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CHAPTER I 

INTRODUCTION 

Support Vector Machines (SVMs) are learning systems that use a 
hypothesis space of linear functions in a high dimensional feature space. SVMs are 
trained by a learning algorithm from optimization theory that implements a learning bias 
derived from statistical learning theory (Cristianini and Shawe-Taylor, 2000). This 
learning strategy introduced by Vapnik (1998, 1999) is a principled and very powerful 
method. It was originally designed for two-class classification problems with its 
outstanding performance in real world applications. However, extending SVMs for 
multiclass classification is still an ongoing research issue. 

In this chapter, we discuss motivation, objectives, scope and limitation, 
and contributions of the thesis.  

1.1  Motivation 

Support Vector Machines (SVMs) were primarily designed for two-class 
classification problems. However, most of real world problems are multiclass 
classification problems such as text categorization, computer vision, medical diagnosis, 
image recognition and speech recognition, etc. Previous methods for solving the 
multiclass problem of SVMs are typically to consider the problem as the combination of 
two-class decision functions, e.g. one-against-one and one-against-the-rest (Hsu and 
Lin, 2002). 

Friedman (1996) suggested the Max Wins algorithm in which each one-
against-one classifier casts one vote for its preferred class, and the final result is the 
class with the most votes. The Max Wins algorithm offers faster training time compared 
to the one-against-the-rest method. The Decision Directed Acyclic Graph (DDAG) 
method proposed by Platt, Cristianini and Shawe-Taylor (2000) reduces training and 
evaluation time, while maintaining accuracy compared to the Max Wins. The comparison 
experiments in several methods on large problems in (Hsu and Lin, 2002) show that the 
Max Wins algorithm and the DDAG may be more suitable for practical use. Ussivakul 
and Kijsirikul (2001, 2002) proposed the Adaptive Directed Acyclic Graph (ADAG) 
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method which is the modification of the DDAG. This method reduces the dependency of 
the sequence of nodes in the structure as well as lowers the number of tests required to 
evaluate for the correct class. Their approach yields higher accuracy and reliability of 
classification, especially in such a case that the number of classes is relatively large. 
There are also other implementations for multiclass SVMs, e.g., Allwein, Schapire and 
Singer (2000); Kindermann, Leopold and Paass (2000); Takahashi and Abe (2002). 

In this thesis we reveal that the ADAG still has the dependency on the 
sequence of its nodes, although it is less dependent on the order of binary classes in 
the sequence than the DDAG; there are still differences in accuracy between different 
sequences. This led to the reliability of the algorithm. Here we propose a novel method 
that improves reliability by choosing an optimal sequence, which has less chance to 
predict the wrong class, and dynamically reordering the sequence during classification 
process according to each test data. We also reveal that the problem of selecting the 
appropriate sequence can be solved by minimum-weight perfect matching. 

1.2  Objective 

The objective is to develop a multiclass classification technique for SVMs, 
which enhances the performance in terms of accuracy and running time. 

1.3  Scope and Limitation 

The experimental results of the thesis will be compared with the results of 
three multiclass classification algorithms for SVMs, i.e., the DDAG, the ADAG and Max 
Wins. All experiments are based on datasets of the UCI Machine Learning Repository 
(Blake, Keogh and Merz, 1998) and the Thai printed character recognition dataset 
(Pichitdej, 2001). 

1.4  Contribution 

The goal of this thesis is to develop a new algorithm for multiclass SVMs, 
which chooses optimal classifiers with small generalization error to be used in data 
classification. 
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1.5  Research Methodology 
1) Review and study the research papers that are related to the 

multiclass SVMs. 
2) Design a new multiclass classification algorithm. 
3) Prepare datasets. 
4) Set up experiments and test. 
5) Analyze the result and make conclusions. 

1.6 Organization of the Thesis 

The remainder of the thesis is organized into six chapters as follows. In 
Chapter II, we review the theoretical background including the problem of risk 
minimization for pattern recognition and the main idea of SVMs. We also review the 
literature in multiclass SVMs. 

In Chapter III, we explain the problem of the structure of the original 
ADAG. Then we give details about our proposed method, Reordering Adaptive Directed 
Acyclic Graph (RADAG), which is the modification of the ADAG.  

Chapter IV presents the experimental setting and results. We compare 
the accuracy of classification of the RADAG with those of the DDAG, the original ADAG 
and the Max Wins algorithm. We also compare the running time of our approach with 
that of Max Wins, which is probably the currently most accurate method for multiclass 
SVMs.  

In Chapter V, we discuss how to improve the performance of the 
proposed method − RADAG. We also suggest an alternative way to increase the 
accuracy of the DDAG method. 

Finally, in Chapter VI, we conclude our research work and present some 
directions for the future work. 



CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

In this chapter, we describe the theoretical background and review the 
literature on multiclass SVMs. Two previous works on multiclass SVMs which are related 
to our proposed method, i.e., the DDAG and the ADAG will be discussed. 

2.1  Background 

In this section we review the theoretical background that are used in this 
thesis including the problem of risk minimization for pattern recognition and the main 
idea of SVMs (Vapnik, 1998, 1999). 

2.1.1  The Problem of Risk Minimization for Pattern Recognition 

The problem of learning is that of choosing from the given set of 
functions f(x,α), α ∈ Λ, the one that best approximates the supervisor’s response. The 
selection of the desired function is based on a training set of l random independent 
identically distributed observations drawn according to P(x, y) = P(x)P(y|x) 
 

 (x1, y1), … , (xl, yl)        (1) 
 

In order to choose the best available approximation to the supervisor’s 
response, one measures the loss or discrepancy L(y, f(x,α)) between the response y of 
the supervisor to a given input x and the response f(x,α) provided by the learning 
machine. Consider the expected value of the loss, given by the risk functional  
 

 ∫= ).,()),(,()( yxdPxfyLR αα        (2) 
 

The goal is to find the function f(x,α0) which minimizes the risk functional 
R(α) (over the class of functions f(x,α), α ∈ Λ) in the situation where the joint probability 
distribution P(x,y) is unknown and the only available information is contained in the 
training set (1). 
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Below we consider the problem of pattern recognition. Let the 
supervisor’s output y take on only two values y = {0,1} and let f(x,α), α ∈ Λ be a set of 
indicator functions. Consider the following loss-function: 
 

 




≠
=

=
).,( if    1
),( if   0

)),(,(
α
α

α
xfy
xfy

xfyL       (3) 
 

For this loss function, the functional (2) provides the probability of 
classification error, i.e., when the answers y given by supervisor and the answers given 
by indicator function f(x,α) differ. The problem, therefore, is to find the function which 
minimizes the probability of classification errors when probability measure P(x,y) is 
unknown, but the data (1) are given. 

2.1.1.1  Empirical Risk Minimization Induction Principle 

In order to minimize the risk functional (2), for an unknown probability 
measure P(x,y) the following induction principle is usually used. The expected risk 
functional is replaced by the empirical risk functional 
 

 ∑
=

=
l

i
emp xfyL

l
R

1

)),(,((1)( αα        (4) 
 

constructed on the basis of the training set (1). The principle is to approximate the 
function L(y, f(x,α0)) which minimizes risk (2) by the function L(y, f(x,αl)) which minimizes 
empirical risk (4). This principle is called the empirical risk minimization induction 
principle (ERM principle) (Vapnik, 1998, 1999). 

Backpropagation method calculates the gradient of the empirical risk for 
the sigmoid approximation of Neural Networks. The three main problems encountered 
when minimizing the empirical risk using the backpropagation method are as follows. 
1) The empirical risk functional has many local minima. Optimization procedures 

guarantee convergence to some local minimum. The quality of the obtained 
approximation depends on many factors, in particular on the initial parameter values 
of the algorithm. 

2) Convergence to a local minimum can be rather slow (due to the high dimensionality 
of the weight-space). 
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3) The sigmoid function has a scaling factor which affects the quality of the 
approximation. To choose the scaling factor one has to make a tradeoff between 
quality of approximation and the rate of convergence. 

Therefore, a good minimization of the empirical risk depends in many 
respects on the art of the researcher. 

2.1.1.2  Equivalent Definition of the VC Dimension 

The VC dimension of a set of indicator functions is the maximum number 
h of vectors (x1, y1), … , (xh, yh) which can be separated into two classes in all 2h possible 
ways using functions of this set (shattered by this set of functions). Any indicator 
function separates a given set of vectors into two subsets: the subset of vectors for 
which this indicator function takes the value 0 and the subset of vectors for which this 
indicator function takes the value 1. If for any n there exists a set of n vectors which can 
be shattered by the set of indicator functions, then the VC-dimension is equal to infinity. 

We call a hyperplane (w⋅x)+b = 0; |w| = 1 the ∆-margin separating 
hyperplane if it classifies vectors x as follows:  
 

 




∆−≤+⋅−
∆≥+⋅

=
b
b

y
)( if  ,1
)( if   ,1
xw
xw  

 

(classifications of vectors x that fall into the margin (-∆,∆) are undefined). 
Let vectors x ∈ X belong to a sphere of radius R. Then the set of            

∆-margin separating hyperplanes has the VC dimension h bounded by the inequality 
 

 .1,min 2

2

+



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
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
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
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This shows that in general the VC dimension of the set of hyperplanes is equal to n+1, 
where n is dimensionality of input space. However, the VC dimension of the set of        
∆–margin separating hyperplanes (with a large value of margin ∆) can be less than n+1. 
This fact will play an important role for constructing new function estimation methods. 

Consider a set of functions which possess a finite VC-dimension h where 
the set of loss functions (3) is a set of totally bounded functions. Without restriction in 
generality, we assume that 
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 .   ,)),(,(0 Λ∈≤≤ αα BxfyL        (5) 
  

With probability at least 1-η, the inequality 
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holds true simultaneously for all functions of the set (5), where 
 

 .
ln12ln

4
l

h
lh η

ε
−





 +

=  
 

For the set of indicator functions, B=1 [see (Vapnik, 1998, 1999) for more details]. 

2.1.1.3  Structural Risk Minimization Induction Principle 

The ERM principle is intended for dealing with a large sample size. 
Indeed, the ERM principle can be justified by considering the inequalities (6). When l/h 
is large, the second summand on the right hand side of inequality (6) becomes small. 
The actual risk is then close to the value of the empirical risk. In this case, a small value 
of the empirical risk provides a small value of (expected) risk.  

However, if l/h is small, then even a small Remp(αl) does not guarantee a 
small value of risk. The sample size l is considered to be small if l/h is small, say l/h < 20. 
In this case the minimization for R(α) requires a new principle, based on the 
simultaneous minimization of two terms in (6) one of which depends on the value of the 
empirical risk while the second depends on the VC-dimension of the set of functions. To 
minimize risk in this case it is necessary to find a method which, along with minimizing 
the value of empirical risk, controls the VC-dimension of the learning machine. 

The following principle, which is called the principle of structural risk 
minimization (SRM), is intended to minimize the risk functional with respect to both 
empirical risk and VC-dimension of the set of functions. 

Let S the set of indicator functions be provided with a structure: so that S 
is composed of the nested subsets of functions Sk = {L(y, f(x,α)), α ∈ Λk}, such that  
 

 S1 ⊂ S2 ⊂ … ⊂ Sn …        (7) 
 

And S* = ∪k Sk. 
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An admissible structure is one satisfying the following three properties. 
1) The set S* is everywhere dense in S. 
2) The VC-dimension hk of each set Sk of functions is finite. 
3) Any element Sk of the structure contains totally bounded functions 

.   ,)),(,(0 kkBxfyL Λ∈≤≤ αα  
The SRM principle suggests that for a given set of observations            

(x1,y1), …, (xl,yl) choose the element of structure Sn, where n = n(l) and choose the 
particular function Sn for which the guaranteed risk (6) is minimal. 

The SRM principle actually suggests a tradeoff between the quality of the 
approximation and the complexity of the approximating function. As n increases, the 
minima of empirical risk are decreased; however, the term responsible for the 
confidence interval [summand in (6)] is increased.  

Support Vector Machines perform the SRM. The SRM principle takes 
both factors into account (see Figure 2.1). The bound on the risk is the sum of the 
empirical risk and the confidence interval. The smallest bound of the risk is achieved on 
some appropriate element of the structure. For any distribution function the SRM method 
provides convergence to the best possible solution with probability one. In other words 
SRM method is universally strongly consistent. 

 
Figure 2.1: The bound on the risk. 
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2.1.2  Support Vector Machines 

The main idea of support vector machine classification is to construct a 
hyperplane to separate the two classes. 

2.1.2.1  Linear Support Vector Machines 

Suppose we have a data set D of l samples in an n-dimensional space 
belonging to two different classes (+1 and –1): 
 

 ( ) { } { }{ }.1,1,,,..,1|, −+∈ℜ∈∈= ylkyD k
n

kkk xx       (8) 
 

The hyperplane in the n dimensional space is determined by the pair 
(w,b) where w is an n-dimensional vector orthogonal to the hyperplane and b is the offset 
constant. The hyperplane (w⋅x) + b separates the data if and only if 
 

 .1     if     0)(
1     if     0)(
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ii

ii

xw
xw

          (9) 
 

If we additionally require that w and b be such that the point closest to 
the hyperplane has a distance of 1/|w|, then we have 
 

 1     if     1)(
1     if       1)(
−=−≤+⋅

+=≥+⋅

yb
yb

ii

ii

xw
xw

      (10) 
 

which is equivalent to 
 

 .     1])[( iby ii ∀≥+⋅ xw       (11) 
 

To find the optimal separating hyperplane, we have to find the 
hyperplane that maximizes the minimum distance between the hyperplane and any 
sample of training data (see Figure 2.2). The distance between two closest samples 
from different classes is 
 

 ( ) ( ) .maxmin),(
}1|{}1|{ w

xw
w
xww

xx

bbbd i

y

i
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+⋅
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+⋅
=

−==
    (12) 

 

From (12), we can see that the appropriate minimum and maximum values are ±1. 
Therefore, we need to maximize 
 



                                                                                                                 
 

10

 .211),(
www
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−
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Thus, the problem is equivalent to: 
 minimize  |w|2/2   
 subject to the constraints  

(1) .     1])[( iby ii ∀≥+⋅ xw   

 
Figure 2.2: An example of SVM classification. 

For non-separable case, the training data cannot be separated by a 
hyperplane without error. The previous constraints then must be modified. A penalty 
term consisting of the sum of deviations ξi from the boundary is added to the 
minimization problem. Now, the problem is to  

 minimize  ∑
=

+
l

i
iC

1

2

2
ξ

w   

 subject to the constraints  
(1) ,1])[( iξ−≥+⋅ by ii xw   
(2) .   0i i∀≥ξ   

 

The penalty term for misclassifying training samples is weighted by a constant C. 
Selecting a large value of C puts a high price on deviations and increases computation 
by effecting a more exhaustive search for ways to minimize the number of misclassified 
samples. 
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By forming the Lagrangian and solving the dual problem, this problem 
can be translated into: 
 minimize 

∑∑
==

⋅−=
l

ji
jijiji

l

i
i yybL

1,1

)(
2
1),,( xxw αααα        (14) 

 

 subject to the constraints: 
(1)  0 ≤ αi ≤ C , ∀i  

 (2) 0
1

=∑
=

l

i
ii yα  

where αi are called Lagrange multipliers. There is one Lagrange multiplier for each 
training sample. In the solution, those samples for which αi > 0 are called support 
vectors, and are ones such that the equality in (11) holds. All other training samples 
having αi = 0 could be removed from the training set without affecting the final 
hyperplane. 

Let α0, an l-dimensional vector denote the minimum of L(w,b,α). If 0
iα > 0 

then xi is a support vector. The optimal separating hyperplane (w0, b0) can be written in 
terms of α0 and the training data, specifically in terms of the support vectors: 
 

 ∑∑ ==
= ctorssupport ve
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l

i
iii yy xxw αα       (15) 

 

 b0 = 1–w0⋅xi  for xi  with yi = 1  and 0 < αi < C.         (16) 
 

The optimal separating hyperplane classifies points according to the sign of f(x), 
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Support vector xi with 0
iα = C may or may not be misclassified. All other xi’s are correctly 

classified. 
In support vector methods one can control both parameters: in the 

separable case one obtains the unique solution which minimizes the empirical risk 
(down to zero) using a ∆–margin separating hyperplane with the maximal margin (i.e., 
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subset with the smallest VC dimension). In general case one obtains the unique solution 
when one chooses the value of the tradeoff parameter C. 

2.1.2.2  Non-linear Support Vector Machines 

The above algorithm is limited to linear separating hyperplanes. SVMs 
get around this problem by mapping the sample points into a higher dimensional space 
(sometime called feature space) using a non-linear mapping chosen in advance. This is, 
we choose a map ΗℜΦ an: where the dimensionality of Η is greater than n. We then 
seek a separating hyperplane in the higher dimensional space (see Figure 2.3); this is 
equivalent to a non-linear separating surface in ℜn. 

The data only ever appears in our training problem (14) in the form of dot 
products, so in the higher dimensional space we are only dealing with the data in the 
form Φ(xi)⋅Φ(xj). If the dimensionality of H is very large, then this could be difficult, or 
very computationally expensive. However, if we have a kernel function such that k(xi,xj) = 

Φ(xi)⋅Φ(xj), then we can use this in place of xi⋅xj everywhere in the optimization problem, 
and never need to know explicitly what Φ is. Some widely used kernels are: 
 

 Polynomial degree d: 1+⋅= yxyx,
d

)k(     (18) 
 

 Radial basis function: c
e)k( yxyx, −−

=
2

    (19) 
 

Implementation of a new set of decision functions can be done by 
changing only one function (kernel k(xi,xj)), which defines the dot product in higher 
dimensional space. 

 
Figure 2.3: Feature space. 
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2.2  Literature Review 

For multiclass SVMs, either several binary classifiers have to be 
constructed or a larger optimization problem is needed. In this thesis, we only deal with 
the combination of binary classifiers. In this section we discuss the conventional 
formulation to solve multiclass problems, for example, one-against-the-rest, one-against-
one, the DDAG and the ADAG. 

2.2.1  One-Against-the-Rest 

The earliest implementation for multiclass SVMs is probably the one-
against-the-rest method. It constructs k SVM classifiers where k is the number of classes. 
The ith SVM is trained with all of the examples in the ith class with positive labels, and all 
other examples with negative labels. Thus given l training data (x1,y1), …, (xl,yl), where xi 

∈ Rn , i = 1,…,l and yi ∈ {1,…,k} is the class of xi, the ith SVM solves the following problem: 
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Where the training data xi are mapped to a higher dimensional space by the function Φ 
and C is the penalty parameter.  

Minimizing iTi ww ))(2/1(  means that we would like to maximize 2/|wi|, the 
margin between two groups of data. When data are not linear separable, there is a 
penalty term ∑ =

l

j
i
jC

1
 ξ  which can reduce the number of training errors. The basic concept 

behind SVMs is to search for a balance between the regularization term iTi ww ))(2/1(  
and the training errors. 

After solving (20), there are k decision functions 
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We say x is in the class which has the largest value of the decision function 
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This approach bears two main disadvantages: (i) separating one class 
from all others may be an unnecessarily hard problem that often requires us to apply 
very complex classification models, (ii) solving these subproblems can impose 
unacceptably high computational costs when kernel classifiers are applied to large-
scale problems (Roth and Tsuda, 2001). 

2.2.2  One-Against-One 

This method constructs k(k-1)/2 classifiers where each one is trained on 
data from two classes. The number of data needed for learning becomes smaller, so we 
can expect shorter training time. For training data from the ith and the jth classes, we 
solve the following binary classification problem: 
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There are different methods for doing the future testing after all k(k-1)/2 
classifiers are constructed. If ))()(( ijTij bsign +Φ xw says x is in the ith class, then the vote 
for the ith class is added by one. Otherwise, the vote for the jth is increased by one. Then 
we predict x is in the class with the largest vote. The voting approach described above 
is also called the “Max Wins” strategy. In case that more than one class has the identical 
vote, a class will be randomly selected as the final output. 

2.2.3  Decision Directed Acyclic Graph (DDAG) 

Platt et al. (2000) presented a learning architecture, the Decision 
Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers 
into a multiclass classifier. For a k-class problem, its training phase is the same as the 
one-against-one method by solving k(k-1)/2 binary SVMs, one for each pair of classes. 
However, in the testing phase, it uses a rooted binary directed acyclic graph which has 
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k(k-1)/2 internal nodes and k leaves (see Figure 2.4). Each node is a binary SVM of the ith 
and jth classes. Given a test sample x, starting at the root node, the binary decision 
function is evaluated. Then it moves to either left or right depending on the output value. 
Therefore, we go through a path before reaching a leaf node which indicates the 
predicted class. 

1 vs 4

2 vs 4 1 vs 3

2 vs 33 vs 4 1 vs 2

not 4not 1

not 4not 2 not 1 not 3

4 13 2

1
2
3
4

2
3
4

1
2
3

3
4

2
3

1
2

 

Figure 2.4: The DDAG finding the best class out of four classes. 

There are some issues on the DDAG as pointed out by Ussivakul and 
Kijsirikul (2001, 2002). First, it gives outputs whose probabilities are not uniformly 
distributed, and thus its output depends on the sequence of binary classifiers in nodes, 
affecting reliability of the algorithm. In addition, the correct class placed in a node near 
the root node is clearly at disadvantage by comparison with the correct class near leaf 
nodes since it is exposed to higher risk of being incorrectly rejected. Second, the 
number of node evaluations for the correct class is unnecessary high. This results in 
higher cumulative error and lower the accuracy. The depth of the DDAG is k-1 and this 
means that the number of times the correct class has to be tested against other classes, 
on average, scales linearly with k. 

2.2.4  Adaptive Directed Acyclic Graph (ADAG) 

Ussivakul and Kijsirikul (2001, 2002) proposed an approach to alleviate 
the problem of the DDAG structure described above. An Adaptive DAG (ADAG) is a 
DAG with a reversed triangular structure. For a k-class problem, its training phase is the 



                                                                                                                 
 

16

same as the DDAG method by solving k(k-1)/2 binary SVMs, one for each pair of classes. 
However, in the testing phase, the nodes are arranged in a reversed triangle with k/2 
nodes (rounded up) at the top, k/22 nodes in the second layer and so on until the lowest 
layer of a final node. It has k-1 internal nodes, each of which is labeled with an element 
of Boolean function (see Figure 2.5). Given a test example x, starting at the top level, the 
binary decision function is evaluated. The node is then exited via the outgoing edge with 
a message of the preferred class. In each round, the number of candidate classes is 
reduced by half. Based on the preferred classes from its parent nodes, the binary 
function of the next-level node is chosen. The reduction process continues until reaching 
the final node at the lowest level. The value of the decision function is the value 
associated with the message from the final leaf node. Like the DDAG, the ADAG 
requires only k-1 decision nodes to be evaluated in order to derive an answer. Note that 
the correct class is evaluated against other classes for log2 k times or less, considerably 
lower than the number of evaluations required by the DDAG, which scales linearly with k. 

Using the reversed triangular structure, the ADAG reduces the number 
of times the correct class is tested against other classes, and thus reduces the 
cumulative errors. However, there are still differences in accuracy between different 
sequences of nodes. 

2 vs 71 vs 8

A1 vs A2

4 vs 53 vs 6

A3 vs A4

B1 vs B2

A1 A2 A3 A4

B1 B2

Adaptive Layer A

Adaptive Layer B

Output LayerOutput Class  
Figure 2.5: The structure of an ADAG for an 8-class problem. 
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2.2.5  Binary Tree SVMs 

Schwenker (2000) proposed a hierarchical SVMs for multiclass 
classification using the binary tree structure. The major idea of hierarchical classification 
is first to make a coarse discrimination between confusion classes and then a finer 
discrimination within the confusion classes. In figure 2.6 an example of a hierarchical 
classifier is depicted. Each node within the graph represents a binary classifier which 
discriminates feature vectors of a confusion class into one of two smaller confusion 
classes or possibly into individual classes.  

{A,B,C,D,E,F}

{A,C,D} {B,E,F}

{A,C} {E,F}

C A

D B

F E  

Figure 2.6: The structure of binary tree classifier. 

The classification subtask is defined through the annotations of the 
incoming and outgoing edges of the node. For example, at the root of the tree the label 
of the incoming edge is {A,…,F}, so for this (sub-)tree a 6-class classification task is 
given. The edges to the children are annotated with {A,C,D} and {B,E,F}. This means 
that this SVM has to classify feature vectors into confusion class {A,C,D} or {B,E,F}. To 
achieve this, all members of the six classes {A,…,F} have to be re-labeled: feature 
vectors with class labels A,C, or D get the new label –1 and those with class label B,E,F 
get the new label 1. After this re-labeling procedure the SVM is trained. Note that re-
labeling has to be done for training each classifier in each node of the tree. 

However, the question how to construct the hierarchy of subsets of 
classes is not answered. In some cases it may be a priori defined. 
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2.2.6  Decision-Tree-Based Multiclass SVMs 

Takahashi and Abe (2002) presented decision-tree-based multiclass 
SVMs to overcome the unclassifiable regions. Figure 2.7 shows an example of the 
unclassifiable regions for a 3-class problem. The data in the shaded regions cannot be 
classified. 

Figure 2.8(a) shows an example of the division of the feature space, and 
figure 2.8(b) expresses this by a decision tree. In the training phase, the hyperplane f1(x) 
which separates Class 1 from Classes 2 and 3 is calculated. For remaining classes 
(Class 2 and Class 3), the hyperplane f2(x) which separates these two classes is 
calculated. In the testing phase, given an input x, we first calculate a value of f1(x). If it is 
positive, x is classified into Class 1, and if negative, calculate a value of f2(x). If it is 
positive, x is classified into Class 2, but if negative, classified into Class 3. 

Class 1

Class 2 Class 3

f1(x) = 0

f2(x) = 0
f3(x) = 0

 
Figure 2.7: The existence of unclassifiable regions. 

But a problem is how to determine the structure of the decision tree. The 
division of the feature space depends on the structure of a decision tree. To maintain 
high generalization ability, the most separable classes should be separated at the upper 
nodes of a decision tree. The Euclidean distance or Mahalanobis distance can be used 
as a separation measure. 
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Class 1

Class 2 Class 3

(a) (b)

f1(x) = 0

f2(x) = 0

f1(x) = 0

f2(x) = 0

{1,2,3}

{2,3}
+ -

+ -

{1}

{2} {3}

 
Figure 2.8: (a) An example of the division of feature space. 

(b) Expression by a decision tree. 



CHAPTER III 

REORDERING ADAPTIVE DIRECTED ACYCLIC GRAPH 

This chapter gives details about the proposed method, Reordering 
Adaptive Directed Acyclic Graph (RADAG), which is the modification of the ADAG 
(described in the previous chapter). Our approach determines a best sequence of 
binary classifiers in nodes in the ADAG by dynamically reordering the sequence during 
classification process according to each test data. Only binary classifiers which have 
small generalization errors will be used in data classification. 

3.1  Reordering Adaptive Directed Acyclic Graph (RADAG) 

From the structure of the ADAG (see Figure 2.2), the sequence of binary 
classifiers 1vs8, 2vs7, 3vs6, and 4vs5 may give different accuracy from the accuracy of 
the sequence 3vs4, 2vs8, 6vs7, and 1vs5. For example, suppose that a test example 
whose correct class is class 7, for the first sequence, the classifier 2vs7 may incorrectly 
eliminate the correct class while for the second sequence, the classifier 6vs7 may 
correctly classify the correct class. The first sequence causes wrong classification for 
the test example. This shows the dependency of the sequence of binary classifiers in 
nodes in the ADAG structure.  

We propose a method, called Reordering Adaptive Directed Acyclic 
Graph (RADAG), to improve the accuracy of the original ADAG. For a k-class problem, 
the RADAG’s training phase is the same as the ADAG method by solving k(k-1)/2 binary 
SVMs. However, the testing phase is organized as follows. The differences are the 
initialization of the binary classifiers in the top level and the order of sequences in lower 
levels (see Figure 3.1). In the first step, we use a reordering algorithm with minimum-
weight perfect matching described in the next section to choose the optimal sequence 
to be the initial sequence. We use the sequence to evaluate every test example. In the 
second step, as in the ADAG, test points of the RADAG are evaluated against the 
decision nodes. In the third step, unlike the ADAG, the RADAG will reorder the 
sequence before processing in the next level by using the reordering algorithm with 
minimum-weight perfect matching. This sequence differs for each test example, and it 
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depends on the results of nodes from the previous level. The second and the third steps 
are repeated until there is only one class remains.  

Reordering the sequence

Initializing the sequence

1 2 3 4 5 k

Initial phase

Classifying &
Reordering phase

Output phase

1vs3 2vs8 4vs7 5vs6

A1 A2 A3 A4

A1vsA3 A2vsA4

i vs j

AmVsAn

...

...

...

An Classifying
a new example

Final classifierC1vsC2

C1 C2

Output class  

Figure 3.1: Classifying process of the RADAG. 

3.2  Reordering Algorithm 

3.2.1  Generalization Performance of Support Vector Machines 

The ability of a hypothesis to correctly classify data not in the training set 
is known as its generalization (Cristianini and Shawe-Taylor, 2000). Generalization 
analysis of pattern classifiers is concerned with determining the factors that affect the 
accuracy of a pattern classifier. Generalization performance of SVMs can be 
approximated by bounding on the generalization error (Barlett and Shawe-Taylor, 1999). 

Define the class F of real-valued functions on the ball of radius R in ℜn 
as { }RF ≤≤⋅= xwxwx ,1:a . There is a constant c such that, for all probability 
distributions, with probability at least 1-δ over l independently generated examples z, if a 
classifier ( ) ( )Ffh sgnsgn ∈=  has margin at least ∆ on all the examples in z, then the error 
of h is no more than 
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Furthermore, in case that the training data cannot be separated by the hyperplane 
without error, with probability at least 1-δ, every classifier ( )Fh sgn∈  has error no more 
than 
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where r is the number of labeled examples in z with margin less than ∆. 
Below we show an example of the generalization error of classifiers. The 

experiment is based on the English letter image recognition dataset from the UCI 
Machine Learning Repository (Blake et al., 1998), which has 26 classes. Hence there 
are 325 classifiers. The classifiers are trained by using the Polynomial kernel of degree 3. 
In Figure 3.2, the generalization errors of all classifiers expressed by Equation (24) are 
depicted. The generalization errors of all classifiers are varying. The standard deviation 
of the generalization errors is 25.36 and the average of all of them is 28.82.  
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Figure 3.2: The generalization errors of 325 classifiers. 

3.2.2  Reordering Algorithm with Minimum-Weight Perfect Matching 

For the reason described above, we consider the generalization errors in 
order to choose the optimal sequence from all possible 
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chance to predict the wrong class. Among k(k-1)/2 classifiers, k/2 classifiers which have 
small generalization errors will be considered to be used in data classification.  

Let G be a graph with node set V and edge set E. Let ce be the weight of 
e ∈ E. A perfect matching in a graph G is a subset of edges such that each node in G is 
met by exactly one edge in the subset. Given a real weight ce for each edge e of G, the 
minimum weight perfect matching problem is to find a perfect matching M of minimum 
weight Σ(ce : e ∈ M).  

For U ⊆ V, let E(U) = {(i,j):(i,j)∈E, i∈U, j∈U}. E(U) is the set of edges with 
both endpoints in U. The set of edges incident to node i in the node-edge incidence 
matrix is denoted by δ(i). The convex hull of perfect matchings on a graph G = (V, E) with 
|V| even is given by 
a)  mRx +∈  
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where |E| = m and xe = 1 means that e is in the matching. So the minimum weight of a 
perfect matching is at least as large as the value of 
 

 ∑
∈Ee

  min ee xc        (26) 
 

where x satisfies “(a),(b) and (c)” or “(a),(b) and (d)” (Nemhauser and Wolsey, 1999). 
Let G = (V, E) be a graph with node set V and edge set E. Each node in G 

denotes one class and each edge denotes one binary classifier which has a 
generalization error from equation (24) (see Figure 3.3(a)). Given a real weight ce being 
generalization error for each edge e of G, the output of the reordering algorithm for 
graph G is a subset of edges with the minimum sum of generalization errors of all edges 
and each node in G is met by exactly one edge in the subset (see Figure 3.3(b)). 
Therefore, the reordering problem is to solve the linear program in Equation (26). 
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Figure 3.3: (a) A graph for an 8-class problem. 

(b) An example of the output of the reordering algorithm. 

One of the fundamental results in combinatorial optimization is the 
polynomial time blossom algorithm for computing minimum-weight perfect matchings by 
Edmons. The straightforward implementation of Edmonds’ original description of the 
algorithm can easily be seen to run in time bounded by O(n2m), where n is the number 
of nodes in the graph and m is the number of edges. This was improved by Lawler and 
by Gabow to O(n3), and later to O(nm log n) by Galil, Micali and Gabow. A further 
improvement was made by Gabow, Galil and Spencer, lowering the bound to         
O(n(m logloglog max{m/n,2} n + n log n)). The logloglog term was then removed by 
Gabow, resulting in a bound of O(n(m+n log n)). Gabow’s bound is currently the best 
known result in terms of n and m [see (Cook and Rohe, 1997) for more details].  

3.3  Time Complexity 

The Max Wins needs O(n2) number of comparisons for the problem with n 
classes. The DDAG reduces the number of comparisons down to O(n). By reducing the 
depth of the path, the ADAG requires O(n) comparisons of binary classifiers with  
accuracy higher than that of the DDAG. Our approach needs a little time more than the 
ADAG for reordering the sequence. Note that, currently, the minimum-weight perfect 
matching algorithm, which is used in the reordering algorithm, runs in time bounded by 
O(n(m+n log n)) (Cook and Rohe, 1997), where n is the number of nodes (classes) in the 
graph and m = n(n-1)/2 is the number of edges (binary classifiers). The RADAG will 
reorder the sequence in every level, except for the last level. The sequence of classes in 
the top level is reordered only one time and we use the sequence to evaluate every test 
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example. Hence for classifying each test data, we need log2 n - 2 times of reordering, 
where each time the number of classes is reduced by half. Therefore, the running time 
of the RADAG is bounded by O(c1n) +  O(c2n3 log2 n), where c1 is much larger than c2 (see 
section 4.2.2 for empirical results). 

3.4  Estimating the Difference between Means of Generalization Errors 

 In this section we will explain test concerning means of generalization 
errors of classifiers of interest (the binary classifier of the correct class and other classes 
in the sequence), which are selected by the ADAG and the RADAG. For the ADAG, we 
randomly selected the classifiers to be used in data classification, whereas for the 
RADAG the classifiers are selected by using the minimum-weight perfect matching 
algorithm. This may be analyzed using a method called the one tailed paired t test. 

To estimate the difference between two means, we wish to test 

 ,0:H 210 =− µµ  
 .0:H 211 >− µµ  

 

The point estimate of the difference 21 µµ − of two population means is given by 21 XX − . 
The form of the paired t test is 
 

 
nS

XXt
d /

21 −=                     (27) 
 

where Sd is the standard deviation of the sample of differences 21 XX − .  
Assume that the distribution of generalization errors is normal distribution 

(see figure 3.4). The simulation is based on the dataset which has 26 classes, and 
hence there are 325 binary classifiers. In the experiment, a generalization error is 
randomly selected to each classifier with equal probability, uniformly distributed. We 
examine 5,200 sequences of classifiers, where for the first 200 sequences we assume 
that the correct class is class 1, for the second 200 sequences we assume that the 
correct class is class 2 and so on. For the ADAG, we randomly selected 5,200 
sequences of classifiers. For the RADAG, 5,200 sequences are selected by using the 
minimum-weight perfect matching algorithm so all sequences are the same. Then we 
compute sum of generalization errors of classifiers of interest that correspond to the 
binary classifier of the correct class and other classes in the sequence. The experiments 
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are repeated 100 times. Then we calculate the sample mean 1X  ( ADAGX ) and 2X  
( RADAGX ). Equation 27 gives 
 

 26.264
100/98.5348

0.957801.237132
=

−
=t . 

 

Using α = 0.001 with a one-tailed test and degree of freedom = 99, we determine from 
the t table that the critical value is 3.175. Then the null hypothesis is rejected. 

The formula for a 99% confidence interval for the difference between two 
means is  
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Equation 28 gives (140087.1,142617.1). The interval does not include 0, and thus the 
null hypothesis is rejected at the 1% significance level. These mean that our method 
obtains classifiers whose generalization errors are statistically significantly lower than 
the ADAG.  

In addition, according to the assumption mentioned above, the empirical 
results show that the minimum-weight perfect matching always selects classifiers with 
generalization errors less than half of maximum generalization error.  
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Figure 3.4: The distribution of the generalization errors. 
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CHAPTER IV 

EXPERIMENTAL SETTING AND RESULTS 

This chapter presents the experimental setting and results. We compare 
the classification accuracy of the RADAG with those of the original ADAG and the Max 
Wins algorithm. We also compare the running time of our approach with that of Max 
Wins which is probably the currently most accurate method for multiclass SVMs. 
Moreover, we use a one-tailed paired t-test to estimate the difference between 
accuracies of the RADAG and the DDAG, the ADAG and the Max Wins. 

4.1  Dataset and Experimental Setting 

The experiments are based on several datasets from the UCI Machine 
Learning Repository (Blake et al., 1998) including glass, satimage, segment, shuttle, 
vowel, soybean, letter and isolet (see Table 4.1). For the glass and segment problems, 
there is no provided test data so we used 5-fold cross validation. For the soybean 
problem, we discarded the last four classes because of missing values. In addition, we 
examined our method with Thai printed character recognition dataset (Pichitdej, 2001), 
which has 68 classes including 44 consonants, and 26 vowels and tonal masks. These 
datasets are different in the number of classes, the number of dimensions, and sizes. 68 
classes is the most classes and 617 dimensions is the most dimensions which are used 
in the experiment. 

In these experiments we scaled both training data and test data to be in 
[-1,1] and employed Polynomial and RBF kernels. In the training phase, the k(k-1)/2 
binary classifiers were constructed by using the software package called SVMlight version 
5.0 (Joachims, 1999). In the experiments, we compared the accuracy of four algorithms, 
i.e., the DDAG, the original ADAG, the Max Wins, and the RADAG. For the DDAG and 
the ADAG, we examined all possible sequences for datasets having not more than 8 
classes, whereas we randomly selected 50,000 sequences for datasets having more 
than 8 classes. We then calculate the average of accuracy of these sequences. We also 
compare the computational time between the RADAG and the Max Wins. 
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Table 4.1: Description of the datasets used in the experiments. 

Dataset #training data #test data #class #dimension 
Glass 214 5-fold 6 9 
Satimage 4,435 2,000 6 36 
Segment 2,310 5-fold 7 18 
Shuttle 43,500 14,500 7 9 
Vowel 528 462 11 10 
Soybean 290 340 15 35 
Letter 15,963 4,037 26 16 
Isolet 6,238 1,559 26 617 
ThaiPrintedCharacter1 3,264 3,264 68 128 
ThaiPrintedCharacter2 3,264 3,264 68 128 

4.2  Experimental Results 

Table 4.2 to Table 4.11 present the results of comparing three methods 
including the ADAG, the Max Wins and the RADAG. The best accuracy among three 
methods for each value of the parameter of the kernel is illustrated in bold-face. The 
highest accuracy of each kernel is depicted by asterisk. 

4.2.1  The Accuracy of Classification 

• The glass dataset 
This dataset is about glass identification. Table 4.2 shows the accuracy 

of classification. As shown in the table, the RADAG gives higher accuracy in RBF kernel 
whereas in Polynomial kernel the ADAG gives higher accuracy. 

• The satimage dataset 

This dataset consists of the multi-spectral values of pixels in 3x3 
neighborhoods in a satellite image, and the classification associated with the central 
pixel in each neighborhood. Table 4.3 shows the accuracy of classification. As shown in 



 
 

29

the table, the RADAG gives higher accuracy in Polynomial kernel whereas in RBF kernel 
the Max Wins gives higher accuracy. 

Table 4.2: A comparison of the accuracy of classification of the glass dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2  71.135* 71.078 71.063  0.01 71.953 71.871 71.971 
3 68.801 68.989 68.716  0.02 71.064 70.918 71.506 
4 69.400 69.598 68.239  0.03 71.054 70.918 71.506 
5 69.947 70.173 69.158  0.04 70.784 70.616 71.041 
6 69.318 69.553 69.158  0.05 70.144 69.943 71.052 
7 67.572 67.902 67.298  0.06 72.314 72.088 72.912 
8 68.243 68.463 68.217  0.07 72.604 72.385 73.377 

 0.08 72.759 72.506 73.377 
 0.09 71.943 73.238  74.319* 

 

 0.10 71.684 71.367 72.447 

Table 4.3: A comparison of the accuracy of classification of the satimage dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 86.986 87.152 87.450  0.5 89.083 89.123 89.150 
3 87.219 87.248 87.350  1.0 90.329 90.340 90.350 
4 87.562 87.545 87.750  1.5 90.819 90.834 90.950 
5 88.232 88.198 88.500  2.0 91.530 91.542 91.600 
6 88.430 88.453  88.900*  3.0 91.968  91.984* 91.950 
7 87.941 87.957 88.150  4.0 91.804 91.820 91.800 
8 87.720 87.757 87.850  5.0 91.483 91.496 91.500 

• The segment dataset 
This dataset is about image segmentation data. The instances were 

drawn randomly from a database of 7 outdoor images. The images were hand 
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segmented to create a classification for every pixel. Table 4.4 shows the accuracy of 
classification. In this dataset, the RADAG gives higher accuracy in Polynomial kernel 
whereas in RBF kernel the Max Wins gives higher accuracy. 

Table 4.4: A comparison of the accuracy of classification of the segment dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 96.736 96.743 96.970  0.5 97.052 97.071 97.013 
3 96.400 96.428 96.623  0.6 97.080 97.089 97.056 
4 96.632 96.658 96.840  0.7 97.282  97.298* 97.273 
5 96.932 96.942 97.056  0.8 97.249 97.241 97.273 
6 97.084 97.080 97.143  0.9 97.182 97.171 97.186 
7 97.095 97.083 97.230  1.0 97.090 97.077 97.056 
8 97.407 97.379  97.489*  1.5 97.030 97.046 97.056 

• The shuttle dataset 
Table 4.5 shows the accuracy of classification. These three methods 

give comparable accuracy in both Polynomial kernel and RBF kernel. 

Table 4.5: A comparison of the accuracy of classification of the shuttle dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 99.833 99.834 99.834  0.5 99.836 99.834 99.834 
3 99.866 99.869 99.869  1.0 99.862 99.862 99.862 
4 99.865 99.869 99.869  1.5 99.879 99.879 99.876 
5 99.890 99.890 99.890  2.0 99.883 99.883 99.883 
6 99.903 99.903 99.903  3.0  99.897*  99.897*  99.897* 
7 99.917 99.917 99.917  4.0 99.893  99.897* 99.890 
8  99.924*  99.924*  99.924*  5.0 99.889 99.892 99.883 
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• The vowel dataset 
This dataset is about speaker independent recognition of the eleven 

steady state vowels of British English. Table 4.6 shows the accuracy of classification. As 
shown in the table, the RADAG also gives higher accuracy in both Polynomial kernel 
and RBF kernel. 

Table 4.6: A comparison of the accuracy of classification of the vowel dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 63.862 63.918 63.420  0.1 61.344 61.169 62.771 
3 64.293 64.329  64.502*  0.2 65.589 65.340  67.100* 
4 62.663 62.773 61.905  0.3 65.400 65.203 66.450 
5 60.401 60.346 60.606  0.4 63.928 64.108 65.368 
6 58.556 58.649 58.874  0.5 63.676 63.677 64.286 
7 56.720 56.725 56.710  1.0 61.066 61.214 61.255 
8 55.652 55.647 55.411  1.5 60.905 60.833 61.472 

Table 4.7: A comparison of the accuracy of classification of the soybean dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 89.643 89.768 90.588  0.04 89.666 89.738 90.294 
3 90.402 90.471  91.176*  0.05 90.340 90.379  90.882* 
4 90.116 89.968 90.588  0.06 90.094 90.068 90.588 
5 90.446 90.353 90.588  0.07 90.388 90.362  90.882* 
6 89.584 89.506 89.706  0.08 90.412 90.468 90.588 
7 88.686 88.668 88.529  0.09 90.399 90.468 90.588 
8 87.804 87.785 87.647  0.1 90.097 90.174 90.000 
     0.2 86.653 86.682 86.765 
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• The soybean dataset 
This dataset is about soybean disease. Table 4.7 shows the accuracy of 

classification. As shown in the table, the RADAG also gives higher accuracy in both 
Polynomial kernel and RBF kernel. 

• The letter dataset 
This dataset is about English letter image recognition. Table 4.8 shows 

the accuracy of classification. In this dataset, the RADAG gives higher accuracy in RBF 
kernel whereas in Polynomial kernel the Max Wins gives higher accuracy. 

Table 4.8: A comparison of the accuracy of classification of the letter dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 95.110 95.522 95.467  0.5 96.651 96.674 96.854 
3 95.984  96.125* 95.987  1.0 97.381 97.427 97.449 
4 95.892 96.120 96.111  1.5 97.589 97.629 97.548 
5 95.520 94.622 95.888  2.0 97.632 97.661 97.622 
6 95.349 95.551 95.417  3.0 97.909 97.918 97.969* 
7 94.783 94.975 95.046  4.0 97.797 97.815 97.795 
8 93.829 94.072 94.204  5.0 97.675 97.689 97.672 

• The isolet dataset 
This dataset is about isolated English letter speech recognition. Table 4.9 

shows the accuracy of classification. The RADAG gives higher accuracy in both 
Polynomial kernel and RBF kernel. 

• The Thai printed character 1 dataset 
This dataset is about Thai printed character recognition. For the training 

set, the characters were printed by laser printer with 600 dpi resolution, and then they 
were copied by a copier machine with saturated ink. For the test set, the characters 
were printed by laser printer with 600 dpi resolution. The characters in both training set 
and test sets were scanned by scanner with 200 dpi resolution. Table 4.10 shows the 
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accuracy of classification. The RADAG gives higher accuracy in Polynomial kernel 
whereas in RBF kernel the ADAG gives higher accuracy. 

Table 4.9: A comparison of the accuracy of classification of the isolet dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 96.553 96.586 96.600  0.001 96.551 96.554 96.665 
3 97.030 97.040  97.049*  0.002 96.606 96.619 96.793 
4 96.990 97.024 96.985  0.003 96.898 96.889  97.115* 
5 96.653 96.695 96.665  0.004 96.742 96.726 96.857 
6 96.667 96.666 96.729  0.005 96.699 96.681 96.857 
7 96.132 96.133 96.151  0.01 96.932 96.916 96.985 
8 95.492 95.488 95.510  0.02 96.731 96.731 96.729 
     0.03 95.684 95.680 95.767 

Table 4.10: A comparison of the accuracy of classification  
of the Thai printed character 1 dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 93.316 93.280  93.444*  0.0007 96.607 96.616 96.538 
3 81.938 81.927 82.077  0.0008 96.587 96.595 96.599 
4 63.857 63.858 63.817  0.0009 96.608 96.626 96.599 
5 48.759 48.760 48.775  0.001 96.677 96.688 96.661 
     0.002 97.078 97.018 97.028 
     0.003  97.084* 97.080 97.028 
     0.004 96.782 96.782 96.783 

• The Thai printed character 2 dataset 
This dataset is about Thai printed character recognition. For the training 

set, the characters were printed by laser printer with 600 dpi resolution, and then they 
were copied by a copier machine with saturated ink. For the test set, the characters 
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were copied by a copier machine with pale ink. The characters in both training set and 
test sets were scanned by scanner with 200 dpi resolution. Table 4.11 shows the 
accuracy of classification. The RADAG gives higher accuracy in both Polynomial kernel 
and RBF kernel. 

Table 4.11: A comparison of the accuracy of classification  
of the Thai printed character 2 dataset. 

Polynomial kernel  RBF kernel 
d ADAG Max Wins RADAG  c ADAG Max Wins RADAG 
2 98.994 98.989  99.112*  0.0007 99.061 99.058 99.173 
3 98.129 98.123 98.254  0.0008 99.193 99.192 99.265 
4 94.710 94.709 94.761  0.0009 99.193 99.192 99.234 
5 88.592 88.584 88.634  0.001 99.224 99.223 99.265 
     0.002 99.265 99.263 99.357 
     0.003 99.306 99.304 99.357 
     0.004 99.387 99.385  99.418* 

• Summary 

Tables 4.12 and 4.13 present the summary of the comparison between 
the ADAG, the Max Wins and the RADAG for Polynomial and RBF kernels, respectively. 
We present the optimal parameters (d and c in Equations (18) and (19)) of the kernels 
and the corresponding accuracies for each method. The results show that our method 
yields highest accuracy in almost all of datasets. This shows the effectiveness of the 
RADAG.  

Tables 4.14 and 4.15 present the comparison between the RADAG and 
the maximum and the minimum accuracy of the ADAG for Polynomial and RBF kernels, 
respectively. We also show the corresponding standard deviation for the accuracy of 
classification of the ADAG. The optimal parameters (d and c in Equations (18) and (19)) 
of the kernels are the same as in Tables 4.12 and 4.13. The results show that the 
RADAG not only gives higher accuracy than the average accuracy of the ADAG (see 
Tables 4.12 and 4.13), but also provides accuracy equal to the maximum accuracy of 
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the ADAG in the satimage, soybean and Thai printed character 2 datasets for the 
Polynomial kernel and in the glass, soybean, isolet and Thai printed character 2 
datasets for the RBF kernel (see Tables 4.14 and 4.15). For the shuttle dataset, the 
standard deviation for the accuracy of classification equals zero, so the accuracy of 
these three methods are the same. 

Table 4.12: A comparison of the accuracy of classification using the Polynomial kernel. 

Dataset d ADAG d Max Wins D RADAG 
Glass 2 71.135 2 71.078 2 71.063 
Satimage 6 88.430 6 88.453 6 88.900 
Segment 8 97.408 8 97.379 8 97.489 
Shuttle 8 99.924 8 99.924 8 99.924 
Vowel 3 64.293 3 64.329 2 64.502 
Soybean 5 90.446 3 90.471 3 91.176 
Letter 3 95.984 3 96.125 4 96.111 
Isolet 3 97.030 3 97.040 3 97.049 
ThaiPrintedCharacter1 2 93.316 2 93.280 2 93.444 
ThaiPrintedCharacter2 2 98.994 2 98.989 2 99.112 

Table 4.13: A comparison of the accuracy of classification using the RBF kernel. 

Dataset c ADAG c Max Wins C RADAG 
Glass 0.08 72.759 0.09 73.238 0.09 74.319 
Satimage 3.0 91.968 3.0 91.984 3.0 91.950 
Segment 0.7 97.282 0.7 97.298 0.7 97.273 
Shuttle 3.0 99.897 3.0 99.897 3.0 99.897 
Vowel 0.2 65.589 0.2 65.340 0.2 67.100 
Soybean 0.08 90.412 0.08 90.468 0.07 90.882 
Letter 3.0 97.909 3.0 97.918 3.0 97.969 
Isolet 0.01 96.932 0.01 96.916 0.003 97.115 
ThaiPrintedCharacter1 0.003 97.084 0.003 97.080 0.003 97.028 
ThaiPrintedCharacter2 0.004 99.387 0.004 99.385 0.004 99.418 
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Table 4.14: A comparison between the RADAG and the minimum and maximum 
accuracies of the ADAG using the Polynomial kernel. 

ADAG Dataset 
Max Min Std. 

RADAG 

Glass 73.400 69.656 1.314 71.063 
Satimage 88.900 87.950 0.265 88.900 
Segment 97.792 97.100 0.237 97.489 
Shuttle 99.924 99.924 0.000 99.924 
Vowel 65.801 62.987 0.424 64.502 
Soybean 91.176 90.000 0.280 91.176 
Letter 96.532 95.417 0.141 96.111 
Isolet 97.308 96.923 0.072 97.049 
ThaiPrintedCharacter1 93.687 93.043 0.080 93.444 
ThaiPrintedCharacter2 99.112 98.897 0.058 99.112 

Table 4.15: A comparison between the RADAG and the minimum and maximum 
accuracies of the ADAG using the RBF kernel. 

ADAG Dataset 
Max Min Std. 

RADAG 

Glass 74.308 71.971 0.928 74.319 
Satimage 92.100 91.850 0.086 91.950 
Segment 97.446 97.143 0.125 97.273 
Shuttle 99.897 99.897 0.000 99.897 
Vowel 69.264 63.203 0.816 67.100 
Soybean 90.882 90.000 0.175 90.882 
Letter 98.043 97.845 0.030 97.969 
Isolet 97.115 96.859 0.057 97.115 
ThaiPrintedCharacter1 97.242 96.997 0.047 97.028 
ThaiPrintedCharacter2 99.418 99.357 0.025 99.418 
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Another advantage of our method compared to the DDAG and the ADAG is that 
our method always provides one best accuracy for each dataset using the reordering 
algorithm, whereas, depending on the sequence of classes, the DDAG and the ADAG 
may give low accuracies. This shows the effectiveness of the RADAG. 

4.2.2  The Computational Time 

Tables 4.16 and 4.17 present the comparison of the running time 
between the RADAG and the Max Wins for Polynomial and RBF kernels by using a 400 
MHz Pentium II processor. There is no running time of the glass dataset because it has 
too few test examples to measure the time. The running time of the RADAG consists of 
the running time for classifying and reordering. The classifying time of the RADAG 
equals the running time of the ADAG. The results show that our method requires low 
running time in all datasets, especially when the number of classes and/or the number of 
dimensions are relatively large. For a k class problem, the Max Wins requires k(k-1)/2 
classifiers for the classification whereas the RADAG requires only k-1 classifiers. Hence 
the larger the number of classes the more running time the Max Wins requires than the 
RADAG. Moreover, the number of dimensions affects the running time of each classifier. 
Hence the larger the number of dimensions the more running time the Max Wins 
requires than the RADAG. For the RADAG, the number of classes affects the running 
time for reordering. However, it takes a little time even when there are many classes. 
 
 
 
 
 
 
 
 
 
 
 



Table 4.16: A comparison of the computational time using the Polynomial kernel. 

RADAG Max Wins 
Dataset #test data #class #dimension d Classifying 

(seconds) 
Reordering 
(seconds) 

Total 
(seconds) 

Classifying 
(seconds) 

Satimage 2,000 6 36 6 1.90 0.50 2.40 9.47 
Segment 462 7 18 8 0.11 0.08 0.19 0.41 
Shuttle 14,500 7 9 8 1.75 3.38 5.13 5.15 
Vowel 462 11 10 2 0.12 0.25 0.37 0.61 
Soybean 340 15 35 3 0.30 0.25 0.55 1.86 
Letter 4,037 26 16 4 8.48 4.20 12.68   125.58 
Isolet 1,559 26 617 3 116.02 1.48 117.50 1,671.98 
ThaiPrintedCharacter1 3,264 68 128 3 94.63 13.83 108.46 2,996.64 
ThaiPrintedCharacter2 3,264 68 128 3 96.41 13.19 109.60 3,042.98 
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Table 4.17: A comparison of the computational time using the RBF kernel. 

RADAG Max Wins 
Dataset #test data #class #dimension c Classifying 

(seconds) 
Reordering 
(seconds) 

Total 
(seconds) 

Classifying 
(seconds) 

Satimage 2,000 6 36 3.0 11.75 0.51 12.26 37.13 
Segment 462 7 18 0.7 0.24 0.10 0.34 0.82 
Shuttle 14,500 7 9 3.0 3.36 0.63 3.99 9.27 
Vowel 462 11 10 0.2 0.10 0.27 0.37 0.61 
Soybean 340 15 35 0.07 0.32 0.45 0.77 2.20 
Letter 4,037 26 16 3.0 62.27 3.69 65.96 802.85 
Isolet 1,559 26 617 0.01 100.42 1.60 102.02 1,369.11 
ThaiPrintedCharacter1 3,264 68 128 0.002 86.25 16.46 102.71 2,772.18 
ThaiPrintedCharacter2 3,264 68 128 0.001 55.75 14.37 70.12 1,877.77 
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4.3  Evaluate the RADAG 

4.3.1  Estimating the Difference between Accuracies 

To estimate the difference between accuracies, we added up the training 
set and test set into one set. Then we use a k-fold cross-validation method in which the 
set is partitioned into k disjoint, equal-sized subsets. In this k-fold cross-validation 
approach, each example from the set is used exactly once in a test set, and k-1 times in 
a training set (Mitchell, 1997). In our experiment, we use 5-fold crsss-validation for the 
glass dataset and 10-fold crsss-validation for all others. Tables 4.18 and 4.19 present 
the comparison between the ADAG, the Max Wins and the RADAG for Polynomial and 
RBF kernels, respectively. We also compare the accuracy of classification with that of 
the DDAG. The optimal parameters (d and c in Equations (18) and (19)) of the kernels 
are the same as in Tables 4.12 and 4.13. The best accuracy among these methods is 
illustrated in bold-face. ****, ***, ** and * in the tables mean 99.99%, 99%, 95%, and 
90% confidence interval for estimating the difference between accuracies of three 
algorithms and the RADAG using a one-tailed paired t-test. 

For estimating the difference between errors of two learning methods, the 
mean difference Y  in errors from all disjoint subsets is returned as an estimate of the 
difference between the two learning algorithms (Mitchell, 1997). The approximate N% 
confidence interval for estimating the difference using Y is given by 
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Table 4.18: A comparison of estimating the difference between accuracies of 
classification using the Polynomial kernel. 

Dataset DDAG ADAG Max Wins RADAG 
Glass 71.069 71.135 71.078 71.063 
Satimage 89.599 89.622 89.615 89.681 
Segment 97.360** 97.383* 97.351** 97.533 
Shuttle 99.919** 99.922** 99.923* 99.930 
Vowel 98.872* 98.894* 98.901* 98.990 
Soybean 92.202 92.281 92.470 92.698 
Letter 95.994**** 96.379*** 96.512* 96.674 
Isolet 97.484 97.485 97.488 97.499 
ThaiPrintedCharacter1 99.239 99.242 99.246 99.234 
ThaiPrintedCharacter2 99.657 99.670 99.677 99.617 

Table 4.19: A comparison of estimating the difference between accuracies of 
classification using the RBF kernel. 

Dataset DDAG ADAG Max Wins RADAG 
Glass 72.850* 72.759* 73.238* 74.319 
Satimage 92.129 92.141 92.148 92.152 
Segment 97.652 97.650 97.656 97.576 
Shuttle 99.926** 99.927* 99.928 99.931 
Vowel 98.965* 98.975* 98.980* 99.091 
Soybean 91.739** 92.570* 92.533* 93.016 
Letter 95.994**** 96.379**** 96.512* 96.634 
Isolet 97.517 97.523 97.527 97.589 
ThaiPrintedCharacter1 99.387 99.387 99.387 99.387 
ThaiPrintedCharacter2 99.663 99.663 99.663 99.633 
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The results show that our method performs statistically significantly better 
than the other methods in the segment, shuttle, vowel and letter problems in case of the 
Polynomial kernel. In case of the RBF kernel our method performs statistically 
significantly better than the other methods in the glass, shuttle, vowel, soybean and 
letter problems.  
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Figure 4.1: The trends of the accuracy of classification  

when the number of classes is varying. 

Figure 4.1 shows the trends of the accuracy of classification of the 
DDAG, the ADAG and the RADAG when the number of classes is varying. The 
experiment is based on the English letter image recognition which has 26 classes. The 
dataset is trained by using Polynomial kernel degree 4. For the DDAG, the number of 
evaluations for the correct class is unnecessary high. This results in higher cumulative 
error and lower the accuracy. Using the reversed triangular structure, the ADAG 
reduces the number of times the correct class is tested against other classes, and thus 
reduces the cumulative errors. By using the minimum-weighted perfect matching, the 
RADAG can select the appropriate sequence of binary classifiers which have small 
generalization errors to be used in data classification. This greatly improves the 
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performance of the original ADAG, especially when the number of classes is relatively 
large. 
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(a) The generalization errors of classifiers of the letter dataset. 

0

2

4

6

8

10

12

 
(b) The generalization errors of classifiers of the Thai printed character dataset. 

Figure 4.2 The variation of the generalization errors. 

In addition, the performance of the RADAG is better when the variance of 
the generalization errors is high. In that case, when using the reordering algorithm the 
RADAG can select the best sequence whose generalization error much lower than that 
of the arbitrary sequence of the DDAG and the ADAG. Figure 4.2 shows the variation of 
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Generalization Error 
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the generalization errors of two datasets, the letter and the Thai printed character. The 
variances of the generalization errors of the letter dataset and the Thai printed character 
dataset are 643.13 and 0.30, respectively. In this case, the variance of the 
generalization errors of the letter dataset is higher, and thus the performance of the 
RADAG when using with the letter dataset is better (see Table 4.18). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER V 

PERFORMANCE ENHANCEMENT 

The experimental results from the previous chapter show that the RADAG 
requires much less computational time, especially when the number of classes and/or 
the number of dimensions are large. So we have much more time to do more things to 
improve the accuracy. In this chapter we will discuss how to improve the performance of 
the RADAG. We also suggest an alternative way to increase the accuracy of the DDAG 
method.  

5.1  Enhancing Performance of the DDAG 

In this section, we suggest an improved algorithm of the DDAG, called 
Selected DDAG (SDDAG). Figure 3.2 shows that the generalization errors of all 
classifiers are varying. Among k(k-1)/2 classifiers, only k-1 classifiers are used in data 
classification. The binary classifiers in nodes in the DDAG structure should dynamically 
change during classification process rather than being fixed in advance. The classifiers 
with the least generalization error will be considered to be in nodes in each level. 

The SDDAG algorithm is illustrated in Figure 5.1. k is the number of 
classes. Set-of-the-discarded-classes keeps classes which were discarded after 
classifying the test data. 

 
 
 
 

 
 
 
 

Figure 5.1: The SDDAG algorithm. 
 

1. Sort all k(k-1)/2 classifiers by ascending the generalization error. 
2. Initialize set-of-the-discarded-classes to be empty. 
3. For i = 1 to k-1 do; 

3.1 Select a classifier with the least generalization error, of which the  
 corresponding two classes are not in the set-of-the-discarded-classes; 
3.2 Classify the test data; 
3.3 Put the discarded class into the set-of-the-discarded-classes. 

4.  Print the remaining class as the output class. 
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To evaluate the SDDAG algorithm, we examined the SDDAG with the 
isolated English letter speech recognition dataset. Table 5.1 shows the comparison of 
the accuracy of classification between the DDAG and the improved algorithm, SDDAG. 
The highest accuracy of each parameter of the kernel is depicted in bold-face. The 
results show that the SDDAG gives higher accuracy in both polynomial and RBF kernels. 

Table 5.1: A comparison of the accuracy of classification of the DDAG and the SDDAG. 

Polynomial kernel  RBF kernel 
d DDAG SDDAG  c DDAG SDDAG 
2 96.556 96.600  0.001 96.509 96.729 
3 97.032 97.049  0.002 96.594 96.729 
4 96.985 97.049  0.003 96.900 96.985 
5 96.631 96.665  0.004 96.753 96.857 
6 96.672 96.729  0.005 96.710 96.857 
7 96.133 96.151  0.01 96.939 96.985 
8 95.492 95.574  0.03 96.683 96.702 

5.2  Enhancing Performance of the RADAG 

In this section we reveal a problem that may occur when using the 
RADAG. Then we introduce enhancement versions to overcome the problem.  

5.2.1  The Problem 

In some dataset, there are several similar classes. The classifiers which 
are trained to separate these classes may have high generalization errors. For example, 
for the English letter image recognition dataset, classes ‘B’, ‘H’, ‘K’ and ‘R’ are very 
similar. Consequently the binary classifiers of these classes have high generalization 
error.  

The structure of the RADAG may cause the classifiers with high 
generalization errors in low level. The method continually discards the incorrect classes. 
As the result, there are more similar classes in the lower level. Especially in the last level, 
there is no choice to select the best classifier. The last classifier comes from the output 
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of two nodes in the previous level. It may have high generalization error so it may cause 
wrong classification.  

First we want to compare the wrong classification of the ADAG and the 
RADAG, and thus we use the reordering algorithm with minimum-weight perfect 
matching to choose the optimal sequence to be the initial sequence for both methods. 
The experiment is based on the English letter image recognition. The dataset is trained 
by using the Polynomial kernel of degree 4.  

Table 5.2 shows the number of misclassified examples after evaluating 
4,037 test examples. The result shows that the RADAG causes wrong classification 
lower than the ADAG in higher levels (e.g. 1,2), but it causes mistakes higher than the 
ADAG in lower levels (e.g. 4,5). From the table, the RADAG causes 10 misclassified 
examples less than the ADAG. Actually, the RADAG can reduce 27 misclassified 
examples of the ADAG, but it introduces 17 new misclassified examples. Table 5.3 
illustrates that almost all of the new mistakes occur in low levels, especially in the last 
level.  

Table 5.2: A comparison of the number of misclassified examples 
of the ADAG and the RADAG. 

#misclassify Level #class (#classifier) 
ADAG RADAG 

1 26 (13) 4 4 
2 13 (6) 30 10 
3 7 (3) 17 15 
4 4 (2) 47 54 
5 2 (1) 69 74 

Total 167 157 
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Table 5.3: The number of new misclassified examples introduced by the RADAG. 

Level #new misclassify 
1 0 
2 1 
3 1 
4 7 
5 8 

Total 17 

5.2.2  Enhancement Versions 

According to the problem of the RADAG discussed in the previous 
subsection, we proposed five alternative methods to overcome this problem.  

Method 1 (See figure 5.2): First, we try the RADAG in the higher levels 
until there are only similar classes. Then we use Max Wins to predict 
the correct class. The output class is the class with the most votes.  
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Figure 5.2: Classifying process of the RADAG & Method1. 

 
Method 2 (See figure 5.3): First, we try the RADAG in the higher levels 
until there are only two or more similar classes. Then we vote by using 
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only SVMs constructed from one of these classes and the other 
classes. For example, for a 5-class problem, assuming that there are 
class 2 and class 5 in the last level. Then we vote by using 2vs1, 2vs3, 
2vs4, 2vs5, 5vs1, 5vs3 and 5vs4. The predicted class is the class with 
the most votes.  
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Figure 5.3: Classifying process of the RADAG & Method2. 
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Figure 5.4: Classifying process of the RADAG & Method3. 
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Method 3 (See figure 5.4): First, we try the RADAG in the higher levels 
until there are only similar classes. Then we use SDDAG to eliminate 
the incorrect class. The output class is the remaining class.  
Method 4 (See figure 5.5): Sort all classifiers by ascending the 
generalization error. Then we collect a set of classifiers with small 
generalization errors. Make sure that the set covers all classes. For 
example, we collect a set of classifiers where each class is combined 
with at least three other classes (see Figure 5.5(b)). These three 
classifiers have small generalization error. We then run the RADAG by 
using only the collected classifiers. These steps are used in every level, 
except for the last level. Figure 5.5(c) is an example of the output of the 
RADAG. It consists of 4 binary classifiers, which are used in 
classification process. 
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(a)  
Figure 5.5: Classifying process of the RADAG & Method4.  

(a) A graph for an 8-class problem.  
(b) A graph of collected classifiers which have small generalization errors.  

(c) An example of the output of the reordering algorithm when using collected classifiers. 

Method 5 (See figure 5.6): First, we try the RADAG in the higher levels 
until there are only two remaining classes. Then we vote by using the 
classifiers of the two classes, which are trained by using various 
parameters of kernels. The output class is the class with the most votes.  
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Figure 5.6: Classifying process of the RADAG & Method5. 

5.2.3  Results 

Methods 3 and 4 take the running time for classification which equal to 
that of the RADAG. In case of small number of classes, methods 1, 2 and 5 may require 
more running time for classification than Max Wins. But it is negligible time if the number 
of classes is large.  

Tables 5.4 and 5.5 present the results of the comparison between the 
RADAG and these methods for Polynomial and RBF kernels, respectively. We present 
the optimal parameters (d and c in Equations (18) and (19)) of the kernels and the 
corresponding accuracies. For method 5, the d or c means the parameter of the kernel 
of the classifiers which are used in all levels excluding the last level. The best accuracy 
among these methods is illustrated in bold-face. The results show that method 1 and 
method 5 may be more suitable for practical use. Most of the results of method 4 are 
comparable to the results of the RADAG. Most of the results of method 2 are less than 
the results of the RADAG.  

For the polynomial kernel, Method 3 gives accuracy equal to the 
maximum accuracy of the ADAG in the satimage dataset (compared with Table 4.14). 
Method 4 provides accuracy equal to the maximum accuracy of the ADAG in the 
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satimage, soybean and Thai printed character 2 datasets. Method 5 gives accuracy 
higher than the maximum accuracy of the ADAG in the satimage, letter and and Thai 
printed character 2 datasets.  

For the RBF kernel, Method 1 provides accuracy higher than the 
maximum accuracy of the ADAG in the soybean dataset (compared with Table 4.15). 
Method 2 gives accuracy equal to the maximum accuracy of the ADAG in the soybean 
and Thai printed character 2 datasets. Method 3 provides accuracy equal to the 
maximum accuracy of the ADAG in the Thai printed character 2 dataset. Method 4 gives 
accuracy equal to the maximum accuracy of the ADAG in the soybean dataset. Method 
5 provides accuracy higher than the maximum accuracy of the ADAG in the segment 
dataset and gives accuracy equal to the maximum accuracy of the ADAG in the isolet 
datasets.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5.4: A comparison of the accuracy of classification of the RADAG and the Enhancing methods using the Polynomial kernel 

Dataset d RADAG d 
RADAG 

& 
Method1 

d 
RADAG 

& 
Method2 

d 
RADAG 

& 
Method3 

d 
RADAG 

& 
Method4 

d 
RADAG 

& 
Method5 

 Glass 2 71.063 2 71.517 2 71.052 2 71.063 2 71.528 8 71.041 
 Satimage 6 88.900 6 88.550 6 88.450 6 88.900 6 88.900 2 90.000 
 Segment 8 97.489 8 97.402 8 97.359 8 97.576 8 97.489 7 97.749 
 Shuttle 8 99.924 8 99.924 8 99.924 8 99.924 8 99.924 2 99.890 
 Vowel 3 64.502 2 64.286 3 63.853 3 64.935 3 64.502 2 65.152 
 Soybean 3 91.176 5 90.882 3 90.588 3 90.882 3 91.176 3 90.588 
 Letter 4 96.111 3 96.185 4 96.086 3 96.260 4 96.012 3 96.730 
 Isolet 3 97.049 3 97.049 3 97.049 3 97.049 3 97.049 3 96.985 
 ThaiPrintedCharacter1 2 93.444 2 93.382 2 93.076 2 93.382 2 93.444 2 93.627 
 ThaiPrintedCharacter2 2 99.112 2 99.020 2 98.958 2 99.081 2 99.112 2 99.142 
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Table 5.5: A comparison of the accuracy of classification of the RADAG and the Enhancing methods using the RBF kernel 

Dataset c RADAG c 
RADAG 

& 
Method1 

c 
RADAG 

& 
Method2 

c 
RADAG 

& 
Method3 

c 
RADAG 

& 
Method4 

c 
RADAG 

& 
Method5 

 Glass 0.09 74.319 0.09 73.843 0.09 72.912 0.09 74.319 0.09 73.843 0.09 71.982 
 Satimage 3.0 91.950 3.0 92.000 3.0 92.000 3.0 91.950 3.0 91.950 3.0 90.750 
 Segment 0.7 97.273 0.7 97.403 0.7 97.403 0.8 97.230 0.8 97.273 0.7 97.576 
 Shuttle 3.0 99.897 3.0 99.897 3.0 99.897 3.0 99.897 3.0 99.897 1.0 99.897 
 Vowel 0.2 67.100 0.3 66.017 0.2 64.069 0.2 67.965 0.2 67.100 0.2 68.182 
 Soybean 0.07 90.882 0.07 91.176 0.07 90.882 0.07 90.588 0.07 90.882 0.07 90.588 
 Letter 3.0 97.969 3.0 97.944 3.0 97.919 3.0 97.919 3.0 97.944 3.0 97.795 
 Isolet 0.003 97.115 0.003 96.985 0.003 96.985 0.003 96.985 0.01 96.985 0.003 97.115 
 ThaiPrintedCharacter1 0.003 97.028 0.003 97.120 0.003 97.089 0.003 97.028 0.001 96.140 0.0007 96.691 
 ThaiPrintedCharacter2 0.004 99.418 0.004 99.387 0.004 99.418 0.004 99.418 0.0009 98.192 0.002 99.326 

 

Acer123
Text Box
54



CHAPTER VI 

SUMMARY AND FUTURE WORKS 

In this chapter, we conclude our research work and present some 
directions for the future work. 

6.1  Summary 

In this thesis, we have presented a new approach for multiclass SVMs, 
called Reordering Adaptive Directed Acyclic Graph (RADAG), which is the modification 
of the original ADAG. Our approach eliminates the dependency of the sequence of 
binary classifiers in nodes in the original ADAG by selecting an appropriate sequence 
from all possible 
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k  sequences, where k is the number of classes, which consists 

of classifiers with small generalization error. By the use of minimum-weight perfect 
matching, only binary classifiers which have small generalization errors will be used in 
data classification and the RADAG can reorder the sequence of binary classifiers in 
polynomial time.  

Assume that the distribution of generalization errors is normal distribution. 
The generalization errors of classifiers which are selected by the reordering algorithm 
with minimum-weight perfect matching are statistically significantly lower than those 
randomly selected by the ADAG at the 1% significant level. Besides, the empirical 
results show that the minimum-weight perfect matching always selects classifiers with 
generalization errors less than half of maximum generalization error.   

The experimental results show that our new approach yields higher 
accuracy than the DDAG, the original ADAG and even Max Wins which is probably the 
currently most accurate method for multiclass SVMs. The RADAG always provides one 
best accuracy for each dataset using the reordering algorithm, whereas, depending on 
the sequence of classes, the DDAG and the ADAG may give low accuracies. Moreover, 
the running time used by the RADAG is much less than Max Wins, especially when the 
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number of classes and/or the number of dimensions are relatively large. So our 
approach is suitable for large-scale problems.  

In this thesis, we also presented alternative methods to enhance the 
performance of the RADAG. Although some of them require more computational time 
than the RADAG, they can raise the accuracies. In addition, we proposed a method to 
improve the performance of the DDAG. 

6.2  Future Works 

Reducing the number of comparison of binary classifiers is still an open 
issue, which needs a through investigation. A hierarchical SVMs for multiclass 
classification using the binary tree structure requires only O(log2 n) applications of binary 
classifiers for the problem with n classes. But a problem is how to determine the binary 
classifiers in nodes in the binary tree.  

One can replace the SVM classifiers in nodes in the RADAG structure 
with other kinds of binary classifiers, to implement a new multiclass classifier.  

To increase the accuracy of the RADAG, it is worthwhile to investigate a 
good method to tackle the problem when the classes in the lower levels are very similar. 
In addition, one may choose an effective algorithm to be used with reordering algorithm 
to select an optimal sequence of classifiers. Beside the bound on the generalization 
error used in this research, one may consider other factors that affect the accuracy of 
classification. Another measure that may place a bound on the generalization error of a 
consistent hyperplane with high confidence is the number of support vectors.   

The knowledge learned by the RADAG (or other multiclass SVMs such 
as DDAG and ADAG) is generally difficult to understand by humans compared to the 
decision tree which easily generates symbolic rules. The provision of a mechanism that 
can interpret the structure of the RADAG in the form of rules would be very useful. 
Knowledge extraction by forming symbolic rules from the internal nodes of the RADAG 
may be more effective when using with mission critical applications such as those 
engaged in aerospace, military, and medical systems. 
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