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CHAPTER I

INTRODUCTION

“Functional equations”, originally, are equations in which the unknowns are

functions. So it includes all differential equations, integral equations and recur-

rence relations, for examples, f ′′(x) + 2f ′(x) + f(x) = 0,
∫

f(x)dx = f(x) and

f(n) = f(n−1)+1. According to the book of J. Aczél and J. G. Dhombres[1], M.

Kuczma[10], we know that the history of the study of functional equations may

be back more than 2200 years when Archimedes made use of recurrences.

In more restrict sense, “functional equations”may be defined by the use of

terms. It disposes all differential equations and integral equations which have

conditions such as differentiability or integrability of functions that we have to

concern. In this sense, it appeared that the first work was written in 1747 by

d’Alembert[2]. His work was about the famous functional equation f(x + y) +

f(x − y) = 2f(x)f(y) which was called the cosine functional equation or many

ones referred to as d’Alembert’s functional equation to honor him. After that

many outstanding mathematicians such as Abel, Cauchy, Gauss and Euler studied

d’Alembert’s functional equation or posed individual equations.

The beginning of a theory of functional equations related to the work of Hun-

garian mathematician J. Aczél who was an excellent specialist in this field(see

[10]) but at the beginning period it was not systemized so the published works

were separately solved by individual techniques until A. R. Schweitzer[12] treated

the subject more uniformly.

Theory of functional equations then has been developed gradually. Especially
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in the last two decades, it has grown rapidly. A lot of mathematical papers inves-

tigating functional equations were published. Moreover, functional equations are

contained in the mathematical olympiad contest so students would widely learn

in this branch of mathematics. Now functional equations become an important

research field with its special methods, a number of interesting results and several

applications.

To make us more familiar with the functional equations, we give the following

famous examples [7]:

f(x + y) = f(x) + f(y) (Cauchy’s additive functional equation)

f(x + y) = f(x)f(y) (Cauchy’s exponential functional equation)

f(xy) = f(x) + f(y) (Cauchy’s logarithmic functional equation)

f(x + y) + f(x− y) = 2f(x) + 2f(y) (quadratic functional equation)

f(x+y
2

) = f(x)+f(y)
2

(Jensen’s functional equation)

f(x + y) + f(x− y) = 2f(x)f(y) (d’Alembert’s functional equation)

Although solving the functional equations is always the art that many math-

ematicians are crazy, investigating the functional inequalities becomes more in-

teresting problem in this moment. Therefore, in this thesis, we will study both

the solutions of the functional equations and the functional inequalities which is

called the stability problem.

In Chapter II, we will introduce a definition of a functional equation based

on the concept of terms. It gives us a sense of functional equations which are

different from differential equations and integral equations. Then we explain what

the general solutions and the stability problems are.

In chapter III, we introduce our new functional equation

cf(x)f(y)f(z) = f(x + y + z)− f(x + y − z)− f(x− y + z) + f(x− y − z)

which is called a “3-dimensional sine functional equation”and give its general
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solutions. Background of our study are given for readers to see what we thought,

how we did with our functional equation and why we separate the equation into

two cases c = 0 and c 6= 0, which are called the degenerate form and the non-

degenerate form, respectively.

In chapter IV, we investigate stabilities of the 3-dimensional sine functional

equation. We give the superstability for the non-degenerate case and the gener-

alized Hyers-Ulam-Rassias stability for the degenerate case.



CHAPTER II

PRELIMINARIES

2.1 Functional Equations

At first we will give a definition of a functional equation along which was given

in the book of Kuczma[10]. It is based on the concept of the terms.

Definition 2.1.1. A term is defined by the following conditions:

1. Independent variables are terms.

2. If t1, . . . , tp are terms and f(x1, . . . , xp) is a function of p variables, then

f(t1, . . . , tp) also is a term.

3. There exist no other terms.

Then a functional equation may be defined as follows:

Definition 2.1.2. A functional equation is an equality t1 = t2 between two

terms t1 and t2 which contain at least one unknown function and a finite number

of independent variables. This equality is to be satisfied identically with respect

to all the occurring variables in a certain set (of any sort).

The notion of a functional equation as defined above does not contain differ-

ential, integral, operator equation and generally equation in which infinitesimal

operations are performed.

As we know, the solutions of a functional equation must be functions. The next

section will tell about the behaviour of the solutions of the functional equation
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that we have to concern when we solve the equation. This information is referred

to [10].

2.2 General Solutions of a Functional Equation

Solution of a functional equation is directly related to the domain and the

range which the equation is defined on. So we should clearly state what class

the solution is in. The number and behaviour of solutions depends very strongly

on this. It is one of the important differences between differential equations and

functional equations.

To show the importance of the domain of functional equations, we give an

example as followings.

If we want to find the solution of the functional equation f(xy) = f(x) + f(y)

where f : R → R , we first set y = 0 in the equation. Then we get f(0) =

f(x) + f(0). Now we have that f(x) = 0 for all x ∈ R , indeed, it also satisfies

the investigated functional equation which means that the trivial function is the

only solution of this functional equation.

But if we investigate f : R+ → R , 0 is excluded from the domain. So we

cannot do as above. However we may easily see that both f ≡ 0 and f(x) = log x

are solutions of the functional equation. This shows that the domain is important.

Algebraically, we have to concern about what operation we can do between

variables and what properties we can use in the domain and the range that the

equation is postulated.

In the next section, we provide the history of the study of stability problems

which are now popular research problems for many mathematicians. The reader

can find it in [11] and [7].
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2.3 Stabilities of a Functional Equation

In 1940, S. M. Ulam[13] proposed the stability problem of a linear functional

equation, in his talk before the Mathematics Club of the University of Wisconsin.

Let G1 be a group and let G2 be a metric group with a metric

d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function h :

G1 → G2 satisfies the inequality d(h(xy), h(x)h(y))) < δ for all x, y ∈

G1 then there is a homomorphism H : G1 → G2 with d(h(x), H(x)) <

ε for all x ∈ G1?(see [11].)

In 1941, D. H. Hyers[8] answered this question affirmatively in the case of the

additive mapping in Banach spaces.

The Ulam’s question and the Hyers’ theorem become a source of the Hyers-

Ulam stability. The Hyers-Ulam-Rassias stability was from the theorem

that Th.M. Rassias[11] proved in 1978. It weakened the condition for the bound

of the norm of the Cauchy difference f(x + y)− f(x)− f(y).

In 1979, J. A. Baker, J. Lawrence and F. Zorzitto[4] introduced that if f

satisfies the stability inequality ||E1(f)−E2(f)|| ≤ δ where E1(f) and E2(f) are

functional expressions of a function f and δ > 0, then either f is bounded or

E1(f) = E2(f), then it is called a superstability.

Many mathematicians investigated this kind of stability problems. Baker[3]

studied the superstability of the cosine functional equation f(x + y) + f(x− y) =

2f(x)f(y). P. W. Cholewa[5] showed the superstability of the sine functional

equation f(x + y)f(x − y) = f(x)2 − f(y)2 on an abelian group. G. H. Kim[9]

showed the superstability of the generalized sine functional equation of the form

g(x)h(x) = f(x+y
2

)2 − f(x−y
2

)2 .
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Now we can briefly say that a study of stability of a funtional equation is to

consider functional inequality and ask: does there exist a solution of the func-

tional equation which approximates the solutions of the inequality within a given

distance?

Nowadays, a trend of work in the branch of functional equation is to solve the

functional equation and to investigate stability of the functional equation. So, in

the next two chapters, we would like to present our new functional equation and

investigate its general solution and, certainly, its stability. The history of study is

provided in the background section. It will tell readers how we get the equation

and what we discuss it.



CHAPTER III

A 3-DIMENSIONAL SINE FUNCTIONAL EQUATION

3.1 Background

We aim to extend the sine functional equation from 2 variables to 3 variables

so we observe many identities of sine function with 3 variables so that we obtain

some interesting properties listed belows:

−4 sin(x) sin(y) sin(z) = sin(x + y + z)− sin(x + y − z)

− sin(x− y + z) + sin(x− y − z),

4 sinh(x) sinh(y) sinh(z) = sinh(x + y + z)− sinh(x + y − z)

− sinh(x− y + z) + sinh(x− y − z).

With these properties, we then study a functional equation

cf(x)f(y)f(z) = f(x+y + z)−f(x+y− z)−f(x−y + z)+f(x−y− z), (3.1.1)

where c is a constant, and we will call it “a 3-dimensional sine functional

equation”.

We can easily see from the above identities that when c = −4 or c = 4 the sine

and hyperbolic sine are solutions of the equation, respectively. For another con-

stant c , we ask if its solutions are the same as the solutions of the sine functional

equation.

Because of the complexity of c , we will separate this problem into two cases,

c = 0 and c 6= 0. We note that when c = 0 the 3-dimensional sine functional



9

equation degenerates to the following form:

f(x + y + z)− f(x + y − z)− f(x− y + z) + f(x− y − z) = 0 (3.1.2)

which will be referred to as “the degenerate form of the 3-dimensional sine

functional equation”or simply “the degenerate form”. In the same sense,

when c 6= 0 we will refer to

cf(x)f(y)f(z) = f(x+ y + z)− f(x+ y− z)− f(x− y + z)+ f(x− y− z) (3.1.3)

as “the non-degenerate form of the 3-dimensional sine functional equa-

tion”or simply “the non-degenerate form”.

We can solve this problem, in the case of the function f : G → C where

G is an abelian 2-divisible group, that the class of the general solution of the

non-degenerate form is contained in the class of the general solution of the sine

functional equation and the general solution of the degenerate form is the same

as that of Jensen’s functional equation. It appropriately supports our aim.

In the next two sections, we will give the general solutions of these two cases.

3.2 The General Solution of the Non-degenerate Form

To solve the non-degenerate form, we would like to give the preview of proof

first. We begin with proving that the class of the general solution of the non-

degenerate form is contained in the class of the general solution of the sine func-

tional equation

f(x + y)f(x− y) = f(x)2 − f(y)2. (3.2.1)

It means that we can look for the solution only in the solution class of the sine

functional equation. Then we dispose the class which does not satisfy the non-

degenerate form and, finally, we prove that the remain class is our solution. Now

let us move the first step of proof with the following proposition.
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Proposition 3.2.1. Let G be an abelian group. If f : G → C satisfies the non-

degenerate form (3.1.3) for all x, y, z ∈ G, then f satisfies the sine functional

equation (3.2.1) for all x, y, z ∈ G.

Proof. Let c be a nonzero complex number. It is easy to see that if f is the zero

function then it satisfies both the non-degenerate form and the sine functional

equation. Thus let a non-trivial function f : G → C satisfy the non-degenerate

form.

Putting (x, y, z) = (x, y, y) in (3.1.3), we obtain

cf(x)f(y)2 = f(x + 2y)− f(x)− f(x) + f(x− 2y) (3.2.2)

Again putting (x, y, z) = (x, z, z) in (3.1.3), we obtain

cf(x)f(z)2 = f(x + 2z)− f(x)− f(x) + f(x− 2z) (3.2.3)

Then subtracting (3.2.3) from (3.2.2), we get

cf(x)
[
f(y)2 − f(z)2

]
= f(x + 2y)− f(x + 2z)− f(x− 2z) + f(x− 2y)

= cf(x)f(y + z)f(y − z)

So

cf(x)
[(

f(y)2 − f(z)2
)
− f(y + z)f(y − z)

]
= 0. (3.2.4)

Since this equation is true for any x, y, z ∈ G and c 6= 0 and f 6≡ 0, there exists

a ∈ C such that f(a) 6= 0. So we can set x = a and divide both sides of (3.2.4)

by cf(a). Then we derive f(y + z)f(y − z) = f(y)2 − f(z)2 for all x, y, z ∈ G.

This completes the proof.

This proposition allows us to look for our solution only in the class of the

general solution of the sine functional equation. So let us look at the theorem
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providing the general solution of the sine functional equation which is referred to

[1]. We should note here that a quadratically closed field F is a field with the

property that for all c ∈ F , there exists k ∈ F such that k2 = c (see [1],p.209).

Theorem 3.2.2. ([1],p.219) Let F be a quadratically closed field divisible by 2,

G be an abelian group divisible by 2. The general solutions f : G → F of the sine

functional equation (3.2.1) are given by

f(x) = a
h(x)− h(−x)

2
and f(x) = l(x) (3.2.5)

where h and l are arbitrary solutions of h(x + y) = h(x)h(y) and l(x + y) =

l(x) + l(y) and a is an arbitrary element of F.

It is still true when F = C so we can see that there are only 2 possible

classes which can be our solutions. The next process is to observe which class

the solution of the non-degenerate form is. The lemma below will cut the class of

additive function off.

Lemma 3.2.3. Let f : G → C be a complex-valued function defined on an abelian

group G. A non-trivial additive function f does not satisfy the non-degenerate

form (3.1.3).

Proof. Assume on a contrary that f is an additive function satisfying (3.1.3).

Using the properties of additive function that f(x+y) = f(x)+f(y) and f(−x) =

−f(x), we have

cf(x)f(y)f(z) = f(x + y + z)− f(x + y − z)− f(x− y + z) + f(x− y − z)

= f(x) + f(y) + f(z)− f(x)− f(y) + f(z)

− f(x) + f(y)− f(z) + f(x)− f(y)− f(z)

= 0.
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Then we set (x, y, z) = (x, x, x) in above equation, we get cf(x)3 = 0. Since

c 6= 0, so f(x) = 0 for all x ∈ G . It means that f is trivial so the proof is

completed.

Now the only possibility is that the general solution of the non-degenerate

form is given by f(x) = ah(x)−h(−x)
2

where h is an arbitrary solution of h(x+y) =

h(x)h(y) for all x, y ∈ G . But we can prove that a has to be in some specific

form. The proof is given below.

Lemma 3.2.4. For a given nonzero complex number c, let f : G → C be a

complex-valued function defined on an abelian group G. If f(x) = ah(x)−h(−x)
2

where a2 = 4
c

and h(x + y) = h(x)h(y) for all x, y ∈ G, then f satisfies the

non-degenerate form (3.1.3).

Proof. Assume that f(x) = ah(x)−h(−x)
2

where a2 = 4
c

and h(x + y) = h(x)h(y)

for all x, y ∈ G . Begin with the right-hand side of (3.1.3) which may be defined

as g(x, y, z), for convenience, and then transform it into the form of h by using

the assumption. So we get

g(x, y, z) = f(x + y + z)− f(x + y − z)− f(x− y + z) + f(x− y − z)

=
a

2
[h(x + y + z)− h(−x− y − z)− h(x + y − z) + h(−x− y + z)

− h(x− y + z) + h(−x + y − z) + h(x− y − z)− h(−x + y + z)].

(3.2.6)
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Then rearrange the derived equation (3.2.6) and use the property of h , we get

g(x, y, z) =
a

2
[h(x + y + z)− h(x + y − z)− h(x− y + z)

+ h(x− y − z)− h(−x + y + z) + h(−x + y − z)

+ h(−x− y + z)− h(−x− y − z)]

=
a

2
[h(x)h(y)h(z)− h(x)h(y)h(−z)− h(x)h(−y)h(z)

+ h(x)h(−y)h(−z)− h(−x)h(y)h(z) + h(−x)h(y)h(−z)

+ h(−x)h(−y)h(z)− h(−x)h(−y)h(−z)].

Now, we can factorize the above equation to

g(x, y, z) =
a

2
[(h(x)h(y)− h(x)h(−y)− h(−x)h(y) + h(−x)h(−y)) (h(z)− h(−z))]

=
a

2
[(h(x)− h(−x)) (h(y)− h(−y)) (h(z)− h(−z))] .

Then, by simple calculations, we can change the right-hand side into the form of

function f .

g(x, y, z) =
4

a2
f(x)f(y)f(z)

= cf(x)f(y)f(z).

It means that f satisfies the non-degenerate form. This completes the proof.

The Lemma 3.2.4 shows that the constant a of the solution depends on the

constant c of the non-degenerate form and must be only in that form. Hence we

get the theorem which gives the general solution of the non-degenerate form.

Theorem 3.2.5. The general solution f : G → C, where G is an abelian 2-

divisible group, of the non-degenerate form (3.1.3) is given by

f(x) = a
h(x)− h(−x)

2

where a2 = 4
c

and h is an arbitrary solution of h(x + y) = h(x)h(y) for all

x, y ∈ G.
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When f : R → C and f : R → R , the solutions, which are not necessary

continuous, of the sine functional equation are given in following corollary.

Corollary 3.2.6. ([1],p.219) The general solution f : R → C or f : R → R

of the sine functional equation in the class of measurable functions on a proper

interval are given by

f(x) = a sinh bx, f(x) = ax,

and

f(x) = a sinh bx, f(x) = a sin bx, f(x) = ax,

where a and b are complex or real constants, respectively.

Remark 3.2.1. To solve the equation for the case f : R → C and f : R → R ,

we can conclude from Lemma 3.2.3 that non-trivial additive functions f(x) = ax

are not the solution of the non-degenerate form and it is straightforward from

Theorem 3.2.5 that the solution f : R → C of the non-degenerate form has to be

given by f(x) = a sinh bx where a2 = 4
c

and b ∈ C .

Therefore we obtain the next corollary.

Corollary 3.2.7. The general solution f : R → C of the non-degenerate form

(3.1.3) in the class of measurable functions on a proper interval are given by

f(x) = a sinh bx

where b ∈ C and a2 = 4
c
.

For the case f : R → R , the constant a of the solution has to be classified.

We give it in the next theorem.
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Theorem 3.2.8. The general solution f : R → R of the non-degenerate form

(3.1.3) in the class of measurable functions on a proper interval are given by

f(x) = a sinh bx where a2 =
4

c
, c > 0 or

f(x) = a sin bx where a2 =
4

−c
, c < 0,

where b ∈ R.

Proof. It is obvious for the trivial function that it is a solution of the non-

degenerate form so we will discuss for the non-trivial function. From Corollary

3.2.6 and Remark 3.2.1, we can conclude that the solution must be in the class

that are given in Corollary 3.2.6. Thus we remain to classify the constant a . Let

us consider the followings.

If f(x) = a sinh bx satisfies (3.1.3), we must have

ca2 sinh(bx) sinh(by) sinh(bz) = sinh(bx + by + bz)− sinh(bx + by − bz)

− sinh(bx− by + bz) + sinh(bx− by − bz).

(3.2.7)

If f(x) = a sin bx satisfies (3.1.3), we must have

ca2 sin(bx) sin(by) sin(bz) = sin(bx + by + bz)− sin(bx + by − bz)

− sin(bx− by + bz) + sin(bx− by − bz). (3.2.8)

As the identities of hyperbolic sine and sine that we gave at the Background

section, we can see that the equation (3.2.7) and (3.2.8) will be valid only when

ca2 = 4 and ca2 = −4, respectively. In the other words, we can get the conclusions

as stated in theorem. This completes the proof.

From Lemma 3.2.3, we can conclude that if c = 0 then the additive function

is a solution of the degenerate form. This is an interesting result to study and

gives us a trail to solve the degenerate form.
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3.3 The General Solution of the Degenerate Form

For the degenerate form we can show that the degenerate form (3.1.2) has the

same general solution as the solution of Jensen’s functional equation,

f(x) + f(y) = 2f(
x + y

2
). (3.3.1)

This means that the degenerate form extends Jensen’s functional equation to 3

dimensions.

Theorem 3.3.1. Let G be an abelian 2-divisible group. A complex-valued function

f : G → C satisfies the degenerate form (3.1.2) for all x, y, z ∈ G if and only if

f satisfies Jensen’s functional equation (3.3.1) for all x, y, z ∈ G

Proof. To prove the necessity, let f : G → C satisfy (3.1.2).

Substituting (x, y, z) = (x, y+z
2

, y−z
2

) in (3.1.2). Thus we have

f(x + y)− f(x + z)− f(x− z) + f(x− y) = 0. (3.3.2)

Putting (x, y, z) = (x+y
2

, x−y
2

, 0) in (3.3.2), we obtain

f(x) + f(y) = 2f(
x + y

2
) ∀x, y ∈ G.

Conversely, let f : G → C satisfy the functional equation (3.3.1).

Putting (x, y) = (x + y, x− y) and (x, y) = (x + z, x− z) in (3.3.1), we obtain

f(x + y) + f(x− y) = 2f(x)

and

f(x + z) + f(x− z) = 2f(x),

respectively. With these two equations, we obtain

f(x + y) + f(x− y) = f(x + z) + f(x− z) ∀x, y, z ∈ G. (3.3.3)
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Then setting (x, y, z) = (x, y + z, y − z) in (3.3.3), we have

f(x + y + z)− f(x + y − z)− f(x− y + z) + f(x− y − z) = 0

for all x, y, z ∈ G as desired.

We can easily see that if f satisfies Cauchy’s additive functional equation so

f(0) = 0 then it satisfies Jensen’s functional equation. It implies that additive

function is a solution of the degenerate form. With this fact, it is reasonable to

add a condition f(0) = 0 and prove that the general solution of the degenerate

form is contained in the solution class of the sine functional equation.

Proposition 3.3.2. If f : G → C satisfies the degenerate form (3.1.2) for all

x, y, z ∈ G and f(0) = 0, then f satisfies the sine functional equation.

Proof. Let f satisfy (3.1.2). Then setting (x, y, z) = (x+y
2

, x
2
, y

2
), we get

f(x + y)− f(x)− f(y) + f(0) = 0.

Since f(0) = 0, we have

f(x + y) = f(x) + f(y).

Hence f satisfies Cauchy’s functional equation, by Theorem 3.2.2, we can conclude

that f satisfies the sine functional equation.

This concludes that if f(0) is fixed to be 0, then the solutions of our 3-

dimensional sine functional equation are contained in the solution class of the

sine functional equation for all c ∈ C .

We have provided all solutions of the 3-dimensional sine functional equation so

we will pass to the next chapter to study about the stabilities of the 3-dimensional

sine functional equation.



CHAPTER IV

THE STABILITIES OF THE 3-DIMENSIONAL SINE

FUNCTIONAL EQUATION

Similar to the study about solutions, the stability of our 3-dimensional sine

functional equation will be separated into two cases, the non-degenerate form and

the degenerate form. For the non-degenerate form, it appears that its general

solution is of the form of sine function which is one of trigonometric functions.

According to many papers investigating cosine functional equation and sine func-

tional equation (see [3],[5],[6],[9]), the superstability is the most popular stability

for this type. So we will study the superstability of the non-degenerate form as

they do with the classical sine functional equation.

4.1 The Superstability of the Non-degenerate Form

Now we consider the superstability of the non-degenerate form.

Theorem 4.1.1. Let δ > 0, c ∈ C−{0} and G be an abelian group. If a function

f : G → C satisfies the inequality

|cf(x)f(y)f(z)−f(x+y+z)+f(x+y−z)+f(x−y+z)−f(x−y−z)| ≤ δ, (4.1.1)

for all x, y, z ∈ G, then either f is bounded or satisfies the non-degenerate form

cf(x)f(y)f(z) = f(x+y + z)−f(x+y− z)−f(x−y + z)+f(x−y− z). (4.1.2)

Proof. Assume that f is an unbounded complex-valued function satisfying the

inequality (4.1.1) for all x, y, z ∈ G . So we can choose a sequence xn in G such
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that |cf(xn)2| > 2 and |f(xn)| → ∞ as n →∞.

Therefore, we have

|cf(xn)2 + 2| ≥ |cf(xn)2| − 2 > 0.

Next, putting (x, y, z) = (x, xn, xn) in (4.1.1), then we obtain∣∣cf(x)f(xn)2 − f(x + 2xn) + f(x) + f(x)− f(x− 2xn)
∣∣ ≤ δ∣∣f(x)(cf(xn)2 + 2)− f(x + 2xn)− f(x− 2xn)
∣∣ ≤ δ∣∣∣∣f(x)− f(x + 2xn) + f(x− 2xn)

cf(xn)2 + 2

∣∣∣∣ ≤ δ

|cf(xn)2 + 2|

Taking limit as n →∞ , then the right-hand side tends to 0. Thus we have

f(x) = lim
n→∞

f(x + 2xn) + f(x− 2xn)

cf(xn)2 + 2
. (4.1.3)

Putting (x, y, z) = (x, y, z + 2xn) and (x, y, z) = (x, y, z − 2xn) in (4.1.1), then

we get

|cf(x)f(y)f(z + 2xn)− f(x + y + z + 2xn) + f(x + y − z − 2xn)

+ f(x− y + z + 2xn)− f(x− y − z − 2xn)| ≤ δ (4.1.4)

and

|cf(x)f(y)f(z − 2xn)− f(x + y + z − 2xn) + f(x + y − z + 2xn)

+ f(x− y + z − 2xn)− f(x− y − z + 2xn)| ≤ δ, (4.1.5)

respectively. From the inequality (4.1.4), the inequality (4.1.5) and the triangle

inequality, we derive

|(cf(x)f(y)f(z + 2xn) + cf(x)f(y)f(z − 2xn))

− (f(x + y + z + 2xn) + f(x + y + z − 2xn))

+ (f(x + y − z − 2xn) + f(x + y − z + 2xn))

+ (f(x− y + z + 2xn) + f(x− y + z − 2xn))

− (f(x− y − z − 2xn) + f(x− y − z + 2xn))| ≤ 2δ,
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Then dividing both sides by |cf(xn)2 + 2| , we derive∣∣∣∣ (
cf(x)f(y)(f(z + 2xn) + f(z − 2xn))

cf(xn)2 + 2

)
−

(
f(x + y + z + 2xn) + f(x + y + z − 2xn)

cf(xn)2 + 2

)
+

(
f(x + y − z − 2xn) + f(x + y − z + 2xn)

cf(xn)2 + 2

)
+

(
f(x− y + z + 2xn) + f(x− y + z − 2xn)

cf(xn)2 + 2

)
−

(
f(x− y − z − 2xn) + f(x− y − z + 2xn)

cf(xn)2 + 2

) ∣∣∣∣ ≤ 2δ

|cf(xn)2 + 2|
.

By the definition of f(x) in (4.1.3) and taking limit as n → ∞ in the above

inequality, we have

cf(x)f(y)f(z) = f(x + y + z)− f(x + y − z)− f(x− y + z) + f(x− y − z).

So f satisfies the non-degenerate form. This completes the proof.

We would like to give some examples of bounded solutions of the inequality

(4.1.1).

Example 4.1.1. For c 6= 0 and δ > 0, we set f(x) = 3

√
δ

2|c| for all x ∈ G . So f

is a constant function and it is bounded. Next consider that:

|cf(x)f(y)f(z)− f(x + y + z) + f(x + y − z) + f(x− y + z)− f(x− y − z)|

= |c · δ

2|c|
− 0|

=
δ

2
≤ δ.

Example 4.1.2. For a non-linear function, we consider in the case of G = R ,

c = 4 and δ = 2. First we recall that when c = 4 the solution of the degenerate

form is f(x) = a sinh(bx) where a2 = 1. Then we set f(x) = 1
4
sin(x) where

x ∈ R . It is obvious that f is bounded by 1
4

and f is not a solution of the
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degenerate form with c = 4. Next substituting f in the inequality and using

identities of sine, we get that:

|4f(x)f(y)f(z)− f(x + y + z) + f(x + y − z) + f(x− y + z)− f(x− y − z)|

= | 1

16
sin(x) sin(y) sin(z)− 1

4
(sin(x + y + z)

− sin(x + y − z)− sin(x− y + z) + sin(x− y − z))|

= |( 1

16
+ 1) sin(x) sin(y) sin(z)|

≤ 2 = δ.

4.2 The Stability of the Degenerate Form

We will give the stability of the degenerate form in the sense of generalized

Hyers-Ulam-Rassias and treat Hyers-Ulam-Rassias stability and Hyers-Ulam sta-

bility as special cases.

Here we use a Banach space as the range of the solution so we recall that a

Banach space is a normed linear space which is complete in the metric defined by

its norm.

Theorem 4.2.1. Let E be a Banach space, G be an abelian 2-divisible group

and φ : G3 → [0,∞). If f : G → E satisfies the inequality

||f(x + y + z)− f(x + y− z)− f(x− y + z) + f(x− y− z)|| ≤ φ(x, y, z), (4.2.1)

where


Φ(x, y, z) :=

∞∑
k=1

2−kφ(2k−1x, 2k−2y, 2k−2z) < ∞ ∀x, y, z ∈ G. (I)

Φ(x, y, z) :=
∞∑

k=0

2kφ(2−k−1x, 2−k−2y, 2−k−2z) < ∞ ∀x, y, z ∈ G. (II)

Then there exists a unique function A : G → E as a solution of the degenerate

form (3.1.2) such that A(0) = f(0) and

||A(x)− f(x)|| ≤ Φ(x, x, x), ∀x ∈ G. (4.2.2)
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Proof. First we will prove for the case (I). Suppose that f : G → E satisfies the

inequality (4.2.1) where

Φ(x, y, z) :=
∞∑

k=1

1

2k
φ(2k−1x, 2k−2y, 2k−2z) < ∞

for x, y, z ∈ G .

Then putting (x, y, z) = (x, x
2
, x

2
) in (4.2.1), we get

||f(2x) + f(0)− 2f(x)|| ≤ φ(x,
x

2
,
x

2
), x ∈ G. (4.2.3)

Let F (x) := f(x)− f(0). Then F (0) = 0 and, from (4.2.3), we obtain

||F (2x)− 2F (x)|| = ||f(2x) + f(0)− 2f(x)|| ≤ φ(x,
x

2
,
x

2
). (4.2.4)

Replacing x by 2nx in the inequality (4.2.4) and dividing its result by 2n+1 , we

get ∥∥∥∥F (2n+1x)

2n+1
− F (2nx)

2n

∥∥∥∥ ≤ 1

2n+1
φ(2nx, 2n−1x, 2n−1x), (4.2.5)

for all x ∈ G and all nonnegative integers n. Using (4.2.5) and the triangle

inequality we have∥∥∥∥F (2mx)

2m
− F (2nx)

2n

∥∥∥∥ ≤ n∑
k=m+1

1

2k
φ(2k−1x, 2k−2x, 2k−2x) (4.2.6)

for all x ∈ G and all nonnegative integers m and n with m < n . This show

that

{
F (2nx)

2n

}
is a Cauchy sequence for all x ∈ G since the right side of (4.2.6)

converges to zero by the assumption of φ when m →∞ .

Since E is complete, the Cauchy sequence

{
F (2nx)

2n

}
is converge. So we can

define a mapping A : G → E by

A(x) := lim
n→∞

F (2nx)

2n
+ f(0), ∀x ∈ G. (4.2.7)

Setting x = 0 in (4.2.7), we derive A(0) = f(0). To show that A satisfies the

inequality (4.2.2), putting m = 0 in (4.2.6), we have∥∥∥∥F (x)− F (2nx)

2n

∥∥∥∥ ≤ n∑
k=1

1

2k
φ(2k−1x, 2k−2x, 2k−2x) (4.2.8)
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and then taking limit as n →∞ in (4.2.8), we obtain

‖f(x)− A(x)‖ ≤ Φ(x, x, x),

as desired.

Next we will show that A satisfies the degenerate form, let us consider:

||A(x + y + z)− A(x + y − z)− A(x− y + z) + A(x− y − z)||

= lim
n→∞

||F (2nx + 2ny + 2nz)

2n
− F (2nx + 2ny − 2nz)

2n

−F (2nx− 2ny + 2nz)

2n
+

F (2nx− 2ny − 2nz)

2n
||

= lim
n→∞

1

2n
||F (2nx + 2ny + 2nz)− F (2nx + 2ny − 2nz)

− F (2nx− 2ny + 2nz) + F (2nx− 2ny − 2nz)||

= lim
n→∞

1

2n
||f(2nx + 2ny + 2nz)− f(2nx + 2ny − 2nz)

− f(2nx− 2ny + 2nz) + f(2nx− 2ny − 2nz)||

≤ lim
n→∞

1

2n
φ(2n−1 · 2x, 2n−2 · 22y, 2n−2 · 22z)

By the property of Φ, the right-hand side of above inequality converges to 0 as

n →∞ . So

A(x + y + z)− A(x + y − z)− A(x− y + z) + A(x− y − z) = 0.

Finally, we will show the uniqueness of A . Assume that there is another function

Ã : G → C satisfying the degenerate form (3.1.3), Ã(0) = f(0) and satisfies the

inequality ||Ã(x)− f(x)|| ≤ Φ(x, x, x) ∀x ∈ G .

Since A and Ã satisfy the degenerate form, they also satisfy

f(2x) + f(0)− 2f(x) = 0 ∀x ∈ G

or the simpler form

f(x) =
1

2
[f(2x) + f(0)] ∀x ∈ G. (4.2.9)
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Substituting x by 2x, 22x, . . . , 2n−1x in (4.2.9) where n is a positive integer, we

get

f(2x) =
1

2
[f(22x) + f(0)]

f(22x) =
1

2
[f(23x) + f(0)]

...

f(2n−1x) =
1

2
[f(2nx) + f(0)].

By reverse substitutions of the above system, we derive

f(x) =
1

2n
f(2nx) +

n∑
k=1

1

2k
f(0)

which is satisfied by A and Ã .

Hence we obtain

||A(x)− Ã(x)|| = 1

2n
||A(2nx)− Ã(2nx)||+

n∑
k=1

1

2k
||A(0)− Ã(0)||. (4.2.10)

Since A(0) = f(0) = Ã(0), ||A(0)− Ã(0)|| = 0.

Then we take limit as n →∞ , we derive

||A(x)− Ã(x)|| = lim
n→∞

1

2n
||A(2nx)− Ã(2nx)||

≤ lim
n→∞

1

2n

(
||A(2nx)− f(2nx)||+ ||f(2nx)− Ã(2nx)||

)
≤ lim

n→∞

1

2n
2Φ(2nx, 2nx, 2nx)

≤ lim
n→∞

1

2n
2
∞∑

k=1

1

2k
φ(2k+n−1x, 2k+n−2x, 2k+n−2x)

≤ lim
n→∞

2
∞∑

k=n+1

1

2k
φ(2k−1x, 2k−2x, 2k−2x)

= 0.

We can conclude that A(x) = Ã(0). This proves the uniqueness of A .

Next we will consider for the case (II). The procedure of proof in this case runs
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similarly to the proof of the case (I). The differences are when we have the equation

(4.2.4), we will replace x by 2−nx and divide its result by 2−n+1 , instead. Then

we will get that

{
F (2−nx)

2−n

}
is a Cauchy sequence. And we can define

A(x) := lim
n→∞

F (2−nx)

2−n
+ f(0), ∀x ∈ G. (4.2.11)

Then the proof runs along the same as that of the case (I).

We will give the stability of the degenerate form in the sense of Ulam-Hyers-

Rassias. For this type of stability, we will use a normed space E1 instead of a

group G .

Corollary 4.2.2. Let E be a Banach space and E1 be a normed space. If f :

E1 → E satisfies the inequality

||f(x+y+z)−f(x+y−z)−f(x−y+z)+f(x−y−z)|| ≤ θ(‖x‖p +‖y‖p +‖z‖p),

(4.2.12)

for all x, y, z ∈ E1 , for some θ ≥ 0 and some 0 < p < 1 or p > 1. Then there

exists a unique function A : E1 → E as a solution of the degenerate form (3.1.2)

such that A(0) = f(0) and

||A(x)− f(x)|| ≤ θ
21−p + 1

|2− 2p|
‖x‖p. (4.2.13)

Proof. For the case 0 < p < 1, we have that −1 < p− 1 < 0 so 2−1 < 2p−1 < 1.

Then setting φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p) in the inequality (4.2.1) and
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consider that:

∞∑
k=1

2−kφ(2k−1x, 2k−2y, 2k−2z) =
∞∑

k=1

1

2k
θ(‖2k−1x‖p + ‖2k−2y‖p + ‖2k−2z‖p)

=
∞∑

k=1

1

2k
θ2(k−1)p(‖x‖p + ‖y

2
‖p + ‖z

2
‖p)

=
∞∑

k=1

θ

2p
2(p−1)k(‖x‖p + ‖y

2
‖p + ‖z

2
‖p)

=
θ

2p

2p−1

1− 2p−1
(‖x‖p + ‖y

2
‖p + ‖z

2
‖p)

= θ
2−1

1− 2p−1
(‖x‖p + ‖y

2
‖p + ‖z

2
‖p)

= θ
1

2− 2p
(‖x‖p + ‖y

2
‖p + ‖z

2
‖p) < ∞. (4.2.14)

So we can set Φ(x, y, z) :=
∑∞

k=1 2−kφ(2k−1x, 2k−2y, 2k−2z) which satisfies the

condition (I) in Theorem 4.2.1. Next consider that

Φ(x, x, x) = θ
1

2− 2p
(‖x‖p + ‖x

2
‖p + ‖x

2
‖p) = θ

21−p + 1

2− 2p
‖x‖p ≥ 0.

Then the proof runs along the same procedure as Theorem 4.2.1 and it implies

the conclusion (4.2.13).

For the case p > 1, we can set φ in the same way as above but we can prove

that φ will satisfy the condition (II) of Theorem 4.2.1 so we remain to observe

Φ(x, x, x).

Φ(x, x, x) : =
∞∑

k=0

2kφ(2−k−1x, 2−k−2x, 2−k−2x)

=
∞∑

k=0

2kθ(‖2−k−1x‖p + ‖2−k−2y‖p + ‖2−k−2z‖p)

=
∞∑

k=0

2kθ2(−k−1)p(‖x‖p + ‖x

2
‖p + ‖x

2
‖p)

=
∞∑

k=0

θ

2p
2(1−p)k(‖x‖p + ‖x

2
‖p + ‖x

2
‖p).

Since 1 − p < 0, 21−p < 1. Thus the sum in the above equation is convergent.
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Then we get

Φ(x, x, x) =
θ

2p

1

1− 21−p
(‖x‖p + ‖x

2
‖p + ‖x

2
‖p)

which can arrange into the form

Φ(x, x, x) = θ
1 + 21−p

2p − 2
‖x‖p

= θ
21−p + 1

2p − 2
‖x‖p ≥ 0.

Thus we proved the case p > 1.

In the case p = 0, we observe that it can be treated to the case of Hyers-Ulam

stability as follow.

Corollary 4.2.3. Let δ > 0, E be a Banach space and G be an abelian 2-divisible

group. If f : G → E satisfies the inequality

||f(x + y + z)− f(x + y − z)− f(x− y + z) + f(x− y − z)|| ≤ δ, (4.2.15)

for all x, y, z ∈ G. Then there exists a unique function A : G → E as a solution

of the degenerate form (3.1.2) such that A(0) = f(0) and

||A(x)− f(x)|| ≤ δ, x ∈ G. (4.2.16)

Proof. Putting φ(x, y, z) = δ in inequality (4.2.1), then it implies (4.2.15). The

proof runs along the same procedure as Theorem 4.2.1.
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