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CHAPTER 1

INTRODUCTION

mathematical d nd has extensively been

used when re its length scale much
smaller than that ‘ 4 ‘ @Ry, of such the domain is
generally insignificagl®: 96 4 iSea [ ' M g without loss of accuracy.
&diction of crack growth
in hydraulic fractutifig , IS W g€ thei & is' treated as an isolated
crack in an infini e\ ’= 1 and assessme ‘ . ee lifespan of large scale
ge of in o-"' ct of the structures can be

characterized by prescgibed sa r jon Qffeffective properties of materials

ji-.,."

possessing a microstructuré "—.._-_-.r...a:c-.t_‘ clusions), etc. One attractive aspect
#’u

of using an infinite spacesastai repres gmain is its mathematical ease

@nsequence, allows
—r )

' Jolutions. For (most)

rgﬁjnaly obta?ﬁ, such an idealization
L]
dtces complexity of the mathematical model in"ferms of both theoretical

and nymerical trea an comparison with tthoIvmgi' a finite domain.

AEdTENANENT....

hematlcal model still exists |f‘he body contains a line of singularity. This SI ation

q RN IMINYIAE

the vicinity of the crack front is relatively complicate and, in fact, the stresses are

problems whe

significantly re

singular along such crack front. An extensive stress analysis of this cracked body to

extract essential fracture information along the crack boundary generally requires
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special theoretical and numerical treatments, especially when the problem is formulated
within the context of a three-dimensional boundary value problem. Another source of
complexity is due to the presence of localized, complex zones within the domain. These
complex zones may arise naturally in various situations, for instance, a plastic zone

induced by the application of |n a small region, containment of small

defects and inhomogenei n|ca| effects on localized regions,

etc. The stress and |elds in th their immediate surrounding

- ——
regions can obvious and essential reful considerations.

ity described above into

the mathematical ingBr ) '5‘! 3 ce ena of interest to a level
| and computational
challenges to tr h oundary Valueyprok RERA focus of this current

investigation is o 21QP »_‘| Of -.,u numerical model to
accurately captu navi an ir y'e ‘*-.i‘o' oth cracks and localized
d 'v‘

complex zones. | & Neoert /4 %
1.2 Background and rejffe

An analytlo

1—-'/;,,,_ l -
in a solid @; h ' it@ns where the body

e
can be treaE &l ¥ lfry value problem or

been used for analysis of stress

A . X
within the contexd|of a ; rob‘ﬂ; (e.g. Timoshenko and
|
Goodier, 1951-1”' abrikant, 1989; Fabrikant, 1991). This ation becomes more

apparent when th‘ f complexity of the cal phenomena of interest increases

AuMENING ng::

complex behavior and, due to thls‘omplexny, the an Cal or exact solutlon

RIRNTTII NN

purpose.

or



The finite element method (FEM) and the boundary element method
(BEM) are two, robust numerical techniques mostly used in the modeling of various field

problems. Both techniques possess a wide range of applications and there are

efficient and powerful met i lele ' class of problems in structural and
solid mechanics (e.g.l Oden- 2 , ; 2000 Zienkiewicz and Taylor,

ion of th ing nonlinearities and non-

[ ""-,‘ .Cl\l‘ o remove this difficulty, a

domain may be ‘ g ) o ’ ) fi ‘ _d| ensions; however, it still

remains to define the' suif@ | , 1 ’: eva \ iMipose appropriate boundary

conditions on that surfage. ‘ YeF draw pr: sults fiOl that, when the standard FEM
is directly applied to modglerack-—prop! has a limited capability to obtain
adequately accurate frac i;?-:-*i-_j": : ess intensity factors) with use of

reasonably '%rs

fy when mixed-mode

problems ale

’ iJe mesh in a region

ij ac ﬁ:ﬁicient accuracy (e.qg.
1l
Il affea, 1988; Martha et al., 1993; Ayhan et a/‘I 03)

ﬂ CuﬂQMﬁTI WS-

rce the governing equatlon involves only integrals on the boundary of the

PRI R Tats]

discretization effort is significantly feduced due to the reduction of dimensions of the

surroundmgith

Swenson and |

problem by one. One advantage of the method over the FEM is its capability to model

an infinite domain. In this situation, the remote boundary can be discarded without loss
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via an appropriate treatment of remote conditions (e.g. Xu and Ortiz, 1993; Xu, 2000;
Rungamornrat, 2006; Rungamornrat and Mear, 2008). A particular methodology which
has proven highly successful for analysis of three-dimensional, uncracked bodies (e.g.

Bonnet, 1995; Xiao, 1998), analysis of isolated cracks in three-dimensional, isotropic

.g.. Xu and Ortiz, 1993; Li et al., 1998;
Wlear, 2008), and analysis of cracks
ic finite bodies (e.g. Li et al.,
ornrat and Mear, 2008) is a
, - “\ (SGBEM). The superior
types | ofthe : that™all kernels appearing in
e onl \\~ ‘O r) and that a system of
ihg _‘5 T ~~ g g a symmetric coefficient

kIy LW ) validity of the integral
[ disp \ is continuous, hence

eglinithe Wliperical approximation. It has

y-sing \ S@BEM along with the proper
» hig b‘. accurate fracture information
(viz. stress intensity factors e Coarse meshes are employed in the

disoretizatiqn (e.g. Lie gamornrat and Mear, 2008).

While the -:.u's / singular SGBEM vields very accur: ficgsolutions for analysis

PMFGS and has limited

-
or instan‘ﬁ' the method becomes

of elasticity

i
-

==
capability of sMng certai

inefficient or prac aIIy impossible for modeling problems involving nonlinearity or

A UHINNSWEINS

dISC e the entire boundary of the domain), the method tends to become

P RRERIE iU [T E]

SGBEM gives rise to a symmetric coefficient matrix, the matrix itself is dense and each

of its entries must be computed by means of a double surface integration. Another

crucial drawback of the boundary integral equation techniques is due to the lack of
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generality of the key formulation to treat nonlinearities and inhomogeneities in an

efficient manner.

In the past two decades, several attempts have been put into the

development of an efficient numegiaal | ure that exploits advantages of both the
BEM and the FEM for m / nd three-dimensional elasticity and
fracture problems. The fdegsi into two parts; the first part that

;_
is localized, possess lineal hawc‘ andw surface of discontinuities

(e.g. cracks and.gl ‘ e ment methods, and the

second part that ma¥ | h L adreccupy the majority of the

Tanaka, 2003) wagl cgl ‘_', gly ‘si ‘ and the standard

FEM (e.g. GanguWV et &l., o 0; _.Lf{_ hn,, 200 "»-.,\ > D3). Note that the former
J i .ﬂ’f [
coupling gives rise o a y'?e)n of |

matrix while the latter reguires ',: um ) onsi@&ations for treatment of strongly

ae ationshwithe nonsymmetric coefficient
i 4 4

. . { A ECe - . .
singular integrals (e.g¥ Gray @&t 21990} V& Rizz0, 1996). An extensive review of
various types of coupling c-ﬁf’,::; S pent methods and the finite element
methods o"h}e 8). articular symmetric

coupling strt

by Xiao (199ﬁt0 aﬁ
1l
development, Il air of weakly singular, weak-form displace'

equations was utiliémng with the principle Mual Work and the proper treatment of

bodies subjected to pure traction bﬁndary conditions. m/ever in their techmq

q mmmm m’m ﬂﬂﬁﬁﬂ

meshes. Rungamornrat (2004) generalized the work of Li et al. (1998) to incorporate the

M was first formulated

finite bodies. In his

t and traction integral

material anisotropy and treatment of non-matching interface. On the basis of an
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extensive literature survey, a coupling between the weakly singular SGBEM and the
standard FEM that is capable of modeling a whole space with embedded isolated
cracks and localized zones of complex behavior is still not available and the current

investigation is proposed with a primary (7eotve to fill this gap of knowledge.

1.3 Research Objective \\‘,

accurate numerlcal eC

develop an efficient and

possessing one). The developed

computational t dary value problems of

1.4 Scope of Resea

W

ontext of three-dimensional
infinite media. -‘,o | is reg V‘? v 4 - Cdlp be decomposed into two
separate regions: a |g@&li -_f:.ﬂ f_‘—?‘ ay '‘@fhibit complex behavior and a
(complementary) regibn tht = e --;-; rearly elastic, free of body force and
remote loading and m :

1.5 Resear% ‘ f
ol I

- -

E .
ﬂ]je domain deee Gtc is propc d to partition an infinite

body into two se rate regions: a localized complex region and a complementary

Al -OWEﬁﬁﬂﬂﬁbﬁﬂT;:

regl the governing equations are developed based on a pair of weakly smgular

proper use of continuity conditions on the mterface




For the numerical treatment, a standard Galerkin approximation is
proposed to discretize the entire set of governing equations. In particular, discretization
of the localized complex region follows a standard procedure of the finite element

method (FEM) while discretizatio

ohplementary unbounded region exploits a
well-known strategy called_thé We etric Galerkin boundary element

f the proposed technique, vast

GBEM-FEM coupling

iEnsional, infinite medium

% \ yMend accurately model an

unbounded region con@ining «Bkkresefie Brity \ crack front). Use of weakly

. T
singular integral equa |ons a5 _m-f ! M formulation offers an ease in the

numerical treatment, e.g,* ';W' nts and numerical integration. An
z g / ¥ 4

ersffan alternative, robust

outcome o@
numerical t& (
ol

; y Ly

medium contaimilg cra S. hﬂ
|
H an efficient and accurate algorithm to extre

information, e.g. ﬂ‘ intensity factors.

AUg ANYNINYINS....

—FEM coupling strategy both in terms of the implementation procedure and its

q P GRE RN Br L 1 Yat]

modeling capability.

s
n jdimensional infinite
rogram is, in addition,

supplemented the essential fracture




CHAPTER 2

PROBLEM FORMULATION

i wrea-adimensi .D?o pic, linearly elastic infinite body
Q) containing a crack 3 ¢ ;; Y /O shown schematically in Figure
2.1. The two (geomgtrically.coint @ are denoted by S;. and
S with their unW rectedintg: pklsatisfyingn® = n™, and,

for convenience, we n 5 a WnfaCB@abe utilized in representing

the crack. Throughgy : | e Rbe/OWie body is assumed to be

free of a bod : ' lQadli 10N | Roleary, ahd both surfaces of the

cracks are subjegt Prgscy r o\ Ol S, t St = t.. In addition,
the entire domain 4 o be. , "'__. elastic except in the
localized region M nliffearitio s'and cneitieSycamigertain.

Figure 2.1 Scher‘t a three-dimensional i e medium containing a crack and a

ﬂUElWIB’WﬁWEHﬂ‘i

Now, let us partition the domain €2 along an imaginary surface S, as

RN TR

is selected such that the FEM- -region is finite and contains a localized complex zone

while the BEM-region is unbounded and contains a crack as depicted in Figure 2.3.

While the development presented further below is restricted only to a domain containing
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a single crack and a single nonlinear zone, the formulation can readily be extended to
treat multiple cracks and multiple nonlinear zones as long as the nonlinear zones are

contained within one or more FEM-regions.

Figure 2.2 Sgematid of #h ifha Str=cg 'O W8eihthe'dlymain decomposition

B |r_ .
Figure 2.3 Sﬁnatio o} aining aﬁack and (b) the FEM-

reg|on containing a nonllnear zone Q

ﬁﬁ&l“’“i*flim‘iﬂ g3

Consider first the BEM region Q°. The total boundary of this region,

ARSI NEARD

q To clearly demonstrate the role of the interface between the two sub-regions in the

formulation given below, we denote t; and u; as the unknown traction and unknown

displacement on the interface of Q7 respectively.



10

As a basis for the development of a set of governing integral equations

for the BEM-region Q?, a pair of weakly singular, weak-form displacement and traction
integral equations developed by Rungamornrat and Mear (2008) is employed. These

two integral equations were derived from standard boundary integral relations for the

gatig regularization technique. The final from
/2 iven in a form well-suited for
- @OW. Such pair of weak-form

where 7, an‘ A

operatordefinﬂy
ﬁﬂa' ' ’JT/IEWI?WEI’]TW -

& Is defined by

ﬂmmnmum'mmaﬂ

EeS
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with  Au, (&) =u; (§)—u; (§)denoting the jump in the displacement across the
discontinuity surface (i.e. the relative displacement of the two geometrically coincident
surfaces associated with the displacement discontinuity), and the geometry-dependent

constant ¢(y) is defined by

TR \\\"/// 25)

,ye

The kernel H ( is given explicitly by

Hj(&-y) (2.6)
where  J,  kemels U/ (§-y),
Gh(&-y) materials, by

P(e-y) = (2.7)
G’ (&-y) = gameajchjj %’ (2.8)
C* (&~ y)L (2.9)

where £, ﬂat m
mﬂ*’mﬂmwmm

kl Zi stﬁ A
in which r=g-y, r= ,;z,z P2 e and the mtegral s to be evaluate over a

unit circle ||z|| = 1 on a plane normal to the position vector r. It is evident from (2.6)-

(2.9) that the kernels nH! (§—y), U’ (§-y). GL.(§—y) and C,;(§—y) are weakly
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singular of O(1/r) (see details in Xiao (1998) for discussion of the singularity nature of the

kernel H/ (&—y) ).

For the special case of isotropy, the kernels U! (§—y), G2 (§—y) and

(2.12)
(2.13)
(2.14)
where v is Poi 4o, is the "‘.,!..'_' s,'@ld and ¢, is a standard
alternating symbol d
1 , k=
Ex=y1-1 , jk= 213 (2.15)
0

. otherwi

o g integral equations for

iH |
the BEM-regiomzl , we apply the weak-form traction mteM

crack surface S, ﬁ/ Yy =0 on §,) and to terface S, (with v=0 on S.) and

ﬂﬁﬁ%ﬁﬁﬁ%ﬁw g

| equation (2.2) to the

) + A,(u,,u, = —2?3
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in which {ﬁf,ff} are test functions defined on the interface S,, and where (with
subscripts p, o€ {1, ¢} introduced to specify the surface of integration) the bilinear

integral operators &, B, &,, 2, and F" are defined by

(v) (2.17)

Be (X.Y)

45(y) (2.18)
& (X.Y) (2.19)
FF(XY) (2.20)
2, (X.Y) (2.21)

Note that the linear operator '}'?r'}“'" mmetric form satisfying

T
n (X,Y)% (VXY - f (2.22)

-

ot
11
and, as a Corququence, the left hand side of the system I quations (2.16) is in a

symmetric form. ve ctions on the interfa e not prescribed and as such the

ﬂﬂﬂ“ﬂﬁ?ﬁ‘i INHANT
CORstit this %te il essedda riulgtiodfor QF is
presented.

QW’}ﬁg@ﬂsﬁfﬂJ UN1ANYIAY

We now consider the FEM-region Q. Note that the entire boundary of
this region is the interface S, on which both the traction and the displacement are

unknown a priori. Here, we denote the traction and the displacement on the interface S,
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by uf and tf, respectively, in order to distinguish them from the quantities on the
interface of the BEM-region Q*. Continuity of the displacements and tractions across

the interface leads to the relations between the two sets of quantities:

th = —t’ (2.23)
ul =u’ (2.24)

The weak-form W | “ohian. (Yeeay eadily be obtained using

K (0,0) (2.25)
in whiche is"a stn -behz 'd test function, u; is the
restriction of u

K (11,0) (2.26)

WL
It is noted that —F rmo

A N
-

arily

mhe material constitutive
employed. For in stance, if the FEM-region is made of linearly elastic material, the stress
ten ~=Tgp0 ¢ irectly. o JermS™Of elastic opstanis. e, and the
AUHINBYSNYINS
Y e -
ey dil, Jk | =3 .
QRIAINTUAINYAY

We remark that the factor of one-half in (2.27) has been introduced for convenience to

cast this term in a form analogous to that for %’ (X,Y) given by (2.20), and this then
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leads to the factor of two appearing on the right hand side of (2.25). It is also worth
noting that the operator .?,F is defined on a portion of the boundary of QF whereas 9,3
is defined on a portion of the boundary of QF; this distinction will be particularly

important in what follows.

2.3 Symmetric governing

A se

A—_

obtained by combinin

in which

mxm NENIN .ﬂ‘;lm;?::‘;:i

As a consequence, equatlc? (2.25)isin a symmetrlc form provided that

q WH@M SUAMIINYT ﬂ ]



CHAPTER 3

NUMERICAL TREATMENTS

rical procedure employed to

construct numerical ‘selutig; NS em formulated in chapter 2.

weakly singul ¢ sindula olble r @grals"and for determination of
general mixed- ‘ j .f_ 3 ed. "Rifally, the key strategy for

establishing the ¢ '. e t A0US K .. ShG ular SGBEM code and the

3.1 Discretizatio‘

y ; J . %
Stap®ard alerkin 1al Xximatio is proPosed to discretize the system of
equations (2.29). For f#fe BEM=FEgION =] e siigle crack surface S, and the
¥t

interface §, require discretizatTORA=th: --f‘ pborhood of the crack front, special nine-

31- ¥
node crack-tip eleme "/""‘" e. functions are employed to
accurately - J)wis special type of

ragks’ in isotropic, linearly

I
rnrat anq@ear (2008) to take the

material amsotropvto account. Use of these s ecial elements renders relatively coarse

ﬁﬂ Tlo} | Emaﬁ WA -

func s, extra degrees of freedom are introduced at the edge of the element to directly

RISl INEN Y

factors) be calculated dlrectly in terms of those extra degrees of freedom. Extensive

elastic media aﬁ|r|1 further

discussion can be found in the work of Li et al. (1998) and Rungamornrat and Mear

(2008). For the current investigation, nine-node special crack tip elements (indicated in
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Figure 3.1(a)) are employed to discretize the crack front. Both the maijority of the crack
surface (excluding the crack front) and the interface of the BEM-region are discretized
by standard, isoparametric, eight-node or six-node ¢’ elements as shown schematically

in Figure. 3.1(b)-(c).

For the FE ‘ firc ree-dimensional, isoparametric c’
elements (e.g. fifteen-noe . @aty-node brick elements as shown

schematically in Figy U L in discretization.

! (c)
Figure 3.1 Schemajif o ¢ ' --; i the ctizétion of the BEM-region: (a)

. o \ v
9-node crack-tip eI nts, (155=8 Yol clemehts, and (c) 6-node quadratic

ARIANT Y W]QM gAY

20-node brick elements, and (b) 15-node prism elements
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3.1.1 Treatment of interface

The BEM-region and the FEM-region are discretized such that meshes

on the interface of the two regions conform (i.e. the two discretized interfaces are

geometrically identical). A si tq nerate these conforming meshes is to

e mesh as the interface mesh of

ey

discretize the FEM-region

the BEM-region. Wit th discretized interfaces are

enforced exa 7 sy ‘ =0 SeRsatisfied exactly in the

( ™ Bering of all nodes on the
interface of the BEM-regfo a&t ., \ -region is chosen to be
identical. Th|sn Derij s eme ¥ atice -.' ame degrees of freedom
for any two nodes oggboth nt% v €s; as a consequence, the

continuity across the int

3.2 Numerical integration

")F gion, Bm. th€ discretization of the
weak-form t v on contain only regu A lJesult, they can be
efficiently and aetu quadrature. In the contrary,
numerical evaMon of integrals arising from the disoretizaﬁ of the BEM-region is

nontrivial since |t‘ s the treatment of t ' types of double surface integrals:

FUtIEMANEING
qRadsalMAngat

elements resulting from the discretization is remote relative to the characteristic

dimension of the two elements (i.e. the distance between any source and field points is
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relatively large when compared with the size of the two elements). This therefore renders
its integrand nonsingular and well-behaved, and such integral can accurately and

efficiently be integrated by standard Gaussian quadrature.

3.2.2 Weakly singu urface integral

te ral arises when the outer and

inner elements resul -r-—n‘;-'-'-..i nt. Its integrand is therefore
singular and of order__yk! T This.part can be integrated efficiently by

using special quadratut Ql iapgu lai rmation (see details in the

iable transformation is

utilized primaril Lpp ian i c e} Oaemove the 1/r-singularity.

logarithmic family sligg Zed, N al double surface integral
contains only regular, ' el i e, for Integrating by Gaussian

quadrature.

3.2.3 Nearly¥s "":Tr"— integtal

The ate _nearly singular integrals that

arise Whe@ (WO SU irfaces of | integration are ¢ th coincident. The

integrand "Jal integration by a

Al
o

| —
standard Gausﬁ‘ n quadr T Ii prove the accuracy of

the numerical inte atlon the triangular polar transformation is employed first and then

f@'@mﬁ@ YIS

inte ed by a standard Gaussian quadrature e.g. Hayami and Brebbla 1988; Xiao,

AR IUNNIINYINY

In addition to the regularization procedure to eliminate the singularity and

irections

uited for being

smoothen the rapid variation of integrands of double surface integrals, another important
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aspect needs to be considered is the efficient evaluation of all involved kernels
(n,©H?E-Y). n,WH,E-Y), UPE-Y)., GLE-Y). ChE-y)). For the first
two kernels n,, (§)H,, (E-y) and n,(y)H, (E—Y), they involve the computation of unit

normal vector mand an explicit and simple function H,fjj. This can readily be achieved

via a standard procedure. For the efeghels, they admit explicit form in terms of
ordinary functions for isotregi } Stit ial€ (see equations (2.12)-(2.14)) and,
as a consequence

U,-p(g—}’) ic > ' are expressed in terms of

merical integration is
obviously comp nal Jve TG avo \ Nag s VeRGamputation, we adopt a

well-known strategy « ¢ nierpolation et rigu hle.0. Rungamornrat, 2006;

Rungamornrat, 8),.to f*,ajw- e V& o "'-."" ernels. Specifically, the
J " ! \ ‘II. L ‘ Y
interpolant of ea ] S co, { adk Onka Wie-dimensional grid using
standard quadratic s pev . '&’ -,.a alug e a grid points are obtained by
b= rFr 1

performing direct‘. ,.-.1 2:, Ofil the |MEK iM@gral (2.11) via Gaussian

quadrature and then he. _E_;I-,. S BT hevdE curacy of such approximation
F i S ’ ;

can readily be controlled O —T of the interpolation grid. Extensive

discussion of this i ' eme gein the work of Rungamornrat

(2004) and\Ruflgamornrat and Mear (2008). ) £ +)

A
3.4 Linear and 4
0l

For inear elastic boundary value problems, the discretization yields a

Ay ﬂ%’mmﬁel o

resumfrom that both the displacement and traction mtegral equations are employed

R BOTETL e FIaVar]

equations. While coefficient matrix is non-definite, it has been found in various numerical

experiments that the method yields a converged solution with relatively small number of

iterations. For a coupling between the SGBEM and the commercial FE package, a
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system of linear equations is solved directly by a linear solver provided by the FE

package.

For nonlinear boundary value problems, only the coupling between the

redient for predicting

ent. With use of special

additionally provig@les a vac rate _: 1o € > @8c stress intensity factors

A el 4 !
along the crack front##This eQR‘Q sults from the dt the special crack-tip element

\

contains extra degrees@f freee om alo tel ack floRt and their values correspond
. B ‘*,'..r;r..rr : .
directly to the gradieht of "’z;;:;ga;n: Cre displacement. Once the system of

antities along the crack front are

i intensity factors in

| —
terms of data zHI g the cra near tth’ack boundary and the

material properties.pan be found in the work of Li et al. (1998) for cracks in isotropic

=

maienie ' r and | ( ic rajmanisotropic
malerials. cdfre vastigationlf the fdrm phep . Rulglmirn f and Mear
008}

2008)lis implemented for both cracks embedded in isotropic and generally anisotropic

VBRI P ) (HREE

denotes a node located on the crack front, {xl,xz,x3 is a local cartesian coordinate

system centered at x_ and {el,ez,e3} is a set of orthonormal base vectors as shown
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schematically in Figure. 3.3. The mixed-mode stress intensity factors at the point x_is

given by

oy | ] \
Figure 3.3 Lécal cordinat€isy e foricalculat )MboOf Stress intensity factors

ﬂﬂﬂﬁﬂtm‘iwmﬂﬁ -

W|th e summation taken over aII nodes of an element, u’ representing the

m(i)

EILT tata kit fa bt ]

associated with the i" node evaluated at the point x,. An angle B and a constant J

are defined by



sinff=-e, e, (3.3)

10
D, (3.4)

n J e

(3.6)

d-mode stress intensity
factors be compute | of data § pcated on the crack front. This is
due to the fagjgfat (&, 1 she o Ml or crack front. Details of

derivation of the Siodl (3.1)8re wrefe h&, ok of Li et al. (1998) and

3.6 Coupling of SGBEA foréial FE package | &
' e

Taladok
To enhance _;m"_,:__;’ , the weakly singular SGBEM is then
coupled vvlth a reliablemeo : al finite 8. The key objective is to exploit
vast featur ‘ 7777777777777777777777777 S € elements, powerful
linear and _ . o treat a complex,
localized FEM“ ion an use co' el to supply information

associated with the, ma orlty of the domain that |s unbounded and possibly contains

L HANUNINGNG ..

system of linear algebraic equatm‘s The Corresponﬂ coefficient matrlx

Nl AINTUUNIAINYIAY

degrees of freedom of the BEM-region. This piece of information is then imported into

the FE package via a user-defined subroutine (UEL) and then assembled with element
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stiffness matrices contributed from the discretized FEM-region. Since meshes of both
interfaces (one associated with the BEM-region and the other corresponding to the FEM-
region) are conforming, the assembly procedure can readily be achieved by using
numbering strategy. Specifically, nodes on the interface of the BEM-region are named
f ‘j'y M-region (associated with the same

A & that each interface node of the

e displacement degrees of

identical to nodes on thein’

displacement degrees o

are onIy three (displacement)

G W

the interface node EM-ifofonawhile the\see o nade is fictitiously chosen with

different names t e .rr.,r--. 'l.?-_‘o: By this means, the

assembling procegdlire fallo "':ft" or 'A.\ a iite element.

"p’

cho -_gf,r ,
'-*r

dal quantities associated with
the BEM-region are e i Cted ile .\, ated by the FE package and
then post- processed nt and stress within the BEM-region

can readily be computed frefn

relations, a@we ity fac r@ explicit expression
e—————————— 25
(3.1). L J

ent and stress boundary integral

ﬂﬂ&l’)ﬂ&lﬂﬁﬂﬂ’m‘i
ammn'mummmw
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q W a‘Qnﬂr§> rigalivol af T a’s@d%ﬂee—li@io
e medium as shown schematically in Figure 4.1. The void Is subjected to t>e
)

CHAPTER 4

NUMERICAL RESULTS

boundary val | : ay  has los & fQR SPlution Th order to demonstrate

tibp, Mgelected set of results are

=

¢ a

AUYANYNINYING....

2:9),

‘of radius a

—

infini
uniform normal traction (i.e. uniform pressure) o,. In the numerical experiments, two

material models are investigated: one associated with an isotropic, linearly elastic
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material with Young's modulus E and Poisson ratio v=0.3 and the other
corresponding to an isotropic hardening material with the uniaxial stress-strain relation
shown in Figure 4.2. E, and E, denote the modulus of the elastic zone and the

modulus of the hardening part, respectiv

y

,and o, denotes the initial yielding stress.

)

To tgf 18t deBompose the body into two
regions by a fictitious gbhejica g . Saend centered at the origin as
shown by a dashed line in S 243 I |ant to rmark that such a surface must

be chosen relatively la ge 1o re -th: ic zone that may exist is fully

Peregion, o/
Figure 4.3 Decomposition of domain into BEM-region and FEM-region by a fictitious

spherical surface of radius 5a
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In the analysis, three meshes are adopted as shown in Figure 4.4. While
the meshes are shown only for the FEM-region, meshes for the BEM-region are identical
to the interface meshes of the FEM-region. It is worth to point out that the level of

refinement of all three meshes i

ifi nfly different. Specifically, Mesh 1 which is

_consists of 12 elements; Mesh 2

consists of 4 layers anBeegeh \ ‘ }ents; and Mesh 3 consists of 8

layers and each laygrconsisis.ofs 44 E- P

ﬁﬁ‘?‘ | ;

'
fe Joroblem admits the
L

closed form SIT' tio adiaksymmetric, only radial
' ' |
| r "

displacement ess’and normal stress components {O'W,O'% » O are non-zero and they

are given explioit‘ﬂhese components auith respect to a standard spherical

AUBINBRINEING

ANl AN
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This analytical solution is employed to validate the proposed formulation and the

numerical implementation.

Numerical results for the radial displacement obtained from the three

meshes are reported and comfie \ | act solution in Figure 4.5. As evident

from this set of results, iIsiebiaine / and Mesh 3 are highly accurate
while solutions obtaineesiiom. . » : aee¥rate except in the region near

——

the surface of the voi , isCT : iggMesh 1 is due to that the level of

refinement is not suffici , ately capt Ssggenetry, loading condition, and

S

my

IR T T ‘

'?.0 1.0 2.0 30 40 5.0 6.0

» v £ r| Gl

Fﬂ uﬂzgdnﬂmvjsﬂoﬂzedlaﬂa;jinate for
q’ isotropic, Iinea? elastic material with v =0.3 -

ANIUURIINEIRE
q Since all hén—zero stress (;Omponents of the stress are related by (4.2), only results fér
the radial stress component are reported. Figure 4.6 shows results of the normalized

radial stress obtained from all three meshes and the exact solution versus the
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normalized radial coordinate. It is observed that Mesh 3 still yields results that are
almost indistinguishable from the exact solution, while Mesh 1 and Mesh 2 give accurate
results only for relatively large » and the level of accuracy decreases as the distance r

approaches a. It is noted by passing that the degeneracy of the accuracy in computing

stress is usual in a standard,d\\‘b,yfs/,fnte element technique.

-1.%_5 ;

-

N/

Figure 4.6 mal s s 'alijdinate for isotropic,
L ;

e SGQ in the treatment of an
L

-
gﬂ demor
unbounded pé of the domain instead of truncating the body‘ 0 obtain a finite domain

as tically emp, ; for r nalysis of th M-region
Wiﬁcﬁn h thehBEM- %te im JZcfo diSp@camepllcondition.
The ﬂial displacement and radial stress obtained for this partioul-arf:aée using Mesh 3

are reported along with the exac(solution and thoﬁbtained from the cMn

chnigug gl Figuref. 4 an Figute 4.8 % 8 ‘ely. s edld ommré&sult ri
solutions obtained from the FEM with a domain truncation strategy are deviated from th
exact solution when it moves close to the truncation surface while the proposed

technique yields almost identical results to the exact solution.
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0.70
0.60 F

050 F

ukl 0.40; M) # Domain truncation
o,a o 5 " Cawbling techniqud
0.30 f . o ' =

—

Figure 4.7 Normalizg® o 'Iized radial coordinate for

sYare "@btained from Mesh 3 for

both the coupling tegiinicule ‘he FE-te : "ntruncation.

isotropic, linearly®las

3
|

B Domain triication
@ Coupling technique

NENINYINS %
W18 URTANENAE

linearly elastic material with v =0.3. Results are obtained from Mesh 3 for both the

coupling technique and the FE technique with domain truncation.
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4.1.2 Isotropic hardening material

For this particular case, we focus attention to the material with no

hardening modulus (i.e. £, =0) since the corresponding boundary value problem

W

admits the close form solution.
to the surface of void is_i

radius r, ) becomes

u,(r)

o,(r)

ﬂLIU’JT/lEm‘iWEI’mﬁ

In th"nalysls we take the pressure o,=1.6 50 to ensure that the body contains an

inelastic zone; in fact, this & selected appliedigressure oorresponUto

PRIFMNIUURIINYIAD

reported "along Wi e exact
displacement and in Figure 4.10 for the normalized radial stress. It can be concluded

from computed solutions that they converge to the exact solution as the mesh is refined.
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In particular, results obtained from Mesh 3 are nearly indistinguishable from the
benchmark solution. It is worth noting that results obtained from the same level of mesh
refinement are less accurate than those for the linear elasticity case. This is due to
complexity posed by the presence of an inelastic zone near the surface of the void and,

‘ “’/7@ requires sufficiently fine meshes.

to capture this phenomenon a

| . NN o el I I |

dial coordinate for

Figure 4.9,1&mal' il % e Iizeﬂa
() A J

- Isotropic-hardening materiat-with—f =0 <
Vi

4.2 Penny-sha@ cra 'Jm
‘ i
*©onsider a penny-shaped crack of radius a *which is embedded in a

linearly elastic, |‘:Amed|um as shown uemancally in Figure 4.11(a). The

co tu [ 8 i t rlal ﬂlsso ratio v =
0. qlzmc an graph| e-reinforce composite. The Iast WO materials are fransversely

isotropic with the axis of material sﬁmetry oriented aI the x,-axis and thelr

AHIBINTBIANTINEIAE

conditions: the uniform normal traction o, ( 0,) as indicated in Figure



4.11(b) and the uniform shear traction 7, along the x,-axis (i.e. t, =7,, t, = t, = 0) as

shown in Figure 4.11(c).

0.5

6.0

Figure 4.10 Noggifaliz@tl radial Siesavereus the nolinalided radial coordinate for

QW’]MﬂiﬁMNﬁ’T’Jﬂmﬂﬂ

Figure 4.11 (a) Schematic of an infinite medium containing a penny-shaped crack, (

crack under uniform normal traction o, and (c) crack under uniform shear traction,
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Table 4.1 Elastic constants of zinc and graphite-reinforced composite (e.g. Kassir and
Sih, 1975; Hyer, 1998). The axis of material symmetry is taken to direct along the x,-

coordinate direction.

(x10°%) psi

Elastic cg Sta

ihc .| Graphite

Ag -‘ 683

=77 //IT Y
77/ B\
X

ThgMirst Joadihgfconditiol - )ing-mode problem with

the mode-I| stréss in S_it" _‘ i “ a 'f‘ %erack front and independent

of material propeiiies | i | yigltls non-zero mode-Il and
‘ Y B 1 F r \ l'nb ‘

mode-IIl stress intengity fa toré that va JaRct \J\ offpesition along the crack front.

The analytical solutions @f the e fou )\ the work of Fabrikant (1989).

As a means to verlfyt e Co f;”':':"{ﬁ&._- pleMentation, we choose a cube of
material of dimensions 2a>g f{, -.- : —.‘ a) as indicated in Figure 4.12 and

define it as askE

TS for both the crack

surface anL l_,-mm__ - J‘J
o (Y

Figure 4.12 Schematic of a selected FEM-region and the remaining BEM-region
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ure 4¢3 matic of 1 - 8s,used,in the*analysis

or t fi_‘r' i @ | tions for the mode-| stress

|

intensity factor ma egir Dy tha plutio ‘\‘alyl-- [€d in Table4.2 for three

SI g&, : ;
4 ] . [
highly accurate stréss inf€nsity jacorwithe

1, Mesh 2 and Mesh 3#respbiielyFhis if

weak dependence on the mesiT Sfinement

SO

generate reﬁ o)

Table 4.2 Norfia

!
I| \

ole “:\ ed,fihe current technique yields

ess talk1.5%, 0.6% and 0.1% for Mesh

materials and thre

the™umerical solutions exhibit only

atively coarse mesh can be used to
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For the second loading condition, the normalized mode-Il and mode-IlI
stress intensity factors (K, and K,) are reported in Figure 4.14, Figure 4.15 and Figure

4.16 for isotropic material, zinc and graphite—reinforoed composite, respectively. Based

on this set of results, it can be
three meshes are in excel ' el

technique is due tothesus: ] model the relative crack-

at numerical solutions obtained from the

ct solution; in particular, a coarse

s capab|||ty of the proposed

faced displace ed that for this particular

loading conditiond# - aftwiole on the values of the

mixed-mode stress_ji

11g4 5

ﬁﬁ;ﬁlﬁ“ﬂ ﬂm;i%lﬂ A0

4.3 Penny shaped crack in an mﬂm‘medla containing Merlcal void

ARIANAIR ALY fillnag

more complex boundary value problem in order to demonstrate its capability. Consider
an infinite medium containing a spherical void of radius a and a penny-shaped crack of

radius as shown schematically in Figure 4.17.
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14
A Mesh 1
12F O Mesh2
. K, [ . Mesh 3
10F [ |
- Exact
- @
=Y

Figure 4.15 mqr I afld’ 1" Sire i sity fldior penny-shaped crack

¥
subjected to shear trafti

VER
RIAN TRV A Y

Figure 4.16 mode-ll and mode-lll stress intensity factor for penny-shaped crack

"

subjected to shear traction. Results are reported for graphite reinforced-composite
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Figure 4.17 Schag#tic gf athrfefdime iol | illm,containing a spherical

void of radius a_ gt agragk gfradius 16 'Subjectddho uniform pressure at the

The body is subje fed

surface of the cragl isfhr

."»k ' two material models are
investigated: one &ssoglBted Wil

€, Iine elastic material with Young’s

modulus E and Poigfon ibesi=0.3 4 therEorresponding to an isotropic

hardening material with thesufiexial=Stre

»
. IMIN A
ity of pe soL 85S irfsity factor along the
crack front Yadeced by theapplication-of the-pressurestothesveid, 4 addition, influence

Vi

of an inelas

C
also of interest:m -Jﬂ'
, In't [ e first decolf¥e | e the body into the FEM-region and
thﬁw%rg@a ph €/ofl radilis ente Qtﬁme cation as

the \w as shown schematically in Figure 4.18. Three meshes are adopted as shown in

iaip,_relation shown in Figure 4.2. The
primary qu

Pon-omSuch fracture data is
-

Figure 4.19. In particular, the FEM—rﬁion, the interface affidiihe crack surface conu of
Y RINIU NN BIRE
q respectively. It is note ais’o that Mesh 1'is extremely coarse; for instance, only eig'
elements are utilized to discretize the entire crack surface and only four relatively large

crack-tip element are used along the crack front.



39

Figure 4.18 Decos Posijién #f d 0 ' i | nd. BE)\-region by a fictitious

ing Mesh 3
T\
R

Figure 4.19 Sohematv‘of three meshes uggBhin the analysis

q W’] AN :mu RIINLINY

v=0.3 and the computed mode | stress intensity factors are normalized and then
reported as a function of angular position along the crack front for all three meshes in

Figure 4.20. This set of results implies that the obtained numerical solutions exhibit good



40

convergence; in particular, results obtained from Mesh 2 and Mesh 3 are about the
same quality while results obtained Mesh 1 still deviate from the converged solution. As
is ensured by this convergence study, only Mesh 3 will be used to generate other sets of

useful results.

40 300 360

Figure 4.20 Normalizga ﬂ! or crack subjected to uniform

hardening material. In

A h
; ropl
111
the analysis, w, | hoose the modulus E, = E and Poisson rat =

and choose E, =¢' and £ = 0 for har Mg regime. With this set of material

i HANNINEING

the void on the stress intensity f‘tor along the cra front we carry out

RIANN TOUNNIINIAY

hardening material with £, = E and E, = E/3 under five levels of the applied pressure

0.3 for linear regime

e{0.250'y,1.000'y,1.250'y,1.500'y,1.750'y}. The body is entirely elastic at
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0, =0.250, slightly passes the initial yielding at o, =1.000,, and possesses a larger
inelastic zone as o, increases further. It is obvious from Figure 4.21 that the presence
of an elastic zone significantly alters the normalized value of the stress intensity factor
from the linear elastic solution and s_uoh discrepancy becomes more obvious as the

level of applied pressure incr d inelastic zone acts as a stress riser;

e., it produces stress fi he crack and this therefore yields

the higher normalize i 3 \ __M'd with the linear elastic case.

types of materials are

identical for a lo : or re(the. e DOgyAiS still elastic) and, for a

the hardeningy ial i i fi Jlarge ‘ at, fory IRear elastic material. In

=

6’

igure 4. Norma ized mode— stress intensity factor for crack subjected to unn‘orm

pressure at the surface of void. Results are reported for isotropic hardening material

(E, =E,E, =E/3) with different levels of applied pressure.
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0.0045
0.0040 |-

& FFE=ED A
yy elastic

160 1.80 2.00

Figure 4.22 Maxim Vi factor versus the level of

applied pressurgt th ed, for an isotropic linearly

elastic and two isotrgpic I

AUINENINGINg
RIAINTUNRIINY AL
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CHAPTER 5

CONCLUSIONS AND REMARKS

_ 1
A coup ’ v ‘ﬁelement method (FEM) and a

erkin Qundmthod (SGBEM) has been

weakly singular,
successfully es lis @Ss, an i ) ional infinite media. The

crucial feature of e*eurr €hnj s { 1By OSWiE{catures of both the FEM

The el le .1

tion Jie \ omain decomposition along
with the proper 5 orcgihent of ,vﬁ tinui / the

displacément and traction on the

interface of the two on e modeled k. and the other treated by the

FEM). For the FEM domain, Liollows from the well-known principle of

rﬁrt ¢ SGBEM domain ‘th ralfgation is formulated

egra=eguatoas jor the displacement

virtual wo
based on

and the trac SGBEM domain is in a form

ot

-
well-suited for H; bining wi at1o W domain to re@t in a symmetric weak

formulation. In ad?ton all kernels involved in_all ntegrals are only weakly singular of

ﬂﬁiﬂ’l NN ﬂ‘i

In the numerical |mp‘mentat|on varlousﬁtegles have been emloy

region along the crack front. The shape functions of these crack-tip elements have

properly been enriched by a square root function such that the resulting interpolation
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function can capture the relative crack-face displacement to sufficiently high order of

accuracy. As a result, it allows relatively large crack-tip elements be used along the
crack front while still yield very accurate stress intensity factors. Another attractive

feature of the crack-tip element is its extra degrees of freedom on the edge along the

crack front that are directly i | gradient of the relative crack-face
displacement. This rend \ J '-ﬁors being extracted directly in
terms of such extra dagiee edom An ____Mt consideration is the use of

an interpolation straf oxim e vab&%sfor generally anisotropic

materials; this substant I

ght! e coupling strategy, the
; I K omputer code for linear
elasticity boundary #al. ms. s F' e akly singular SGBEM has
successfully been coup d Wit ) fe e'c ercial fiflite element package in order to
egion' such as inelastic zones and

/ f
exploit its vast capabilities’y

inhomogeneities. As indicateek ensive numerical experiments, the

current teih':mu Iy ac itio s@en compared with

available bﬁ :’Ngence and weak
il ‘

dependence oﬁe
|

As?ﬂnal remark, while the develo ed technique is still restricted to an

mmwwmw MY o

proc re and its performance. Thls coupling strategy can directly be generalized to

q ORI ERIMIL B GE L tst]

the feature of the current technique by using the weak enforcement of continuity across

the interface. This will provide flexibility of the mesh generation.
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