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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General 

A physical modeling of a three-dimensional solid by employing a 

mathematical domain that occupies the full space is standard and has extensively been 

used when responses of interest are localized in a zone with its length scale much 

smaller than that of the body. Influence of the outer boundary of such the domain is 

generally insignificant and can be discarded in the modeling without loss of accuracy. 

Such situations arise in various engineering applications, e.g. prediction of crack growth 

in hydraulic fracturing process where the fracture is generally treated as an isolated 

crack in an infinite medium, evaluation and assessment of service lifespan of large scale 

structures under cyclic loading where influence of initial defect of the structures can be 

characterized by prescribed small flaws, investigation of effective properties of materials 

possessing a microstructure (e.g. cracks, voids, inclusions), etc. One attractive aspect 

of using an infinite space as a representative domain is its mathematical ease 

associated with ignoring the remote boundary and this, as a consequence, allows 

certain boundary value problems admit analytical or close form solutions. For (most) 

problems where analytical solutions cannot readily be obtained, such an idealization 

significantly reduces complexity of the mathematical model in terms of both theoretical 

and numerical treatments in comparison with that involving a finite domain.  

Although an infinite domain is employed in the idealization, complexity of 

the mathematical model still exists if the body contains a line of singularity. This situation 

arises when a surface of displacement discontinuities such as cracks and dislocations 

is contained in the body. Within the context of linear elasticity, the induced stress field in 

the vicinity of the crack front is relatively complicate and, in fact, the stresses are 

singular along such crack front. An extensive stress analysis of this cracked body to 

extract essential fracture information along the crack boundary generally requires 
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special theoretical and numerical treatments, especially when the problem is formulated 

within the context of a three-dimensional boundary value problem. Another source of 

complexity is due to the presence of localized, complex zones within the domain. These 

complex zones may arise naturally in various situations, for instance, a plastic zone 

induced by the application of high intensity loads in a small region, containment of small 

defects and inhomogeneities, influence of nonmechanical effects on localized regions, 

etc. The stress and displacement fields in those zones and their immediate surrounding 

regions can obviously be complex and essentially need careful considerations. 

Beside the necessity to integrate such complexity described above into 

the mathematical model in order to capture the physical phenomena of interest to a level 

of sufficient accuracy, it poses, at the same time, theoretical and computational 

challenges to treat such complex boundary value problems. A focus of this current 

investigation is on the development of a mathematical and numerical model to 

accurately capture the behavior of an infinite body containing both cracks and localized 

complex zones.  

1.2 Background and review 

An analytical approach has extensively been used for analysis of stress 

in a solid body; however, its application is still restricted to situations where the body 

can be treated either within the context of a two-dimensional boundary value problem or 

within the context of a relatively simple three-dimensional problem (e.g. Timoshenko and 

Goodier, 1951; Fabrikant, 1989; Fabrikant, 1991). This limitation becomes more 

apparent when the level of complexity of the physical phenomena of interest increases 

(e.g. presence of nonlinearities, inhomogeneities, singularities, etc.). A physically-sound 

and sophisticated mathematical model must be employed in order to capture such 

complex behavior and, due to this complexity, the analytical or exact solution to this 

boundary value problem cannot readily be constructed. As a consequence, it 

necessitates the use of numerical techniques developed specifically to serve this 

purpose. 
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The finite element method (FEM) and the boundary element method 

(BEM) are two, robust numerical techniques mostly used in the modeling of various field 

problems. Both techniques possess a wide range of applications and there are 

situations that favor FEM over BEM and vice versa. The FEM has proven to be an 

efficient and powerful method for modeling a broad class of problems in structural and 

solid mechanics (e.g. Oden and Carey, 1984; Hughes, 2000; Zienkiewicz and Taylor, 

2000). The formulation of the FEM is sufficiently general allowing nonlinearities and non-

homogeneities present in the domain be treated. In addition, a final system of equations 

resulting from this method possesses a desirable form (e.g. symmetry, sparseness, and 

positive definiteness of the coefficient matrix). Nevertheless, the FEM contains major 

drawbacks and requires nontrivial treatments when applied to certain classes of 

problems. For instance, if the problem involves an infinite domain, use of a standard 

discretization procedure to such domain is impractical. To remove this difficulty, a 

domain may be truncated into a region that has finite dimensions; however, it still 

remains to define the suitable truncated surface and to impose appropriate boundary 

conditions on that surface. Another drawback results from that, when the standard FEM 

is directly applied to model crack problems, it has a limited capability to obtain 

adequately accurate fracture information (viz. stress intensity factors) with use of 

reasonably coarse meshes. This weakness becomes more apparent when mixed-mode 

problems are concerned. In general, it requires a substantially fine mesh in a region 

surrounding the crack front to achieve stress intensity factors of sufficient accuracy (e.g. 

Swenson and Ingraffea, 1988; Martha et al., 1993; Ayhan et al., 2003).  

Boundary element method (BEM) is efficient and attractive for modeling 

certain classes of problems since, for a domain that is free of distributed sources or 

body force, the governing equation involves only integrals on the boundary of the 

domain (e.g. Cruse, 1988; Bonnet, 1995; Xu and Ortiz, 1993; Li et al., 1998; Xu, 2000; 

Rungamornrat, 2006; Rungamornrat and Mear, 2008). As a consequence, the 

discretization effort is significantly reduced due to the reduction of dimensions of the 

problem by one. One advantage of the method over the FEM is its capability to model 

an infinite domain. In this situation, the remote boundary can be discarded without loss 
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via an appropriate treatment of remote conditions (e.g. Xu and Ortiz, 1993; Xu, 2000; 

Rungamornrat, 2006; Rungamornrat and Mear, 2008).  A particular methodology which 

has proven highly successful for analysis of three-dimensional, uncracked bodies (e.g. 

Bonnet, 1995; Xiao, 1998), analysis of isolated cracks in three-dimensional, isotropic 

and anisotropic, linearly elastic infinite media (e.g.  Xu and Ortiz, 1993; Li et al., 1998; 

Xu, 2000; Rungamornrat, 2006; Rungamornrat and Mear, 2008), and analysis of cracks 

in three-dimensional, isotropic and anisotropic, linearly elastic finite bodies (e.g. Li et al., 

1998; Frangi et al., 2002; Rungamornrat, 2006; Rungamornrat and Mear, 2008) is a 

weakly-singular, symmetric Galerkin boundary element method (SGBEM). The superior 

features of this technique over other types of the BEM are that all kernels appearing in 

the governing integral equations are only weakly singular of OOOO(1/r) and that a system of 

linear algebraic equations resulting from discretization has a symmetric coefficient 

matrix. Since the involved kernels are weakly-singular of OOOO(1/r), validity of the integral 

equations requires only that the boundary displacement data is continuous, hence 

allowing standard C
0
 interpolations be employed in the numerical approximation. It has 

been demonstrated, in addition, that the weakly-singular SGBEM along with the proper 

treatment of singular field near the crack front yields highly accurate fracture information 

(viz. stress intensity factors) even relatively coarse meshes are employed in the 

discretization (e.g. Li et al., 1998; Rungamornrat, 2006; Rungamornrat and Mear,  2008). 

While the weakly singular SGBEM yields very accurate numerical solutions for analysis 

of elasticity and fracture problems, it still contains unfavorable features and has limited 

capability of solving certain classes of problems. For instance, the method becomes 

inefficient or practically impossible for modeling problems involving nonlinearity or 

inhomogeneity.  As the geometry of the domain becomes increasingly complex and the 

size of the problem becomes large (e.g. a large number of elements is required to 

discretize the entire boundary of the domain), the method tends to become 

computationally expensive (in terms of both computational time and storage) in 

comparison with the standard Galerkin finite element method (FEM). Although the 

SGBEM gives rise to a symmetric coefficient matrix, the matrix itself is dense and each 

of its entries must be computed by means of a double surface integration. Another 

crucial drawback of the boundary integral equation techniques is due to the lack of 
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generality of the key formulation to treat nonlinearities and inhomogeneities in an 

efficient manner.  

In the past two decades, several attempts have been put into the 

development of an efficient numerical procedure that exploits advantages of both the 

BEM and the FEM for modeling two-dimensional and three-dimensional elasticity and 

fracture problems. The idea is to decompose the domain into two parts; the first part that 

is localized, possesses linear behavior, and may contain a surface of discontinuities 

(e.g. cracks and dislocations) is modeled by the boundary element methods, and the 

second part that may be nonlinear and nonhomogeneous and occupy the majority of the 

domain is treated by the finite element methods. Within the context of linear elasticity, 

there has been various investigations directed toward coupling of the conventional BEM 

and the standard FEM (e.g. Schnack and Turke, 1997; Elleithy et al., 2001; Elleithy and 

Tanaka, 2003) and toward coupling of the strongly singular SGBEM and the standard 

FEM (e.g. Ganguly et al., 2000; Haas and Kuhn, 2003; Yu, 2003). Note that the former 

coupling gives rise to a system of linear equations with a nonsymmetric coefficient 

matrix while the latter requires special numerical considerations for treatment of strongly 

singular integrals (e.g. Gray et al., 1990; Martin and Rizzo, 1996). An extensive review of 

various types of coupling between the boundary element methods and the finite element 

methods can be found in the work of Bonnet et al. (1998). A particular symmetric 

coupling strategy between the weakly-singular SGBEM and the FEM was first formulated 

by Xiao (1998) to treat cracks in isotropic, linearly elastic finite bodies. In his 

development, a pair of weakly singular, weak-form displacement and traction integral 

equations was utilized along with the principle of virtual work and the proper treatment of 

continuity conditions on the interface to establish the symmetric formulation. Later, 

Frangi and Novati (2003) successfully implemented XiaoAs formulation to model cracked 

bodies subjected to pure traction boundary conditions. However, in their technique, the 

discretization of the interface between the two regions (one treated by the standard FEM 

and the other treated by the SGBEM) was still restricted to matching or conforming 

meshes. Rungamornrat (2004) generalized the work of Li et al. (1998) to incorporate the 

material anisotropy and treatment of non-matching interface. On the basis of an 
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extensive literature survey, a coupling between the weakly singular SGBEM and the 

standard FEM that is capable of modeling a whole space with embedded isolated 

cracks and localized zones of complex behavior is still not available and the current 

investigation is proposed with a primary objective to fill this gap of knowledge.  

1.3 Research Objective 

The proposed research aims primarily to develop an efficient and 

accurate numerical technique capable of modeling an infinite solid medium that may 

contain displacement discontinuities (e.g. cracks and dislocations) and a region 

possessing complex behavior (e.g. localized nonlinear zone). The developed 

computational tool is then employed to investigate various boundary value problems of 

interest such as fracture problems. 

1.4 Scope of Research 

The development is established within the context of three-dimensional 

infinite media. The domain is restricted only to one that can be decomposed into two 

separate regions: a localized, finite region that may exhibit complex behavior and a 

(complementary) region that is unbounded, linearly elastic, free of body force and 

remote loading and may contain isolated cracks. 

1.5 Research Methodology 

The domain decomposition technique is proposed to partition an infinite 

body into two separate regions: a localized complex region and a complementary 

unbounded region. The governing equation of the former region is obtained in terms of a 

weak-form equation using the well-known principle of virtual work while, for the latter 

region, the governing equations are developed based on a pair of weakly singular, 

weak-form displacement and traction integral equations. The governing equations for 

the entire domain are obtained by combining the two sets of equations through the 

proper use of continuity conditions on the interface.   
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For the numerical treatment, a standard Galerkin approximation is 

proposed to discretize the entire set of governing equations. In particular, discretization 

of the localized complex region follows a standard procedure of the finite element 

method (FEM) while discretization of the complementary unbounded region exploits a 

well-known strategy called the weakly singular, symmetric Galerkin boundary element 

method (SGBEM). To enhance the modeling capability of the proposed technique, vast 

features of a reliable commercial finite element package is employed to treat the 

localized complex region.  

1.6 Research Significance 

The current investigation proposes a robust SGBEM-FEM coupling 

technique that is well-suited for treatment of a three-dimensional, infinite medium 

containing isolated cracks and localized complex regions. The attractive feature of the 

proposed technique is to utilize vast features of the FEM to treat the localized, complex 

regions and the weakly-singular, SGBEM to efficiently and accurately model an 

unbounded region containing a line of singularity (e.g. crack front). Use of weakly 

singular integral equations as a basis of the SGBEM formulation offers an ease in the 

numerical treatment, e.g. the choice of interpellants and numerical integration. An 

outcome of the study, the in-house computer program, offers an alternative, robust 

numerical tool capable of performing stress analysis of a three-dimensional infinite 

medium containing cracks and localized complex zones. The program is, in addition, 

supplemented by an efficient and accurate algorithm to extract the essential fracture 

information, e.g. the stress intensity factors.  

Another benefit of the current investigation is that it offers insight into the 

SGBEM-FEM coupling strategy both in terms of the implementation procedure and its 

performance and this, therefore, constitutes a basis for the development of a coupling 

between the SGBEM and the commercial finite element software to further enhance the 

modeling capability. 

 



CHAPTER 2 

 

PROBLEM FORMULATION 

 

Consider a three-dimensional, anisotropic, linearly elastic infinite body 

Ω  containing a crack and a localized nonlinear zone as shown schematically in Figure 

2.1. The two (geometrically coincident) surfaces of the crack are denoted by CS
+  and 

CS
−  with their unit normal (taken to be directed `into' the crack) satisfying + −=n n , and, 

for convenience, we select C CS S +≡  as a single surface to be utilized in representing 

the crack. Throughout the development carried out below, the body is assumed to be 

free of a body force and free of loading on its remote boundary, and both surfaces of the 

cracks are subjected to prescribed symmetric tractions C C C

+ −= − ≡t t t . In addition, 

the entire domain is assumed to be homogeneous, linearly elastic except in the 

localized region where nonlinearities and inhomogeneities can pertain. 

   

 

 

 

 

 

 

 

Figure 2.1 Schematic of a three-dimensional infinite medium containing a crack and a 

localized nonlinear zone indicated by a shaded region. 

Now, let us partition the domain Ω  along an imaginary surface IS  as 

indicated in Figure 2.2. This decomposition yields two sub-regions called a *BEM-region' 

which is denoted by BΩ and a *FEM-region' which is denoted by FΩ . The interface IS  

is selected such that the FEM-region is finite and contains a localized complex zone 

while the BEM-region is unbounded and contains a crack as depicted in Figure 2.3. 

While the development presented further below is restricted only to a domain containing 

Localized zone 

CS
+

CS
−

Ω
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a single crack and a single nonlinear zone, the formulation can readily be extended to 

treat multiple cracks and multiple nonlinear zones as long as the nonlinear zones are 

contained within one or more FEM-regions. 

 

 

 

 

 

 

 

 

 

Figure 2.2 Schematic of an imaginary surface IS  used in the domain decomposition 

 

 

 

 

 

 

 

                                      (a)                                                                  (b) 

Figure 2.3 Schematic of (a) the BEM-region BΩ  containing a crack and (b) the FEM-

region containing a nonlinear zone FΩ  

2.1 Governing equations for BΩ  

Consider first the BEM-region BΩ . The total boundary of this region, 

denoted by S , consists of the crack surface CS  on which the traction is fully prescribed 

and the interface IS  where neither the traction nor the displacement is known a priori. 

To clearly demonstrate the role of the interface between the two sub-regions in the 

formulation given below, we denote B

It  and B

Iu  as the unknown traction and unknown 

displacement on the interface of BΩ , respectively. 

CS
+

CS
−

IS
Ω

CS
+

B

IS

CS
−

BΩ

F

IStB

I

tF

I

FΩ
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As a basis for the development of a set of governing integral equations 

for the BEM-region BΩ , a pair of weakly singular, weak-form displacement and traction 

integral equations developed by Rungamornrat and Mear (2008) is employed. These 

two integral equations were derived from standard boundary integral relations for the 

displacement and stress along with a systematic regularization technique. The final from 

of the completely regularized integral equations is given in a form well-suited for 

establishing the symmetric formulation stated further below. Such pair of weak-form 

integral equations, when specialized to BΩ , takes the form    

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
 

2
I I I

I

I

k

k k k i i

S S S

k

k mj m j

S S

k

k i ij j

S S

t u dS t U t dS dS

t G D v dS dS

t n H v dS dS

= −

+ −

− −

∫ ∫ ∫

∫ ∫

∫ ∫

y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y ξ ξ y ξ ξ y

ɶ ɶ

ɶ

ɶ

       (2.1) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

 

I

I

tk

k k t k mj m j

S S S

j

t k tk j

S S

j

k l lk j

S S

c v t dS D v C D v dS dS

D v G t dS dS

v n H t dS dS

− = −

+ −

− −

∫ ∫ ∫

∫ ∫

∫ ∫

y y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y y ξ y ξ ξ y

ɶ ɶ

ɶ

ɶ

      (2.2) 

 

where ktɶ and kνɶ  are sufficiently smooth test functions, ( )mD ⋅  is a surface differential 

operator defined by 

 

( )
( ) ,m i ism

s

D n ε
ξ

∂ ⋅
⋅ =

∂
                      (2.3) 

 

( )jν ξ  is defined by 

 

( )
( )
( )

,

∆ ,

j I

j

j C

u S

u S
ν

 ∈
= 

∈

ξ ξ
ξ

ξ ξ
                                                (2.4) 
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with ( ) ( ) ( )∆ j j ju u u+ −= −ξ ξ ξ denoting the jump in the displacement across the 

discontinuity surface (i.e. the relative displacement of the two geometrically coincident 

surfaces associated with the displacement discontinuity), and the geometry-dependent 

constant ( )c y  is defined by 

 

( )
1/ 2 ,

1 ,

∈
= 

∈

y
y

y

I

C

S
c

S
                                                                                            (2.5) 

 

The kernel ( )p

ijH −ξ y  is independent of material properties and is given explicitly by  

 

( )
( )1

4

i i pjp

ij 3

ξ y δ
H

π r

−
− = −ξ y                                                                                    (2.6) 

 

where  pjδ  is a standard Kronecker-delta tensor, and the kernels ( )p

iU −ξ y , 

( )p

mjG −ξ y  and ( )tk

mjC −ξ y  are given, for generally anisotropic materials, by 

 

( ) ( )p mi

i mpU K− = −ξ y ξ y                                                                                                          (2.7) 

 

( ) ( )p bd

mj abm ajdc cpG ε E K− = −ξ y ξ y                                                                                (2.8) 

 

( ) ( )tk tkoe oe

mj mjdn dnC A K− = −ξ y ξ y                                                                                      (2.9) 

 

where ijklE  are elastic moduli and tkoe

mjdnA  and ( )ik

jlK −ξ y  are defined by 

 

1

3

tkoe

mjdn pam pbt bknd ajeo ajkb dneoA ε ε E E E E
 = − 
 

                                                                  (2.10) 

 

( ) ( ) ( )11
,

8

ik

jl i j2 kl

0

K z z ds
π r

−

⋅ =

− = ∫
z r

ξ y � z z z                                                                      (2.11) 

 

in which ( ), , , i ijkl ljk
r z E z= − = =r ξ y r z z  and the integral is to be evaluated over a 

unit circle z  = 1 on a plane normal to the position vector r . It is evident from (2.6)-

(2.9) that the kernels ( )p

i ijn H −ξ y , ( )p

iU −ξ y , ( )p

mjG −ξ y  and ( )tk

mjC −ξ y  are weakly 
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singular of OOOO(1/r) (see details in Xiao (1998) for discussion of the singularity nature of the 

kernel ( )p

ijH −ξ y ). 

For the special case of isotropy, the kernels ( )p

iU −ξ y , ( )p

mjG −ξ y  and 

( )tk

mjC −ξ y  reduces to 

 

( )
( )

( )3 41

16 1

p ip

i pi 3

r r
U δ

π µ r r

ν

ν

 −
= + −  

r                                                              (2.12) 

 

( )
( )

( )1
1 2

8 1

t pp

mj mpj tjm 2

r r
G ε ε

π r r
ν

ν
 

= − + −  
r                                                           (2.13) 

 

( )
( )

( )1 2
4

j ktk

mj tk mj km jt kj tm tm2

r rµ
C δ δ δ δ δ δ δ

π 1 r r
ν ν

ν
 

= − + − − −  
r                                 (2.14) 

 

where ν  is Poisson's ratio, µ  is the elastic shear modulus, and and ijkε  is a standard 

alternating symbol defined by  

 

1 123,  231, 312

1 213,  132, 321

 0

ε

=


= − =



ijk

, ijk

, ijk

, otherwise

                                                                          (2.15) 

 

Toward obtaining a symmetric system of governing integral equations for 

the BEM-region  BΩ , we apply the weak-form traction integral equation (2.2) to the 

crack surface CS  (with 0=vɶ  on IS ) and to the interface IS (with 0=vɶ  on CS )  and 

apply the weak-form displacement integral equation (2.1) to the interface IS . A final set 

of integral equations is given by 
 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

,∆ , , 2 ,

,∆ , , 0

,∆ , , 2 ,

B B B

CC IC I CI I C c

B B B B B

IC I II I I II I I

B B B B B B B B

IC I II I I II I I I I I

+ + = −

+ + =

+ + = −

v u t v v u v t

t u t t t u

u u t u u u u t

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

A B A FA B A FA B A FA B A F

B C DB C DB C DB C D

A D A FA D A FA D A FA D A F

                   (2.16)  
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in which { },B B

I Iu tɶɶ  are test functions defined on the interface IS , and where (with 

subscripts { }, ,P Q I C∈  introduced to specify the surface of integration) the bilinear 

integral operators , , ,PQ IC II IIAAAA B C DB C DB C DB C D  and B

PFFFF  are defined by 

 

( ) ( ) ( ) ( ) ( ) ( )
P Q

tk

PQ t k mj m j

S S

D X C D Y dS dS= −∫ ∫X,Y y ξ y ξ ξ yAAAA                       (2.17) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,

I C

I C

k

IC k mj m j

S S

k

k m mj j

S S

X G D Y dS dS

X n H Y dS dS

= −

− −

∫ ∫

∫ ∫

X Y y ξ y ξ y

y ξ y ξ ξ y

ξ

ξ

BBBB

                   (2.18) 

 

( ) ( ) ( ) ( ) ( ) ( ),

I I

I

II I i i

S S

X U Y dS dS= −∫ ∫X Y y ξ y ξ yξCCCC                                  (2.19) 

 

( ) ( ) ( ) ( )1
,

2
P

B

P i i

S

X Y dS= ∫X Y y y yFFFF                                                               (2.20) 

 

( ) ( ) ( ), , ,B

II II I= −X Y X Y X YD B FD B FD B FD B F                                                               (2.21) 

 

Note that the linear operators ( ),PQ X YAAAA  are in a symmetric form satisfying  

 

( ) ( ), ,PQ QP=X Y Y XA AA AA AA A                                                                                     (2.22) 

 

and, as a consequence, the left hand side of the system of equations (2.16) is in a 

symmetric form. The tractions on the interface are not prescribed and as such the 

quantity ( )2 ,B B B

I I Iu tɶFFFF  which appears on the right hand side of (2.16) does not 

constitute a loading term; this term will be addressed after the formulation for FΩ  is 

presented.  

2.2 Governing equations for FΩ  

We now consider the FEM-region FΩ . Note that the entire boundary of 

this region is the interface IS  on which both the traction and the displacement are 

unknown a priori. Here, we denote the traction and the displacement on the interface IS  



 14 

by F

Iu  and F

It , respectively, in order to distinguish them from the quantities on the 

interface of the BEM-region BΩ . Continuity of the displacements and tractions across 

the interface leads to the relations between the two sets of quantities:  

 

= −t tF B

I I                                                                                                                    (2.23) 

 

F B

I I=u u                                                                                                                     (2.24) 

The weak-form equation governing the FEM-region FΩ  can readily be obtained using 

the principle of virtual work and the resulting equation is given by 

 

( ) ( )2 F F F

FF I I I, ,=u σ u tɶ ɶK FK FK FK F                                                                                                     (2.25)  

 

in whichσ  is a stress tensor, uɶ  is a suitably well-behaved test function, F

Iuɶ  is the 

restriction of uɶ  on IS , and 

 

( ) ( ) ( ) ( )
Ω

,
F

i
FF ij

j

u
σ dV

y

 ∂
=  

∂  
∫u σ y y y

ɶ
ɶKKKK                                                                 (2.26) 

 

( ) ( ) ( ) ( )1

2
I

F F F F F

I I I Ii Ii

S

, u t dS= ∫u t y y yɶ ɶFFFF                                                                     (2.27) 

 

It is noted that a form of the stress tensor   depends primarily on the material constitutive 

employed. For in stance, if the FEM-region is made of linearly elastic material, the stress 

tensor can be expressed directly in terms of elastic constants ijklE  and the 

displacement u , and the integral operator (2.25) becomes 

  

( ) ( ) ( ) ( )
Ω

,
F

i k
FF ijkl

j l

u u
E dV

y y

   ∂ ∂
=    ∂ ∂    

∫u u
ɶ

ɶ y y yKKKK                                                   (2.28) 

 

We remark that the factor of one-half in (2.27) has been introduced for convenience to 

cast this term in a form analogous to that for ( ),B

P X YFFFF  given by (2.20), and this then 
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leads to the factor of two appearing on the right hand side of (2.25). It is also worth 

noting that the operator F

IFFFF  is defined on a portion of the boundary of FΩ  whereas B

IFFFF  

is defined on a portion of the boundary of BΩ ; this distinction will be particularly 

important in what follows. 

2.3 Symmetric governing equations for Ω  

A set of governing equations of the entire domain Ω  can readily be 

obtained by combining the weak-form equation (2.25) and a set of weakly-singular, 

weak-form integral equations (2.16). In particular, the last equation of (2.16) is 

subtracted by equation (2.25) and this leads to 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) [ ]

,∆ , , 2 ,

,∆ , , 0

,∆ ,

B B B

CC IC I CI I C c

B B B B B

IC I II I I II I I

B B B

IC I II I I II FF

+ + = −

+ + =

+ + − =

v u t v v u v t

t u t t t u

u u t u

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ

A B A FA B A FA B A FA B A F

B C DB C DB C DB C D

A D A KA D A KA D A KA D A K E

                      (2.29) 

 

in which 

 

[ ] ( ) ( ), ,B B

II FF II I I FF− = −u u u σɶ ɶA K A KA K A KA K A KA K A K                                                                        (2.30) 

 

and where E   is given by  

 

( ) ( )2 , ,B B B F F F

I I I I I I
 = − + u t u tɶ ɶF FF FF FF FE                                                                        (2.31) 

 

Upon invoking strong continuity of both the traction and the displacement test functions 

across the interface, i.e. F B

I I= −t t  and F B

I I=u uɶ ɶ , it can readily be verified that 

0=E . As a consequence, equation (2.25) is in a symmetric form provided that KKKKFF  is 

a symmetric integral operator. A set of equations (2.29) is employed as the key 

governing equations for the boundary value problem currently treated.  



CHAPTER 3 

 

NUMERICAL TREATMENTS 

 

This chapter briefly summarizes numerical procedure employed to 

construct numerical solutions of the boundary value problem formulated in chapter 2. 

The discretization of the BEM-region, the FEM-region and the interface between the two 

regions is first discussed. Then, components essential for numerical evaluation of 

weakly singular and nearly singular double surface integrals and for determination of 

general mixed-mode stress intensity factors are presented.  Finally, the key strategy for 

establishing the coupling between the in-house weakly singular SGBEM code and the 

reliable commercial finite element package is discussed.  

3.1 Discretization 

Standard Galerkin approximation is proposed to discretize the system of 

equations (2.29). For the BEM-region BΩ , only the single crack surface CS  and the 

interface IS  require discretization. In the neighborhood of the crack front, special nine-

node crack-tip elements enriched by proper shape functions are employed to 

accurately capture asymptotic fields near the singularity zone. This special type of 

elements was originated by Li et al. (1998) for analysis of cracks in isotropic, linearly 

elastic media and further generalized by Rungamornrat and Mear (2008) to take the 

material anisotropy into account. Use of these special elements renders relatively coarse 

meshes be used in the local zone near the crack with numerical results of sufficient 

accuracy. In addition to the high order approximation feature of the interpolation 

functions, extra degrees of freedom are introduced at the edge of the element to directly 

represent the gradient of the relative crack-face displacement. This then allows the 

mixed-mode stress intensity factors (i.e. mode-I, mode-II and mode-III stress intensity 

factors) be calculated directly in terms of those extra degrees of freedom. Extensive 

discussion can be found in the work of Li et al. (1998) and Rungamornrat and Mear 

(2008). For the current investigation, nine-node special crack tip elements (indicated in 
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Figure 3.1(a)) are employed to discretize the crack front. Both the majority of the crack 

surface (excluding the crack front) and the interface of the BEM-region are discretized 

by standard, isoparametric, eight-node or six-node C
0
 elements as shown schematically 

in Figure. 3.1(b)-(c).  

For the FEM-region FΩ , standard three-dimensional, isoparametric C
0
 

elements (e.g. fifteen-node prism elements and twenty-node brick elements as shown 

schematically in Figure. 3.2) are used throughout in the domain discretization. 

 

 

 

 

                            (a)                                  (b)                                    (c) 

Figure 3.1 Schematic of elements employed in the discretization of the BEM-region: (a) 

9-node crack-tip elements, (b) 8-node quadratic elements, and (c) 6-node quadratic 

elements 

 

 

 

 

 

 

                                           (a)                                                      (b) 

Figure 3.2 Schematic of elements employed in the discretization of the FEM-region, (a) 

20-node brick elements, and (b) 15-node prism elements 
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3.1.1 Treatment of interface 

The BEM-region and the FEM-region are discretized such that meshes 

on the interface of the two regions conform (i.e. the two discretized interfaces are 

geometrically identical). A simple means to generate these conforming meshes is to 

discretize the FEM-region first and then use its surface mesh as the interface mesh of 

the BEM-region. With this strategy, all nodal points on both discretized interfaces are 

coincident. The key advantage of using conforming meshes is that the strong continuity 

of the displacement, the traction, and the test functions across the interface can be 

enforced exactly and, as a result, the condition 0=E  is also satisfied exactly in the 

discretization level. 

For convenience in the assembly process, numbering of all nodes on the 

interface of the BEM-region and the interface of the FEM-region is chosen to be 

identical. This numbering scheme automatically generates the same degrees of freedom 

for any two nodes on both interfaces with the same coordinates; as a consequence, the 

continuity across the interface is enforced.   

3.2 Numerical integration 

For the FEM-region, all integrals arising from the discretization of the 

weak-form equation contain only regular integrands and, as a result, they can be 

efficiently and accurately integrated by standard Gaussian quadrature. In the contrary, 

numerical evaluation of integrals arising from the discretization of the BEM-region is 

nontrivial since it involves the treatment of three types of double surface integrals: 

regular integrals, weakly singular integrals and nearly singular integrals. The numerical 

integration for the first type is standard while the last two types require special care. 

3.2.1 Regular double surface integral 

The regular double surface integral arises when a pair of outer and inner 

elements resulting from the discretization is remote relative to the characteristic 

dimension of the two elements (i.e. the distance between any source and field points is 
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relatively large when compared with the size of the two elements). This therefore renders 

its integrand nonsingular and well-behaved, and such integral can accurately and 

efficiently be integrated by standard Gaussian quadrature. 

3.2.2 Weakly singular double surface integral 

The weakly singular double surface integral arises when the outer and 

inner elements resulting from the discretization are coincident. Its integrand is therefore 

singular and of order 1/r. This particular type of integrals can be integrated efficiently by 

using special quadratures based on a triangular polar transformation (see details in the 

work of Hayami and Brebbia (1988) and Xiao (1998)). Such variable transformation is 

utilized primarily to supply the jacobian of transformation to remove the 1/r-singularity. 

To further regularize the integrand to reduce the possible rapid variation resulting from 

the triangular polar transformation, an additional variable transformation based on a 

logarithmic family suggested by Xiao (1998) is utilized. The final double surface integral 

contains only regular and well-behaved integrand proper for integrating by Gaussian 

quadrature.   

3.2.3 Nearly singular double surface integral 

The most challenging task is to evaluate nearly singular integrals that 

arise when the two surfaces of integration are relatively close but not coincident. The 

integrand exhibits rapid variation and this renders the numerical integration by a 

standard Gaussian quadrature inefficient (see Xiao, 1998). To improve the accuracy of 

the numerical integration, the triangular polar transformation is employed first and then 

followed by a series of logarithmic transformations in both radial and angular directions 

to regularize the rapid-variation integrand. The resulting integral is well-suited for being 

integrated by a standard Gaussian quadrature (e.g. Hayami and Brebbia, 1988; Xiao, 

1998). 

3.3 Evaluation of weakly singular kernels 

In addition to the regularization procedure to eliminate the singularity and 

smoothen the rapid variation of integrands of double surface integrals, another important 
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aspect needs to be considered is the efficient evaluation of all involved kernels 

{ ( ) ( )p

m mjn H −ξ ξ y , ( ) ( )p

m mjn H −y ξ y , ( )p

iU −ξ y , ( )p

mjG −ξ y , ( )tk

mjC −ξ y }. For the first 

two kernels ( ) ( )p

m mjn H −ξ ξ y  and ( ) ( )p

m mjn H −y ξ y , they involve the computation of unit 

normal vector n and an explicit and simple function p

mjH . This can readily be achieved 

via a standard procedure. For the last three kernels, they admit explicit form in terms of 

ordinary functions for isotropic linear elastic materials (see equations (2.12)-(2.14)) and, 

as a consequence, their values can readily be obtained. In the contrary, the kernels 

( )p

iU −ξ y , ( )p

mjG −ξ y  and ( )tk

mjC −ξ y for general anisotropy are expressed in terms of 

a line integral over a unit circle (see equations (2.7)-(2.9)). Direct evaluation of such the 

line integral for every pair of points ( , )ξ y  arising from the numerical integration is 

obviously computationally expensive. To avoid this massive computation, we adopt a 

well-known strategy, called the interpolation technique (e.g. Rungamornrat, 2006; 

Rungamornrat and Mear, 2008), to approximate values of those kernels. Specifically, the 

interpolant of each kernel is constructed based on a two-dimensional grid using 

standard quadratic shape functions. Values of kernels at all grid points are obtained by 

performing direct numerical integration of the line integral (2.11) via Gaussian 

quadrature and then using the relations (2.7)-(2.9). The accuracy of such approximation 

can readily be controlled by the refinement of the interpolation grid. Extensive 

discussion of this interpolation scheme can be found in the work of Rungamornrat 

(2004) and Rungamornrat and Mear (2008).  

3.4 Linear and nonlinear solvers 

For linear elastic boundary value problems, the discretization yields a 

system of linear algebraic equations. A coefficient matrix is essentially symmetric but 

non-definite (i.e. it contains both positive and negative eigenvalues). The latter feature 

results from that both the displacement and traction integral equations are employed 

along the interface. For an in-house coupling code implemented, a Jacobi-

preconditioning conjugate gradient method is utilized to solve such system of linear 

equations. While coefficient matrix is non-definite, it has been found in various numerical 

experiments that the method yields a converged solution with relatively small number of 

iterations. For a coupling between the SGBEM and the commercial FE package, a 
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system of linear equations is solved directly by a linear solver provided by the FE 

package. 

For nonlinear boundary value problems, only the coupling between the 

SGBEM and the commercial FE package is implemented (see details in section 3.6). A 

system of nonlinear algebraic equations resulting from the discretization is solved 

directly by a nonlinear solver of FE package. 

3.5 Determination of stress intensity factors 

For linear fracture analysis, the primary quantities of interest are stress 

intensity factors; this fracture data provides a measure of the dominant behavior of the 

stress field in the vicinity of the crack front and it is an essential ingredient  for predicting 

fracture initiation, propagation pattern and fatigue assessment. With use of special 

crack-tip elements to approximate field quantities in the neighboring of the crack front, it 

additionally provides an accurate means to extract the mix-mode stress intensity factors 

along the crack front. This feature results from the fact that the special crack-tip element 

contains extra degrees of freedom along the crack front and their values correspond 

directly to the gradient of the relative crack-face displacement. Once the system of 

linear or nonlinear equations is solved, nodal quantities along the crack front are 

extracted and then used to compute all stress intensity factors. 

An explicit expression for the mixed-mode stress intensity factors in 

terms of data along the crack front, local geometry near the crack boundary and the 

material properties can be found in the work of Li et al. (1998) for cracks in isotropic 

materials and Rungamornrat and Mear (2008) for cracks in general anisotropic 

materials. In the current investigation, the formula proposed by Rungamornrat and Mear 

(2008) is implemented for both cracks embedded in isotropic and generally anisotropic 

media. Such explicit expression is briefly discussed below.    

Consider a crack-tip element located along the crack front where cx  

denotes a node located on the crack front, { }1 2 3, ,x x x  is a local cartesian coordinate 

system centered at cx  and { }1 2 3, ,e e e  is a set of orthonormal base vectors as shown 
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schematically in Figure. 3.3. The mixed-mode stress intensity factors at the point cx is 

given by 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Local coordinate system for calculation of stress intensity factors 

 

*( ) ( ) ( )
2 sin

i c im c m ck B u
J

π

β
=x x x     (3.1) 

 

where * ( )m cu x  is the quantity at the point cx  defined in terms of extra degrees of 

freedom along the crack front by  

 

*

( )( ) (ξ , 1)e

m c m i i c

i

u u ψ= −∑x  ,  (3.2) 

with the summation taken over all nodes of an element, ( )

e

m iu  representing the 

components of nodal data at the i
th
 node, (ξ , 1)c −  denoting the natural coordinates of 

cx , and (ξ , 1)i cψ −  corresponding to the value of a standard element shape function 

associated with the i
th
 node evaluated at the point cx . An angle β  and a constant J  

are defined by 

    

2e

1e
3e

2x

1x
3x

eξ

eη

φc
x

β

a

b

crack front 

crack-tip element 
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1sin .nβ = −e e ,  (3.3) 

 

1
(ξ , 1)c

n c
J η

∂
= −

∂

r
e  ,  (3.4) 

 

(ξ , 1)c
cJ

η

∂
= −
∂

r
 ,  (3.5) 

 

(ξ, ) (ξ, )c cn n= −r x x .  (3.6) 

 

It is important to point out that the formula (3.1) allows the mixed-mode stress intensity 

factors be computed only in terms of data at nodes located on the crack front. This is 

due to the fact that (ξ , 1)i c −ψ  vanishes for nodes not on the crack front. Details of 

derivation of the expression (3.1) are referred to the work of Li et al. (1998) and 

Rungamornrat and Mear (2008). 

3.6 Coupling of SGBEM with commercial FE package 

To enhance the modeling capability, the weakly singular SGBEM is then 

coupled with a reliable, commercial finite element code. The key objective is to exploit 

vast features of the FE package (e.g. mesh generation, user-defined elements, powerful 

linear and nonlinear solvers, and various material models, etc.) to treat a complex, 

localized FEM-region and utilize the SGBEM in-house code to supply information 

associated with the majority of the domain that is unbounded and possibly contains 

isolated discontinuities.    

In the coupling process, the BEM-region is first discretized to obtain a 

system of linear algebraic equations. The corresponding coefficient matrix and the 

vector involving the prescribed data are constructed using the in-house code and they 

can be viewed as a stiffness matrix and a load vector of a Dsuper elementE containing all 

degrees of freedom of the BEM-region. This piece of information is then imported into 

the FE package via a user-defined subroutine (UEL) and then assembled with element 
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stiffness matrices contributed from the discretized FEM-region. Since meshes of both 

interfaces (one associated with the BEM-region and the other corresponding to the FEM-

region) are conforming, the assembly procedure can readily be achieved by using 

numbering strategy. Specifically, nodes on the interface of the BEM-region are named 

identical to nodes on the interface of the FEM-region (associated with the same 

displacement degrees of freedom). It is worth noting that each interface node of the 

BEM-region possesses six degrees of freedom (i.e. three displacement degrees of 

freedom and three traction degrees of freedom) but there are only three (displacement) 

degrees of freedom per interface node of the FEM-region. To overcome this difficulty, 

the interface node of the BEM-region is treated as a double node where the first node is 

chosen to represent the displacement degrees of freedom and is named the same as 

the interface node of the FEM-region while the second node is fictitiously chosen with 

different name to represent the traction degrees of freedom. By this means, the 

assembling procedure follows naturally that for a standard finite element. 

Once the coupling analysis is complete, nodal quantities associated with 

the BEM-region are extracted from the output file generated by the FE package and 

then post-processed. For instance, the displacement and stress within the BEM-region 

can readily be computed from the standard displacement and stress boundary integral 

relations, and the stress intensity factors can be calculated from the explicit expression 

(3.1). 

 

 



CHAPTER 4 

 

NUMERICAL RESULTS 

   

As a means to verify both the formulation and the numerical 

implementations, we first perform numerical experiments on boundary value problems in 

which the analytical solution exists. In the analysis, a series of mesh refinement is 

adopted in order to investigate both the convergence and accuracy of the numerical 

solutions. Once the method is verified, it is then applied to solve more complex 

boundary value problems that may not has a close form solution in order to demonstrate 

its capability and versatility. For brevity of the presentation, a selected set of results are 

reported and discussed. 

4.1 Spherical void under uniform pressure 

 

 

 

 

 

 

Figure 4.1 Schematic of a three-dimensional infinite medium containing a spherical void 

of radius a  

Consider a spherical void of radius a  embedded in a three-dimensional 

infinite medium as shown schematically in Figure 4.1. The void is subjected to the 

uniform normal traction (i.e. uniform pressure) 0σ . In the numerical experiments, two 

material models are investigated: one associated with an isotropic, linearly elastic 

   

o
σ  

2x  

1x  

3x  
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material with Young+s modulus E  and Poisson ratio 0.3ν =  and the other 

corresponding to an isotropic hardening material with the uniaxial stress-strain relation 

shown in Figure 4.2. 1E  and 2E  denote the modulus of the elastic zone and the 

modulus of the hardening part, respectively, and 
y

σ  denotes the initial yielding stress.  

 

 

 

 

 

Figure 4.2 Relation between uniaxial stress and plastic strain of an isotropic hardening 

material 

To test the coupling technique, we first decompose the body into two 

regions by a fictitious spherical surface of radius 5a  and centered at the origin as 

shown by a dashed line in Figure 4.3. It is important to remark that such a surface must 

be chosen relatively large to ensure that the inelastic zone that may exist is fully 

contained in the FEM-region. 

 

 

 

 

 

 

Figure 4.3 Decomposition of domain into BEM-region and FEM-region by a fictitious 

spherical surface of radius 5a  
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Mesh 1 Mesh 2 Mesh 3 

In the analysis, three meshes are adopted as shown in Figure 4.4. While 

the meshes are shown only for the FEM-region, meshes for the BEM-region are identical 

to the interface meshes of the FEM-region. It is worth to point out that the level of 

refinement of all three meshes is significantly different. Specifically, Mesh 1 which is 

relatively coarse consists of 2 layers and each layer consists of 12 elements; Mesh 2 

consists of 4 layers and each layer consists of 32 elements; and Mesh 3 consists of 8 

layers and each layer consists of 144 elements.  

 

 

 

 

 

 

Figure 4.4 Schematic of three meshes used in the analysis 

 

4.1.1 Isotropic linearly elastic material 

For linear elasticity, this particular boundary value problem admits the 

closed form solution (e.g.). Since the problem is radial-symmetric, only radial 

displacement 
r
u  and normal stress components { }, ,

rr θθ φφσ σ σ are non-zero and they 

are given explicitly by (these components are with respect to a standard spherical 

coordinate system { , , }r θ φ  centered at the center of the void) 
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This analytical solution is employed to validate the proposed formulation and the 

numerical implementation. 

Numerical results for the radial displacement obtained from the three 

meshes are reported and compared with the exact solution in Figure 4.5. As evident 

from this set of results, solutions obtained from Mesh 2 and Mesh 3 are highly accurate  

while solutions obtained from Mesh 1 are reasonably accurate except in the region near 

the surface of the void. The discrepancy observed in Mesh 1 is due to that the level of 

refinement is not sufficient to accurately capture the geometry, loading condition, and 

the response in the local region near the surface of the void.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Normalized radial displacement versus the normalized radial coordinate for 

isotropic, linearly elastic material with 0.3ν =  

We further investigate the quality of numerical solutions for the stress. 

Since all non-zero stress components of the stress are related by (4.2), only results for 

the radial stress component are reported. Figure 4.6 shows results of the normalized 

radial stress obtained from all three meshes and the exact solution versus the 
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normalized radial coordinate. It is observed that Mesh 3 still yields results that are 

almost indistinguishable from the exact solution, while Mesh 1 and Mesh 2 give accurate 

results only for relatively large r and the level of accuracy decreases as the distance r 

approaches a. It is noted by passing that the degeneracy of the accuracy in computing 

stress is usual in a standard, displacement-based, finite element technique.       

 

 

 

 

 

 

 

 

 

Figure 4.6 Normalized radial stress versus the normalized radial coordinate for isotropic, 

linearly elastic material with 0.3ν =  

To demonstrate the important role of the SGBEM in the treatment of an 

unbounded part of the domain instead of truncating the body to obtain a finite domain 

as practically employed in the FEM, we perform another FE analysis of the FEM-region 

without coupling with the BEM-region but instead imposing zero displacement condition. 

The radial displacement and radial stress obtained for this particular case using Mesh 3 

are reported along with the exact solution and those obtained from the coupling 

technique in Figure 4.7 and Figure 4.8, respectively. As evident from results, numerical 

solutions obtained from the FEM with a domain truncation strategy are deviated from the 

exact solution when it moves close to the truncation surface while the proposed 

technique yields almost identical results to the exact solution.    
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Figure 4.7 Normalized radial displacement versus the normalized radial coordinate for 

isotropic, linearly elastic material with 0.3ν = . Results are obtained from Mesh 3 for 

both the coupling technique and the FE technique with domain truncation. 

 

 

 

 

 

 

 

 

Figure 4.8 Normalized radial stress versus the normalized radial coordinate for isotropic, 

linearly elastic material with 0.3ν = . Results are obtained from Mesh 3 for both the 

coupling technique and the FE technique with domain truncation. 
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4.1.2 Isotropic hardening material 

For this particular case, we focus attention to the material with no 

hardening modulus (i.e. 2 0E = ) since the corresponding boundary value problem 

admits the close form solution. For a sufficiently high applied pressure 
o
σ , a layer close 

to the surface of void is inelastic and the size of such inelastic zone (measured by the 

radius
o
r ) becomes larger as 

o
σ  increases. By incorporating 2J flow theory of plasticity 

and symmetry along with equilibrium equation and strain-displacement relation, the 

radial displacement and the radial stress can readily be obtained as given below. 
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where the Poisson ratio ν  is taken to be 0.3 and 
o
r is the radius of an inelastic zone 

given by 

 

0 1

2 3

0

y
r ae

σ
σ

 
 −  
 =                                                                                                            (4.5) 

 

In the analysis, we take the pressure 1.625
o y
σ σ=  to ensure that the body contains an 

inelastic zone; in fact, this selected applied pressure corresponds to 

0 1.615r a a= > . Numerical results obtained from the coupling technique are 

reported along with the exact solution in Figure 4.9 for the normalized radial 

displacement and in Figure 4.10 for the normalized radial stress. It can be concluded 

from computed solutions that they converge to the exact solution as the mesh is refined. 
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In particular, results obtained from Mesh 3 are nearly indistinguishable from the 

benchmark solution. It is worth noting that results obtained from the same level of mesh 

refinement are less accurate than those for the linear elasticity case. This is due to 

complexity posed by the presence of an inelastic zone near the surface of the void and, 

to capture this phenomenon accurately, it therefore requires sufficiently fine meshes.   

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Normalized radial displacement versus the normalized radial coordinate for 

isotropic hardening material with 2 0E =  

4.2 Penny-shaped crack in an infinite media 

Consider a penny-shaped crack of radius a  which is embedded in a 

linearly elastic, infinite medium as shown schematically in Figure 4.11(a). The 

constituting material is assumed to be either an isotropic material with Poisson ratio ν  = 

0.3 or zinc and graphite-reinforced composite. The last two materials are transversely 

isotropic with the axis of material symmetry oriented along the x3-axis and their elastic 

constants as shown in Table 4.1 can be found in the work of Kassir and Sih (1975) and 

Hyer (1998). The crack is assumed to be subjected to two types of traction boundary 

conditions: the uniform normal traction 0σ  (i.e. t1 = t2 = 0, t3 = 0σ ) as indicated in Figure 
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4.11(b) and the uniform shear traction 0τ  along the x1-axis (i.e. t1 = 0τ , t2 = t3 = 0) as 

shown in Figure 4.11(c).  

 

 

 

 

 

 

 

 

 

Figure 4.10 Normalized radial stress versus the normalized radial coordinate for 

isotropic hardening material with 2 0E =  

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.11 (a) Schematic of an infinite medium containing a penny-shaped crack, (b) 

crack under uniform normal traction 0σ  and (c) crack under uniform shear traction 0τ    
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Table 4.1 Elastic constants of zinc and graphite-reinforced composite (e.g. Kassir and 

Sih, 1975; Hyer, 1998). The axis of material symmetry is taken to direct along the x3-

coordinate direction.   

(×10
6
) psi 

Elastic constants 
Zinc Graphite 

E1111 16.09 14.683 

E1122 3.35 6.986   

E1133 5.01 5.689   

E3333 6.10 144.762   

E1313 3.83 4.050 

 

The first loading condition gives rise to an opening-mode problem with 

the mode-I stress intensity factor being constant along the crack front and independent 

of material properties while the second loading condition yields non-zero mode-II and 

mode-III stress intensity factors that vary as a function of position along the crack front. 

The analytical solutions of the two cases can be found in the work of Fabrikant (1989). 

As a means to verify the coupling formulation and implementation, we choose a cube of 

material of dimensions 2ax2ax2a centered at (0, 0, 2a) as indicated in Figure 4.12 and 

define it as a FEM-region. In the analysis, we generate three meshes for both the crack 

surface and the FEM-region as depicted in Figure 4.13. 

 

 

 

 

 

 

 

 

 

Figure 4.12 Schematic of a selected FEM-region and the remaining BEM-region 
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Figure 4.13 Schematic of three meshes used in the analysis 

 

For the first loading condition, numerical solutions for the mode-I stress 

intensity factor normalized by the exact solution are reported in Table4.2 for three 

materials and three meshes. Clearly from results obtained, the current technique yields 

highly accurate stress intensity factor with error less than 1.5%, 0.6% and 0.1% for Mesh 

1, Mesh 2 and Mesh 3, respectively. This implies that the numerical solutions exhibit only 

weak dependence on the mesh refinement and a relatively coarse mesh can be used to 

generate results of sufficient accuracy. 

 

Table 4.2 Normalized mode-I stress intensity factor for penny-shaped crack subjected to 

uniform normal traction 

 

Transversely isotropic material 

 ,/
I I ex
K K  

Isotropic material 

,/
I I ex
K K  

Zinc Graphite 
Mesh 

0θ ° =  90θ ° =  0θ ° =  90θ ° =  0θ ° =  90θ ° =  

1 0.9919 0.9920 0.9890 0.9890 0.9841 0.9841 

2 1.0008 1.0008 1.0001 1.0001 1.0053 1.0053 

3 1.0002 1.0002 1.0004 1.0004 1.0006 1.0001 

Mesh 2 

Mesh 3 

FEM BEM 

Mesh 1 
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For the second loading condition, the normalized mode-II and mode-III 

stress intensity factors (K2 and K3) are reported in Figure 4.14, Figure 4.15 and Figure 

4.16 for isotropic material, zinc and graphite-reinforced composite, respectively. Based 

on this set of results, it can be concluded that numerical solutions obtained from the 

three meshes are in excellent agreement with the exact solution; in particular, a coarse 

mesh also yields results of sufficient accuracy. This capability of the proposed 

technique is due to the use of special crack-tip elements to model the relative crack-

faced displacement in the vicinity of the crack front. It is remarked that for this particular 

loading condition, the material anisotropy play an important role on the values of the 

mixed-mode stress intensity factors. 

 

 

 

 

 

 

 

 

 

Figure 4.14 Normalized mode-II and mode-III stress intensity factor for penny-shaped 

crack subjected to shear traction. Results are reported for isotropic material with ν = 0.3 

4.3 Penny-shaped crack in an infinite media containing a spherical void 

As a final example, we choose to test the current technique by solving a 

more complex boundary value problem in order to demonstrate its capability. Consider 

an infinite medium containing a spherical void of radius a  and a penny-shaped crack of 

radius as shown schematically in Figure 4.17. 
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Figure 4.15 mode-II and mode-III stress intensity factor for penny-shaped crack 

subjected to shear traction. Results are reported for zinc. 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 mode-II and mode-III stress intensity factor for penny-shaped crack 

subjected to shear traction. Results are reported for graphite reinforced-composite 
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Figure 4.17 Schematic of a three-dimensional infinite medium containing a spherical 

void of radius a  and a crack of radius a  and subjected to uniform pressure at the 

surface of the void 

The body is subjected to uniform pressure 0σ  on the surface of the void while the entire 

surface of the crack is traction free. In the analysis, two material models are 

investigated: one associated with an isotropic, linearly elastic material with Young+s 

modulus E  and Poisson ratio 0.3ν =  and the other corresponding to an isotropic 

hardening material with the uniaxial stress-strain relation shown in Figure 4.2. The 

primary quantity of interest to be sought is the mode-I stress intensity factor along the 

crack front induced by the application of the pressure to the void. In addition, influence 

of an inelastic zone induced in the high load intensity region on such fracture data is 

also of interest. 

   In the modeling, we first decompose the body into the FEM-region and 

the BEM-region using a spherical surface of radius 4a  centered at the same location as 

the void as shown schematically in Figure 4.18. Three meshes are adopted as shown in 

Figure 4.19. In particular, the FEM-region, the interface and the crack surface consists of 

{24, 12, 8}, {128, 32, 16}, and {1024, 128, 64} elements for Mesh 1, Mesh 2 and Mesh 3, 

respectively. It is noted also that Mesh 1 is extremely coarse; for instance, only eight 

elements are utilized to discretize the entire crack surface and only four relatively large 

crack-tip element are used along the crack front. 
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Figure 4.18 Decomposition of domain into BEM-region and FEM-region by a fictitious 

spherical surface of radius 4a  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.19 Schematic of three meshes used in the analysis 

First, the analysis is carried out for the elastic material with Poisson ratio 

0.3ν =  and the computed mode I stress intensity factors are normalized and then 

reported as a function of angular position along the crack front for all three meshes in 

Figure 4.20. This set of results implies that the obtained numerical solutions exhibit good 
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convergence; in particular, results obtained from Mesh 2 and Mesh 3 are about the 

same quality while results obtained Mesh 1 still deviate from the converged solution. As 

is ensured by this convergence study, only Mesh 3 will be used to generate other sets of 

useful results. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.20 Normalized mode-I stress intensity factors for crack subjected to uniform 

pressure at the surface of void 

Next, we consider a body made from an isotropic hardening material. In 

the analysis, we choose the modulus 1E E=  and Poisson ratio 0.3ν = for linear regime 

and choose 2 / 3E E=  and Ε2 = 0 for hardening regime. With this set of material 

parameters, the linear behavior is identical to that considered in the problem of linear 

elasticity. To investigate the influence of the inelastic zone induced near the surface of 

the void on the stress intensity factor along the crack front, we carry out various 

experiments by varying the applied pressure 0σ . The distribution of the stress intensity 

factor along the crack front (obtained from Mesh 3) is reported in Figure 4.21 for a 

hardening material with EE =1  and 3/2 EE =  under five levels of the applied pressure 

{ }0 0.25 ,1.00 ,1.25 ,1.50 ,1.75
y y y y y

σ σ σ σ σ σ∈ . The body is entirely elastic at 
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inelastic zone as 0σ  increases further. It is obvious from Figure 4.21 that the presence 

of an elastic zone significantly alters the normalized value of the stress intensity factor 

from the linear elastic solution and such discrepancy becomes more obvious as the 

level of applied pressure increases. The localized inelastic zone acts as a stress riser; 

i.e., it produces stress field of higher intensity around the crack and this therefore yields 

the higher normalized stress intensity factor when compared with the linear elastic case. 

Figure 4.22 shows an additional plot between the maximum normalized stress intensity 

factors versus the normalized applied pressure for both an isotropic linearly elastic 

material and two isotropic hardening materials. Results for both types of materials are 

identical for a low level of the applied pressure (the entire body is still elastic) and, for a 

higher level of the applied pressure, the maximum stress intensity factor for the case of 

the hardening material is significant larger than that for the linear elastic material. In 

addition, such discrepancy tends to increase as the hardening modulus decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Normalized mode-I stress intensity factor for crack subjected to uniform 

pressure at the surface of void. Results are reported for isotropic hardening material 

( 3/ , 21 EEEE == ) with different levels of applied pressure. 
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Figure 4.22 Maximum normalized mode-I stress intensity factor versus the level of 

applied pressure at the surface of void. Results are reported for an isotropic linearly 

elastic and two isotropic hardening materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

 

CONCLUSIONS AND REMARKS 

 

A coupling between a standard finite element method (FEM) and a 

weakly singular, symmetric Galerkin boundary element method (SGBEM) has been 

successfully established for stress analysis of three-dimensional infinite media. The 

crucial feature of the current technique is to exploit the positive features of both the FEM 

and SGBEM to enhance the modeling capability. The vast and general features of the 

FEM has been employed to treat a complex, localized region that may contains inelastic 

zones or inhomogeneities while the SGBEM has been used to model the majority of the 

body that is unbounded and may contain the surface of discontinuity such as cracks. 

The coupling formulation is based on the domain decomposition along 

with the proper enforcement of continuity of the displacement and traction on the 

interface of the two regions (one modeled by the SGBEM and the other treated by the 

FEM). For the FEM domain, the key formulation follows from the well-known principle of 

virtual work. For the SGBEM domain, the governing integral equation is formulated 

based on a pair of weakly singular, weak-form integral equations for the displacement 

and the traction. The final set of integral equations for the SGBEM domain is in a form 

well-suited for combining with that for the FEM domain to result in a symmetric weak 

formulation. In addition, all kernels involved in all integrals are only weakly singular of 

order 1/r. This feature is crucial since it allows a space of continuous interpolation 

functions be employed everywhere in the discretization. 

In the numerical implementation, various strategies have been employed 

to enhance both the accuracy and computational efficiency of the technique. For 

instance, the special crack-tip elements have been employed to discretize the local 

region along the crack front. The shape functions of these crack-tip elements have 

properly been enriched by a square root function such that the resulting interpolation 
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function can capture the relative crack-face displacement to sufficiently high order of 

accuracy. As a result, it allows relatively large crack-tip elements be used along the 

crack front while still yield very accurate stress intensity factors. Another attractive 

feature of the crack-tip element is its extra degrees of freedom on the edge along the 

crack front that are directly related to the gradient of the relative crack-face 

displacement. This renders all the stress intensity factors being extracted directly in 

terms of such extra degrees of freedom. Another important consideration is the use of 

an interpolation strategy to approximate values of kernels for generally anisotropic 

materials; this substantially reduces the computational cost associated with the direct 

evaluation of the line integral. Finally, special numerical quadratures have been adopted 

to accurately and efficiently evaluate the weakly singular and nearly singular double 

surface integrals.  

To demonstrate and gain an insight into the coupling strategy, the 

formulation has been implemented first in terms of an in-house computer code for linear 

elasticity boundary value problems. Subsequently, the weakly singular SGBEM has 

successfully been coupled with a reliable commercial finite element package in order to 

exploit its vast capabilities to model a complex region such as inelastic zones and 

inhomogeneities. As indicated by results from extensive numerical experiments, the 

current technique yields highly accurate numerical solutions when compared with 

available benchmark solutions, and results exhibit good convergence and weak 

dependence on the level of mesh refinement.  

As a final remark, while the developed technique is still restricted to an 

infinite domain and to matching or conforming interfaces, it offers insight into the 

SGBEM-FEM coupling strategy in terms of the formulation, the implementation 

procedure and its performance. This coupling strategy can directly be generalized to 

solve more practical boundary value problems involving a half-space, e.g. cracks and 

localized complex zone near the free surface. Another crucial extension is to enhance 

the feature of the current technique by using the weak enforcement of continuity across 

the interface. This will provide flexibility of the mesh generation.  
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