganized in the same way. Fig. 3-16 

illustrates the organized data of site C3-D1-H3-R3. 

 

 
 

Fig. 3-16. An example of how data were organized for one site. 

 

Step 2:  Create the training and testing data sets. 

 

 At this point, each site was ready to create data set. The 180 sites were divided 

into 2 sets, the training data set and testing data set. The number of sites included in 

the training data set was about 2 times higher than the number of sites including in the 

1 =  C/C0 measured at observation well 1 
2 =  C/C0 measured at observation well 2 
3 =  C/C0 measured at observation well 3 
4 =  C/C0 measured at observation well 4 
5 =  C/C0 measured at observation well 5 
6 =  Time duration 
7 =  Hydraulic Conductivity 
8 =  Longitudinal Dispersivity 
9 =  Constant Head Difference 
10 =  Recharge rate at the source of contamination 

1 2 3 4 5 6 7 8 9 10 
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testing data set. The sites that were in the training and the testing data sets were 

randomly selected. One important thing had to be considered: the amount of each 

value in the same parameter should be comparable. The method of random selection 

is described in a flow chart (Fig. 3-17). 

 
 

Fig. 3-17. Steps of creating the data sets 

Assign the order number 

to each site 

 

 1.   C1-D1-H1-R1 

 2.   C1-D1-H1-R2 

 3.   C1-D1-H1-R3 

M  

  180.   C5-D3-H4-R3 

Random number from 1 to 180 

by using MATLAB command 
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The condition was if the number of C1s, C2s, C3s, C4s, or C5s was greater 

than 24; or the number of D1s, D2s, or D3s was greater than 40; or the number of 

H1s, H2s, H3s, or H4s was greater than 30; or the number of R1s, R2s, or R3s was 

greater than 40 then the selected site was put in the testing data set. But if the 

condition was not met, then the selected site was put in the training data set. Steps 1 

through 4 were repeated until all 180 sites were selected to create the data set. 

Finally, the training data set included 118 sites while the testing data set 

included 62 sites (see Appendix A). The numbers of sites in the training and testing 

data sets are shown in  Table 3-13. 

 

Table 3-13. The numbers of sites that contain each value of the 4 model 

parameters used in training and testing data sets 

The model 

parameter 

Number of sites in 

training data set 

(sites) 

Number of site in 

testing data set 

(sites) 

C1 24 12 

C2 24 12 

C3 23 13 

C4 23 13 

C5 24 13 

D1 38 22 

D2 40 20 

D3 40 20 

H1 30 15 

H2 30 15 

H3 29 16 

H4 29 16 

R1 39 21 

R2 40 20 

R3 39 21 
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 Next, the data from the 118 sites in the training data set were combined and 

likewise the data from the other 62 sites in the testing data set were combined. The 

method of combination is illustrated in Fig. 3-18 0.  From  0Fig. 3-16, it can be seen 

that one site contained 5 columns representing the C/C0 values at the 5 observation 

wells. One of the 5 columns of C/C0 was picked and joined together with the 6th – 10th 

columns. Then, the data matrix became 6 columns. The 7th column was the distance of 

the observation well from the source (D), which corresponded to the C/C0 of the 

selected observation well. Finally, the data matrix contained 7 columns with 

numerous rows. Each row indicated a particular pattern. These steps were repeated 

until the combination of 118 and 62 sites had finished.  

 

 
 

Fig. 3-18. The combination of the data 
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Step 3:  Flip matrixes. 

 

 As a result of the combination of the 118 and 62 sites and because one site 

contains a matrix of 7 columns with many numbers of rows, the training and the 

testing data sets produced matrixes with size of 88,235 x 7 and 44,550 x 7, 

respectively. However, to introduce the data sets to the ANN, the matrixes had to be 

flipped (Fig 3-19 0). Thus, one column was for one pattern (not one row for one 

pattern). Another word, one input pattern is a vector of seven elements. Then, the 

training and the testing data sets finally produced the matrixes of 7 x 88,235 and 7 x 

44,550, respectively.  

 

 
 

Fig. 3-19. How the data sets were flipped 

 

Step 4:  Assign input and target groups of the training data set. 

 

 In this step, the training data set was divided into 2 groups, input and target. 

The testing data set was divided in the same way. The target group was C/C0. The 

input group consisted of 6 elements: time, hydraulic conductivity, longitudinal 

dispersivity, constant head difference, the recharge rate at the source of 

contamination, and distance.  
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Step 5:  Normalize data. 

 

This step was added in Phase II: Numerical Experiment No. 2 and No. 3 (see 

Section 3.8). In order to improve the performance of the network, the training data set 

was normalized as follows (MATLAB, 2005). The testing data set was normalized in 

a similar manner.  

 

1. The input matrixes of the training and the testing data sets were rescaled 

into log scale. 

 

[ ] [ ]PPl log=  (3-1) 

 

where [ ]P    =   input matrix 

 

2. The input matrix in log scale (Pl) and the target vector of the training data 

were normalized in order to have the data fall in the range of -1 to +1 by 

using the “premnmx” computer code. The premnmx preprocessed the 

network training set by normalizing the inputs and targets so that they fell 

in the interval [-1, 1]. 

 

[PN,minp,maxp,TN,mint,maxt] = premnmx(P,T) 

 

where P = matrix of input vectors (in log scale) 

 T =  matrix of target vectors (not in log scale) 

 PN = matrix of normalized input vectors 

 minp = vector containing minimums for each P 

 maxp = vector containing maximums for each P 

 TN = matrix of normalized target vectors 

 mint = vector containing minimums for each T 

 maxt = vector containing maximums for each T 
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  The algorithm can be described as seen below. 

 

( )
( ) 1

minmax
min2 −⎥

⎦

⎤
⎢
⎣

⎡
−

−
×=

pp
pppn  (3-2) 

( )
( ) 1

minmax
min2 −⎥

⎦

⎤
⎢
⎣

⎡
−

−
×=

tt
tttn  (3-3) 

 

3. The testing data set was normalized in the same way as the training data 

set. This step used the computer code “tramnmx” which transformed the 

network input set using minimum and maximum values that had been 

previously computed by premnmx. The algorithm can be described using 

the same equations as in Eq.  (3-2) and Eq.  (3-3).  

 

pn_test = tramnmx(p_test,minp,maxp) 

 

where p_test = matrix of input vectors of testing data (in 

log scale) 

 pn_test = matrix of normalized input vectors 

 minp = vector containing original minimums for 

each input of training data 

 maxp = vector containing original maximums for 

each input of training data 

 

3.6 The Development of the ANN and Network Training  

 

At this stage, the training data set has been prepared for training the network. 

The input vector included 6 elements, while the target consisted of 1 element. And the 

data were normalized.  

The ANN was implemented using a feedforward backpropagation neural 

network (FBNN). The FBNN was developed using MATLAB, a commercially 

available computer programming software program. The ANN training was 
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performed using the default values given by MATLAB except for the performance 

goal and the maximum number of epochs. Both were decided at 1E-6 and 500, 

respectively. The performance goal is defined as the sum square error of the output 

from the ANN and the desired target. The epoch is the iteration. The hyperbolic 

tangent was chosen as the transfer function in the hidden layers whereas the linear 

transfer function was used in the output layer. Next, the MATLAB code is explained. 

 

Step 1:   Create the network. 

  

 In this step, the N-layer feedforward backpropagation neural network (‘net’) 

was created using “newff.” The syntax is shown below.  

 

net = newff(PR,[S1 S2...SN],{TF1 TF2...TFN},BTF,BLF,PF) 

 

where PR  =  matrix of minimum and maximum values for each input 

elements  

 Si  = Size of ith layer, for N layers  

 TFi  = Transfer function of ith layer, default = 'tansig'  

 BTF  =  Backpropagation network training function, default = 

'traingdx'  

 BLF  =  Backpropagation weight/bias learning function, default 

= 'learngdm'  

 PF  =  Performance function, default = 'mse' 

 

 An example of the syntax used in this research is explained below. This syntax 

created a 1-hidden-layer FBNN. The hidden layer consisted of 6 neurons whereas the 

output layer consisted of 1 neuron. The transfer functions were a hyperbolic tangent 

for the hidden layer and a linear transfer function for the output layer. The training 

function was ‘trainlm.’ The weight/bias learning function and performance function 

were used as defaults. 
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net = newff(minmax(pn),[6 1],{'tansig','purelin'},'trainlm') 

     

where pn  = input vector from Eq.  (3-2) 

 minmax(pn) = matrix of minimum and maximum value for 

each element of input vector (pn) 

 tansig = hyperbolic tangent transfer function 

 purelin = linear transfer function 

 

Step 2:  Assign the training parameters. 

 

 The performance goal and the maximum number of epochs were assigned by 

the following code. 

 

net.trainParam.epochs = 500 
net.trainParam.goal = 1e-6 

 

Step 3:   Train the network. 

 

 After creating network, the network ‘net’ was trained according to the 

network training function and parameters. The “train” code takes the network 

inputs and targets and returns the new network, training record, network outputs and 

network errors. The syntax is shown below. 

 

[net,tr,Y,E]= train(net,pn,tn) 

 

where pn  = input vector from Eq.  (3-2) 

 tn = target vector from Eq.  (3-3) 

 tr = training record (epoch and performance) 

 Y = network outputs 

 E =  network errors 
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3.7 The Testing of Network 

 

After completing the training process, the ability of the network to predict the 

C/C0 from the unseen input was tested by using the testing data set. The mean square 

error was calculated. The following syntax explains how the network was tested. The 

“sim” code simulates the output by taking the input of the testing data set using the 

trained network ‘net.’ 

 

a_sim = sim(net,pn_test) 

 

 Because the input had been normalized before it was introduced to train the 

ANN, the output from the network was in normalized form. Thus, it needed to be 

unnormalized to convert it back to the real value. The computer code used for this 

task was “postmnmx.” It postprocessed the network output after prediction using 

sim and converted the data back into unnormalized units. postmnmx is always used 

when the output is predicted by using the normalized input. 

 

a = postmnmx(a_sim,mint,maxt); 

 

where a = unnormalized output vectors 

 a_sim =  output vector given from network simulation 

 mint = vector containing original minimums for each target 

of training data 

 maxt = vector containing original maximums for each target 

of training data 

 The algorithm of the postmnmx is described below. 

 

( ) ( )[ ] tttsimaa minminmax1_5.0 +−×+×=  (3-4) 
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3.8 The Network Performance Criteria 

 

In this study, 2 performance criterions were used to determine the accuracy 

and the ability of the network’s prediction. These criterions were calculated using the 

normalized target vector of the testing data set and the output from network 

simulations. The algorithms and computer code are described below. 

 

1. Mean Square Error (MSE) 

 
e = tn_test – a_sim 
perf = mse(e) 

  

where tn_test = normalized target vector of the testing data set 

 a_sim = output vector of network before unnormalized 

 e =  the error vector of each t_test and a 

 

n

e
MSE

i

ni
∑

=

==

1
2

 (3-5) 

 

2. Correlation Coefficient (R) 

 

The correlation coefficient gives the quality of a least squares 

fitting to the original data. By using the computer code given from 

MATLAB, “corrcoef,” the correlation coefficient is calculated by 

inputting the column vector of the target of the testing data set and the 

vector of output from the network. The syntax and algorithm (Spiegel, 

1992) can be defined as follows: 

 

R = corrcoef(t_test,a) 
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where t_test = target vector of testing data set 

 a = unnormalized output vector  

 

( )[ ] ( )[ ]∑ ∑∑ ∑
∑ ∑ ∑

−−

−
=

2222 yynxxn

yxxyn
R  (3-6) 

 

where x  = target vector of testing data set (t_test) 

 y  = unnormalized output vector (a) 

 n  = number of data point 

 

3.9 The Numerical Experiments 

 

 In order to find the network configuration that provides the best prediction of 

C/C0, the experiment was divided into 3 phases in order to obtain three specific 

objectives. The performances were compared by considering the performance criteria 

and the plots. The results are shown in the next chapter. Next, the objective and the 

method of each phase are explained.  Table 3-16 concludes the methodology used to 

determine the network configuration.  

 

Phase I: Determination of the training function. 

 

 The objective of this phase was to find which training function was going to 

work well in this study. Thus, the ‘site_*’ data set, which included all the sites in 

 Table 3-11 except for ‘site_base,’ was used to create the training data set, while 

‘site_base’ was used as the testing data set. 2-hidden-layer FBNN, containing one 

layer with 6 and the other with 3 neurons, were created. As described in Section 3.6 

Step 1, the training function was chosen to create the FBNN. 12 training functions 

( Table 3-14) were used and their performances were compared.  
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Table 3-14. Training function and its description 

Training 

Function 
Description 

traingd 
Basic gradient descent. Slow response, can be used in incremental 

mode training 

traingdm 
Gradient descent with momentum. Generally faster than traingd. 

Can be used in incremental mode training. 

traingdx 
Adaptive learning rate. Faster training than traingd, but can only be 

used in batch mode training. 

trainrp 
Resilient backpropagation. Simple batch mode training algorithm 

with fast convergence and minimal storage requirements. 

traincgf 
Fletcher-Reeves conjugate gradient algorithm. Has smallest storage 

requirements of the conjugate gradient algorithms 

traincgq 
Polak-Ribiére conjugate gradient algorithm. Slightly larger storage 

requirements than traincgf. Faster convergence on some problems 

traincgb 
Powell-Beale conjugate gradient algorithm. Slightly larger storage 

requirements than traincgp. Generally faster convergence 

trainscg 

Scaled conjugate gradient algorithm. The only conjugate gradient 

algorithm that requires no line search. A very good general purpose 

training algorithm 

trainbfg 

BFGS quasi-Newton method. Requires storage of approximate 

Hessian matrix and has more computation in each iteration than 

conjugate gradient algorithms, but usually converges in fewer 

iterations 

trainoss 
One step secant method. Compromise between conjugate gradient 

methods and quasi-Newton methods 

trainlm 

Levenberg-Marquardt algorithm. Fastest training algorithm for 

networks of moderate size. Has memory reduction feature for use 

when the training set is large 
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trainbr 

Bayesian regularization. Modification of the Levenberg-Marquardt 

training algorithm to produce networks that generalizes well. 

Reduces the difficulty of determining the optimum network 

architecture 

(from MATLAB, 2005) 

 

Phase II: Determination of the method for the preprocessing training data 

set. 

 

 The objective of this phase was to identify the best preprocessing method for 

the data set. A common method is to make all the elements lay around zero. In this 

phase, 3 numerical experiments were conducted. Data that were preprocessed were 

used in the second and the third experiments, but not in the first. In the third 

experiment, only the input elements (not the target elements) were rescaled into log 

scale before being normalized. The target elements can not be rescaled into log scale 

because of some minus values. The results from the networks with and without 

preprocessing data were compared. The data set was created from the combination of 

the 4 model parameters (i.e. hydraulic conductivity, longitudinal dispersivity, constant 

head difference, and the recharge rate at the source of the contamination). The 2-

hidden-layer FBNN, containing one layer with 6 and the other with 3 neurons, was 

trained using the training function decided upon in Phase I. The preprocessing 

methods have already described in Section 3.5 Step 5. 

 

Phase III: Determination of the network architecture. 

 

The objective of this phase was to find the network architecture that provided 

the most accurate of C/C0 prediction. 1- and 2-hidden-layer FBNNs with various 

numbers of neurons were trained ( Table 3-15) and the results were compared. The 

training and the testing data sets were created from the combination of the 4 model 

parameters. In this phase, the training and the testing data sets were normalized by the 

best method determined from Phase II. Moreover, in order to avoid premature 
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saturation (according to Maier and Dandy, 1996), the initial weights should be 

randomly distributed between -0.1 and +0.1. The results of the network with and 

without rescaling weight were compared. Since weights and biases were randomly 

selected by the program, the networks were created and trained 10 times in order to 

have a variety of initial weights. The network performance with the lowest mean 

square error and the correlation coefficient closet to 1 was selected as a representative 

of that network architecture.  

 

Table 3-15. The network architecture 

The number of 

hidden layers 

The number of neurons  

at each hidden layer 

Total parameters 

(including biases) 

[6] 49 

[12] 97 

[24] 193 

[36] 289 

[48] 385 

1 

[60] 481 

[6 3] 67 

[10 5] 131 

[16 8] 257 

[20 10] 361 

2 

[24 12] 481 
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Table 3-16. The summary of the phases and the numerical experiments  

Phase/ 

Objective 

Numerical 

Experiment 
Description 

Phase I 

To determine the 

training function 

1 

• The 2-hidden-layer FBNNs, containing one layer 

with 6 and the other with 3 hidden neurons, were 

trained using the training functions described in 

 Table 3-14.  

• The training and the testing data sets were created 

from ‘site_*’ (all the sites in  Table 3-11 except for 

‘site_base’) and ‘site_base’, respectively. 

1 

• The 2-hidden-layer FBNNs, containing one layer 

with 6 and the other with 3 hidden neurons, were 

trained using the training function that provided the 

best performance as determined from Phase I. 

• The training and the testing data sets were created 

from the combination of the 4 model parameters.  

• No preprocessing data 

2 

• The 2-hidden-layer FBNNs, containing one layer 

with 6 and the other with 3 hidden neurons, were 

trained using the training function which provided 

the best performance as determined from Phase I. 

• The training and the testing data sets were created 

from the combination of the 4 model parameters. 

• The data were normalized in the range of -1 to +1. 

Phase II 

To determine the 

method of data 

preprocessing 

3 

• The 2-hidden-layer FBNNs, containing one layer 

with 6 and the other with 3 hidden neurons, were 

trained using the training function which provided 

the best performance as determined from Phase I. 

• The training and the testing data sets were created 

from the combination of the 4 model parameters. 
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 • The input elements (not the target elements) were 

rescaled into log scale. Then, the data were 

normalized in range of -1 to +1. 

1 

• FBNNs were trained using the training function that 

provided the best performance as determined from 

Phase I. 

• The training and the testing data sets were created 

from the combination of the 4 model parameters. 

• The data preprocessing method was chosen in phase 

II. 

• The 1- and 2-hidden-layer FBNNs were trained 

with various numbers of neurons as shown in  Table 

3-15. 

Phase III 

To determine the 

network 

architecture and 

determine 

whether the 

weights should 

be normalized 

2 

• FBNNs were trained using the training function 

which provided the best performance as determined 

from phase I. 

• The training and the testing data sets were created 

from the combination of the 4 model parameters. 

• The data preprocessing method was chosen in phase 

II. 

• The 1- and 2-hidden-layer FBNNs were trained 

with various numbers of neurons as shown in  Table 

3-15. 

• The initial weights were normalized in range of -0.1 

to +0.1. 

 

3.10 The Flowchart of Methodology 

 

The methodology can be graphically depicted as shown in Fig. 3-20 0. The 

flowchart shows the procedure for training one network. This procedure was followed 

for every experiment. 
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Fig. 3-20. Flow chart of the methodology 

 

Training data

Testing data 

Develop the network according to the phase 
and numerical experiment data described in 

 Table 3-16  
– Section 3.6 Step 1 

Identify the mean square error and the 
correlation coefficient between the output 
from the network simulation and the target 

of the testing data  
– Section 3.8 

Initialization 
= 10 times? 

Determine one representative network  
from the 10 initializations 

No 

Yes 

Database 

Train FBNN with 6 input elements (time, 
hydraulic conductivity, constant head 
difference, longitudinal dispersivity, 

recharge rate at the source, and distance of 
the observation well from the source) and 1 
output element (a corresponding measured 

concentration as a target) 
– Section 3.6 Step 3 

Test the network using the testing data 
– Section 3.7 



CHAPTER IV 

 

RESULTS AND DISCUSSIONS 

 
4.1 Phase I:  Determine the Training Function 

 

After training the feedforward backpropagation neural network (FBNN) with 

12 training functions (as shown in  Table 3-14), the training functions ‘trainlm’ and 

‘trainbr’ were found to provided the best prediction of C/C0. The mean square error 

values of the testing data given from the network when ‘trainlm’ and ‘trainbr’ were 

used were lower than those of the networks trained by the other training functions. In 

addition, the correlation coefficient of the networks trained by ‘trainlm’ and ‘trainbr’ 

were closer to 1 when compared with the results from the other networks. All the 

results from the networks trained by the 12 training functions are shown in Appendix 

B (Table B-1).   

When comparing the results of the 2 training functions, ‘trainlm’ and ‘trainbr’, 

the mean square error and the correlation coefficient of the testing data given were not 

significantly different. Because of this, one network using ‘trainlm’ and one network 

using ‘trainbr’ as a training function were created and trained again. This time, the 

data set was created from the combination of the 4 model parameters (i.e. hydraulic 

conductivity, longitudinal dispersivity, constant head different, and recharge rate at 

the source of the contamination) as described in Section 3.4 instead of using the data 

from ‘site_*’ (all the sites in  Table 3-11). The results provided in Appendix B (Table 

B-2) indicate that using ‘trainbr’ as a training function produced lower mean square 

error value and correlation coefficient closer to 1. Moreover, training with the 

‘trainbr’ function has been found to improve generalization. One approach to this 

process is the Bayesian framework of David MacKay (MacKay, 1992). In this 

framework, the weights and biases of the network are assumed to be random variables 

with specified distributions.  
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Based on the results from this phase and the advantage of its ability to help 

with generalization, ‘trainbr’ was selected as the training function for next training 

phase in this study. 

 

4.2 Phase II:  Determine the Data Preprocessing Method 

 

Three numerical experiments were conducted. In all 3 experiments, 2-hidden-

layer FBNNs, containing one layer with 6 and the other with 3 neurons, using the 

training function ‘trainbr’ were used. The data set was created from the combination 

of the 4 model parameters. Each of the 3 experiments utilized a different 

preprocessing data method. The first experiment used the data without preprocessing. 

The second experiment used the data that had been preprocessed by normalizing the 

entire data elements in range of -1 to +1. The data in the last experiment was 

preprocessed in the same way as in the second experiment but only the input elements 

(not the target elements) of the training and testing data were rescaled into log scale 

before normalized in range of -1 to +1. 

The results, in the forms of the mean square error and the correlation 

coefficient of the testing data, from the 3 experiments are shown in  Table 4-1,  Table 

4-2, and  Table 4-3, respectively.  Fig. 4-1 (a, b, and c) illustrates the graphical output 

of the 3 experiments. The network predictions were plotted versus the desired targets 

as dots. The 6 solid lines indicate the boundaries of 5%, 10% and 20% error from 

each desired point. The 3 figures are the networks that provided the best prediction of 

each experiment. The best network of each experiment has been highlighted in gray in 

the tables. 

The plots and the results shown in the tables below demonstrate that a higher 

degree of network prediction accuracy was achieved when data was preprocessed 

before being introduced to train the network. Moreover, the network prediction was 

much better when the input elements of the training data set were rescaled into log 

scale before normalized in range of -1 to +1.  

Thus in the next phase, the data were normalized in the range of -1 to +1 after 

the input elements were rescaled into log scale before being introduced to the 

network.  
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Table 4-1. The mean square error and the correlation coefficient between the 

target of the testing data and the network prediction of Phase II: 

Numerical Experiment No. 1. The data used in this experiment were 

not preprocessed. 

ith Initialization MSE of testing data set Correlation Coefficient 

1 1.02E-08 8.55E-01 

2 2.17E-09 9.69E-01 

3 4.99E-09 9.28E-01 

4 2.98E-09 9.57E-01 

5 3.48E-09 9.49E-01 

6 3.64E-09 9.48E-01 

7 4.19E-09 9.40E-01 

8 1.83E-09 9.74E-01 

9 2.10E-09 9.70E-01 

10 1.95E-09 9.72E-01 

Table 4-2. The mean square error and the correlation coefficient between the 

target of the testing data and the network prediction of Phase II: 

Numerical Experiment No. 2. The data used in this experiment were 

preprocessed by normalization in the range of -1 to +1. 

ith Initialization MSE of testing data set Correlation Coefficient 

1 1.44E-09 9.80E-01 

2 1.45E-09 9.79E-01 

3 1.56E-09 9.78E-01 

4 5.80E-09 9.23E-01 

5 1.44E-09 9.80E-01 

6 1.56E-09 9.78E-01 

7 1.67E-09 9.76E-01 

8 1.57E-09 9.77E-01 

9 1.33E-09 9.81E-01 

10 1.76E-09 9.75E-01 
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Table 4-3. The mean square error and the correlation coefficient between the 

target of the testing data and the network prediction of Phase II: 

Numerical Experiment No. 3.  The data used in this experiment were 

preprocessed by rescaling the input elements into log scale before 

normalizing the data in the range of -1 to +1. 

ith Initialization MSE of testing data set Correlation Coefficient 

1 1.45E-10 9.98E-01 

2 1.42E-10 9.98E-01 

3 2.06E-10 9.97E-01 

4 1.78E-10 9.97E-01 

5 1.81E-10 9.97E-01 

6 3.34E-10 9.95E-01 

7 3.09E-10 9.96E-01 

8 3.12E-10 9.96E-01 

9 2.76E-10 9.96E-01 

10 1.36E-10 9.98E-01 
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a. 

 

b. 

 

c. 

 
 

Fig. 4-1. The plot between the desired C/C0 versus the predicted C/C0 simulated 

from the ANN. (a. Experiment No. 1, b. Experiment No. 2, and c. Experiment No. 3) 
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4.3 Phase III:  Determine the Network Architecture 

 

This phase’s aim was to determine the network architecture that provided the 

best C/C0 prediction. Ten network architectures were trained ( Table 3-15) using 

training function ‘trainbr’ (as a result from Phase I). The data set was created from the 

combination of the 4 model parameters. The preprocessing of the data was done by 

rescaling the input elements into log scale. Then, the data were normalized in the 

range of -1 to +1. This preprocessing method was selected as it provided the best 

network predictions in Phase II.  

In this phase, 2 numerical experiments were conducted. According to the 

suggestion of Maier and Dandy (1996), the initial weights were normalized between -

0.1 and +0.1. Thus, Experiment No. 1 was done without normalizing the initial 

weights, while the initial weights were normalized between -0.1 and +0.1 in 

Experiment No. 2. 

 Table 4-4 and  Table 4-5 show the mean square error values and the correlation 

coefficients from Experiment No. 1 and No. 2, respectively. The results shown in the 

tables are the representatives of the 10 network architectures. The representatives 

were selected based on the best prediction compared with 10 initializations within the 

same network architecture. However, the entire results of this phase are shown in 

Appendix B. In Appendix B, the results of the 1- and 2-hidden-layer FBNNs from 

Experiment No. 1 are shown in Table B-3 and Table B-4, respectively. Table B-5 and 

Table B-6 show the results from Experiment No. 2.  

 Fig. 4-2 and  Fig. 4-3 illustrate the graphical output of the 1- and 2-hidden-

layer FBNNs, respectively. The network predictions were plotted versus the targets as 

dots. The 6 solid lines indicate the boundaries of 5%, 10% and 20% errors from each 

desired point. The figures are the networks that provided the best prediction within the 

same network architecture. The mean square errors and the correlation coefficients of 

those networks are shown in  Table 4-4 and  Table 4-5. The percentages of the number 

of data points in each of the percent error boundaries are described in  Table 4-6 and 

 Table 4-7. 
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When comparing the results of the same number of hidden layers, the results 

shown in the tables below and illustrated in the figures demonstrate that by increasing 

the number of neurons, in other words by increasing the number of network 

parameters, the networks provided lower mean square errors in the testing data set as 

well as closer to 1 correlation coefficients. However, the 2-hidden-layer FBNN 

provided more accurate predictions even when the number of the network parameters 

was smaller. For example, the 2-hidden-layer FBNN, containing one layer with 10 

and the other with 5 neurons (131 parameters), predicted the C/C0 more accurately 

than the 1-hidden-layer FBNN with 24 neurons (193 parameters).  

In addition, normalizing the initial weight in range of -0.1 to +0.1 before 

training network (Experiment No. 2), the C/C0 prediction did not present a much 

better result than when the network that was trained without normalizing the initial 

weight (Experiment No. 1).  

However, even if the prediction might be more accurate when the number of 

layers and parameters are higher, the experiment in this phase was stopped at the 2-

hidden-layer FBNN, containing one layer with 24 and the other with 12 neurons, due 

to the satisfaction of reaching the optimum of 3 criterion which are low mean square 

error, close to 1 correlation coefficient, and high percentage of number of data point 

in 5% error boundary.  

Because of the reason above and the results shown in the tables and figures, 

the 2-hidden-layer FBNN, containing one layer with 24 and the other with 12 

neurons, without rescaling the initial weight in range of -0.1 to +0.1 can be defined as 

the best network as it provided the most accurate prediction in this research.  
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Table 4-4. The mean square error and the correlation coefficient between the 

target of the testing data and the network prediction of Phase III: 

Numerical Experiment No. 1.  The initial weights were not normalized. 

No. of neurons at 

each hidden layer 

No. of 

parameters 
MSE of testing data 

Correlation 

Coefficient 

Network with 1 hidden layer 

[6] 49 1.39E-09 0.98006 

[12] 97 6.37E-10 0.99094 

[24] 193 2.01E-10 0.99716 

[36] 289 1.06E-10 0.99850 

[48] 385 6.72E-11 0.99905 

[60] 481 4.91E-11 0.99931 

Network with 2 hidden layers 

[6 3] 67 1.36E-10 0.99807 

[10 5] 131 4.57E-11 0.99935 

[16 8] 257 1.31E-11 0.99981 

[20 10] 361 1.24E-11 0.99982 

[24 12] 481 6.29E-12 0.99991 
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Table 4-5. The mean square error and the correlation coefficient between the 

target of the testing data and the network prediction of Phase III: 

Numerical Experiment No. 2.  The initial weights were normalized. 

No. of neurons at 

each hidden layer 

No. of 

parameters 
MSE of testing data 

Correlation 

Coefficient 

Network with 1 hidden layer 

[6] 49 1.39E-09 0.98006 

[12] 97 5.83E-10 0.99168 

[24] 193 1.85E-10 0.99737 

[36] 289 1.16E-10 0.99836 

[48] 385 7.44E-11 0.99895 

[60] 481 5.93E-11 0.99916 

Network with 2 hidden layers 

[6 3] 67 1.24E-10 0.99825 

[10 5] 131 3.81E-11 0.99946 

[16 8] 257 1.04E-11 0.99985 

[20 10] 361 7.58E-12 0.99989 

[24 12] 481 8.49E-12 0.99988 
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(a). [6] (b). [6] 

 
(a). [12] (b). [12] 

  
(a). [24] (b). [24] 
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(a). [36] (b). [36] 

  
(a). [48] (b). [48] 

 

(a). [60] (b). [60]  

 

Fig. 4-2. The plot of the desired C/C0 versus the predicted C/C0 simulated from the 

1-hidden-layer FBNNs. The number in brackets indicate the number of neurons. 

(a). Experiment No. 1 and (b). Experiment No. 2 
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(a). [6 3] (b). [6 3] 

(a). [10 5] (b). [10 5] 

 
(a). [16 8] (b). [16 8] 
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(a). [20 10] (b). [20 10] 

 
(a). [24 12] (b). [24 12] 

 

Fig. 4-3. The plot of the desired C/C0 versus the predicted C/C0 simulated from the 

2-hidden-layer FBNNs. The numbers in brackets are the number of neurons in the 

first and second layers, respectively. 

(a). Experiment No. 1 and (b). Experiment No. 2  
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Table 4-6. The percentage of the number of data points in the error boundaries  

(Experiment No. 1) 

The percent of the number of data points in the 

error boundaries 

No. of neurons at 

each hidden 

layer 

No. of 

parameters
± 5% ± 10% ± 20% > ± 20% 

Network with 1 hidden layer 

[6] 49 13.37 11.20 12.73 62.69 

[12] 97 20.22 12.19 13.66 53.93 

[24] 193 27.39 14.44 11.88 46.28 

[36] 289 38.92 10.98 8.18 41.92 

[48] 385 42.47 10.74 7.08 39.71 

[60] 481 46.29 7.84 6.71 39.16 

Network with 2 hidden layers 

[6 3] 67 35.23 13.84 11.27 39.66 

[10 5] 131 49.35 11.97 7.84 30.84 

[16 8] 257 59.35 8.13 7.94 24.58 

[20 10] 361 61.54 9.70 6.64 22.12 

[24 12] 481 69.40 8.19 4.44 17.97 
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Table 4-7. The percentage of the number of data points in the error boundaries  

(Experiment No. 2) 

The percent of the number of data points in 

the error boundaries 

No. of neurons 

at each hidden 

layer 

No. of 

parameters 
± 5% ± 10% ± 20% > ± 20% 

Network with 1 hidden layer 

[6] 49 13.37 11.20 12.73 62.69 

[12] 97 19.50 12.38 11.63 56.48 

[24] 193 30.81 15.04 11.18 42.97 

[36] 289 37.57 11.71 9.59 41.13 

[48] 385 40.70 11.19 8.36 39.76 

[60] 481 44.68 8.73 8.57 38.02 

Network with 2 hidden layers 

[6 3] 67 38.31 15.73 8.66 37.31 

[10 5] 131 50.42 10.99 8.83 29.76 

[16 8] 257 61.08 9.72 8.22 20.98 

[20 10] 361 64.76 9.59 6.95 18.70 

[24 12] 481 68.77 8.13 6.75 16.34 
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4.4 Illustration of Breakthrough Curve 

 

In this section, some of the breakthrough curves of the 62 sites in the testing 

data set are presented. Each figure represents each site, and the graphs were plotted 

for the 5 observation wells. The solid line is the desired C/C0 given from 

MODFLOW, whereas the dashed line is the C/C0 predicted from the 2-hidden-layer 

FBNN, containing one layer with 24 and the other with 12 neurons, trained by using 

Bayesian Regularization.  
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Fig. 4-4. Breakthrough curves of the 5 observation wells of each site 

 

 The figures above illustrate some of the sites that had the best predictions of 

C/C0 from the ANN. However, the predictions of the sites whose maximum C/C0 

were low were not fairly accurate as shown below. The cause of this decreased 

accuracy of prediction at low C/C0 is not clear yet. In fact, the C/C0 of those sites 

were found to be mostly under 10-5 and the concentration at a particular time (C) 

might be even lower under 10-5 if the initial concentration (C0) involves with a very 

low number. Because of this reason, the less accurate prediction at low concentration 

is perhaps insignificant. 
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Fig. 4-5. Some examples of the less accurate predictions 

 

4.5 Practical Application of a Developed Neural Network 

 

 After identifying the best neural network which provided the most accurate 

prediction of contamination migration (Phase III), a Graphic User Interface (GUI) was 

developed by using the MATLAB computer program. It is practical for a user to use. 

Moreover, the result can be obtained immediately within a few second. Within this 

application, only 5 contaminant migration parameters need to be entered. The 5 

parameters are the hydraulic conductivity, longitudinal dispersivity, constant head 

difference, recharge rate at the source of the contamination, and distance from the 

source of the contamination. The best network determined from Phase III is used to 

predict the C/C0 from the 5 input parameters. Then, the breakthrough curve of C/C0 

versus time is plotted. Moreover, the C/C0 at a particular time can be calculated by 

giving the time parameter (see  Fig. 4-6). 
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Fig. 4-6. Graphic User Interface 

 

4.6 Efficiency of ANN applications in different scenarios 

 

The 2-hidden-layer FBNN, containing one layer with 24 and the other with 12 

neurons, was applied to predict the concentrations in different scenarios. It was found 

that when the values of the entered parameters were out of the range that was used to 

train the network, the network produced less accurate results. Moreover, when there 

was more than 1 type of soil, the soil profile changed and the predictions were less 

accurate. These are the limitations of applying this approach to scenarios that are 

different from the scenarios used to train the network. 

 



CHAPTER V 

 

SUMMARY AND SUGGESTION 

 
5.1 Summary 

 

This research studied the feasibility of using an artificial neural network to 

predict a breakthrough curve of concentration as a function of time without actually 

running the complicated 3-dimensional numerical simulations. Within this approach, 

only a set of data is need for training the ANN. There were no fundamental equations 

of groundwater flow and contaminant transport involved in this work. The network is 

trained and it learns from training input data and their corresponding targets. The 

database of spatial and temporal variations of typical contaminant concentrations for 

typical subsurface conditions was created by using the Visual MODFLOW program. 

The database contained 180 sites, which were created from the combination of 4 

parameters: hydraulic conductivity, longitudinal dispersivity, hydraulic head 

difference, and recharge rate at the source of the contamination. Then, the database 

was divided into the training and the testing data sets. By random selection (as 

described in Section 3.4), the training data set consisted of 118 sites, whereas the 

testing data set consisted of 62 sites. A feedforward backpropagation neural network 

was used in this study. 

Three phases were conducted. In Phase I, the 12 training functions provided 

by MATLAB were used to train the network. The results showed that training the 

network using the Bayesian Regularization technique (‘trainbr’) as a training function 

provided more accurate C/C0 predictions with lower mean square errors and closer to 

1 correlation coefficients in the testing data set. Moreover, this technique helped to 

avoid overfitting and improved generalization. 

Phase II was conducted to determine the most appropriate method for 

preprocessing the data. Three numerical experiments were conducted. In the 

Numerical Experiment No. 1, the network was trained using the training data without 
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preprocessing. In the next 2 numerical experiments, the data was preprocessed by 

normalization in range of -1 to +1. The difference between Experiment No. 2 and No. 

3 is that in Experiment No. 3, only the input elements (not the target elements) were 

rescaled into log scale before normalization. The target elements can not be rescaled 

into log scale because it contained minus values. The results of the comparison 

between the 3 numerical experiments demonstrated that the network trained using the 

preprocessed data provided lower mean square errors and closer to 1 correlation 

coefficients than the network trained using data without preprocessing. However, the 

prediction of C/C0 was more accurate when rescaling the input elements into log scale 

and normalizing the data in the range of -1 to +1. 

In the last phase, the 1- and 2-hidden-layer FBNNs with various numbers of 

neurons were trained. Obviously, the 2-hidden-layer FBNNs predicted the 

concentrations more accurately than the single-layer FBNNs even when the numbers 

of parameters are equal. The means square error values of the testing data set 

decreased and the correlation coefficients were closer to 1 when the number of 

network parameters increased. Finally, a 2-hidden-layer FBNNs, containing one layer 

with 24 and the other with 12 neurons, provided the best prediction of the 

contaminant concentrations. However, the predictions of the sites whose maximum 

C/C0 were under 10-5 were not fairly accurate. The cause of this decreased accuracy of 

prediction at low C/C0 was not determined. 

After identifying the network which provided the best C/C0 prediction (the 

result from Phase III), a Graphic User Interface (GUI) was developed. It is practical 

for users to use. Only the values of the 5 model parameters (i.e. hydraulic 

conductivity, longitudinal disperivity, constant head difference, recharge rate at the 

source of the contamination, and distance from the source) need to be known in order 

for the program to plot the breakthrough curve of C/C0 versus time.  

 

5.2 Suggestions 

 

 The use of the ANN to predict the contaminant migration in this study was 

deemed feasible. However, this was just the first step. The database for training the 

ANN was created from a non-complexed hypothetical site. Moreover, only 



 92

hydrodynamic process (i.e. groundwater flow and transport parameters) were 

concerned without physicochemical and microbiological processes such as chemical 

reaction, adsorption, biodegradation, etc. In a real situation, the physical, chemical, or 

profile of soil might be a lot more complex. There is not only one type or one layer of 

soil as in the hypothetical site using in this study, but multiple, as well as chemical 

phenomena might occur. Before applying the ANN in a real situation, further study is 

necessary. The next step might need to add more input elements to ANN. For 

example, the input elements might include the depth and the hydraulic conductivity at 

that depth when applying ANN with sites containing more than 1 type of soil in 

different layers as well as some physiochemical or microbiological parameters.  

However, it is quite possible for it to be successful in the next step. In order to have 

more complex and realistic study site, the database can be from both data collected 

from the field together with data generated from MODFLOW or another commercial 

program used for predicting groundwater contaminant migration.  

If the next step of its use with a more realistic phenomena and contaminant 

conditions is successful, this ANN decision making tool can be deemed a reliable 

screening tool for estimating contaminant migration. It is rapid since less time is 

needed and easy to use since a few parameters are required to create the concentration 

as a function of time. It can also be applied to predict concentration of contaminant 

for other similar sites or areas without necessity to know the boundary or some model 

conditions for creating a new site as the traditional groundwater models always 

require. Moreover, on environmental management point of view, this approach is 

useful for identifying critical sites and prioritizing the clean-up and further 

investigative efforts when the contaminations in groundwater occur.  
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APPENDIX A 
Table A-1:   The list of the sites in the training data set 

C1-D1-H1-R1  C2-D1-H1-R2  C3-D1-H1-R1  C4-D1-H1-R1   C5-D1-H1-R1 

 C1-D1-H1-R2   C2-D1-H2-R1  C3-D1-H2-R3  C4-D1-H1-R2   C5-D1-H1-R2 

 C1-D1-H2-R2   C2-D1-H2-R2  C3-D1-H3-R1  C4-D1-H1-R3   C5-D1-H2-R1 

 C1-D1-H2-R3   C2-D1-H3-R1  C3-D1-H3-R2  C4-D1-H2-R1   C5-D1-H2-R3 

 C1-D1-H3-R2   C2-D1-H4-R2  C3-D1-H3-R3  C4-D1-H2-R2   C5-D1-H3-R1 

 C1-D1-H4-R2   C2-D1-H4-R3  C3-D1-H4-R2  C4-D1-H2-R3   C5-D1-H3-R2 

 C1-D1-H4-R3   C2-D2-H1-R1  C3-D1-H4-R3  C4-D1-H3-R1   C5-D1-H3-R3 

 C1-D2-H1-R1   C2-D2-H1-R2  C3-D2-H1-R1  C4-D1-H3-R3   C5-D1-H4-R1 

 C1-D2-H1-R2   C2-D2-H1-R3  C3-D2-H1-R2  C4-D1-H4-R3   C5-D1-H4-R3 

 C1-D2-H2-R1   C2-D2-H2-R2  C3-D2-H2-R1  C4-D2-H1-R1   C5-D2-H2-R3 

 C1-D2-H2-R3   C2-D2-H3-R1  C3-D2-H2-R3  C4-D2-H1-R2   C5-D2-H3-R1 

 C1-D2-H3-R1   C2-D2-H3-R2  C3-D2-H3-R1  C4-D2-H1-R3   C5-D2-H3-R3 

 C1-D2-H3-R3   C2-D2-H3-R3  C3-D2-H3-R3  C4-D2-H2-R1   C5-D2-H4-R1 

 C1-D2-H4-R1   C2-D2-H4-R1  C3-D2-H4-R1  C4-D2-H2-R2   C5-D2-H4-R2 

 C1-D2-H4-R2   C2-D2-H4-R3  C3-D2-H4-R2  C4-D2-H2-R3   C5-D2-H4-R3 

 C1-D2-H4-R3   C2-D3-H1-R1  C3-D3-H1-R1  C4-D2-H4-R2   C5-D3-H1-R1 

 C1-D3-H1-R1   C2-D3-H1-R2  C3-D3-H1-R2  C4-D2-H4-R3   C5-D3-H1-R2 

 C1-D3-H1-R2   C2-D3-H2-R1  C3-D3-H1-R3  C4-D3-H1-R2   C5-D3-H2-R1 

 C1-D3-H1-R3   C2-D3-H2-R3  C3-D3-H2-R1  C4-D3-H2-R2   C5-D3-H2-R2 

 C1-D3-H2-R1   C2-D3-H3-R1  C3-D3-H2-R3  C4-D3-H2-R3   C5-D3-H2-R3 

 C1-D3-H2-R2   C2-D3-H3-R2  C3-D3-H3-R2  C4-D3-H3-R2   C5-D3-H3-R1 

 C1-D3-H3-R2   C2-D3-H3-R3  C3-D3-H3-R3  C4-D3-H4-R1   C5-D3-H3-R2 

 C1-D3-H3-R3   C2-D3-H4-R2  C3-D3-H4-R1  C4-D3-H4-R3   C5-D3-H4-R2 

 C1-D3-H4-R2   C2-D3-H4-R3    C5-D3-H4-R3 
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Table A-2:   The list of the sites in the testing data set 

C1-D1-H1-R3  C2-D1-H1-R1  C3-D1-H1-R2  C4-D1-H3-R2   C5-D1-H1-R3 

 C1-D1-H2-R1   C2-D1-H1-R3  C3-D1-H1-R3  C4-D1-H4-R1   C5-D1-H2-R2 

 C1-D1-H3-R1   C2-D1-H2-R3  C3-D1-H2-R1  C4-D1-H4-R2   C5-D1-H4-R2 

 C1-D1-H3-R3   C2-D1-H3-R2  C3-D1-H2-R2  C4-D2-H3-R1   C5-D2-H1-R1 

 C1-D1-H4-R1   C2-D1-H3-R3  C3-D1-H4-R1  C4-D2-H3-R2   C5-D2-H1-R2 

 C1-D2-H1-R3   C2-D1-H4-R1  C3-D2-H1-R3  C4-D2-H3-R3   C5-D2-H1-R3 

 C1-D2-H2-R2   C2-D2-H2-R1  C3-D2-H2-R2  C4-D2-H4-R1   C5-D2-H2-R1 

 C1-D2-H3-R2   C2-D2-H2-R3  C3-D2-H3-R2  C4-D3-H1-R1   C5-D2-H2-R2 

 C1-D3-H2-R3   C2-D2-H4-R2  C3-D2-H4-R3  C4-D3-H1-R3   C5-D2-H3-R2 

 C1-D3-H3-R1   C2-D3-H1-R3  C3-D3-H2-R2  C4-D3-H2-R1   C5-D3-H1-R3 

 C1-D3-H4-R1   C2-D3-H2-R2  C3-D3-H3-R1  C4-D3-H3-R1   C5-D3-H3-R3 

 C1-D3-H4-R3   C2-D3-H4-R1  C3-D3-H4-R2  C4-D3-H3-R3   C5-D3-H4-R1 

   C3-D3-H4-R3  C4-D3-H4-R2   
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APPENDIX B 
Table B-1:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction from Phase I. 

The 2-hidden-layer FBNNs, containing one layer with 6 and the other 

with 3 neurons, were trained with different types of training functions. 

The training data set was created from ‘site_*’ (all the sites in  Table 3-

11 except for ‘site_base’) and the testing data set was created from 

‘site_base.’ 

 

Training 

Function 
ith Initialization 

MSE of testing  

data set 

Correlation 

Coefficient 

1 7.30E-07 NaN 

2 8.13E-10 NaN 

3 2.62E-06 NaN 

4 5.95E-08 NaN 

5 2.86E-07 NaN 

6 5.14E-10 NaN 

7 7.67E-09 NaN 

8 7.36E-08 NaN 

9 1.69E-09 -4.71E-02 

traingd 

10 1.98E-07 NaN 

1 9.13E-07 NaN 

2 2.81E-06 NaN 

3 7.53E-06 NaN 

4 1.78E-05 1.00E-17 

5 6.73E-07 NaN 

6 2.87E-06 NaN 

7 2.53E-06 NaN 

8 1.12E-06 -5.53E-02 

9 5.21E-04 5.53E-02 

traingdm 

10 9.22E-07 NaN 

Note: NaN = Not-a-Number 
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Table B-1:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction from Phase I. 

The 2-hidden-layer FBNNs, containing one layer with 6 and the other 

with 3 neurons, were trained with different types of training functions. 

The training data set was created from ‘site_*’ (all the sites in  Table 3-

11 except for ‘site_base’) and the testing data set was created from 

‘site_base.’ (continued) 

 

Training 

Function 
ith Initialization 

MSE of testing  

data set 

Correlation 

Coefficient 

1 9.14E-10 3.72E-02 

2 8.98E-10 -3.00E-02 

3 7.92E-08 NaN 

4 9.04E-10 NaN 

5 3.58E-01 4.41E-02 

6 9.10E-10 NaN 

7 3.46E-06 -3.08E-02 

8 4.74E-03 3.32E-02 

9 4.00E-02 -3.92E-02 

traingdx 

10 9.01E-10 NaN 

1 9.06E-10 NaN 

2 8.94E-10 NaN 

3 8.67E-10 NaN 

4 8.92E-10 NaN 

5 9.05E-10 NaN 

6 9.02E-10 NaN 

7 8.92E-10 NaN 

8 9.01E-10 NaN 

9 8.89E-10 NaN 

trainrp 

10 8.94E-10 4.90E-02 

Note: NaN = Not-a-Number 
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Table B-1:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction from Phase I. 

The 2-hidden-layer FBNNs, containing one layer with 6 and the other 

with 3 neurons, were trained with different types of training functions. 

The training data set was created from ‘site_*’ (all the sites in  Table 3-

11 except for ‘site_base’) and the testing data set was created from 

‘site_base.’ (continued) 

 

Training 

Function 
ith Initialization 

MSE of testing  

data set 

Correlation 

Coefficient 

1 8.62E-10 4.16E-02 

2 2.61E-07 1.07E-03 

3 1.44E-09 -3.73E-02 

4 3.54E-02 4.03E-01 

5 7.09E-10 6.32E-02 

6 3.18E-02 5.70E-01 

7 1.01E-09 5.70E-02 

8 4.53E-01 1.70E-02 

9 2.67E-08 5.34E-02 

traincgf 

 

10 7.55E-02 9.03E-02 

1 8.69E-09 1.27E-02 

2 7.13E-03 -1.01E-01 

3 8.40E-02 4.81E-01 

4 5.22E-02 -1.41E-01 

5 8.80E-10 4.97E-02 

6 4.53E-02 2.11E-03 

7 3.33E-02 5.06E-01 

8 9.11E-10 4.72E-02 

9 5.93E-10 -5.42E-02 

traincgp 

10 9.59E-10 -4.73E-02 
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Table B-1:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction from Phase I. 

The 2-hidden-layer FBNNs, containing one layer with 6 and the other 

with 3 neurons, were trained with different types of training functions. 

The training data set was created from ‘site_*’ (all the sites in  Table 3-

11 except for ‘site_base’) and the testing data set was created from 

‘site_base.’ (continued) 

 

Training 

Function 
ith Initialization 

MSE of testing  

data set 

Correlation 

Coefficient 

1 1.23E-09 -4.87E-02 

2 1.18E-02 3.01E-01 

3 4.85E-10 4.28E-02 

4 1.15E-09 4.57E-02 

5 1.73E-08 -5.12E-02 

6 7.79E-10 3.33E-02 

7 8.22E-10 -5.02E-02 

8 9.00E-10 -4.31E-02 

9 6.68E-09 -5.32E-02 

traincgb 

10 1.51E-09 5.40E-02 

1 6.72E-04 -9.09E-02 

2 3.55E-03 -2.10E-01 

3 1.36E-09 2.81E-02 

4 1.53E-03 -1.28E-01 

5 1.13E-02 -8.76E-01 

6 1.22E-09 5.84E-02 

7 1.03E-09 6.70E-02 

8 1.01E-09 -4.97E-02 

9 9.28E-10 5.67E-02 

trainscg 

10 9.63E-10 4.20E-02 
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Table B-1:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction from Phase I. 

The 2-hidden-layer FBNNs, containing one layer with 6 and the other 

with 3 neurons, were trained with different types of training functions. 

The training data set was created from ‘site_*’ (all the sites in  Table 3-

11 except for ‘site_base’) and the testing data set was created from 

‘site_base.’ (continued) 

 

Training 

Function 
ith Initialization 

MSE of testing  

data set 

Correlation 

Coefficient 

1 3.56E-08 -7.51E-01 

2 9.64E-10 5.50E-02 

3 8.81E-10 -3.94E-02 

4 8.86E-10 -4.13E-02 

5 9.08E-10 -5.50E-02 

6 9.12E-10 4.58E-02 

7 9.01E-10 NaN 

8 9.42E-10 -1.07E-02 

9 8.78E-10 -5.05E-02 

trainbfg 

10 8.96E-10 4.01E-02 

1 9.00E-10 NaN 

2 9.00E-10 4.86E-02 

3 8.99E-10 -3.87E-02 

4 9.00E-10 NaN 

5 8.86E-10 -3.76E-02 

6 9.01E-10 -3.41E-02 

7 9.01E-10 NaN 

8 8.96E-10 -4.88E-02 

9 9.11E-10 3.36E-02 

trainoss 

10 9.00E-10 5.10E-02 

Note: NaN = Not-a-Number 
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Table B-1:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction from Phase I. 

The 2-hidden-layer FBNNs, containing one layer with 6 and the other 

with 3 neurons, were trained with different types of training functions. 

The training data set was created from ‘site_*’ (all the sites in  Table 3-

11 except for ‘site_base’) and the testing data set was created from 

‘site_base.’ (continued) 

 

Training 

Function 
ith Initialization 

MSE of testing  

data set 

Correlation 

Coefficient 

1 6.02E-10 8.90E-01 

2 3.11E-11 9.74E-01 

3 5.27E-10 9.13E-01 

4 7.32E-10 8.84E-01 

5 4.10E-10 7.68E-01 

6 1.19E-09 2.53E-01 

7 3.39E-10 5.31E-01 

8 6.02E-10 6.22E-01 

9 4.14E-10 7.98E-01 

trainlm 

10 9.10E-10 8.58E-01 

1 1.30E-09 7.12E-01 

2 7.95E-10 6.41E-01 

3 7.40E-10 -5.45E-01 

4 1.79E-10 8.23E-01 

5 5.91E-10 8.40E-01 

6 2.06E-10 7.98E-01 

7 1.60E-09 8.46E-01 

8 4.97E-10 9.70E-01 

9 2.57E-10 9.42E-01 

trainbr 

10 4.61E-10 7.52E-01 
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Table B-2:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction from Phase I. 

The 2-hidden-layer FBNNs, containing one layer with 6 and the other 

with 3 neurons, were trained using training functions ‘trainlm’ and 

‘trainbr’. The training and the testing data sets were created from the 

combination of the 4 model parameters.  

 

Train Function ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 2.40E-09 9.66E-01 

2 2.89E-09 9.58E-01 

3 3.91E-09 9.43E-01 

4 2.21E-09 9.69E-01 

5 2.14E-09 9.70E-01 

6 2.13E-09 9.69E-01 

7 2.54E-09 9.64E-01 

8 3.04E-09 9.56E-01 

9 2.45E-09 9.65E-01 

trainlm 

10 4.91E-09 9.30E-01 

1 1.02E-08 8.55E-01 

2 2.17E-09 9.69E-01 

3 4.99E-09 9.28E-01 

4 2.98E-09 9.57E-01 

5 3.48E-09 9.49E-01 

6 3.64E-09 9.48E-01 

7 4.19E-09 9.40E-01 

8 1.83E-09 9.74E-01 

9 2.10E-09 9.70E-01 

trainbr 

10 1.95E-09 9.72E-01 
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Table B-3:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 1). The results are from the single-layer 

FBNNs with various numbers of neurons. 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 1.62E-09 0.97673 

2 2.10E-09 0.97120 

3 1.39E-09 0.98006 

4 2.24E-09 0.96769 

5 2.14E-09 0.96935 

6 2.39E-09 0.96576 

7 2.19E-09 0.96989 

8 1.74E-09 0.97500 

9 1.62E-09 0.97673 

6 

10 5.19E-09 0.93491 

1 9.98E-10 0.98575 

2 8.38E-10 0.98803 

3 1.45E-09 0.97941 

4 9.08E-10 0.98701 

5 8.60E-10 0.98773 

6 1.09E-09 0.98439 

7 7.95E-10 0.98868 

8 8.33E-10 0.98822 

9 1.13E-09 0.98395 

12 

10 6.37E-10 0.99094 
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Table B-3:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 1). The results are from the single-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 2.64E-10 0.99625 

2 2.42E-10 0.99655 

3 3.16E-10 0.99552 

4 2.36E-10 0.99669 

5 2.84E-10 0.99595 

6 2.06E-10 0.99708 

7 2.29E-10 0.99678 

8 3.26E-10 0.99536 

9 2.01E-10 0.99716 

24 

10 3.57E-10 0.99491 

1 1.39E-10 0.99803 

2 1.06E-10 0.99850 

3 1.12E-10 0.99840 

4 1.30E-10 0.99815 

5 1.23E-10 0.99827 

6 1.27E-10 0.99820 

7 1.29E-10 0.99818 

8 1.76E-10 0.99750 

9 1.28E-10 0.99818 

36 

10 2.12E-10 0.99705 
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Table B-3:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 1). The results are from the single-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 8.73E-11 0.99876 

2 9.54E-11 0.99865 

3 7.49E-11 0.99894 

4 7.88E-11 0.99888 

5 7.75E-11 0.99890 

6 7.49E-11 0.99894 

7 1.01E-10 0.99856 

8 7.97E-11 0.99887 

9 6.72E-11 0.99905 

48 

10 7.77E-11 0.99890 

1 8.57E-11 0.99879 

2 9.23E-11 0.99870 

3 5.13E-11 0.99927 

4 5.71E-11 0.99919 

5 8.19E-11 0.99884 

6 7.19E-11 0.99898 

7 7.30E-11 0.99896 

8 6.83E-11 0.99903 

9 8.18E-11 0.99884 

60 

10 4.91E-11 0.99931 
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Table B-4:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 1). The results are from the 2-hidden-layer 

FBNNs with various numbers of neurons. 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 1.45E-10 9.98E-01 

2 1.42E-10 9.98E-01 

3 2.06E-10 9.97E-01 

4 1.78E-10 9.97E-01 

5 1.81E-10 9.97E-01 

6 3.34E-10 9.95E-01 

7 3.09E-10 9.96E-01 

8 3.12E-10 9.96E-01 

9 2.76E-10 9.96E-01 

6 and 3 

10 1.36E-10 9.98E-01 

1 4.68E-11 0.99934 

2 2.16E-10 0.99693 

3 4.85E-11 0.99931 

4 4.57E-11 0.99935 

5 2.85E-10 0.99599 

6 2.71E-10 0.99616 

7 6.56E-11 0.99907 

8 7.53E-11 0.99893 

9 8.92E-11 0.99875 

10 and 5 

10 1.22E-09 0.98416 
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Table B-4:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 1). The results are from the 2-hidden-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 3.47E-11 0.99951 

2 4.80E-11 0.99932 

3 5.93E-11 0.99917 

4 2.08E-11 0.99971 

5 3.57E-11 0.99950 

6 1.31E-11 0.99981 

7 3.24E-11 0.99954 

8 2.87E-11 0.99960 

9 1.82E-11 0.99974 

16 and 8 

10 1.59E-11 0.99977 

1 3.61E-11 0.99949 

2 7.97E-11 0.99887 

3 2.58E-11 0.99964 

4 2.42E-11 0.99966 

5 2.73E-11 0.99962 

6 1.74E-11 0.99976 

7 1.66E-11 0.99976 

8 4.40E-11 0.99937 

9 1.43E-11 0.99980 

20 and 10 

10 1.24E-11 0.99982 
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Table B-4:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 1). The results are from the 2-hidden-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 3.11E-11 0.99957 

2 1.09E-11 0.99985 

3 6.29E-12 0.99991 

4 7.18E-12 0.99990 

5 8.02E-11 0.99886 

6 1.02E-11 0.99986 

7 8.39E-12 0.99988 

8 6.50E-11 0.99908 

9 1.06E-11 0.99985 

24 and 12 

10 3.57E-11 0.99950 
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Table B-5:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 2). The results are from the single-layer 

FBNNs with various numbers of neurons. 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 1.92E-09 0.97287 

2 1.60E-09 0.97706 

3 2.14E-09 0.96929 

4 3.15E-09 0.95441 

5 1.39E-09 0.98006 

6 2.03E-09 0.97089 

7 2.05E-09 0.97156 

8 1.83E-09 0.97409 

9 2.05E-09 0.97156 

6 

10 1.71E-09 0.97580 

1 6.07E-10 0.99134 

2 1.07E-09 0.98492 

3 9.06E-10 0.98710 

4 1.30E-09 0.98150 

5 7.84E-10 0.98889 

6 7.58E-10 0.98940 

7 7.92E-10 0.98870 

8 5.83E-10 0.99168 

9 8.23E-10 0.98826 

12 

10 6.37E-10 0.99092 
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Table B-5:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 2). The results are from the single-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 3.07E-10 0.99566 

2 2.60E-10 0.99630 

3 3.48E-10 0.99506 

4 2.85E-10 0.99595 

5 2.84E-10 0.99596 

6 4.14E-09 0.94228 

7 2.55E-10 0.99636 

8 1.85E-10 0.99737 

9 3.41E-10 0.99515 

24 

10 3.71E-10 0.99474 

1 1.39E-10 0.99803 

2 1.71E-10 0.99757 

3 1.50E-10 0.99787 

4 1.79E-10 0.99751 

5 1.90E-10 0.99729 

6 1.79E-10 0.99750 

7 1.16E-10 0.99836 

8 1.97E-10 0.99722 

9 1.92E-10 0.99728 

36 

10 1.70E-10 0.99759 
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Table B-5:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 2). The results are from the single-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 9.79E-11 0.99861 

2 7.44E-11 0.99895 

3 1.04E-10 0.99853 

4 2.63E-10 0.99628 

5 1.05E-10 0.99851 

6 8.94E-11 0.99873 

7 1.50E-10 0.99789 

8 1.27E-10 0.99820 

9 1.08E-10 0.99846 

48 

10 2.68E-10 0.99622 

1 8.63E-11 0.99878 

2 3.35E-10 0.99543 

3 1.66E-10 0.99765 

4 4.54E-10 0.99362 

5 1.29E-10 0.99817 

6 9.93E-11 0.99859 

7 1.24E-10 0.99823 

8 1.41E-10 0.99801 

9 1.01E-10 0.99857 

60 

10 5.93E-11 0.99916 
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Table B-6:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 2). The results are from the 2-hidden-layer 

FBNNs with various numbers of neurons. 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 2.95E-10 9.96E-01 

2 1.70E-10 9.98E-01 

3 1.73E-10 9.98E-01 

4 3.21E-10 9.95E-01 

5 1.24E-10 9.98E-01 

6 1.47E-10 9.98E-01 

7 3.31E-10 9.95E-01 

8 1.60E-10 9.98E-01 

9 1.24E-10 9.98E-01 

6 and 3 

10 1.97E-10 9.97E-01 

1 3.96E-11 0.99944 

2 1.34E-10 0.99810 

3 4.66E-11 0.99934 

4 3.80E-11 0.99946 

5 7.24E-11 0.99898 

6 4.33E-11 0.99941 

7 4.35E-11 0.99940 

8 9.06E-11 0.99871 

9 7.86E-11 0.99888 

10 and 5 

10 3.81E-11 0.99946 
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Table B-6:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 2). The results are from the 2-hidden-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 1.34E-11 0.99981 

2 3.16E-11 0.99955 

3 2.04E-10 0.99714 

4 1.04E-11 0.99985 

5 3.67E-11 0.99948 

6 1.66E-11 0.99976 

7 4.42E-11 0.99938 

8 6.42E-11 0.99909 

9 2.57E-11 0.99964 

16 and 8 

10 4.50E-11 0.99936 

1 9.82E-12 0.99986 

2 1.17E-09 0.98337 

3 2.47E-11 0.99965 

4 3.30E-11 0.99953 

5 7.58E-12 0.99989 

6 1.77E-11 0.99975 

7 3.48E-09 0.95895 

8 2.80E-11 0.99962 

9 1.57E-11 0.99978 

20 and 10 

10 8.40E-11 0.99881 
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Table B-6:   The mean square error and the correlation coefficient between the 

target of the testing data set and the network prediction (Phase III: 

Numerical Experiment No. 2). The results are from the 2-hidden-layer 

FBNNs with various numbers of neurons. (continued) 

 

No. of Neurons ith Initialization 
MSE of testing  

data set 

Correlation 

Coefficient 

1 9.08E-12 0.99987 

2 1.12E-11 0.99984 

3 2.72E-11 0.99962 

4 1.53E-09 0.97837 

5 1.31E-11 0.99982 

6 8.49E-12 0.99988 

7 2.91E-10 0.99591 

8 2.02E-11 0.99973 

9 1.29E-11 0.99982 

24 and 12 

10 3.83E-10 0.99456 
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