

เคอรเนลฟงกชันสําหรับซัพพอรตเวกเตอรแมชชีน

นางสาว ธนัสนี เพียรตระกลู

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร
คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย

ปการศึกษา 2551

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

KERNEL FUNCTIONS FOR SUPPORT VECTOR MACHINES

Miss Tanasanee Phienthrakul

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic year 2008

Copyright of Chulalongkorn University

vi

ACKNOWLEDGEMENTS

First and foremost, I express my deep sense of gratitude to my advisor, Professor Dr.

Boonserm Kijsirikul, for his continuous guidance and excellent support throughout this

research. Since he had accepted me to study in the Doctorial of Philosophy Program, he

granted many good opportunities to my life. He provided the financial support for my study,

and encourages me for all activities that are the good experiences. During my research

period, he helped me to correct all of my publications. His motivation and suggestion have

inspired me at times of difficulty. His timely support has helped me at various stages of this

work.

I sincerely thank my committee Dr. Prabhas Chongstitvatana, Dr. Athasit Surarerks,

Dr. Yachai Limpiyakorn, and Dr. Nachol Chaiyaratana for their valuable comments and

encouragement throughout my study at Chulalongkorn University. Moreover, I appreciate

my supervisors, Dr. Mikael Boden at School of Information Technology and Electrical

Engineering, University of Queensland, Australia and Dr. Manabu Okumura at Precision and

Intelligence Laboratory, Tokyo Institute of Technology, Japan, for their valuable suggestion

and comments. Moreover, I also would like to thank Ananlada Chotimongkol for

proofreading my paper.

I want to thank Thailand Research Fund (TRF), the Royal Golden Jubilee Ph.D.

Program (RGJ), the Royal Thai Government (Mahidol University), the 90th Anniversary of

Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), and

Department of Computer Engineering for their financial support during all my study and

especially during the academic exchange.

I am grateful to many people for help, active and passive support during the

experiments and writing of my thesis. I would like to thank the members of Scientific

Parallel Computer Engineering (SPACE) Laboratory for their cluster computing and the best

care during my experiments. Thanks to the members of Machine Intelligence and Knowledge

Discovery (MIND) Laboratory and all friends at Department of Computer Engineering for

their comments on my works and their pressure to make me struggle on my thesis.

Finally, I would like to send the special thanks to my dad. He is an important spirit of

me. Although he cannot perceive in this acknowledgement and does not have any

congratulations to me, I hope he will be pleased with my achievement. Thanks to the God

Almighty for sending him to be my lovely dad.

CONTENTS

 Page

ABSTRACT (THAI)………………………..…………………………….………………….. iv

ABSTRACT (ENGLISH)………………….……………………………...…………………... v

ACKNOWLEDGEMENTS..vi

CONTENTS...vii

CHAPTER I INTRODUCTION...1

1.1 Motivation...1

1.2 Objective ...2

1.3 Scope...2

1.4 Contribution ..3

1.5 Research Methodology ...3

1.6 Organization of Thesis ..5

CHAPTER II BACKGROUND AND LITERATURE REVIEW..6

2.1 Notation...6

2.2 Support Vector Machines..7

2.2.1 Support Vector Classification ..8

2.2.2 Support Vector Regression ..12

2.3 Kernel Methods...16

2.4 Measurements of Learning Algorithms ..19

2.4.1 Accuracy ..20

2.4.2 VC-Dimension ...21

2.4.3 Generalization Performance ..25

2.4.4 Cross-Validation ..27

2.4.5 Regression Evaluation ...28

2.5 Evolutionary Algorithms...30

2.5.1 Evolutionary Strategies..34

viii

 Page

2.5.2 Genetic Programming ..41

2.6 Related Works...47

2.6.1 Construction of Kernel Functions..47

2.6.2 Parameter Selection ...49

CHAPTER III ADAPTIVE COMBINED KERNEL FUNCTIONS52

3.1 Combined Kernel Functions ...52

3.1.1 Multi-Scale RBF Kernel Function ...56

3.1.2 Multi-Degree Polynomial Kernel Function ...59

3.1.3 Linear Combination of Polynomial and RBF Functions60

3.1.4 Multiplication of Polynomial and RBF Functions...................................61

3.2 Evolutionary Techniques for Support Vector Machines.......................................62

3.2.1 Initialization ...64

3.2.2 Selection ..66

3.2.3 Recombination ...67

3.2.4 Mutation...68

3.3 Objective Functions in Evolutionary Processes ..69

3.3.1 Training Error ..69

3.3.2 Subsets Cross-Validation...70

3.3.3 Bound of Generalization Error...71

3.3.4 Stability of SVM..72

CHAPTER IV EXPERIMENTAL SETTING AND RESULTS ..74

4.1 Experimental Setting...74

4.2 Performance Evaluation ..75

4.3 Experimental Results ..81

4.3.1 Classification Problems ...81

4.3.2 Regression Problems..102

ix

 Page

CHAPTER V REAL WORLD PROBLEMS ...111

5.1 Sentiment Classification ...111

5.1.1 Preliminary and Related Work...111

5.1.2 Methodology..113

5.1.3 Experimental Results ...115

5.2 Handwritten Recognition ..118

5.2.1 Preliminary and Related Works ...118

5.2.2 Methodology..119

5.2.3 Experimental Results ...120

5.2.4 Other Experimental Results on Multi-Class Problems122

CHAPTER VI EVOLVING KERNEL TREE..123

6.1 Motivation...123

6.2 GPES...124

6.2.1 GPES Algorithm..124

6.2.2 Terminal and Function Sets ...126

6.2.3 Creating an Individual ...126

6.2.4 Genetic Operations ..127

6.2.5 Fitness Test ..129

6.3 Experimental Results ..130

CHAPTER VII CONCLUSION AND FUTURE WORK..133

7.1 Conclusion ..133

7.2 Future Work ..135

REFERENCES ..136

APPENDIX..142

PUBLICATIONS..143

BIOGRAPHY ..145

x

LIST OF TABLES

 Page

Table 2-1: Examples of Kernel Functions ...18

Table 2-2: Examples of Regression Evaluation Functions ..29

Table 4-1: Classification Datasets ...74

Table 4-2: Regression Datasets..75

Table 4-3: Critical Values of T-distribution ..79

Table 4-4: Critical Values for Two-Tailed Bonferroni-Dunn Test ..81

Table 4-5: Average Percentage Error of k-Nearest Neighbors on Classification Problems82

Table 4-6: Average Percentage Error of SVM with Parameter Setting on RBF Kernel..........83

Table 4-7: Average Percentage Error of SVM with Parameter Setting on Polynomial Kernel

...84

Table 4-8: Average Percentage Error of Parameter Settings and Grid Search85

Table 4-9: Average Percentage Error of Single RBF Kernel Function86

Table 4-10: Pairwise Differences on Average Ranks of the Different Objective Functions for

Single RBF Kernel...88

Table 4-11: Average Percentage Error on Training of Single RBF Kernel Function..............89

Table 4-12: The Running Time of an SVM with the Single RBF Kernel that Uses Different

Parameter Selection Methods when Training on a Fold of Sonar Dataset90

Table 4-13: Average Percentage Error on Testing of 2-RBF Kernel Function92

Table 4-14: Average Percentage Error on Testing of 3-RBF Kernel Function92

Table 4-15: Average Percentage Error on Testing of 4-RBF Kernel Function93

Table 4-16: Average Percentage Error on Testing of 5-RBF Kernel Function93

Table 4-17: Average Percentage Error on Testing of 10-RBF Kernel Function95

Table 4-18: Pairwise Differences on Average Ranks of 1-NN and 10-RBF Kernel Function

with the Different Objective Functions..96

Table 4-19: Average Percentage Error on Training of 10-RBF Kernel Function....................97

xi

 Page

Table 4-20: Average Percentage Error on Testing of 1-NN, Grid Search, and ES with the

StabilityBound on RBF and 10-RBF Kernel Functions ...99

Table 4-21: Pairwise Differences on Average Ranks of 1-NN, Grid Search, and ES with the

StabilityBound on Single RBF and 10-RBF Kernel Functions..99

Table 4-22: Average Percentage Error of SVM with Different Kernel Functions when using

StabilityBound as the Objective Function in Evolutionary Process.......................................101

Table 4-23: Pairwise Differences on Average Ranks of Grid Search and ES with the Different

Combined Kernel Functions ..102

Table 4-24: Average SMAPE of SVM with Parameter Setting on RBF Kernel for ε =1103

Table 4-25: Average SMAPE of SVM with Parameter Setting on Polynomial Kernel for ε =1

...103

Table 4-26: Average SMAPE on 5-Fold Cross-Validation of RBF Kernel Function104

Table 4-27: Pairwise Differences on Average Ranks of RBF Grid Search and ES with the

Different Objective Functions on Single RBF Kernel on Regression Problems105

Table 4-28: Average SMAPE on Training of RBF Kernel Function.....................................105

Table 4-29: Average SMAPE on 5-Fold Cross-Validation of 10-RBF Kernel Function106

Table 4-30: Pairwise Differences on Average Ranks of Single RBF Kernel and 10-RBF

Kernel with Different Objective Functions on Regression Problems....................................107

Table 4-31: Average SMAPE on Training of 10-RBF Kernel Function107

Table 4-32: Average SMAPE on 5-Folds Cross-Validation of SVM with Different Kernel

Functions when using StabilityBound as the Objective Function in Evolutionary Process...109

Table 4-33: Pairwise Differences on Average Ranks of Grid Search and ES with the Different

Combined Kernel Functions on Regression Problems ..109

Table 5-1: Average Accuracy of SVM on Sentiment Classification117

Table 5-2: Accuracies on Letter Recognition Task ...121

Table 5-3: Average Accuracies on Multi-Class Problems...122

Table 6-1: Average Error on Classification ...131

xii

LIST OF FIGURES

 Page

Figure 1-1: Procedures of Research ...4

Figure 2-1: An example of Decision Surface and Margin ...8

Figure 2-2: Support Vectors and Optimal Hyperplane ..10

Figure 2-3: Unclassifying by a Linear Hyperplane..11

Figure 2-4: Mapping from 2-Dimensional Space into 3-Dimensional Space..........................12

Figure 2-5: An Approximation with a Linear Regression ...13

Figure 2-6: Soft Margin for a Linear Regression...14

Figure 2-7: Mapping from Input Space into Feature Space...15

Figure 2-8: Relation between SVC, SVR, and Kernel Functions ..16

Figure 2-9: Input Space, Feature Space, and Output Space...17

Figure 2-10: Sensitivity/Specificity and Precision/Recall ...20

Figure 2-11: An Examples of Shattering ...22

Figure 2-12: Shattering of Two Points...23

Figure 2-13: Shattering of Three Points...23

Figure 2-14: Cannot Shatter Three Co-Linear Points ..24

Figure 2-15: Cannot Shatter Four Points ...24

Figure 2-16: Visualization of Enforcing a Large Margin of Separation25

Figure 2-17: K-Folds Cross-Validation ...28

Figure 2-18: General Evolutionary Algorithm...31

Figure 2-19: The ES Algorithm ...35

Figure 2-20: Two Selection Scenarios ...39

Figure 2-21: An Example of Tree - Initialized by the Grow Method43

Figure 2-22: An Example of Tree – Initialized by the Full Method ..43

Figure 2-23: Crossover Operation on Two Parent Trees ...44

Figure 2-24: The GP Algorithm...46

xiii

 Page

Figure 3-1: Correlations of Distance between Two Points in RBF, 2-RBF, and 3-RBF Kernels

...57

Figure 3-2: Examples of Classification..58

Figure 3-3: Correlations of Inner Product between Two Points in Polynomial, 2-Polynomial,

and 3-Polynomial Kernels..59

Figure 3-4: (5+10)-ES Algorithm ..63

Figure 3-5: Selection Scenario...66

Figure 3-6: 5-Subsets Cross-Validation...70

Figure 4-1: 5-Folds Cross-Validation ..76

Figure 4-2: Chart of Average Percentage Error on Training and Testing of Single RBF Kernel

Function with Different Objective Functions ..89

Figure 4-3: Graphs of Different Objective Functions for each Generation of ES on Sonar

Datasets ..91

Figure 4-4: Graph of Average Percentage Error at Different Number of RBF Terms94

Figure 4-5: Chart of Average Percentage Error on Training of 1-NN and Both Training and

Testing of 10-RBF Kernel with Different Objective Functions...98

Figure 4-6: Average SMAPE on Training and Testing of Single RBF Kernel Function106

Figure 4-7: Average SMAPE on Training and Testing of 10-RBF Kernel Function108

Figure 5-1: The Average Accuracy on Polynomial Kernels at Different Degree..................116

Figure 5-2: The Average Accuracy on RBF Kernels at Different Scale................................116

Figure 5-3: SVM for Multi-Class Problems ..119

Figure 5-4: Proposed Method for Multi-Class Problems...120

Figure 5-5: Sample Letter Images..121

Figure 6-1: (5+5)-GPES Algorithm...125

Figure 6-2: A Hybrid Kernel Function (Represented as Tree) ..127

Figure 6-3: Crossover Operation ...128

CHAPTER I

INTRODUCTION

Support vector machines (SVMs) are learning algorithms proposed by Vapnik [1, 2],

based on the idea of empirical risk minimization principle. They have been widely used in

many applications such as pattern recognitions, function approximations, and clustering

problems. There are two main reasons why this approach should work. First, the automatic

selection of the optimal classifier capacity tailored on the given task is performed by

minimizing the generalization error. Secondly, there is the computational shortcut which

yields the ability to deal with nonlinear problems. This shortcut is called kernel function.

There are many types of kernel functions and each kernel function is suitable for

different tasks. The appropriate kernel function and the suitable parameters of SVM and its

kernel function are the great problems in many research studies. Hence, the main target of

this research is to improve the performance of existing kernel functions. Moreover, a method

for determining the optimal parameters of SVM and its kernel function will be proposed. The

motivation, objective, scope, contribution, and research methodology of this research are

presented in this chapter.

1.1 Motivation

Support vector machines have shown great promise in supervised classification

problems including pattern recognition, character recognition, text classification,

bioinformatics, image processing and others [3]. Basically, SVM performs a linear separation

in an augmented feature space by means of a pre-defined kernel function that satisfies

Mercer’s theorem [4, 5]. This kernel function maps the input vectors into a very high

dimensional space, possibly of infinite dimension, where a linear separation is more probable

[5]. Then, a linear separating hyperplane is created by maximizing the margin between two

classes in this space. Therefore, the complexity of the separating hyperplane depends on the

nature and the properties of the chosen kernel function [5].

There are many types of kernel functions such as linear kernel, polynomial kernel,

sigmoid kernel, and radial basis function (RBF) kernel. Although, these kernel functions,

especially, polynomial kernel and the RBF kernel, are the most successful kernel functions in

many problems, they still have the restrictions in some complex problems. Moreover, each

kernel function is suitable for some tasks, and it must be chosen for the tasks under

2

consideration by hand or using prior knowledge [6]. While SVMs have emerged as a

powerful classification method in several areas of machine learning and data mining,

researchers have had to rely on expert domain knowledge when choosing the kernel function

and the parameters [3].

Hence, this research tries to define new kernel functions for SVM on classification

and regression problems. The new kernel functions should be flexible with any problems and

correspond to the Mercer's theorem. A method for creating these new kernel functions is

combining existing kernels. Here, we propose the non-negative linear combination of

multiple sub-kernel functions. Each sub-kernel functions are weighted and combined. The

weights and the parameters of sub-kernels are the adjustable parameters of this new kernel

function. In order to obtain an SVM that has good classification accuracy, a large number of

kernel parameters are needed to be evaluated.

In general, these parameters are usually determined by a grid search. The parameters

are varied with a fixed step-size in a range of values, but this kind of search consumes a lot of

time. Although there are many research studies that attempt to propose the algorithm for the

parameter selection, this research proposes to use the evolutionary algorithms for choosing

the parameters of SVMs and kernel functions. The evolutionary algorithms are random

processes and they can find the solutions in the restricted time. Besides, the genetic

programming, which is a kind of the evolutionary algorithms, may help to create new forms

of kernel functions. We expect that they will give a better result when compared with the

traditional kernel functions.

1.2 Objective

The main objective of this study is to analyze and design new kernel functions for

support vector machines by combining the existing Mercer’s kernels to improve the

performance of classification or approximation on benchmark datasets.

1.3 Scope

The scopes of this study are as follows.

1. The proposed kernel functions are the combination of Mercer’s kernels, i.e.

polynomial and RBF kernels, by using addition or multiplication. Moreover, these new

kernel functions must still correspond to the Mercer’s theorem.

3

2. The proposed kernel functions are designed and tested for support vector machines

in classification tasks and regression tasks.

3. The parameters of SVM and the proposed kernel functions are selected by the

evolutionary strategies.

4. Performances of the new kernel functions are compared to those of the traditional

kernels, i.e. polynomial and RBF kernels.

5. The percentage error of classification is used for measuring the performance of the

proposed methods on classification problems. In regression problems, symmetric mean

absolute percentage error (SMAPE) is used for evaluating the proposed methods.

6. The proposed methods are evaluated by 5-folds cross-validation.

7. In order to verify the performance, the proposed methods will be trained and tested

on 12 binary classification datasets and 4 regression datasets from the UCI Machine Learning

Repository [7].

1.4 Contribution

1. This research provides new kernel functions for support vector machines. These

new kernel functions are the combination of the traditional kernel functions such as linear

kernel, polynomial kernel, and radial basis function kernel. Therefore, these kernel functions

are more flexible than the traditional kernels. Besides, these kernel functions could lead to

the improvement in the performance of classification or prediction.

2. The evolutionary strategy is applied for selecting the parameters of SVM and the

proposed kernel functions. This evolutionary algorithm is improved to be suitable for this

parameter selection problem. Moreover, we offer the genetic programming for finding the

suitable combined kernel functions and their parameters.

1.5 Research Methodology

The procedures of this research can be divided into 5 main steps as literature survey,

analysis and design of new kernel functions, testing the proposed kernel functions, validation

of results, and conclusion for writing documents. These procedures can be exhibited in

Figure 1-1.

4

Figure 1-1: Procedures of Research

- Literature Survey: The principles of support vector machines are studied. Both

support vector classification and support vector regression are reviewed. Application,

advantage, and disadvantage of support vector machines are inspected. Then, kernel methods

are surveyed. Research studies concerned with kernel functions and their benefits are

considered. After that, the theories and applications of evolutionary algorithms (emphasis on

evolutionary strategies and genetic programming) are explored. Furthermore, how to apply

the evolutionary strategies to our problems are studied.

- Analysis and Design: The theories and related research studies that are studied

from the previous step are used to analyze and design new kernel functions. The new kernel

functions must correspond to the related theorem. The evolutionary algorithms are applied

for adjusting the parameters of SVMs and their kernel functions.

- Testing: A new kernel function is used for support vector machines on both

classification and regression problems. Some standard datasets are selected for testing. The

results are compared with the traditional kernels.

5

- Validation: The results from experiments are validated. The information from the

first step is used for analyzing results. If the results are not good enough, the proposed

method will be improved or re-studying to propose a new method.

- Conclusion and Documentation: The proposed kernel and the experimental results

are concluded and published in scientific papers. All studies and the recommendation are

written in dissertation document.

1.6 Organization of Thesis

The remaining chapters of this thesis are organized as follows. The support vector

machines will be described in Chapter 2. This algorithm will be considered on both

classification problems and regression problems. The kernel methods and learning algorithm

measurements are described in this chapter. Then, the evolutionary algorithms are expressed.

The evolutionary strategies and the genetic programming are considered in this research. In

addition, a number of related works are briefly reviewed.

In Chapter 3, the adaptive combined kernel functions are proposed for support vector

machines. There are many ways to combine the Mercer’s kernels. However, this chapter

proposes to use the non-negative linear combination of multiple Mercer’s kernels. The multi-

scale RBF kernels, the multi-degree polynomial kernels, and the linear combination of both

polynomial and RBF kernels are the examples of the combination that are presented in this

research. Then, the evolutionary algorithms are applied for adjusting their parameters, and

the objective function in evolutionary process is carefully designed.

The experimental setting and results are shown in Chapter 4. The proposed methods

are compared to SVMs with the traditional kernels on both classification and regression

problems. The performance of the proposed methods is discussed at the end of this chapter.

After that, the proposed methods are applied to real world problems in Chapter 5. Sentiment

classification and handwritten recognition are considered. Then, a choice to create new

kernel functions will also be presented in Chapter 6. The evolutionary algorithms are applied

to create these new forms of kernel functions and they are represented as trees. Finally, this

research is concluded and some directions for the future work are presented in Chapter 7.

CHAPTER II

BACKGROUND AND LITERATURE REVIEW

In this chapter, the mathematical notation is defined. The support vector machines

are reviewed on both classification and regression tasks. Then, kernel methods are described

and some measurements of learning algorithms are explained. The evolutionary strategies

and the genetic programming are illustrated in this chapter. Ultimately, a number of related

works are briefly reviewed.

2.1 Notation

 D training set

 Yy∈ output and output space

 Xx∈ input and input space

 F feature space

 ℜ real numbers

 N dimension of input space

 M dimension of feature space

 m training set size

 w weight vector

 b bias

 ji xx ⋅ inner product of ix and jx

)(⋅d distance function

 ⋅ absolute value

p

⋅ p-norm, default is 2-norm

 ρ margin

 α Lagrange multiplier

 L Lagrangian form

x
L

∂
∂ partial derivative of L with respect to x

)(⋅f ,)(⋅g real-valued function

)(xsign sign of x , it is +1 if 0≥x and it is -1 if 0<x

 ξ , *ξ slack variable

7

 C regularization parameter of SVM

)(⋅Φ mapping into feature space

),(ji xxK kernel function)()(ji xx Φ⋅Φ

 n number terms of sub-kernels in combined kernel function

 d degree of polynomial kernel

 γ width of radial basis function kernel

 ε deviation of approximation

)(⋅L loss function

 ln logarithm to base e

 alog logarithm to base a

 h VC-dimension

 H hypothesis space

 S set of instances

 δ confidence interval

 ŷ predicted output

 R generalization error

 empR empirical error

 2κ bound of kernel function

 μ size of ES parent population

 λ size of ES offspring population

 vv vector of hyperparameter

 σv vector of standard deviation

)(⋅P probability function

)(vfitness v objective function of vector vv or fitness function of vv

)(AU uniform distribution within set A

),(σμN normal distribution with mean μ and standard deviation σ

2.2 Support Vector Machines

A support vector machine (SVM) is a learning algorithm that can be divided into

support vector classification (SVC) and support vector regression (SVR). SVC is a powerful

method for separating the binary-class data in terms of a small subset, called support vectors,

of the training examples, and SVR is an approximation method that estimates a real-valued

function in terms of support vectors. In this part, both SVC and SVR are briefly reviewed.

8

2.2.1 Support Vector Classification

For simple pattern recognition tasks, SVM uses a linear separating hyperplane to

create a classifier with the maximum margin [6, 8, 9]. Consider the problem of binary

classification, where a training dataset is denoted as

{ }),(,...,),(,),(2211 mm yxyxyxD = , (1)

where N
ix ℜ∈ is a sample data and }1,1{−∈iy is its label [10]. A linear decision surface is

defined by the following equation:

0=+⋅ bxw . (2)

Occasionally, there are multiple hyperplanes which can perform the separation. The

goal of learning is to find Nw ℜ∈ and the scalar b such that the margin between positive and

negative examples is maximized. An example of the decision surface and its margin are

shown in Figure 2-1.

Figure 2-1: An example of Decision Surface and Margin

9

The linear hyperplane can separate the data if and only if 0>+⋅ bxw i if 1+=iy

and 0<+⋅ bxw i if 1−=iy . It is appropriate to consider a canonical hyperplane, where the

parameters w and b are constrained by 1min =+⋅ bxw ii
 [11]. A separating hyperplane in

canonical form must satisfy the following constraints:

1+≥+⋅ bxw i if 1+=iy ,

1−≤+⋅ bxw i if 1−=iy .
(3)

These can be combined into one set of inequalities:

() 1≥+⋅ bxwy ii , i∀ . (4)

The distance);,(ixbwd of a point ix from the hyperplane),(bw is

w

bxw
xbwd i

i

+⋅
=);,(. (5)

The optimal hyperplane is given by maximizing the margin ρ , subject to the

constraints in inequality (4). The margin is given by:

),(bwρ =);,(min);,(min
1,1, iyxiyx

xbwdxbwd
iiii +=−=

+

 =
w

bxw

w

bxw i

yx

i

yx iiii

+⋅
+

+⋅
+=−= 1,1,

minmin

 = ⎟
⎠
⎞⎜

⎝
⎛ +⋅++⋅

+=−=
bxwbxw

w iyxiyx iiii 1,1,
minmin1

 =
w
2 .

(6)

Hence, the hyperplane that optimally separates the data is the one that minimizes 2

2
1 w

subject to the constraints () 1≥+⋅ bxwy ii , for mi ,,1 K= [12].

This problem is a quadratic optimization problem [13]. Thus, the Lagrange

multipliers iα , for mi ,,1 K= are introduced to form the Lagrangian. This gives Lagrangian:

()()()∑
=

−+⋅−=
m

i
iii bxwywL

1

2 1
2
1 α . (7)

10

The Lagrangian has to be minimized with respect to w , b and maximized with respect to

0≥iα . The minimum with respect to w and b of the Lagrangian is given by:

b
L

∂
∂ = 0 → 0

1
=∑

=

m

i
ii yα (8)

w
L

∂
∂ = 0 → ∑

=

=
m

i
iii xyw

1
α . (9)

The optimization problem becomes:

 maximize ∑∑∑
= ==

⋅−
m

i

m

j
jijiji

m

i
i xxyy

1 11 2
1 ααα

 subject to 0
1

=∑
=

m

i
ii yα ,

 0≥iα , mi ,,1 K= .

(10)

The decision function is then

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅= ∑

=

bxxysignxf
m

i
iii

1
)(α , (11)

where 0≥iα is the coefficient associated with a vector ix and b is an offset. A data example

ix which corresponds to a non-zero iα values are called support vector. Figure 2-2 shows

the support vectors and the optimal hyperplane.

Figure 2-2: Support Vectors and Optimal Hyperplane

11

However, the quadratic programming solutions cannot be used in the case of

overlapping because the constraints cannot be satisfied [6]. Figure 2-3 shows an example of

unclassifiable data by a linear hyperplane. In such a situation, this algorithm must allow some

data to be unclassified, or on the wrong side of a decision surface [6]. In practice, we allow a

soft margin, and all data inside this margin are neglected.

Figure 2-3: Unclassifying by a Linear Hyperplane

In soft margin SVM, the separating hyperplane can be achieved by

 minimize ∑
=

+
m

i
iCw

1

2

2
1 ξ

 subject to () ≥+⋅ bxwy ii iξ−1 ,

 0≥iξ for all mi ,,1 K= .

(12)

The width of the soft margin can be controlled by a corresponding regularization parameter

C [6]. The constant 0>C determines the trade-off between margin maximization and

training error minimization [14].

In most cases, seeking a proper linear hyperplane in the original input space is not

always possible. This problem can be solved by enabling these support vector machines to

produce complex nonlinear boundaries in the original space. This is done by mapping the

input space into a higher dimensional feature space through a mapping function. Then a

linear separating is performed in the higher dimensional space [14]. Example of mapping

from 2-dimensional input space into 3-dimensional feature space is shown in Figure 2-4.

12

Figure 2-4: Mapping from 2-Dimensional Space into 3-Dimensional Space

This can be achieved by substituting)(ixΦ into each training example ix . However,

a good property of SVM is that it is not necessary to know the explicit form of Φ . Only the

inner product in feature space, called kernel function)()(),(jiji xxxxK Φ⋅Φ= , must be

defined. This technique is called kernel trick. The decision function becomes the following:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

bxxKysignxf
m

i
iii

1
),()(α , (13)

where),(xxK i is the kernel function of vector ix and x , 0≥iα is a coefficient associated

with a support vector ix and b is an offset. A function which can be a kernel function must

satisfy Mercer’s theorem [10] that will be described in Section 2.3.

2.2.2 Support Vector Regression

In the regression problem, we want to predict a real-valued function. The idea of

SVM can be applied to these problems. Suppose our training data are represented as

{ } ℜ×⊂= XyxyxD mm),(,),,(11 K , (14)

where NX ℜ⊆ denotes the space of input patterns. In −ε SV regression, our goal is to find a

function)(xf that has at most ε deviation from the actually obtained target iy for all the

training data, and at the same time is as flat as possible [15]. In other words, we do not care

about errors as long as they are less than ε , but we do not accept any deviation larger than

this [15]. The loss function that SVR chooses is ε -insensitive loss function [16], that is

()
⎪⎩

⎪
⎨
⎧ >−−−

=
.0

,)()(
)(,

otherwise
xfyifxfy

xfyL
εε

 (15)

13

An example of a linear SVR is shown in Figure 2-5.

Figure 2-5: An Approximation with a Linear Regression

We begin by describing the case of linear approximation functions. SVR seeks to

estimate a function f , taking in form:

bxwxf +⋅=)(, (16)

where Nxw ℜ∈, , ℜ∈b . Flatness in this case means that one seeks a small w . One way to

ensure this is to minimize the norm, i.e. www ⋅=
2 .

However, in practice, there always exists various noise or imprecision for our training

examples [16]. In those cases, we may want to allow for some errors. Soft margin loss

function is adapted to SVR; one can introduce slack variables iξ , *
iξ to cope with otherwise

infeasible constraints of the optimization problem [17]. Hence we can write this problem as

an optimization problem:

 minimize ∑
=

++
m

i
iiCw

1

*2)(
2
1 ξξ

 subject to iii bxwy ξε +≤−⋅−

 *
iii ybxw ξε +≤−+⋅

 iξ , *
iξ ≥ 0.

(17)

The constant 0>C determines the trade-off between the flatness of f and the amount up to

which deviations larger than ε are tolerated. An example of soft margin linear SVR is shown

in Figure 2-6.

14

Figure 2-6: Soft Margin for a Linear Regression

For nonlinear problems, SVR maps input space X into a high dimension, or infinite,

feature space F , and then constructs a linear function with small weight under some

constraints in feature space [16]. The feature space F is obtained from mapping function

)(xΦ , and SVR uses the following to approximate the learning aim:

bxwxf +Φ⋅=)()(. (18)

The weight Fw∈ and bias ℜ∈b are gained by optimizing the following problem:

 minimize ∑
=

++
m

i
iiCw

1

*2)(
2
1 ξξ

 subject to iii bxwy ξε +≤−Φ⋅−)(

 *)(iii ybxw ξε +≤−+Φ⋅

 iξ , *
iξ ≥ 0.

(19)

In most cases this optimization problem can be solved more easily in its dual

formulation [15]. The dual problem of the quadratic programming in (19) is to

 maximize ()() () () () ()∑∑∑∑
=== =

−++−Φ⋅Φ−−−
m

i
iii

m

i
ii

m

i

m

j
jijjii yxx

1

*

1

*

1 1

**

2
1 ααααεαααα

 subject to () 0
1

* =−∑
=

m

i
ii αα

 Cii ≤≤ *,0 αα .

(20)

15

An example of mapping from input space to feature space is shown in Figure 2-7.

Figure 2-7: Mapping from Input Space into Feature Space

The final decision function is that

() () () bxxxf
m

i
iii +Φ⋅Φ−= ∑

=1

*)(αα (21)

and

() ()i

m

i
ii xw Φ−= ∑

=1

*αα . (22)

According Karush-Kuhn-Tucker (KKT) conditions in [18] and [19], the bias b can be

obtained by solving the following four equations [16]:

 ()() 0=+Φ⋅+−+ bxwy iiii ξεα (23)

 ()() 0** =−Φ⋅−++ bxwy iiii ξεα (24)

 () 0=− iiC ξα (25)

 () 0** =− iiC ξα . (26)

The dimension of feature space is always high or even infinite, so it is impossible to

compute the inner product directly in feature space [16]. Kernel function is a key step for

SVR. Kernel function could make the computation in feature space easier in the original

input space [16]. A kernel function is defined on the input space XX × that is

)()(),(jiji xxxxK Φ⋅Φ= , (27)

16

and (21) is changed to

() () bxxKxf
m

i
iii +−= ∑

=1

* ,)(αα . (28)

2.3 Kernel Methods

For nonlinear problems, both SVC and SVR utilize kernel techniques to produce

complex nonlinear decision functions or nonlinear approximation functions inside the original

space. The relation between SVC, SVR, and kernel functions can be concluded as an image

in Figure 2-8.

Figure 2-8: Relation between SVC, SVR, and Kernel Functions

The kernel functions map the input vectors in an input space NX ℜ⊆ into a higher

dimensional feature space MF ℜ⊆ , and finding the inner product in this feature space. The

concept of input space, feature space, and output space are shown in Figure 2-9.

17

Figure 2-9: Input Space, Feature Space, and Output Space

For instance, the polynomial kernel

dvuvuK ⋅=),((29)

can be shown to correspond to a mapping function Φ into the space spanned by all products

of exactly d dimensions of Nℜ [4]. For 2=d and 2, ℜ∈vu , we have

 ()2
2211

2 vuvuvu +=⋅ 2121
2
2

2
2

2
1

2
1 2 vvuuvuvu ++=

 () ()21
2
2

2
121

2
2

2
1 2,,2,, vvvvuuuu ⋅=

)()(vu Φ⋅Φ=

(30)

defining

 32: ℜ=→ℜΦ F , (31)

() ()21
2
2

2
121 2,,, uuuuuu a . (32)

In SVM, it is not necessary to know the explicit form of mapping function

FX →Φ : . Only the kernel function must be defined,

)()(),(jiji xxxxK Φ⋅Φ= . (33)

Each kernel corresponds to some feature space and because no explicit mapping to this

feature space occurs, optimal linear separators or linear approximations can be found

efficiently in the feature space with millions of dimensions [20]. Some of the kernel

functions are shown in Table 2-1.

18

Table 2-1: Examples of Kernel Functions

Kernel Functions Formula

Linear jiji xxxxK ⋅=),(

Polynomial ()djiji xxxxK ⋅+= 1),(

Exponential Radial Basis

Function
()jiji xxxxK −−= γexp),(

Gaussian Radial Basis Function

(RBF)
⎟
⎠
⎞⎜

⎝
⎛ −−=

2
exp),(jiji xxxxK γ

Multi-Quadratic 22
),(cxxxxK jiji +−−=

Sigmoid* ()βα +⋅= jiji xxxxK tanh),(

Thin Plate Spline [21] jijiji xxxxxxK −−= ln),(
2

Moderate Decreasing [5]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−
= 1exp),(

22
σ

γ

ji

ji
xx

kxxK

* Although the sigmoid function does not correspond to the Mercer’s theorem, this function is used in many

problems and sometimes it is called two-layer neural network kernel.

We notice that these kernel functions are either inner-product-based functions or

distance-based functions. Linear, polynomial, and sigmoid kernels are the examples of

inner-product-based functions. Also, RBF, multi-quadratic, thin plate spline, and moderate

decreasing kernels are the examples of distance-based functions. In general, the function

which maps the input space into the augmented feature space is not explicitly known.

However, the existence of such function is assured by Mercer’s theorem [6].

Theorem 2-1 (Mercer’s theorem): Any symmetric function),(ji xxK in the input space can

represent an inner product in feature space if

0)()(),(≥∫∫ jijiji dxdxxgxgxxK (34)

be valid for all 0≠g for which ∫ ∞<duug)(2 [4, 6].

19

Then the kernel function K can be expanded in terms of iΦ

∑
∞

=

ΦΦ=
1

)()(),(
k

jkikkji xxxxK λ (35)

with 0≥kλ [6]. In this case, the mapping from input space to feature space is expressed as

()K,)(,)(: 2211 xxx ΦΦ→Φ λλ (36)

such that K can be the inner product

),()()()()(
1

ji
k

jkikkji xxKxxxx =ΦΦ=Φ⋅Φ ∑
∞

=

λ (37)

In addition, there are some operations on one or more kernels that always preserve the

kernel property. These operations are illustrated in Proposition 2-1.

Proposition 2-1 (Closure properties): Let 1K and 2K be kernel functions over XX × ,

NRX ⊆ , +∈Ra ,)(⋅f a real-valued function on X , MRX →Φ : with 3K a kernel function

over MM RR × , and B a symmetric positive semi-definite NN × matrix. Then the following

functions are kernel function [10]:

(i)),(),(),(21 jijiji xxKxxKxxK += ,

(ii)),(),(1 jj xxaKxxK = ,

(iii)),(),(),(21 jijiji xxKxxKxxK = ,

(iv))()(),(jiji xfxfxxK = ,

(v)))(),((),(3 jiji xxKxxK ΦΦ= ,

(vi) jiji xBxxxK ′=),(.

This proposition shows that kernel functions satisfy a number of closure properties

[10]. More complicated kernel functions can be created from simple kernel functions by this

proposition. Moreover, we can regard that a kernel function is a similarity measure between

two data points [10]. Therefore, the kernel functions contain all of the information about the

relative positions of the inputs in the feature space.

2.4 Measurements of Learning Algorithms

 In order to evaluate the learning algorithms, we require some measurements that can

compare the performance of several learning algorithms or judge the performance of an

20

algorithm. There are many ways to evaluate our learning algorithms such as training

accuracy or training error, VC-dimension, generalization performance, and cross-validation.

Besides, for regression problems, there are many error functions that can be applied to the

evaluation of the approximation algorithms such as percentage error (PE), mean square error

(MSE), mean absolute percentage error (MAPE), etc. In this section, these measurements are

briefly described.

2.4.1 Accuracy

The accuracy has been widely used as the main criterion for comparing the ability of

a learning algorithm. This function measures the number of the correctly classified instances

over the total number of instances. In binary classification, the accuracy is also used as a

statistical measure of a learning algorithm, and it can be calculated by the following equation:

m

yxf
accuracy

m

i
ii

2

)(
1 1

∑
=

−
−= , (38)

where)(ixf is a decision function of data N
ix ℜ∈ for mi ...,,2,1= , and }1,1{−∈iy is the

actual class of data ix .

In the context of binary classification tasks, the terms true positive, true negative,

false positive, and false negative are used to compare the given class (the class label assigned

by a classifier) with the desired class (the actual class). Accuracy is closely related to

sensitivity/specificity and precision/recall. This is illustrated by Figure 2-10.

Figure 2-10: Sensitivity/Specificity and Precision/Recall

21

negativefalsenegativetruepositivefalsepositivetrue
negativetruepositivetrue

accuracy
+++

+
= (39)

- Precision/Recall: The precision is the number of class members classified correctly

over the total number of instances classified as class members; and the recall (or true positive

rate) is the number of class members classified correctly over the total number of class

members.

positivefalsepositivetrue
positivetrue

precision
+

= (40)

negativefalsepositivetrue

positivetrue
recall

+
= (41)

- Sensitivity/Specificity: The sensitivity or the recall rate measures the proportion of

actual positives which are correctly identified; and the specificity measures the proportion of

negatives which are correctly identified.

negativefalsepositivetrue
positivetrue

ysensitivit
+

= (42)

positivefalsenegativetrue

negativetrue
yspecificit

+
= (43)

2.4.2 VC-Dimension

The Vapnik-Chervonenkis dimension (VC-dimension: h) is a measure of the

complexity of hypothesis space H . In many case, the VC-dimension can be used to state a

tighter bounds on sample complexity. The VC-dimension measures the complexity of the

hypothesis space H , not by the number of distinct hypotheses H , but instead by the number

of distinct instances from input space X that can be completely discriminated using H [22].

Hence, the VC-dimension is a one-number summary of a learning machine’s capacity [14].

The basic concept of the VC-dimension is presented for a two-class pattern recognition

problem and then generalized for real approximation function [6].

 First, we define the notion of shattering a set of instances. Consider some subset of

instances XS ⊆ , each hypothesis from H imposes some dichotomy on S ; that is, each

hypothesis partitions S into the two subsets [22]. Given some instance set S , there are S2

possible dichotomies, though H may be unable to represent some of these [22]. We say that

22

H shatters S if every possible dichotomy of S can be represented by some hypothesis from

H [22].

Definition 2-1: A set of instance S is shattered by hypothesis space H if and only if for

every dichotomy of S there exists some hypothesis in H consistent with this dichotomy

[22].

Figure 2-11: An Examples of Shattering

Figure 2-11 illustrates a set S of three instances that is shattered by the hypothesis

space. Moreover, each of the 32 dichotomies of these three instances is covered by some

hypothesis. If a set of instances is not shattered by a hypothesis space, then there must be

some concept that can be defined over the instances but that cannot be represented by the

hypothesis space [22].

The ability of H to shatter a set of instances is a measure of its capacity to represent

target concepts defined over these instances. In general, H cannot shatter the instance space

X but it can shatter some large subset S of X [22]. Therefore, the larger subset of X that

can be shattered is reasonable to measure. The VC-dimension of H is precisely this

measure.

Definition 2-2: The VC-dimension of hypothesis space H defined over instance space X is

the size of the largest finite subset of X shattered by H . If arbitrarily large finite sets of X

can be shattered by H , then ∞≡)(HVC [22].

23

Moreover, for any finite H , HHVC 2log)(≤ . Note that if the VC-dimension is h ,

then there exists at least one set of h instances in the input space that can be shattered [6].

This does not mean that every set of h instances can be shattered by a given set of

hypotheses.

For example, suppose the instance X is the set of points in the two dimensional

space, and H is the set of all linear decision surfaces in this space. It is easy to see that any

two distinct points in this two dimensional space can be shattered by H , because we can find

four linear surfaces that include neither, either, or both points [6]. These are showed in Figure

2-12.

Figure 2-12: Shattering of Two Points

For three points, as long as the points are not co-linear, we can find 32 = 8 linear

surface that shatter them. All possible variations of three points shattered by a hypothesis are

showed in Figure 2-13. Of course three co-linear points cannot be shattered [22], and they are

showed in Figure 2-14. Moreover, there is no arrangement of four points in a two

dimensional space which can be shattered by the linear surface that is shown in Figure 2-15.

Therefore, the VC-dimension of H is equal to 3.

Figure 2-13: Shattering of Three Points

24

Figure 2-14: Cannot Shatter Three Co-Linear Points

Figure 2-15: Cannot Shatter Four Points

More generally, in N dimensional space, the VC-dimension of linear decision

surfaces is 1+N [6, 22]. However, SVM can be shown to correspond to hyperplanes in

feature spaces of possible infinite dimension [14]. The crucial point is that SVM corresponds

to large margin hyperplanes. Once the margin enters, the capacity can be much smaller than

the above general VC-dimension of hyperplanes [14]. For simplicity, we consider the case of

hyperplanes containing the origin.

Theorem 2-2: Consider hyperplanes 0=⋅ xw , where w is normalized such that they are in

canonical form with respect to a set of point { }mxxxX ,,, 21
* K= ; i.e.

1min
,...,2,1

=⋅
= imi

xw . (44)

The set of decision functions () ()xwsignxf ⋅= defined on *X , and satisfying the constraint

Λ≤w , has a VC-dimension satisfying

22Λ≤ Rh , (45)

where R is the radius of the smallest sphere centered at the origin and containing *X [14].

25

The proving process of this theorem is shown in [14]. This theorem states that we

can control the VC-dimension by controlling the length of the weight vector w . There

exists a similar result for the case where R is the radius of the smallest sphere, not necessary

centered at the origin, enclosed the data, and where it is allowed for the possibility that the

hyperspheres have a nonzero offset b [14]. In this case, we give a simple visualization in

Figure 2-16, which shows it is plausible that enforcing a large margin amounts to reducing the

VC-dimension [14].

Figure 2-16: Visualization of Enforcing a Large Margin of Separation

Assume that the data points are contained in a ball of radius R . The hyperplanes

with margin 1ρ can be used to separate three points in all possible ways. However, the

hyperplanes with the larger margin 2ρ can be used to separate only two points, hence the

VC-dimension in this case is two rather than three [14].

2.4.3 Generalization Performance

The result of running the machine learning algorithm can be expressed as a function

)(xf which takes a new example x as input and than generates an output value. The precise

form of the function)(xf is determined during the training phase on the basis of the training

data [23]. The ability to correctly classify new examples that differ from those used for

training is known as generalization [23]. In practical applications, the variability of the input

vectors will be such that the training data can comprise only a tiny fraction of all possible

input vectors, and so generalization is a central goal in pattern recognition [23].

26

Generalization analysis of a pattern classifier is concerned with determining the factor

that affects the accuracy of the classifier [24]. One of the most popular assumptions

originally proposed by Vapnik and Chervonenkis is to assume that the training and testing

data are both generated according to the same probability distribution [24]. The bound on the

generalization error is the probability of misclassifying a randomly chosen example, which

holds with high probability over randomly chosen training sets [24]. This type of bound has

something of the flavour of a statistical test, in that it allows one to infer that the error is small

with the chosen significance level [24]. SVM applies the structural risk minimization

principle, which controls both the empirical risk and a confidence interval at the same time

[6]. A bound for large margin linear classifiers can be found on the VC-dimension of certain

restrictions [24].

Theorem 2-3: Define the class F of real-valued functions on the ball of radius R in Nℜ as

{ }RxwxwxF ≤≤⋅= ,1:a . (46)

There is a constant c such that, for all probability distributions, with probability at least δ−1

over m independently generated examples z , if a classifier () ()Fsignfsignh ∈= has

margin at least ρ on all the examples in z , then the error of h is no more than

()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ δ

ρ
1loglog 2

2

2

mR
m
c . (47)

Furthermore, with probability at least δ−1 , every classifier ()Fsignh ∈ has error no

more than

()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ δ

ρ
1loglog 2

2

2

mR
m
c

m
k , (48)

where k is the number of labeled examples in z with margin less than ρ [24].

Hence the generalization error of the SVM can be bounded even when the kernel

determines an infinite dimensional feature space. The various quantities involved in the

theorem statement can be calculated [24]. The performance of a machine learning algorithm

is measured by plots of the generalization error values through the learning process and is

called learning curves. There are many methods for estimating the generalization

performance. Various techniques aimed at resolving the trade-off between performance on

training data and performance on unseen data. Besides, more classical statistical tool for

27

resolving the trade-off between the performance on training data and the complexity of a

model is the cross-validation technique.

2.4.4 Cross-Validation

The basic idea of the cross-validation is founded on the fact that good results on the

training data do not ensure good generalization capability [6]. Generalization refers to the

capacity of a learning model to give correct answer on unseen data. The most commonly

used method for estimating generalization performance of a learning algorithm is to reserve a

part of the data, called a test set or validation set, which must not be used in any way during

training. The test set must be a representative set of the cases that we want to generalize.

After training, the learning models are run on the test set, and the error on the test set provides

an unbiased estimate of the generalization error, assumed that the test set was chosen

randomly.

The disadvantage of split-sample validation is that it reduces the amount of data

available for both training and validation. Cross-validation is an improvement on split-

sample validation that allows us to use all of the data for training. Moreover, we often are

interested in comparing the performance of several learning algorithms or choosing the

parameters of a learning algorithm. If our learning algorithms are trained on the full training

set, this can lead to overfitting. Typically, the average of several smaller sets can yield a

stronger regularization. Hence, K-folds cross-validation is considered.

This procedure first partitions the data into K disjoint subsets of equal size. Then, the

learning algorithms are trained and validated K times (the folds), using each of K subsets in

turn as the validation set, and using all remaining data as the training set [22]. Each sample is

used exactly once in a validation set, and K-1 times in a training set. The K results from the

folds then can be averaged (or combined) to produce a single estimation. The data

partitioning of K-folds cross-validation is illustrated in Figure 2-17.

28

Figure 2-17: K-Folds Cross-Validation

For leave-one-out cross-validation (LOOCV), it uses a single sample as the validation

data, and the remaining data as the training set. This is the same as K-folds cross-validation

with K is equal to the number of samples in the original training data. Besides, there is the

bootstrapping that is an improvement on cross-validation that often provides better estimation

of generalization error at the cost of even more computing time.

The advantage of the cross-validation method over repeated subsets of data is that all

samples are used for both training and validation, and each sample is used for validation

exactly once. If we use cross-validation method to choose which of several learning models,

the estimate of the generalization error of the model will be optimistic and we will obtain an

unbiased estimate of the generalization error of the model. However, the disadvantage of

cross-validation is that the learning algorithms must be re-trained many times.

2.4.5 Regression Evaluation

If the desired output consists of one or more continuous variables, then the task is

called regression [23]. An example of regression problem is the curve fitting, which the

decision stage consists of choosing a specific estimate)(ˆ xfy = for each input x [23]. When

estimating real-valued quantities, the difference values between the actual target values iy

and the prediction values iŷ are usually used for evaluating the performance of prediction.

There are many evaluation functions for regression problems and some of them are illustrated

in Table 2-2.

29

Table 2-2: Examples of Regression Evaluation Functions

Regression Evaluation Function Formula

Mean Error (ME)
()

m

yy
ME

m

i
ii∑

−

−
= 1

ˆ

Mean Absolute Error (MAE) or

Mean Absolute Deviation (MAD) m

yy
MAE

m

i
ii∑

−

−
= 1

ˆ

Sum of Squared Error (SSE) ()∑
−

−=
m

i
ii yySSE

1

2ˆ

Mean Squared Error (MSE)
()

m

yy
MSE

m

i
ii∑

−

−
= 1

2ˆ

Root Mean Squared Error (RMSE) ()

m

yy
RMSE

m

i
ii∑

−

−
= 1

2ˆ

Standard Deviation of Error (SDE) ()

1

ˆ
1

2

−

−
=

∑
−

m

yy
SDE

m

i
ii

Mean Percentage Error (MPE)
m

y
yy

MPE

m

i i

ii 100
ˆ

1
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

=
∑
−

Mean Absolute Percentage Error (MAPE)
m

y
yy

MAPE

m

i i

ii 100
ˆ

1
×

−

=
∑
−

Symmetric Mean Absolute Percentage Error (SMAPE) ()
m
yy

yy

SMAPE

m

i ii

ii 100
2/ˆ

ˆ

1
×

+
−

=
∑
−

Note: m is the number of predicted values, iy and iŷ for mi ,...,2,1= are the actual target values and the

predicted values, respectively.

30

In statistics, these evaluation functions of an estimator are used to quantify the

amount by which an estimator differs from the true value of the quantity being estimated.

Minimization of these functions is a key criterion in estimator selection. However, these

functions may have the disadvantage of heavily weighting outliers. Especially, in the mean

square error (MSE), the squaring of each term effectively weights large errors more heavily

than small ones. This property has led researchers to use alternatives such as the mean

absolute error (MAE) or the symmetric mean absolute percentage error (SMAPE).

 The mean absolute error (MAE) is a common measure of forecast error in regression

problems and time series analysis, where the terms mean absolute deviation (MAD) is

sometimes used. The mean absolute percentage error (MAPE) is also measure of accuracy in

a fitted time series value in statistics, specifically trending. It usually expresses accuracy as a

percentage. MAPE is zero when having a perfect fit, but its upper level has no restriction.

Moreover, MAPE may have a problem in calculation. The series with the lower numbers

may have a very high MAPE, while the higher numbers of series may have a very low

MAPE. In order to avoid this problem other measures, such as SMAPE, have been defined.

2.5 Evolutionary Algorithms

Evolutionary Algorithms (EA) have found a broad acceptance as robust optimization

algorithms in the last ten years [25]. The idea of evolutionary algorithms uses some

mechanisms inspired by biological evolution. In ecology, the evolution demonstrates

optimized complex behavior at every level: the cell, the organ, the individual, and the

population [26]. The biological methods can solve many types of problems, such as chaos,

chance, temporality, and nonlinear interactivities [26]. These are also characteristics of

problems that have been proved to be especially intractable to classic methods of optimization

[26]. The evolutionary process can be applied to problems where heuristic solutions are not

available or generally lead to unsatisfactory results [26].

The term “evolutionary computation” is used to describe the field of investigation

that concerns all evolutionary algorithms. These evolutionary algorithms imitate nature and

apply the genetic operators such as reproduction, selection, mutation, and recombination.

These operations are applied to a population, or several sub-populations, of candidate

solutions that are evaluated with respect to their fitness [27]. Thus, it is possible by an

evolutionary loop to successively approximate the optimal state of the system to be

investigated [27]. The main flowchart that describes every evolutionary algorithm applied to

function optimization is depicted in Figure 2-18. The principle of variation and selection can

31

be considered as the fundamental principle of the evolutionary algorithms [25]. These

principles, combined with the change of the generation (reproduction), build up the

fundamental components of the evolutionary loop [25].

Figure 2-18: General Evolutionary Algorithm [25]

Some of practical advantages to using evolutionary algorithms are summarized [26].

- Conceptual simplicity: A primary advantage of evolutionary computation is that it

is conceptually simple. The algorithm consists of initialization, which may be a purely

random sampling of possible solutions, followed by iterative variation and selection within a

number of generations. Thus the criterion needs not be specified with the precision that is

required of some other methods [26].

32

- Broad applicability: Evolutionary algorithms can be applied to any problem that

can be formulated as a function optimization task. It requires a data structure to represent

solutions, a performance index to evaluate solutions, and variation operators to generate new

solutions from old solutions. The human designers can choose a representation that follows

their intuition. This flexibility allows for applying essentially the same procedure to discrete

combinatorial problems, continuous-valued parameter optimization problems, mixed-integer

problems, and so forth [26].

- Outperformance over classic methods on real problems: Real world function

optimization problems often impose nonlinear constraints, require payoff functions that are

not concerned with least squared error, involve non-stationary conditions, incorporate noise

observations or random processing, or include other vagaries that do not conform well to the

prerequisites of classic optimization techniques. Real world problems are often multi-model,

and gradient-based methods rapidly converge to local optima or saddle points which may

yield insufficient performance. In addition, in case of applying linear programming to

problems with nonlinear constraints, this offers an almost certainly incorrect result because

the assumptions required for the techniques are violated. In contrast, evolutionary

computation can directly incorporate arbitrary constraints [26].

- Potential to use knowledge and hybridize with other methods: It is always

reasonable to incorporate domain-specific knowledge into an algorithm when addressing

particular real-world problems. Specialized algorithms can outperform unspecialized

algorithms on a restrict domain of interest. Evolutionary algorithms offer a framework such

that it is comparably easy to incorporate such knowledge. For example, specific variation

operators may be useful when applied to particular representations. These can be directly

applied as mutation or recombination operations. Knowledge can also be implemented into

the performance index (or fitness function) [26].

Evolutionary algorithms can also be combined with more traditional optimization

techniques. This may be as simple as the use of a conjugate-gradient minimization used for

primary search with an evolutionary algorithm, or it may involve simultaneous application of

algorithms. There may also be a benefit to seeding an initial population with solutions

derived from other procedures. Further, evolutionary computation can be used to optimize

the performance of neural networks, fuzzy systems, production systems, and other program

structures [26].

- Parallelism: Evolution is a highly parallel process. As distributed processing

computers become more readily available, there will be a corresponding increased potential

for applying evolutionary algorithms to more complex problems. It is often the case that

33

individual solutions can be evaluated independently of the evaluations assigned to competing

solutions. The evaluation of each solution can be handled in parallel and only selection

requires some serial processing [26].

- Robustness to dynamic changes: Traditional methods of optimization are not

robust to dynamic changes in the environment and often require a complete restart in order to

provide a solution. In contrast, evolutionary algorithms can be used to adapt solutions to

changing circumstance. The available population of evolved solutions provides a basis for

further improvement and in most cases it is not necessary to reinitialize the population at

random [26].

- Capability for self-optimization: Most classic optimization techniques require

appropriate settings of variables. This is true of evolutionary algorithms as well. However,

there are many research studies of using the evolutionary process itself to optimize these

parameters as part of the search for optimal solutions [26].

- Ability to solve problems that have no known solutions: An advantage of

evolutionary algorithms comes from the ability to address problems for which there are no

human experts. Although human expertise should be used when it is available, troubles with

such expert systems are well known; the experts may not agree, may not be self-consistent,

may not be qualified, or may simply be in error. However, most of applications in artificial

intelligence require human expertise. They may be impressively applied to difficult problems

requiring great computational speed, but they generally do not advance our understanding of

intelligence. In contrast, evolutionary provides a method for solving the problem of how to

solve problems. It is a recapitulation of the scientific method that can be used to learn

fundamental aspects of any measurable environment [26].

The evolutionary algorithms consistently perform well approximating solutions to all

types of problems because they do not make any assumption about the underlying fitness.

They do not need gradient information and they can operate on each kind of parameter space,

e.g. discrete, continuous, combinatorial, or even mixed variants [27]. They are successful in

fields as diverse as engineering, industrial, management, art, biology, economics, marketing,

operation research, social sciences, physics, politics, chemistry, and genetics. There are many

evolutionary algorithm techniques that differ in the implementation details and the nature of

the particular applied problem, such as genetic algorithm, genetic programming, evolutionary

programming, and evolutionary strategy. In this research, evolutionary strategies and genetic

programming are considered.

34

2.5.1 Evolutionary Strategies

The evolutionary strategy (ES) is one of the main branches of evolutionary

algorithms, which was developed by Rechenberg and Schwefel [28-32] at the Technical

University of Berlin and has been extensively studied in Europe. It was developed in order to

conduct successive wing tunnel experiments for aerodynamic shape optimization, and it has

been successfully used to solve various types of optimization problems. Moreover, it is

significantly faster than traditional genetic algorithms [32, 33, 34]. The natural representation

of ES is a fixed-length real-valued vector, which is manipulated primarily by mutation

operators designed to perturb the real-valued parameters in useful ways [26]. However, ES

practitioners have incorporated recombination operators into their systems. Usually, mutation

and recombination have equal importance, as far as real-valued parameter optimization is

considered, and they are applied to all individuals by default [25].

2.5.1.1 Basic ES Algorithm

The basic ES algorithm, invented by Rechenberg, Schwefel, and Bienert in the

mid-1960s, operates with population Ζ of size (μ +λ) or (μ , λ) [25]. In these notations, μ

stands for the number of parent individuals and λ for the number of offspring. Consider an

optimization problem for the fitness function)(afitness where a is an N -dimensional object

parameter vector in the object parameter space A , A∈a ,

()Naaa ,,,: 21 K=a . (49)

An individual consists of an object parameter vector set a , the endogenous

(i.e. evolvable) strategy parameter set s , and its fitness value)(afitness

())(,,: asa fitnessv = . (50)

The endogenous strategy parameter set s serves for the self-adaptation of the ES algorithm.

It does not take part in the calculation of the fitness of the individual; however, it is passed to

the offspring depending on the fitness value of the individual [25].

A population consists of μ parents iv , μ,,1 K=i , and λ descendants jv~ ,

λ,,1 K=j . The parameters μ and λ are exogenous strategy parameters, i.e. they are not

changed by ES [25]. The populations of the parents and the descendants at time t are

symbolized as)(t
μΖ and)(~ t

λΖ , respectively.

35

{ } ())()(
1

)()(,, ttt
i

t vvv μμ K==Ζ (51)

{ } ())()(
1

)()(~,,~~~ ttt
j

t vvv μμ K==Ζ (52)

Every point in the search space is an individual. ES uses a population of μ

individuals to conduct the search for possibly better solutions. During each generation, λ

new individuals are produced by reproduction, recombination, and mutation. This means ES

is simultaneously investigating several regions of the search space, which greatly decreases

the amount of time required to locate good solutions [35].

There are several different versions of ES. The (μ + λ)-ES and (μ ,λ)-ES are

two of the more common versions. In the former, μ parents produce λ offspring. The

parents and the offspring compete equally for survival. In the latter, μ parents produce

λ > μ offspring, but only the μ best offspring survive. Thus the lifespan of any solution is

only a single generation [35]. The (μ + λ)-ES and (μ , λ)-ES can be expressed as the

conceptual algorithm in Figure 2-19.

 1 Begin
 2 0:=t ;
 3 ()(){ }())0()0()0()0(,,: iii fitnessinitialize asa=Ζμ ;
 4 Repeat
 5 For 1:=j To λ Do Begin
 6 jℑ ())0(: μΖ= onreproducti ;
 7 js ()jionrecombinats ℑ= _: ;
 8 js~ ()jmutations s_:= ;
 9 ja ()jionrecombinat ℑ=: ;
 10 ja~ ()jmutation a=: ;
 11 End;
 12 ()(){ }jjj

t fitness asa ~,~,~:~)(=Ζλ ;
 13 Case selection_type Of
 14 (μ +λ) : ())()()1(~,: ttt selection λμμμ ΖΖ=Ζ + ;
 15 (μ , λ) : ())()1(~: tt selection λμμ Ζ=Ζ + ;
 16 End;
 17 1: += tt ;
 18 Until stop_criterion;
 19 End;

Figure 2-19: The ES Algorithm

36

Each generation (iteration) of the ES algorithm takes a population of

individuals (potential solutions) and modifies the problem parameters to produce offspring

(new solutions). The generation cycle takes place in the Repeat-Until-Loop (lines 4-18,

Figure 2-19). Every descendant is produced step by step in lines 5-12. First, its parents are

selected in line 6. If the self-adaptation facility is also implemented, the set of strategy

parameters will be treated next [25]. The recombination and the mutation are applied to the

set of object parameters in lines 9-10. Then, the new set of object parameters is evaluated

according to its fitness. The selection (lines 13-16) follows the procreation of the offspring

population. Lastly, the new parent population is built according to the type of the selection

used [25]. Thereafter, the evolution starts anew, until the predefined stopping criterion is

fulfilled [25]. As termination conditions, the standard stopping rules can be used:

- resource criteria:

 - maximum number of generations,

 - maximum cpu-time

- convergence criteria:

 - in the space of fitness values,

 - in the space of the object parameters,

 - in the space of strategy parameters [32].

2.5.1.2 Fitness and Selection of ES

The first step in the ES algorithm is to initialize the population Ζ , whose the

type of components ia of the object parameter vector a , and the search space A spanned by

them, depend on the optimization problem. There are no restrictions to the applicability of

the ES algorithm, i.e. all of the alternatives ℜ∈ia , or Ν∈ia , or Β∈ia are allowed;

moreover, mixed variants of these are realizable, as well as more complex data structures

[25]. The initial population of individuals is randomly generated but, ideally, should be

uniformly distributed throughout the search space so that all regions may be explored.

The individuals are evaluated to determine their fitness. The goal of having a

fitness evaluation is to give feedback to the learning algorithm regarding which individuals

should have a higher probability of being allowed to multiply and reproduce and which

individuals should have a higher probability of being removed from the population [36]. The

fitness function is calculated on what we have earlier referred to as the training set [36]. The

37

fitness function should be designed to give graded and continuous feedback about how well a

program performs on the training set [36].

A fitness oriented selection operator is needed for each evolutionary algorithm

in order to guide the search into promising regions of the object parameter space [32]. Thus,

selection is the antagonist to the variation operators (also referred to genetic operators:

mutation and recombination); it gives a direction [32]. Selection in ES is just like breeding;

only those individuals with the promising properties, e.g., high fitness values (objective

function values), get a chance of reproduction [32]. This selection technique is also called

truncation or breeding selection. However, there are many choices for the selection

techniques, and some of them are described.

- Truncation Selection: This selection method is widely used in ES

algorithms where it is known as),(λμ selection [36]. A number μ of parents are allowed to

breed λ offspring, out of which the μ best are used as parents for the next generation [36].

The same method has been used for a long time in population genetics under the name

truncation selection [36]. A variant of ES selection is)(λμ + selection where, in addition to

offspring, the parents participate in the selection process [36]. Plus selection guarantees the

survival of the best individual found. Since it preserves the best individual such selection

techniques are also called elitist [32]. Elitism is a sufficient condition for a selection operator

should obey on order to prove the ES’s global convergence property [32].

- Fitness-Proportional Selection [36]: Fitness-proportional selection is

employed for generational selection and specifies probabilities for individuals to be given a

change to pass offspring into the next generation. An individual i is given a probability of

∑
=

i
ifitness

ifitness
iP

)(
)(

)(. (53)

Fitness-proportional selection has been the tool of choice for a long time in the genetic

computation. It has been criticized for attaching differential probabilities to the absolute

values of fitness.

- Ranking Selection [36]: Ranking selection is based on the fitness order,

into which the individuals can be sorted. The selection probability is assigned to individuals

as a function of their rank in the population. Mainly, linear and exponential ranking are used.

38

For linear ranking, the probability is a linear function of the rank:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
−

−+= −+−

1
11)(

N
iPPP

N
iP , (54)

where NP − is the probability of the worst individual being selected, and NP + is the

probability of the best individual being selected, and 2=+ +− PP should hold in order for the

population size to stay constant.

For exponential ranking, the probability can be computed using a selection

bias constant C :

iC
C
CiP N

N
−⎟

⎠
⎞

⎜
⎝
⎛

−
−

=
1

1)((55)

with 10 << C .

- Tournament Selection [36]: Tournament selection is not based on

competition within the full generation but in a subset of the population. A number of

individuals, called the tournament size, is selected randomly, and a selective competition

takes place. Better individuals in the tournament are then allowed to replace the worse

individuals. In the smallest possible tournament, two individuals compete. A better of the

two is allowed to reproduce with mutation. The result of the reproduction is returned to the

population, replacing the loser of the tournament.

The tournament size allows the user to adjust selection pressure. A small

tournament size causes a low selection pressure, and a large tournament size causes high

pressure. Tournament selection has recently a mainstream method for selection, mainly

because it does not require a centralized fitness comparison between all individuals. This is

not only accelerates evolution considerably, but also provides an easy way to parallelize the

algorithm.

There are two main scenarios for generational selection [36]. The first

scenario starts with a population of individuals with known fitness and performs a selection of

individuals based on their fitness. These are then subjected to variation operations like

crossover and mutation or passed on untouched via reproduction into the next generation. In

this way, the pool of the following generation is filled with individuals. The next generation

usually consists of the same number of individuals as the former one, and fitness computation

follows in preparation for another round of selection and breeding. Figure 2-20(a) shows the

procedure, known as mating selection [36].

39

Another scenario is different. It starts from a given population. A usually

larger set of offspring is generated by randomly selecting parents. After fitness evaluation,

this population is then reduced to the size of the original population. Thus, a smaller

population can be used, as the selection is applied to the pool of offspring, possibly including

the parents. Figure 2-20(b) outlines the procedure, also known as overproduction selection

[36].

Figure 2-20: Two Selection Scenarios

2.5.1.3 Genetic Operators of ES

In order to create a new solution, ES uses two genetic operators, i.e.

recombination and mutation. Some solutions are selected from the parent population by a

selection method, and then a recombination function is applied. There are several

recombining methods as following:

40

- No Recombination: In this method, the new solutions are randomly

selected from μ solutions.

- Global Intermediary Recombination: The κ solutions are randomly

selected from μ solutions. A new solution v ′v is the average of κ solutions.

∑=′ ivv vv

κ
1 (56)

- Local Intermediary Recombination: The κ solutions are randomly

selected from μ solutions. Each dimension of new solution (ib′) is the average of two

solutions from κ selected solutions. Weights of two solutions may be equal or random.

ikiikii bubub ,, 21
)1(−+=′

21=iu or []()1,0~ Uui

()},...,1{~, 21 κUkk

(57)

ikb , is the i th dimension of solution },...,1{ κ∈k .)(xU is a random function that selects a

value from x by uniform random selection.

- Discrete Recombination: Randomly select κ solutions from μ

solutions. Each dimension of a new solution is randomly selected from κ solutions.

iki i
bb ,=′

()},...,1{~ κUki
(58)

After recombination, the new solutions will be mutated. The mutation operator

is usually a basic variation operator in ES [32]. The design of mutation operators is problem-

dependent. While there is not an established design methodology, some rules have been

proposed by analyzing successful ES implementations and by the theoretical considerations

on reachability, unbiasedness, and scalability [32].

- Reachability: Given a parental state, the first requirement ensures that

any other (finite) state can be reached within a finite number of mutation steps or generations

[32]. This is also a necessary condition for proving global convergence.

- Unbiasness: The mutation is a variation operator. Thus, it should not

use any fitness information but the search space information from the parental population

[32]. Therefore, there is no preference of any of the selected individuals (parents) in ES, and

the variation operators should not introduce any bias [32].

41

- Scalability: The scalability requirement states that the mutation strength

or the average length of a mutation step should be tunable in order to adapt to the properties

of the fitness landscape. The goal of adaptation is to ensure the evolvability of the ES system

[32].

An example of the mutation operator is shown on real-valued search spaces.

The standard deviation will be defined for this mutation. Considering nℜ search spaces and

given the standard deviation σ (mutation strength), the mutation of a is

()amutation = a + z , (59)

 with

() ()()1,0,,1,0: 1 nNN Kσ=z , (60)

where the ()1,0iN are independent random samples from the standard normal distribution.

The other variation of this mutation can be constructed by considering the

standard deviation. This standard deviation can be divided into three cases:

Case 1: There is a standard deviation value that will be used for all dimensions of a .

Case 2: There are n standard deviation values. Each standard deviation will be used for

each dimension of a (when a is the n -dimensional vector).

Case 3: There is a standard deviation vector; each element of this vector is a random number

from a distribution.

Besides, in each generation, the standard deviation can be also mutated by another mutation

operator.

2.5.2 Genetic Programming

Genetic Programming (GP) is a form of evolutionary computation in which the

individuals in the evolving population are computer programs rather than bit strings [22].

Programs manipulated by GP are usually represented by a tree structure corresponding to the

parse tree of the program. The leaves of tree represent input variables or numerical constants.

Their values are passed to nodes, which perform some numerical or program operation before

passing on the result further towards the root of the tree [17]. To apply genetic programming

to a particular domain, the user must define the primitive functions and the terminals [22].

The genetic programming algorithm then uses an evolutionary search to explore the vast

space of programs that can be described using these primitive functions and terminals [22].

42

2.5.2.1 Initializing a GP Population [36]

The first step in actually performing GP is to initialize the population, which

means creating a variety of program structures for later evolution. One of the principle

parameters of GP is the maximum size permitted for a program. This parameter is expressed

as the maximum depth of a tree or the maximum total number of nodes in the tree. The

initialization of a tree structure is fairly straightforward. Trees are built from basic units

called function set and terminal set.

The function set is composed of the statements, operators, and functions

available to the GP system. The function set may be application-specific and be selected to fit

the problem domain. The range of available functions is very broad; it may use any

programming construction that is available in any programming language. Some examples

follow:

- Boolean Functions: AND, OR, NOT, XOR

- Arithmetic Functions: PLUS, MINUS, MULTIPLY, DIVIDE

- Transcendental Functions: TRIGONOMETRIC, LOGARITHMIC

- Variable Assignment Functions

- Indexed Memory Functions

- Conditional Statements: IF-THEN-ELSE, SWITCH-CASE

- Control Transfer Statements: GOTO, CALL, JUMP

- Loop Statements: WHILE-DO, REPEAT-UNTIL, FOR-DO

- Subroutines

The terminal set is comprised of the inputs to the GP program, the constants

supplied to the GP program, and the zero-argument functions with side-effects executed by

the GP program. In fact, a terminal lies at the end of every branch in a tree structure. The

functions and terminals used for GP should be powerful enough to be able to represent a

solution to the problem.

In common, there are two different methods for initializing tree structures,

which are called full and grow. Grow produces trees of irregular shape because nodes are

selected randomly from the function and the terminal sets throughout the entire tree, except

the root node, which uses only the function set. Once a branch contains a terminal node, that

branch has ended, even if the maximum depth has not been reached.

43

For example, we assume that the terminals and functions are

{ }edcbaT ,,,,= , (61)

{ }%/,,,, ×−+=F . (62)

Figure 2-21 illustrates a tree that is initialized with grow method. This tree represents the

function ()() ()edcba +×− % .

Figure 2-21: An Example of Tree - Initialized by the Grow Method

Instead of selecting nodes randomly from the function and the terminal sets,

the full method chooses only functions until a node is at the maximum depth. Then, it

chooses only terminals. The result is that every branch of the tree goes to the full maximum

depth. If the number of nodes is used as a size measure, growth stops when the tree has

reached the preset size parameter. The tree in Figure 2-22 has been initialized by the full

method with a maximum depth of three. This tree represents the function () ()dcba +×% .

Figure 2-22: An Example of Tree – Initialized by the Full Method

44

2.5.2.2 Genetic Operators of GP [22, 36]

In evolutionary process, GP produces a new generation of individuals using

crossover, mutation, and reproduction on each iteration. These three principal GP genetic

operators are described.

- Crossover: The crossover operator combines the genetic material of two

parents by swapping a part of one parent with a part of the other. Tree-based crossover is

described graphically in Figure 2-23. The parents are shown in the upper half of the figure

while the children are shown in the lower half.

Figure 2-23: Crossover Operation on Two Parent Trees

45

The tree-based crossover in Figure 2-23 proceeds by the following steps:

-- Choose two individuals as parents, based on mating selection policy, e.g., fitness-

proportional selection.

-- Select a random sub-tree in each parent. In Figure 2-23, the selected sub-trees are shown

highlighted with darker lines.

-- Swap the selected sub-trees between two parents. The resulting individuals are the

children. They are shown at the bottom of Figure 2-23.

- Mutation: Mutation operates on only one individual. Normally, after

crossover has occurred, each child produced by the crossover undergoes mutation with a

probability. The probability of mutation is a parameter of the GP run. When an individual

has been selected for mutation, a point of the tree is randomly selected. Then, the existing

sub-tree at that point is replaced with a new randomly generated sub-tree. The mutated

individual is then placed back into the population.

- Reproduction: The reproduction operator is straightforward. An individual

is selected. It is copied, and the copy is placed into the population. Hence, there are two

versions of the same individual in the population.

2.5.2.3 Fitness and Selection of GP [36]

GP must choose the members of the population for applying the genetic

operators such as crossover, mutation, and reproduction. In making the choice, GP

implements one of the most important parts of its model of the evolutionary learning, fitness-

based selection. Fitness is the measure used by GP during simulated evolution of how well a

program has learned to predict the outputs from the inputs. Fitness functions are very

problem-specific.

One simple fitness function is to calculate the sum of the absolute value of the

differences between actual output of the program and the output given by the training set. A

common alternative fitness function is to calculate the sum of the squared differences between

the actual output and the prediction, called the squared error. There are also other methods

for calculating fitness. In co-evolution methods for fitness evaluation, individuals compete

against each other without an explicit fitness value. In game-playing application, the winner

in a game may be given a higher probability of reproduction than the loser. Moreover, in

some cases, two different populations may be evolved simultaneously with conflicting goals.

After the quality of an individual has been determined by applying a fitness

function, we have to decide whether to apply genetic operators to that individual and whether

46

to keep it in the population or allow it to be replaced. This task is called selection and

assigned to a special operator, the selection operator. There are various different selection

operators, and a decision about the method of selection is one of the most important decisions

to be made in a GP run. Selection is responsible for the speed of evolution and influence to

the success of an evolutionary algorithm. Some details of selections have been described in

ES. Those methods of selection can be applied for GP in the same way.

2.5.2.4 Basic GP Algorithm [36]

The preliminary steps for making a GP run are defining the terminal set, the

function set, and the fitness function. Then, the parameters are defined such as population

size, maximum individual size, crossover probability, mutation probability, selection method,

and termination criterion, e.g., the maximum number of generations. For the basic GP run, it

uses a generational evolutionary algorithm. Each generation is represented by a complete

population of individuals. An entire new generation is created from the old generation in one

cycle. The new generation replaces the old generation and the cycle continues. The

execution cycle of the GP algorithm includes the following algorithms.

 1 Begin
 2 0:=t ;
 3)(tPinitialize ;
 4)(tPevaluate ;
 5 Repeat
 6 1: += tt ;
 7)1()(−tPfromtPselect ;
 8)(tPrecombine ;
 9)(tPevaluate ;
 10 Until stop_criterion;
 11 End;

Figure 2-24: The GP Algorithm

The algorithm in Figure 2-24 shows the structure of a basic GP algorithm.

)(tP denotes the population at generation t . The population is recombined through crossover

and mutation process. The evolutionary strategies and the genetic programming will be

applied to this research in order to optimize the parameters of kernel functions or search the

optimal kernel functions.

47

2.6 Related Works

There are many research studies related to support vector machines, kernel methods,

parameter selection, and evolutionary algorithms. However, this research focuses on the

combined kernel functions and the parameter adjustment. Thus, the related works will be

divided into two topics, i.e. construction of kernel functions and parameter selection.

2.6.1 Construction of Kernel Functions

Many research studies introduce the kernel methods and support vector machines. An

Introduction to Kernel-Based Learning Algorithm [9] is an example of research about kernel

methods. This paper was proposed by Müller, Mika, Rätsch, Tsuda, and Schölkopf. They

introduced support vector machines, kernel Fisher discriminant analysis, and kernel principle

component analysis. They gave background about Vapnik-Chervonenkis theory and kernel

feature spaces. They illustrated the usefulness of kernel algorithms by discussing applications

such as optical character recognition (OCR) and DNA analysis.

In order to construct a new kernel function, many research studies have been

proposed to improve the kernel methods with the mathematical techniques. Zhang, Zhou, and

Jiao have proposed Support Vector Machines Based on Scaling Kernels [37]. In this research

study, scaling kernels were presented. These kernels are a multi-dimensional scaling function

with translation vectors. SVMs based on scaling kernels can approximate any objective

function in some space. After that, they proposed Wavelet Support Vector Machine [38]. The

wavelet kernel was also a kind of multi-dimensional wavelet functions that can approximate

arbitrary nonlinear functions. The existence of wavelet kernels was proved by the result of

theoretic analysis. Computer simulations showed the feasibility and validity of wavelet

support vector machines in regression and pattern recognition.

Fuzzy logic is another approach that was applied to kernel methods in several

manners. Fuzzy Kernel Perceptron [39] that was proposed by Jiun-Hung Chen and Chu-Song

Chen is a research in the area of fuzzy logic. This research incorporated the fuzzy perceptron

(FP) and the Mercer’s kernels. FP was adopted to find a linear separating hyperplane using

the fuzzy theory so that vectors of high uncertainty have less influence on the training results.

In this paper, FP was extended to become the fuzzy kernel perceptron (FKP) with the help of

Mercer’s kernels. The experiments compared FKP with the kernel perceptron, FP, and SVM.

Moreover, in Fuzzy Support Vector Machines [40], a fuzzy membership was applied

to each input vector and the SVMs were reformulated. The different input vectors made

different contributions to the learning of decision surface. After that, this work was extended

48

by Zonghai Sun and Youxian Sun in Fuzzy Support Vector Machine for Regression

Estimation [41]. They provided the fuzzy SVM for regression problems to construct the

multi-layer SVM. In the first layer, a fuzzy membership was applied to each data point and

SVMs were reformulated. The second layer was the generalize SVM which made the kernel

function may not satisfy the Mercer’s condition. Besides, in [42], the fuzzy logic was applied

to the weight vector and the bias terms of SVM, and the desired outputs in training samples

were also fuzzy numbers.

In research of Ayat et al. [5], a new SVM kernel family was purposed. KMOD-A

New Support Vector Machine Kernel with Moderate Decreasing for Pattern Recognition [5]

explained the distinctive properties that allowed better discrimination in feature space. The

experimental results showed that KMOD was better than RBF kernel and exponential RBF

kernels on the spiral problem. In addition, a digital recognition task was processed using their

kernel. The results show comparable performances to state-of-the-art kernels.

Moreover, there are many research studies that propose new kernel functions for

support vector machines such as hyperkernels [43], triangular kernel [44], asymmetric kernel

[45], and time-alignment kernel [46]. These kernels are suitable for some applications or

some datasets. Although these new kernel functions yields better results, they are not widely

used in practical applications. Many research studies and various applications still use the

common kernels such as linear, polynomial, and RBF kernels. The research of Debnath and

Takahashi (2004) [47] described that several authors used the RBF kernel and it was always

the best for their application according to the various experimental results. Moreover, they

tried to improve only the polynomial kernel to compare with the RBF kernel, whereas the

other kernels were not considered.

However, there are few research studies that consider combination of well-known

kernels. Improved SVM Regression using Mixtures of Kernels [48] is an example proposed

by Smits and Jordaan. This research showed that the RBF kernel had good interpolation

properties while the polynomial kernel had better extrapolation abilities. Therefore, they

combined the advantages of polynomial and RBF kernels by using mixtures.

Another paper about combined kernels is Support Vector Machine with a Hybrid

Kernel and Minimal Vapnik-Chervonenkis Dimension [21]. This paper presents a mechanism

to train support vector machines with a hybrid kernel and minimal Vapnik-Chervonenkis

dimension. The paper developed a hybrid kernel function and a sufficient condition to be an

admissible Mercer kernel based on common Mercer kernels such as polynomial, radial basis

functions, and two-layer neural networks. Experimental results show that SVM with the

hybrid kernel outperforms that with a single common kernel in terms of generalization power.

49

The genetic programming is used to evolve a kernel for an SVM classifier in the

research of Howley and Madden (2005) [17], but this approach does not guarantee that the

kernel obey Mercer’s theorem. In Kernel Trees for Support Vector Machines [49], Methasate

and Theeramunkong applied the genetic programming on the basic kernel functions for

creating a new kernel function, which it is vary similar to a part of our research. Then, their

approach used the gradient search to find the set of optimal parameters.

Although they explained that each kernel tree was evaluated by calculating its fitness

on 5-folds cross-validation in the genetic programming process, they did not describe the

detail of fitness computation. Moreover, the method to estimate the parameters of kernel

trees in the evolutionary process was not illustrated; the kernel trees with the different

parameters should yield the difference results and the different fitness scores, while the

parameters of a kernel tree will be tuned by the gradient search after the best kernel tree was

selected.

In this research, we proposed an algorithm for generating the hybrid kernel functions

and their parameters at the same time. Our algorithm proposes to combine the genetic

programming and the evolutionary strategy; the similar processes from these both algorithms

are merged in a new algorithm. The obtained hybrid kernel functions are corresponding to

the Mercer’s theorem and they are more flexible to the problems under consideration.

2.6.2 Parameter Selection

The parameter selection is a problem in the learning algorithms. There are many

research studies that attempt to solve the problem of parameter selection for SVM by using

meta-heuristic methods. In a work of Chapelle et al., (2002) [50], an algorithm that alternates

the SVM optimization with a gradient step is employed. Although this algorithm is useful

and accurate, there are a lot of details in the computation that make this algorithm quite

complex. This algorithm required a gradient computation which for general kernel functions

might either not be possible or at least be very difficult. Moreover, the gradient descent may

get stuck in local optima.

Most of research studies on parameter selection used the evolutionary algorithms

such as the genetic algorithms (GA) or the evolutionary strategies (ES). Eads et al. proposed

Genetic Algorithms and Support Vector Machines for Time Series Classification [51]. This

paper introduces a hybrid algorithm that employs evolutionary computation for feature

extraction, and a support vector machine for classification. They tested the proposed

algorithm on a lightning classification task. It yielded better results in terms of cross-

validation fitness measure, although the difference was not large.

50

In Feature Selection for Support Vector Machines by Means of Genetic Algorithms

[52] by Fröhlich, Chapelle, and Schölkopf, a special genetic algorithm was proposed to solve

the feature selection problem that is a difficult combinatorial task in machine learning. They

optimized kernel parameters such as the regularization parameter of SVM by means of

genetic algorithms. Moreover, Xuefeng and Fang (2002) [53] and Chunhong and Licheng

(2004) [54] have proposed other research studies that used GA for SVM parameter selection.

Furthermore, the evolutionary strategies are still used in many applications. In

research of deDoncker, Gupta, and Greenwood (1996) [55], the evolutionary strategies were

used for computing solutions of multivariate integration problems. Adaptive integration

algorithms and evolutionary strategies were able to be parallelized easily. Many research

studies use the evolutionary strategies for model selection. A method proposed by Friedrichs

and Igel [35] chooses parameters of SVM by using evolutionary strategy. The covariance

matrix adaptation evolution strategy (CMA-ES) was used to determine a kernel from a

parameterized kernel space and to control the regularization. The ES method proposed in this

paper was simpler; the random process was used to find the optimal parameters and only

recombination and mutation methods were used to create new solutions. Their experiments

on benchmark datasets show that ES improved the results achieved by grid search and was

able to handle much more kernel parameters.

There are other evolutionary research studies on model selection for support vector

machines such as Asynchronous Parallel Evolutionary Model Selection for Support Vector

Machines (Runarsson and Sigurdsson 2004) [56] and Multi-objective Model Selection for

Support Vector Machines (Igel 2005) [57]. Both of these research studies attempt to use the

evolutionary strategies for optimizing parameters of SVMs. Runarsson and Sigurdsson [56]

have proposed asynchronous parallel evolution strategy for the model selection of SVM, and

Igel [57] has proposed to use the multi-objective in the evolutionary algorithm. The

evolutionary strategies were successfully applied to their applications and datasets.

Therefore, the evolutionary strategy is an interesting algorithm for adjusting parameters in our

research.

The model-based global optimization [58] was proposed by Fröhlich and Zell in 2005

to deal with the model selection problems. This research is based on the idea of learning an

online Gaussian process using a sampling technique to search the solutions in parameter

space. Besides, in Optimal Parameter Selection in Support Vector Machines [59], a nonlinear

programming algorithm is an optimization algorithm which was applied to the parameter

selection for SVM. The particle swarm optimization (Guo, et al. 2008) [60] is another meta-

heuristic algorithm that was used for adjusting the hyperparameter of SVM. This method

51

does not need any priori knowledge and can be used to determine multiple hyperparameters at

the same time. Although the concept of particle swarm is different from the evolutionary

algorithm, it is a dynamic system and uses a fitness function to evaluate the candidate

solutions, which are similar to the evolutionary algorithm.

We notice that the parameter selection of SVM is an optimization problem in the

large continuous search space, and the evolutionary algorithms and the dynamic systems are

only the meta-heuristic algorithms that were used to solve this problem. We do not have any

knowledge about the suitable kernel function and its parameters, thus only the performance

on classification or approximation of SVM is used to guide the search algorithms. For the

fitness function in the evolutionary process, many research studies use the classifier to

measure the classification accuracy or error on the training data.

However, Eads, et al. [51] compared the classification accuracy on the training data

with the cross-validation accuracy. Their experimental results showed the cross-validation

score is better than the simple score. There are some research studies that analyzed the

general performance of SVM and proposed to estimate the true error of learned classifiers. In

Generalization Performance of Support Vector Machines and Other Pattern Classifiers [24],

the bound of generalization performance for large margin linear classifier are clearly

described. Therefore, the generalization performance of SVM is an interesting alternative for

estimating the classification performance in the evolutionary process.

CHAPTER III

ADAPTIVE COMBINED KERNEL FUNCTIONS

In this chapter, the adaptive combined kernel functions are proposed for SVM on

both classification and regression problems. These kernel functions are the non-negative

linear combination of multiple conventional kernels. The weight of combination and the

parameters of sub-kernels are the adjustable parameters of these combined kernel functions.

These parameters and some parameters of SVM will be investigated by an evolutionary

algorithm. Moreover, the objective function in the evolutionary process will be carefully

designed.

3.1 Combined Kernel Functions

There are many kernel functions that can be used in SVM and other kernel methods.

In general, the choice of kernel function has a crucial effect on the classification performance.

Different kernel functions make the different results. If the unsuitable kernel function is

selected, the results may not achieve the excellent performance. However, many research

studies and applications still use the common kernel function, such as linear, polynomial, and

radial basis function (RBF) kernels. These common kernel functions may not be sufficient

for the complex or large problems. Most of such problems require a more complex separating

hyperplane, whose complexity depends on the properties of the used kernel. Hence, if the

good characteristics of several common kernel functions are combined in one kernel function,

it should make a more complex hyperplane and yield better results on the complex problems.

We also notice that all common kernel functions in the literature are either inner-

product-based functions or distance-based functions. The linear kernel function and the

polynomial kernel function are samples of the popular inner-product-based kernels, and the

RBF kernel is the most successful distance-based kernel. However, this research regards that

the linear kernel function is a polynomial kernel function at degree 1. Hence, the polynomial

kernel function and the RBF kernel function are two functions that will be considered for

creating a new combined kernel. The general forms of polynomial and RBF kernel functions

are illustrated as following:

53

 ()dPoly cxxdxxK +′⋅=′),,((63)

 ()2exp),,(xxxxK RBF ′−−=′ γγ (64)

where d is the degree of the polynomial kernel function and γ is the width of the RBF

kernel function.

In order to obtain a more flexible kernel function, the combination methods are then

considered. When the multiple kernel functions are combined, they should correspond to the

Mercer’s theorem. Hence, the closure properties of kernel functions are the good criterions

for constructing new kernel functions. The fundamental operations for combining the

multiple kernel functions in this research are (i) the addition of kernel functions, (ii) the

multiplication between a non-negative scalar number and a kernel function, and (iii) the

multiplication of kernel functions. When the kernel functions are combined by these

operations, the new combined kernels still correspond to the Mercer’s theorem. The proving

processes of these operations are shown in Corollary 3-1.

Corollary 3-1. Let),(1 xxK ′ and),(2 xxK ′ be Mercer’s kernels, and a be a non-negative real

value. Then,

(i) the addition of two Mercer’s kernels is a Mercer’s kernel,

(ii) the scalar multiplication between a non-negative real value and any Mercer’s kernel

is a Mercer’s kernel, and

(iii) the multiplication of two Mercer’s kernels is a Mercer’s kernel.

Proof (i). Let

),(),(),(21 xxKxxKxx ′+′=′Κ . (65)

According to the Mercer’s theorem, we know that

0)()(),(1 ≥′′′∫∫ xddxxgxgxxK , g∀ (66)

and

0)()(),(2 ≥′′′∫∫ xddxxgxgxxK , g∀ . (67)

Therefore,

 0)()(),()()(),(21 ≥′′′+′′′ ∫∫∫∫ xddxxgxgxxKxddxxgxgxxK , g∀ , (68)

54

 () 0)()(),(),(21 ≥′′′+′∫∫ xddxxgxgxxKxxK , g∀ , (69)

 0)()(),(≥′′′Κ∫∫ xddxxgxgxx , g∀ . (70)

Hence,),(),(),(21 xxKxxKxx ′+′=′Κ is a Mercer’s kernel. �

Proof (ii). Let

),(),(1 xxKaxx ′⋅=′Κ . (71)

According to the Mercer’s theorem,

 0)()(),(1 ≥′′′∫∫ xddxxgxgxxK , g∀ . (72)

Since a is a non-negative real value, therefore

 0)()(),(1 ≥′′′⋅ ∫∫ xddxxgxgxxKa , g∀ , (73)

 0)()(),(1 ≥′′′⋅∫∫ xddxxgxgxxKa , g∀ , (74)

 0)()(),(≥′′′Κ∫∫ xddxxgxgxx , g∀ . (75)

Hence,),(),(1 xxKaxx ′⋅=′Κ is a Mercer’s kernel. �

Proof (iii). Let

),(),(),(21 xxKxxKxx ′′=′Κ . (76)

According to the Mercer’s theorem, we know that

0)()(),(1 ≥′′′∫∫ xddxxgxgxxK , g∀ (77)

and

0)()(),(2 ≥′′′∫∫ xddxxgxgxxK , g∀ . (78)

Moreover, both),(1 xxK ′ and),(2 xxK ′ are Mercer’s kernel function, then),(1 xxK ′ can be

expanded in terms of kψ :

∑
∞

=

′=′
1

1)()(),(
k

kkk xxxxK ψψω (79)

and),(2 xxK ′ can be expanded in terms of kΦ :

55

∑
∞

=

′ΦΦ=′
1

2)()(),(
k

kkk xxxxK λ (80)

with 0≥kω and 0≥kλ , respectively.

We need to show that

 0)()(),(≥′′′Κ∫∫ xddxxgxgxx , g∀ , or (81)

 0)()(),(),(21 ≥′′′′∫∫ xddxxgxgxxKxxK , g∀ . (82)

First, we define dxxgdu)(= and xdxgud ′′=′)(. Therefore,

 ∫∫ ′′′Κ xddxxgxgxx)()(),(∫∫ ′′Κ= udduuu),(

 ∫∫ ′′′= udduuuKuuK),(),(21

 ∫∫ ∑ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′ΦΦ′=
∞

=

udduuuuuK
k

kkk
1

1)()(),(λ [by (80)]

 ∫∫ ∑ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′ΦΦ′=
∞

=

udduuuuuK
k

kkk
1

1)()(),(λ

 ∑ ∫∫
∞

=

′′ΦΦ′=
1

1)()(),(
k

kkk udduuuuuKλ

 ∑ ∫∫
∞

=

′′ΦΦ′=
1

1)()(),(
k

kkk udduuuuuKλ . (83)

From (77), we have

 0)()(),(1 ≥′′ΦΦ′∫∫ udduuuuuK kk , for ∞= ...,,2,1k . (84)

Moreover, from (80), we know that 0≥kλ , for ∞= ...,,2,1k . Thus

 0)()(),(1 ≥′′ΦΦ′∫∫ udduuuuuK kkkλ , for ∞= ...,,2,1k . (85)

Therefore

0)()(),(
1

1 ≥′′ΦΦ′∑ ∫∫
∞

=k
kkk udduuuuuKλ . (86)

From (83) and (86), we get

0)()(),(≥′′′Κ∫∫ xddxxgxgxx . (87)

Hence,),(),(),(21 xxKxxKxx ′′=′Κ is a Mercer’s kernel. �

56

From these fundamental operations, an approach to combine multiple kernels is the

non-negative linear combination of multiple kernel functions. By Corollary 3-1, (i) and (ii),

the proof of this kernel is rather obvious. With two kinds of kernel functions and this linear

combination, there are three new combined kernel functions that can be possible, i.e. (i) the

non-negative linear combination of multiple RBF kernels at different scales, (ii) the non-

negative linear combination of multiple polynomial kernels at different degree, and (iii) the

non-negative linear combination of polynomial kernels and RBF kernels. Furthermore, (iv)

the multiplication of polynomial and RBF kernels is an alternative that will also be considered

in this research. The proposed combined kernels allow better discrimination in the feature

space, and the mathematical forms of these combined kernels are described in this section.

3.1.1 Multi-Scale RBF Kernel Function

The Gaussian RBF kernel is widely used in many problems. It uses the Euclidean

distance between two points in the original space to find the correlation in the augmented

feature space. The points very close to each other are strongly correlated whereas points far

apart have uncorrelated image in the augmented space [5]. This correlation is rather smooth.

There is only one parameter for adjusting the width of RBF, which is not powerful enough for

some complex problems.

In order to get a better kernel, one possible way is to adjust the velocity of decrement

in each range of distance between two points. Moreover, the obtained kernel should maintain

the good characteristic of the RBF kernel that any close points are strongly correlated. To

achieve these behaviors, the non-negative linear combination of multiple RBF kernels at

different scales is proposed. When the multiple RBF kernels are combined, this new kernel

function is more flexible than its component kernels.

The correlations in feature space (relations between kernel functions and the distance

between two points in the original space) of the single RBF kernel and the multi-scale RBF

kernels are displayed in Figure 3-1. This figure shows that the correlations of distance

between two points in the RBF kernel are rather smooth, while those of 2-RBF (2 terms of

RBF sub-kernels are combined) and 3-RBF (3 terms of RBF sub-kernels are combined) have

more variable shape. This can be interpreted that the increase in the number of adjustable

parameters provides a more adaptive kernel.

57

Figure 3-1: Correlations of Distance between Two Points in RBF, 2-RBF, and 3-RBF Kernels

The analytic expression of the multi-scale RBF kernel function is the following:

∑
=

− ′=′
n

i
iRBFiRBFn xxKaxxK

1
),,(),(γ (88)

where n is a positive integer, 0≥ia for ni ,...,1= are the arbitrary non-negative weighting

constants, and

)exp(),,(2xxxxK iiRBF ′−−=′ γγ (89)

is the RBF kernel with the width iγ for ni ,...,1= .

When multiple RBF functions are combined, the results of classification are more

flexible than using a single RBF function. The examples of classification with a simple RBF

kernel and a combination of two RBF kernels are showed in Figure 3-2. In these examples,

the training data are non-linearly separable. The SVM with a single RBF and 2-RBF (the

multi-scale RBF kernel with 2=n) kernels can correctly classify the data. However, the 2-

RBF kernel yields the result that is more flexible and easier to comprehend.

58

(a) SVM with RBF Kernel Function

(b) SVM with 2-RBF Kernel Function

Figure 3-2: Examples of Classification

When n terms of sub-kernels are combined, this new combined kernel function has

n2 parameters; n parameters for non-negative weights of combination and n parameters for

the width of RBF sub-kernel functions. However, we notice that the number of parameters

can be reduced to 12 −n by fixing a value of the first weight parameter to 1. The multi-scale

RBF kernel function becomes as follows,

∑
−

=
− ′+′=′

1

1
0),,(),,(),(

n

i
iRBFiRBFRBFn xxKaxxKxxK γγ . (90)

59

This multi-scale RBF kernel function still corresponds to the Mercer’s theorem. This

is because the RBF kernel is a well-known Mercer’s kernel, and thus the non-negative linear

combination of RBF kernels is an admissible kernel function by the Mercer’s theorem.

Moreover, this combined kernel function is more flexible as it has more adjustable

parameters. The performance of the multi-scale RBF kernel function in equation (90) will be

evaluated on classification and regression tasks in the next chapter.

3.1.2 Multi-Degree Polynomial Kernel Function

Although the non-negative linear combination of multiple polynomial kernels is still a

polynomial kernel function, the multi-degree polynomial kernel function has more adjustable

parameters. Therefore, this kernel function is more flexible than the conventional polynomial

kernel. In Figure 3-3, we show that the value of single polynomial degree 2 is a parabola

curve while the values of inner product are varied. When 2 terms of polynomial kernels and 3

terms of polynomial kernels are combined, the curve is changed.

Figure 3-3: Correlations of Inner Product between Two Points in Polynomial, 2-Polynomial,
and 3-Polynomial Kernels

60

The analytic expression of this multi-degree polynomial kernel is

∑
=

− ′=′
n

i
iPolyiPolyn dxxKaxxK

1
),,(),((91)

where n is a positive integer, 0≥ia for ni ,...,1= are the arbitrary non-negative weighting

constants, and

() id
iPoly xxdxxK 1),,(+′⋅=′ (92)

is the polynomial kernel at the degree id for ni ,...,1= .

The degree of each polynomial sub-kernel is the adjustable parameter. Therefore,

when n polynomial kernels are combined, there are n integer valued parameters for the

degree of polynomial kernels and n real-valued parameters for the weight of combination.

By the same idea with the multi-scale RBF kernel, the number of parameters of multi-degree

polynomial kernel can be reduced from n2 parameters to 12 −n parameters, and the multi-

degree polynomial kernel becomes

∑
−

=
− ′+′=′

1

1
0),,(),,(),(

n

i
iPolyiPolyPolyn dxxKadxxKxxK , (93)

and this form of multi-degree polynomial kernel will be tested in the next chapter.

3.1.3 Linear Combination of Polynomial and RBF Functions

As described earlier, the polynomial kernel is an inner-product-based kernel fucntion,

whereas the RBF kernel is a distance-based kernel function. The non-negative linear

combination of polynomial and RBF kernels is one way to combine the inner-product-based

kernels and the distance-based kernels. We expect that their advantages will be integrated in

this combined kernel. Furthermore, both polynomial and RBF kernels are the admissible

kernels that correspond to Mercer’s theorem. Then, the non-negative linear combination of

polynomial and RBF kernels can be proved to satisfy the Mercer’s theorem. The different

kernel functions with the different parameters are combined with including weights, and the

general form of this combined kernel function is

() () ∑∑
==

−+− ′+′=′
m

i
iRBFi

n

i
iPolyiRBFmPolyn xxKbdxxKaxxK

11
),,(),,(),(γ , (94)

where n and m are the positive integer numbers, 0≥ia for ni ,,2,1 K= , 0≥ib for

mi ,,2,1 K= ,),,(iPoly dxxK ′ is the polynomial kernel at the degree id , and),,(iRBF xxK γ′ is

the RBF kernel at the width iγ .

61

From (94), when n terms of polynomial sub-kernels and m terms of RBF sub-

kernels are combined, there are)(2 mn + parameters (n integer numbers for the degree of

polynomial sub-kernels, m real numbers for the width of RBF sub-kernels, and mn + real-

valued numbers for adjusting the weights of combination). However, there is a simpler

version of this combination, which is the addition between polynomial and RBF kernels.

Two different sub-kernel functions are added with including weights, as the following:

),,(),,(),(γxxKqdxxKpxxK RBFPolyRBFPoly ′⋅+′⋅=′+ , (95)

where p and q are any positive real values. Since, p and q are arbitrary constants, we can

reduce the number of parameters by the following representation:

),,()1(),,(),(γxxKpdxxKpxxK RBFPolyRBFPoly ′⋅−+′⋅=′+ , (96)

where []1,0∈p . Equation (96) can be called the convex combination of polynomial and RBF

kernels.

3.1.4 Multiplication of Polynomial and RBF Functions

The other combining method is the kernel multiplication. However, the

multiplication of several RBF kernels does not change the general form of RBF kernel, as the

following:

 ∏
=

′
n

i
iRBF xxK

1

),,(γ ∏
=

′−−=
n

i
i xx

1

2)exp(γ

)exp(2xx ′−−= γ ; where ∑
=

=
n

i
i

1
γγ .

(97)

Although the multiplication of several polynomial kernels is also a polynomial kernel, it is

more flexible than the single polynomial kernels. Therefore, the general form of

multiplication of polynomial and RBF kernels is

()),,(),,(),(
1

γxxKdxxKxxK RBF

n

i
iPolyRBFPolyn ′⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′=′ ∏
=

×− , (98)

where n is a positive integer,),,(iPoly dxxK ′ is the polynomial kernel at the degree id , and

),,(γxxK RBF ′ is the RBF kernel at the width γ . Notice that this combined kernel does not

include the weights, because the multiplication between a constant value and the kernel

function does not affect to the performance of SVM.

However, the form of multiplication of polynomial and RBF kernels in (98) may be

too complicated for applying in real problems. Therefore, we propose to use the simpler form

62

of multiplication of two kernel functions that may be less flexible than (98). This kernel is

the multiplication of a polynomial sub-kernel and an RBF sub-kernel, as the following:

),,(),,(),(γxxKdxxKxxK RBFPolyRBFPoly ′⋅′=′× . (99)

A degree of polynomial sub-kernel and the weight of RBF sub-kernel are two adjustable

parameters of this combined kernel function.

The product of these two kernels is both inner-product-based and distance-based

kernel. The polynomial and RBF kernels are the Mercer’s kernels, thus the multiplication of

polynomial and RBF kernels is also a Mercer’s kernel. The proving process of this

multiplication of kernel functions was shown in the early part of this chapter. Although there

are other combinations of kernels that use both addition and multiplication operators, they

will not be suggested in this chapter because they do not have the general form and they may

be too complicated for using in the real world problems.

3.2 Evolutionary Techniques for Support Vector Machines

When the combined kernel functions are used, there are more adjustable parameters.

In most cases, we do not have any prior knowledge about these parameters. Moreover, there

are some parameters of SVM that should also be adjusted. The regularization parameter (C)

is a parameter of SVM’s learning that appears on both support vector classification (SVC)

and support vector regression (SVR). The deviation of approximation (ε) is also an

adjustable parameter in SVR. These parameters and the parameters of kernel functions are

called hyperparameter.

In order to obtain appropriate values of these parameters, the evolutionary strategy

(ES) is considered. This algorithm can search the optimal values of these parameters by using

an objective function (or fitness function) that was pre-defined. Therefore, it is very suitable

for our parameter selection problem because we do not have any knowledge but we have only

a goal to optimize the performance of SVM on a given task. Although there are several

variations of ES, we choose to use the (λμ +)-ES where both μ parents and λ offspring

compete equally for survival. With the (λμ +)-ES, the good solution will be selected

always, and thus it does not lose during the evolutionary process.

The (5+10)-ES will be used throughout this research. This algorithm uses 5 solutions

to produce 10 new solutions, which the population size is not large. Although the

evolutionary computing can be implemented by parallel programming, it is more convenient

to implement and run on a computer. When the population size of ES is small, such as (1+1)-

63

ES, the population may lack diversity in each generation and a large number of generations

may be required to converge to the optimal solutions. In opposite, when the values of μ and

λ are high then the algorithm may need a lot of computation resources for each generation of

ES but may require only a few generations to obtain the optimal solutions. The (5+10)-ES is

a choice of (λμ +)-ES, which can preserve the diversity of population and does not require a

lot of computational resources for each generation. Thus, it is suitable for adjusting the

parameters of SVM and the combined kernels. The algorithm of (5+10)-ES is shown in

Figure 3-4.

 0=t ;

 initialize (51 ,..., vv vv , σv);

 evaluate)(),...,(51 vfitnessvfitness vv ;

 while (TerminatedConditions <> TRUE) do

 for 1=i to 10 do

 iv ′v = recombine (51 ,..., vv vv);

 iv ′v = mutate)(iv ′v ;

 evaluate)(ivfitness ′v ;

 end

 (51 ,..., vv vv) = select(51 ,..., vv vv , 101 ,..., vv ′′ vv);

 σv = mutate)(σσ
v ;

 1+= tt ;

 End

Figure 3-4: (5+10)-ES Algorithm

This algorithm starts with 0th generation (0=t) and selects μ solutions (μvv vv ,...,1)

with standard deviation σv using randomization or assigning initial values. After that, this

algorithm will be iterated to create new better solutions while the terminated conditions are

not true. This algorithm uses these selected 5 solutions to produce 10 new solutions by a

recombination method. These new solutions are mutated and evaluated, and only the 5 fittest

solutions are selected from 5+10 solutions to be the parents in the next generation. These

processes will be repeated until a fixed number of generations have been produced and

evaluated or earlier if the acceptance criterion is reached.

64

Normally, this algorithm will be terminated if and only if t exceeds a predefined

maximum generation or the optimal solution is found. In this research, we use the maximum

number of generations as the stopping criterion of this (5+10)-ES algorithm. In our

experiments, the maximum number of generations is fixed as 1000. Although the high

quality solutions can be found with fewer generations for some datasets, we want to ensure

that the high quality solutions can be found for all datasets in our experiments. A large

number of generations does not decrease the classification performance. However, the

maximum number of generations will be restricted by the running time allowed to run our

(5+10)-ES algorithm. The details of each step in our (5+10)-ES algorithm are described in

the following.

3.2.1 Initialization

Let vv be the non-negative real-valued vector of all parameters. The vector vv

depends on the used kernel function and the problem under consideration. In the

classification problems, the regularization parameter of SVM and the parameters of kernel

function are adjusted by the ES algorithm. Therefore, for the multi-scale RBF kernel

function, the vector vv has n2 dimensions and it is represented in the form:

vv = (C , 0γ , 1a , 1γ , 2a , 2γ , … , 1−na , 1−nγ), (100)

where C is the regularization parameter, iγ for 1,...,0 −= ni are the widths of RBFs, ia for

1,...,1 −= ni are the weights of RBFs, and n is the number of terms of RBF sub-kernel

functions.

For the multi-degree polynomial kernel function, the parameter vector vv also has n2

dimensions and it is represented in the form:

vv = (C , 0d , 1a , 1d , 2a , 2d , … , 1−na , 1−nd), (101)

where C is the regularization parameter, id for 1,...,0 −= ni are the integer numbers that

representimg the degree of polynomial sub-kernels, ia for 1,...,1 −= ni are the weights of

polynomial sub-kernels, and n is the number of terms of polynomial sub-kernel functions.

As the degrees of polynomial sub-kernels are the integer, we may fix these degrees of

polynomial at 1, 2, … , n and only the weights of this combined kernel and the regularization

parameter of SVM are searched. In that case, the vector vv will have only n dimensions and

it is represented by

vv = (C , 1a , 2a , … , 1−na). (102)

65

For the non-negative linear combination of polynomial and RBF kernel functions, the

vector vv has 1)(2 ++mn dimensions, when n terms of polynomial sub-kernels and m terms

of RBF sub-kernels are combined. The vector vv is represented in the form:

vv = (C , 1a , 1d , 2a , 2d , … , na , nd , 1b , 1γ , 2b , 2γ , … , mb , mγ), (103)

where C is the regularization parameter, ia for ni ,...,1= are the weights of polynomial sub-

kernels, id for ni ,...,1= are the integer numbers representing the degrees of polynomial sub-

kernels, ib for mi ,...,1= are the weights of RBF sub-kernels, and iγ for mi ,...,1= are the

widths of RBF sub-kernels. The dimensions of vv can be reduced when the other forms of

combined kernel functions are used.

For multiplication of polynomial and RBF kernels, the multiple kernel functions are

combined without weights. Therefore, the vector vv can be represented by

vv = (C , 1d , 2d , … , nd , γ), (104)

where C is the regularization parameter, id for ni ,...,1= are the degrees of polynomial sub-

kernels, and γ is the width of the RBF sub-kernel.

In the regression problems, the deviation of an approximation ε is another adjustable

parameter of SVM regression. Therefore, the vector vv of the multi-scale RBF kernel

function has 12 +n dimensions when the number of terms of RBF sub-kernels is n . The

vector vv is represented in the form:

vv = (C , ε , 0γ , 1a , 1γ , 2a , 2γ , … , 1−na , 1−nγ). (105)

For the multi-degree polynomial,

vv = (C , ε , 0d , 1a , 1d , 2a , 2d , … , 1−na , 1−nd). (106)

For the non-negative linear combination of polynomial and RBF kernels,

vv = (C , ε , 1a , 1d , 2a , 2d , … , na , nd , 1b , 1γ , 2b , 2γ , … , mb , mγ). (107)

Also, for the multiplication of polynomial and RBF kernels,

vv = (C , ε , 1d , 2d , … , nd , γ). (108)

For the vector of standard deviation σv , it is a real-valued vector, whose dimension is

equal to the dimension of the parameter vector vv . Both the parameter vectors (51 ,..., vv vv) and

the standard deviation vector (σv) are initialized by using randomization. Then, these 5 initial

66

solutions are evaluated to calculate their fitness. Our goal is to find vv which optimizes the

objective function)(vfitness v that must be carefully designed.

3.2.2 Selection

From the literature reviews in Chapter 2, we know that there are two main scenarios

for selection, i.e. mating selection and overproduction selection as shown in Figure 2-20.

However, the selection scenario that is used in this research is different. Both of the

traditional scenarios are combined in our evolutionary process. The outline of this procedure

is shown in Figure 3-5.

Figure 3-5: Selection Scenario

67

This procedure starts with a population of individuals with known fitness. Then,

selection of individuals is performed base on their fitness. These individuals are combined

and mutated to generate new offspring individuals. After fitness evaluation, all individuals,

both offspring and parents, are selected to the size of parent population. Thus, the selection is

performed in two steps, which are (1) selection of parent individuals for creating the new

individuals and (2) selection of the individuals to be parent in the next generation. The

different selection methods can be used for each step of selection.

- Selection of Individuals for Variations: In this research, the ranking selection is

used to choose the individuals for variations. This method is based on the fitness order of

each individual in the parent population. The selection probability is assigned to the

individuals as a function of their ranks.

For (5+10)-ES, in each generation, the 5 fittest solutions are assigned the probabilities

of selection to create new solutions. These fittest solutions are ordered by their objective

functions, i.e. ivv is more fit than 1+ivv . Then, their probabilities are assigned by

)(ivP v =
∑
=

−−
μ

μ

1

)1(

j
j

i =
2/)1(
)1(

+
−−

μμ
μ i = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
1

12
μμ

i ,
(109)

for i = 1, 2, …, μ , when μ is the number of fittest solutions. In this case, μ is equal to 5.

 After that, any individual will be selected by this probability. The new offspring

individuals will be generated from these selected individuals by the recombination and the

mutation operators.

- Selection of Individual to be the Parent Population: The truncation selection

method is used in (5+10)-ES to choose the fittest individuals to be the parent in the next

generation. Five parents are used to create ten new offspring; the 5 best solutions from both

offspring and parents are used as the parents for the next generation. This is an elitist

technique that preserves the best individual. Therefore, the good solutions will be alive until

better solutions are found.

3.2.3 Recombination

Then, the new individuals are generated by the recombination operator. Two

individuals are randomly selected from the conventional 5 individuals with their probabilities

that are assigned by the ranking method. Then, the average of this pair of individuals,

element by element, is a new individual.

68

kv ′v = ()ji vv vv
+

2
1 (110)

This method is called the global intermediary recombination method, and it will be used to

create 10 new individuals.

This recombination method is chosen for this research because every individual has

the chance to be selected for creating the new individuals. Most of offspring individuals

should be different from their parents because each of them is the average of two parents,

except two selected parents are the same. Therefore, the diversity of population can also be

preserved by this recombination method.

3.2.4 Mutation

In the case that two selected parents are the same, the mutation operator can vary

some parts of individuals. Although the offspring individuals will be different from their

parents, these offspring individuals may be the same as the other individuals in the previous

generations or in the same generation. The mutation will make these individuals different.

Each component of these offspring individuals will be added by a random number.

Therefore, the new solutions can be produced, unlimitedly.

When iv ′v is the parameter vector that has p dimensions (p
iv ℜ∈′
v), the iv ′v for

10,...,1=i are mutated by adding to each of them, zv where pz ℜ∈v , zv = (1z , 2z ,…, pz), and

iz is a random value from a normal distribution with zero mean and 2
iσ variation. For

example, when the multi-scale RBF kernel functions are used in the classification problems,

the parameter vector iv ′v has n2 dimensions (np 2=) where n is the number of terms of RBF

sub-kernels. The mutation function of iv ′v is

mutate)(iv ′v = iv ′v + zv = (1zC + , 20 z+γ , … , 121 −− + nn za , nn z21 +−γ)

),0(~ 2
iii Nz σ , }2,...,1{ ni∈∀ .

(111)

Moreover, in each generation, the standard deviation vector (σv) is mutated by the

following:

mutate)(σσ
v = (1

1
ze⋅σ , 2

2
ze⋅σ , … , nz

n e 2
2 ⋅σ)

),0(~ 2τii Nz , }2,...,1{ ni∈∀ ,
(112)

where τ is an arbitrary constant.

69

3.3 Objective Functions in Evolutionary Processes

One of the most important and difficult parts of the evolutionary algorithm is how to

define the objective function for the task under consideration. In our case of evaluating the

parameters of kernel functions and SVM, there are many ways to define the objective

function. In general classification problems, training error can be used as the objective

function in the evolutionary processes. For regression problems, percentage error, sum square

error, and mean square error are usually used to measure the performance of a regression

model.

Because the combined kernel functions are more flexible, these measurement

functions may overfit training data. Sometimes, data contain a lot of noise, and thus if the

model fits these noisy data, the learned concept may be wrong. In this research, we propose

to compare four possible objective functions: the training error, the subsets cross-validation,

the bound of generalization error, and the stability of SVM. These objective functions are

considered and tested in this research. The suitable objective functions will be applied for

some problems to compare with the other methods.

3.3.1 Training Error

Training error is a basic function that can be used for evaluating the parameters of

SVM classifiers. This function indicates the performance of learning machines measured by

the error of classification on training data. This is the simplest way to define our objective

function in the evolutionary algorithm. The individuals with low training error should have

the high fitness score. The formula expression of training error is shown in the following

equation:

TrnErr = ∑
=

−
m

i
ii xfy

m 1
)(

2
1 , (113)

where N
ix ℜ∈ is a training data, }1,1{−∈iy is its label or the actual class of ix , and)(ixf is

a decision function of data ix for mi ,,1 K= .

For the regression problems, the error on training data can be computed by mean

percentage error (MPE), sum of squared error (SSE), or mean squared error (MSE).

However, the symmetric mean absolute percentage error (SMAPE) is considered in this

research, it is a statistical measurement that attempts to solve the outlier problems.

SMAPE = ∑
=

×
+
−m

i ii

ii

yy
yy

m 1
100

2)ˆ(
ˆ1 , (114)

70

where iy for mi ,...,1= are the actually targets of the training data, iŷ for mi ,...,1= are the

forecast values, and m is the number of training data. This measurement function will be

used as an objective function in the evolutionary process; the experimental results will be

compared to the other objective functions. A set of suitable parameters should yield a lower

error on training. However, these objective functions may pick the models that overfit to

training data.

3.3.2 Subsets Cross-Validation

Although the training error or the training accuracy can be easily calculated, this

objective function may overfit the training data. Hence, we propose to train the decision

function with several sets of data. A good set of parameters should perform well on many

training sets. However, as we have only a fixed amount of training data, subsets cross-

validation is considered. For SVM learning, the running time of k-subsets cross-validation is

about k times of constructing an SVM classifier because the SVM classifier must be trained

and tested k times.

In this research, subsets cross-validation will be tested by using 5-subsets cross-

validation. It is a rather good estimate of the generalization error for adjusting the parameters.

At the beginning, the training data are divided into five subsets, each of which has almost the

same amount of data. For each generation of ES, the five classifiers with the same set of

parameters but with different training and testing set are evaluated. In the j th iteration (j =1,

…, 5), the classifier is trained on all subsets except for the j th one. Then, its classification

error is evaluated on the j th subset. These partitions are displayed in Figure 3-6.

Figure 3-6: 5-Subsets Cross-Validation

71

Only the real training data sets are used to produce the classifiers with the same set of

parameters. Then, the validation sets are used for evaluating the error of the classifiers. The

error on validation subset of j th subset can be calculated by

jErr = ∑
=

−
jm

i
ii

j

xfy
m 1

)(
2

1 , (115)

where }1,1{−∈iy is the label or the actual class of ix for jmi ,,1 K= that are in the j th

validation subset,)(ixf is a decision function of data ix , and 5,,1 K=j . The weighted

average of these five errors is used as the objective function.

5SubsetOnTrnErr =
∑

∑

=

=

⋅

5

1

5

1

j
j

j
jj

m

Errm
 . (116)

Moreover, the concept of subsets cross-validation can be applied to the other measurement

function such as the subsets cross-validation on SMAPE for regression problems.

3.3.3 Bound of Generalization Error

Actually, we would like to know the generalization performance of an algorithm.

The generalization performance of a machine learning algorithm is a function that indicates

the capacity of the machine to classify data. However, this function cannot be computed

based on the limited training data. Hence, the generalization performance of the learning

model was estimated by its bound. The bound of generalization performance of SVM has

been presented in a paper of Bartlett and Shawe-Taylor [24].

This bound of generalization error relates to the number of examples, the training

error, and the complexity of the hypothesis space. The measure for the complexity of the

hypothesis space is the Vapnik-Chervonenkis (VC) dimension [24]. The VC-dimension

measures the complexity of the hypothesis space, not by the number of distinct hypotheses,

but instead by the number of distinct instances that can be completely discriminated using a

hypothesis. The bound on generalization error of SVM is shown in the Proposition 3-1.

Proposition 3-1 (Bound of generalization error):

For SVM, the loss with probability at least δ−1 over m independently generated examples is

bounded by the following:

72

()()δ1loglog 2 ++≤ mh
m
cRR emp , (117)

where R is the generalization error, empR is the empirical error, c is a constant, and h is a

non-negative real number called the Vapnik-Chervonenkis (VC) dimension.

As the bound in (117) considers both training error and the VC-dimension, we expect

that the generalization performance of SVM with the combined kernel functions can be

approximated by this bound. Therefore, this bound of generalization error is considered to be

an objective function in our ES algorithm. We presume that a set of suitable parameters

should provide a lower bound of generalization error.

3.3.4 Stability of SVM

The generalization error is estimated by its bound under various assumptions. The

stability is an assumption that can be applied to derive the bound of generalization error. It is

a property of algorithms which describes how errors in the input data propagate through the

algorithm. The concept of stability was proposed by Bousquet and Elisseeff [61]. They

defined the notions of stability for learning algorithms and showed how to use the notions to

derive generalization error bounds [61]. Their methods can be applied in the regression

framework as well as in the classification one [61]. Hence, the stability for a learning

algorithm is considered to be the objective function in evolutionary process. In this work, the

stability of soft margin SVM classification and the stability of bounded SVM regression are

applied in order to avoid the overfitting problem in evolutionary process.

Proposition 3-2 (Stability of soft margin SVM classification):

Let),(,...,),(,),(2211 mm yxyxyx be the training data where N
i Rx ∈ is a sample data and

}1,1{−∈iy is its label. Assume)(⋅K is a bounded kernel, that is 2),(κ≤ji xxK . The bound

with probability at least δ−1 over the sample of size m is

mm
RR emp 2

)1ln(21
22 δ

λ
κ

λ
κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++≤ , (118)

where R is the risk or generalization error, empR is called the empirical error, and λ is the

regularization parameter of SVM (C1=λ).

73

Proposition 3-3 (Stability of bounded SVM regression):

Assume)(⋅K is a bounded kernel, that is 2),(κ≤ji xxK and],0[Byi ∈ . The bound with

probability at least δ−1 over the random draw of the sample of size m is

m
B

m
RR emp 2

)1ln(2 22 δ
λ

κ
λ
κ

λ
κ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++≤ , (119)

where R is the generalization error, empR is the empirical error, and λ is the regularization

parameter.

The expressions in the right-hand side of (118) and (119) are used as the objective

function to evaluate parameters of combined kernel functions and SVMs in the classification

and the regression problems, respectively. It is a tight bound, and can be a good criterion for

evaluating the parameters in the evolutionary process. The bound of kernel function (2κ) can

be estimated when the parameters of the combined kernel functions are assigned for each

individual parameter vector (vv). We presume that a set of suitable parameters should provide

a lower bound of risk. This objective function is tested in the next chapter.

CHAPTER IV

EXPERIMENTAL SETTING AND RESULTS

In this chapter, the proposed methods are evaluated by numerical experiments. Both

classification and regression benchmarks are considered. The experimental setting and the

performance evaluation are described. Then, the experimental results on benchmark datasets

are illustrated and discussed in this chapter.

4.1 Experimental Setting

In order to verify the performance of the proposed methods, SVMs with the proposed

methods are trained and tested on 12 binary classification datasets and 4 regression datasets

from the UCI Machine Learning Repository [7]. These datasets come from various real world

applications such as game playing, medical inference, predictions in biology and physics,

image processing, and character recognition. The number of attributes, the sample size, and

the number of classes of each dataset are shown in Table 4-1 and Table 4-2.

Table 4-1: Classification Datasets

No. Datasets Number of Attributes Number of Data

1 Australian 14 690

2 Flare 10 1066

3 German 24 1000

4 Glass2 9 163

5 Heart 13 270

6 Ionosphere 34 351

7 Liver-Disorder 6 345

8 Pima-Indians-Diabetes 8 768

9 Sonar 60 208

10 ThreeOf9 9 512

11 Tic-Tac-Toe 9 958

12 Tokyo 44 959

75

Table 4-2: Regression Datasets

No. Datasets Number of Attributes Number of Data

1 Auto_MPG 7 392

2 CPU_Performance 6 209

3 Housing 13 506

4 Servo 4 167

These datasets are normalized by Min-Max Normalization. This normalization is

performed in order to reduce the bias on some attributes. In each dataset, the attributes are

transformed into the range [0,1]. The new value iv′ of attributes A can be calculated by

AA

Ai
i

v
v

minmax
min
−

−
=′ , (120)

where iv for mi ,,1 K= are the conventional value of attribute A , Amin and Amax are the

minimum and maximum values of attribute A .

The evolutionary strategies are used to find the optimal parameters of SVM and

kernel functions. The (5+10)-ESs are used for searching the parameters of SVM and the

proposed kernels. The value of τ in evaluation process of these experiments is 1.0. The

widths of RBFs)(iγ , the weights of RBFs)(ia , the regularization parameter)(C , and the

deviation of an approximation)(ε are real numbers between 0.0 and 10.0. The degree of

polynomial)(id is a positive integer where 101 ≤≤ id . These parameters are inspected

within 1000 generations of ES.

4.2 Performance Evaluation

In this research, each dataset is evaluated by 5-folds cross-validation. At the

beginning, the training data are divided into five portions, each of which have almost the

same number of data. These portions are trained and validated five times. In the j th iteration

(5,4,3,2,1=j), the SVM with a proposed kernel function is trained on all parts except for the

j th one. Then, the performance of classification or prediction is calculated for the j th

portion. The average of these five performances is reported. The partitions of 5-folds cross-

validation are displayed in Figure 4-1.

76

Figure 4-1: 5-Folds Cross-Validation

On classification problems, the performance of learning algorithms is measured by

the error of classification. The average of percentage error on 5-folds cross-validation is used

to indicate the performance of the proposed methods. The formula expression of the

percentage error of each fold is shown in the following equation:

100
2

)(
1 ×

−
=

∑
=

j

m

i
ii

j m

yxf
PE

j

, (121)

where jm is the number of validation data in the j th fold, N
ix ℜ∈ is the validation data in the

j th fold,)(ixf is a decision function of data ix , and }1,1{−∈iy is the actual class of data ix

for jmi ...,,2,1= . The average of percentage error on 5-folds cross-validation, which is used

to compare the performance of learning algorithms, can be calculated by

∑
=

=
5

15
1

j
jPEAvgPE , (122)

where jPE is the percentage error of j th fold for 5,...,1=j .

For regression problems, the average of symmetric mean absolute percentage error

(SMAPE) on 5-folds cross-validation is used for evaluating the performance of the proposed

method. The SMAPE of j th fold is defined as

jSMAPE = ∑
=

×
+
−jm

i ii

ii

j yy
yy

m 1
100

2)ˆ(
ˆ1 , (123)

where iy for jmi ,...,1= are the actually targets of the data, iŷ for jmi ,...,1= are the forecast

77

values, and jm is the number of validation data in the j th fold, and the average of SMAPE on

5-folds cross-validation can be computed by

∑
=

=
5

15
1

j
jSMAPEAvgSMAPE . (124)

After that, the statistical tests are also used for evaluating the performance of the

proposed methods. The paired T -test and the Friedman test [62, 63] will be used to compare

the experimental results. The paired T-test is used for testing the difference of two learning

algorithms on the average accuracies of each dataset, whereas the Friedman test is used for

testing the difference of multiple algorithms over multiple datasets based on their average

ranks.

The statistical paired T -test is applied for testing the statistical significant difference

between the performances of two learning algorithms on each dataset. The term paired

means that there is a correspondence between observations from each population, i.e. there is

a one-to-one correspondence between the values in the two groups. In practice, the paired T

-test is commonly used to compare how a group of subjects perform in two different test

conditions. The paired T -test provides a hypothesis test of the difference between population

means for a pair of random samples whose differences are approximately normally

distributed. We note that a pair of samples, each of which are not from a distribution, often

yields differences that are normally distributed.

Give two paired sets of ia and ib of n measured values, the paired T -test

determines whether they differ from each other in a significant way under the assumptions

that the paired differences are independent and identically normally distributed. To apply T -

test, let id be the difference of each pair of measured values,

iii bad −= , (125)

where ni ,,2,1 K= . Therefore, D is the mean difference,

n

d
D

n

i
i∑

== 1 , (126)

2
dS is the sample variance difference,

1

)(
1

2

2

−

−
=
∑
=

n

Dd
S

n

i
i

d . (127)

78

The null hypothesis of no difference between the means of two groups of

observations will be tested by the statistical T . For the alternative hypothesis, we can choose

one of three alternative hypotheses. The default is that the difference between the means is

not equal to the specified difference, which is the two-sided alternative. The one-sided

alternatives are that the difference is greater than, or less than, the difference specified in the

null hypothesis.

If 1μ and 2μ are the means of 1st group and 2nd group, respectively, the hypotheses

are defined by

 0H : 021 =− μμ (128)

and

 1H : 021 ≠− μμ , or

 1H : 021 >− μμ , or

 1H : 021 <− μμ .

(129)

Then, the test statistic T is calculated as:

nS
DT

d

= , (130)

with the degree of freedom is 1−n .

The table of T -distribution confidence intervals can be used to determine the

significance level α that two groups differ. The value of statistical αT from this table is

called the critical value. If the statistical T is in the critical region or the rejection region,

then the null hypothesis will be rejected while the alternative hypothesis will be accepted.

This means that the means of two groups are significantly different at the probability of

%100)1(×−α . In the other hand, if the statistical T is in the acceptance region, the null

hypothesis will be accepted because no reason to reject this null hypothesis.

In this research, the different error of two learning algorithms will be evaluated by the

paired T -test. We would like to illustrate that the performances of the proposed methods are

significantly greater than those of baseline algorithms. On each dataset, the error is measured

from each fold of learning. Our experiments use 5-folds cross-validation then the degree of

freedom is 415 =− . The critical values of T -distribution with the degree of freedom 4 are

illustrated in Table 4-3.

79

Table 4-3: Critical Values of T-distribution

α Degree of
Freedom 0.1 0.05 0.01 0.005 0.001

4 1.533 2.132 3.747 4.604 7.173

Although the paired T -test can be used for testing the difference between two

learning algorithm over multiple datasets (in that case, the sample size may refer to the

number of used datasets), it is inconvenient to test multiple algorithms. A common example

of the test procedure would be comparing multiple algorithms by conducting all paired T -

tests and reporting results like “algorithm A was found significantly better than B and C, and

algorithms A and E were significantly better than D, while there were significantly

differences between other pairs” [64]. When so many tests are made, a certain proportion of

the null hypotheses is rejected due to random chance, so listing them make little sense [64].

Moreover, the averaging over multiple datasets may be susceptible to outliers. The

test’s power is decreased by increasing the estimated standard deviation. In this research, the

average error across the datasets is a measurement to describe the performance of our

methods. However, this average error may be meaningless if the results on different datasets

are not comparable [64]. In general, we prefer the classifiers or the algorithms that work well

on many problems. Therefore, a ranking method is applied to compare the learning

algorithms in this research. The algorithms are ranked for each dataset separately, i.e. the best

performing algorithm gets the rank of 1, the second best gets the rank 2, and so on. In case of

ties, an average rank is assigned to both algorithms or all tie algorithms. Then, the average

ranks across the datasets are compared. These average ranks provide a fair comparison of our

learning algorithms.

Then, the Friedman test is also considered for statistical test on the average ranks.

The Friedman test [62, 63] is a statistical method for test the differences between more than

80

two related sample means, and thus it can use to compare multiple classifiers of this research.

The average ranks of algorithms are compared under the null-hypothesis, which states that all

the algorithms are equivalent and so their ranks should be equal [64].

Let ijr be the rank of the the j -th of k algorithms on the i -th of N datasets. The

Friedman test compares the average ranks of algorithms,

∑
=

=
N

i
ij r

N
R

1

1 . (131)

Under the null hypothesis, which states that all the algorithms are equivalent and so their

ranks jR should be equal [64]. The Friedman statistic

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−

+
= ∑ 4

)1(
)1(

12 2
22 kkR

kk
N

j
jFχ (132)

is distributed according to 2
Fχ with 1−k degrees of freedom, when N and k are big enough.

Iman and Davenport [65] derived a better statistic from Friedman’s 2
Fχ

2

2

)1(
)1(

F

F
F kN

N
F

χ
χ
−−

−
= , (133)

which is distributed according to the F-distribution with 1−k and)1)(1(−− Nk degrees of

freedom. The table of critical values can be found in any statistical book.

If the null-hypothesis is rejected, we can proceed with a post-hoc test. The

Bonferroni-Dunn test [66] is used for pairwise comparisons. The performances of two

algorithms are significantly different if the corresponding average ranks differ by at least the

critical difference

N
kk

qCD
6

)1(+
= α , (134)

where critical values αq are illustrated in Table 4-4. The performance of algorithm A is

significantly better than algorithm B if the difference between the average ranks of

algorithms A and B is more than the critical difference (CDRR BA >−). Sometimes the

Friedman test reports a significant difference but post-hoc test fails to detect it [64]. This is

due to the lower power of the latter. The experimental results are shown and tested in the

next section.

81

Table 4-4: Critical Values for Two-Tailed Bonferroni-Dunn Test [64]

Number of
Classifiers 2 3 4 5 6 7 8 9 10

05.0q 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773

10.0q 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

4.3 Experimental Results

In this section, SVMs with the adaptive combined kernel functions are trained and

tested on benchmark datasets. These benchmark datasets are the binary classification

problems and the regression problems. The results of the proposed methods are compared to

the SVMs with the conventional kernel functions. Besides, k-nearest neighbor (k-NN) and

grid search are used for comparing with the proposed methods on some experiments, and they

are reported in the following sub-sections.

4.3.1 Classification Problems

At the beginning, k-NN for k = 1, 3, 5, and 7 are applied on the datasets from Table

4-1. Both simple k-NN and weighted k-NN are compared. In simple k-NN, an example is

classified by the majority vote of its k neighbors. For weighted k-NN, the Euclidean distance

is used to compute the weight of each neighbor, which is equal to 1/distance. The class of

each neighbor is multiplied by this weight before voting. The experimental results are shown

in Table 4-5.

The results show that each value of k is suitable for different datasets. Although, the

average error of simple 7-NN is lower than the other k-NNs, the average rank of simple 3-NN

is better than the others. Thus, the Friedman test is used to check whether the measured

average ranks are significantly different from the mean rank, jR = 4. From Table 4-5, 7

algorithms are compared on 12 datasets, and the Friedman statistic is as follows.

() 9762.1
4

)17(7
4875.34875.32917.45.34583.4

)17(7
)12(12 2

22222222 =⎥
⎦

⎤
⎢
⎣

⎡ +
−++++++

+
=Fχ (135)

 3104.0
9762.1)17(12

9762.1)112(
=

−−
−

=FF . (136)

FF is distributed according to the F-distribution with 617 =− and 66)112()17(=−×− degrees

of freedom. The critical value of)66,6(F for 05.0=α is ,2461.2 so we cannot reject the null-

82

hypothesis. Hence, the performances of k-NN at various k are not different. Therefore, 1-NN

that is the simplest and yields the good results will be compared with the other algorithms in

this research.

Table 4-5: Average Percentage Error of k-Nearest Neighbors on Classification Problems

3-NN 5-NN 7-NN
Datasets 1-NN

No
Weight

With
Weight

No
Weight

With
Weight

No
Weight

With
Weight

Australian 19.8551
(7)

16.6667
(4)

17.5362
(6)

15.7971
(2)

16.9565
(5)

15.6522
(1)

16.5217
(3)

Flare 25.1345
(4)

19.5103
(2)

38.9334
(5)

19.6025
(3)

42.0249
(6)

19.0439
(1)

43.5286
(7)

German 32.6000
(7)

27.6000
(2)

27.2000
(1)

28.6000
(5)

28.4000
(3)

28.6000
(5)

28.6000
(5)

Glass2 22.6704
(2)

23.9204
(6)

23.2954
(4)

23.3333
(5)

21.4583
(1)

23.9394
(7)

22.6894
(3)

Heart 24.8148
(7)

20.7407
(5)

21.4815
(6)

19.2593
(3.5)

19.2593
(3.5)

18.8889
(2)

18.5185
(1)

Ionosphere 12.5231
(1)

13.6660
(2)

13.9477
(3)

15.3722
(4.5)

15.3722
(4.5)

16.2294
(6)

16.7968
(7)

LiverDisorder 39.7101
(4)

37.6812
(2)

36.5218
(1)

40.8696
(6.5)

39.7102
(5)

40.8696
(6.5)

38.8406
(3)

PimaDiabetes 29.4355
(7)

25.7915
(1)

26.0530
(3)

26.5707
(5)

26.7032
(6)

26.0521
(2)

26.3136
(4)

Sonar 12.9965
(1)

17.3171
(5)

17.3171
(5)

17.3171
(5)

16.3531
(2)

19.2567
(7)

16.3879
(3)

ThreeOf9 20.5082
(5)

20.7081
(6)

23.0497
(7)

14.4546
(3)

16.7961
(4)

1.7609
(1)

4.1024
(2)

Tic-Tac-Toe 0.0000
(1.5)

0.0000
(1.5)

1.8793
(5)

0.3131
(3)

2.1924
(6)

0.8345
(4)

2.7138
(7)

Tokyo 9.1748
(7)

7.2993
(5.5)

7.2993
(5.5)

6.7785
(1)

6.9874
(2)

7.1962
(4)

7.0915
(3)

Average
Error 20.7853 19.2418 21.2095 19.0223 21.0178 18.1936 20.1754

Average
Rank 4.4583 3.5000 4.2917 3.8750 4.0000 3.8750 4.0000

Then, SVM with the common kernel functions are tested on these datasets. The RBF

and polynomial kernels with various parameter settings are applied. The average percentage

error of RBF and polynomial kernels are reported in Table 4-6 and Table 4-7, respectively.

Although the classification error is small with few parameter settings, many parameter

settings yield high percentage error. In addition, we do not have any knowledge about the

suitable parameters. The experiments with all possible parameters cannot be performed.

83

Table 4-6: Average Percentage Error of SVM with Parameter Setting on RBF Kernel

Width of RBF (γ)
Datasets C

0.0001 0.001 0.01 0.1 1 10

0.1 44.4928 44.4928 44.4928 14.4928 14.7826 41.5942
Australian

1.0 44.4928 44.4928 14.4928 14.4928 13.7681 18.5507

0.1 17.0734 17.0734 17.0734 17.0734 17.0734 17.0734
Flare

1.0 17.0734 17.0734 17.0734 17.1673 17.4490 18.1989

0.1 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000
German

1.0 30.0000 30.0000 30.0000 24.9000 25.4000 29.8000

0.1 46.6856 46.6856 46.6856 46.6856 46.0795 45.4735
Glass2

1.0 46.6856 46.6856 46.6856 43.5606 25.7197 23.9015

0.1 44.4444 44.4444 44.4444 16.6667 17.7778 44.4444
Heart

1.0 44.4444 44.4444 17.0370 15.5556 19.2593 30.3704

0.1 35.8954 35.8954 35.8954 27.9235 7.1187 35.8954
Ionosphere

1.0 35.8954 35.8954 25.9276 8.2575 5.4085 11.1147

0.1 42.0290 42.0290 42.0290 42.0290 42.0290 42.0290
LiverDisorder

1.0 42.0290 42.0290 42.0290 42.0290 40.8696 32.4638

0.1 34.9003 34.9003 34.9003 34.9003 27.2167 32.5567
PimaDiabetes

1.0 34.9003 34.9003 34.9003 23.7068 23.4428 24.2288

0.1 46.6318 46.6318 46.6318 46.6318 46.6318 46.6318
Sonar

1.0 46.6318 46.6318 34.1231 16.3531 11.0453 40.8827

0.1 46.4858 46.4858 46.4858 16.0213 35.5492 46.4858
ThreeOf9

1.0 46.4858 46.4858 18.3628 9.1928 0.0000 46.4858

0.1 34.6553 34.6553 34.6553 34.6553 23.5940 34.6553
Tic-Tac-Toe

1.0 34.6553 34.6553 34.6553 12.4242 0.8344 34.6553

0.1 36.0798 36.0798 35.3507 10.1145 8.3432 17.2066
Tokyo

1.0 36.0798 34.6210 10.9484 8.5498 7.2993 9.2834

84

Table 4-7: Average Percentage Error of SVM with Parameter Setting on Polynomial Kernel

Degree of Polynomial (d)
Datasets C 1

(Linear) 2 4 6 8 10

0.1 14.4928 14.9275 15.7971 20.5797 22.7536 24.3478
Australian

1.0 14.4928 14.4928 17.8261 22.4638 23.0435 23.6232

0.1 17.0734 16.9804 17.8233 19.3252 42.2763 51.2887
Flare

1.0 16.9804 17.4494 18.4805 39.5138 64.9603 40.0781

0.1 24.6000 23.8000 30.4000 31.3000 31.1000 30.3000
German

1.0 23.8000 25.7000 31.8000 31.3000 31.1000 30.3000

0.1 46.0795 39.2424 25.7386 22.6894 22.0265 20.1705
Glass2

1.0 39.2235 28.7879 25.7576 17.6894 19.5644 20.7955

0.1 15.9259 16.2963 22.2222 27.0370 24.4444 23.3333
Heart

1.0 15.5556 19.2593 26.2963 25.1852 24.4444 23.3333

0.1 13.1066 9.6901 13.1147 12.8249 13.3924 13.6740
Ionosphere

1.0 13.0986 10.5513 13.1147 12.8249 13.3924 13.6740

0.1 42.0290 42.0290 41.1594 30.7246 29.5652 28.6957
LiverDisorder

1.0 42.3188 37.3913 27.2464 28.1159 28.9855 29.8551

0.1 32.2918 22.9276 22.5303 23.9657 25.7898 28.2667
PimaDiabetes

1.0 22.6679 23.1831 23.4437 25.2712 28.0053 31.0016

0.1 19.7213 11.5563 12.0325 12.0441 13.9489 16.8293
Sonar

1.0 20.7085 12.9965 12.0325 12.0441 13.9489 16.8293

0.1 17.7746 1.9513 0.0000 0.0000 0.0000 1.3706
ThreeOf9

1.0 18.5589 2.7356 0.0000 0.0000 0.0000 1.3706

0.1 16.2854 1.6699 0.2083 1.2522 1.6699 1.6699
Tic-Tac-Toe

1.0 1.6699 0.2089 0.2083 1.2522 1.6699 1.6699

0.1 8.9676 7.0910 8.4457 10.1134 11.6787 12.0964
Tokyo

1.0 8.1332 7.3004 10.1140 10.4254 11.2615 16.0537

85

Grid search is compared to the parameter settings in Table 4-8. In this experiment,

grid search chooses a set of parameters that yields a small training error, and then this set of

parameters is used for testing on validation data. Thus, the percentage errors of grid search

on testing may not be the lowest. Although it seems that the percentage errors on testing of

the parameter settings are better than those of grid search, the percentage error on training of

grid search is lower. In real world applications, we do not know the testing error; only the

training error can be calculated. Therefore, it is very difficult to select a good set of

parameters that yields the lowest error on unseen data. Hence, the parameter settings cannot

be performed in the real situations.

Table 4-8: Average Percentage Error of Parameter Settings and Grid Search

Parameter Setting Grid Search

RBF
0.1,0.1 == γC

Polynomial
2,1.0 == dC RBF Polynomial Datasets

Train Test Train Test Train Test Train Test

Australian 10.4710 13.7681
(1) 13.8768 14.9275

(2) 1.2340 21.4500
(1) 0.0000 23.7680

(2)

Flare 15.9006 17.4490
(2) 16.6980 16.9804

(1) 11.1880 18.8500
(1) 11.6080 19.6060

(2)

German 7.5250 25.4000
(2) 16.1000 23.8000

(1) 0.0000 28.9000
(1) 0.0000 31.1000

(2)

Glass2 24.2325 25.7197
(1) 33.5819 39.2424

(2) 4.4460 17.0840
(1) 0.0000 19.5455

(2)

Heart 9.0741 19.2593
(2) 13.2407 16.2963

(1) 0.0000 28.5180
(2) 0.0000 23.7020

(1)

Ionosphere 1.8518 5.4085
(1) 4.0597 9.6901

(2) 0.0000 10.5520
(1) 0.0000 12.8260

(2)

LiverDisorder 37.9710 40.8696
(1) 42.0290 42.0290

(2) 12.1739 32.7536
(2) 10.6522 29.2754

(1)

PimaDiabetes 20.8012 23.4428
(2) 22.2013 22.9276

(1) 5.0780 26.3160
(1) 1.4640 31.1280

(2)

Sonar 0.0000 11.0453
(1) 3.6044 11.5563

(2) 0.0000 30.8600
(2) 0.0000 11.5660

(1)

ThreeOf9 0.0000 0.0000
(1) 1.8069 1.9513

(2) 0.0000 0.1961
(2) 0.0000 0.0000

(1)

Tic-Tac-Toe 0.0000 0.8344
(1) 1.6701 1.6699

(2) 0.0000 1.2520
(2) 0.0000 1.2500

(1)

Tokyo 5.5527 7.2993
(2) 6.3348 7.0910

(1) 0.3380 9.5960
(1) 0.0000 11.9900

(2)
Average
Error 11.1150 15.8747 14.6003 17.3468 2.8715 18.8606 1.9770 17.9796

Average
Rank -- 1.4167 -- 1.5833 -- 1.4167 -- 1.5833

86

Although the grid search is a good method for parameter selection, its running time

depends on the step size and the number of parameters. In the combinations of multiple

kernel functions, there are a lot of parameters that should not be selected by grid search

because the running time will be exponentially increased. Hence, the (5+10)-ES with the

difference objective functions are proposed for searching the high quality parameters of the

kernel function and SVM. Training error (TrnErr), 5-subsets cross-validation on training

error (5SubsetOnTrnErr), the bound of generalization error (BoundOfGenErr), and the bound

of generalization error derived from the stability of SVM (StabilityBound) are used as the

objective function in the evolutionary process. The experimental results of these objective

functions are compared with the result of a grid search, where the parameters are varied with

a fixed step-size. The average percentage errors from 5-fold cross-validation of all methods

with the single RBF kernel function are compared in Table 4-9.

Table 4-9: Average Percentage Error of Single RBF Kernel Function

Objective Functions of ES
Datasets Grid

Search
TrnErr 5SubsetOn

TrnErr
BoundOf
GenErr StabilityBound

Australian 21.4500 21.8346 (4) 18.9855* (3) 16.8116* (2) 16.3768* (1)

Flare 18.8500 18.9671 (4) 17.4485 (1) 17.5429 (3) 17.4490 (2)

German 28.9000 29.7000 (3) 29.3000 (2) 29.8000 (4) 28.9000 (1)

Glass2 17.0840 18.2955 (3) 17.6894 (1.5) 17.6894 (1.5) 21.5720 (4)

Heart 28.5180 29.6296 (4) 22.9619* (2) 27.7778 (3) 20.0000* (1)

Ionosphere 10.5520 13.7502 (4) 5.6942 (2) 5.1268 (1) 7.1026* (3)

LiverDisorder 32.7536 32.1739 (2) 36.5200 (4) 32.1739 (2) 32.1739 (2)

PimaDiabetes 26.3160 26.1841 (3) 26.1780 (2) 26.5724 (4) 24.4860 (1)

Sonar 30.8600 25.8304 (4) 22.9725 (3) 12.0093* (1) 15.3070* (2)

ThreeOf9 0.1961 0.3903 (2) 0.0000 (1) 0.5863 (3) 1.5572 (4)

Tic-Tac-Toe 1.2520 0.9391 (3) 0.7308 (2) 0.6261 (1) 3.7516 (4)

Tokyo 9.5960 10.1162 (4) 9.8033 (3) 9.0729* (2) 8.9807* (1)

Average
Error 18.8606 18.9842 17.3570 16.3158 16.4714

Average Rank -- 3.3333 2.2083 2.2917 2.1667

* Statistically significant at the level of 0.05 when compared to TrnErr objective function.

87

The results show that the average percentage error of ES with TrnErr is similar to the

grid search. Although the grid search is easy to implement, its performance depends on the

step-size. If the step-size is small, the grid search will be computationally expensive because

the SVM model must be evaluated at many points of parameters within the grid. On the other

hand, if the step-size is large, the grid search may not find a good solution. Whereas ES uses

the random process, many solutions are simultaneously searched.

When different objective functions of ES are used, the percentage errors of

5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound are lower than those of TrnErr.

Moreover, their percentage errors are significantly lower than those of TrnErr on some

datasets, i.e. Australian, Heart, Ionosphere, Sonar, and Tokyo. Although BoundOfGenErr

yields the lowest average percentage error on 12 datasets, the average rank on 12 datasets of

StabilityBound is lower than BoundOfGenErr and the other objective functions.

Friedman test is used for a statistical testing on the average ranks of the different

objective functions in Table 4-9. For 4 algorithms and 12 datasets, FF is distributed

according to the F distribution with 4-1 = 3 and (4-1)× (12-1) = 33 degrees of freedom. From

the experimental results, the following Friedman test is used to check whether the measured

average ranks are significantly different from the mean rank jR = 2.5:

() 7250.6
4

)14(4
1667.22917.22083.23333.3

)14(4
)12(12 2

22222 =⎥
⎦

⎤
⎢
⎣

⎡ +
−+++

+
=Fχ (137)

 5269.2
7250.6)14(12

7250.6)112(
=

−−
−

=FF (138)

This value implies that the average ranks of these 4 algorithms are significantly different from

the mean rank at a significance level of 0.0791.

Then, we use the Bonferroni-Dunn test for a pairwise comparison. The value of 10.0q

for 4 classifiers is 2.128. The performances of two classifiers are significantly different if

their corresponding average ranks differ by at least the critical difference

CD =
)12(6
)14(4

)128.2(
+ = 1.1690. (139)

Although this critical difference is not sufficient to conclude about the performances of

5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound, the different of average rank

between TrnErr and StabilityBound is very close to this critical difference (3.3333-2.1667 =

1.1666 ≈ 1.1690). The pairwise differences on the average ranks of ES with the different

objective functions kernel are shown in Table 4-10.

88

Table 4-10: Pairwise Differences on Average Ranks of the Different Objective Functions for

Single RBF Kernel

CD = 1.1690 Objective
Functions TrnErr 5SubsetOn

TrnErr
BoundOf
GenErr

Stability
Bound

Objective
Functions Average Rank 3.3333 2.2083 2.2917 2.1667

TrnErr 3.3333 0.0000 1.1250 1.0417 1.1667**

5SubsetOn
TrnErr 2.2083 -- 0.0000 -0.0833 0.0417

BoundOf
GenErr 2.2917 -- -- 0.0000 0.1250

Stability
Bound 2.1667 -- -- -- 0.0000

** This value is very close to the critical difference.

These results show that TrnErr is not the best objective function, and in fact it may

guide ES to select a classifier which overfits the training data. On the other hand,

5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound are the approximations of the

generalization performance of SVM. Thus, it can avoid the overfitting problem, resulting in

better performance. The average percentage errors on training of these objective functions

are shown in Table 4-11 and a chart for comparing between training and testing is shown in

Figure 4-2.

When we consider the chart of the average accuracy on 12 datasets, we found that the

average percentage errors of the grid search and TrnErr are lower than those of the other

objective functions. However, the average percentage error on testing is different; the grid

search and TrnErr yield higher average percentage errors on testing. This means that the

lowest error on training is not the best choice for unseen data.

For the running time, it is rather obvious that the evolutionary strategy consumes a lot

of time when it is compared to a single SVM. However, this process is indispensable, as the

accuracy of the learned SVM depends heavily on the quality of the obtained parameters.

Furthermore, determining high-quality parameters is an off-line process in most application,

and thus this running time can be disregarded. Nevertheless, we found that the running time

of each proposed method (ES with a different objective function) is less than that of the grid

search with a large number of evaluations. The running time of each method on a fold of

Sonar dataset is recorded and illustrated in Table 4-12.

89

Table 4-11: Average Percentage Error on Training of Single RBF Kernel Function

Objective Functions of ES
Datasets Grid Search

TrnErr 5SubsetOn
TrnErr

BoundOf
GenErr

Stability
Bound

Australian 1.2340 1.2319 9.3120 4.6739 10.6667

Flare 11.1880 11.1868 17.0740 13.4858 16.2526

German 0.0000 0.0000 0.0000 0.1500 0.2250

Glass2 4.4460 4.4439 4.4439 7.0593 22.3582

Heart 0.0000 0.0000 0.0000 0.9259 7.5926

Ionosphere 0.0000 0.0000 0.5000 0.0000 1.9934

LiverDisorder 12.1739 12.0301 12.2460 15.7971 29.6377

PimaDiabetes 5.0780 5.0778 6.3820 8.6609 9.5343

Sonar 0.0000 0.0000 0.2400 0.0000 0.0000

ThreeOf9 0.0000 0.0000 0.0000 0.0000 0.0000

Tic-Tac-Toe 0.0000 0.0000 0.0000 0.0000 0.0000

Tokyo 0.3380 0.3129 0.7800 1.0949 0.6518

Average Error 2.8715 2.8570 4.2482 4.3207 8.2427

0

5

10

15

20

Grid Search TrnErr 5SubsetOnTrnErr BoundOfGenErr StabilityBound

Pe
rc

en
ta

ge
 E

rr
or

Train Test

Figure 4-2: Chart of Average Percentage Error on Training and Testing of Single RBF Kernel
Function with Different Objective Functions

90

Table 4-12: The Running Time of an SVM with the Single RBF Kernel that Uses Different

Parameter Selection Methods when Training on a Fold of Sonar Dataset

Parameter Selection
Methods

Running Time on Training
(Hour)

1-NN --

Grid Search 3:05:35

ES with TrnErr 0:23:18

ES with 5SubsetOnTrnErr 1:56:31

ES with BoundOfGenErr 0:22:31

ES with StabilityBound 0:23:58

The proposed methods, the grid search, and 1-NN were run on a computer with an

Intel Xeon 2.73 GHz CPU and 3.85 GB memory. For 1-NN, it is an instance based learning,

which does not have the training process. Thus, the running time is used for calculating the

distance between an example and the existing training data. In the grid search, the

regularization parameter, the width of the RBF kernel, and the combination weight are varied

by a log-scale form 0.0001, 0.0002, …, 0.001, 0.002, …, to 10.0.

On a fold of Sonar dataset, the running time on training of the grid search was about

three hours, whereas the running time of ES with TrnErr objective function was 23.18

minutes. Therefore, the running time of the grid search is about 8 times longer than that of

ES with TrnErr. In addition, the running time of ES with TrnErr is close to that of

BoundOfGenErr and StabilityBound. However, we found that the running time of

5SubsetOnTrnErr is about 5 times longer than those of TrnErr, BoundOfGenErr, and

StabilityBound. For the case of 5-subsets cross-validation, SVM classifiers are trained and

validated 5 times for each set of parameters. Therefore, this result is reasonable.

For other datasets, the running times of these methods have a similar trend; the

running time of 5SubsetOnTrnErr is more than those of TrnErr, BoundOfGenErr, and

StabilityBound, and the running time of each proposed methods is less than that of the grid

search with a large number of evaluations. Moreover, the number of generation of ES may be

reduced. In our experiments the number of generation was fixed as 1000, but a good solution

can be found in fewer generations. Graphs of different objective functions on Sonar dataset

are shown in Figure 4-3. The objective function values of TrnErr, 5SubsetOnTrnErr, and

BoundOfGenErr quickly decrease in the first few generations whereas StabilityBound

requires more generations.

91

Figure 4-3: Graphs of Different Objective Functions for each Generation of ES on Sonar
Datasets (a) TrnErr (b) 5SubsetOnTrnErr (c) BoundOfGenErr (d) StabilityBound

For multi-scale RBF kernels, the average percentage errors and the ranks of each

objective function using n -RBF when n = 2, 3, 4, and 5 are illustrated in Table 4-13 – Table

4-16, respectively. Furthermore, the average percentage errors on 12 datasets for each

objective function are illustrated by the graphs in Figure 4-4. These results show the

performance of each objective function. For all n -RBF kernels, the average percentage

errors of 5SubsetOnTrnErr and StabilityBound are lower than those of TrnErr. There are

many datasets where the percentage errors of BoundOfGenErr are lower than those of TrnErr.

Moreover, the percentage errors of 5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound

are significantly lower than those of TrnErr on some datasets.

92

Table 4-13: Average Percentage Error on Testing of 2-RBF Kernel Function

Objective Functions of ES
Datasets

TrnErr 5SubsetOn
TrnErr

BoundOf
GenErr StabilityBound

Australian 21.5942 (4) 20.0000 (3) 17.6812* (2) 16.8116* (1)
Flare 20.6165 (4) 18.4784* (3) 18.3856* (2) 18.0115* (1)
German 28.1000 (2) 29.3000 (4) 28.3000 (3) 27.8000 (1)
Glass2 19.5265 (3.5) 18.3144 (2) 17.1023 (1) 19.5265 (3.5)
Heart 23.7037 (4) 18.5185 (1) 21.8519 (2) 22.5926 (3)
Ionosphere 5.6821 (3) 5.1268 (1.5) 5.1268 (1.5) 6.8370 (4)
LiverDisorder 31.9669 (2) 33.9145 (4) 32.4638 (3) 31.8841 (1)
PimaDiabetes 30.6078 (4) 24.4920* (2) 28.9186 (3) 24.0964* (1)
Sonar 28.2811 (4) 18.8502 (2) 20.2439 (3) 17.2706 (1)
ThreeOf9 0.1942 (2) 0.0000 (1) 1.1727 (3) 1.9475 (4)
Tic-Tac-Toe 0.8344 (1.5) 0.8344 (1.5) 1.1475 (3) 1.8766 (4)
Tokyo 11.4845 (4) 7.9233* (1) 7.9238* (2) 8.7724* (3)

Average Error 18.5493 16.3127 16.6931 16.4522

Average Rank 3.1667 2.1667 2.3750 2.2917

* Statistically significant at the level of 0.05 when compared to TrnErr objective function.

Table 4-14: Average Percentage Error on Testing of 3-RBF Kernel Function

Objective Functions of ES
Datasets

TrnErr 5SubsetOn
TrnErr

BoundOf
GenErr StabilityBound

Australian 20.7246 (4) 18.9855 (2) 20.1449 (3) 16.9565* (1)
Flare 19.6029 (4) 18.9459 (2) 19.1330 (3) 17.9176 (1)
German 27.5000 (1) 29.5000 (4) 28.6000 (3) 27.7000 (2)
Glass2 18.9015 (2) 18.2955 (1) 18.9394 (3) 19.5265 (4)
Heart 23.3333 (3) 23.3346 (4) 18.1481 (1) 22.2222 (2)
Ionosphere 6.5553 (4) 5.4085 (2) 4.8451* (1) 6.5352 (3)
LiverDisorder 30.1449 (1) 33.3340 (4) 32.1739 (3) 31.8841 (2)
PimaDiabetes 30.2215 (4) 25.1057* (1) 28.3957* (3) 25.4108* (2)
Sonar 25.4704 (4) 12.0790* (1) 16.6156* (3) 15.1057* (2)
ThreeOf9 0.0000 (1.5) 0.0000 (1.5) 1.7590 (3) 3.7160 (4)
Tic-Tac-Toe 1.0433 (1) 1.1480 (2.5) 1.1480 (2.5) 1.6699 (4)
Tokyo 10.3232 (4) 8.4457* (3) 8.2390* (1) 8.3333* (2)

Average Error 17.8184 16.2152 16.5118 16.4148

Average Rank 2.7917 2.3333 2.4583 2.4167

* Statistically significant at the level of 0.05 when compared to TrnErr objective function.

93

Table 4-15: Average Percentage Error on Testing of 4-RBF Kernel Function

Objective Functions of ES
Datasets

TrnErr 5SubsetOn
TrnErr

BoundOf
GenErr StabilityBound

Australian 20.7246 (4) 18.9855 (2) 20.0000 (3) 16.6667* (1)
Flare 19.4151 (3) 19.1344 (2) 19.6964 (4) 17.7853 (1)
German 26.2000 (2) 24.1000* (1) 26.5000 (3) 27.7000 (4)
Glass2 18.9394 (2) 19.56448 (4) 17.0833 (1) 19.5265 (3)
Heart 21.8519 (4) 16.2957* (1) 18.5185* (2) 20.3704 (3)
Ionosphere 4.5553 (1) 6.2656 (3) 5.3964 (2) 6.2696 (4)
LiverDisorder 31.3043 (1) 34.4950 (4) 32.1739 (3) 31.8841 (2)
PimaDiabetes 30.4821 (4) 26.4680 (3) 26.4305* (2) 23.7017* (1)
Sonar 15.8885 (2) 11.1150 (1) 22.2416 (4) 21.5796 (3)
ThreeOf9 0.1961 (2) 0.0000 (1) 1.5648 (4) 0.7843 (3)
Tic-Tac-Toe 1.0438 (1) 1.3557 (4) 1.1480 (2) 1.2522 (3)
Tokyo 10.0115 (4) 8.2365* (2) 8.1337* (1) 8.5509* (3)

Average Error 16.7177 15.5013 16.5739 16.3393

Average Rank 2.5000 2.3333 2.5833 2.5833

* Statistically significant at the level of 0.05 when compared to TrnErr objective function.

Table 4-16: Average Percentage Error on Testing of 5-RBF Kernel Function

Objective Functions of ES
Datasets

TrnErr 5SubsetOn
TrnErr

BoundOf
GenErr StabilityBound

Australian 21.0145 (4) 18.8058* (2) 19.4203* (3) 16.3768* (1)
Flare 19.5090 (4) 18.9452 (2) 19.5086 (3) 17.8124 (1)
German 25.9000 (2) 24.5000* (1) 26.8000 (3) 27.7000 (4)
Glass2 17.6894 (1) 20.1136 (4) 17.7273 (2) 18.2765 (3)
Heart 24.8148 (4) 15.1856* (1) 18.8889* (2) 21.1111 (3)
Ionosphere 5.1268 (1) 8.2666 (3) 10.2696 (4) 6.2656 (2)
LiverDisorder 31.3043 (2) 34.7848 (4) 30.1449 (1) 31.5942 (3)
PimaDiabetes 30.9982 (4) 25.2724* (2) 27.2235* (3) 23.9275* (1)
Sonar 10.5807 (2) 9.1629 (1) 23.6934 (4) 20.6039 (3)
ThreeOf9 0.0000 (1.5) 0.0000 (1.5) 1.7571 (4) 0.7805 (3)
Tic-Tac-Toe 0.6266 (1) 1.2516 (2) 1.2522 (3.5) 1.2522 (3.5)
Tokyo 9.5833 (4) 8.6461 (3) 8.0307* (2) 7.4051* (1)

Average Error 16.4290 15.4112 17.0597 16.0922

Average Rank 2.5417 2.2083 2.8750 2.3750

* Statistically significant at the level of 0.05 when compared to TrnErr objective function.

94

14.0

15.0

16.0

17.0

18.0

19.0

20.0

0 1 2 3 4 5 6 7 8 9 10 11

Number of RBF Terms

Pe
rc

en
ta

ge
 E

rro
r

TrnErr 5SubsetOnTrnErr BoundOfGenErr StabilityBound

Figure 4-4: Graph of Average Percentage Error at Different Number of RBF Terms

When the average rank is considered, we found that 5SubsetOnTrnErr performed the

best for all n -RBF when n = 2, 3, 4, and 5. As shown in Figure 4-4, the average percentage

error on 12 datasets of 5SubsetOnTrnErr is lower than the other objective functions for all n -

RBF when n = 2, 3, 4, and 5. When 5SubsetOnTrnErr is used as an objective function in the

evolutionary process, the average percentage error of n -RBF increases with the number of

RBF terms.

The average percentage errors of TrnErr rapidly decrease until a specific number of

terms of RBF kernels is reached. After that, they are unchanged or slightly increase.

Although the average percentage error of BoundOfGenErr is the lowest on the single RBF

kernel function, for some of the multi-scale RBF kernels, the average percentage errors of

BoundOfGenErr increase. We notice that these average percentage errors of BoundOfGenErr

are varied in a range of percentage error.

When StabilityBound is used as an objective function, there is a trend that the average

percentage error on all 12 datasets decreases with the number of terms of RBF kernels.

Although StabilityBound does not provide lower average percentage errors than those of

BoundOfGenErr for the single RBF kernel function, it yields the results that are better than

the other objective functions when the multiple RBF kernel functions are combined.

Therefore, StabilityBound is a good choice for an objective function, which yields good

results when using a more flexible kernel function. Moreover, increasing the number of terms

of the RBF kernels contributes positively to the performance.

95

Although it is not always the case that the kernel with the largest number of terms

yields the best result, more RBF terms usually provide better outcomes and should be

employed when there are no time constraints. Therefore, the results of 10-RBF kernel

function, which combines the maximum number of RBF terms in our experiments, are

illustrated in Table 4-17.

Table 4-17: Average Percentage Error on Testing of 10-RBF Kernel Function

Objective Functions of ES
Datasets 1-NN

TrnErr 5SubsetOn
TrnErr

BoundOf
GenErr

Stability
Bound

Australian 19.8551
(4)

21.0145
(5)

19.1101
(2)

19.4203
(3)

16.3768*
(1)

Flare 25.1345
(5)

18.4788
(4)

17.0736*
(1)

17.4323*
(3)

17.3547*
(2)

German 32.6000
(5)

28.9000
(4)

28.3000
(2)

28.7000
(3)

26.8000*
(1)

Glass2 22.6704
(5)

17.0833
(2.5)

18.2386
(4)

16.4773
(1)

17.0833
(2.5)

Heart 24.8148
(5)

23.7037
(4)

21.8519
(2)

22.2222
(3)

19.6296*
(1)

Ionosphere 12.5231
(5)

6.2736
(4)

6.2696
(3)

5.1308
(2)

5.1026
(1)

LiverDisorder 39.7101
(5)

32.4638
(3)

35.6528
(4)

32.1739
(2)

31.5942
(1)

PimaDiabetes 29.4355
(5)

23.9674
(2)

25.4000
(4)

24.3536
(3)

22.9234
(1)

Sonar 12.9965
(3)

14.3902
(5)

10.1143
(1)

13.4379
(4)

12.9849
(2)

ThreeOf9 20.5082
(5)

0.0000
(2)

0.0000
(2)

0.5882
(4)

0.0000
(2)

Tic-Tac-Toe 0.0000
(1)

1.0433
(3)

1.3563
(5)

1.1480
(4)

0.9391
(2)

Tokyo 9.1748
(4)

9.9078
(5)

8.8617
(2)

8.8662
(3)

7.0910*
(1)

Average Error 20.7853 16.4355 16.0191 15.8292 14.8233

Average Rank 4.3333 3.6250 2.6667 2.9167 1.4583

* Statistically significant at the level of 0.05 when compared to TrnErr objective function.

96

From Table 4-17, the average percentage errors of StabilityBound are lower than the

other objective functions and 1-NN. Moreover, the average rank of StabilityBound is also the

lowest when it is compared to the other algorithms. The Friedman test is used to check that

the average ranks are significantly different from the mean rank jR = 3 at the significance

level of 0.05. Then, Bonferroni-Dunn test is used for a pairwise comparison. The pairwise

differences on the average ranks of these algorithms are shown in Table 4-18. These results

show that the performance of StabilityBound is significantly better than 1-NN, TrnErr, and

BoundOfGenErr; however, it is not sufficient to conclude about 5SubsetOnTrnErr.

Moreover, the performance of 5SubsetOnTrnErr is also significantly better than 1-NN.

Table 4-18: Pairwise Differences on Average Ranks of 1-NN and 10-RBF Kernel Function

with the Different Objective Functions

CD = 1.4466 Algorithms 1-NN TrnErr 5Subset
OnTrnErr

BoundOf
GenErr

Stability
Bound

Algorithms Average
Rank 4.3333 3.6250 2.6667 2.9167 1.4583

1-NN 4.3333 0.0000 0.7083 1.6667* 1.4167 2.8750*

TrnErr 3.6250 -- 0.0000 0.9583 0.7083 2.1667*

5Subset
OnTrnErr 2.6667 -- -- 0.0000 -0.2500 1.2083

BoundOf
GenErr 2.9167 -- -- -- 0.0000 1.4583*

Stability
Bound 1.4583 -- -- -- -- 0.0000

* Significantly Different at the level of 0.10.

Similar to the single RBF kernel, TrnErr may guide to a classifier which overfits

training data. The average percentage error on training of TrnErr is lower than the other

objective functions, whereas the average percentage error on testing of TrnErr is higher than

the other objective functions. The average percentage errors on training of a 10-RBF kernel

for each objective function are illustrated in Table 4-19. Furthermore, a chart for comparing

between training and testing of the 10-RBF kernel with different objective functions is shown

in Figure 4-5. This chart shows that the average percentage errors on testing of SVM based

on adaptive multi-scale RBF kernels with different objective functions are better than those of

1-NN.

97

However, since the multi-scale RBF kernels are more flexible according to the terms

of RBF, a set of parameters may create a decision surface that overfits training data. The

experimental results show that the StabilityBound can solve this problem. When we consider

the chart of the average accuracy on 12 datasets, we found that the training error of the

StabilityBound is higher than those of the other objective functions. However, the average

percentage error on testing is different; the StabilityBound yields the lowest average

percentage error on testing. This means that the lowest error on training is not the best choice

for unseen data, while the StabilityBound yields the results that do not overfit training data.

Table 4-19: Average Percentage Error on Training of 10-RBF Kernel Function

Objective Functions of ES
Datasets

TrnErr 5SubsetOn
TrnErr

BoundOf
GenErr StabilityBound

Australian 1.0870 1.8478 2.3913 8.6232

Flare 11.8195 12.7810 12.6879 15.6426

German 0.0000 0.0250 0.5000 2.7750

Glass2 3.3729 4.4439 7.6747 15.1767

Heart 0.6481 2.7778 4.2593 8.2407

Ionosphere 0.1423 0.0712 0.4270 2.5656

LiverDisorder 11.3768 10.4348 13.4783 25.7246

PimaDiabetes 4.3609 10.7759 8.0060 19.7921

Sonar 0.0000 0.0000 0.0000 1.1998

ThreeOf9 0.0000 0.0000 0.0000 0.0000

Tic-Tac-Toe 0.0000 0.0000 0.0000 0.0000

Tokyo 0.6779 2.1099 0.8083 5.7873

Average Error 2.7905 3.7723 4.1861 8.7940

98

0

5

10

15

20

25

1-NN TrnErr 5SubsetOnTrnErr BoundOfGenErr StabilityBound

Pe
rc

en
ta

ge
 E

rro
r

Train Test

Figure 4-5: Chart of Average Percentage Error on Training of 1-NN and Both Training and
Testing of 10-RBF Kernel with Different Objective Functions

In order to illustrate that the multi-scale RBF kernels can improve the classification

performance of a single RBF kernel, Friedman test is used for testing the average ranks of

1-NN, grid search, single RBF kernel, and 10-RBF kernel that uses the StabilityBound as the

objective function in evolutionary process. The results and the ranks are compared in Table

4-20.

By the Friedman test, the average ranks of these 4 algorithms and 12 datasets are

significantly different from the mean rank jR = 2.5 at the significant level of 0.05. Then, the

Bonferroni-Dunn test is used for a pairwise comparison. The pairwise differences on the

average ranks of these algorithms are shown in Table 4-21.

The results show that the performance of a 10-RBF kernel is significantly better than

single RBF kernel. Moreover, the performance of SVM with the 10-RBF kernel that uses the

StabilityBound as an objective function in the evolutionary process is also significantly better

than 1-NN and grid search on single RBF kernel.

99

Table 4-20: Average Percentage Error on Testing of 1-NN, Grid Search, and ES with the

StabilityBound on RBF and 10-RBF Kernel Functions

ES with the StabilityBound
Objective Function Datasets 1-NN Grid Search

RBF Kernel 10-RBF Kernel

Australian 19.8551 (4) 21.4500 (3) 16.3768 (1.5) 16.3768 (1.5)

Flare 25.1345 (4) 18.8500 (3) 17.4490 (2) 17.3547 (1)

German 32.6000 (4) 28.9000 (2.5) 28.9000 (2.5) 26.8000 (1)

Glass2 22.6704 (4) 17.0840 (2) 21.5720 (3) 17.0833 (1)

Heart 24.8148 (3) 28.5180 (4) 20.0000 (2) 19.6296 (1)

Ionosphere 12.5231 (4) 10.5520 (3) 6.2656 (2) 5.1026 (1)

LiverDisorder 39.7101 (4) 32.7536 (3) 32.1739 (2) 31.5942 (1)

PimaDiabetes 29.4355 (4) 26.3160 (3) 24.4860 (2) 22.9234 (1)

Sonar 12.9965 (2) 30.8600 (4) 14.4010 (3) 12.9849 (1)

ThreeOf9 20.5082 (4) 0.1961 (2) 1.5572 (3) 0.0000 (1)

Tic-Tac-Toe 0.0000 (1) 1.2520 (3) 3.7516 (4) 0.9391 (2)

Tokyo 9.1748 (3) 9.5960 (4) 8.9807 (2) 7.0910 (1)

Average Error 20.7853 18.8606 16.3262 14.8233

Average Rank 3.4167 3.0417 2.4167 1.1250

Table 4-21: Pairwise Differences on Average Ranks of 1-NN, Grid Search, and ES with the

StabilityBound on Single RBF and 10-RBF Kernel Functions

CD = 1.1690 Algorithms 1-NN Grid Search ES
RBF

ES
10-RBF

Algorithms Average Rank 3.4167 3.0417 2.4167 1.1250

1-NN 3.4167 0.0000 0.3750 1.0000 2.2917*

Grid Search 3.0417 -- 0.0000 0.6250 1.9167*

ES
RBF 2.4167 -- -- 0.0000 1.2917*

ES
10-RBF 1.1250 -- -- -- 0.0000

* Significantly Different at the level of 0.10.

100

Furthermore, the other combined kernel functions are evaluated. The parameters of

SVM with a multi-degree polynomial kernel, linear combination of polynomial and RBF

kernels, and multiplication of polynomial and RBF kernels are selected by (5+10)-ES. For

the multi-degree polynomial kernel, we use 10 terms of polynomial sub-kernels and the

degrees of polynomial sub-kernels are fixed at 1, 2, … , 10. Only the weights of sub-kernels

and a regularization parameter of SVM are the adjustable parameters. The parameter vector

vv is represented by the following equation:

vv = (C , 0a , 1a , 2a , … , 1−na), (140)

where C is the regularization parameter, 0a is the weight of polynomial sub-kernel at degree

1 (linear sub-kernel) and it is fixed as 1, ia for 1,...,1 −= ni are the weights of polynomial

sub-kernels, and n is the number of terms of polynomial sub-kernel functions.

For the linear combination and the multiplication of polynomial and RBF kernels, we

combine an RBF kernel with a polynomial kernel. Their parameters are selected by (5+10)-

ES, which the parameter vector vv is represented by:

vv = (C , 0a , d , 1a , γ), (141)

where C is the regularization parameter, 0a is the weight of polynomial sub-kernel that is

fixed as 1, d is the degree of polynomial sub-kernel, 1a is the weight of RBF sub-kernel, and

γ is the width of RBF sub-kernel. The experimental results of these kernel functions are

compared to the grid search on single RBF and single polynomial kernel functions, and ES on

10-RBF kernel in Table 4-22. The pairwise differences on the average ranks are shown in

Table 4-23.

As shown in Table 4-22, the performance of 10-RBF kernel is still better than the

other kernel functions. Friedman test is used to check that the measured average ranks of 6

algorithms and 12 datasets are significantly different from the mean rank jR = 3.5 at a

significance level of 0.05. For the pairwise comparisons, the performance of 10-RBF kernel

is significantly better than those of Poly*RBF kernel and the grid search on both RBF and

polynomial kernels. Moreover, the performance of Poly+RBF kernel is significantly better

than that of Poly*RBF kernel. However, it is not sufficient to conclude about the other kernel

functions.

101

Table 4-22: Average Percentage Error of SVM with Different Kernel Functions when using

StabilityBound as the Objective Function in Evolutionary Process

Grid Search ES
Datasets

RBF Poly 10-Poly Poly+RBF Poly*RBF 10-RBF

Australian 21.4500
(3)

23.7680
(6)

23.1884
(4)

16.8116
(2)

23.6232
(5)

16.3768
(1)

Flare 18.8500
(3)

19.6060
(5)

17.4477
(2)

19.1365
(4)

20.1659
(6)

17.3547
(1)

German 28.9000
(4)

31.1000
(6)

30.2000
(5)

27.2000
(2)

28.8000
(3)

26.8000
(1)

Glass2 17.0840
(2)

19.5455
(3.5)

19.5455
(3.5)

22.0455
(6)

20.7386
(5)

17.0833
(1)

Heart 28.5180
(5)

23.7020
(4)

22.5926
(3)

20.7407
(2)

33.3333
(6)

19.6296
(1)

Ionosphere 10.5520
(4)

12.8260
(6)

12.2857
(5)

9.9839
(3)

8.8209
(2)

5.1026
(1)

LiverDisorder 32.7536
(6)

29.2754
(3)

28.9855
(2)

28.6957
(1)

30.7246
(4)

31.5942
(5)

PimaDiabetes 26.3160
(4)

31.1280
(6)

23.1848
(2)

25.0089
(3)

27.2167
(5)

22.9234
(1)

Sonar 30.8600
(6)

11.5660
(2)

11.5447
(1)

12.9733
(3)

30.8130
(5)

12.9849
(4)

ThreeOf9 0.1961
(3)

0.0000
(1.5)

1.1727
(4)

1.9513
(5)

2.7204
(6)

0.0000
(1.5)

Tic-Tac-Toe 1.2520
(4)

1.2500
(3)

1.5658
(5)

0.6272
(1)

2.2971
(6)

0.9391
(2)

Tokyo 9.5960
(3)

11.9900
(6)

9.8004
(4)

8.3421
(2)

11.4682
(5)

7.0910
(1)

Average Error 18.8606 17.9797 16.7928 16.1264 20.0602 14.8233

Average Rank 3.9167 4.3333 3.3750 2.8333 4.8333 1.7083

102

Table 4-23: Pairwise Differences on Average Ranks of Grid Search and ES with the Different

Combined Kernel Functions

Grid Search ES

CD = 1.7769

A
lg

or
ith

m
s

RBF Poly 10-Poly
Poly

+
RBF

Poly
*

RBF
10-RBF

Algorithms Average
Rank 3.9167 4.3333 3.3750 2.8333 4.8333 1.7083

RBF 3.9167 0.0000 -0.4167 0.5417 1.0833 -0.9167 2.2083*

G
ri

d
Se

ar
ch

Poly 4.3333 -- 0.0000 0.9583 1.5000 -0.5000 2.6250*

10-Poly 3.3750 -- -- 0.0000 0.5417 -1.4583 1.6667

Poly
+

RBF
2.8333 -- -- -- 0.0000 -2.0000* 1.1250

Poly
*

RBF
4.8333 -- -- -- -- 0.0000 3.1250*

E
S

10-RBF 1.7083 -- -- -- -- -- 0.0000

* Significantly Different at the level of 0.10.

Therefore, we consider the average percentage error of this kernel functions. The

average percentage errors of 10-Poly kernel are lower than those of single polynomial kernel

at the most of datasets, except for ThreeOf9 and Tic-Tac-Toe where their average percentage

errors are lower than the other datasets. This means that the multi-degree polynomial kernel

can improve the performance of SVM that uses the single polynomial kernel. However, the

classification performance can be further enhanced by Poly+RBF kernel on many datasets,

e.g. Australian, German, Heart, Ionosphere, LiverDisorder, Tic-Tac-Toe, and Tokyo.

Although Poly*RBF kernel does not perform well on these datasets, there is a dataset,

i.e. Ionosphere that the average percentage error of Poly*RBF kernel is lower than Poly+RBF

kernel. Thus, it may be suitable for some specific problems. However, we encourage SVM

with the 10-RBF kernel because it yields the lowest average percentage error at the most of

datasets and makes the best average ranks.

4.3.2 Regression Problems

In this section, the proposed methods are evaluated on 4 regression problems. First,

SVMs with the parameter settings are evaluated on single RBF and single polynomial kernels.

The deviation of approximation (ε) is fixed as 1, a regularization parameter (C) is set as 0.1

103

and 1.0, the width of RBF (γ) is set as 0.0001, 0.001, 0.01, 0.1, 1, and 10, and the degree of

polynomial (d) is set as 1, 2, 4, 6, 8, and 10. The experimental results of SVM with single

RBF and single polynomial kernels are shown in Table 4-24 and Table 4-25, respectively.

Table 4-24: Average SMAPE of SVM with Parameter Setting on RBF Kernel for ε =1

Width of RBF (γ)
Datasets C

0.0001 0.001 0.01 0.1 1 10

0.1 48.5875 46.0065 32.6615 21.2949 18.0396 22.0299
Auto_MPG

1.0 46.0027 32.6173 22.2937 20.3630 17.6418 21.1808

0.1 103.0350 102.9174 102.5493 100.7347 93.9533 95.9258 CPU_
Performance

1.0 102.9252 102.5483 100.6928 192.0511 83.9628 91.2576

0.1 38.7003 37.0063 31.1954 25.1217 21.1597 25.4770
Housing

1.0 37.0030 31.1219 24.9612 25.5889 18.6126 24.9256

0.1 82.7478 82.8238 81.8611 71.4998 69.9977 75.8987
Servo

1.0 82.8236 81.8701 68.4786 231.5096 124.6145 75.9276

Table 4-25: Average SMAPE of SVM with Parameter Setting on Polynomial Kernel for ε =1

Degree of Polynomial (d)
Datasets C

1
(Linear) 2 4 6 8 10

0.1 33.8700 19.1808 19.0836 20.9372 36.3465 48.8011
Auto_MPG

1.0 35.6947 19.1514 21.2742 25.6222 118.3615 48.8891

0.1 80.6270 73.9781 93.0097 92.0578 93.8800 93.7312 CPU_
Performance

1.0 322.7340 111.9524 86.6720 92.0777 93.9052 93.5778

0.1 25.9540 19.9023 20.9789 33.7235 34.8894 32.3293
Housing

1.0 30.1677 19.4419 31.6084 33.7235 34.8894 32.3293

0.1 980.8324 297.8442 435.4942 318.8907 258.0206 150.9032
Servo

1.0 192.3614 151.6029 208.5475 413.4937 198.1518 279.2676

104

These results show that if the unsuitable parameters are selected, the performance of

SVM may be very bad. On the other hand, the performance of SVM may be very well if the

suitable parameters are selected. Hence, the parameter setting is not a good method for the

general problems. A better parameter selection method is necessary for improving the

performance of classification or approximation.

Grid search is a good parameter selection method. However, the performance of grid

search relates to the running time. Moreover, grid search is not suitable for selecting the

parameters of combined kernel functions. Since there are a lot of possible combinations on

the parameters of sub-kernels, the usage of the grid search will consume a lot of time. ES is a

better choice that can search these parameters simultaneously. The performance of ES with

the different objective functions are compared to the grid search on single RBF kernel

function in Table 4-26. For the objective functions, we consider the mean squared error on

training (mse_obj), the symmetric mean absolute percentage error on training (smape_obj),

and the bound of generalization error that derived from the stability of SVM regression

(StabilityBound).

Table 4-26: Average SMAPE on 5-Fold Cross-Validation of RBF Kernel Function

ES with Single RBF Kernel
Datasets RBF

GridSearch
mse_obj smape_obj StabilityBound

Auto_MPG 20.5728
(4)

17.1952*
(2)

20.4880
(3)

16.4799*
(1)

CPU_Performance 41.7046
(3)

39.8293
(1)

42.0724
(4)

41.5944
(2)

Housing 19.4757
(4)

18.8712
(3)

18.7848
(2)

17.4683*
(1)

Servo 78.0434
(4)

54.2221
(2)

59.3868
(3)

34.8444
(1)

Average SMAPE 39.9491 32.5294 35.1830 27.5967

Average Rank 3.7500 2.0000 3.0000 1.2500

* Statistically significant at the level of 0.05 when compared to RBF Grid Search.

The results show that the performance of StabilityBound outperforms the other

objective functions and the grid search. Moreover, the average SMAPE of StabilityBound is

significantly lower than the grid search at the confident level of 95% on two datasets, i.e.

Auto_MPG and Housing. Whereas mse_obj yields the best average SMAPE on

CPU_Performance dataset, the average SMAPE of smape_obj is not better than the other

105

objective functions. By Friedman test, the average ranks of these 4 algorithms are

significantly different from the mean rank jR = 2.5 at a significance level of 0.05. The

pairwise differences on average ranks are shown in Table 4-27. The performance of

StabilityBound is significantly better than grid search but it is not sufficient to conclude about

the other objective functions.

Table 4-27: Pairwise Differences on Average Ranks of RBF Grid Search and ES with the

Different Objective Functions on Single RBF Kernel on Regression Problems

CD = 1.9426 Algorithms RBF
Grid Search mse_obj smape_obj Stability

Bound

Algorithms Average Rank 3.7500 2.0000 3.0000 1.2500

RBF
Grid Search 3.7500 0.0000 1.7500 0.7500 2.5000*

mse_obj 2.0000 -- 0.0000 -1.0000 0.7500

smape_obj 3.0000 -- -- 0.0000 1.7500

Stability
Bound 1.2500 -- -- -- 0.0000

* Significantly Different at the level of 0.10.

Furthermore, the grid search may make SVM overfit to training data. The average

SMAPE on training of the grid search is lower than the other methods. The average SMAPE

on training is shown in Table 4-28 and Figure 4-6.

Table 4-28: Average SMAPE on Training of RBF Kernel Function

ES with Single RBF Kernel
Datasets RBF

GridSearch mse_obj smape_obj StabilityBound

Auto_MPG 1.8184 8.8942 2.1310 7.7204

CPU_Performance 17.0925 35.1444 17.6679 24.0513

Housing 1.2762 2.5925 2.4260 4.1805

Servo 2.1264 53.2094 16.5329 7.1311

Average SMAPE 5.5784 24.9601 9.6895 10.7708

106

0

5

10

15

20

25

30

35

40

45

Grid Search mse_obj smape_obj StabilityBound

SM
A

PE
Train Test

Figure 4-6: Average SMAPE on Training and Testing of Single RBF Kernel Function

However, with the help of ES, the proposed method can determine the high quality

parameters in a more convenient way. Then, SVM with 10-RBF kernel is evaluated; its

parameters are selected by ES with the different objective functions. The experimental results

are compared to the StabilityBound on the single RBF kernel in Table 4-29. Moreover, the

pairwise differences on the average ranks are shown in Table 4-30. The results confirm that

the stability on bounded SVR is a suitable objective function.

Table 4-29: Average SMAPE on 5-Fold Cross-Validation of 10-RBF Kernel Function

ES with 10-RBF Kernel
Datasets

ES with RBF
Kernel and

StabilityBound mse_obj smape_obj StabilityBound

Auto_MPG 16.4799
(2)

18.1050
(4)

17.8098
(3)

15.7513*
(1)

CPU_Performance 41.5944
(3)

42.3626
(4)

40.4926
(2)

38.6108*
(1)

Housing 17.4683
(3)

16.9928
(2)

18.0143
(4)

15.8854
(1)

Servo 34.8444
(2)

55.3948
(4)

45.3529
(3)

28.3842*
(1)

Average SMAPE 27.5967 33.2138 30.4174 24.6579

Average Rank 2.5000 3.5000 3.0000 1.0000

* Statistically significant at the level of 0.05 when compared to RBF StabilityBound.

107

Table 4-30: Pairwise Differences on Average Ranks of Single RBF Kernel and 10-RBF

Kernel with Different Objective Functions on Regression Problems

RBF 10-RBF
CD = 1.9426

A
lg

or
ith

m
s

Stability
Bound mse_obj smape_obj Stability

Bound

Algorithms Average
Rank 2.5000 3.5000 3.0000 1.0000

RBF Stability
Bound 2.5000 0.0000 -1.0000 -0.5000 1.5000

mse_obj 3.5000 -- 0.0000 0.5000 2.5000*

smape_obj 3.0000 -- -- 0.0000 2.0000*

10
-R

B
F

Stability
Bound 1.0000 -- -- -- 0.0000

* Significantly Different at the level of 0.10.

From these experimental results, these average ranks are significantly different from

the mean rank jR = 2.5. The average SMAPE of StabilityBound is significantly better than

those of mse_obj and smape_obj. Similar to the previous experiment, the lowest average

SMAPE on training may not yield the best result on testing. The average SMAPE on training

of the 10-RBF kernel are illustrated in Table 4-31. Moreover, the chart of the average

SMAPE on 5-fold cross-validation measured on training and test data is shown in Figure 4-7.

Table 4-31: Average SMAPE on Training of 10-RBF Kernel Function

ES with 10-RBF Kernel
Datasets RBF

StabilityBound mse_obj smape_obj StabilityBound

Auto_MPG 1.8184 5.1195 3.8058 10.3504

CPU_Performance 17.0925 28.1559 20.2861 24.9695

Housing 1.2762 4.0304 5.4541 6.5383

Servo 2.1264 31.1625 10.4524 9.9108

Average SMAPE 5.5784 17.1171 9.9996 12.9422

108

0

5

10

15

20

25

30

35

40

45

Single RBF StabilityBound 10-RBF mse_obj 10-RBF smape_obj 10-RBF StabilityBound

SM
A

PE
Train Test

Figure 4-7: Average SMAPE on Training and Testing of 10-RBF Kernel Function

In this chart, the average SMAPE of StabilityBound on 10-RBF kernel was compared

to those of mse_obj and smape_obj on the 10-RBF kernel and StabilityBound on single RBF

kernel. StabilityBound did not yield the lowest average SMAPE on training data. However,

the average SMAPE of StabilityBound on test data was lower than the other techniques. This

means that StabilityBound did not overfit training data, and it was a good objective function

for the adaptive multi-scale RBF kernel, while mse_obj and smape_obj may overfit training

data.

Then, the results of the other combined kernels, i.e. the multi-degree polynomial

kernel, the non-negative linear combination of polynomial and RBF kernels, and the

multiplication of polynomial and RBF kernels, are illustrated in Table 4-32. The parameters

of these kernel functions are selected by ES that uses the StabilityBound as an objective

function. The results are compared to the SVMs with single polynomial and single RBF

kernels that their parameters are selected by the grid search.

Furthermore, the average ranks of the algorithms are calculated. Pairwise differences

on the average rank of these algorithms are shown in Table 4-33. The performance of 10-

RBF kernel is significantly better than those of Poly*RBF kernel and grid search on both RBF

and polynomial kernels. Moreover, the performance of Poly+RBF kernel is significantly

better than the performances of grid search on RBF kernel and Poly*RBF kernel.

109

Table 4-32: Average SMAPE on 5-Folds Cross-Validation of SVM with Different Kernel

Functions when using StabilityBound as the Objective Function in Evolutionary Process

Grid Search ES
Datasets

RBF Poly 10-Poly Poly+RBF Poly*RBF 10-RBF

Auto_MPG 20.5728
(4)

33.2921
(6)

18.5709
(3)

16.8403
(2)

24.1689
(5)

15.7513
(1)

CPU_
Performance

41.7046
(4)

70.2761
(6)

47.1344
(5)

38.8105
(2)

39.7933
(3)

38.6108
(1)

Housing 19.4757
(5)

28.6761
(4)

18.9636
(3)

15.9673
(2)

19.5409
(6)

15.8854
(1)

Servo 78.0434
(5)

72.1700
(4)

67.9599
(3)

59.7369
(2)

94.6604
(6)

28.3842
(1)

Average
SMAPE 39.9491 51.1036 38.1572 32.8388 44.5409 24.6579

Average
Rank 4.5000 5.0000 3.5000 2.0000 5.0000 1.0000

Table 4-33: Pairwise Differences on Average Ranks of Grid Search and ES with the Different

Combined Kernel Functions on Regression Problems

Grid Search ES

CD = 3.0770

A
lg

or
ith

m
s

RBF Poly 10-Poly
Poly

+
RBF

Poly
*

RBF
10-RBF

Algorithms Average
Rank 4.5000 5.0000 3.5000 2.0000 5.0000 1.0000

RBF 4.5000 0.0000 -0.5000 1.0000 2.5000 -0.5000 3.5000*

G
ri

d
Se

ar
ch

Poly 5.0000 -- 0.0000 1.5000 3.0000** 0.0000 4.0000*

10-Poly 3.5000 -- -- 0.0000 1.5000 -1.5000 2.5000

Poly
+

RBF
2.0000 -- -- -- 0.0000 -3.0000** 1.0000

Poly
*

RBF
5.0000 -- -- -- -- 0.0000 4.0000*

E
S

10-RBF 1.0000 -- -- -- -- -- 0.0000

* Significantly Different at the level of 0.10.

** This value is very close to the critical difference.

110

These results are very similar to the classification problems in Section 4.3.1. The

performance of 10-Poly kernel is better than single polynomial kernel at all datasets.

Moreover, these results can be enhanced by a linear combination of polynomial and RBF

kernels. Although the performance of multiplication of polynomial and RBF kernels does not

perform well, its performance is better than single polynomial kernel on two datasets, i.e.

Auto_MPG and CPU_Performance. However, the 10-RBF kernel is still the best kernel

function in our experiments. The average SMAPE of SVM with the 10-RBF kernel that uses

the StabilityBound as the objective function in evolutionary process is lower than the average

SMAPE of the other objective functions and kernels.

CHAPTER V

REAL WORLD PROBLEMS

In this chapter, some real world problems, i.e. sentiment classification and

handwritten recognition, are considered. The sentiment classification is a binary

classification problem, while the handwritten recognition is a multi-class problem. The

proposed methods in Chapter 3 are applied on these problems. The problem description and

the experimental results are described in the following sections.

5.1 Sentiment Classification

There are many ways to categorize documents, for example, by subject, genre, or the

sentiment expressed in the documents. Sentiment classification of reviews has been the focus

of the recent research studies. It has been applied on different domains such as movie

reviews, product reviews, and customer feedback reviews [67] in order to categorize the

documents. The most basic task in sentiment classification is to classify a document into

positive or negative sentiment. Since sentiment is expressed in many different ways, it is hard

to manually create all the classification rules and therefore researchers have attempted to

apply machine learning techniques on this task. This research is also devoted to the

development of machine learning based techniques for sentiment classification.

SVM is a learning technique that performs well on sentiment classification. The

performance of SVM classifier depends on the used kernel function and its parameters.

Hence, if the suitable kernel is chosen, the performance of sentiment classification should be

improved. These lead to the idea of applying the adaptive combined kernel functions for the

sentiment classification problem. The sentiment classification and its related work are briefly

reviewed in Section 5.1.1. The adaptive combined kernel functions and the normalization of

kernels are briefly described in Section 5.1.2. In Section 5.1.3, our approaches are applied on

the sentiment classification problem, and their results are reported. These results are

discussed in Section 5.1.4.

5.1.1 Preliminary and Related Work

Research of sentiment classification was initiated in 1997 [67]. It is the main task of

opinion mining, and most of work focuses on determining the sentiment orientations of

documents, sentences, and words. In document level sentiment analysis, documents are

112

classified into positive and negative according to the overall sentiment expressed in them.

This simple classification task has many potential applications including a movie

recommendation system, market research form blog text, and an email classification system

that alerts users when the system identifies a message with negative sentiment.

There are two approaches to classify the sentiment. The first approach is to count

positive and negative terms in a review, where the review is positive if it contains more

positive than negative terms, and negative if there are more negative terms [67]. The

difficulty of sentiment classification is the context-dependency of the sentiments of linguistic

expressions. For example, negation words such as “not” or “never” shift the sentiment. A

positive statement becomes negative when it is subcategorized by a verb “doubt”. Although

we could use n-grams (continuous n words) as features in order to handle such shifts,

dependency between two words with a long distance cannot be captured by n-grams.

The second approach uses machine learning to determine the sentiment of the reviews

[67]. Pang et al. [68] have used learning algorithms such as Naïve Bays, maximum entropy,

and SVM to classify reviews. Their work focused on the features indicating the presence of

words or n-grams. Dave et al. [69] used machine learning methods for review classification

and reported that the bigram features yielded the best accuracy. This result supports that the

sentiment has strong dependency on the context. Li and Sun [70] applied four machine

learning methods on sentiment classification of Chinese reviews. They investigated the

factors which affect performance. Then, SVM, Naïve Bayes, maximum entropy, and artificial

neural network (ANN) were employed on customer reviews. The results showed that the

SVM classifier produces the best results under all of their text representation schemes.

Hence, SVM classifiers that use unigrams (single words) as features are trained in

this research. Instead of using n-grams, we utilize higher-degree kernel functions, which can

automatically take into account the conjunctions of features. However, there is another

difficulty that it is unknown which kernel function is suitable for this task. In spite of our

intuition that feature combinations will capture the context-dependency of sentiment, some

researchers have reported that higher-degree kernels only degraded the classification

performance [71, 72]. Meanwhile, there is a report that higher-degree kernels did improve the

classification performance [73]. Therefore, we decided to use many types of kernel functions

in the form of the non-negative linear combination. The performance of sentiment

classification should be enhanced by SVM with the adaptive combined kernel functions.

113

5.1.2 Methodology

The adaptive combined kernel functions are used for the sentiment classification

problem. SVM with the non-negative linear combination of multiple kernel functions are

applied on product reviews to determine whether a review is positive or negative. Then ES is

applied for adjusting the parameters of SVM and the combined kernel functions. Moreover,

the stability of soft margin SVM is the objective function in evolutionary process in order to

avoid the overfitting problem.

5.1.2.1 Combined Kernel Functions

For sentiment classification, we take an interest in two kinds of kernel

functions, i.e. polynomial and radial basis function (RBF) kernels that are the inner-product-

based and distance-based kernels, respectively. These kernel functions are illustrated in the

following forms.

 Polynomial: ()dxxxxK ′⋅+=′ 1),((142)

 Gaussian RBF: ()2exp),(xxxxK ′−−=′ γ (143)

In order to obtain a better result, SVM with the non-negative linear

combination of multiple kernel functions is applied on sentiment classification. The analytic

expression of this kernel is the following:

∑
=

′=′Κ
n

i
ii xxKaxx

1
),(),(, (144)

where n is the number of sub-kernels, 0≥ia for ni ,,1 K= are the arbitrary non-negative

weighting constants, and),(xxK i ′ for ni ,,1 K= are the sub-kernels, each of which is the

polynomial kernel at degree i or the RBF kernel at width iγ .

With these two kinds of kernel functions, there are three possible non-negative

linear combinations of multiple kernels, i.e. (1) the non-negative linear combination of

multiple polynomial kernels at different degree, (2) the non-negative linear combination of

multiple RBF kernels at different scale, and (3) the non-negative linear combination of both

polynomial and RBF kernels with different parameters. These kernels are more flexible as

they have more adjustable parameters, and their expressions are shown by the following

equations:

114

∑
=

′=′Κ
n

i
Polyi ixxKaxx

1
),,(),((145)

∑
=

′=′Κ
n

i
iRBFi xxKaxx

1
),,(),(γ (146)

∑∑
+==

′+′=′Κ
n

ni
iRBFi

n

i
Polyi xxKaixxKaxx

12/

2/

1
),,(),,(),(γ ; where n is even. (147)

5.1.2.2 Normalization

In our experiments, all parameters (the weights of combination, the widths of

RBF kernel, and the regularization parameter of SVM) are determined by an evolutionary

algorithm. Although these parameters are bounded in evolutionary process, the numerical

value of these combined kernel functions may be very large when many sub-kernels are

combined. Hence, the normalization is considered to apply on these combined kernel

functions. Normalization in feature space is not applied directly on the input vector, but it can

be seen as a kernel interpretation of the preprocessing [74]. This normalization redefines a

new kernel function),(~
21 xxΚ of SVM. The non-negative linear combination kernels are

normalized by

),(),(
),(),(~

xxxx
xxxx

′Κ′Κ

′Κ
=′Κ . (148)

This normalized kernel places the data on a portion of the unit hypersphere in the feature

space [74]. Obviously, the equation 1),(~
=′Κ xx holds true.

5.1.2.3 Parameters Adjustment

The weights of sub-kernels, the width of RBF kernels, and the regularization

parameter of SVM are the adjustable parameters of the learning process. The (5+10)-ES is

applied for adjusting these parameters. Let vv be the non-negative real-valued vector of the

parameters. For the non-negative linear combination of multiple polynomial kernels, the

vector vv has 1+n dimensions and it is represented in the form:

vv = (C , 1a , 2a , …, na), (149)

where C is the regularization parameter, ia for ni ,,1 K= are the non-negative weights of

sub-kernels, and n is the number of terms of sub-kernels.

For the non-negative linear combination of multiple RBF kernels, the widths of

RBF kernels (iγ) will be added into the vector vv . The vector vv is represented by

115

vv = (C , 1a , 2a , …, na , 1γ , 2γ , …, nγ). (150)

Also, the vector vv for non-negative linear combination of both polynomial and RBF kernels

is represented by

vv = (C , 1a , 2a , …, na , 12/ +nγ , 22/ +nγ , …, nγ). (151)

This vector will be investigated by the (5+10)-ES. This algorithm uses 5

solutions to produce 10 new solutions by a recombination method that is described in Chapter

3. These new solutions are mutated and evaluated, and only the 5 fittest solutions are selected

from 5+10 solutions to be the parents in the next generation. ES terminates after a fixed

number of generations have been produced and evaluated.

One of the most important and difficult parts of the evolutionary algorithm is

how to define the objective function. Although the training error can be used as the objective

function in the evolutionary processes, this function may cause the overfit to training data.

Therefore, this research proposes to use the bound of generalization error that is derived from

the assumption of stability as the objective function for the sentiment classification problem.

)(vfitness v =
mm

Remp 2
)1ln(21

22 δ
λ
κ

λ
κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++ , (152)

where empR is the empirical error,)(⋅K is a bounded kernel that is 2),(κ≤ji xxK , λ is the

regularization parameter of SVM (C1=λ), m is the sample size, and δ−1 is the probability

of this bound. The bound of kernel function (2κ) can be estimated when the parameters of a

kernel function are assigned for each individual vector (vv). A set of suitable parameters

should provide a lower bound of risk.

5.1.3 Experimental Results

We used a dataset of product reviews, which was provided by Bing Liu1 [75]. This

dataset contains sentences used in product reviews collected from the internet and assigned

with a sentiment tag: positive or negative. The dataset contains 1,700 sentiment sentences:

1,067 positive and 633 negative sentences. The SVM classifiers were trained by using

unigrams (single words) as features. Methods were evaluated by 5-folds cross-validation.

The single kernel functions, i.e. linear kernels, polynomial kernels at different degree, and

RBF kernels at different scale were used as the baselines. The average accuracy values on

1 The dataset is available at http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html.

116

training and testing of SVM with single polynomial and single RBF kernels when we varied

the parameters are shown by the graphs in Figure 5-1 and Figure 5-2, respectively.

Figure 5-1: The Average Accuracy on Polynomial Kernels at Different Degree

Figure 5-2: The Average Accuracy on RBF Kernels at Different Scale

From these graphs, we found that the average test accuracy of sentiment classification

decreased when the degree of polynomial or the width of RBF was increased. The linear

kernel and the polynomial at degree 2 yielded the results that were better than the other

degrees, and a good average training accuracy of RBF kernel occurred when the width of

RBF was 0.07. These results were compared with the proposed method.

The (5+10)-ES were used to find the optimal parameters of the combined kernel. The

value of τ in evaluation process of these experiments was set to 1.0. The number of terms of

117

sub-kernel was fixed as 10. The weights of combination (ia), the widths of RBF kernels (iγ),

and the regularization parameter (C) were real numbers between 0.0 and 10.0. These

parameters were inspected within 1,000 generations of ES. The average accuracies of SVM

with the adaptive combined kernels are compared in Table 5-1.

Table 5-1: Average Accuracy of SVM on Sentiment Classification

Kernel Function
Training

Accuracy

Test

Accuracy

Linear Kernel 88.3533 77.7093

Polynomial Kernel at Degree 2 85.7943 69.7711

RBF Kernel at Width 0.07 94.7352 72.5348

Combination of Multiple Polynomial Kernels

(Proposed Kernel 1)
98.0881 79.1828

Combination of Multiple RBF Kernels

(Proposed Kernel 2)
95.0294 73.1805

Combination of Multiple Polynomial and RBF Kernels

(Proposed Kernel 3)
98.7355 78.7122

The experimental results showed that the average accuracy on sentiment

classification can be enhanced by the combined kernel functions. The non-negative linear

combination of multiple polynomial kernels yielded the best result on testing. Although the

linear combination of multiple RBF kernels did not yield the best result, its accuracy was

better than single RBF kernel. For the combination of both polynomial and RBF kernels, it

yielded the best training accuracy, but its accuracy on testing was lower than the combination

of multiple polynomial kernels. This means that although we tried to avoid the overfitting

problem by using the stability objective function in evolutionary process, the overfiitng

problem still can be occurred by a more flexible kernel.

118

5.2 Handwritten Recognition

The handwritten recognition is the ability of the computer to recognize the

handwritten of humans from sources such as paper documents, photos, touch screens, or other

devices. In general, the handwritten recognition can be divided into on-line recognition and

off-line recognition. In this research, SVMs with the proposed methods will be applied to the

off-line handwritten recognition. The aim of this section is to illustrate that the proposed

methods can be applied to the multi-class problems.

5.2.1 Preliminary and Related Works

The problem of handwritten recognition has been an on-going research problem. It

has been gaining more interest due to the increasing popularity of hand-held computers,

digital notebooks, and advanced cellular phones [76]. In off-line handwriting recognition, the

letters in an image are automatically converted into the letter codes which are usable within

computer and text-processing applications. This technology is successfully used by

businesses which process lots of handwritten documents, like bank checks and insurance

companies.

The most prominent problem in the handwritten recognition is the vast variation in

personal writing, as different people have different handwriting styles. Nevertheless, limiting

the range of input can allow recognition to improve. Various methods were proposed to solve

this problem such as gradient based learning [77], moving window classifier [78], and neural

network [79]. For SVM, it is applied in many research studies of handwritten recognition.

Dong, X.J., et al. [80] applied SVM for handwritten Chinese character recognition.

Moreover, the SVM was used for online handwritten in [81], and it gave a better recognition

result compared to the system based on a hybrid neural network and a hidden Markov model.

SVM is the binary classifier for two-class data. However, the multi-class

classification problems such as letter recognition can be solved by voting schema methods

based on a combination of many binary classifiers. One possible approach to solve a k-class

problem is to consider the problem as a collection of k binary classification problems. k-

classifiers can be constructed, one for each class. The kth classifier constructs a hyperplane

between class k and the k-1 other classes. A new sample will be classified by these k

classifiers. The prediction class of this sample is a classifier that yields the longest distance

between this sample and its decision hyperplane or the maximum value of decision function.

This schema is commonly called one against the rest and shown in Figure 5-3.

119

Figure 5-3: SVM for Multi-Class Problems

5.2.2 Methodology

SVM is applied to solve the English alphabet handwritten recognition in this section.

One against the rest schema is implemented via creating 26 classifiers, each classifier for each

alphabet. Each classifier is trained by all training data; the class of alphabets under

consideration is 1 whereas the class of the other alphabets is -1. The evolutionary strategy is

applied for adjusting the parameters of SVM and its kernel function for each classifier. This

process is shows in Figure 5-4.

In evolutionary process, the non-negative real-valued vector vv that has n2

dimensions is represented in the form:

vv = (C , 0γ , 1a , 1γ , 2a , 2γ , … , 1−na , 1−nγ), (153)

where C is the regularization parameter of SVM, iγ for 1,,0 −= ni K are the widths of RBFs,

and ia for 1,,1 −= ni K are the weights of RBFs. The (5+10)-ES is applied to adjust these

parameters. For evaluating the parameters of SVM, the stability bound of generalization error

of SVM is used as the objective function. These parameters will be investigated within 1,000

generations.

120

Figure 5-4: Proposed Method for Multi-Class Problems

5.2.3 Experimental Results

The proposed kernels have been tested on the letter recognition from the UCI

machine learning repository [7]. A multi-class recognition system has been implemented

with 26 different models, one for each class. Each of these models is a binary classifier that

matches a specific class against the other 25 classes. The set of 20,000 English alphabets

with 20 fonts of the 26 capital letters are used for learning. Each instance contains 16

attributes (statistical moments and edge counts). Examples of the letter images are shown in

Figure 5-5. All data are used for training and testing.

The experimental results on the letter recognition task are shown in Table 5-2. The

results show that the 3-RBF kernel gives the best recognition rate. Also, the multiplication of

polynomial and RBF kernels performs better than the polynomial and the RBF kernels with

the same parameters.

121

Figure 5-5: Sample Letter Images

Table 5-2: Accuracies on Letter Recognition Task

Kernel Functions No. Corrected Examples Accuracy (%)

Polynomial 14966 74.83

RBF 15101 75.51

2-RBF 18083 90.42

3-RBF 19664 98.32

Polynomial + RBF 14966 74.83

Polynomial * RBF 16414 82.07

122

5.2.4 Other Experimental Results on Multi-Class Problems

Moreover, the proposed method has been tested on two multi-class problems from the

UCI machine learning repository [7]. In both problems, there are 3 classes of data. The

proposed method is evaluated by 5-folds cross-validation. The experimental results are

shown in Table 5-3. These results show that the accuracies of the proposed method are better

than those of the RBF kernel using the grid search on both problems.

Table 5-3: Average Accuracies on Multi-Class Problems

Average Accuracy

Datasets Number of
Attributes

Number of
Examples RBF

Grid Search

10-RBF
ES with Stability

Objective Function

BalanceScale 4 625 85.92 88.16

Waveform 21 5000 33.92 46.84

CHAPTER VI

EVOLVING KERNEL TREE

This chapter proposes a combination technique, called GPES, which combines

Genetic Programming (GP) and Evolutionary Strategies (ES) to evolve a hybrid kernel

function for an SVM classifier. The hybrid kernel functions are represented as trees that have

the adjustable parameters. The experimental results are compared with a standard SVM

classifier using the polynomial and radial basis function kernels with various parameter

settings on benchmark datasets.

6.1 Motivation

As described previously, the complexity of the separating hyperplane of SVM

depends on the nature and the properties of the used kernel function. Although the combined

kernel functions, which have been proposed in the previous chapter, are more flexible than

conventional kernel functions; the forms of those kernel functions are fixed as the non-

negative linear combination or the multiplication of kernel functions. There are the other

combined kernel functions that use the addition and the multiplication operators. Therefore,

the genetic programming (GP) is proposed to improve the classification performance by

creating the hybrid Mercer’s kernel functions for each task.

GP is an application of genetic algorithm (GA) approach to derive mathematical

equations, logical rules, or program functions automatically [82]. As in a conventional GA,

the solution to a problem is represented by a string of parameters. GP usually uses a tree

structure, the leaves of which represent input variables or numerical constants. Their values

are passed to nodes, which perform some numerical or program operation before passing on

the result further towards the root of the tree [83]. This concept of GP is used to create the

hybrid kernel functions, which are represented as the tree structure. The basic kernel

functions with different parameters may be weighted and combined. These new hybrid kernel

functions also correspond to the Mercer’s theorem and they are flexible to the given tasks.

The parameters of sub-kernels and their weights are adjustable parameters. In

general, these parameters are usually determined by a grid search. However, for hybrid

kernel functions, the grid search will consumes a lot of time because there are more adjustable

parameters. Hence, ES is a better alternative for adjusting many parameters. Although the

representation of ES is different from the GP, both GP and ES are the evolutionary

124

algorithms. Therefore, we propose the GPES algorithm that uses GP for creating a hybrid

kernel function which satisfies the Mercer’s theorem. Then, the parameters and weights of

sub-kernels are adjusted by ES.

Moreover, the objective function is an important part in evolutionary algorithms.

We carefully design the objective function in order to avoid the overfitting problem that may

occur when the complex kernel functions are used. This proposed algorithm is tested on

some classification datasets; the results show that GPES effectively searches the good hybrid

kernel functions and their parameters when we use a suitable objective function. However,

the running time is a disadvantage of the algorithm that which should be improved.

6.2 GPES

One of the most important design choices for SVMs is the kernel function and its

parameters, which implicitly define the structure of the high dimensional feature space where

a maximal margin hyperplane will be found [17]. The chosen kernels have influence to the

classification accuracy. A complex kernel may be needed for a complex problem. Hence, we

propose to use the hybrid kernel functions that combine several Mercer’s kernels with

different parameters. These hybrid kernel functions should correspond to the Mercer’s

theorem.

The corollary 3-1 is used to create these hybrid kernel functions. Therefore, there are

two operators for combining kernel functions that are the addition of kernel functions and the

multiplication of kernel functions. For scalar multiplication, it will appear in terms of a

weight of each sub-kernel. According to this corollary, we can construct hybrid Mercer’s

kernels from the conventional Mercer’s kernels. The Polynomial and RBF kernels are well-

known conventional Mercer’s kernels, which will be used as the basic kernel functions in this

research.

6.2.1 GPES Algorithm

The approach presented here combines the two techniques of GP and ES to evolve a

hybrid kernel for SVM. The goal is to eliminate the need for testing various kernels and their

parameter settings. A hybrid kernel is represented as tree of sub-kernels and operators. For

each sub-kernel, there are two parameters, i.e. the weight and the degree of polynomial kernel

or the width of an RBF kernel, which can be adjusted. An overview of the (λμ +)-GPES is

shown below.

125

Algorithm 6-1: (λμ +)-GPES Algorithm

Step 1. Create a random population of μ hybrid kernels (parents), represented as trees.

Step 2. Evaluate the fitness of each individual by building an SVM from the kernel tree and

test it on the training data.

Step 3. Apply reproduction operators to create λ new hybrid kernels (offsprings).

Step 4. Randomly mutate nodes of the trees.

Step 5. Randomly mutate the parameters of leaf nodes.

Step 6. Evaluate and keep the μ fittest individuals.

Step 7. Go to step 3 unless an acceptable solution has been found or a fixed number of

generations has been produced and evaluated.

Step 8. Build final SVM using the fittest kernel tree found.

This research proposes to use (5+5)-GPES because the population size is not too large

and the optimal solutions can be found in a limited time. This algorithm starts with the 0th

generation (0=t) that creates 5 solutions and 2 standard deviation vectors (51 ,, vv v
K

v and

Polyσv , RBFσv 2
+∈R) using randomization. These 5 initial solutions are evaluated to calculate

their fitness. Then, 5 new solutions are created by reproduction, crossover, function mutation,

and parameter mutation. Only 5 solutions from 5+5 solutions are selected to be parents in the

next generation. These processes are repeated until a fixed number of generations have been

produced and evaluated. The (5+5)-GPES algorithm is shown in Figure 6-1.

 0=t ;
 initialization (51 ,, vv v

K
v , Polyσv , RBFσv);

 evaluation)(,),(51 vfvf v
K

v ;
 while (500<t) do
 for i =1 to 5 do
 iv ′v = reproduction(51 ,, vv v

K
v);

 iv ′v = mutate_function)(iv ′v ;
 iv ′v = mutate_parameter)(iv ′v ;
 evaluate)(ivf ′v ;
 end
 (51 ,, vv v

K
v) = select(51 ,, vv v

K
v , 51 ,, vv ′′ v

K
v);

 Polyσv = mutate)(Polyσσ ;
 RBFσv = mutate)(RBFσσ ;
 1+= tt ;
 End

Figure 6-1: (5+5)-GPES Algorithm

126

6.2.2 Terminal and Function Sets

To ensure that a new hybrid kernel function is still a Mercer’s kernel, there are two

operators that have been proved in Corollary 3-1. The addition (+) and the multiplication

(×) are used as the membership in the function set of evolutionary process. For the terminal

set, some basic Mercer’s kernel functions are considered. The polynomial kernel function is

an inner-product based kernel and the RBF kernel function is a distance based kernel. Thus,

the combination of these two kernel functions is a new kernel function that is both inner-

product based and distance based kernel. Hence, polynomial and RBF kernels are selected as

two Mercer’s kernels in the terminal set. Each function is multiplied by a non-negative real

value that is the weight of each sub-kernel function.

 Polynomial: ()dxxaxxK ′⋅+=′ 1),((154)

 Gaussian RBF: ()2exp),(xxbxxK ′−−⋅=′ γ (155)

6.2.3 Creating an Individual

The Grow method is used to initialize the population of trees. Each tree is grown

until no more leaves could be expanded, all leaves are terminals, or until a preset initial

maximum depth, i.e. 5 for the experiments reported here, is reached.

Algorithm 6-2 (Grow Method):

Step 1. Starting from the root of the tree, every node is randomly chosen as either a function

or terminal.

Step 2. If the node is a terminal, the random parameters of terminal are chosen.

Step 3. If the node is a function, a random function is chosen, and that node is given two

children.

Step 4. For every one of the function’s children, the algorithm starts again, unless the child is

at depth d , in which case the child is made a randomly selected terminal.

This method does not guarantee individuals of a certain depth (although they will be

no deeper than d). An example of the hybrid kernel is shown in Figure 6-2.

127

Figure 6-2: A Hybrid Kernel Function (Represented as Tree)

6.2.4 Genetic Operations

The main genetic operations used in the genetic programming are crossover and

mutation. Crossover operation is performed by switching one of an individual’s nodes with

another node from another individual in the population. Since the individual is represented as

tree, replacement of a node means we are replacing whole branch. This makes the results

very much different from their initial parents. A mutation operation is applied to an

individual in the population. This operation can be performed by substitution of a whole node

in the individual, or replacement of just the node’s information. The mutation operation must

be aware of binary operation node, and this operation must be able to handle the missing

values. In GPES, there are three main genetic operations, i.e. reproduction, function

mutation, and parameter mutation.

(1) Reproduction: This operation is divided into 2 parts. In order to produce a new

structure of hybrid kernels, 60% of new individuals are newly created by the Grow method.

Moreover, 40% of new individuals are generated by crossover operation. This operation

requires two individuals to produce an offspring. The crossover is described in Algorithm 6-3

and Figure 6-3.

128

Algorithm 6-3 (Crossover Operation):

Step 1. Two individuals are randomly chosen from the population to be the primary

individual and secondary individual, respectively.

Step 2. Randomly select positions of sub-trees on both primary and secondary individuals.

Step 3. Replace the sub-tree of the secondary individual to the sub-tree of the primary

individual.

Figure 6-3: Crossover Operation

(2) Function Mutation: Since we have only two types of operands and two types of

operators, function mutation is performed by randomly selecting the position for mutation

with probability 0.7. Then, swapping between (“ + ” and “× ”) or (“Polynomial Kernel” and

“RBF Kernel”) is performed.

 function_mutate(+) = × (156)

 function_mutate(×) = + (157)

 function_mutate(Poly) = RBF (158)

 function_mutate(RBF) = Poly (159)

129

(3) Parameter Mutation: The leaf nodes are randomly selected with probability 0.7.

Let uv be the vector of non-negative real numbers that represent the parameters of a sub-

kernel. Therefore,),(dau =
v when the leaf node is a polynomial function or),(γbu =

v when

the leaf node is RBF, where a and b are the weighting constants, d is the degree of

polynomial sub-kernel function, and γ is the width of RBF sub-kernel function. For each

selected leaf node, its parameters are mutated by the following function:

parameter_mutate(uv) = (11 zu + , 22 zu +)

),0(~ 2
iii Nz σ .

(160)

The uv is mutated by adding each of them with),(21 zzz =v , and iz is a random value

from a normal distribution with zero mean and 2
iσ variation. In each generation, the standard

deviation is adjusted by

mutate)(σσ
v = (1

1
ze⋅σ , 2

2
ze⋅σ)

),0(~ 2
iii Nz τ ,

(161)

where τ is an arbitrary constant. In the GPES algorithm, there are 2 standard deviation

vectors, i.e. Polyσv and RBFσv .

6.2.5 Fitness Test

Another key for this approach is the choice of the fitness function. An obvious

choice for the fitness function is the classification error on the training set, but this function

might produce the hybrid kernel trees for SVM that overfit to the training data. One

alternative is to base the fitness on a cross-validation test in order to give a better estimation

of a kernel tree’s ability to produce a model that generalizes well to unseen data. However,

this would obviously increase computational effort greatly. Therefore, we propose to use the

bound of generalization error that is derived from the complexity of the learning algorithm as

the objective functions.

)(vfitness v = ())1log(log 2 δ++ mh
m
cRemp , (162)

where empR is the empirical error, c is a constant, m is the number of sample, δ−1 is the

probability of this bound, and h is a non-negative real number called the Vapnik-

Chervonenkis (VC) dimension.

130

There is another bound of the generalization error that was proposed in Chapter 3.

That bound was derived from the assumption of stability and it yielded the good results on

many datasets. However, the stability bound is not suitable for evaluating the kernel trees

because the bound of a kernel function must be used for calculating the bound of

generalization error. Sometimes, the bound of a kernel tree cannot be calculated or it is very

difficult to estimate the tight bound. Hence, the bound of generalization error that was

derived from the complexity of the learning algorithm is proposed to be an objective function

in our GPES algorithm. Also, we appreciate a set of kernel parameters that provide a lower

bound.

6.3 Experimental Results

In order to verify the performance of GPES, SVMs with the hybrid kernels are trained

and tested on only 7 datasets from the UCI repository [7], i.e. German, Heart, Ionosphere,

Liver-Disorder, Pima-Indians-Diabetes, Sonar, and Tokyo. These datasets are selected for

two reasons: they are high average percentage error (more that 20%) or their numbers of

features are large (more than 20). GPES is evaluated by 5-folds cross-validation. The value

of τ in evaluation process of these experiments is 1.0. The weight of sub-kernels (a or b)

are between 0.0 and 1.0, the degrees of polynomial (d) are integer numbers in [1,10], and the

width of RBF (γ) are non-negative real numbers no more than 10. The hybrid kernels are

inspected within 500 generations of (5+5)-GPES. The average accuracies of the proposed

algorithm are compared with those of the standard SVM using Polynomial and RBF kernels

with various parameter settings in Table 6-1.

The experimental results show the ability of GPES that creates the hybrid kernels

which yields high average accuracy on testing. Although the parameter settings may provide

a good average accuracy in some cases, the results are not good in many cases. If unsuitable

kernels are chosen or unsuitable parameters are selected, the average accuracy will decrease.

Practically, we do not have any prior knowledge about kernel functions and their parameters.

Therefore, GPES is a better choice as it is able to choose a good hybrid kernel and suitable

parameters without any knowledge about kernel functions.

131

Table 6-1: Average Error on Classification

Datasets

Classifiers

G
er

m
an

H
ea

rt

Io
no

sp
he

re

L
iv

er
-

D
is

or
de

rs

Pi
m

a-
In

di
an

s-
D

ia
be

te
s

So
na

r

T
ok

yo

Polynomial Kernel
– Degree

1 (Linear) 76.20 84.44 86.90 57.68 77.33 79.29 91.87

2 74.30 80.74 89.45 62.61 76.82 87.00 92.70

3 69.40 77.41 87.45 68.41 76.69 88.93 90.51

4 68.20 73.70 86.89 72.75 76.56 87.97 89.89

5 68.90 74.07 86.32 71.30 76.42 88.43 90.20

RBF Kernel
– Width

10 70.20 69.63 88.89 67.54 75.77 59.12 90.72

1 74.60 80.74 94.59 59.13 76.56 88.95 92.70

0.1 75.10 84.44 91.74 57.97 76.29 83.65 91.45

0.01 70.00 82.96 74.07 57.97 65.10 65.88 89.05

0.001 70.00 55.56 64.10 57.97 65.10 53.37 65.38

Nearest Neighbor, SVM with GridSearch, and
SVM with Adaptive Combined Kernel Functions and GPES

1-NN 67.40 75.19 87.48 60.29 70.56 87.00 90.83

Grid Search – RBF 71.10 71.48 89.45 67.25 73.68 69.14 90.40

Grid Search – Polynomial 68.90 76.30 87.17 70.72 68.87 88.43 88.01

SVM with ES on 10-RBF 73.20 80.37 94.90 68.41 77.08 87.02 92.91

SVM with (5+5)-GPES 72.40 80.37 95.44 68.41 73.55 92.30 91.87

132

However, the running time of GPES depends on the number of training data, the

number of population, and the number of generation in evolutionary process. Therefore, it is

rather obvious that the running time of GPES is more than the SVM with a set of parameters.

Moreover, in the case of GPES, the running time is higher than the non-negative linear

combination kernels in Chapter 3, since GPES needs time for creating kernel trees whereas

the form of kernel functions in Chapter 3 are fixed. Nevertheless, as in the previous chapters,

GPES is performed on SVM learning that is the off-line process, and thus the running time is

not our main problems and it can be solved by other computing techniques, such as parallel

computing, distributed computing, or cluster computing.

In conclusion, GPES is proposed to evolve the hybrid kernel functions and their

parameters for support vector machines. A hybrid kernel is represented as a tree. The

crossover and the mutation operations are similar to those of the genetic programming.

Besides, the parameters of sub-kernels are mutated in the same way as the mutation in the

evolutionary strategy. By GPES, a hybrid of several Mercer’s kernel functions is also a

Mercer’s kernel. Moreover, the stability of SVM is a good objective function that can avoid

the overfitting problem. The experimental results show the performance of the proposed

method through the average accuracy on 5-folds cross-validation. GPES chooses the hybrid

kernel that yields better results.

CHAPTER VII

CONCLUSION AND FUTURE WORK

In this chapter, the proposed methods are concluded. The advantage and

disadvantage of them are described. Moreover, some suggestions for the future work are

presented.

7.1 Conclusion

In order to improve the performance of classification or approximation in SVM, this

research proposed the adaptive combined kernel functions. These proposed kernel functions

are the non-negative linear combination of the common Mercer’s kernels, i.e. polynomial and

RBF kernels. Furthermore, these combined kernel functions were proved to be the admissible

kernels by the Mercer’s theorem. Although these proposed kernel functions are more flexible

to the problems, they are many adjustable parameters.

In general, the parameters of SVM and kernel function are determined by the grid

search. However, when the combined kernel functions are used, there are more adjustable

parameters and the number of possible combinations on these parameters is much larger.

Therefore, the grid search will consume a lot of time and it is not a suitable method for

adjusting the parameters of the combined kernels. Hence, ES is a better choice that can

search these parameters simultaneously.

The (5+10)-ES was applied to determine the optimal parameters of the kernel

function and SVM. Although ES can find a good set of parameters of the combined kernel

function in a fixed number of generations, a more flexible kernel can be the cause of the

overfitting problem. In order to avoid this problem, the difference objective functions were

proposed. The training error, the subsets cross-validation, the bound of generalization error,

and the stability of SVM are considered to be the objective function in evolutionary process.

Eventually, we suggest for using the stability of SVM as it provides the best

performance on many datasets. Although the subsets cross-validation is a good objective

function, its running time is more than the other objective functions. For the stability

objective function, a bound of generalization error was derived from the stability property of

soft margin SVM. It is a tight bound and it is a good estimator for the generalization error of

SVM learning.

134

The experimental results showed the performance of the proposed method through

the average error on 5-fold cross-validation in both classification and regression problems.

The adaptive combined kernel functions yielded better results, when they were compared with

the common kernels, the grid search, or k-NN. When SVM used the proposed kernels, it is

able to learn from data very well. This research showed that the performance of classification

and regression can be further enhanced by these combined kernel functions. Furthermore, the

evolutionary strategy with a suitable objective function is effective in optimizing the

parameters.

Furthermore, the proposed methods were applied on two real world problems, i.e.

sentiment classification and handwritten recognition. The sentiment classification is a binary

classification problem, which has a lot of noise. The linear kernel (polynomial kernel with

degree 1) yielded the best result when it was compared to the other common kernels such as

the polynomial with various degrees or the RBF at various scales. However, the performance

of sentiment classification can be enhanced by the adaptive combined polynomial kernel,

which is the non-negative linear combination of multiple polynomial kernels with difference

degrees. Although the mixed kernel that combines both polynomial and RBF does not yield

the best result, the training rate is rather well.

For the handwritten recognition, we showed that the proposed methods can be

implemented for the multi-class problems. SVM with the adaptive combined kernel functions

can be used to create each binary classifier. Then, the voting schema on these binary

classifiers can be applied to classify unseen examples. The experimental results show that the

proposed methods yielded the good results on handwritten recognition and the other multi-

class problems.

Moreover, the evolving kernel tree was proposed. Sometimes, we would like to get a

more flexible kernel functions. The non-negative linear combination of multiple kernel

functions is only a kind of the combination. There are the other forms of kernel combination

that can be created by the genetic programming. In this research, GPES is proposed to evolve

the hybrid kernel functions and their parameters for SVM. A hybrid kernel is represented as a

tree. The polynomial and RBF sub-kernels were used as the terminal set. The members of

function set were the addition and the multiplication, which had been proved that they

correspond to the Mercer’s theorem. The experimental results showed the ability of GPES

through the average accuracy on 5-fold cross-validation. GPES chooses the hybrid kernel

that yielded good results.

From all experiments, the proposed methods showed good performance on

classification or regression problems. They are suitable for the complex problems where we

135

have no prior knowledge about kernel functions and their parameters. Moreover, the non-

negative linear combination can be applied to other Mercer’s kernels such as Fourier series, or

spectrum kernels, as the general form of linear combination of the Mercer’s kernels has been

proved to be a Mercer’s kernel already. In the same manner, GPES can also be applied to the

other Mercer’s kernels.

7.2 Future Work

Similar to with the other scientific research studies, the process of solving problems

can be applied to many new problems. Our proposed methods are not different. The time

series prediction is a kind of problems that can use the proposed methods. Although the

implementation of this kind of problems is very similar to any regression problems, the

training data are temporal and the features (or attributes) must be defined by the researchers.

Therefore, an evaluation of the proposed methods on this problem would be interesting.

In the evolutionary process, the new objective functions should be investigated.

Actually, the good objective function should guarantee the stability and the robustness. The

probability that an outlier occurs should be minimized, as the globally optimal results should

be found. Moreover, it would be interesting to compare the other parameter selection

methods for the hybrid kernel functions, such as gradient descent methods or Tabu search.

Furthermore, the complex kernel functions can be generated by the other methods

such as the composite of kernel functions. The further research studies should give more

analysis and a proof of those combinations.

REFERENCES

[1] Vapnik, V.N. Statistical Learning Theory. New York, USA: John Wiley and Sons, 1998.

[2] Vapnik, V.N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag,

1995.

[3] Sullivan, K. and Luke, S. Evolving Kernels for Support Vector Machine Classification.

Proceedings of the Genetic and Evolutionary Computation Conference. (July 2007):1702-

1707.

[4] Schölkopf, B., Burges, C., and Smola, A.J. Advances in Kernel Methods: Support Vector

Machines. Cambridge, MA: MIT Press, 1998.

[5] Ayat, N.E., Cheriet, M., Remaki, L., and Suen, C.Y. KMOD-A New Support Vector Machine

Kernel with Moderate Decreasing for Pattern Recognition. Proceedings on Document

Analysis and Recognition. (September 2001): 1215-1219.

[6] Kecman, V. Learning and Soft Computing: Support Vector Machines, Neural Networks, and

Fuzzy Logic Models. London: The MIT Press, 2001.

[7] Asuncion, A. and Newman, D.J. UCI Machine Learning Repository [Online]. Irvine, CA:

University of California, Department of Information and Computer Science, 2007. Available

from: http://www.ics.uci.edu/~mlearn/MLRepository.html [17 January 2008]

[8] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. UK: Cambridge University Press, 2000.

[9] Müller, K., Mika, S., Rätsch, G., Tsuda K., and Schölkopf, B. An Introduction to Kernel-Based

Learning Algorithm. IEEE Transactions on Neural Networks. 12 (March 2001): 181-201.

[10] Taylor, J.S. and Cristianini, N. Kernel Methods for Pattern Analysis. UK: Cambridge University

Press, 2004.

[11] Gunn, R. Support Vector Machines for Classification and Regression [Online]. University of

Southampton, 10 May 1998. Available from: http://www.isis.ecs.soton.ac.uk/isystems/kernel

[14 May 2004]

[12] Burges, C. A Tutorial on Support Vector Machines for Pattern Recognition. Kluwer Academic

Publishers, 1998.

[13] Cortes, C. and Vapnik, V.N. Support Vector Networks. Machine Learning. 20 (1995): 273-297.

[14] Schölkopf, B. and Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. London: MIT Press, 2002.

[15] Smola, A.J. and Schölkopf, B. A Tutorial on Support Vector Regression. NEUROCOLT

Technical Report NC-TR-98-030. London: Royal Holloway College, 1998.

137

[16] Deng, Y.F., Jin, X., and Zhong, Y.X. Ensemble SVR for Prediction of Time Series. Proceedings

of the Fourth International Conference on Machine Learning and Cybernetics. (August 2005):

3528-3534.

[17] Howley, T. and Madden, M.G. The Genetic Kernel Support Vector Machine: Description and

Evaluation. Artificial Intelligence Review. 24 (November 2005): 379-395.

[18] Huhn, H.W. and Tuckers, A.W. Nonlinear Programming. Proceedings of the 2nd Berkeley

Symposium on Mathematical Statistics and Probabilistics. (1951): 481-492.

[19] Mangasarin, O.L. Nonlinear Programming. New York, NY: McGraw-Hill, 1969.

[20] Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice-Hall, 2003.

[21] Tan, Y. and Wang, J. Support Vector Machine with a Hybrid Kernel and Minimal Vapnik-

Chervonenkis Dimension. IEEE Transactions on Knowledge and Data Engineering. 16

(April 2004): 385-395.

[22] Mitchell, T. M. Machine Learning. New York: McGraw-Hill, 1997.

[23] Bishop, C.M. Pattern Recognition and Machine Learning. Singapore: Springer, 2006.

[24] Bartlett, P. and Shawe-Taylor, J. Generalization Performance of Support Vector Machines and

Other Pattern Classifiers. In Schölkopf, B., Burges, C., and Smola, A. Advances in Kernel

Methods – Support Vector Learning. Cambridge: MIT Press, 1998.

[25] Beyer, H.-G. The Theory of Evolution Strategies. Germany: Springer, 2001.

[26] Miettinen, K., Neittaanmäki, P., Mäkelä, M.M., and Périaux, J. Evolutionary Algorithms in

Engineering and Computer Science. England: John Wiley & Sons, 1999.

[27] Watanabe, K. and Hashem, M.M.A. Evolutionary Computations. Germany: Springer, 2004.

[28] Rechenberg, I. Cybernetic Solution Path of an Experimental Problem. Ministry of Aviation,

Royal Aircraft Establishment, UK, 1965.

[29] Rechenberg, I. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der

biologischen evolution. Stuttgart, Germany: Frommann-Holzboog Verlag, 1973.

[30] Schwefel, H.-P. Numerical Optimization for Computer Models. Chichester, UK: John Wiley and

Sons, 1981.

[31] Schwefel, H.-P. Evolution and Optimum Seeking. New York: John Wiley and Sons, 1995.

[32] Beyer, H.-G. and Schwefel, H.P. Evolution strategies: A comprehensive introduction. Natural

Computing. 1(2002): 3-52.

[33] Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. US:

Addison-Wesley, 1989.

138

[34] Fogel, D.B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence.

Piscataway, NJ: IEEE Press, 1995.

[35] Friedrichs, F. and Igel, C. Evolutionary Tuning of Multiple SVM Parameters. 12th European

Symposium on Artificial Neural Networks (ESANN 2004). (2004): 519-524.

[36] Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D. Genetic Programming: An

Introduction. San Francisco, California: Morgan Kaufmann Publishers, 1998.

[37] Zhang, L., Zhou, W., and Jiao, L. Support Vector Machines Based on Scaling Kernels. 6th

International Conference on Signal Processing. 2 (August 2000): 1142-1145.

[38] Zhang, L., Zhou, W., and Jiao, L. Wavelet Support Vector Machine. IEEE Transactions on

Systems, Man, and Cybernetics - Part B: Cybernetics. 34 (February 2004): 34-39.

[39] Chen, J.H. and Chen, C.S. Fuzzy Kernel Perceptron. IEEE Transactions on Neural Networks. 13

(November 2002): 1364-1373.

[40] Lin, C.F. and Wang, S.D. Fuzzy Support Vector Machines. IEEE Transactions on Neural

Networks. 13 (March 2002): 464-471.

[41] Sun, Z. and Sun, Y. Fuzzy Support Vector Machine for Regression Estimation. IEEE

International Conference on Systems, Man, and Cybernetics. 4 (October 2003): 3336-3341.

[42] Hao, P.Y. and Chaing, J.H. A Fuzzy Model of Support Vector Machine Regression. IEEE

International Conference on Fuzzy Systems. 1 (May 2003): 738-742.

[43] Ong, C.S. and Smola, A.J. Machine Learning using Hyperkernels. Proceedings of the 20th

International Conference on Machine Learning (ICML). (2003): 568-573.

[44] Fleuret, F., and Sahbi, H. Scale-Invariance of Support Vector Machines based on the Triangular

Kernel. INRIA Research Report, N 4601, October 2002.

[45] Koji, T. Support Vector Classifier with Asymmetric Kernel Functions. Proceedings of European

Symposium on Artificial Neural Networks (ESANN). (April 1999): 183-188.

[46] Hiroshi, S., Ken-ichi, N., and Mitsuru, N. Dynamic Time-Alignment Kernel in Support Vector

Machine. Advances in Neural Information Processing Systems (NIPS2001). 14 (Dec 2001):

921-928.

[47] Debnath, R. and Takahashi, H. Kernel Selection for the Support Vector Machines. IEICE

Transactions on Information and Systems. E87-D (December 2004): 2903-2904.

[48] Smits, G.F. and Jordaan, E.M. Improved SVM Regression using Mixtures of Kernels.

Proceedings of the 2002 International Joint Conference on Neural Networks. 3 (May 2002):

2785–2790.

[49] Methasate, I. and Theeramunkong, T. Kernel Tree for Support Vector Machines. IEICE

Transactions on Information and Systems. E90-D (October 2007): 1550–1556.

139

[50] Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing Multiple Parameters for

Support Vector Machines. Machine Learning. 46 (2002): 131-159.

[51] Eads, D.R., Hill, D., David, S., Perkins, S.J., Ma, J., Porter, R.B., and Theiler, J.P. Genetic

Algorithms and Support Vector Machines for Time Series Classification. Proceedings of

SPIF. 4787 (2002): 74-85.

[52] Fröhlich, H., Chapelle, O., and Schölkopf, B. Feature Selection for Support Vector Machines by

Means of Genetic Algorithms. 15th IEEE International Conference on Tools with AI (ICTAI

2003). (2003): 142-148.

[53] Xuefeng, L. and Fang, L. Choosing Multiple Parameters for SVM Based on Genetic Algorithm.

International Conference on Signal Processing (ICSP’02). 1 (2002): 117-119.

[54] Chunhong, Z. and Licheng, J. Automatic Parameters Selection for SVM based on GA.

Proceeding of the 5th World Congress on Intelligent Control and Automation. (June 2004):

1869-1872.

[55] deDoncker, E., Gupta, A., and Greenwood, G. Adaptive Integration Using Evolutionary

Strategies. Proceedings of 3rd International Conference on High Performance Computing.

(December 1996): 94-99.

[56] Runarsson, T.P. and Sigurdsson, S. Asynchronous Parallel Evolutionary Model Selection for

Support Vector Machines. Neural Information Processing – Letter and Reviews. 3 (2004):

59-68.

[57] Igel, C. Multi-objective Model Selection for Support Vector Machines. Proceedings of the Third

International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005). 3410

(2005): 534-546.

[58] Fröhlich, H. and Zell, A. Efficient Parameter Selection for Support Vector Machines in

Classification and Regression via Model-Based Global Optimization. IEEE International

Joint Conference on Neural Networks (IJCNN '05). 3 (2005): 1431-1436.

[59] Schittkowski, K. Optimal Parameter Selection in Support Vector Machines. Journal of Industrial

and Management Optimization. 1 (2005): 465-476.

[60] Guo, X.C., Yang J.H., Wu C.G., Wang, C.Y., and Liang Y.C. A Novel LS-SVMs Hyper-

Parameter Selection based on Particle Swarm Optimization. Neurocomputing. 71 (October

2008): 3211-3215.

[61] Bousquet, O. and Elisseeff, A. Stability and Generalization. Journal of Machine Learning

Research. 2 (2002): 499-526.

[62] Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis

of Variance. Journal of the American Statistical Association. 32 (1937): 675-701.

140

[63] Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of m Ranking.

Annuals of Mathematical Statistics. 11 (1940): 86-92.

[64] Demšar J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine

Learning Research. 7 (2006): 1-30.

[65] Iman, R.L. and Davenport, J.M. Approximations of the Critical Region of the Friedman Statistic.

Communications in Statistics. (1980): 571-595.

[66] Dunn, O.J. Multiple Comparisons among Means. Journal of the American Statistical

Association. 56 (1961): 52-64.

[67] Kennedy, A. and Inkpen, D. Sentiment Classification of Movie Reviews using Contextual

Valence Shifters. Computational Intelligence. 22 (2006): 110-125.

[68] Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up? Sentiment Classification using Machine

Learning Techniques. Proceedings of the 2002 Conference on Empirical Methods in Natural

Language Processing (EMNLP). (2002): 79-86.

[69] Dave, K., Lawrence, S., and Pennock, D.M. Mining the Peanut Gallery: Opinion Extraction and

Semantic Classification of Product Reviews. In Proceedings of the 12th International World

Wide Web Conference (WWW 2003). (2003): 519-528.

[70] Li, J. and Sun, M. Experimental Study on Sentiment Classification of Chinese Review using

Machine Learning Techniques. International Conference on Natural Language Processing and

Knowledge Engineering (NLP-KE 2007). (2007): 393- 400.

[71] Mullen, T. and Collier, N. Sentiment Analysis using Support Vector Machines with Divers

Information Sources. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP 2004). (2004): 412-418.

[72] Li, S., Zong, C., and Wang, X. Sentiment Classification through Combining Classifiers with

Multiple Feature Sets. International Conference on Natural Language Processing and

Knowledge Engineering (NLP-KE 2007). (2007): 135-140.

[73] Okanohara, D. and Tsujii, J. Assigning Polarity Scores to Reviews Using Machine Learning

Techniques. Lecture Notes in Computer Science: Natural Language Processing

(IJCNLP2005). 3651 (2005): 314-325.

[74] Graf, A. and Borer, S. Normalization in Support Vector Machines. Lecture Notes in Computer

Science. 2191 (2001): 277-282.

[75] Hu, M. and Liu, B. Mining and Summarizing Customer Reviews. Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-2004).

(Aug 2004): 168-177.

141

[76] Vuori, V., Aksela, M., Girdziušas, R., Laaksonen, J., and Oja, E. On-line Recognition of

Handwritten Characters [Online]. Available from: http://www.cis.hut.fi/~vuokkov/hcr/ [18

October 2006]

[77] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based Learning Applied to

Document Recognition. Proceedings of the IEEE. 86 (November 1998): 2278-2344.

[78] Hoque, M.S. and Fairhurst, M.C. A Moving Window Classifier for Off-line Character

Recognition. Proceedings of the 7th International Workshop on Frontier in Handwritten

Recogniton. (2000): 595-600.

[79] Kussul, E. and Baidyk, T. Improved Method of Handwritten Digit Recognition Test on MNIST

Database. Image and Vision Computing. 22 (October 2004): 971-981.

[80] Dong, J.X., Krzyzak, A., and Suen, C.Y. An Improved Handwritten Chinese Character

Recognition System using Support Vector Machine. Pattern Recognition Letters archive. 26

(September 2005): 1849-1856.

[81] Ahmad, A.R., Marzuki, K., Christian, V.G. and Emilie, P. Online Handwriting Recognition using

Support Vector Machine. Proceedings Analog and Digital Techniques in Electrical

Engineering Conference (TENCON 2004). (November 2004): 311-314.

[82] Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural

Selection. London: MIT Press, 1992.

[83] Walker, M. Introduction to Genetic Programming [Online]. Massey University, 7 October 2001.

Available from: http://www.massey.ac.nz/~mgwalker/gp/index.html [14 May 2004]

APPENDIX

143

PUBLICATIONS

1. Phienthrakul, T. and Kijsirikul, B. Evolutionary Strategies for Hyperparameters of

Support Vector Machines based on Multi-Scale Radial Basis Function Kernels.

Submitted for Soft Computing. [Minor Revision]

2. Phienthrakul, T., Kijsirikul, B., Takamura, H., and Okumura, M. Sentiment

Classification with SVMs and Evolutionary Combined Kernels. The 6th International

Joint Conference on Computer Science and Software Engineering (JCSSE 2009).

Phuket, Thailand, 13-15 May 2009.

3. Phienthrakul, T. and Kijsirikul, B. Adaptive Stabilized Multi-scale RBF Kernel for

Support Vector Regression. International Joint Conference on Neural Networks

(IJCNN) in IEEE World Congress on Computational Intelligence (WCCI 2008).

Hong Kong, 1-6 June 2008.

4. Phienthrakul, T. and Kijsirikul, B. GPES: An Algorithm for Evolving Hybrid Kernel

Functions of Support Vector Machines. IEEE Congress on Evolutionary

Computation (CEC 2007). Singapore, 25-28 September 2007.

5. Phienthrakul, T. and Kijsirikul, B. Evolving Multi-Scale RBF Kernels for Support

Vector Machines. RGJ – Ph.D. Congress VIII, Thailand Research Fund. Pattaya,

Thailand, 20-22 April 2007.

6. Phienthrakul, T. and Kijsirikul, B. Evolving Parameters of Multi-Scale Radial Basis

Function Kernels for Support Vector Machines. Proceedings of IASTED

International Conference on Advances in Computer Science and Technology (ACST

2007). Phuket, Thailand, 2-4 April 2007.

7. Phienthrakul, T. and Kijsirikul, B. Evolutionary Support Vector Regression based on

Multi-Scale Radial Basis Function Kernels. NN3 Artificial Neural Network &

Computational Intelligence Forecasting Competition. 2007.

8. Phienthrakul, T. and Kijsirikul, B. Evolving Hyperparameters of Support Vector

Machines based on Multi-Scale RBF Kernels. International Conference on Intelligent

Information Processing (ICIIP 2006). Adelaide, Australia, 20-23 September 2006.

Published in Intelligent Information Processing III, IFIP International Federation for

Information Processing. 228 (2007): 269-278.

 ISSN 1571-5736 (Print) 1861-2288 (Online), ISBN 978-0-387-44639-4

144

9. Srisawat, A., Phienthrakul, T., and Kijsirikul, B. SV-kNNC: An Algorithm for

Improving the Efficiency of k-Nearest Neighbor. Ninth Pacific Rim International

Conference on Artificial Intelligence (PRICAI 2006). Guilin, China, 7-11 August

2006.

Published in Lecture Note in Computer Science. 4099 (August 2006): 975-979.

 ISSN 0302-9743

10. Phienthrakul, T. and Kijsirikul, B. Adaptive Multi-Scale Radial Basis Function Kernels

for Support Vector Machines. ไฟฟาสาร. 5 (2006): 67-76.

11. Phienthrakul, T. and Kijsirikul, B. Evolutionary Strategies for Multi-Scale Radial Basis

Function Kernels in Support Vector Machines. Genetic and Evolutionary

Computation Conference (GECCO 2005). Washington, D.C., USA, 25-29 June 2005.

12. Phienthrakul, T. and Kijsirikul, B. Combining Scalar-Product-Based and Distance-

Based Kernels for Support Vector Machines. Electrical Engineering/ Electronics,

Computer, Telecommunication, and Information Technology International

Conference (ECTI-CON 2005). Pattaya, Cholburi, Thailand, 12-13 May 2005.

145

BIOGRAPHY

Name: Miss Tanasanee Phienthrakul

Date of Birth: 8 January 1980

Address: 540 Moo 10, Soi Phetkasaem51, Bangkhae, Bangkok 10160

Education:

 2009 Ph.D. (Computer Engineering), Faculty of Engineering,

Chulalongkorn University

 2006 B.Econ., Department of Economics, Sukhothai Thammathirat Open

University

 2003 M.Sc. (Technology of Information System Management), Faculty of

Engineering, Mahidol University

 2000 B.Sc. (Mathematics) with First-Class Honors, Faculty of Science,

Mahidol University

Financial Support:

- The Thailand Research Fund (the Royal Golden Jubilee Ph.D. Program)

- The Royal Thai Government Scholarship (Mahidol University)

- The 90th Anniversary of Chulalongkorn University Fund

(Ratchadaphiseksomphot Endowment Fund)

- Conference Grant for Ph.D. Student, Chulalongkorn University

- Teaching Assistant Fellowship, Department of Computer Engineering,

Chulalongkorn University

Honor:

- 3rd Prize in Dissertation and Project Contest, Faculty of Engineering,

Chulalongkorn University (2006)

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Motivation
	1.2 Objective
	1.3 Scope
	1.4 Contribution
	1.5 Research Methodology
	1.6 Organization of Thesis

	CHAPTER II BACKGROUND AND LITERATURE REVIEW
	2.1 Notation
	2.2 Support Vector Machines
	2.3 Kernel Methods
	2.4 Measurements of Learning Algorithms
	2.5 Evolutionary Algorithms
	2.6 Related Works

	CHAPTER III ADAPTIVE COMBINED KERNEL FUNCTIONS
	3.1 Combined Kernel Functions
	3.2 Evolutionary Techniques for Support Vector Machines
	3.3 Objective Functions in Evolutionary Processes

	CHAPTER IV EXPERIMENTAL SETTING AND RESULTS
	4.1 Experimental Setting
	4.2 Performance Evaluation
	4.3 Experimental Results

	CHAPTER V REAL WORLD PROBLEMS
	5.1 Sentiment Classification
	5.2 Handwritten Recognition

	CHAPTER VI EVOLVING KERNEL TREE
	6.1 Motivation
	6.2 GPES

	CHAPTER VII CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future Work

	References
	Appendix
	Vita

