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CHAPTER I    

INTRODUCTION 

Support vector machines (SVMs) are learning algorithms proposed by Vapnik [1, 2], 

based on the idea of empirical risk minimization principle.  They have been widely used in 

many applications such as pattern recognitions, function approximations, and clustering 

problems.  There are two main reasons why this approach should work.  First, the automatic 

selection of the optimal classifier capacity tailored on the given task is performed by 

minimizing the generalization error.  Secondly, there is the computational shortcut which 

yields the ability to deal with nonlinear problems.  This shortcut is called kernel function. 

There are many types of kernel functions and each kernel function is suitable for 

different tasks.  The appropriate kernel function and the suitable parameters of SVM and its 

kernel function are the great problems in many research studies.  Hence, the main target of 

this research is to improve the performance of existing kernel functions.  Moreover, a method 

for determining the optimal parameters of SVM and its kernel function will be proposed.  The 

motivation, objective, scope, contribution, and research methodology of this research are 

presented in this chapter. 

1.1 Motivation 

Support vector machines have shown great promise in supervised classification 

problems including pattern recognition, character recognition, text classification, 

bioinformatics, image processing and others [3].  Basically, SVM performs a linear separation 

in an augmented feature space by means of a pre-defined kernel function that satisfies 

Mercer’s theorem [4, 5].  This kernel function maps the input vectors into a very high 

dimensional space, possibly of infinite dimension, where a linear separation is more probable 

[5].  Then, a linear separating hyperplane is created by maximizing the margin between two 

classes in this space.  Therefore, the complexity of the separating hyperplane depends on the 

nature and the properties of the chosen kernel function [5]. 

There are many types of kernel functions such as linear kernel, polynomial kernel, 

sigmoid kernel, and radial basis function (RBF) kernel.  Although, these kernel functions, 

especially, polynomial kernel and the RBF kernel, are the most successful kernel functions in 

many problems, they still have the restrictions in some complex problems.  Moreover, each 

kernel function is suitable for some tasks, and it must be chosen for the tasks under 
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consideration by hand or using prior knowledge [6].  While SVMs have emerged as a 

powerful classification method in several areas of machine learning and data mining, 

researchers have had to rely on expert domain knowledge when choosing the kernel function 

and the parameters [3]. 

Hence, this research tries to define new kernel functions for SVM on classification 

and regression problems.  The new kernel functions should be flexible with any problems and 

correspond to the Mercer's theorem.  A method for creating these new kernel functions is 

combining existing kernels.  Here, we propose the non-negative linear combination of 

multiple sub-kernel functions.  Each sub-kernel functions are weighted and combined.  The 

weights and the parameters of sub-kernels are the adjustable parameters of this new kernel 

function.  In order to obtain an SVM that has good classification accuracy, a large number of 

kernel parameters are needed to be evaluated. 

In general, these parameters are usually determined by a grid search.  The parameters 

are varied with a fixed step-size in a range of values, but this kind of search consumes a lot of 

time.  Although there are many research studies that attempt to propose the algorithm for the 

parameter selection, this research proposes to use the evolutionary algorithms for choosing 

the parameters of SVMs and kernel functions.  The evolutionary algorithms are random 

processes and they can find the solutions in the restricted time.  Besides, the genetic 

programming, which is a kind of the evolutionary algorithms, may help to create new forms 

of kernel functions.  We expect that they will give a better result when compared with the 

traditional kernel functions. 

1.2 Objective 

The main objective of this study is to analyze and design new kernel functions for 

support vector machines by combining the existing Mercer’s kernels to improve the 

performance of classification or approximation on benchmark datasets. 

1.3 Scope 

The scopes of this study are as follows. 

1. The proposed kernel functions are the combination of Mercer’s kernels, i.e. 

polynomial and RBF kernels, by using addition or multiplication.  Moreover, these new 

kernel functions must still correspond to the Mercer’s theorem. 
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2. The proposed kernel functions are designed and tested for support vector machines 

in classification tasks and regression tasks. 

3. The parameters of SVM and the proposed kernel functions are selected by the 

evolutionary strategies. 

4. Performances of the new kernel functions are compared to those of the traditional 

kernels, i.e. polynomial and RBF kernels. 

5. The percentage error of classification is used for measuring the performance of the 

proposed methods on classification problems.  In regression problems, symmetric mean 

absolute percentage error (SMAPE) is used for evaluating the proposed methods. 

6. The proposed methods are evaluated by 5-folds cross-validation. 

7. In order to verify the performance, the proposed methods will be trained and tested 

on 12 binary classification datasets and 4 regression datasets from the UCI Machine Learning 

Repository [7]. 

1.4 Contribution 

1. This research provides new kernel functions for support vector machines.  These 

new kernel functions are the combination of the traditional kernel functions such as linear 

kernel, polynomial kernel, and radial basis function kernel.  Therefore, these kernel functions 

are more flexible than the traditional kernels.  Besides, these kernel functions could lead to 

the improvement in the performance of classification or prediction. 

2. The evolutionary strategy is applied for selecting the parameters of SVM and the 

proposed kernel functions.  This evolutionary algorithm is improved to be suitable for this 

parameter selection problem.  Moreover, we offer the genetic programming for finding the 

suitable combined kernel functions and their parameters. 

1.5 Research Methodology 

The procedures of this research can be divided into 5 main steps as literature survey, 

analysis and design of new kernel functions, testing the proposed kernel functions, validation 

of results, and conclusion for writing documents.  These procedures can be exhibited in 

Figure 1-1. 
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Figure 1-1: Procedures of Research 

- Literature Survey: The principles of support vector machines are studied.  Both 

support vector classification and support vector regression are reviewed.  Application, 

advantage, and disadvantage of support vector machines are inspected.  Then, kernel methods 

are surveyed.  Research studies concerned with kernel functions and their benefits are 

considered.  After that, the theories and applications of evolutionary algorithms (emphasis on 

evolutionary strategies and genetic programming) are explored.  Furthermore, how to apply 

the evolutionary strategies to our problems are studied. 

- Analysis and Design: The theories and related research studies that are studied 

from the previous step are used to analyze and design new kernel functions.  The new kernel 

functions must correspond to the related theorem.  The evolutionary algorithms are applied 

for adjusting the parameters of SVMs and their kernel functions. 

- Testing: A new kernel function is used for support vector machines on both 

classification and regression problems.  Some standard datasets are selected for testing.  The 

results are compared with the traditional kernels. 
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- Validation: The results from experiments are validated.  The information from the 

first step is used for analyzing results.  If the results are not good enough, the proposed 

method will be improved or re-studying to propose a new method. 

- Conclusion and Documentation: The proposed kernel and the experimental results 

are concluded and published in scientific papers.  All studies and the recommendation are 

written in dissertation document.   

1.6 Organization of Thesis 

The remaining chapters of this thesis are organized as follows.  The support vector 

machines will be described in Chapter 2.  This algorithm will be considered on both 

classification problems and regression problems.  The kernel methods and learning algorithm 

measurements are described in this chapter.  Then, the evolutionary algorithms are expressed.  

The evolutionary strategies and the genetic programming are considered in this research.  In 

addition, a number of related works are briefly reviewed. 

In Chapter 3, the adaptive combined kernel functions are proposed for support vector 

machines.  There are many ways to combine the Mercer’s kernels.  However, this chapter 

proposes to use the non-negative linear combination of multiple Mercer’s kernels.  The multi-

scale RBF kernels, the multi-degree polynomial kernels, and the linear combination of both 

polynomial and RBF kernels are the examples of the combination that are presented in this 

research.  Then, the evolutionary algorithms are applied for adjusting their parameters, and 

the objective function in evolutionary process is carefully designed. 

The experimental setting and results are shown in Chapter 4.  The proposed methods 

are compared to SVMs with the traditional kernels on both classification and regression 

problems.  The performance of the proposed methods is discussed at the end of this chapter.  

After that, the proposed methods are applied to real world problems in Chapter 5.  Sentiment 

classification and handwritten recognition are considered.  Then, a choice to create new 

kernel functions will also be presented in Chapter 6.  The evolutionary algorithms are applied 

to create these new forms of kernel functions and they are represented as trees.  Finally, this 

research is concluded and some directions for the future work are presented in Chapter 7. 



CHAPTER II    

BACKGROUND AND LITERATURE REVIEW 

In this chapter, the mathematical notation is defined.  The support vector machines 

are reviewed on both classification and regression tasks.  Then, kernel methods are described 

and some measurements of learning algorithms are explained.  The evolutionary strategies 

and the genetic programming are illustrated in this chapter.  Ultimately, a number of related 

works are briefly reviewed. 

2.1 Notation 

 D  training set 

 Yy∈  output and output space 

 Xx∈  input and input space 

 F  feature space 

 ℜ  real numbers 

 N  dimension of input space 

 M  dimension of feature space 

 m  training set size 

 w  weight vector 

 b  bias 

 ji xx ⋅  inner product of ix  and jx  

 )(⋅d  distance function 

 ⋅  absolute value 

 
p

⋅  p-norm, default is 2-norm 

 ρ  margin  

 α  Lagrange multiplier 

 L  Lagrangian form 

 
x
L

∂
∂  partial derivative of L  with respect to x   

 )(⋅f , )(⋅g  real-valued function 

 )(xsign  sign of x , it is +1 if 0≥x  and it is -1 if 0<x  

 ξ , *ξ  slack variable 
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 C  regularization parameter of SVM 

 )(⋅Φ  mapping into feature space 

 ),( ji xxK  kernel function )()( ji xx Φ⋅Φ  

 n  number terms of sub-kernels in combined kernel function 

 d  degree of polynomial kernel 

 γ  width of radial basis function kernel 

 ε  deviation of approximation 

 )(⋅L  loss function 

 ln  logarithm to base e  

 alog  logarithm to base a  

 h  VC-dimension 

 H  hypothesis space 

 S  set of instances 

 δ  confidence interval 

 ŷ  predicted output 

 R  generalization error 

 empR  empirical error 

 2κ  bound of kernel function 

 μ  size of ES parent population 

 λ  size of ES offspring population 

 vv  vector of hyperparameter 

 σv  vector of standard deviation 

 )(⋅P  probability function 

 )(vfitness v  objective function of vector vv  or fitness function of vv  

 )(AU  uniform distribution within set A  

 ),( σμN  normal distribution with mean μ  and standard deviation σ  

2.2 Support Vector Machines 

A support vector machine (SVM) is a learning algorithm that can be divided into 

support vector classification (SVC) and support vector regression (SVR).  SVC is a powerful 

method for separating the binary-class data in terms of a small subset, called support vectors, 

of the training examples, and SVR is an approximation method that estimates a real-valued 

function in terms of support vectors.  In this part, both SVC and SVR are briefly reviewed. 
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2.2.1 Support Vector Classification 

For simple pattern recognition tasks, SVM uses a linear separating hyperplane to 

create a classifier with the maximum margin [6, 8, 9].  Consider the problem of binary 

classification, where a training dataset is denoted as 

{ }),(,...,),(,),( 2211 mm yxyxyxD = , (1)

where N
ix ℜ∈  is a sample data and }1,1{−∈iy  is its label [10].  A linear decision surface is 

defined by the following equation: 

0=+⋅ bxw . (2)

Occasionally, there are multiple hyperplanes which can perform the separation.  The 

goal of learning is to find Nw ℜ∈  and the scalar b  such that the margin between positive and 

negative examples is maximized.  An example of the decision surface and its margin are 

shown in Figure 2-1. 

 

Figure 2-1: An example of Decision Surface and Margin 
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The linear hyperplane can separate the data if and only if 0>+⋅ bxw i  if 1+=iy  

and 0<+⋅ bxw i  if 1−=iy .  It is appropriate to consider a canonical hyperplane, where the 

parameters w  and b  are constrained by 1min =+⋅ bxw ii
 [11].  A separating hyperplane in 

canonical form must satisfy the following constraints: 

1+≥+⋅ bxw i   if 1+=iy , 

1−≤+⋅ bxw i   if 1−=iy . 
(3)

These can be combined into one set of inequalities: 

( ) 1≥+⋅ bxwy ii , i∀ . (4)

The distance );,( ixbwd  of a point ix  from the hyperplane ),( bw  is  

w

bxw
xbwd i

i

+⋅
=);,( . (5)

The optimal hyperplane is given by maximizing the margin ρ , subject to the 

constraints in inequality (4).  The margin is given by: 

 ),( bwρ  = );,(min);,(min
1,1, iyxiyx

xbwdxbwd
iiii +=−=

+  

  = 
w

bxw

w

bxw i

yx

i

yx iiii

+⋅
+

+⋅
+=−= 1,1,

minmin  

  = ⎟
⎠
⎞⎜

⎝
⎛ +⋅++⋅

+=−=
bxwbxw

w iyxiyx iiii 1,1,
minmin1  

  = 
w
2 . 

(6)

Hence, the hyperplane that optimally separates the data is the one that minimizes 2

2
1 w  

subject to the constraints ( ) 1≥+⋅ bxwy ii , for mi ,,1 K=  [12]. 

This problem is a quadratic optimization problem [13].  Thus, the Lagrange 

multipliers iα  , for mi ,,1 K=  are introduced to form the Lagrangian.  This gives Lagrangian: 

( )( )( )∑
=

−+⋅−=
m

i
iii bxwywL

1

2 1
2
1 α . (7)
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The Lagrangian has to be minimized with respect to w , b  and maximized with respect to 

0≥iα .  The minimum with respect to w  and b  of the Lagrangian is given by: 

 
b
L

∂
∂  = 0 →  0

1
=∑

=

m

i
ii yα   (8)

 
w
L

∂
∂  = 0 →  ∑

=

=
m

i
iii xyw

1
α . (9)

The optimization problem becomes: 

 maximize ∑∑∑
= ==

⋅−
m

i

m

j
jijiji

m

i
i xxyy

1 11 2
1 ααα  

 subject to 0
1

=∑
=

m

i
ii yα , 

  0≥iα , mi ,,1 K= . 

(10)

The decision function is then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅= ∑

=

bxxysignxf
m

i
iii

1
)( α , (11)

where 0≥iα  is the coefficient associated with a vector ix  and b  is an offset.  A data example 

ix  which corresponds to a non-zero iα  values are called support vector.  Figure 2-2 shows 

the support vectors and the optimal hyperplane. 

 

Figure 2-2: Support Vectors and Optimal Hyperplane 

 



 
 
 
 

11

However, the quadratic programming solutions cannot be used in the case of 

overlapping because the constraints cannot be satisfied [6].  Figure 2-3 shows an example of 

unclassifiable data by a linear hyperplane.  In such a situation, this algorithm must allow some 

data to be unclassified, or on the wrong side of a decision surface [6].  In practice, we allow a 

soft margin, and all data inside this margin are neglected.   

 

Figure 2-3: Unclassifying by a Linear Hyperplane 

In soft margin SVM, the separating hyperplane can be achieved by  

 minimize ∑
=

+
m

i
iCw

1

2

2
1 ξ   

 subject to ( ) ≥+⋅ bxwy ii iξ−1 ,  

  0≥iξ  for all mi ,,1 K= . 

(12)

The width of the soft margin can be controlled by a corresponding regularization parameter 

C  [6].  The constant 0>C  determines the trade-off between margin maximization and 

training error minimization [14]. 

In most cases, seeking a proper linear hyperplane in the original input space is not 

always possible.  This problem can be solved by enabling these support vector machines to 

produce complex nonlinear boundaries in the original space.  This is done by mapping the 

input space into a higher dimensional feature space through a mapping function.  Then a 

linear separating is performed in the higher dimensional space [14].  Example of mapping 

from 2-dimensional input space into 3-dimensional feature space is shown in Figure 2-4.   
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Figure 2-4: Mapping from 2-Dimensional Space into 3-Dimensional Space 

This can be achieved by substituting )( ixΦ  into each training example ix .  However, 

a good property of SVM is that it is not necessary to know the explicit form of Φ .  Only the 

inner product in feature space, called kernel function )()(),( jiji xxxxK Φ⋅Φ= , must be 

defined.  This technique is called kernel trick.  The decision function becomes the following: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

bxxKysignxf
m

i
iii

1
),()( α , (13)

where ),( xxK i  is the kernel function of vector ix  and x , 0≥iα  is a coefficient associated 

with a support vector ix  and b  is an offset.  A function which can be a kernel function must 

satisfy Mercer’s theorem [10] that will be described in Section 2.3. 

2.2.2 Support Vector Regression 

In the regression problem, we want to predict a real-valued function.  The idea of 

SVM can be applied to these problems.  Suppose our training data are represented as 

{ } ℜ×⊂= XyxyxD mm ),(,),,( 11 K , (14)

where NX ℜ⊆  denotes the space of input patterns.  In −ε SV regression, our goal is to find a 

function )(xf  that has at most ε  deviation from the actually obtained target iy  for all the 

training data, and at the same time is as flat as possible [15].  In other words, we do not care 

about errors as long as they are less than ε , but we do not accept any deviation larger than 

this [15].  The loss function that SVR chooses is ε -insensitive loss function [16], that is   

( )
⎪⎩

⎪
⎨
⎧ >−−−

=
.0

,)()(
)(,

otherwise
xfyifxfy

xfyL
εε

 (15)
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An example of a linear SVR is shown in Figure 2-5. 

 

Figure 2-5: An Approximation with a Linear Regression 

We begin by describing the case of linear approximation functions.  SVR seeks to 

estimate a function f , taking in form: 

bxwxf +⋅=)( , (16)

where  Nxw ℜ∈, , ℜ∈b .  Flatness in this case means that one seeks a small w .  One way to 

ensure this is to minimize the norm, i.e. www ⋅=
2 . 

However, in practice, there always exists various noise or imprecision for our training 

examples [16].  In those cases, we may want to allow for some errors.  Soft margin loss 

function is adapted to SVR; one can introduce slack variables iξ , *
iξ  to cope with otherwise 

infeasible constraints of the optimization problem [17].  Hence we can write this problem as 

an optimization problem:    

 minimize ∑
=

++
m

i
iiCw

1

*2 )(
2
1 ξξ  

 subject to iii bxwy ξε +≤−⋅−  

  *
iii ybxw ξε +≤−+⋅  

   iξ , *
iξ  ≥    0. 

(17)

The constant 0>C  determines the trade-off between the flatness of f  and the amount up to 

which deviations larger than ε  are tolerated.  An example of soft margin linear SVR is shown 

in Figure 2-6. 
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Figure 2-6: Soft Margin for a Linear Regression 

For nonlinear problems, SVR maps input space X  into a high dimension, or infinite, 

feature space F , and then constructs a linear function with small weight under some 

constraints in feature space [16].  The feature space F  is obtained from mapping function 

)(xΦ , and SVR uses the following to approximate the learning aim: 

bxwxf +Φ⋅= )()( . (18)

The weight Fw∈  and bias ℜ∈b  are gained by optimizing the following problem: 

 minimize ∑
=

++
m

i
iiCw

1

*2 )(
2
1 ξξ  

 subject to iii bxwy ξε +≤−Φ⋅− )(  

  *)( iii ybxw ξε +≤−+Φ⋅  

   iξ , *
iξ   ≥    0. 

(19)

In most cases this optimization problem can be solved more easily in its dual 

formulation [15].  The dual problem of the quadratic programming in (19) is to 

 maximize ( )( ) ( ) ( ) ( ) ( )∑∑∑∑
=== =

−++−Φ⋅Φ−−−
m

i
iii

m

i
ii

m

i

m

j
jijjii yxx

1

*

1

*

1 1

**

2
1 ααααεαααα  

 subject to ( ) 0
1

* =−∑
=

m

i
ii αα  

  Cii ≤≤ *,0 αα . 

(20)

 



 
 
 
 

15

An example of mapping from input space to feature space is shown in Figure 2-7. 

Figure 2-7: Mapping from Input Space into Feature Space 

The final decision function is that  

( ) ( ) ( ) bxxxf
m

i
iii +Φ⋅Φ−= ∑

=1

*)( αα  (21)

and 

( ) ( )i

m

i
ii xw Φ−= ∑

=1

*αα . (22)

According Karush-Kuhn-Tucker (KKT) conditions in [18] and [19], the bias b  can be 

obtained by solving the following four equations [16]: 

 ( )( ) 0=+Φ⋅+−+ bxwy iiii ξεα  (23)

 ( )( ) 0** =−Φ⋅−++ bxwy iiii ξεα  (24)

 ( ) 0=− iiC ξα  (25)

 ( ) 0** =− iiC ξα  . (26)

The dimension of feature space is always high or even infinite, so it is impossible to 

compute the inner product directly in feature space [16].  Kernel function is a key step for 

SVR.  Kernel function could make the computation in feature space easier in the original 

input space [16].  A kernel function is defined on the input space XX ×  that is 

)()(),( jiji xxxxK Φ⋅Φ= , (27)
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and (21) is changed to 

( ) ( ) bxxKxf
m

i
iii +−= ∑

=1

* ,)( αα . (28)

2.3 Kernel Methods 

For nonlinear problems, both SVC and SVR utilize kernel techniques to produce 

complex nonlinear decision functions or nonlinear approximation functions inside the original 

space.  The relation between SVC, SVR, and kernel functions can be concluded as an image 

in Figure 2-8.  

Figure 2-8: Relation between SVC, SVR, and Kernel Functions 

The kernel functions map the input vectors in an input space NX ℜ⊆  into a higher 

dimensional feature space MF ℜ⊆ , and finding the inner product in this feature space.  The 

concept of input space, feature space, and output space are shown in Figure 2-9. 
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Figure 2-9: Input Space, Feature Space, and Output Space 

For instance, the polynomial kernel  

dvuvuK ⋅=),(  (29)

can be shown to correspond to a mapping function Φ  into the space spanned by all products 

of exactly d  dimensions of Nℜ  [4].  For 2=d  and 2, ℜ∈vu , we have 

 ( )2
2211

2 vuvuvu +=⋅   2121
2
2

2
2

2
1

2
1 2 vvuuvuvu ++=  

   ( ) ( )21
2
2

2
121

2
2

2
1 2,,2,, vvvvuuuu ⋅=  

   )()( vu Φ⋅Φ=  

(30)

defining  

            32: ℜ=→ℜΦ F , (31)

( ) ( )21
2
2

2
121 2,,, uuuuuu a . (32)

In SVM, it is not necessary to know the explicit form of mapping function 

FX →Φ : .  Only the kernel function must be defined,   

)()(),( jiji xxxxK Φ⋅Φ= . (33)

Each kernel corresponds to some feature space and because no explicit mapping to this 

feature space occurs, optimal linear separators or linear approximations can be found 

efficiently in the feature space with millions of dimensions [20].  Some of the kernel 

functions are shown in Table 2-1. 
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Table 2-1: Examples of Kernel Functions 

Kernel Functions Formula 

Linear jiji xxxxK ⋅=),(  

Polynomial ( )djiji xxxxK ⋅+= 1),(  

Exponential Radial Basis 

Function  
( )jiji xxxxK −−= γexp),(  

Gaussian Radial Basis Function 

(RBF) 
⎟
⎠
⎞⎜

⎝
⎛ −−=

2
exp),( jiji xxxxK γ  

Multi-Quadratic 22
),( cxxxxK jiji +−−=  

Sigmoid* ( )βα +⋅= jiji xxxxK tanh),(  

Thin Plate Spline [21] jijiji xxxxxxK −−= ln),(
2

 

Moderate Decreasing [5] 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−
= 1exp),(

22
σ

γ

ji

ji
xx

kxxK  

* Although the sigmoid function does not correspond to the Mercer’s theorem, this function is used in many 

problems and sometimes it is called two-layer neural network kernel. 

We notice that these kernel functions are either inner-product-based functions or 

distance-based functions.  Linear, polynomial, and sigmoid kernels are the examples of 

inner-product-based functions.  Also, RBF, multi-quadratic, thin plate spline, and moderate 

decreasing kernels are the examples of distance-based functions.  In general, the function 

which maps the input space into the augmented feature space is not explicitly known.  

However, the existence of such function is assured by Mercer’s theorem [6]. 

Theorem 2-1 (Mercer’s theorem):  Any symmetric function ),( ji xxK  in the input space can 

represent an inner product in feature space if  

0)()(),( ≥∫∫ jijiji dxdxxgxgxxK  (34)

be valid for all 0≠g  for which ∫ ∞<duug )(2  [4, 6]. 
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Then the kernel function K  can be expanded in terms of iΦ  

∑
∞

=

ΦΦ=
1

)()(),(
k

jkikkji xxxxK λ  (35)

with 0≥kλ  [6].  In this case, the mapping from input space to feature space is expressed as  

( )K,)(,)(: 2211 xxx ΦΦ→Φ λλ  (36)

such that K  can be the inner product 

),()()()()(
1

ji
k

jkikkji xxKxxxx =ΦΦ=Φ⋅Φ ∑
∞

=

λ  (37)

In addition, there are some operations on one or more kernels that always preserve the 

kernel property.  These operations are illustrated in Proposition 2-1. 

Proposition 2-1 (Closure properties):  Let 1K  and 2K  be kernel functions over XX × , 

NRX ⊆ , +∈Ra , )(⋅f  a real-valued function on X , MRX →Φ :  with 3K  a kernel function 

over MM RR × , and B  a symmetric positive semi-definite NN ×  matrix.  Then the following 

functions are kernel function [10]: 

(i) ),(),(),( 21 jijiji xxKxxKxxK += , 

(ii) ),(),( 1 jj xxaKxxK = , 

(iii) ),(),(),( 21 jijiji xxKxxKxxK = , 

(iv) )()(),( jiji xfxfxxK = , 

(v) ))(),((),( 3 jiji xxKxxK ΦΦ= , 

(vi) jiji xBxxxK ′=),( . 

This proposition shows that kernel functions satisfy a number of closure properties 

[10].  More complicated kernel functions can be created from simple kernel functions by this 

proposition.  Moreover, we can regard that a kernel function is a similarity measure between 

two data points [10].  Therefore, the kernel functions contain all of the information about the 

relative positions of the inputs in the feature space.  

2.4 Measurements of Learning Algorithms 

 In order to evaluate the learning algorithms, we require some measurements that can 

compare the performance of several learning algorithms or judge the performance of an 
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algorithm.  There are many ways to evaluate our learning algorithms such as training 

accuracy or training error, VC-dimension, generalization performance, and cross-validation.  

Besides, for regression problems, there are many error functions that can be applied to the 

evaluation of the approximation algorithms such as percentage error (PE), mean square error 

(MSE), mean absolute percentage error (MAPE), etc.  In this section, these measurements are 

briefly described. 

2.4.1 Accuracy  

The accuracy has been widely used as the main criterion for comparing the ability of 

a learning algorithm.  This function measures the number of the correctly classified instances 

over the total number of instances.  In binary classification, the accuracy is also used as a 

statistical measure of a learning algorithm, and it can be calculated by the following equation:   

m

yxf
accuracy

m

i
ii

2

)(
1 1

∑
=

−
−= , (38)

where )( ixf  is a decision function of data N
ix ℜ∈  for mi ...,,2,1= , and }1,1{−∈iy  is the 

actual class of data ix .   

In the context of binary classification tasks, the terms true positive, true negative, 

false positive, and false negative are used to compare the given class (the class label assigned 

by a classifier) with the desired class (the actual class).  Accuracy is closely related to 

sensitivity/specificity and precision/recall.  This is illustrated by Figure 2-10. 

 

Figure 2-10: Sensitivity/Specificity and Precision/Recall 
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negativefalsenegativetruepositivefalsepositivetrue
negativetruepositivetrue

accuracy
+++

+
=  (39)

- Precision/Recall: The precision is the number of class members classified correctly 

over the total number of instances classified as class members; and the recall (or true positive 

rate) is the number of class members classified correctly over the total number of class 

members. 

positivefalsepositivetrue
positivetrue

precision
+

=  (40)

      
negativefalsepositivetrue

positivetrue
recall

+
=  (41)

- Sensitivity/Specificity: The sensitivity or the recall rate measures the proportion of 

actual positives which are correctly identified; and the specificity measures the proportion of 

negatives which are correctly identified.  

negativefalsepositivetrue
positivetrue

ysensitivit
+

=  (42)

 
positivefalsenegativetrue

negativetrue
yspecificit

+
=  (43)

2.4.2 VC-Dimension 

The Vapnik-Chervonenkis dimension (VC-dimension: h ) is a measure of the 

complexity of hypothesis space H .  In many case, the VC-dimension can be used to state a 

tighter bounds on sample complexity.  The VC-dimension measures the complexity of the 

hypothesis space H , not by the number of distinct hypotheses H , but instead by the number 

of distinct instances from input space X  that can be completely discriminated using H  [22].  

Hence, the VC-dimension is a one-number summary of a learning machine’s capacity [14].  

The basic concept of the VC-dimension is presented for a two-class pattern recognition 

problem and then generalized for real approximation function [6]. 

 First, we define the notion of shattering a set of instances.  Consider some subset of 

instances XS ⊆ , each hypothesis from H  imposes some dichotomy on S ; that is, each 

hypothesis partitions S  into the two subsets [22].  Given some instance set S , there are S2  

possible dichotomies, though H  may be unable to represent some of these [22].  We say that 
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H  shatters S  if every possible dichotomy of S  can be represented by some hypothesis from 

H  [22]. 

Definition 2-1:  A set of instance S  is shattered by hypothesis space H  if and only if for 

every dichotomy of S  there exists some hypothesis in H  consistent with this dichotomy 

[22]. 

 

Figure 2-11: An Examples of Shattering 

Figure 2-11 illustrates a set S  of three instances that is shattered by the hypothesis 

space.  Moreover, each of the 32  dichotomies of these three instances is covered by some 

hypothesis.  If a set of instances is not shattered by a hypothesis space, then there must be 

some concept that can be defined over the instances but that cannot be represented by the 

hypothesis space [22]. 

The ability of H  to shatter a set of instances is a measure of its capacity to represent 

target concepts defined over these instances.  In general, H  cannot shatter the instance space 

X  but it can shatter some large subset S  of X   [22].  Therefore, the larger subset of X  that 

can be shattered is reasonable to measure.  The VC-dimension of H  is precisely this 

measure. 

Definition 2-2:  The VC-dimension of hypothesis space H  defined over instance space X  is 

the size of the largest finite subset of X  shattered by H .  If arbitrarily large finite sets of X  

can be shattered by H , then ∞≡)(HVC  [22]. 
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Moreover, for any finite H , HHVC 2log)( ≤ .  Note that if the VC-dimension is h , 

then there exists at least one set of h  instances in the input space that can be shattered [6].  

This does not mean that every set of h  instances can be shattered by a given set of 

hypotheses. 

For example, suppose the instance X  is the set of points in the two dimensional 

space, and H  is the set of all linear decision surfaces in this space.  It is easy to see that any 

two distinct points in this two dimensional space can be shattered by H , because we can find 

four linear surfaces that include neither, either, or both points [6].  These are showed in Figure 

2-12. 

 

Figure 2-12: Shattering of Two Points 

For three points, as long as the points are not co-linear, we can find 32 = 8 linear 

surface that shatter them.  All possible variations of three points shattered by a hypothesis are 

showed in Figure 2-13.  Of course three co-linear points cannot be shattered [22], and they are 

showed in Figure 2-14.  Moreover, there is no arrangement of four points in a two 

dimensional space which can be shattered by the linear surface that is shown in Figure 2-15.  

Therefore, the VC-dimension of H  is equal to 3. 

 

Figure 2-13: Shattering of Three Points 
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Figure 2-14: Cannot Shatter Three Co-Linear Points 

 

 

Figure 2-15: Cannot Shatter Four Points 

More generally, in N  dimensional space, the VC-dimension of linear decision 

surfaces is 1+N  [6, 22].  However, SVM can be shown to correspond to hyperplanes in 

feature spaces of possible infinite dimension [14].  The crucial point is that SVM corresponds 

to large margin hyperplanes.  Once the margin enters, the capacity can be much smaller than 

the above general VC-dimension of hyperplanes [14].  For simplicity, we consider the case of 

hyperplanes containing the origin. 

Theorem 2-2:  Consider hyperplanes 0=⋅ xw , where w  is normalized such that they are in 

canonical form with respect to a set of point { }mxxxX ,,, 21
* K= ; i.e. 

1min
,...,2,1

=⋅
= imi

xw . (44)

The set of decision functions ( ) ( )xwsignxf ⋅=  defined on *X , and satisfying the constraint 

Λ≤w , has a VC-dimension satisfying 

22Λ≤ Rh , (45)

where R  is the radius of the smallest sphere centered at the origin and containing *X  [14]. 
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The proving process of this theorem is shown in [14].  This theorem states that we 

can control the VC-dimension by controlling the length of the weight vector w .  There 

exists a similar result for the case where R  is the radius of the smallest sphere, not necessary 

centered at the origin, enclosed the data, and where it is allowed for the possibility that the 

hyperspheres have a nonzero offset b  [14].  In this case, we give a simple visualization in 

Figure 2-16, which shows it is plausible that enforcing a large margin amounts to reducing the 

VC-dimension [14]. 

 

Figure 2-16: Visualization of Enforcing a Large Margin of Separation 

Assume that the data points are contained in a ball of radius R .  The hyperplanes 

with margin 1ρ  can be used to separate three points in all possible ways.  However, the 

hyperplanes with the larger margin 2ρ  can be used to separate only two points, hence the 

VC-dimension in this case is two rather than three [14]. 

2.4.3 Generalization Performance 

The result of running the machine learning algorithm can be expressed as a function  

)(xf  which takes a new example x  as input and than generates an output value.  The precise 

form of the function )(xf  is determined during the training phase on the basis of the training 

data [23].  The ability to correctly classify new examples that differ from those used for 

training is known as generalization [23].  In practical applications, the variability of the input 

vectors will be such that the training data can comprise only a tiny fraction of all possible 

input vectors, and so generalization is a central goal in pattern recognition [23].    
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Generalization analysis of a pattern classifier is concerned with determining the factor 

that affects the accuracy of the classifier [24].  One of the most popular assumptions 

originally proposed by Vapnik and Chervonenkis is to assume that the training and testing 

data are both generated according to the same probability distribution [24].  The bound on the 

generalization error is the probability of misclassifying a randomly chosen example, which 

holds with high probability over randomly chosen training sets [24].  This type of bound has 

something of the flavour of a statistical test, in that it allows one to infer that the error is small 

with the chosen significance level [24].  SVM applies the structural risk minimization 

principle, which controls both the empirical risk and a confidence interval at the same time 

[6].  A bound for large margin linear classifiers can be found on the VC-dimension of certain 

restrictions [24]. 

Theorem 2-3:  Define the class F  of real-valued functions on the ball of radius R  in Nℜ as 

{ }RxwxwxF ≤≤⋅= ,1:a . (46)

There is a constant c  such that, for all probability distributions, with probability at least δ−1  

over m  independently generated examples z , if a classifier ( ) ( )Fsignfsignh ∈=  has 

margin at least ρ  on all the examples in z , then the error of h  is no more than 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ δ

ρ
1loglog 2

2

2

mR
m
c . (47)

Furthermore, with probability at least δ−1 , every classifier ( )Fsignh ∈  has error no 

more than 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ δ

ρ
1loglog 2

2

2

mR
m
c

m
k , (48)

where k  is the number of labeled examples in z  with margin less than ρ  [24]. 

Hence the generalization error of the SVM can be bounded even when the kernel 

determines an infinite dimensional feature space.  The various quantities involved in the 

theorem statement can be calculated [24].  The performance of a machine learning algorithm 

is measured by plots of the generalization error values through the learning process and is 

called learning curves.  There are many methods for estimating the generalization 

performance.  Various techniques aimed at resolving the trade-off between performance on 

training data and performance on unseen data.  Besides, more classical statistical tool for 
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resolving the trade-off between the performance on training data and the complexity of a 

model is the cross-validation technique. 

2.4.4 Cross-Validation 

The basic idea of the cross-validation is founded on the fact that good results on the 

training data do not ensure good generalization capability [6].  Generalization refers to the 

capacity of a learning model to give correct answer on unseen data.  The most commonly 

used method for estimating generalization performance of a learning algorithm is to reserve a 

part of the data, called a test set or validation set, which must not be used in any way during 

training.  The test set must be a representative set of the cases that we want to generalize.  

After training, the learning models are run on the test set, and the error on the test set provides 

an unbiased estimate of the generalization error, assumed that the test set was chosen 

randomly. 

The disadvantage of split-sample validation is that it reduces the amount of data 

available for both training and validation.  Cross-validation is an improvement on split-

sample validation that allows us to use all of the data for training.  Moreover, we often are 

interested in comparing the performance of several learning algorithms or choosing the 

parameters of a learning algorithm.  If our learning algorithms are trained on the full training 

set, this can lead to overfitting.  Typically, the average of several smaller sets can yield a 

stronger regularization.  Hence, K-folds cross-validation is considered. 

This procedure first partitions the data into K disjoint subsets of equal size.  Then, the 

learning algorithms are trained and validated K times (the folds), using each of K subsets in 

turn as the validation set, and using all remaining data as the training set [22].  Each sample is 

used exactly once in a validation set, and K-1 times in a training set.  The K results from the 

folds then can be averaged (or combined) to produce a single estimation.  The data 

partitioning of K-folds cross-validation is illustrated in Figure 2-17. 
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Figure 2-17: K-Folds Cross-Validation 

For leave-one-out cross-validation (LOOCV), it uses a single sample as the validation 

data, and the remaining data as the training set.  This is the same as K-folds cross-validation 

with K is equal to the number of samples in the original training data.  Besides, there is the 

bootstrapping that is an improvement on cross-validation that often provides better estimation 

of generalization error at the cost of even more computing time. 

The advantage of the cross-validation method over repeated subsets of data is that all 

samples are used for both training and validation, and each sample is used for validation 

exactly once.  If we use cross-validation method to choose which of several learning models, 

the estimate of the generalization error of the model will be optimistic and we will obtain an 

unbiased estimate of the generalization error of the model.  However, the disadvantage of 

cross-validation is that the learning algorithms must be re-trained many times. 

2.4.5 Regression Evaluation 

If the desired output consists of one or more continuous variables, then the task is 

called regression [23].  An example of regression problem is the curve fitting, which the 

decision stage consists of choosing a specific estimate )(ˆ xfy =  for each input x  [23].  When 

estimating real-valued quantities, the difference values between the actual target values iy  

and the prediction values iŷ  are usually used for evaluating the performance of prediction.     

There are many evaluation functions for regression problems and some of them are illustrated 

in Table 2-2. 
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Table 2-2: Examples of Regression Evaluation Functions 

Regression Evaluation Function Formula 

Mean Error (ME) 
( )

m

yy
ME

m

i
ii∑

−

−
= 1

ˆ
 

Mean Absolute Error (MAE) or 

Mean Absolute Deviation (MAD) m

yy
MAE

m

i
ii∑

−

−
= 1

ˆ
 

Sum of Squared Error (SSE) ( )∑
−

−=
m

i
ii yySSE

1

2ˆ  

Mean Squared Error (MSE) 
( )

m

yy
MSE

m

i
ii∑

−

−
= 1

2ˆ
 

Root Mean Squared Error (RMSE) ( )

m

yy
RMSE

m

i
ii∑

−

−
= 1

2ˆ
 

Standard Deviation of Error (SDE) ( )

1

ˆ
1

2

−

−
=

∑
−

m

yy
SDE

m

i
ii

 

Mean Percentage Error (MPE) 
m

y
yy

MPE

m

i i

ii 100
ˆ

1
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

=
∑
−  

Mean Absolute Percentage Error (MAPE) 
m

y
yy

MAPE

m

i i

ii 100
ˆ

1
×

−

=
∑
−  

Symmetric Mean Absolute Percentage Error (SMAPE) ( )
m
yy

yy

SMAPE

m

i ii

ii 100
2/ˆ

ˆ

1
×

+
−

=
∑
−  

Note: m  is the number of predicted values, iy  and iŷ  for mi ,...,2,1=  are the actual target values and the 

predicted values, respectively. 
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In statistics, these evaluation functions of an estimator are used to quantify the 

amount by which an estimator differs from the true value of the quantity being estimated.  

Minimization of these functions is a key criterion in estimator selection.  However, these 

functions may have the disadvantage of heavily weighting outliers.  Especially, in the mean 

square error (MSE), the squaring of each term effectively weights large errors more heavily 

than small ones.  This property has led researchers to use alternatives such as the mean 

absolute error (MAE) or the symmetric mean absolute percentage error (SMAPE). 

 The mean absolute error (MAE) is a common measure of forecast error in regression 

problems and time series analysis, where the terms mean absolute deviation (MAD) is 

sometimes used.  The mean absolute percentage error (MAPE) is also measure of accuracy in 

a fitted time series value in statistics, specifically trending.  It usually expresses accuracy as a 

percentage.  MAPE is zero when having a perfect fit, but its upper level has no restriction.  

Moreover, MAPE may have a problem in calculation.  The series with the lower numbers 

may have a very high MAPE, while the higher numbers of series may have a very low 

MAPE.  In order to avoid this problem other measures, such as SMAPE, have been defined. 

2.5 Evolutionary Algorithms 

Evolutionary Algorithms (EA) have found a broad acceptance as robust optimization 

algorithms in the last ten years [25].  The idea of evolutionary algorithms uses some 

mechanisms inspired by biological evolution.  In ecology, the evolution demonstrates 

optimized complex behavior at every level: the cell, the organ, the individual, and the 

population [26].  The biological methods can solve many types of problems, such as chaos, 

chance, temporality, and nonlinear interactivities [26]. These are also characteristics of 

problems that have been proved to be especially intractable to classic methods of optimization 

[26].  The evolutionary process can be applied to problems where heuristic solutions are not 

available or generally lead to unsatisfactory results [26].   

The term “evolutionary computation” is used to describe the field of investigation 

that concerns all evolutionary algorithms.  These evolutionary algorithms imitate nature and 

apply the genetic operators such as reproduction, selection, mutation, and recombination.  

These operations are applied to a population, or several sub-populations, of candidate 

solutions that are evaluated with respect to their fitness [27].  Thus, it is possible by an 

evolutionary loop to successively approximate the optimal state of the system to be 

investigated [27].  The main flowchart that describes every evolutionary algorithm applied to 

function optimization is depicted in Figure 2-18.  The principle of variation and selection can 
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be considered as the fundamental principle of the evolutionary algorithms [25].  These 

principles, combined with the change of the generation (reproduction), build up the 

fundamental components of the evolutionary loop [25]. 

 

Figure 2-18: General Evolutionary Algorithm [25] 

Some of practical advantages to using evolutionary algorithms are summarized [26]. 

- Conceptual simplicity: A primary advantage of evolutionary computation is that it 

is conceptually simple.  The algorithm consists of initialization, which may be a purely 

random sampling of possible solutions, followed by iterative variation and selection within a 

number of generations.  Thus the criterion needs not be specified with the precision that is 

required of some other methods [26]. 
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- Broad applicability: Evolutionary algorithms can be applied to any problem that 

can be formulated as a function optimization task.  It requires a data structure to represent 

solutions, a performance index to evaluate solutions, and variation operators to generate new 

solutions from old solutions.  The human designers can choose a representation that follows 

their intuition.  This flexibility allows for applying essentially the same procedure to discrete 

combinatorial problems, continuous-valued parameter optimization problems, mixed-integer 

problems, and so forth [26].  

- Outperformance over classic methods on real problems: Real world function 

optimization problems often impose nonlinear constraints, require payoff functions that are 

not concerned with least squared error, involve non-stationary conditions, incorporate noise 

observations or random processing, or include other vagaries that do not conform well to the 

prerequisites of classic optimization techniques.  Real world problems are often multi-model, 

and gradient-based methods rapidly converge to local optima or saddle points which may 

yield insufficient performance.  In addition, in case of applying linear programming to 

problems with nonlinear constraints, this offers an almost certainly incorrect result because 

the assumptions required for the techniques are violated.  In contrast, evolutionary 

computation can directly incorporate arbitrary constraints [26].  

- Potential to use knowledge and hybridize with other methods: It is always 

reasonable to incorporate domain-specific knowledge into an algorithm when addressing 

particular real-world problems.  Specialized algorithms can outperform unspecialized 

algorithms on a restrict domain of interest.  Evolutionary algorithms offer a framework such 

that it is comparably easy to incorporate such knowledge.  For example, specific variation 

operators may be useful when applied to particular representations.  These can be directly 

applied as mutation or recombination operations.  Knowledge can also be implemented into 

the performance index (or fitness function) [26]. 

Evolutionary algorithms can also be combined with more traditional optimization 

techniques.  This may be as simple as the use of a conjugate-gradient minimization used for 

primary search with an evolutionary algorithm, or it may involve simultaneous application of 

algorithms.  There may also be a benefit to seeding an initial population with solutions 

derived from other procedures.  Further, evolutionary computation can be used to optimize 

the performance of neural networks, fuzzy systems, production systems, and other program 

structures [26].    

- Parallelism: Evolution is a highly parallel process.  As distributed processing 

computers become more readily available, there will be a corresponding increased potential 

for applying evolutionary algorithms to more complex problems.  It is often the case that 



 
 
 
 

33

individual solutions can be evaluated independently of the evaluations assigned to competing 

solutions.  The evaluation of each solution can be handled in parallel and only selection 

requires some serial processing [26]. 

- Robustness to dynamic changes: Traditional methods of optimization are not 

robust to dynamic changes in the environment and often require a complete restart in order to 

provide a solution.  In contrast, evolutionary algorithms can be used to adapt solutions to 

changing circumstance.  The available population of evolved solutions provides a basis for 

further improvement and in most cases it is not necessary to reinitialize the population at 

random [26]. 

- Capability for self-optimization: Most classic optimization techniques require 

appropriate settings of variables.  This is true of evolutionary algorithms as well.  However, 

there are many research studies of using the evolutionary process itself to optimize these 

parameters as part of the search for optimal solutions [26]. 

- Ability to solve problems that have no known solutions: An advantage of 

evolutionary algorithms comes from the ability to address problems for which there are no 

human experts.  Although human expertise should be used when it is available, troubles with 

such expert systems are well known; the experts may not agree, may not be self-consistent, 

may not be qualified, or may simply be in error.  However, most of applications in artificial 

intelligence require human expertise.  They may be impressively applied to difficult problems 

requiring great computational speed, but they generally do not advance our understanding of 

intelligence.  In contrast, evolutionary provides a method for solving the problem of how to 

solve problems.  It is a recapitulation of the scientific method that can be used to learn 

fundamental aspects of any measurable environment [26]. 

The evolutionary algorithms consistently perform well approximating solutions to all 

types of problems because they do not make any assumption about the underlying fitness.  

They do not need gradient information and they can operate on each kind of parameter space, 

e.g. discrete, continuous, combinatorial, or even mixed variants [27].  They are successful in 

fields as diverse as engineering, industrial, management, art, biology, economics, marketing, 

operation research, social sciences, physics, politics, chemistry, and genetics.  There are many 

evolutionary algorithm techniques that differ in the implementation details and the nature of 

the particular applied problem, such as genetic algorithm, genetic programming, evolutionary 

programming, and evolutionary strategy.  In this research, evolutionary strategies and genetic 

programming are considered. 
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2.5.1 Evolutionary Strategies 

The evolutionary strategy (ES) is one of the main branches of evolutionary 

algorithms, which was developed by Rechenberg and Schwefel [28-32] at the Technical 

University of Berlin and has been extensively studied in Europe.  It was developed in order to 

conduct successive wing tunnel experiments for aerodynamic shape optimization, and it has 

been successfully used to solve various types of optimization problems.  Moreover, it is 

significantly faster than traditional genetic algorithms [32, 33, 34].  The natural representation 

of ES is a fixed-length real-valued vector, which is manipulated primarily by mutation 

operators designed to perturb the real-valued parameters in useful ways [26].  However, ES 

practitioners have incorporated recombination operators into their systems.  Usually, mutation 

and recombination have equal importance, as far as real-valued parameter optimization is 

considered, and they are applied to all individuals by default [25]. 

2.5.1.1 Basic ES Algorithm 

The basic ES algorithm, invented by Rechenberg, Schwefel, and Bienert in the 

mid-1960s, operates with population Ζ  of size ( μ +λ ) or ( μ , λ ) [25].  In these notations, μ  

stands for the number of parent individuals and λ  for the number of offspring.  Consider an 

optimization problem for the fitness function )(afitness  where a  is an N -dimensional object 

parameter vector in the object parameter space A , A∈a , 

( )Naaa ,,,: 21 K=a . (49)

An individual consists of an object parameter vector set a , the endogenous 

(i.e. evolvable) strategy parameter set s , and its fitness value )(afitness  

( ))(,,: asa fitnessv = . (50)

The endogenous strategy parameter set s  serves for the self-adaptation of the ES algorithm.  

It does not take part in the calculation of the fitness of the individual; however, it is passed to 

the offspring depending on the fitness value of the individual [25]. 

A population consists of μ  parents iv , μ,,1 K=i , and λ  descendants jv~ , 

λ,,1 K=j .  The parameters μ  and λ  are exogenous strategy parameters, i.e. they are not 

changed by ES [25].  The populations of the parents and the descendants at time t  are 

symbolized as )(t
μΖ  and )(~ t

λΖ , respectively. 

 



 
 
 
 

35

{ } ( ))()(
1

)()( ,, ttt
i

t vvv μμ K==Ζ  (51)

{ } ( ))()(
1

)()( ~,,~~~ ttt
j

t vvv μμ K==Ζ  (52)

Every point in the search space is an individual.  ES uses a population of μ  

individuals to conduct the search for possibly better solutions.  During each generation, λ  

new individuals are produced by reproduction, recombination, and mutation.  This means ES 

is simultaneously investigating several regions of the search space, which greatly decreases 

the amount of time required to locate good solutions [35].   

There are several different versions of ES.  The ( μ + λ )-ES and ( μ ,λ )-ES are 

two of the more common versions.  In the former, μ  parents produce λ  offspring. The 

parents and the offspring compete equally for survival.  In the latter, μ  parents produce 

λ > μ  offspring, but only the μ  best offspring survive.  Thus the lifespan of any solution is 

only a single generation [35].  The ( μ + λ )-ES and ( μ , λ )-ES can be expressed as the 

conceptual algorithm in Figure 2-19. 

 

 1 Begin 
 2  0:=t ; 
 3  ( )( ){ }( ))0()0()0()0( ,,: iii fitnessinitialize asa=Ζμ ; 
 4  Repeat 
 5   For 1:=j  To λ  Do Begin 
 6    jℑ  ( ))0(: μΖ= onreproducti ; 
 7    js  ( )jionrecombinats ℑ= _: ; 
 8    js~  ( )jmutations s_:= ; 
 9    ja  ( )jionrecombinat ℑ=: ; 
 10    ja~  ( )jmutation a=: ; 
 11   End; 
 12   ( )( ){ }jjj

t fitness asa ~,~,~:~ )( =Ζλ ; 
 13   Case selection_type Of 
 14    ( μ +λ ) : ( ))()()1( ~,: ttt selection λμμμ ΖΖ=Ζ + ; 
 15    ( μ , λ ) : ( ))()1( ~: tt selection λμμ Ζ=Ζ + ; 
 16   End; 
 17   1: += tt ; 
 18  Until stop_criterion; 
 19 End; 

  

Figure 2-19: The ES Algorithm 
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Each generation (iteration) of the ES algorithm takes a population of 

individuals (potential solutions) and modifies the problem parameters to produce offspring 

(new solutions).  The generation cycle takes place in the Repeat-Until-Loop (lines 4-18, 

Figure 2-19).  Every descendant is produced step by step in lines 5-12.  First, its parents are 

selected in line 6.  If the self-adaptation facility is also implemented, the set of strategy 

parameters will be treated next [25].  The recombination and the mutation are applied to the 

set of object parameters in lines 9-10.  Then, the new set of object parameters is evaluated 

according to its fitness.  The selection (lines 13-16) follows the procreation of the offspring 

population.  Lastly, the new parent population is built according to the type of the selection 

used [25].  Thereafter, the evolution starts anew, until the predefined stopping criterion is 

fulfilled [25].  As termination conditions, the standard stopping rules can be used: 

- resource criteria: 

  - maximum number of generations, 

  - maximum cpu-time  

- convergence criteria: 

  - in the space of fitness values, 

  - in the space of the object parameters, 

  - in the space of strategy parameters [32]. 

2.5.1.2 Fitness and Selection of ES 

The first step in the ES algorithm is to initialize the population Ζ , whose the 

type of components ia  of the object parameter vector a , and the search space A  spanned by 

them, depend on the optimization problem.  There are no restrictions to the applicability of 

the ES algorithm, i.e. all of the alternatives ℜ∈ia , or Ν∈ia , or Β∈ia  are allowed; 

moreover, mixed variants of these are realizable, as well as more complex data structures 

[25].  The initial population of individuals is randomly generated but, ideally, should be 

uniformly distributed throughout the search space so that all regions may be explored.   

The individuals are evaluated to determine their fitness.  The goal of having a 

fitness evaluation is to give feedback to the learning algorithm regarding which individuals 

should have a higher probability of being allowed to multiply and reproduce and which 

individuals should have a higher probability of being removed from the population [36].  The 

fitness function is calculated on what we have earlier referred to as the training set [36].  The 



 
 
 
 

37

fitness function should be designed to give graded and continuous feedback about how well a 

program performs on the training set [36]. 

A fitness oriented selection operator is needed for each evolutionary algorithm 

in order to guide the search into promising regions of the object parameter space [32].  Thus, 

selection is the antagonist to the variation operators (also referred to genetic operators: 

mutation and recombination); it gives a direction [32].  Selection in ES is just like breeding; 

only those individuals with the promising properties, e.g., high fitness values (objective 

function values), get a chance of reproduction [32].  This selection technique is also called 

truncation or breeding selection.  However, there are many choices for the selection 

techniques, and some of them are described. 

- Truncation Selection: This selection method is widely used in ES 

algorithms where it is known as ),( λμ  selection [36].  A number μ  of parents are allowed to 

breed λ  offspring, out of which the μ  best are used as parents for the next generation [36].  

The same method has been used for a long time in population genetics under the name 

truncation selection [36].  A variant of ES selection is )( λμ +  selection where, in addition to 

offspring, the parents participate in the selection process [36].  Plus selection guarantees the 

survival of the best individual found.  Since it preserves the best individual such selection 

techniques are also called elitist [32].  Elitism is a sufficient condition for a selection operator 

should obey on order to prove the ES’s global convergence property [32]. 

- Fitness-Proportional Selection [36]: Fitness-proportional selection is 

employed for generational selection and specifies probabilities for individuals to be given a 

change to pass offspring into the next generation.  An individual i  is given a probability of 

∑
=

i
ifitness

ifitness
iP

)(
)(

)( . (53)

Fitness-proportional selection has been the tool of choice for a long time in the genetic 

computation.  It has been criticized for attaching differential probabilities to the absolute 

values of fitness. 

- Ranking Selection [36]: Ranking selection is based on the fitness order, 

into which the individuals can be sorted.  The selection probability is assigned to individuals 

as a function of their rank in the population.  Mainly, linear and exponential ranking are used. 
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For linear ranking, the probability is a linear function of the rank: 

( ) ⎟⎟
⎠
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⎜⎜
⎝

⎛
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⎛

−
−

−+= −+−
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11)(

N
iPPP

N
iP , (54)

where NP −  is the probability of the worst individual being selected, and NP +  is the 

probability of the best individual being selected, and 2=+ +− PP  should hold in order for the 

population size to stay constant. 

For exponential ranking, the probability can be computed using a selection 

bias constant C : 

iC
C
CiP N

N
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−

=
1

1)(  (55)

with 10 << C . 

- Tournament Selection [36]: Tournament selection is not based on 

competition within the full generation but in a subset of the population.  A number of 

individuals, called the tournament size, is selected randomly, and a selective competition 

takes place.  Better individuals in the tournament are then allowed to replace the worse 

individuals.  In the smallest possible tournament, two individuals compete.  A better of the 

two is allowed to reproduce with mutation.  The result of the reproduction is returned to the 

population, replacing the loser of the tournament. 

The tournament size allows the user to adjust selection pressure.  A small 

tournament size causes a low selection pressure, and a large tournament size causes high 

pressure.  Tournament selection has recently a mainstream method for selection, mainly 

because it does not require a centralized fitness comparison between all individuals.  This is 

not only accelerates evolution considerably, but also provides an easy way to parallelize the 

algorithm. 

There are two main scenarios for generational selection [36].  The first 

scenario starts with a population of individuals with known fitness and performs a selection of 

individuals based on their fitness.  These are then subjected to variation operations like 

crossover and mutation or passed on untouched via reproduction into the next generation.  In 

this way, the pool of the following generation is filled with individuals.  The next generation 

usually consists of the same number of individuals as the former one, and fitness computation 

follows in preparation for another round of selection and breeding.  Figure 2-20(a) shows the 

procedure, known as mating selection [36]. 
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Another scenario is different.  It starts from a given population.  A usually 

larger set of offspring is generated by randomly selecting parents.  After fitness evaluation, 

this population is then reduced to the size of the original population.  Thus, a smaller 

population can be used, as the selection is applied to the pool of offspring, possibly including 

the parents.  Figure 2-20(b) outlines the procedure, also known as overproduction selection 

[36]. 

 

Figure 2-20: Two Selection Scenarios 

2.5.1.3 Genetic Operators of ES 

In order to create a new solution, ES uses two genetic operators, i.e. 

recombination and mutation.  Some solutions are selected from the parent population by a 

selection method, and then a recombination function is applied.  There are several 

recombining methods as following: 
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- No Recombination: In this method, the new solutions are randomly 

selected from μ  solutions. 

- Global Intermediary Recombination: The κ  solutions are randomly 

selected from μ  solutions.  A new solution v ′v  is the average of κ  solutions. 

∑=′ ivv vv

κ
1  (56)

- Local Intermediary Recombination: The κ  solutions are randomly 

selected from μ  solutions.  Each dimension of new solution ( ib′ ) is the average of two 

solutions from κ  selected solutions.  Weights of two solutions may be equal or random. 

ikiikii bubub ,, 21
)1( −+=′  

21=iu   or  [ ]( )1,0~ Uui  

( )},...,1{~, 21 κUkk  

(57)

ikb ,  is the i th dimension of solution },...,1{ κ∈k .  )(xU  is a random function that selects a 

value from x  by uniform random selection. 

- Discrete Recombination: Randomly select κ  solutions from μ  

solutions.  Each dimension of a new solution is randomly selected from κ  solutions. 

iki i
bb ,=′  

( )},...,1{~ κUki  
(58)

After recombination, the new solutions will be mutated.  The mutation operator 

is usually a basic variation operator in ES [32].  The design of mutation operators is problem-

dependent.  While there is not an established design methodology, some rules have been 

proposed by analyzing successful ES implementations and by the theoretical considerations 

on reachability, unbiasedness, and scalability [32]. 

- Reachability: Given a parental state, the first requirement ensures that 

any other (finite) state can be reached within a finite number of mutation steps or generations 

[32].  This is also a necessary condition for proving global convergence. 

- Unbiasness: The mutation is a variation operator.  Thus, it should not 

use any fitness information but the search space information from the parental population 

[32].  Therefore, there is no preference of any of the selected individuals (parents) in ES, and 

the variation operators should not introduce any bias [32].    
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- Scalability: The scalability requirement states that the mutation strength 

or the average length of a mutation step should be tunable in order to adapt to the properties 

of the fitness landscape.  The goal of adaptation is to ensure the evolvability of the ES system 

[32]. 

An example of the mutation operator is shown on real-valued search spaces.  

The standard deviation will be defined for this mutation.  Considering nℜ  search spaces and 

given the standard deviation σ  (mutation strength), the mutation of a  is 

( )amutation  = a + z , (59)

 with 

( ) ( )( )1,0,,1,0: 1 nNN Kσ=z , (60)

where the ( )1,0iN  are independent random samples from the standard normal distribution.  

The other variation of this mutation can be constructed by considering the 

standard deviation.  This standard deviation can be divided into three cases:  

Case 1: There is a standard deviation value that will be used for all dimensions of a . 

Case 2: There are n  standard deviation values.  Each standard deviation will be used for 

each dimension of a  (when a  is the n -dimensional vector). 

Case 3: There is a standard deviation vector; each element of this vector is a random number 

from a distribution. 

Besides, in each generation, the standard deviation can be also mutated by another mutation 

operator.   

2.5.2 Genetic Programming 

Genetic Programming (GP) is a form of evolutionary computation in which the 

individuals in the evolving population are computer programs rather than bit strings [22].  

Programs manipulated by GP are usually represented by a tree structure corresponding to the 

parse tree of the program.  The leaves of tree represent input variables or numerical constants.  

Their values are passed to nodes, which perform some numerical or program operation before 

passing on the result further towards the root of the tree [17].  To apply genetic programming 

to a particular domain, the user must define the primitive functions and the terminals [22].  

The genetic programming algorithm then uses an evolutionary search to explore the vast 

space of programs that can be described using these primitive functions and terminals [22].     
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2.5.2.1 Initializing a GP Population [36]  

The first step in actually performing GP is to initialize the population, which 

means creating a variety of program structures for later evolution.  One of the principle 

parameters of GP is the maximum size permitted for a program.  This parameter is expressed 

as the maximum depth of a tree or the maximum total number of nodes in the tree.  The 

initialization of a tree structure is fairly straightforward.  Trees are built from basic units 

called function set and terminal set.   

The function set is composed of the statements, operators, and functions 

available to the GP system.  The function set may be application-specific and be selected to fit 

the problem domain.  The range of available functions is very broad; it may use any 

programming construction that is available in any programming language.  Some examples 

follow: 

- Boolean Functions: AND, OR, NOT, XOR 

- Arithmetic Functions: PLUS, MINUS, MULTIPLY, DIVIDE 

- Transcendental Functions: TRIGONOMETRIC, LOGARITHMIC 

- Variable Assignment Functions 

- Indexed Memory Functions 

- Conditional Statements: IF-THEN-ELSE, SWITCH-CASE 

- Control Transfer Statements: GOTO, CALL, JUMP 

- Loop Statements: WHILE-DO, REPEAT-UNTIL, FOR-DO 

- Subroutines  

The terminal set is comprised of the inputs to the GP program, the constants 

supplied to the GP program, and the zero-argument functions with side-effects executed by 

the GP program.  In fact, a terminal lies at the end of every branch in a tree structure.  The 

functions and terminals used for GP should be powerful enough to be able to represent a 

solution to the problem. 

In common, there are two different methods for initializing tree structures, 

which are called full and grow.  Grow produces trees of irregular shape because nodes are 

selected randomly from the function and the terminal sets throughout the entire tree, except 

the root node, which uses only the function set.  Once a branch contains a terminal node, that 

branch has ended, even if the maximum depth has not been reached. 
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For example, we assume that the terminals and functions are 

{ }edcbaT ,,,,= , (61)

{ }%/,,,, ×−+=F . (62)

Figure 2-21 illustrates a tree that is initialized with grow method.  This tree represents the 

function ( )( ) ( )edcba +×− % .   

 

Figure 2-21: An Example of Tree - Initialized by the Grow Method 

Instead of selecting nodes randomly from the function and the terminal sets, 

the full method chooses only functions until a node is at the maximum depth.  Then, it 

chooses only terminals.  The result is that every branch of the tree goes to the full maximum 

depth.  If the number of nodes is used as a size measure, growth stops when the tree has 

reached the preset size parameter.  The tree in Figure 2-22 has been initialized by the full 

method with a maximum depth of three.  This tree represents the function ( ) ( )dcba +×% .   

 

Figure 2-22: An Example of Tree – Initialized by the Full Method 
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2.5.2.2 Genetic Operators of GP [22, 36] 

In evolutionary process, GP produces a new generation of individuals using 

crossover, mutation, and reproduction on each iteration.  These three principal GP genetic 

operators are described.   

- Crossover: The crossover operator combines the genetic material of two 

parents by swapping a part of one parent with a part of the other.   Tree-based crossover is 

described graphically in Figure 2-23.  The parents are shown in the upper half of the figure 

while the children are shown in the lower half. 

 

Figure 2-23: Crossover Operation on Two Parent Trees 
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The tree-based crossover in Figure 2-23 proceeds by the following steps: 

-- Choose two individuals as parents, based on mating selection policy, e.g., fitness-

proportional selection.   

-- Select a random sub-tree in each parent. In Figure 2-23, the selected sub-trees are shown 

highlighted with darker lines. 

-- Swap the selected sub-trees between two parents.  The resulting individuals are the 

children.  They are shown at the bottom of Figure 2-23.  

- Mutation: Mutation operates on only one individual.  Normally, after 

crossover has occurred, each child produced by the crossover undergoes mutation with a 

probability.  The probability of mutation is a parameter of the GP run.  When an individual 

has been selected for mutation, a point of the tree is randomly selected.  Then, the existing 

sub-tree at that point is replaced with a new randomly generated sub-tree.  The mutated 

individual is then placed back into the population.    

- Reproduction: The reproduction operator is straightforward.  An individual 

is selected.  It is copied, and the copy is placed into the population.  Hence, there are two 

versions of the same individual in the population. 

2.5.2.3 Fitness and Selection of GP [36] 

GP must choose the members of the population for applying the genetic 

operators such as crossover, mutation, and reproduction.  In making the choice, GP 

implements one of the most important parts of its model of the evolutionary learning, fitness-

based selection.  Fitness is the measure used by GP during simulated evolution of how well a 

program has learned to predict the outputs from the inputs.  Fitness functions are very 

problem-specific. 

One simple fitness function is to calculate the sum of the absolute value of the 

differences between actual output of the program and the output given by the training set.  A 

common alternative fitness function is to calculate the sum of the squared differences between 

the actual output and the prediction, called the squared error.  There are also other methods 

for calculating fitness.  In co-evolution methods for fitness evaluation, individuals compete 

against each other without an explicit fitness value.  In game-playing application, the winner 

in a game may be given a higher probability of reproduction than the loser.  Moreover, in 

some cases, two different populations may be evolved simultaneously with conflicting goals. 

After the quality of an individual has been determined by applying a fitness 

function, we have to decide whether to apply genetic operators to that individual and whether 



 
 
 
 

46

to keep it in the population or allow it to be replaced.  This task is called selection and 

assigned to a special operator, the selection operator.  There are various different selection 

operators, and a decision about the method of selection is one of the most important decisions 

to be made in a GP run.  Selection is responsible for the speed of evolution and influence to 

the success of an evolutionary algorithm.  Some details of selections have been described in 

ES.  Those methods of selection can be applied for GP in the same way.    

2.5.2.4 Basic GP Algorithm [36] 

The preliminary steps for making a GP run are defining the terminal set, the 

function set, and the fitness function.  Then, the parameters are defined such as population 

size, maximum individual size, crossover probability, mutation probability, selection method, 

and termination criterion, e.g., the maximum number of generations.  For the basic GP run, it 

uses a generational evolutionary algorithm.  Each generation is represented by a complete 

population of individuals.  An entire new generation is created from the old generation in one 

cycle.  The new generation replaces the old generation and the cycle continues.  The 

execution cycle of the GP algorithm includes the following algorithms. 

 

 1 Begin 
 2  0:=t ; 
 3  )(tPinitialize ; 
 4  )(tPevaluate ; 
 5  Repeat 
 6   1: += tt ; 
 7   )1()( −tPfromtPselect ; 
 8   )(tPrecombine ; 
 9   )(tPevaluate ; 
 10  Until stop_criterion; 
 11 End; 

  

Figure 2-24: The GP Algorithm 

The algorithm in Figure 2-24 shows the structure of a basic GP algorithm.  

)(tP  denotes the population at generation t .  The population is recombined through crossover 

and mutation process.  The evolutionary strategies and the genetic programming will be 

applied to this research in order to optimize the parameters of kernel functions or search the 

optimal kernel functions. 
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2.6 Related Works 

There are many research studies related to support vector machines, kernel methods, 

parameter selection, and evolutionary algorithms.  However, this research focuses on the 

combined kernel functions and the parameter adjustment.  Thus, the related works will be 

divided into two topics, i.e. construction of kernel functions and parameter selection.     

2.6.1 Construction of Kernel Functions 

Many research studies introduce the kernel methods and support vector machines.  An 

Introduction to Kernel-Based Learning Algorithm [9] is an example of research about kernel 

methods.  This paper was proposed by Müller, Mika, Rätsch, Tsuda, and Schölkopf.  They 

introduced support vector machines, kernel Fisher discriminant analysis, and kernel principle 

component analysis.  They gave background about Vapnik-Chervonenkis theory and kernel 

feature spaces.  They illustrated the usefulness of kernel algorithms by discussing applications 

such as optical character recognition (OCR) and DNA analysis. 

In order to construct a new kernel function, many research studies have been 

proposed to improve the kernel methods with the mathematical techniques.  Zhang, Zhou, and 

Jiao have proposed Support Vector Machines Based on Scaling Kernels [37].  In this research 

study, scaling kernels were presented.  These kernels are a multi-dimensional scaling function 

with translation vectors.  SVMs based on scaling kernels can approximate any objective 

function in some space.  After that, they proposed Wavelet Support Vector Machine [38].  The 

wavelet kernel was also a kind of multi-dimensional wavelet functions that can approximate 

arbitrary nonlinear functions.  The existence of wavelet kernels was proved by the result of 

theoretic analysis.  Computer simulations showed the feasibility and validity of wavelet 

support vector machines in regression and pattern recognition. 

Fuzzy logic is another approach that was applied to kernel methods in several 

manners.  Fuzzy Kernel Perceptron [39] that was proposed by Jiun-Hung Chen and Chu-Song 

Chen is a research in the area of fuzzy logic.  This research incorporated the fuzzy perceptron 

(FP) and the Mercer’s kernels.  FP was adopted to find a linear separating hyperplane using 

the fuzzy theory so that vectors of high uncertainty have less influence on the training results.  

In this paper, FP was extended to become the fuzzy kernel perceptron (FKP) with the help of 

Mercer’s kernels.  The experiments compared FKP with the kernel perceptron, FP, and SVM. 

Moreover, in Fuzzy Support Vector Machines [40], a fuzzy membership was applied 

to each input vector and the SVMs were reformulated.  The different input vectors made 

different contributions to the learning of decision surface.  After that, this work was extended 
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by Zonghai Sun and Youxian Sun in Fuzzy Support Vector Machine for Regression 

Estimation [41]. They provided the fuzzy SVM for regression problems to construct the 

multi-layer SVM.  In the first layer, a fuzzy membership was applied to each data point and 

SVMs were reformulated.  The second layer was the generalize SVM which made the kernel 

function may not satisfy the Mercer’s condition.  Besides, in [42], the fuzzy logic was applied 

to the weight vector and the bias terms of SVM, and the desired outputs in training samples 

were also fuzzy numbers. 

In research of Ayat et al. [5], a new SVM kernel family was purposed.  KMOD-A 

New Support Vector Machine Kernel with Moderate Decreasing for Pattern Recognition [5] 

explained the distinctive properties that allowed better discrimination in feature space.  The 

experimental results showed that KMOD was better than RBF kernel and exponential RBF 

kernels on the spiral problem.  In addition, a digital recognition task was processed using their 

kernel.  The results show comparable performances to state-of-the-art kernels. 

Moreover, there are many research studies that propose new kernel functions for 

support vector machines such as hyperkernels [43], triangular kernel [44], asymmetric kernel 

[45], and time-alignment kernel [46].  These kernels are suitable for some applications or 

some datasets.  Although these new kernel functions yields better results, they are not widely 

used in practical applications.  Many research studies and various applications still use the 

common kernels such as linear, polynomial, and RBF kernels.  The research of Debnath and 

Takahashi (2004) [47] described that several authors used the RBF kernel and it was always 

the best for their application according to the various experimental results.  Moreover, they 

tried to improve only the polynomial kernel to compare with the RBF kernel, whereas the 

other kernels were not considered.  

However, there are few research studies that consider combination of well-known 

kernels.  Improved SVM Regression using Mixtures of Kernels [48] is an example proposed 

by Smits and Jordaan.  This research showed that the RBF kernel had good interpolation 

properties while the polynomial kernel had better extrapolation abilities.  Therefore, they 

combined the advantages of polynomial and RBF kernels by using mixtures. 

Another paper about combined kernels is Support Vector Machine with a Hybrid 

Kernel and Minimal Vapnik-Chervonenkis Dimension [21].  This paper presents a mechanism 

to train support vector machines with a hybrid kernel and minimal Vapnik-Chervonenkis 

dimension.  The paper developed a hybrid kernel function and a sufficient condition to be an 

admissible Mercer kernel based on common Mercer kernels such as polynomial, radial basis 

functions, and two-layer neural networks.  Experimental results show that SVM with the 

hybrid kernel outperforms that with a single common kernel in terms of generalization power. 
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The genetic programming is used to evolve a kernel for an SVM classifier in the 

research of Howley and Madden (2005) [17], but this approach does not guarantee that the 

kernel obey Mercer’s theorem.  In Kernel Trees for Support Vector Machines [49], Methasate 

and Theeramunkong applied the genetic programming on the basic kernel functions for 

creating a new kernel function, which it is vary similar to a part of our research.  Then, their 

approach used the gradient search to find the set of optimal parameters.   

Although they explained that each kernel tree was evaluated by calculating its fitness 

on 5-folds cross-validation in the genetic programming process, they did not describe the 

detail of fitness computation.  Moreover, the method to estimate the parameters of kernel 

trees in the evolutionary process was not illustrated; the kernel trees with the different 

parameters should yield the difference results and the different fitness scores, while the 

parameters of a kernel tree will be tuned by the gradient search after the best kernel tree was 

selected. 

In this research, we proposed an algorithm for generating the hybrid kernel functions 

and their parameters at the same time.  Our algorithm proposes to combine the genetic 

programming and the evolutionary strategy; the similar processes from these both algorithms 

are merged in a new algorithm.  The obtained hybrid kernel functions are corresponding to 

the Mercer’s theorem and they are more flexible to the problems under consideration. 

2.6.2 Parameter Selection 

The parameter selection is a problem in the learning algorithms.  There are many 

research studies that attempt to solve the problem of parameter selection for SVM by using 

meta-heuristic methods.  In a work of Chapelle et al., (2002) [50], an algorithm that alternates 

the SVM optimization with a gradient step is employed.  Although this algorithm is useful 

and accurate, there are a lot of details in the computation that make this algorithm quite 

complex.  This algorithm required a gradient computation which for general kernel functions 

might either not be possible or at least be very difficult.  Moreover, the gradient descent may 

get stuck in local optima.   

Most of research studies on parameter selection used the evolutionary algorithms 

such as the genetic algorithms (GA) or the evolutionary strategies (ES).  Eads et al. proposed 

Genetic Algorithms and Support Vector Machines for Time Series Classification [51].  This 

paper introduces a hybrid algorithm that employs evolutionary computation for feature 

extraction, and a support vector machine for classification.  They tested the proposed 

algorithm on a lightning classification task.  It yielded better results in terms of cross-

validation fitness measure, although the difference was not large.   
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In Feature Selection for Support Vector Machines by Means of Genetic Algorithms 

[52] by Fröhlich, Chapelle, and Schölkopf, a special genetic algorithm was proposed to solve 

the feature selection problem that is a difficult combinatorial task in machine learning.  They 

optimized kernel parameters such as the regularization parameter of SVM by means of 

genetic algorithms.  Moreover, Xuefeng and Fang (2002) [53] and Chunhong and Licheng 

(2004) [54] have proposed other research studies that used GA for SVM parameter selection.   

Furthermore, the evolutionary strategies are still used in many applications.  In 

research of deDoncker, Gupta, and Greenwood (1996) [55], the evolutionary strategies were 

used for computing solutions of multivariate integration problems.  Adaptive integration 

algorithms and evolutionary strategies were able to be parallelized easily.  Many research 

studies use the evolutionary strategies for model selection.  A method proposed by Friedrichs 

and Igel [35] chooses parameters of SVM by using evolutionary strategy.  The covariance 

matrix adaptation evolution strategy (CMA-ES) was used to determine a kernel from a 

parameterized kernel space and to control the regularization.  The ES method proposed in this 

paper was simpler; the random process was used to find the optimal parameters and only 

recombination and mutation methods were used to create new solutions.  Their experiments 

on benchmark datasets show that ES improved the results achieved by grid search and was 

able to handle much more kernel parameters.   

There are other evolutionary research studies on model selection for support vector 

machines such as Asynchronous Parallel Evolutionary Model Selection for Support Vector 

Machines (Runarsson and Sigurdsson 2004) [56] and Multi-objective Model Selection for 

Support Vector Machines (Igel 2005) [57].  Both of these research studies attempt to use the 

evolutionary strategies for optimizing parameters of SVMs.  Runarsson and Sigurdsson [56] 

have proposed asynchronous parallel evolution strategy for the model selection of SVM, and 

Igel [57] has proposed to use the multi-objective in the evolutionary algorithm.  The 

evolutionary strategies were successfully applied to their applications and datasets.  

Therefore, the evolutionary strategy is an interesting algorithm for adjusting parameters in our 

research.   

The model-based global optimization [58] was proposed by Fröhlich and Zell in 2005 

to deal with the model selection problems.  This research is based on the idea of learning an 

online Gaussian process using a sampling technique to search the solutions in parameter 

space.  Besides, in Optimal Parameter Selection in Support Vector Machines [59], a nonlinear 

programming algorithm is an optimization algorithm which was applied to the parameter 

selection for SVM.  The particle swarm optimization (Guo, et al. 2008) [60] is another meta-

heuristic algorithm that was used for adjusting the hyperparameter of SVM.  This method 
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does not need any priori knowledge and can be used to determine multiple hyperparameters at 

the same time.  Although the concept of particle swarm is different from the evolutionary 

algorithm, it is a dynamic system and uses a fitness function to evaluate the candidate 

solutions, which are similar to the evolutionary algorithm.   

We notice that the parameter selection of SVM is an optimization problem in the 

large continuous search space, and the evolutionary algorithms and the dynamic systems are 

only the meta-heuristic algorithms that were used to solve this problem.   We do not have any 

knowledge about the suitable kernel function and its parameters, thus only the performance 

on classification or approximation of SVM is used to guide the search algorithms.  For the 

fitness function in the evolutionary process, many research studies use the classifier to 

measure the classification accuracy or error on the training data.   

However, Eads, et al. [51] compared the classification accuracy on the training data 

with the cross-validation accuracy.  Their experimental results showed the cross-validation 

score is better than the simple score.  There are some research studies that analyzed the 

general performance of SVM and proposed to estimate the true error of learned classifiers.  In 

Generalization Performance of Support Vector Machines and Other Pattern Classifiers [24], 

the bound of generalization performance for large margin linear classifier are clearly 

described.  Therefore, the generalization performance of SVM is an interesting alternative for 

estimating the classification performance in the evolutionary process. 



CHAPTER III    

ADAPTIVE COMBINED KERNEL FUNCTIONS 

In this chapter, the adaptive combined kernel functions are proposed for SVM on 

both classification and regression problems.  These kernel functions are the non-negative 

linear combination of multiple conventional kernels.  The weight of combination and the 

parameters of sub-kernels are the adjustable parameters of these combined kernel functions.  

These parameters and some parameters of SVM will be investigated by an evolutionary 

algorithm.  Moreover, the objective function in the evolutionary process will be carefully 

designed. 

3.1 Combined Kernel Functions  

There are many kernel functions that can be used in SVM and other kernel methods.  

In general, the choice of kernel function has a crucial effect on the classification performance.  

Different kernel functions make the different results.  If the unsuitable kernel function is 

selected, the results may not achieve the excellent performance.  However, many research 

studies and applications still use the common kernel function, such as linear, polynomial, and 

radial basis function (RBF) kernels.  These common kernel functions may not be sufficient 

for the complex or large problems.  Most of such problems require a more complex separating 

hyperplane, whose complexity depends on the properties of the used kernel.  Hence, if the 

good characteristics of several common kernel functions are combined in one kernel function, 

it should make a more complex hyperplane and yield better results on the complex problems.   

We also notice that all common kernel functions in the literature are either inner-

product-based functions or distance-based functions.  The linear kernel function and the 

polynomial kernel function are samples of the popular inner-product-based kernels, and the 

RBF kernel is the most successful distance-based kernel.  However, this research regards that 

the linear kernel function is a polynomial kernel function at degree 1.  Hence, the polynomial 

kernel function and the RBF kernel function are two functions that will be considered for 

creating a new combined kernel.  The general forms of polynomial and RBF kernel functions 

are illustrated as following: 
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 ( )dPoly cxxdxxK +′⋅=′ ),,(  (63)

 ( )2exp),,( xxxxK RBF ′−−=′ γγ  (64)

where d  is the degree of the polynomial kernel function and γ  is the width of the RBF 

kernel function.   

In order to obtain a more flexible kernel function, the combination methods are then 

considered.  When the multiple kernel functions are combined, they should correspond to the 

Mercer’s theorem.  Hence, the closure properties of kernel functions are the good criterions 

for constructing new kernel functions.  The fundamental operations for combining the 

multiple kernel functions in this research are (i) the addition of kernel functions, (ii) the 

multiplication between a non-negative scalar number and a kernel function, and (iii) the 

multiplication of kernel functions.  When the kernel functions are combined by these 

operations, the new combined kernels still correspond to the Mercer’s theorem.  The proving 

processes of these operations are shown in Corollary 3-1.    

Corollary 3-1.  Let ),(1 xxK ′  and ),(2 xxK ′  be Mercer’s kernels, and a  be a non-negative real 

value.  Then,    

(i) the addition of two Mercer’s kernels is a Mercer’s kernel,  

(ii) the scalar multiplication between a non-negative real value and any Mercer’s kernel 

is a Mercer’s kernel, and 

(iii) the multiplication of two Mercer’s kernels is a Mercer’s kernel.  

Proof (i).  Let 

),(),(),( 21 xxKxxKxx ′+′=′Κ . (65)

According to the Mercer’s theorem, we know that 

0)()(),(1 ≥′′′∫∫ xddxxgxgxxK ,  g∀  (66)

and  

0)()(),(2 ≥′′′∫∫ xddxxgxgxxK ,  g∀ . (67)

Therefore, 

 0)()(),()()(),( 21 ≥′′′+′′′ ∫∫∫∫ xddxxgxgxxKxddxxgxgxxK ,  g∀ , (68)
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 ( ) 0)()(),(),( 21 ≥′′′+′∫∫ xddxxgxgxxKxxK ,  g∀ , (69)

 0)()(),( ≥′′′Κ∫∫ xddxxgxgxx ,  g∀ . (70)

Hence, ),(),(),( 21 xxKxxKxx ′+′=′Κ  is a Mercer’s kernel. � 

Proof (ii).  Let 

),(),( 1 xxKaxx ′⋅=′Κ . (71)

According to the Mercer’s theorem,  

 0)()(),(1 ≥′′′∫∫ xddxxgxgxxK ,  g∀ . (72)

Since a  is a non-negative real value, therefore 

 0)()(),(1 ≥′′′⋅ ∫∫ xddxxgxgxxKa ,  g∀ , (73)

 0)()(),(1 ≥′′′⋅∫∫ xddxxgxgxxKa ,  g∀ , (74)

 0)()(),( ≥′′′Κ∫∫ xddxxgxgxx ,  g∀ . (75)

Hence, ),(),( 1 xxKaxx ′⋅=′Κ  is a Mercer’s kernel. � 

Proof (iii).  Let 

),(),(),( 21 xxKxxKxx ′′=′Κ . (76)

According to the Mercer’s theorem, we know that  

0)()(),(1 ≥′′′∫∫ xddxxgxgxxK ,  g∀  (77)

and 

0)()(),(2 ≥′′′∫∫ xddxxgxgxxK ,  g∀ . (78)

Moreover, both ),(1 xxK ′  and ),(2 xxK ′  are Mercer’s kernel function, then ),(1 xxK ′  can be 

expanded in terms of kψ : 

∑
∞

=

′=′
1

1 )()(),(
k

kkk xxxxK ψψω  (79)

and ),(2 xxK ′  can be expanded in terms of kΦ : 
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∑
∞

=

′ΦΦ=′
1

2 )()(),(
k

kkk xxxxK λ  (80)

with 0≥kω  and 0≥kλ , respectively. 

We need to show that  

 0)()(),( ≥′′′Κ∫∫ xddxxgxgxx ,  g∀ , or (81)

 0)()(),(),( 21 ≥′′′′∫∫ xddxxgxgxxKxxK ,  g∀ . (82)

First, we define dxxgdu )(=   and  xdxgud ′′=′ )( .  Therefore,  

 ∫∫ ′′′Κ xddxxgxgxx )()(),(   ∫∫ ′′Κ= udduuu ),(  

  ∫∫ ′′′= udduuuKuuK ),(),( 21  

  ∫∫ ∑ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′ΦΦ′=
∞

=

udduuuuuK
k

kkk
1

1 )()(),( λ  [by (80)] 

  ∫∫ ∑ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′ΦΦ′=
∞

=

udduuuuuK
k

kkk
1

1 )()(),(λ  

  ∑ ∫∫
∞

=

′′ΦΦ′=
1

1 )()(),(
k

kkk udduuuuuKλ  

  ∑ ∫∫
∞

=

′′ΦΦ′=
1

1 )()(),(
k

kkk udduuuuuKλ . (83)

From (77), we have 

 0)()(),(1 ≥′′ΦΦ′∫∫ udduuuuuK kk , for ∞= ...,,2,1k . (84)

Moreover, from (80), we know that 0≥kλ , for ∞= ...,,2,1k .  Thus 

 0)()(),(1 ≥′′ΦΦ′∫∫ udduuuuuK kkkλ , for ∞= ...,,2,1k . (85)

Therefore 

0)()(),(
1

1 ≥′′ΦΦ′∑ ∫∫
∞

=k
kkk udduuuuuKλ . (86)

From (83) and (86), we get  

0)()(),( ≥′′′Κ∫∫ xddxxgxgxx . (87)

Hence, ),(),(),( 21 xxKxxKxx ′′=′Κ  is a Mercer’s kernel. � 
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From these fundamental operations, an approach to combine multiple kernels is the 

non-negative linear combination of multiple kernel functions.  By Corollary 3-1, (i) and (ii), 

the proof of this kernel is rather obvious.  With two kinds of kernel functions and this linear 

combination, there are three new combined kernel functions that can be possible, i.e. (i) the 

non-negative linear combination of multiple RBF kernels at different scales, (ii) the non-

negative linear combination of multiple polynomial kernels at different degree, and (iii) the 

non-negative linear combination of polynomial kernels and RBF kernels.  Furthermore, (iv) 

the multiplication of polynomial and RBF kernels is an alternative that will also be considered 

in this research.  The proposed combined kernels allow better discrimination in the feature 

space, and the mathematical forms of these combined kernels are described in this section.     

3.1.1 Multi-Scale RBF Kernel Function 

The Gaussian RBF kernel is widely used in many problems.  It uses the Euclidean 

distance between two points in the original space to find the correlation in the augmented 

feature space.  The points very close to each other are strongly correlated whereas points far 

apart have uncorrelated image in the augmented space [5].  This correlation is rather smooth.  

There is only one parameter for adjusting the width of RBF, which is not powerful enough for 

some complex problems.  

In order to get a better kernel, one possible way is to adjust the velocity of decrement 

in each range of distance between two points.  Moreover, the obtained kernel should maintain 

the good characteristic of the RBF kernel that any close points are strongly correlated.  To 

achieve these behaviors, the non-negative linear combination of multiple RBF kernels at 

different scales is proposed.  When the multiple RBF kernels are combined, this new kernel 

function is more flexible than its component kernels.   

The correlations in feature space (relations between kernel functions and the distance 

between two points in the original space) of the single RBF kernel and the multi-scale RBF 

kernels are displayed in Figure 3-1.  This figure shows that the correlations of distance 

between two points in the RBF kernel are rather smooth, while those of 2-RBF (2 terms of 

RBF sub-kernels are combined) and 3-RBF (3 terms of RBF sub-kernels are combined) have 

more variable shape.  This can be interpreted that the increase in the number of adjustable 

parameters provides a more adaptive kernel. 
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Figure 3-1: Correlations of Distance between Two Points in RBF, 2-RBF, and 3-RBF Kernels

The analytic expression of the multi-scale RBF kernel function is the following: 

∑
=

− ′=′
n

i
iRBFiRBFn xxKaxxK

1
),,(),( γ  (88)

where n  is a positive integer, 0≥ia  for ni ,...,1=  are the arbitrary non-negative weighting 

constants, and  

)exp(),,( 2xxxxK iiRBF ′−−=′ γγ  (89)

is the RBF kernel with the width iγ  for ni ,...,1= . 

When multiple RBF functions are combined, the results of classification are more 

flexible than using a single RBF function.  The examples of classification with a simple RBF 

kernel and a combination of two RBF kernels are showed in Figure 3-2.  In these examples, 

the training data are non-linearly separable.  The SVM with a single RBF and 2-RBF (the 

multi-scale RBF kernel with 2=n ) kernels can correctly classify the data.  However, the 2-

RBF kernel yields the result that is more flexible and easier to comprehend. 
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(a) SVM with RBF Kernel Function   

 
(b) SVM with 2-RBF Kernel Function 

Figure 3-2: Examples of Classification 

When n  terms of sub-kernels are combined, this new combined kernel function has 

n2  parameters; n  parameters for non-negative weights of combination and n  parameters for 

the width of RBF sub-kernel functions.  However, we notice that the number of parameters 

can be reduced to 12 −n  by fixing a value of the first weight parameter to 1.  The multi-scale 

RBF kernel function becomes as follows, 

∑
−

=
− ′+′=′

1

1
0 ),,(),,(),(

n

i
iRBFiRBFRBFn xxKaxxKxxK γγ . (90)
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This multi-scale RBF kernel function still corresponds to the Mercer’s theorem.  This 

is because the RBF kernel is a well-known Mercer’s kernel, and thus the non-negative linear 

combination of RBF kernels is an admissible kernel function by the Mercer’s theorem.  

Moreover, this combined kernel function is more flexible as it has more adjustable 

parameters.  The performance of the multi-scale RBF kernel function in equation (90) will be 

evaluated on classification and regression tasks in the next chapter. 

3.1.2 Multi-Degree Polynomial Kernel Function 

Although the non-negative linear combination of multiple polynomial kernels is still a 

polynomial kernel function, the multi-degree polynomial kernel function has more adjustable 

parameters.  Therefore, this kernel function is more flexible than the conventional polynomial 

kernel.  In Figure 3-3, we show that the value of single polynomial degree 2 is a parabola 

curve while the values of inner product are varied.  When 2 terms of polynomial kernels and 3 

terms of polynomial kernels are combined, the curve is changed. 

Figure 3-3: Correlations of Inner Product between Two Points in Polynomial, 2-Polynomial, 
and 3-Polynomial Kernels 

 



 
 
 
 

60

The analytic expression of this multi-degree polynomial kernel is  

∑
=

− ′=′
n

i
iPolyiPolyn dxxKaxxK

1
),,(),(  (91)

where n  is a positive integer, 0≥ia  for ni ,...,1=  are the arbitrary non-negative weighting 

constants, and  

( ) id
iPoly xxdxxK 1),,( +′⋅=′  (92)

is the polynomial kernel at the degree id  for ni ,...,1= . 

The degree of each polynomial sub-kernel is the adjustable parameter.  Therefore, 

when n  polynomial kernels are combined, there are n  integer valued parameters for the 

degree of polynomial kernels and n  real-valued parameters for the weight of combination.  

By the same idea with the multi-scale RBF kernel, the number of parameters of multi-degree 

polynomial kernel can be reduced from n2  parameters to 12 −n  parameters, and the multi-

degree polynomial kernel becomes 

∑
−

=
− ′+′=′

1

1
0 ),,(),,(),(

n

i
iPolyiPolyPolyn dxxKadxxKxxK , (93)

and this form of multi-degree polynomial kernel will be tested in the next chapter. 

3.1.3 Linear Combination of Polynomial and RBF Functions 

As described earlier, the polynomial kernel is an inner-product-based kernel fucntion, 

whereas the RBF kernel is a distance-based kernel function.  The non-negative linear 

combination of polynomial and RBF kernels is one way to combine the inner-product-based 

kernels and the distance-based kernels.  We expect that their advantages will be integrated in 

this combined kernel.  Furthermore, both polynomial and RBF kernels are the admissible 

kernels that correspond to Mercer’s theorem.  Then, the non-negative linear combination of 

polynomial and RBF kernels can be proved to satisfy the Mercer’s theorem.  The different 

kernel functions with the different parameters are combined with including weights, and the 

general form of this combined kernel function is  

( ) ( ) ∑∑
==

−+− ′+′=′
m

i
iRBFi

n

i
iPolyiRBFmPolyn xxKbdxxKaxxK

11
),,(),,(),( γ , (94)

where n  and m  are the positive integer numbers, 0≥ia  for ni ,,2,1 K= , 0≥ib  for 

mi ,,2,1 K= , ),,( iPoly dxxK ′  is the polynomial kernel at the degree id , and ),,( iRBF xxK γ′  is 

the RBF kernel at the width iγ . 
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From (94), when n  terms of polynomial sub-kernels and m  terms of RBF sub-

kernels are combined, there are )(2 mn +  parameters ( n  integer numbers for the degree of 

polynomial sub-kernels, m  real numbers for the width of RBF sub-kernels, and mn +  real-

valued numbers for adjusting the weights of combination).  However, there is a simpler 

version of this combination, which is the addition between polynomial and RBF kernels.  

Two different sub-kernel functions are added with including weights, as the following:   

),,(),,(),( γxxKqdxxKpxxK RBFPolyRBFPoly ′⋅+′⋅=′+ , (95)

where p  and q  are any positive real values.  Since, p  and q  are arbitrary constants, we can 

reduce the number of parameters by the following representation: 

),,()1(),,(),( γxxKpdxxKpxxK RBFPolyRBFPoly ′⋅−+′⋅=′+ , (96)

where [ ]1,0∈p .  Equation (96) can be called the convex combination of polynomial and RBF 

kernels. 

3.1.4 Multiplication of Polynomial and RBF Functions 

The other combining method is the kernel multiplication.  However, the 

multiplication of several RBF kernels does not change the general form of RBF kernel, as the 

following: 

 ∏
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Although the multiplication of several polynomial kernels is also a polynomial kernel, it is 

more flexible than the single polynomial kernels.  Therefore, the general form of 

multiplication of polynomial and RBF kernels is  

( ) ),,(),,(),(
1

γxxKdxxKxxK RBF

n

i
iPolyRBFPolyn ′⋅⎟⎟
⎠

⎞
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⎛ ′=′ ∏
=

×− , (98)

where n  is a positive integer, ),,( iPoly dxxK ′  is the polynomial kernel at the degree id , and 

),,( γxxK RBF ′  is the RBF kernel at the width γ .  Notice that this combined kernel does not 

include the weights, because the multiplication between a constant value and the kernel 

function does not affect to the performance of SVM. 

However, the form of multiplication of polynomial and RBF kernels in (98) may be 

too complicated for applying in real problems.  Therefore, we propose to use the simpler form 
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of multiplication of two kernel functions that may be less flexible than (98).  This kernel is 

the multiplication of a polynomial sub-kernel and an RBF sub-kernel, as the following:  

),,(),,(),( γxxKdxxKxxK RBFPolyRBFPoly ′⋅′=′× . (99)

A degree of polynomial sub-kernel and the weight of RBF sub-kernel are two adjustable 

parameters of this combined kernel function.   

The product of these two kernels is both inner-product-based and distance-based 

kernel.  The polynomial and RBF kernels are the Mercer’s kernels, thus the multiplication of 

polynomial and RBF kernels is also a Mercer’s kernel.  The proving process of this 

multiplication of kernel functions was shown in the early part of this chapter.  Although there 

are other combinations of kernels that use both addition and multiplication operators, they 

will not be suggested in this chapter because they do not have the general form and they may 

be too complicated for using in the real world problems. 

3.2 Evolutionary Techniques for Support Vector Machines  

When the combined kernel functions are used, there are more adjustable parameters.  

In most cases, we do not have any prior knowledge about these parameters.  Moreover, there 

are some parameters of SVM that should also be adjusted.  The regularization parameter ( C ) 

is a parameter of SVM’s learning that appears on both support vector classification (SVC) 

and support vector regression (SVR).  The deviation of approximation ( ε ) is also an 

adjustable parameter in SVR.  These parameters and the parameters of kernel functions are 

called hyperparameter.   

In order to obtain appropriate values of these parameters, the evolutionary strategy 

(ES) is considered.  This algorithm can search the optimal values of these parameters by using 

an objective function (or fitness function) that was pre-defined.  Therefore, it is very suitable 

for our parameter selection problem because we do not have any knowledge but we have only 

a goal to optimize the performance of SVM on a given task.  Although there are several 

variations of ES, we choose to use the ( λμ + )-ES where both μ  parents and λ  offspring 

compete equally for survival.  With the ( λμ + )-ES, the good solution will be selected 

always, and thus it does not lose during the evolutionary process.   

The (5+10)-ES will be used throughout this research.  This algorithm uses 5 solutions 

to produce 10 new solutions, which the population size is not large.  Although the 

evolutionary computing can be implemented by parallel programming, it is more convenient 

to implement and run on a computer.  When the population size of ES is small, such as (1+1)-
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ES, the population may lack diversity in each generation and a large number of generations 

may be required to converge to the optimal solutions.  In opposite, when the values of μ  and 

λ  are high then the algorithm may need a lot of computation resources for each generation of 

ES but may require only a few generations to obtain the optimal solutions.  The (5+10)-ES is 

a choice of ( λμ + )-ES, which can preserve the diversity of population and does not require a 

lot of computational resources for each generation.  Thus, it is suitable for adjusting the 

parameters of SVM and the combined kernels.  The algorithm of (5+10)-ES is shown in 

Figure 3-4. 

 

 0=t ; 

 initialize  ( 51 ,..., vv vv  , σv ); 

 evaluate )(),...,( 51 vfitnessvfitness vv ; 

 while ( TerminatedConditions <> TRUE ) do 

  for  1=i   to  10   do 

   iv ′v  = recombine ( 51 ,..., vv vv ); 

   iv ′v  = mutate )( iv ′v ; 

   evaluate )( ivfitness ′v ; 

  end 

  ( 51 ,..., vv vv ) = select( 51 ,..., vv vv , 101 ,..., vv ′′ vv );  

  σv = mutate )(σσ
v ; 

  1+= tt ; 

 End 

Figure 3-4: (5+10)-ES Algorithm 

This algorithm starts with 0th generation ( 0=t ) and selects μ  solutions ( μvv vv ,...,1 ) 

with standard deviation σv  using randomization or assigning initial values.  After that, this 

algorithm will be iterated to create new better solutions while the terminated conditions are 

not true.  This algorithm uses these selected 5 solutions to produce 10 new solutions by a 

recombination method.  These new solutions are mutated and evaluated, and only the 5 fittest 

solutions are selected from 5+10 solutions to be the parents in the next generation.  These 

processes will be repeated until a fixed number of generations have been produced and 

evaluated or earlier if the acceptance criterion is reached. 
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Normally, this algorithm will be terminated if and only if t  exceeds a predefined 

maximum generation or the optimal solution is found.  In this research, we use the maximum 

number of generations as the stopping criterion of this (5+10)-ES algorithm.  In our 

experiments, the maximum number of generations is fixed as 1000.  Although the high 

quality solutions can be found with fewer generations for some datasets, we want to ensure 

that the high quality solutions can be found for all datasets in our experiments.  A large 

number of generations does not decrease the classification performance.  However, the 

maximum number of generations will be restricted by the running time allowed to run our 

(5+10)-ES algorithm.  The details of each step in our (5+10)-ES algorithm are described in 

the following. 

3.2.1 Initialization 

Let vv  be the non-negative real-valued vector of all parameters.  The vector vv  

depends on the used kernel function and the problem under consideration.  In the 

classification problems, the regularization parameter of SVM and the parameters of kernel 

function are adjusted by the ES algorithm.  Therefore, for the multi-scale RBF kernel 

function, the vector vv  has n2  dimensions and it is represented in the form: 

vv = ( C , 0γ , 1a , 1γ , 2a , 2γ , … , 1−na , 1−nγ ), (100) 

where C  is the regularization parameter, iγ  for 1,...,0 −= ni  are the widths of RBFs, ia  for 

1,...,1 −= ni  are the weights of RBFs, and n  is the number of terms of RBF sub-kernel 

functions.   

For the multi-degree polynomial kernel function, the parameter vector vv  also has n2  

dimensions and it is represented in the form: 

vv = ( C , 0d , 1a , 1d , 2a , 2d , … , 1−na , 1−nd ), (101) 

where C  is the regularization parameter, id  for 1,...,0 −= ni  are the integer numbers that 

representimg the degree of polynomial sub-kernels, ia  for 1,...,1 −= ni  are the weights of 

polynomial sub-kernels, and n  is the number of terms of polynomial sub-kernel functions.  

As the degrees of polynomial sub-kernels are the integer, we may fix these degrees of 

polynomial at 1, 2, … , n  and only the weights of this combined kernel and the regularization 

parameter of SVM are searched.  In that case, the vector vv  will have only n  dimensions and 

it is represented by  

vv = ( C , 1a , 2a , … , 1−na ). (102) 
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For the non-negative linear combination of polynomial and RBF kernel functions, the 

vector vv  has 1)(2 ++mn  dimensions, when n  terms of polynomial sub-kernels and m  terms 

of RBF sub-kernels are combined.  The vector vv  is represented in the form: 

vv = ( C , 1a , 1d , 2a , 2d , … , na , nd , 1b , 1γ , 2b , 2γ , … , mb , mγ ), (103) 

where C  is the regularization parameter, ia  for ni ,...,1=  are the weights of polynomial sub-

kernels, id  for ni ,...,1=  are the integer numbers representing the degrees of polynomial sub-

kernels, ib  for mi ,...,1=  are the weights of RBF sub-kernels, and iγ  for mi ,...,1=  are the 

widths of RBF sub-kernels.  The dimensions of vv  can be reduced when the other forms of 

combined kernel functions are used. 

For multiplication of polynomial and RBF kernels, the multiple kernel functions are 

combined without weights.  Therefore, the vector vv  can be represented by  

vv = ( C , 1d , 2d , … , nd , γ ), (104) 

where C  is the regularization parameter, id  for ni ,...,1=  are the degrees of polynomial sub-

kernels, and γ  is the width of the RBF sub-kernel. 

In the regression problems, the deviation of an approximation ε  is another adjustable 

parameter of SVM regression.  Therefore, the vector vv  of the multi-scale RBF kernel 

function has 12 +n  dimensions when the number of terms of RBF sub-kernels is n .  The 

vector vv  is represented in the form:   

vv = ( C , ε , 0γ , 1a , 1γ , 2a , 2γ , … , 1−na , 1−nγ ). (105) 

For the multi-degree polynomial,  

vv = ( C , ε , 0d , 1a , 1d , 2a , 2d , … , 1−na , 1−nd ). (106) 

For the non-negative linear combination of polynomial and RBF kernels,  

vv = ( C , ε , 1a , 1d , 2a , 2d , … , na , nd , 1b , 1γ , 2b , 2γ , … , mb , mγ ). (107) 

Also, for the multiplication of polynomial and RBF kernels, 

vv = ( C , ε , 1d , 2d , … , nd , γ ). (108) 

For the vector of standard deviation σv , it is a real-valued vector, whose dimension is 

equal to the dimension of the parameter vector vv .  Both the parameter vectors ( 51 ,..., vv vv ) and 

the standard deviation vector (σv ) are initialized by using randomization.  Then, these 5 initial 
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solutions are evaluated to calculate their fitness.  Our goal is to find vv  which optimizes the 

objective function )(vfitness v  that must be carefully designed. 

3.2.2 Selection 

From the literature reviews in Chapter 2, we know that there are two main scenarios 

for selection, i.e. mating selection and overproduction selection as shown in Figure 2-20.  

However, the selection scenario that is used in this research is different.  Both of the 

traditional scenarios are combined in our evolutionary process.  The outline of this procedure 

is shown in Figure 3-5. 

 

Figure 3-5: Selection Scenario 
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This procedure starts with a population of individuals with known fitness.  Then, 

selection of individuals is performed base on their fitness.  These individuals are combined 

and mutated to generate new offspring individuals.  After fitness evaluation, all individuals, 

both offspring and parents, are selected to the size of parent population.  Thus, the selection is 

performed in two steps, which are (1) selection of parent individuals for creating the new 

individuals and (2) selection of the individuals to be parent in the next generation.  The 

different selection methods can be used for each step of selection. 

- Selection of Individuals for Variations: In this research, the ranking selection is 

used to choose the individuals for variations.  This method is based on the fitness order of 

each individual in the parent population.  The selection probability is assigned to the 

individuals as a function of their ranks.   

For (5+10)-ES, in each generation, the 5 fittest solutions are assigned the probabilities 

of selection to create new solutions.  These fittest solutions are ordered by their objective 

functions, i.e. ivv  is more fit than 1+ivv .  Then, their probabilities are assigned by 

)( ivP v  =  
∑
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12
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(109) 

for i = 1, 2, …, μ , when μ  is the number of fittest solutions.  In this case, μ  is equal to 5. 

 After that, any individual will be selected by this probability.  The new offspring 

individuals will be generated from these selected individuals by the recombination and the 

mutation operators.  

- Selection of Individual to be the Parent Population: The truncation selection 

method is used in (5+10)-ES to choose the fittest individuals to be the parent in the next 

generation.  Five parents are used to create ten new offspring; the 5 best solutions from both 

offspring and parents are used as the parents for the next generation.  This is an elitist 

technique that preserves the best individual.  Therefore, the good solutions will be alive until 

better solutions are found.   

3.2.3 Recombination 

Then, the new individuals are generated by the recombination operator.  Two 

individuals are randomly selected from the conventional 5 individuals with their probabilities 

that are assigned by the ranking method.  Then, the average of this pair of individuals, 

element by element, is a new individual.   
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kv ′v  = ( )ji vv vv
+

2
1  (110) 

This method is called the global intermediary recombination method, and it will be used to 

create 10 new individuals. 

This recombination method is chosen for this research because every individual has 

the chance to be selected for creating the new individuals.  Most of offspring individuals 

should be different from their parents because each of them is the average of two parents, 

except two selected parents are the same.  Therefore, the diversity of population can also be 

preserved by this recombination method. 

3.2.4 Mutation 

In the case that two selected parents are the same, the mutation operator can vary 

some parts of individuals.  Although the offspring individuals will be different from their 

parents, these offspring individuals may be the same as the other individuals in the previous 

generations or in the same generation.  The mutation will make these individuals different.  

Each component of these offspring individuals will be added by a random number.  

Therefore, the new solutions can be produced, unlimitedly.  

When iv ′v  is the parameter vector that has p  dimensions ( p
iv ℜ∈′
v ), the iv ′v  for 

10,...,1=i  are mutated by adding to each of them, zv  where pz ℜ∈v , zv = ( 1z , 2z ,…, pz ), and 

iz  is a random value from a normal distribution with zero mean and 2
iσ  variation.  For 

example, when the multi-scale RBF kernel functions are used in the classification problems, 

the parameter vector iv ′v  has n2  dimensions ( np 2= ) where n  is the number of terms of RBF 

sub-kernels.  The mutation function of iv ′v  is  

mutate )( iv ′v  =  iv ′v  + zv   =  ( 1zC + , 20 z+γ , … , 121 −− + nn za , nn z21 +−γ ) 

),0(~ 2
iii Nz σ ,  }2,...,1{ ni∈∀ . 

(111) 

Moreover, in each generation, the standard deviation vector (σv ) is mutated by the 

following: 

mutate )(σσ
v  =  ( 1

1
ze⋅σ , 2

2
ze⋅σ , … , nz

n e 2
2 ⋅σ ) 

),0(~ 2τii Nz ,  }2,...,1{ ni∈∀ , 
(112) 

where τ  is an arbitrary constant.   
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3.3 Objective Functions in Evolutionary Processes  

One of the most important and difficult parts of the evolutionary algorithm is how to 

define the objective function for the task under consideration.  In our case of evaluating the 

parameters of kernel functions and SVM, there are many ways to define the objective 

function.  In general classification problems, training error can be used as the objective 

function in the evolutionary processes.  For regression problems, percentage error, sum square 

error, and mean square error are usually used to measure the performance of a regression 

model.   

Because the combined kernel functions are more flexible, these measurement 

functions may overfit training data.  Sometimes, data contain a lot of noise, and thus if the 

model fits these noisy data, the learned concept may be wrong.  In this research, we propose 

to compare four possible objective functions: the training error, the subsets cross-validation, 

the bound of generalization error, and the stability of SVM.  These objective functions are 

considered and tested in this research.  The suitable objective functions will be applied for 

some problems to compare with the other methods.  

3.3.1 Training Error 

Training error is a basic function that can be used for evaluating the parameters of 

SVM classifiers.  This function indicates the performance of learning machines measured by 

the error of classification on training data.  This is the simplest way to define our objective 

function in the evolutionary algorithm.  The individuals with low training error should have 

the high fitness score.  The formula expression of training error is shown in the following 

equation: 

TrnErr  =   ∑
=

−
m

i
ii xfy

m 1
)(

2
1 , (113) 

where N
ix ℜ∈  is a training data, }1,1{−∈iy  is its label or the actual class of ix , and )( ixf  is 

a decision function of data ix  for mi ,,1 K= .   

For the regression problems, the error on training data can be computed by mean 

percentage error (MPE), sum of squared error (SSE), or mean squared error (MSE).  

However, the symmetric mean absolute percentage error (SMAPE) is considered in this 

research, it is a statistical measurement that attempts to solve the outlier problems. 

SMAPE  =   ∑
=

×
+
−m

i ii

ii

yy
yy

m 1
100

2)ˆ(
ˆ1 , (114) 



 
 
 
 

70

where iy  for mi ,...,1=  are the actually targets of the training data, iŷ  for mi ,...,1=  are the 

forecast values, and m  is the number of training data.  This measurement function will be 

used as an objective function in the evolutionary process; the experimental results will be 

compared to the other objective functions.  A set of suitable parameters should yield a lower 

error on training.  However, these objective functions may pick the models that overfit to 

training data. 

3.3.2 Subsets Cross-Validation 

Although the training error or the training accuracy can be easily calculated, this 

objective function may overfit the training data.  Hence, we propose to train the decision 

function with several sets of data.  A good set of parameters should perform well on many 

training sets.  However, as we have only a fixed amount of training data, subsets cross-

validation is considered.  For SVM learning, the running time of k-subsets cross-validation is 

about k times of constructing an SVM classifier because the SVM classifier must be trained 

and tested k times.   

In this research, subsets cross-validation will be tested by using 5-subsets cross-

validation.  It is a rather good estimate of the generalization error for adjusting the parameters.  

At the beginning, the training data are divided into five subsets, each of which has almost the 

same amount of data.  For each generation of ES, the five classifiers with the same set of 

parameters but with different training and testing set are evaluated.  In the j th iteration ( j =1, 

…, 5), the classifier is trained on all subsets except for the j th one.  Then, its classification 

error is evaluated on the j th subset.  These partitions are displayed in Figure 3-6. 

 

Figure 3-6: 5-Subsets Cross-Validation 
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Only the real training data sets are used to produce the classifiers with the same set of 

parameters.  Then, the validation sets are used for evaluating the error of the classifiers.  The 

error on validation subset of j th subset can be calculated by  

jErr   =   ∑
=

−
jm

i
ii

j

xfy
m 1

)(
2

1 , (115) 

where }1,1{−∈iy  is the label or the actual class of ix  for jmi ,,1 K=  that are in the j th 

validation subset, )( ixf  is a decision function of data ix , and 5,,1 K=j .  The weighted 

average of these five errors is used as the objective function.   

5SubsetOnTrnErr  =  
∑
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 . (116) 

Moreover, the concept of subsets cross-validation can be applied to the other measurement 

function such as the subsets cross-validation on SMAPE for regression problems. 

3.3.3 Bound of Generalization Error 

Actually, we would like to know the generalization performance of an algorithm.  

The generalization performance of a machine learning algorithm is a function that indicates 

the capacity of the machine to classify data.  However, this function cannot be computed 

based on the limited training data.  Hence, the generalization performance of the learning 

model was estimated by its bound.  The bound of generalization performance of SVM has 

been presented in a paper of Bartlett and Shawe-Taylor [24].   

This bound of generalization error relates to the number of examples, the training 

error, and the complexity of the hypothesis space.  The measure for the complexity of the 

hypothesis space is the Vapnik-Chervonenkis (VC) dimension  [24].  The VC-dimension 

measures the complexity of the hypothesis space, not by the number of distinct hypotheses, 

but instead by the number of distinct instances that can be completely discriminated using a 

hypothesis.  The bound on generalization error of SVM is shown in the Proposition 3-1. 

Proposition 3-1 (Bound of generalization error):   

For SVM, the loss with probability at least δ−1  over m  independently generated examples is 

bounded by the following:  
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( )( )δ1loglog 2 ++≤ mh
m
cRR emp , (117) 

where R  is the generalization error, empR  is the empirical error, c  is a constant, and h  is a 

non-negative real number called the Vapnik-Chervonenkis (VC) dimension. 

As the bound in (117) considers both training error and the VC-dimension, we expect 

that the generalization performance of SVM with the combined kernel functions can be 

approximated by this bound.   Therefore, this bound of generalization error is considered to be 

an objective function in our ES algorithm.  We presume that a set of suitable parameters 

should provide a lower bound of generalization error. 

3.3.4 Stability of SVM 

The generalization error is estimated by its bound under various assumptions.  The 

stability is an assumption that can be applied to derive the bound of generalization error.  It is 

a property of algorithms which describes how errors in the input data propagate through the 

algorithm.  The concept of stability was proposed by Bousquet and Elisseeff [61].  They 

defined the notions of stability for learning algorithms and showed how to use the notions to 

derive generalization error bounds [61].  Their methods can be applied in the regression 

framework as well as in the classification one [61].  Hence, the stability for a learning 

algorithm is considered to be the objective function in evolutionary process.  In this work, the 

stability of soft margin SVM classification and the stability of bounded SVM regression are 

applied in order to avoid the overfitting problem in evolutionary process. 

Proposition 3-2 (Stability of soft margin SVM classification):  

Let ),(,...,),(,),( 2211 mm yxyxyx  be the training data where N
i Rx ∈  is a sample data and 

}1,1{−∈iy  is its label.  Assume )(⋅K  is a bounded kernel, that is 2),( κ≤ji xxK .  The bound 

with probability at least δ−1  over the sample of size m  is     

mm
RR emp 2
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where R  is the risk or generalization error, empR  is called the empirical error, and λ  is the 

regularization parameter of SVM ( C1=λ ). 
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Proposition 3-3 (Stability of bounded SVM regression):  

Assume )(⋅K  is a bounded kernel, that is 2),( κ≤ji xxK  and ],0[ Byi ∈ .  The bound with 

probability at least δ−1  over the random draw of the sample of size m  is     

m
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⎛
+++≤ , (119) 

where R  is the generalization error, empR  is the empirical error, and λ  is the regularization 

parameter. 

The expressions in the right-hand side of (118) and (119) are used as the objective 

function to evaluate parameters of combined kernel functions and SVMs in the classification 

and the regression problems, respectively.  It is a tight bound, and can be a good criterion for 

evaluating the parameters in the evolutionary process.  The bound of kernel function ( 2κ ) can 

be estimated when the parameters of the combined kernel functions are assigned for each 

individual parameter vector ( vv ).  We presume that a set of suitable parameters should provide 

a lower bound of risk.  This objective function is tested in the next chapter. 



CHAPTER IV    

EXPERIMENTAL SETTING AND RESULTS 

In this chapter, the proposed methods are evaluated by numerical experiments.  Both 

classification and regression benchmarks are considered.  The experimental setting and the 

performance evaluation are described.  Then, the experimental results on benchmark datasets 

are illustrated and discussed in this chapter. 

4.1 Experimental Setting 

In order to verify the performance of the proposed methods, SVMs with the proposed 

methods are trained and tested on 12 binary classification datasets and 4 regression datasets 

from the UCI Machine Learning Repository [7].  These datasets come from various real world 

applications such as game playing, medical inference, predictions in biology and physics, 

image processing, and character recognition.  The number of attributes, the sample size, and 

the number of classes of each dataset are shown in Table 4-1 and Table 4-2. 

Table 4-1: Classification Datasets 

No. Datasets Number of Attributes Number of Data 

1 Australian 14 690 

2 Flare 10 1066 

3 German 24 1000 

4 Glass2 9 163 

5 Heart 13 270 

6 Ionosphere 34 351 

7 Liver-Disorder 6 345 

8 Pima-Indians-Diabetes 8 768 

9 Sonar 60 208 

10 ThreeOf9 9 512 

11 Tic-Tac-Toe 9 958 

12 Tokyo 44 959 
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Table 4-2: Regression Datasets 

No. Datasets Number of Attributes Number of Data 

1 Auto_MPG 7 392 

2 CPU_Performance 6 209 

3 Housing 13 506 

4 Servo 4 167 

 

These datasets are normalized by Min-Max Normalization.  This normalization is 

performed in order to reduce the bias on some attributes.  In each dataset, the attributes are 

transformed into the range [0,1].  The new value iv′  of attributes A  can be calculated by 

AA

Ai
i

v
v

minmax
min
−

−
=′ , (120) 

where iv  for mi ,,1 K=  are the conventional value of attribute A , Amin  and Amax  are the 

minimum and maximum values of attribute A . 

The evolutionary strategies are used to find the optimal parameters of SVM and 

kernel functions.  The (5+10)-ESs are used for searching the parameters of SVM and the 

proposed kernels.   The value of τ  in evaluation process of these experiments is 1.0.  The 

widths of RBFs )( iγ , the weights of RBFs )( ia , the regularization parameter )(C , and the 

deviation of an approximation )(ε  are real numbers between 0.0 and 10.0.  The degree of 

polynomial )( id  is a positive integer where 101 ≤≤ id .  These parameters are inspected 

within 1000 generations of ES. 

4.2 Performance Evaluation 

In this research, each dataset is evaluated by 5-folds cross-validation.  At the 

beginning, the training data are divided into five portions, each of which have almost the 

same number of data.  These portions are trained and validated five times.  In the j th iteration 

( 5,4,3,2,1=j ), the SVM with a proposed kernel function is trained on all parts except for the 

j th one.  Then, the performance of classification or prediction is calculated for the j th 

portion.  The average of these five performances is reported.  The partitions of 5-folds cross-

validation are displayed in Figure 4-1. 
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Figure 4-1: 5-Folds Cross-Validation 

On classification problems, the performance of learning algorithms is measured by 

the error of classification.  The average of percentage error on 5-folds cross-validation is used 

to indicate the performance of the proposed methods.  The formula expression of the 

percentage error of each fold is shown in the following equation:  

100
2

)(
1 ×

−
=

∑
=

j

m

i
ii

j m

yxf
PE

j

, (121) 

where jm  is the number of validation data in the j th fold, N
ix ℜ∈  is the validation data in the 

j th fold, )( ixf  is a decision function of data ix , and }1,1{−∈iy  is the actual class of data ix  

for jmi ...,,2,1= .  The average of percentage error on 5-folds cross-validation, which is used 

to compare the performance of learning algorithms, can be calculated by   

∑
=

=
5

15
1

j
jPEAvgPE , (122) 

where jPE  is the percentage error of j th fold for 5,...,1=j . 

For regression problems, the average of symmetric mean absolute percentage error 

(SMAPE) on 5-folds cross-validation is used for evaluating the performance of the proposed 

method.  The SMAPE of j th fold is defined as 

jSMAPE   =   ∑
=

×
+
−jm

i ii

ii

j yy
yy

m 1
100

2)ˆ(
ˆ1 , (123) 

where iy  for jmi ,...,1=  are the actually targets of the data, iŷ  for jmi ,...,1=  are the forecast 
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values, and jm  is the number of validation data in the j th fold, and the average of SMAPE on 

5-folds cross-validation can be computed by 

∑
=

=
5

15
1

j
jSMAPEAvgSMAPE . (124) 

After that, the statistical tests are also used for evaluating the performance of the 

proposed methods.  The paired T -test and the Friedman test [62, 63] will be used to compare 

the experimental results.  The paired T-test is used for testing the difference of two learning 

algorithms on the average accuracies of each dataset, whereas the Friedman test is used for 

testing the difference of multiple algorithms over multiple datasets based on their average 

ranks. 

The statistical paired T -test is applied for testing the statistical significant difference 

between the performances of two learning algorithms on each dataset.  The term paired 

means that there is a correspondence between observations from each population, i.e. there is 

a one-to-one correspondence between the values in the two groups.  In practice, the paired T  

-test is commonly used to compare how a group of subjects perform in two different test 

conditions.  The paired T -test provides a hypothesis test of the difference between population 

means for a pair of random samples whose differences are approximately normally 

distributed.  We note that a pair of samples, each of which are not from a distribution, often 

yields differences that are normally distributed. 

Give two paired sets of ia  and ib  of n  measured values, the paired T -test 

determines whether they differ from each other in a significant way under the assumptions 

that the paired differences are independent and identically normally distributed.  To apply T -

test, let id  be the difference of each pair of measured values,   

iii bad −= , (125) 

where ni ,,2,1 K= .  Therefore, D  is the mean difference, 

n

d
D

n

i
i∑

== 1 , (126) 

2
dS  is the sample variance difference, 
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The null hypothesis of no difference between the means of two groups of 

observations will be tested by the statistical T .  For the alternative hypothesis, we can choose 

one of three alternative hypotheses. The default is that the difference between the means is 

not equal to the specified difference, which is the two-sided alternative. The one-sided 

alternatives are that the difference is greater than, or less than, the difference specified in the 

null hypothesis.  

If 1μ  and 2μ  are the means of 1st group and 2nd group, respectively, the hypotheses 

are defined by 

 0H : 021 =− μμ  (128) 

and  

 1H : 021 ≠− μμ ,  or 

 1H : 021 >− μμ ,  or 

 1H : 021 <− μμ . 

(129) 

Then, the test statistic T  is calculated as:  

nS
DT

d

= , (130) 

with the degree of freedom is 1−n .   

The table of T -distribution confidence intervals can be used to determine the 

significance level α  that two groups differ.  The value of statistical αT  from this table is 

called the critical value.  If the statistical T  is in the critical region or the rejection region, 

then the null hypothesis will be rejected while the alternative hypothesis will be accepted.  

This means that the means of two groups are significantly different at the probability of 

%100)1( ×−α .  In the other hand, if the statistical T  is in the acceptance region, the null 

hypothesis will be accepted because no reason to reject this null hypothesis.     

In this research, the different error of two learning algorithms will be evaluated by the 

paired T -test.  We would like to illustrate that the performances of the proposed methods are 

significantly greater than those of baseline algorithms.  On each dataset, the error is measured 

from each fold of learning.  Our experiments use 5-folds cross-validation then the degree of 

freedom is 415 =− .  The critical values of T -distribution with the degree of freedom 4 are 

illustrated in Table 4-3. 
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Table 4-3: Critical Values of T-distribution 

α  Degree of 
Freedom 0.1 0.05 0.01 0.005 0.001 

4 1.533 2.132 3.747 4.604 7.173 

 

Although the paired T -test can be used for testing the difference between two 

learning algorithm over multiple datasets (in that case, the sample size may refer to the 

number of used datasets), it is inconvenient to test multiple algorithms.  A common example 

of the test procedure would be comparing multiple algorithms by conducting all paired T -

tests and reporting results like “algorithm A was found significantly better than B and C, and 

algorithms A and E were significantly better than D, while there were significantly 

differences between other pairs” [64].  When so many tests are made, a certain proportion of 

the null hypotheses is rejected due to random chance, so listing them make little sense [64].  

Moreover, the averaging over multiple datasets may be susceptible to outliers.  The 

test’s power is decreased by increasing the estimated standard deviation.  In this research, the 

average error across the datasets is a measurement to describe the performance of our 

methods.  However, this average error may be meaningless if the results on different datasets 

are not comparable [64].  In general, we prefer the classifiers or the algorithms that work well 

on many problems.  Therefore, a ranking method is applied to compare the learning 

algorithms in this research.  The algorithms are ranked for each dataset separately, i.e. the best 

performing algorithm gets the rank of 1, the second best gets the rank 2, and so on.  In case of 

ties, an average rank is assigned to both algorithms or all tie algorithms.  Then, the average 

ranks across the datasets are compared.  These average ranks provide a fair comparison of our 

learning algorithms. 

Then, the Friedman test is also considered for statistical test on the average ranks.  

The Friedman test [62, 63] is a statistical method for test the differences between more than 
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two related sample means, and thus it can use to compare multiple classifiers of this research.  

The average ranks of algorithms are compared under the null-hypothesis, which states that all 

the algorithms are equivalent and so their ranks should be equal [64].   

Let ijr  be the rank of the the j -th of k  algorithms on the i -th of N  datasets.  The 

Friedman test compares the average ranks of algorithms,  

∑
=

=
N

i
ij r

N
R

1

1 . (131) 

Under the null hypothesis, which states that all the algorithms are equivalent and so their 

ranks jR  should be equal [64].  The Friedman statistic 
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is distributed according to 2
Fχ  with 1−k  degrees of freedom, when N  and k  are big enough.  

Iman and Davenport [65] derived a better statistic from Friedman’s 2
Fχ  

2

2

)1(
)1(

F

F
F kN

N
F

χ
χ
−−

−
= , (133) 

which is distributed according to the F-distribution with 1−k  and )1)(1( −− Nk  degrees of 

freedom.  The table of critical values can be found in any statistical book. 

If the null-hypothesis is rejected, we can proceed with a post-hoc test.  The 

Bonferroni-Dunn test [66] is used for pairwise comparisons.  The performances of two 

algorithms are significantly different if the corresponding average ranks differ by at least the 

critical difference 

N
kk

qCD
6

)1( +
= α , (134) 

where critical values αq  are illustrated in Table 4-4.  The performance of algorithm A  is 

significantly better than algorithm B  if the difference between the average ranks of 

algorithms A  and B  is more than the critical difference ( CDRR BA >− ).  Sometimes the 

Friedman test reports a significant difference but post-hoc test fails to detect it [64].  This is 

due to the lower power of the latter.  The experimental results are shown and tested in the 

next section. 
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Table 4-4: Critical Values for Two-Tailed Bonferroni-Dunn Test [64] 

Number of 
Classifiers 2 3 4 5 6 7 8 9 10 

05.0q  1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773 

10.0q  1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539 
  

4.3 Experimental Results 

In this section, SVMs with the adaptive combined kernel functions are trained and 

tested on benchmark datasets.  These benchmark datasets are the binary classification 

problems and the regression problems.  The results of the proposed methods are compared to 

the SVMs with the conventional kernel functions.  Besides, k-nearest neighbor (k-NN) and 

grid search are used for comparing with the proposed methods on some experiments, and they 

are reported in the following sub-sections. 

4.3.1 Classification Problems 

At the beginning, k-NN for k = 1, 3, 5, and 7 are applied on the datasets from Table 

4-1.  Both simple k-NN and weighted k-NN are compared.  In simple k-NN, an example is 

classified by the majority vote of its k neighbors.  For weighted k-NN, the Euclidean distance 

is used to compute the weight of each neighbor, which is equal to 1/distance.  The class of 

each neighbor is multiplied by this weight before voting.  The experimental results are shown 

in Table 4-5. 

The results show that each value of k is suitable for different datasets.  Although, the 

average error of simple 7-NN is lower than the other k-NNs, the average rank of simple 3-NN 

is better than the others.  Thus, the Friedman test is used to check whether the measured 

average ranks are significantly different from the mean rank, jR = 4.  From Table 4-5, 7 

algorithms are compared on 12 datasets, and the Friedman statistic is as follows. 

( ) 9762.1
4
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4875.34875.32917.45.34583.4
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=FF . (136) 

FF  is distributed according to the F-distribution with 617 =−  and 66)112()17( =−×−  degrees 

of freedom.  The critical value of )66,6(F  for 05.0=α  is ,2461.2  so we cannot reject the null-
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hypothesis.  Hence, the performances of k-NN at various k are not different.  Therefore, 1-NN 

that is the simplest and yields the good results will be compared with the other algorithms in 

this research.   

Table 4-5: Average Percentage Error of k-Nearest Neighbors on Classification Problems  

3-NN 5-NN 7-NN 
Datasets 1-NN 

No 
Weight 

With 
Weight 

No 
Weight 

With 
Weight 

No 
Weight 

With 
Weight 

Australian 19.8551 
(7) 

16.6667 
(4) 

17.5362 
(6) 

15.7971 
(2) 

16.9565 
(5) 

15.6522 
(1) 

16.5217 
(3) 

Flare 25.1345 
(4) 

19.5103 
(2) 

38.9334 
(5) 

19.6025 
(3) 

42.0249 
(6) 

19.0439 
(1) 

43.5286 
(7) 

German 32.6000 
(7) 

27.6000 
(2) 

27.2000 
(1) 

28.6000 
(5) 

28.4000 
(3) 

28.6000 
(5) 

28.6000 
(5) 

Glass2 22.6704 
(2) 

23.9204 
(6) 

23.2954 
(4) 

23.3333 
(5) 

21.4583 
(1) 

23.9394 
(7) 

22.6894 
(3) 

Heart 24.8148 
(7) 

20.7407 
(5) 

21.4815 
(6) 

19.2593 
(3.5) 

19.2593 
(3.5) 

18.8889 
(2) 

18.5185 
(1) 

Ionosphere 12.5231 
(1) 

13.6660 
(2) 

13.9477 
(3) 

15.3722 
(4.5) 

15.3722 
(4.5) 

16.2294 
(6) 

16.7968 
(7) 

LiverDisorder 39.7101 
(4) 

37.6812 
(2) 

36.5218 
(1) 

40.8696 
(6.5) 

39.7102 
(5) 

40.8696 
(6.5) 

38.8406 
(3) 

PimaDiabetes 29.4355 
(7) 

25.7915 
(1) 

26.0530 
(3) 

26.5707 
(5) 

26.7032 
(6) 

26.0521 
(2) 

26.3136 
(4) 

Sonar 12.9965 
(1) 

17.3171 
(5) 

17.3171 
(5) 

17.3171 
(5) 

16.3531 
(2) 

19.2567 
(7) 

16.3879 
(3) 

ThreeOf9 20.5082 
(5) 

20.7081 
(6) 

23.0497 
(7) 

14.4546 
(3) 

16.7961 
(4) 

1.7609 
(1) 

4.1024 
(2) 

Tic-Tac-Toe 0.0000 
(1.5) 

0.0000 
(1.5) 

1.8793 
(5) 

0.3131 
(3) 

2.1924 
(6) 

0.8345 
(4) 

2.7138 
(7) 

Tokyo 9.1748 
(7) 

7.2993 
(5.5) 

7.2993 
(5.5) 

6.7785 
(1) 

6.9874 
(2) 

7.1962 
(4) 

7.0915 
(3) 

Average 
Error 20.7853 19.2418 21.2095 19.0223 21.0178 18.1936 20.1754 

Average 
Rank 4.4583 3.5000 4.2917 3.8750 4.0000 3.8750 4.0000 

 

Then, SVM with the common kernel functions are tested on these datasets.  The RBF 

and polynomial kernels with various parameter settings are applied.  The average percentage 

error of RBF and polynomial kernels are reported in Table 4-6 and Table 4-7, respectively.  

Although the classification error is small with few parameter settings, many parameter 

settings yield high percentage error.  In addition, we do not have any knowledge about the 

suitable parameters.  The experiments with all possible parameters cannot be performed. 
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Table 4-6: Average Percentage Error of SVM with Parameter Setting on RBF Kernel   

Width of RBF ( γ ) 
Datasets C 

0.0001 0.001 0.01 0.1 1 10 

0.1 44.4928 44.4928 44.4928 14.4928 14.7826 41.5942 
Australian 

1.0 44.4928 44.4928 14.4928 14.4928 13.7681 18.5507 

0.1 17.0734 17.0734 17.0734 17.0734 17.0734 17.0734 
Flare 

1.0 17.0734 17.0734 17.0734 17.1673 17.4490 18.1989 

0.1 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 
German 

1.0 30.0000 30.0000 30.0000 24.9000 25.4000 29.8000 

0.1 46.6856 46.6856 46.6856 46.6856 46.0795 45.4735 
Glass2 

1.0 46.6856 46.6856 46.6856 43.5606 25.7197 23.9015 

0.1 44.4444 44.4444 44.4444 16.6667 17.7778 44.4444 
Heart 

1.0 44.4444 44.4444 17.0370 15.5556 19.2593 30.3704 

0.1 35.8954 35.8954 35.8954 27.9235 7.1187 35.8954 
Ionosphere 

1.0 35.8954 35.8954 25.9276 8.2575 5.4085 11.1147 

0.1 42.0290 42.0290 42.0290 42.0290 42.0290 42.0290 
LiverDisorder 

1.0 42.0290 42.0290 42.0290 42.0290 40.8696 32.4638 

0.1 34.9003 34.9003 34.9003 34.9003 27.2167 32.5567 
PimaDiabetes 

1.0 34.9003 34.9003 34.9003 23.7068 23.4428 24.2288 

0.1 46.6318 46.6318 46.6318 46.6318 46.6318 46.6318 
Sonar 

1.0 46.6318 46.6318 34.1231 16.3531 11.0453 40.8827 

0.1 46.4858 46.4858 46.4858 16.0213 35.5492 46.4858 
ThreeOf9 

1.0 46.4858 46.4858 18.3628 9.1928 0.0000 46.4858 

0.1 34.6553 34.6553 34.6553 34.6553 23.5940 34.6553 
Tic-Tac-Toe 

1.0 34.6553 34.6553 34.6553 12.4242 0.8344 34.6553 

0.1 36.0798 36.0798 35.3507 10.1145 8.3432 17.2066 
Tokyo 

1.0 36.0798 34.6210 10.9484 8.5498 7.2993 9.2834 
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Table 4-7: Average Percentage Error of SVM with Parameter Setting on Polynomial Kernel 

Degree of Polynomial ( d ) 
Datasets C 1 

(Linear) 2 4 6 8 10 

0.1 14.4928 14.9275 15.7971 20.5797 22.7536 24.3478 
Australian 

1.0 14.4928 14.4928 17.8261 22.4638 23.0435 23.6232 

0.1 17.0734 16.9804 17.8233 19.3252 42.2763 51.2887 
Flare 

1.0 16.9804 17.4494 18.4805 39.5138 64.9603 40.0781 

0.1 24.6000 23.8000 30.4000 31.3000 31.1000 30.3000 
German 

1.0 23.8000 25.7000 31.8000 31.3000 31.1000 30.3000 

0.1 46.0795 39.2424 25.7386 22.6894 22.0265 20.1705 
Glass2 

1.0 39.2235 28.7879 25.7576 17.6894 19.5644 20.7955 

0.1 15.9259 16.2963 22.2222 27.0370 24.4444 23.3333 
Heart 

1.0 15.5556 19.2593 26.2963 25.1852 24.4444 23.3333 

0.1 13.1066 9.6901 13.1147 12.8249 13.3924 13.6740 
Ionosphere 

1.0 13.0986 10.5513 13.1147 12.8249 13.3924 13.6740 

0.1 42.0290 42.0290 41.1594 30.7246 29.5652 28.6957 
LiverDisorder 

1.0 42.3188 37.3913 27.2464 28.1159 28.9855 29.8551 

0.1 32.2918 22.9276 22.5303 23.9657 25.7898 28.2667 
PimaDiabetes 

1.0 22.6679 23.1831 23.4437 25.2712 28.0053 31.0016 

0.1 19.7213 11.5563 12.0325 12.0441 13.9489 16.8293 
Sonar 

1.0 20.7085 12.9965 12.0325 12.0441 13.9489 16.8293 

0.1 17.7746 1.9513 0.0000 0.0000 0.0000 1.3706 
ThreeOf9 

1.0 18.5589 2.7356 0.0000 0.0000 0.0000 1.3706 

0.1 16.2854 1.6699 0.2083 1.2522 1.6699 1.6699 
Tic-Tac-Toe 

1.0 1.6699 0.2089 0.2083 1.2522 1.6699 1.6699 

0.1 8.9676 7.0910 8.4457 10.1134 11.6787 12.0964 
Tokyo 

1.0 8.1332 7.3004 10.1140 10.4254 11.2615 16.0537 
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Grid search is compared to the parameter settings in Table 4-8.  In this experiment, 

grid search chooses a set of parameters that yields a small training error, and then this set of 

parameters is used for testing on validation data.  Thus, the percentage errors of grid search 

on testing may not be the lowest.  Although it seems that the percentage errors on testing of 

the parameter settings are better than those of grid search, the percentage error on training of 

grid search is lower.  In real world applications, we do not know the testing error; only the 

training error can be calculated.  Therefore, it is very difficult to select a good set of 

parameters that yields the lowest error on unseen data.  Hence, the parameter settings cannot 

be performed in the real situations.   

Table 4-8: Average Percentage Error of Parameter Settings and Grid Search 

Parameter Setting Grid Search 

RBF 
0.1,0.1 == γC  

Polynomial 
2,1.0 == dC  RBF Polynomial Datasets 

Train Test Train Test Train Test Train Test 

Australian 10.4710 13.7681
(1) 13.8768 14.9275 

(2) 1.2340 21.4500 
(1) 0.0000 23.7680 

(2) 

Flare 15.9006 17.4490 
(2) 16.6980 16.9804

(1) 11.1880 18.8500 
(1) 11.6080 19.6060 

(2) 

German 7.5250 25.4000 
(2) 16.1000 23.8000

(1) 0.0000 28.9000 
(1) 0.0000 31.1000 

(2) 

Glass2 24.2325 25.7197 
(1) 33.5819 39.2424 

(2) 4.4460 17.0840 
(1) 0.0000 19.5455 

(2) 

Heart 9.0741 19.2593 
(2) 13.2407 16.2963

(1) 0.0000 28.5180 
(2) 0.0000 23.7020 

(1) 

Ionosphere 1.8518 5.4085 
(1) 4.0597 9.6901 

(2) 0.0000 10.5520 
(1) 0.0000 12.8260 

(2) 

LiverDisorder 37.9710 40.8696 
(1) 42.0290 42.0290 

(2) 12.1739 32.7536 
(2) 10.6522 29.2754

(1) 

PimaDiabetes 20.8012 23.4428 
(2) 22.2013 22.9276

(1) 5.0780 26.3160 
(1) 1.4640 31.1280 

(2) 

Sonar 0.0000 11.0453
(1) 3.6044 11.5563 

(2) 0.0000 30.8600 
(2) 0.0000 11.5660 

(1) 

ThreeOf9 0.0000 0.0000 
(1) 1.8069 1.9513 

(2) 0.0000 0.1961 
(2) 0.0000 0.0000 

(1) 

Tic-Tac-Toe 0.0000 0.8344 
(1) 1.6701 1.6699 

(2) 0.0000 1.2520 
(2) 0.0000 1.2500 

(1) 

Tokyo 5.5527 7.2993 
(2) 6.3348 7.0910 

(1) 0.3380 9.5960 
(1) 0.0000 11.9900 

(2) 
Average 
Error 11.1150 15.8747 14.6003 17.3468 2.8715 18.8606 1.9770 17.9796

Average 
Rank -- 1.4167 -- 1.5833 -- 1.4167 -- 1.5833 
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Although the grid search is a good method for parameter selection, its running time 

depends on the step size and the number of parameters.  In the combinations of multiple 

kernel functions, there are a lot of parameters that should not be selected by grid search 

because the running time will be exponentially increased.  Hence, the (5+10)-ES with the 

difference objective functions are proposed for searching the high quality parameters of the 

kernel function and SVM.  Training error (TrnErr), 5-subsets cross-validation on training 

error (5SubsetOnTrnErr), the bound of generalization error (BoundOfGenErr), and the bound 

of generalization error derived from the stability of SVM (StabilityBound) are used as the 

objective function in the evolutionary process.  The experimental results of these objective 

functions are compared with the result of a grid search, where the parameters are varied with 

a fixed step-size.  The average percentage errors from 5-fold cross-validation of all methods 

with the single RBF kernel function are compared in Table 4-9. 

Table 4-9: Average Percentage Error of Single RBF Kernel Function  

Objective Functions of ES 
Datasets Grid 

Search 
TrnErr 5SubsetOn 

TrnErr 
BoundOf 
GenErr StabilityBound 

Australian 21.4500 21.8346 (4) 18.9855* (3) 16.8116* (2) 16.3768* (1) 

Flare 18.8500 18.9671 (4) 17.4485 (1) 17.5429 (3) 17.4490 (2) 

German 28.9000 29.7000 (3) 29.3000 (2) 29.8000 (4) 28.9000 (1) 

Glass2 17.0840 18.2955 (3) 17.6894 (1.5) 17.6894 (1.5) 21.5720 (4) 

Heart 28.5180 29.6296 (4) 22.9619* (2) 27.7778 (3) 20.0000* (1) 

Ionosphere 10.5520 13.7502 (4) 5.6942 (2) 5.1268 (1) 7.1026* (3) 

LiverDisorder 32.7536 32.1739 (2) 36.5200 (4) 32.1739 (2) 32.1739 (2) 

PimaDiabetes 26.3160 26.1841 (3) 26.1780 (2) 26.5724 (4) 24.4860 (1) 

Sonar 30.8600 25.8304 (4) 22.9725 (3) 12.0093* (1) 15.3070* (2) 

ThreeOf9 0.1961 0.3903 (2) 0.0000 (1) 0.5863 (3) 1.5572 (4) 

Tic-Tac-Toe 1.2520 0.9391 (3) 0.7308 (2) 0.6261 (1) 3.7516 (4) 

Tokyo 9.5960 10.1162 (4) 9.8033 (3) 9.0729* (2) 8.9807* (1) 

Average 
Error 18.8606 18.9842 17.3570 16.3158 16.4714 

Average Rank -- 3.3333 2.2083 2.2917 2.1667 

* Statistically significant at the level of 0.05 when compared to TrnErr objective function. 
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The results show that the average percentage error of ES with TrnErr is similar to the 

grid search.  Although the grid search is easy to implement, its performance depends on the 

step-size.  If the step-size is small, the grid search will be computationally expensive because 

the SVM model must be evaluated at many points of parameters within the grid.  On the other 

hand, if the step-size is large, the grid search may not find a good solution.  Whereas ES uses 

the random process, many solutions are simultaneously searched. 

When different objective functions of ES are used, the percentage errors of 

5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound are lower than those of TrnErr.  

Moreover, their percentage errors are significantly lower than those of TrnErr on some 

datasets, i.e. Australian, Heart, Ionosphere, Sonar, and Tokyo.  Although BoundOfGenErr 

yields the lowest average percentage error on 12 datasets, the average rank on 12 datasets of 

StabilityBound is lower than BoundOfGenErr and the other objective functions. 

Friedman test is used for a statistical testing on the average ranks of the different 

objective functions in Table 4-9.  For 4 algorithms and 12 datasets, FF  is distributed 

according to the F distribution with 4-1 = 3 and (4-1)× (12-1) = 33 degrees of freedom.  From 

the experimental results, the following Friedman test is used to check whether the measured 

average ranks are significantly different from the mean rank jR = 2.5: 
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This value implies that the average ranks of these 4 algorithms are significantly different from 

the mean rank at a significance level of 0.0791. 

Then, we use the Bonferroni-Dunn test for a pairwise comparison.  The value of 10.0q  

for 4 classifiers is 2.128.  The performances of two classifiers are significantly different if 

their corresponding average ranks differ by at least the critical difference 

CD  = 
)12(6
)14(4

)128.2(
+  = 1.1690. (139) 

Although this critical difference is not sufficient to conclude about the performances of 

5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound, the different of average rank 

between TrnErr and StabilityBound is very close to this critical difference (3.3333-2.1667 = 

1.1666 ≈  1.1690).  The pairwise differences on the average ranks of ES with the different 

objective functions kernel are shown in Table 4-10. 
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Table 4-10: Pairwise Differences on Average Ranks of the Different Objective Functions for 

Single RBF Kernel 

CD = 1.1690 Objective 
Functions TrnErr 5SubsetOn 

TrnErr 
BoundOf 
GenErr 

Stability 
Bound 

Objective 
Functions Average Rank 3.3333 2.2083 2.2917 2.1667 

TrnErr 3.3333 0.0000 1.1250 1.0417 1.1667** 

5SubsetOn 
TrnErr 2.2083 -- 0.0000 -0.0833 0.0417 

BoundOf 
GenErr 2.2917 -- -- 0.0000 0.1250 

Stability 
Bound 2.1667 -- -- -- 0.0000 

** This value is very close to the critical difference. 

 

These results show that TrnErr is not the best objective function, and in fact it may 

guide ES to select a classifier which overfits the training data.  On the other hand, 

5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound are the approximations of the 

generalization performance of SVM.  Thus, it can avoid the overfitting problem, resulting in 

better performance.  The average percentage errors on training of these objective functions 

are shown in Table 4-11 and a chart for comparing between training and testing is shown in 

Figure 4-2. 

When we consider the chart of the average accuracy on 12 datasets, we found that the 

average percentage errors of the grid search and TrnErr are lower than those of the other 

objective functions.  However, the average percentage error on testing is different; the grid 

search and TrnErr yield higher average percentage errors on testing.  This means that the 

lowest error on training is not the best choice for unseen data.   

For the running time, it is rather obvious that the evolutionary strategy consumes a lot 

of time when it is compared to a single SVM.  However, this process is indispensable, as the 

accuracy of the learned SVM depends heavily on the quality of the obtained parameters.  

Furthermore, determining high-quality parameters is an off-line process in most application, 

and thus this running time can be disregarded.  Nevertheless, we found that the running time 

of each proposed method (ES with a different objective function) is less than that of the grid 

search with a large number of evaluations.  The running time of each method on a fold of 

Sonar dataset is recorded and illustrated in Table 4-12. 
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Table 4-11: Average Percentage Error on Training of Single RBF Kernel Function  

Objective Functions of ES 
Datasets Grid Search 

TrnErr 5SubsetOn 
TrnErr 

BoundOf 
GenErr 

Stability 
Bound 

Australian 1.2340 1.2319 9.3120 4.6739 10.6667 

Flare 11.1880 11.1868 17.0740 13.4858 16.2526 

German 0.0000 0.0000 0.0000 0.1500 0.2250 

Glass2 4.4460 4.4439 4.4439 7.0593 22.3582 

Heart 0.0000 0.0000 0.0000 0.9259 7.5926 

Ionosphere 0.0000 0.0000 0.5000 0.0000 1.9934 

LiverDisorder 12.1739 12.0301 12.2460 15.7971 29.6377 

PimaDiabetes 5.0780 5.0778 6.3820 8.6609 9.5343 

Sonar 0.0000 0.0000 0.2400 0.0000 0.0000 

ThreeOf9 0.0000 0.0000 0.0000 0.0000 0.0000 

Tic-Tac-Toe 0.0000 0.0000 0.0000 0.0000 0.0000 

Tokyo 0.3380 0.3129 0.7800 1.0949 0.6518 

Average Error 2.8715 2.8570 4.2482 4.3207 8.2427 
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Figure 4-2: Chart of Average Percentage Error on Training and Testing of Single RBF Kernel 
Function with Different Objective Functions 
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Table 4-12: The Running Time of an SVM with the Single RBF Kernel that Uses Different 

Parameter Selection Methods when Training on a Fold of Sonar Dataset 

Parameter Selection  
Methods 

Running Time on Training 
(Hour) 

1-NN -- 

Grid Search 3:05:35 

ES with TrnErr 0:23:18 

ES with 5SubsetOnTrnErr 1:56:31 

ES with BoundOfGenErr 0:22:31 

ES with StabilityBound 0:23:58 

 

The proposed methods, the grid search, and 1-NN were run on a computer with an 

Intel Xeon 2.73 GHz CPU and 3.85 GB memory.  For 1-NN, it is an instance based learning, 

which does not have the training process.  Thus, the running time is used for calculating the 

distance between an example and the existing training data.  In the grid search, the 

regularization parameter, the width of the RBF kernel, and the combination weight are varied 

by a log-scale form 0.0001, 0.0002, …, 0.001, 0.002, …, to 10.0. 

On a fold of Sonar dataset, the running time on training of the grid search was about 

three hours, whereas the running time of ES with TrnErr objective function was 23.18 

minutes.  Therefore, the running time of the grid search is about 8 times longer than that of 

ES with TrnErr.  In addition, the running time of ES with TrnErr is close to that of 

BoundOfGenErr and StabilityBound.  However, we found that the running time of 

5SubsetOnTrnErr is about 5 times longer than those of TrnErr, BoundOfGenErr, and 

StabilityBound.  For the case of 5-subsets cross-validation, SVM classifiers are trained and 

validated 5 times for each set of parameters.  Therefore, this result is reasonable.   

For other datasets, the running times of these methods have a similar trend; the 

running time of 5SubsetOnTrnErr is more than those of TrnErr, BoundOfGenErr, and 

StabilityBound, and the running time of each proposed methods is less than that of the grid 

search with a large number of evaluations.  Moreover, the number of generation of ES may be 

reduced.  In our experiments the number of generation was fixed as 1000, but a good solution 

can be found in fewer generations.  Graphs of different objective functions on Sonar dataset 

are shown in Figure 4-3.  The objective function values of TrnErr, 5SubsetOnTrnErr, and 

BoundOfGenErr quickly decrease in the first few generations whereas StabilityBound 

requires more generations. 
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Figure 4-3: Graphs of Different Objective Functions for each Generation of ES on Sonar 
Datasets (a) TrnErr  (b) 5SubsetOnTrnErr  (c) BoundOfGenErr  (d) StabilityBound 

 

For multi-scale RBF kernels, the average percentage errors and the ranks of each 

objective function using n -RBF when n  = 2, 3, 4, and 5 are illustrated in Table 4-13 – Table 

4-16, respectively.  Furthermore, the average percentage errors on 12 datasets for each 

objective function are illustrated by the graphs in Figure 4-4.  These results show the 

performance of each objective function.  For all n -RBF kernels, the average percentage 

errors of 5SubsetOnTrnErr and StabilityBound are lower than those of TrnErr.  There are 

many datasets where the percentage errors of BoundOfGenErr are lower than those of TrnErr.  

Moreover, the percentage errors of 5SubsetOnTrnErr, BoundOfGenErr, and StabilityBound 

are significantly lower than those of TrnErr on some datasets.   
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Table 4-13: Average Percentage Error on Testing of 2-RBF Kernel Function  

Objective Functions of ES 
Datasets 

TrnErr 5SubsetOn 
TrnErr 

BoundOf 
GenErr StabilityBound 

Australian 21.5942 (4) 20.0000 (3) 17.6812* (2) 16.8116* (1) 
Flare 20.6165 (4) 18.4784* (3) 18.3856* (2) 18.0115* (1) 
German 28.1000 (2) 29.3000 (4) 28.3000 (3) 27.8000 (1) 
Glass2 19.5265 (3.5) 18.3144 (2) 17.1023 (1) 19.5265 (3.5) 
Heart 23.7037 (4) 18.5185 (1) 21.8519 (2) 22.5926 (3) 
Ionosphere 5.6821 (3) 5.1268 (1.5) 5.1268 (1.5) 6.8370 (4) 
LiverDisorder 31.9669 (2) 33.9145 (4) 32.4638 (3) 31.8841 (1) 
PimaDiabetes 30.6078 (4) 24.4920* (2) 28.9186 (3) 24.0964* (1) 
Sonar 28.2811 (4) 18.8502 (2) 20.2439 (3) 17.2706 (1) 
ThreeOf9 0.1942 (2) 0.0000 (1) 1.1727 (3) 1.9475 (4) 
Tic-Tac-Toe 0.8344 (1.5) 0.8344 (1.5) 1.1475 (3) 1.8766 (4) 
Tokyo 11.4845 (4) 7.9233* (1) 7.9238* (2) 8.7724* (3) 

Average Error 18.5493 16.3127 16.6931 16.4522 

Average Rank 3.1667 2.1667 2.3750 2.2917 

* Statistically significant at the level of 0.05 when compared to TrnErr objective function. 

 

Table 4-14: Average Percentage Error on Testing of 3-RBF Kernel Function  

Objective Functions of ES 
Datasets 

TrnErr 5SubsetOn 
TrnErr 

BoundOf 
GenErr StabilityBound 

Australian 20.7246 (4) 18.9855 (2) 20.1449 (3) 16.9565* (1) 
Flare 19.6029 (4) 18.9459 (2) 19.1330 (3) 17.9176 (1) 
German 27.5000 (1) 29.5000 (4) 28.6000 (3) 27.7000 (2) 
Glass2 18.9015 (2) 18.2955 (1) 18.9394 (3) 19.5265 (4) 
Heart 23.3333 (3) 23.3346 (4) 18.1481 (1) 22.2222 (2) 
Ionosphere 6.5553 (4) 5.4085 (2) 4.8451* (1) 6.5352 (3) 
LiverDisorder 30.1449 (1) 33.3340 (4) 32.1739 (3) 31.8841 (2) 
PimaDiabetes 30.2215 (4) 25.1057* (1) 28.3957* (3) 25.4108* (2) 
Sonar 25.4704 (4) 12.0790* (1) 16.6156* (3) 15.1057* (2) 
ThreeOf9 0.0000 (1.5) 0.0000 (1.5) 1.7590 (3) 3.7160 (4) 
Tic-Tac-Toe 1.0433 (1) 1.1480 (2.5) 1.1480 (2.5) 1.6699 (4) 
Tokyo 10.3232 (4) 8.4457* (3) 8.2390* (1) 8.3333* (2) 

Average Error 17.8184 16.2152 16.5118 16.4148 

Average Rank 2.7917 2.3333 2.4583 2.4167 

* Statistically significant at the level of 0.05 when compared to TrnErr objective function. 
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Table 4-15: Average Percentage Error on Testing of 4-RBF Kernel Function  

Objective Functions of ES 
Datasets 

TrnErr 5SubsetOn 
TrnErr 

BoundOf 
GenErr StabilityBound 

Australian 20.7246 (4) 18.9855 (2) 20.0000 (3) 16.6667* (1) 
Flare 19.4151 (3) 19.1344 (2) 19.6964 (4) 17.7853 (1) 
German 26.2000 (2) 24.1000* (1) 26.5000 (3) 27.7000 (4) 
Glass2 18.9394 (2) 19.56448 (4) 17.0833 (1) 19.5265 (3) 
Heart 21.8519 (4) 16.2957* (1) 18.5185* (2) 20.3704 (3) 
Ionosphere 4.5553 (1) 6.2656 (3) 5.3964 (2) 6.2696 (4) 
LiverDisorder 31.3043 (1) 34.4950 (4) 32.1739 (3) 31.8841 (2) 
PimaDiabetes 30.4821 (4) 26.4680 (3) 26.4305* (2) 23.7017* (1) 
Sonar 15.8885 (2) 11.1150 (1) 22.2416 (4) 21.5796 (3) 
ThreeOf9 0.1961 (2) 0.0000 (1) 1.5648 (4) 0.7843 (3) 
Tic-Tac-Toe 1.0438 (1) 1.3557 (4) 1.1480 (2) 1.2522 (3) 
Tokyo 10.0115 (4) 8.2365* (2) 8.1337* (1) 8.5509* (3) 

Average Error 16.7177 15.5013 16.5739 16.3393 

Average Rank 2.5000 2.3333 2.5833 2.5833 

* Statistically significant at the level of 0.05 when compared to TrnErr objective function. 

 

Table 4-16: Average Percentage Error on Testing of 5-RBF Kernel Function  

Objective Functions of ES 
Datasets 

TrnErr 5SubsetOn 
TrnErr 

BoundOf 
GenErr StabilityBound 

Australian 21.0145 (4) 18.8058* (2) 19.4203* (3) 16.3768* (1) 
Flare 19.5090 (4) 18.9452 (2) 19.5086 (3) 17.8124 (1) 
German 25.9000 (2) 24.5000* (1) 26.8000 (3) 27.7000 (4) 
Glass2 17.6894 (1) 20.1136 (4) 17.7273 (2) 18.2765 (3) 
Heart 24.8148 (4) 15.1856* (1) 18.8889* (2) 21.1111 (3) 
Ionosphere 5.1268 (1) 8.2666 (3) 10.2696 (4) 6.2656 (2) 
LiverDisorder 31.3043 (2) 34.7848 (4) 30.1449 (1) 31.5942 (3) 
PimaDiabetes 30.9982 (4) 25.2724* (2) 27.2235* (3) 23.9275* (1) 
Sonar 10.5807 (2) 9.1629 (1) 23.6934 (4) 20.6039 (3) 
ThreeOf9 0.0000 (1.5) 0.0000 (1.5) 1.7571 (4) 0.7805 (3) 
Tic-Tac-Toe 0.6266 (1) 1.2516 (2) 1.2522 (3.5) 1.2522 (3.5) 
Tokyo 9.5833 (4) 8.6461 (3) 8.0307* (2) 7.4051* (1) 

Average Error 16.4290 15.4112 17.0597 16.0922 

Average Rank 2.5417 2.2083 2.8750 2.3750 

* Statistically significant at the level of 0.05 when compared to TrnErr objective function. 
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Figure 4-4: Graph of Average Percentage Error at Different Number of RBF Terms 

When the average rank is considered, we found that 5SubsetOnTrnErr performed the 

best for all n -RBF when n  = 2, 3, 4, and 5.  As shown in Figure 4-4, the average percentage 

error on 12 datasets of 5SubsetOnTrnErr is lower than the other objective functions for all n -

RBF when n  = 2, 3, 4, and 5.  When 5SubsetOnTrnErr is used as an objective function in the 

evolutionary process, the average percentage error of n -RBF increases with the number of 

RBF terms. 

The average percentage errors of TrnErr rapidly decrease until a specific number of 

terms of RBF kernels is reached.  After that, they are unchanged or slightly increase.  

Although the average percentage error of BoundOfGenErr is the lowest on the single RBF 

kernel function, for some of the multi-scale RBF kernels, the average percentage errors of 

BoundOfGenErr increase.  We notice that these average percentage errors of BoundOfGenErr 

are varied in a range of percentage error.     

When StabilityBound is used as an objective function, there is a trend that the average 

percentage error on all 12 datasets decreases with the number of terms of RBF kernels.  

Although StabilityBound does not provide lower average percentage errors than those of 

BoundOfGenErr for the single RBF kernel function, it yields the results that are better than 

the other objective functions when the multiple RBF kernel functions are combined.  

Therefore, StabilityBound is a good choice for an objective function, which yields good 

results when using a more flexible kernel function.  Moreover, increasing the number of terms 

of the RBF kernels contributes positively to the performance.   
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Although it is not always the case that the kernel with the largest number of terms 

yields the best result, more RBF terms usually provide better outcomes and should be 

employed when there are no time constraints.  Therefore, the results of 10-RBF kernel 

function, which combines the maximum number of RBF terms in our experiments, are 

illustrated in Table 4-17.   

 

Table 4-17: Average Percentage Error on Testing of 10-RBF Kernel Function  

Objective Functions of ES 
Datasets 1-NN 

TrnErr 5SubsetOn 
TrnErr 

BoundOf 
GenErr 

Stability 
Bound 

Australian 19.8551 
(4) 

21.0145 
(5) 

19.1101 
(2) 

19.4203 
(3) 

16.3768* 
(1) 

Flare 25.1345 
(5) 

18.4788 
(4) 

17.0736* 
(1) 

17.4323* 
(3) 

17.3547* 
(2) 

German 32.6000 
(5) 

28.9000 
(4) 

28.3000 
(2) 

28.7000 
(3) 

26.8000* 
(1) 

Glass2 22.6704 
(5) 

17.0833 
(2.5) 

18.2386 
(4) 

16.4773 
(1) 

17.0833 
(2.5) 

Heart 24.8148 
(5) 

23.7037 
(4) 

21.8519 
(2) 

22.2222 
(3) 

19.6296* 
(1) 

Ionosphere 12.5231 
(5) 

6.2736 
(4) 

6.2696 
(3) 

5.1308 
(2) 

5.1026 
(1) 

LiverDisorder 39.7101 
(5) 

32.4638 
(3) 

35.6528 
(4) 

32.1739 
(2) 

31.5942 
(1) 

PimaDiabetes 29.4355 
(5) 

23.9674 
(2) 

25.4000 
(4) 

24.3536 
(3) 

22.9234 
(1) 

Sonar 12.9965 
(3) 

14.3902 
(5) 

10.1143 
(1) 

13.4379 
(4) 

12.9849 
(2) 

ThreeOf9 20.5082 
(5) 

0.0000 
(2) 

0.0000 
(2) 

0.5882 
(4) 

0.0000 
(2) 

Tic-Tac-Toe 0.0000 
(1) 

1.0433 
(3) 

1.3563 
(5) 

1.1480 
(4) 

0.9391 
(2) 

Tokyo 9.1748 
(4) 

9.9078 
(5) 

8.8617 
(2) 

8.8662 
(3) 

7.0910* 
(1) 

Average Error 20.7853 16.4355 16.0191 15.8292 14.8233 

Average Rank 4.3333 3.6250 2.6667 2.9167 1.4583 

* Statistically significant at the level of 0.05 when compared to TrnErr objective function. 
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From Table 4-17, the average percentage errors of StabilityBound are lower than the 

other objective functions and 1-NN.  Moreover, the average rank of StabilityBound is also the 

lowest when it is compared to the other algorithms.  The Friedman test is used to check that 

the average ranks are significantly different from the mean rank jR = 3 at the significance 

level of 0.05.  Then, Bonferroni-Dunn test is used for a pairwise comparison.  The pairwise 

differences on the average ranks of these algorithms are shown in Table 4-18.  These results 

show that the performance of StabilityBound is significantly better than 1-NN, TrnErr, and 

BoundOfGenErr; however, it is not sufficient to conclude about 5SubsetOnTrnErr.  

Moreover, the performance of 5SubsetOnTrnErr is also significantly better than 1-NN. 

Table 4-18: Pairwise Differences on Average Ranks of 1-NN and 10-RBF Kernel Function 

with the Different Objective Functions  

CD = 1.4466 Algorithms 1-NN TrnErr 5Subset 
OnTrnErr 

BoundOf 
GenErr 

Stability 
Bound 

Algorithms Average 
Rank 4.3333 3.6250 2.6667 2.9167 1.4583 

1-NN 4.3333 0.0000 0.7083 1.6667* 1.4167 2.8750* 

TrnErr 3.6250 -- 0.0000 0.9583 0.7083 2.1667* 

5Subset 
OnTrnErr 2.6667 -- -- 0.0000 -0.2500 1.2083 

BoundOf 
GenErr 2.9167 -- -- -- 0.0000 1.4583* 

Stability 
Bound 1.4583 -- -- -- -- 0.0000 

* Significantly Different at the level of 0.10. 

 

Similar to the single RBF kernel, TrnErr may guide to a classifier which overfits 

training data.  The average percentage error on training of TrnErr is lower than the other 

objective functions, whereas the average percentage error on testing of TrnErr is higher than 

the other objective functions.  The average percentage errors on training of a 10-RBF kernel 

for each objective function are illustrated in Table 4-19.  Furthermore, a chart for comparing 

between training and testing of the 10-RBF kernel with different objective functions is shown 

in Figure 4-5.  This chart shows that the average percentage errors on testing of SVM based 

on adaptive multi-scale RBF kernels with different objective functions are better than those of 

1-NN. 
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However, since the multi-scale RBF kernels are more flexible according to the terms 

of RBF, a set of parameters may create a decision surface that overfits training data.  The 

experimental results show that the StabilityBound can solve this problem.  When we consider 

the chart of the average accuracy on 12 datasets, we found that the training error of the 

StabilityBound is higher than those of the other objective functions.  However, the average 

percentage error on testing is different; the StabilityBound yields the lowest average 

percentage error on testing.  This means that the lowest error on training is not the best choice 

for unseen data, while the StabilityBound yields the results that do not overfit training data.  

 

Table 4-19: Average Percentage Error on Training of 10-RBF Kernel Function  

Objective Functions of ES 
Datasets 

TrnErr 5SubsetOn 
TrnErr 

BoundOf 
GenErr StabilityBound 

Australian 1.0870 1.8478 2.3913 8.6232 

Flare 11.8195 12.7810 12.6879 15.6426 

German 0.0000 0.0250 0.5000 2.7750 

Glass2 3.3729 4.4439 7.6747 15.1767 

Heart 0.6481 2.7778 4.2593 8.2407 

Ionosphere 0.1423 0.0712 0.4270 2.5656 

LiverDisorder 11.3768 10.4348 13.4783 25.7246 

PimaDiabetes 4.3609 10.7759 8.0060 19.7921 

Sonar 0.0000 0.0000 0.0000 1.1998 

ThreeOf9 0.0000 0.0000 0.0000 0.0000 

Tic-Tac-Toe 0.0000 0.0000 0.0000 0.0000 

Tokyo 0.6779 2.1099 0.8083 5.7873 

Average Error 2.7905 3.7723 4.1861 8.7940 
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Figure 4-5: Chart of Average Percentage Error on Training of 1-NN and Both Training and 
Testing of 10-RBF Kernel with Different Objective Functions  

 

In order to illustrate that the multi-scale RBF kernels can improve the classification 

performance of a single RBF kernel, Friedman test is used for testing the average ranks of  

1-NN, grid search, single RBF kernel, and 10-RBF kernel that uses the StabilityBound as the 

objective function in evolutionary process.  The results and the ranks are compared in Table 

4-20.   

By the Friedman test, the average ranks of these 4 algorithms and 12 datasets are 

significantly different from the mean rank jR = 2.5 at the significant level of 0.05.  Then, the 

Bonferroni-Dunn test is used for a pairwise comparison.  The pairwise differences on the 

average ranks of these algorithms are shown in Table 4-21.   

The results show that the performance of a 10-RBF kernel is significantly better than 

single RBF kernel.  Moreover, the performance of SVM with the 10-RBF kernel that uses the 

StabilityBound as an objective function in the evolutionary process is also significantly better 

than 1-NN and grid search on single RBF kernel.  
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Table 4-20: Average Percentage Error on Testing of 1-NN, Grid Search, and ES with the 

StabilityBound on RBF and 10-RBF Kernel Functions  

ES with the StabilityBound  
Objective Function Datasets 1-NN Grid Search 

RBF Kernel 10-RBF Kernel 

Australian 19.8551 (4) 21.4500 (3) 16.3768 (1.5) 16.3768 (1.5) 

Flare 25.1345 (4) 18.8500 (3) 17.4490 (2) 17.3547 (1) 

German 32.6000 (4) 28.9000 (2.5) 28.9000 (2.5) 26.8000 (1) 

Glass2 22.6704 (4) 17.0840 (2) 21.5720 (3) 17.0833 (1) 

Heart 24.8148 (3) 28.5180 (4) 20.0000 (2) 19.6296 (1) 

Ionosphere 12.5231 (4) 10.5520 (3) 6.2656 (2) 5.1026 (1) 

LiverDisorder 39.7101 (4) 32.7536 (3) 32.1739 (2) 31.5942 (1) 

PimaDiabetes 29.4355 (4) 26.3160 (3) 24.4860 (2) 22.9234 (1) 

Sonar 12.9965 (2) 30.8600 (4) 14.4010 (3) 12.9849 (1) 

ThreeOf9 20.5082 (4) 0.1961 (2) 1.5572 (3) 0.0000 (1) 

Tic-Tac-Toe 0.0000 (1) 1.2520 (3) 3.7516 (4) 0.9391 (2) 

Tokyo 9.1748 (3) 9.5960 (4) 8.9807 (2) 7.0910 (1) 

Average Error 20.7853 18.8606 16.3262 14.8233 

Average Rank 3.4167 3.0417 2.4167 1.1250 

 

Table 4-21: Pairwise Differences on Average Ranks of 1-NN, Grid Search, and ES with the 

StabilityBound on Single RBF and 10-RBF Kernel Functions  

CD = 1.1690 Algorithms 1-NN Grid Search ES 
RBF 

ES 
10-RBF 

Algorithms Average Rank 3.4167 3.0417 2.4167 1.1250 

1-NN 3.4167 0.0000 0.3750 1.0000 2.2917* 

Grid Search 3.0417 -- 0.0000 0.6250 1.9167* 

ES 
RBF 2.4167 -- -- 0.0000 1.2917* 

ES 
10-RBF 1.1250 -- -- -- 0.0000 

* Significantly Different at the level of 0.10. 
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Furthermore, the other combined kernel functions are evaluated.  The parameters of 

SVM with a multi-degree polynomial kernel, linear combination of polynomial and RBF 

kernels, and multiplication of polynomial and RBF kernels are selected by (5+10)-ES.  For 

the multi-degree polynomial kernel, we use 10 terms of polynomial sub-kernels and the 

degrees of polynomial sub-kernels are fixed at 1, 2, … , 10.  Only the weights of sub-kernels 

and a regularization parameter of SVM are the adjustable parameters.  The parameter vector 

vv  is represented by the following equation:  

vv = ( C , 0a , 1a , 2a , … , 1−na ), (140) 

where C  is the regularization parameter, 0a  is the weight of polynomial sub-kernel at degree 

1 (linear sub-kernel) and it is fixed as 1, ia  for 1,...,1 −= ni  are the weights of polynomial 

sub-kernels, and n  is the number of terms of polynomial sub-kernel functions.  

For the linear combination and the multiplication of polynomial and RBF kernels, we 

combine an RBF kernel with a polynomial kernel.  Their parameters are selected by (5+10)-

ES, which the parameter vector vv  is represented by: 

vv = ( C , 0a , d , 1a , γ ), (141) 

where C  is the regularization parameter, 0a  is the weight of polynomial sub-kernel that is 

fixed as 1, d  is the degree of polynomial sub-kernel, 1a  is the weight of RBF sub-kernel, and 

γ  is the width of RBF sub-kernel.  The experimental results of these kernel functions are 

compared to the grid search on single RBF and single polynomial kernel functions, and ES on 

10-RBF kernel in Table 4-22.  The pairwise differences on the average ranks are shown in 

Table 4-23. 

As shown in Table 4-22, the performance of 10-RBF kernel is still better than the 

other kernel functions.  Friedman test is used to check that the measured average ranks of 6 

algorithms and 12 datasets are significantly different from the mean rank jR = 3.5 at a 

significance level of 0.05.  For the pairwise comparisons, the performance of 10-RBF kernel 

is significantly better than those of Poly*RBF kernel and the grid search on both RBF and 

polynomial kernels.  Moreover, the performance of Poly+RBF kernel is significantly better 

than that of Poly*RBF kernel.  However, it is not sufficient to conclude about the other kernel 

functions. 
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Table 4-22: Average Percentage Error of SVM with Different Kernel Functions when using 

StabilityBound as the Objective Function in Evolutionary Process   

Grid Search ES 
Datasets 

RBF Poly 10-Poly Poly+RBF Poly*RBF 10-RBF 

Australian 21.4500  
(3) 

23.7680  
(6) 

23.1884  
(4) 

16.8116  
(2) 

23.6232  
(5) 

16.3768  
(1) 

Flare 18.8500  
(3) 

19.6060  
(5) 

17.4477  
(2) 

19.1365  
(4) 

20.1659  
(6) 

17.3547  
(1) 

German 28.9000  
(4) 

31.1000  
(6) 

30.2000  
(5) 

27.2000  
(2) 

28.8000  
(3) 

26.8000  
(1) 

Glass2 17.0840  
(2) 

19.5455  
(3.5) 

19.5455  
(3.5) 

22.0455  
(6) 

20.7386  
(5) 

17.0833  
(1) 

Heart 28.5180  
(5) 

23.7020  
(4) 

22.5926  
(3) 

20.7407  
(2) 

33.3333  
(6) 

19.6296  
(1) 

Ionosphere 10.5520  
(4) 

12.8260  
(6) 

12.2857  
(5) 

9.9839  
(3) 

8.8209  
(2) 

5.1026  
(1) 

LiverDisorder 32.7536  
(6) 

29.2754  
(3) 

28.9855  
(2) 

28.6957  
(1) 

30.7246  
(4) 

31.5942  
(5) 

PimaDiabetes 26.3160  
(4) 

31.1280  
(6) 

23.1848  
(2) 

25.0089  
(3) 

27.2167  
(5) 

22.9234  
(1) 

Sonar 30.8600  
(6) 

11.5660  
(2) 

11.5447  
(1) 

12.9733  
(3) 

30.8130  
(5) 

12.9849  
(4) 

ThreeOf9 0.1961  
(3) 

0.0000  
(1.5) 

1.1727  
(4) 

1.9513  
(5) 

2.7204  
(6) 

0.0000  
(1.5) 

Tic-Tac-Toe 1.2520  
(4) 

1.2500  
(3) 

1.5658  
(5) 

0.6272  
(1) 

2.2971  
(6) 

0.9391  
(2) 

Tokyo 9.5960  
(3) 

11.9900  
(6) 

9.8004  
(4) 

8.3421  
(2) 

11.4682  
(5) 

7.0910  
(1) 

Average Error 18.8606 17.9797 16.7928 16.1264 20.0602 14.8233 

Average Rank 3.9167 4.3333 3.3750 2.8333 4.8333 1.7083 
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Table 4-23: Pairwise Differences on Average Ranks of Grid Search and ES with the Different 

Combined Kernel Functions 

Grid Search ES 

CD = 1.7769 

A
lg

or
ith

m
s 

RBF Poly 10-Poly 
Poly 

+ 
RBF 

Poly 
* 

RBF 
10-RBF 

Algorithms Average 
Rank 3.9167 4.3333 3.3750 2.8333 4.8333 1.7083 

RBF 3.9167 0.0000 -0.4167 0.5417 1.0833 -0.9167 2.2083* 

G
ri

d 
Se

ar
ch

 

Poly 4.3333 -- 0.0000 0.9583 1.5000 -0.5000 2.6250* 

10-Poly 3.3750 -- -- 0.0000 0.5417 -1.4583 1.6667 

Poly 
+ 

RBF 
2.8333 -- -- -- 0.0000 -2.0000* 1.1250 

Poly 
* 

RBF 
4.8333 -- -- -- -- 0.0000 3.1250* 

E
S 

10-RBF 1.7083 -- -- -- -- -- 0.0000 

* Significantly Different at the level of 0.10. 

 

Therefore, we consider the average percentage error of this kernel functions.  The 

average percentage errors of 10-Poly kernel are lower than those of single polynomial kernel 

at the most of datasets, except for ThreeOf9 and Tic-Tac-Toe where their average percentage 

errors are lower than the other datasets.  This means that the multi-degree polynomial kernel 

can improve the performance of SVM that uses the single polynomial kernel.  However, the 

classification performance can be further enhanced by Poly+RBF kernel on many datasets, 

e.g. Australian, German, Heart, Ionosphere, LiverDisorder, Tic-Tac-Toe, and Tokyo. 

Although Poly*RBF kernel does not perform well on these datasets, there is a dataset, 

i.e. Ionosphere that the average percentage error of Poly*RBF kernel is lower than Poly+RBF 

kernel.  Thus, it may be suitable for some specific problems.  However, we encourage SVM 

with the 10-RBF kernel because it yields the lowest average percentage error at the most of 

datasets and makes the best average ranks. 

4.3.2 Regression Problems 

In this section, the proposed methods are evaluated on 4 regression problems.  First, 

SVMs with the parameter settings are evaluated on single RBF and single polynomial kernels.  

The deviation of approximation ( ε ) is fixed as 1, a regularization parameter ( C ) is set as 0.1 
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and 1.0, the width of RBF ( γ ) is set as 0.0001, 0.001, 0.01, 0.1, 1, and 10, and the degree of 

polynomial ( d ) is set as 1, 2, 4, 6, 8, and 10.  The experimental results of SVM with single 

RBF and single polynomial kernels are shown in Table 4-24 and Table 4-25, respectively.  

Table 4-24: Average SMAPE of SVM with Parameter Setting on RBF Kernel for ε =1 

Width of RBF ( γ ) 
Datasets C 

0.0001 0.001 0.01 0.1 1 10 

0.1 48.5875 46.0065 32.6615 21.2949 18.0396 22.0299 
Auto_MPG 

1.0 46.0027 32.6173 22.2937 20.3630 17.6418 21.1808 

0.1 103.0350 102.9174 102.5493 100.7347 93.9533 95.9258 CPU_ 
Performance 

1.0 102.9252 102.5483 100.6928 192.0511 83.9628 91.2576 

0.1 38.7003 37.0063 31.1954 25.1217 21.1597 25.4770 
Housing 

1.0 37.0030 31.1219 24.9612 25.5889 18.6126 24.9256 

0.1 82.7478 82.8238 81.8611 71.4998 69.9977 75.8987 
Servo 

1.0 82.8236 81.8701 68.4786 231.5096 124.6145 75.9276 

 

Table 4-25: Average SMAPE of SVM with Parameter Setting on Polynomial Kernel for ε =1 

Degree of Polynomial ( d ) 
Datasets C 

1 
(Linear) 2 4 6 8 10 

0.1 33.8700 19.1808 19.0836 20.9372 36.3465 48.8011 
Auto_MPG 

1.0 35.6947 19.1514 21.2742 25.6222 118.3615 48.8891 

0.1 80.6270 73.9781 93.0097 92.0578 93.8800 93.7312 CPU_ 
Performance 

1.0 322.7340 111.9524 86.6720 92.0777 93.9052 93.5778 

0.1 25.9540 19.9023 20.9789 33.7235 34.8894 32.3293 
Housing 

1.0 30.1677 19.4419 31.6084 33.7235 34.8894 32.3293 

0.1 980.8324 297.8442 435.4942 318.8907 258.0206 150.9032 
Servo 

1.0 192.3614 151.6029 208.5475 413.4937 198.1518 279.2676 
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These results show that if the unsuitable parameters are selected, the performance of 

SVM may be very bad.  On the other hand, the performance of SVM may be very well if the 

suitable parameters are selected.  Hence, the parameter setting is not a good method for the 

general problems.  A better parameter selection method is necessary for improving the 

performance of classification or approximation. 

Grid search is a good parameter selection method.  However, the performance of grid 

search relates to the running time.  Moreover, grid search is not suitable for selecting the 

parameters of combined kernel functions.  Since there are a lot of possible combinations on 

the parameters of sub-kernels, the usage of the grid search will consume a lot of time.  ES is a 

better choice that can search these parameters simultaneously.  The performance of ES with 

the different objective functions are compared to the grid search on single RBF kernel 

function in Table 4-26.  For the objective functions, we consider the mean squared error on 

training (mse_obj), the symmetric mean absolute percentage error on training (smape_obj), 

and the bound of generalization error that derived from the stability of SVM regression 

(StabilityBound).  

Table 4-26: Average SMAPE on 5-Fold Cross-Validation of RBF Kernel Function 

ES with Single RBF Kernel 
Datasets RBF  

GridSearch 
mse_obj smape_obj StabilityBound 

Auto_MPG 20.5728 
(4) 

17.1952* 
(2) 

20.4880 
(3) 

16.4799* 
(1) 

CPU_Performance 41.7046 
(3) 

39.8293 
(1) 

42.0724 
(4) 

41.5944 
(2) 

Housing 19.4757 
(4) 

18.8712 
(3) 

18.7848 
(2) 

17.4683* 
(1) 

Servo 78.0434 
(4) 

54.2221 
(2) 

59.3868 
(3) 

34.8444 
(1) 

Average SMAPE 39.9491 32.5294 35.1830 27.5967 

Average Rank 3.7500 2.0000 3.0000 1.2500 

* Statistically significant at the level of 0.05 when compared to RBF Grid Search. 

 

The results show that the performance of StabilityBound outperforms the other 

objective functions and the grid search.  Moreover, the average SMAPE of StabilityBound is 

significantly lower than the grid search at the confident level of 95% on two datasets, i.e. 

Auto_MPG and Housing.  Whereas mse_obj yields the best average SMAPE on 

CPU_Performance dataset, the average SMAPE of smape_obj is not better than the other 
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objective functions.  By Friedman test, the average ranks of these 4 algorithms are 

significantly different from the mean rank jR = 2.5 at a significance level of 0.05.  The 

pairwise differences on average ranks are shown in Table 4-27.  The performance of 

StabilityBound is significantly better than grid search but it is not sufficient to conclude about 

the other objective functions.   

Table 4-27: Pairwise Differences on Average Ranks of RBF Grid Search and ES with the 

Different Objective Functions on Single RBF Kernel on Regression Problems 

CD = 1.9426 Algorithms RBF 
Grid Search mse_obj smape_obj Stability 

Bound 

Algorithms Average Rank 3.7500 2.0000 3.0000 1.2500 

RBF 
Grid Search 3.7500 0.0000 1.7500 0.7500 2.5000* 

mse_obj 2.0000 -- 0.0000 -1.0000 0.7500 

smape_obj 3.0000 -- -- 0.0000 1.7500 

Stability 
Bound 1.2500 -- -- -- 0.0000 

* Significantly Different at the level of 0.10. 

 

Furthermore, the grid search may make SVM overfit to training data.  The average 

SMAPE on training of the grid search is lower than the other methods.   The average SMAPE 

on training is shown in Table 4-28 and Figure 4-6. 

Table 4-28: Average SMAPE on Training of RBF Kernel Function  

ES with Single RBF Kernel 
Datasets RBF  

GridSearch mse_obj smape_obj StabilityBound 

Auto_MPG 1.8184 8.8942 2.1310 7.7204 

CPU_Performance 17.0925 35.1444 17.6679 24.0513 

Housing 1.2762 2.5925 2.4260 4.1805 

Servo 2.1264 53.2094 16.5329 7.1311 

Average SMAPE 5.5784 24.9601 9.6895 10.7708 

 



 
 
 
 

106

0

5

10

15

20

25

30

35

40

45

Grid Search mse_obj smape_obj StabilityBound

SM
A

PE
Train Test

Figure 4-6: Average SMAPE on Training and Testing of Single RBF Kernel Function 

However, with the help of ES, the proposed method can determine the high quality 

parameters in a more convenient way.  Then, SVM with 10-RBF kernel is evaluated; its 

parameters are selected by ES with the different objective functions.  The experimental results 

are compared to the StabilityBound on the single RBF kernel in Table 4-29.  Moreover, the 

pairwise differences on the average ranks are shown in Table 4-30.  The results confirm that 

the stability on bounded SVR is a suitable objective function. 

Table 4-29: Average SMAPE on 5-Fold Cross-Validation of 10-RBF Kernel Function  

ES with 10-RBF Kernel 
Datasets 

ES with RBF 
Kernel and  

StabilityBound mse_obj smape_obj StabilityBound 

Auto_MPG 16.4799 
(2) 

18.1050 
(4) 

17.8098 
(3) 

15.7513* 
(1) 

CPU_Performance 41.5944 
(3) 

42.3626 
(4) 

40.4926 
(2) 

38.6108* 
(1) 

Housing 17.4683 
(3) 

16.9928 
(2) 

18.0143 
(4) 

15.8854 
(1) 

Servo 34.8444 
(2) 

55.3948 
(4) 

45.3529 
(3) 

28.3842* 
(1) 

Average SMAPE 27.5967 33.2138 30.4174 24.6579 

Average Rank 2.5000 3.5000 3.0000 1.0000 

* Statistically significant at the level of 0.05 when compared to RBF StabilityBound. 
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Table 4-30: Pairwise Differences on Average Ranks of Single RBF Kernel and 10-RBF 

Kernel with Different Objective Functions on Regression Problems 

RBF 10-RBF 
CD = 1.9426 

A
lg

or
ith

m
s 

Stability 
Bound mse_obj smape_obj Stability 

Bound 

Algorithms Average 
Rank 2.5000 3.5000 3.0000 1.0000 

RBF Stability 
Bound 2.5000 0.0000 -1.0000 -0.5000 1.5000 

mse_obj 3.5000 -- 0.0000 0.5000 2.5000* 

smape_obj 3.0000 -- -- 0.0000 2.0000* 

10
-R

B
F 

Stability 
Bound 1.0000 -- -- -- 0.0000 

* Significantly Different at the level of 0.10. 

 

From these experimental results, these average ranks are significantly different from 

the mean rank jR = 2.5.  The average SMAPE of StabilityBound is significantly better than 

those of mse_obj and smape_obj.  Similar to the previous experiment, the lowest average 

SMAPE on training may not yield the best result on testing.  The average SMAPE on training 

of the 10-RBF kernel are illustrated in Table 4-31.  Moreover, the chart of the average 

SMAPE on 5-fold cross-validation measured on training and test data is shown in Figure 4-7. 

Table 4-31: Average SMAPE on Training of 10-RBF Kernel Function  

ES with 10-RBF Kernel 
Datasets RBF  

StabilityBound mse_obj smape_obj StabilityBound 

Auto_MPG 1.8184 5.1195 3.8058 10.3504 

CPU_Performance 17.0925 28.1559 20.2861 24.9695 

Housing 1.2762 4.0304 5.4541 6.5383 

Servo 2.1264 31.1625 10.4524 9.9108 

Average SMAPE 5.5784 17.1171 9.9996 12.9422 
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Figure 4-7: Average SMAPE on Training and Testing of 10-RBF Kernel Function 

In this chart, the average SMAPE of StabilityBound on 10-RBF kernel was compared 

to those of mse_obj and smape_obj on the 10-RBF kernel and StabilityBound on single RBF 

kernel.  StabilityBound did not yield the lowest average SMAPE on training data.  However, 

the average SMAPE of StabilityBound on test data was lower than the other techniques.  This 

means that StabilityBound did not overfit training data, and it was a good objective function 

for the adaptive multi-scale RBF kernel, while mse_obj and smape_obj may overfit training 

data.  

Then, the results of the other combined kernels, i.e. the multi-degree polynomial 

kernel, the non-negative linear combination of polynomial and RBF kernels, and the 

multiplication of polynomial and RBF kernels, are illustrated in Table 4-32.  The parameters 

of these kernel functions are selected by ES that uses the StabilityBound as an objective 

function.  The results are compared to the SVMs with single polynomial and single RBF 

kernels that their parameters are selected by the grid search.   

Furthermore, the average ranks of the algorithms are calculated.  Pairwise differences 

on the average rank of these algorithms are shown in Table 4-33.  The performance of 10-

RBF kernel is significantly better than those of Poly*RBF kernel and grid search on both RBF 

and polynomial kernels.  Moreover, the performance of Poly+RBF kernel is significantly 

better than the performances of grid search on RBF kernel and Poly*RBF kernel. 
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Table 4-32: Average SMAPE on 5-Folds Cross-Validation of SVM with Different Kernel 

Functions when using StabilityBound as the Objective Function in Evolutionary Process   

Grid Search ES 
Datasets 

RBF Poly 10-Poly Poly+RBF Poly*RBF 10-RBF 

Auto_MPG 20.5728 
(4) 

33.2921 
(6) 

18.5709 
(3) 

16.8403 
(2) 

24.1689 
(5) 

15.7513 
(1) 

CPU_ 
Performance 

41.7046 
(4) 

70.2761 
(6) 

47.1344 
(5) 

38.8105 
(2) 

39.7933 
(3) 

38.6108 
(1) 

Housing 19.4757 
(5) 

28.6761 
(4) 

18.9636 
(3) 

15.9673 
(2) 

19.5409 
(6) 

15.8854 
(1) 

Servo 78.0434 
(5) 

72.1700 
(4) 

67.9599 
(3) 

59.7369 
(2) 

94.6604 
(6) 

28.3842 
(1) 

Average 
SMAPE 39.9491 51.1036 38.1572 32.8388 44.5409 24.6579 

Average 
Rank 4.5000 5.0000 3.5000 2.0000 5.0000 1.0000 

 

Table 4-33: Pairwise Differences on Average Ranks of Grid Search and ES with the Different 

Combined Kernel Functions on Regression Problems  

Grid Search ES 

CD = 3.0770 

A
lg

or
ith

m
s 

RBF Poly 10-Poly 
Poly 

+ 
RBF 

Poly 
* 

RBF 
10-RBF 

Algorithms Average 
Rank 4.5000 5.0000 3.5000 2.0000 5.0000 1.0000 

RBF 4.5000 0.0000 -0.5000 1.0000 2.5000 -0.5000 3.5000* 

G
ri

d 
Se

ar
ch

 

Poly 5.0000 -- 0.0000 1.5000 3.0000** 0.0000 4.0000* 

10-Poly 3.5000 -- -- 0.0000 1.5000 -1.5000 2.5000 

Poly 
+ 

RBF 
2.0000 -- -- -- 0.0000 -3.0000** 1.0000 

Poly 
* 

RBF 
5.0000 -- -- -- -- 0.0000 4.0000* 

E
S 

10-RBF 1.0000 -- -- -- -- -- 0.0000 

* Significantly Different at the level of 0.10. 

** This value is very close to the critical difference. 

 



 
 
 
 

110

These results are very similar to the classification problems in Section 4.3.1.  The 

performance of 10-Poly kernel is better than single polynomial kernel at all datasets.  

Moreover, these results can be enhanced by a linear combination of polynomial and RBF 

kernels.  Although the performance of multiplication of polynomial and RBF kernels does not 

perform well, its performance is better than single polynomial kernel on two datasets, i.e. 

Auto_MPG and CPU_Performance.  However, the 10-RBF kernel is still the best kernel 

function in our experiments.  The average SMAPE of SVM with the 10-RBF kernel that uses 

the StabilityBound as the objective function in evolutionary process is lower than the average 

SMAPE of the other objective functions and kernels.  



CHAPTER V    

REAL WORLD PROBLEMS 

In this chapter, some real world problems, i.e. sentiment classification and 

handwritten recognition, are considered.  The sentiment classification is a binary 

classification problem, while the handwritten recognition is a multi-class problem.  The 

proposed methods in Chapter 3 are applied on these problems.  The problem description and 

the experimental results are described in the following sections. 

5.1 Sentiment Classification 

There are many ways to categorize documents, for example, by subject, genre, or the 

sentiment expressed in the documents.  Sentiment classification of reviews has been the focus 

of the recent research studies.  It has been applied on different domains such as movie 

reviews, product reviews, and customer feedback reviews [67] in order to categorize the 

documents.  The most basic task in sentiment classification is to classify a document into 

positive or negative sentiment.  Since sentiment is expressed in many different ways, it is hard 

to manually create all the classification rules and therefore researchers have attempted to 

apply machine learning techniques on this task.  This research is also devoted to the 

development of machine learning based techniques for sentiment classification. 

SVM is a learning technique that performs well on sentiment classification.  The 

performance of SVM classifier depends on the used kernel function and its parameters.  

Hence, if the suitable kernel is chosen, the performance of sentiment classification should be 

improved.  These lead to the idea of applying the adaptive combined kernel functions for the 

sentiment classification problem.  The sentiment classification and its related work are briefly 

reviewed in Section 5.1.1.  The adaptive combined kernel functions and the normalization of 

kernels are briefly described in Section 5.1.2.  In Section 5.1.3, our approaches are applied on 

the sentiment classification problem, and their results are reported.  These results are 

discussed in Section 5.1.4. 

5.1.1 Preliminary and Related Work 

Research of sentiment classification was initiated in 1997 [67].  It is the main task of 

opinion mining, and most of work focuses on determining the sentiment orientations of 

documents, sentences, and words.  In document level sentiment analysis, documents are 
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classified into positive and negative according to the overall sentiment expressed in them.  

This simple classification task has many potential applications including a movie 

recommendation system, market research form blog text, and an email classification system 

that alerts users when the system identifies a message with negative sentiment.    

There are two approaches to classify the sentiment.  The first approach is to count 

positive and negative terms in a review, where the review is positive if it contains more 

positive than negative terms, and negative if there are more negative terms [67].  The 

difficulty of sentiment classification is the context-dependency of the sentiments of linguistic 

expressions.  For example, negation words such as “not” or “never” shift the sentiment.  A 

positive statement becomes negative when it is subcategorized by a verb “doubt”.  Although 

we could use n-grams (continuous n words) as features in order to handle such shifts, 

dependency between two words with a long distance cannot be captured by n-grams.   

The second approach uses machine learning to determine the sentiment of the reviews 

[67].  Pang et al. [68] have used learning algorithms such as Naïve Bays, maximum entropy, 

and SVM to classify reviews.  Their work focused on the features indicating the presence of 

words or n-grams.  Dave et al. [69] used machine learning methods for review classification 

and reported that the bigram features yielded the best accuracy. This result supports that the 

sentiment has strong dependency on the context.  Li and Sun [70] applied four machine 

learning methods on sentiment classification of Chinese reviews.  They investigated the 

factors which affect performance.  Then, SVM, Naïve Bayes, maximum entropy, and artificial 

neural network (ANN) were employed on customer reviews.  The results showed that the 

SVM classifier produces the best results under all of their text representation schemes.   

Hence, SVM classifiers that use unigrams (single words) as features are trained in 

this research.  Instead of using n-grams, we utilize higher-degree kernel functions, which can 

automatically take into account the conjunctions of features.  However, there is another 

difficulty that it is unknown which kernel function is suitable for this task.  In spite of our 

intuition that feature combinations will capture the context-dependency of sentiment, some 

researchers have reported that higher-degree kernels only degraded the classification 

performance [71, 72]. Meanwhile, there is a report that higher-degree kernels did improve the 

classification performance [73]. Therefore, we decided to use many types of kernel functions 

in the form of the non-negative linear combination.  The performance of sentiment 

classification should be enhanced by SVM with the adaptive combined kernel functions. 
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5.1.2 Methodology 

The adaptive combined kernel functions are used for the sentiment classification 

problem.  SVM with the non-negative linear combination of multiple kernel functions are 

applied on product reviews to determine whether a review is positive or negative.  Then ES is 

applied for adjusting the parameters of SVM and the combined kernel functions.  Moreover, 

the stability of soft margin SVM is the objective function in evolutionary process in order to 

avoid the overfitting problem. 

5.1.2.1 Combined Kernel Functions 

For sentiment classification, we take an interest in two kinds of kernel 

functions, i.e. polynomial and radial basis function (RBF) kernels that are the inner-product-

based and distance-based kernels, respectively.  These kernel functions are illustrated in the 

following forms.  

 Polynomial: ( )dxxxxK ′⋅+=′ 1),(  (142) 

 Gaussian RBF: ( )2exp),( xxxxK ′−−=′ γ  (143) 

In order to obtain a better result, SVM with the non-negative linear 

combination of multiple kernel functions is applied on sentiment classification.  The analytic 

expression of this kernel is the following: 

∑
=

′=′Κ
n

i
ii xxKaxx

1
),(),( , (144) 

where n  is the number of sub-kernels, 0≥ia  for ni ,,1 K=  are the arbitrary non-negative 

weighting constants, and ),( xxK i ′  for ni ,,1 K=  are the sub-kernels, each of which is the 

polynomial kernel at degree i  or the RBF kernel at width iγ .   

With these two kinds of kernel functions, there are three possible non-negative 

linear combinations of multiple kernels, i.e. (1) the non-negative linear combination of 

multiple polynomial kernels at different degree, (2) the non-negative linear combination of 

multiple RBF kernels at different scale, and (3) the non-negative linear combination of both 

polynomial and RBF kernels with different parameters.  These kernels are more flexible as 

they have more adjustable parameters, and their expressions are shown by the following 

equations: 
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5.1.2.2 Normalization 

In our experiments, all parameters (the weights of combination, the widths of 

RBF kernel, and the regularization parameter of SVM) are determined by an evolutionary 

algorithm.  Although these parameters are bounded in evolutionary process, the numerical 

value of these combined kernel functions may be very large when many sub-kernels are 

combined.  Hence, the normalization is considered to apply on these combined kernel 

functions.  Normalization in feature space is not applied directly on the input vector, but it can 

be seen as a kernel interpretation of the preprocessing [74].  This normalization redefines a 

new kernel function ),(~
21 xxΚ  of SVM.  The non-negative linear combination kernels are 

normalized by 

),(),(
),(),(~

xxxx
xxxx

′Κ′Κ

′Κ
=′Κ . (148) 

This normalized kernel places the data on a portion of the unit hypersphere in the feature 

space [74].  Obviously, the equation 1),(~
=′Κ xx  holds true. 

5.1.2.3 Parameters Adjustment 

The weights of sub-kernels, the width of RBF kernels, and the regularization 

parameter of SVM are the adjustable parameters of the learning process.  The (5+10)-ES is 

applied for adjusting these parameters.  Let vv  be the non-negative real-valued vector of the 

parameters.  For the non-negative linear combination of multiple polynomial kernels, the 

vector vv  has 1+n  dimensions and it is represented in the form:  

vv  = ( C , 1a , 2a , …, na ), (149) 

where C  is the regularization parameter, ia  for ni ,,1 K=  are the non-negative weights of 

sub-kernels, and n  is the number of terms of sub-kernels.   

For the non-negative linear combination of multiple RBF kernels, the widths of 

RBF kernels ( iγ ) will be added into the vector vv .  The vector vv  is represented by    
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vv  = ( C , 1a , 2a , …, na , 1γ , 2γ , …, nγ ). (150) 

Also, the vector vv  for non-negative linear combination of both polynomial and RBF kernels 

is represented by  

vv  = ( C , 1a , 2a , …, na , 12/ +nγ , 22/ +nγ , …, nγ ). (151) 

This vector will be investigated by the (5+10)-ES.  This algorithm uses 5 

solutions to produce 10 new solutions by a recombination method that is described in Chapter 

3.  These new solutions are mutated and evaluated, and only the 5 fittest solutions are selected 

from 5+10 solutions to be the parents in the next generation.  ES terminates after a fixed 

number of generations have been produced and evaluated. 

One of the most important and difficult parts of the evolutionary algorithm is 

how to define the objective function.  Although the training error can be used as the objective 

function in the evolutionary processes, this function may cause the overfit to training data.  

Therefore, this research proposes to use the bound of generalization error that is derived from 

the assumption of stability as the objective function for the sentiment classification problem.   

)(vfitness v  = 
mm

Remp 2
)1ln(21

22 δ
λ
κ
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κ
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⎞
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⎝

⎛
+++ , (152) 

where empR  is the empirical error, )(⋅K  is a bounded kernel that is 2),( κ≤ji xxK , λ  is the 

regularization parameter of SVM ( C1=λ ), m  is the sample size, and δ−1  is the probability 

of this bound.  The bound of kernel function ( 2κ ) can be estimated when the parameters of a 

kernel function are assigned for each individual vector ( vv ).  A set of suitable parameters 

should provide a lower bound of risk. 

5.1.3 Experimental Results 

We used a dataset of product reviews, which was provided by Bing Liu1 [75].  This 

dataset contains sentences used in product reviews collected from the internet and assigned 

with a sentiment tag: positive or negative.   The dataset contains 1,700 sentiment sentences: 

1,067 positive and 633 negative sentences.  The SVM classifiers were trained by using 

unigrams (single words) as features.  Methods were evaluated by 5-folds cross-validation.  

The single kernel functions, i.e. linear kernels, polynomial kernels at different degree, and 

RBF kernels at different scale were used as the baselines.  The average accuracy values on 

                                                  
1 The dataset is available at http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html. 
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training and testing of SVM with single polynomial and single RBF kernels when we varied 

the parameters are shown by the graphs in Figure 5-1 and Figure 5-2, respectively.   

 

Figure 5-1: The Average Accuracy on Polynomial Kernels at Different Degree 

 

 

Figure 5-2: The Average Accuracy on RBF Kernels at Different Scale 

From these graphs, we found that the average test accuracy of sentiment classification 

decreased when the degree of polynomial or the width of RBF was increased.  The linear 

kernel and the polynomial at degree 2 yielded the results that were better than the other 

degrees, and a good average training accuracy of RBF kernel occurred when the width of 

RBF was 0.07.  These results were compared with the proposed method.     

The (5+10)-ES were used to find the optimal parameters of the combined kernel.  The 

value of τ  in evaluation process of these experiments was set to 1.0.  The number of terms of 
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sub-kernel was fixed as 10.  The weights of combination ( ia ), the widths of RBF kernels ( iγ ), 

and the regularization parameter ( C ) were real numbers between 0.0 and 10.0.  These 

parameters were inspected within 1,000 generations of ES.  The average accuracies of SVM 

with the adaptive combined kernels are compared in Table 5-1. 

Table 5-1: Average Accuracy of SVM on Sentiment Classification 

Kernel Function 
Training 

Accuracy 

Test  

Accuracy 

Linear Kernel  88.3533 77.7093 

Polynomial Kernel at Degree 2 85.7943 69.7711 

RBF Kernel at Width 0.07 94.7352 72.5348 

Combination of Multiple Polynomial Kernels  

(Proposed Kernel 1) 
98.0881 79.1828 

Combination of Multiple RBF Kernels  

(Proposed Kernel 2)  
95.0294 73.1805 

Combination of Multiple Polynomial and RBF Kernels 

(Proposed Kernel 3) 
98.7355 78.7122 

The experimental results showed that the average accuracy on sentiment 

classification can be enhanced by the combined kernel functions.  The non-negative linear 

combination of multiple polynomial kernels yielded the best result on testing.  Although the 

linear combination of multiple RBF kernels did not yield the best result, its accuracy was 

better than single RBF kernel.  For the combination of both polynomial and RBF kernels, it 

yielded the best training accuracy, but its accuracy on testing was lower than the combination 

of multiple polynomial kernels.  This means that although we tried to avoid the overfitting 

problem by using the stability objective function in evolutionary process, the overfiitng 

problem still can be occurred by a more flexible kernel. 
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5.2 Handwritten Recognition 

The handwritten recognition is the ability of the computer to recognize the 

handwritten of humans from sources such as paper documents, photos, touch screens, or other 

devices.  In general, the handwritten recognition can be divided into on-line recognition and 

off-line recognition.  In this research, SVMs with the proposed methods will be applied to the 

off-line handwritten recognition.  The aim of this section is to illustrate that the proposed 

methods can be applied to the multi-class problems.   

5.2.1 Preliminary and Related Works 

The problem of handwritten recognition has been an on-going research problem.  It 

has been gaining more interest due to the increasing popularity of hand-held computers, 

digital notebooks, and advanced cellular phones [76].  In off-line handwriting recognition, the 

letters in an image are automatically converted into the letter codes which are usable within 

computer and text-processing applications.  This technology is successfully used by 

businesses which process lots of handwritten documents, like bank checks and insurance 

companies. 

The most prominent problem in the handwritten recognition is the vast variation in 

personal writing, as different people have different handwriting styles.  Nevertheless, limiting 

the range of input can allow recognition to improve.  Various methods were proposed to solve 

this problem such as gradient based learning [77], moving window classifier [78], and neural 

network [79].  For SVM, it is applied in many research studies of handwritten recognition.  

Dong, X.J., et al. [80] applied SVM for handwritten Chinese character recognition.  

Moreover, the SVM was used for online handwritten in [81], and it gave a better recognition 

result compared to the system based on a hybrid neural network and a hidden Markov model. 

SVM is the binary classifier for two-class data.  However, the multi-class 

classification problems such as letter recognition can be solved by voting schema methods 

based on a combination of many binary classifiers.  One possible approach to solve a k-class 

problem is to consider the problem as a collection of k binary classification problems.  k-

classifiers can be constructed, one for each class.  The kth classifier constructs a hyperplane 

between class k and the k-1 other classes.  A new sample will be classified by these k 

classifiers.  The prediction class of this sample is a classifier that yields the longest distance 

between this sample and its decision hyperplane or the maximum value of decision function.  

This schema is commonly called one against the rest and shown in Figure 5-3. 
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Figure 5-3: SVM for Multi-Class Problems 

5.2.2 Methodology 

SVM is applied to solve the English alphabet handwritten recognition in this section.  

One against the rest schema is implemented via creating 26 classifiers, each classifier for each 

alphabet.  Each classifier is trained by all training data; the class of alphabets under 

consideration is 1 whereas the class of the other alphabets is -1.  The evolutionary strategy is 

applied for adjusting the parameters of SVM and its kernel function for each classifier.  This 

process is shows in Figure 5-4. 

In evolutionary process, the non-negative real-valued vector vv  that has n2  

dimensions is represented in the form: 

vv = ( C , 0γ , 1a , 1γ , 2a , 2γ , … , 1−na , 1−nγ ), (153) 

where C  is the regularization parameter of SVM, iγ  for 1,,0 −= ni K  are the widths of RBFs, 

and ia  for 1,,1 −= ni K  are the weights of RBFs.  The (5+10)-ES is applied to adjust these 

parameters.  For evaluating the parameters of SVM, the stability bound of generalization error 

of SVM is used as the objective function.  These parameters will be investigated within 1,000 

generations.   
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Figure 5-4: Proposed Method for Multi-Class Problems 

5.2.3 Experimental Results 

The proposed kernels have been tested on the letter recognition from the UCI 

machine learning repository [7].  A multi-class recognition system has been implemented 

with 26 different models, one for each class.  Each of these models is a binary classifier that 

matches a specific class against the other 25 classes.  The set of 20,000 English alphabets 

with 20 fonts of the 26 capital letters are used for learning.  Each instance contains 16 

attributes (statistical moments and edge counts).  Examples of the letter images are shown in 

Figure 5-5.  All data are used for training and testing.   

The experimental results on the letter recognition task are shown in Table 5-2.  The 

results show that the 3-RBF kernel gives the best recognition rate.  Also, the multiplication of 

polynomial and RBF kernels performs better than the polynomial and the RBF kernels with 

the same parameters. 
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Figure 5-5: Sample Letter Images 

 

Table 5-2: Accuracies on Letter Recognition Task 

Kernel Functions No. Corrected Examples Accuracy (%) 

Polynomial 14966 74.83 

RBF 15101 75.51 

2-RBF 18083 90.42 

3-RBF 19664 98.32 

Polynomial + RBF 14966 74.83 

Polynomial * RBF 16414 82.07 
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5.2.4 Other Experimental Results on Multi-Class Problems 

Moreover, the proposed method has been tested on two multi-class problems from the 

UCI machine learning repository [7].  In both problems, there are 3 classes of data.  The 

proposed method is evaluated by 5-folds cross-validation.  The experimental results are 

shown in Table 5-3.  These results show that the accuracies of the proposed method are better 

than those of the RBF kernel using the grid search on both problems. 

Table 5-3: Average Accuracies on Multi-Class Problems 

Average Accuracy 

Datasets Number of 
Attributes 

Number of 
Examples RBF  

Grid Search 

10-RBF  
ES with Stability 

Objective Function

BalanceScale 4 625 85.92 88.16 

Waveform 21 5000 33.92 46.84 

 

 



CHAPTER VI    

EVOLVING KERNEL TREE 

This chapter proposes a combination technique, called GPES, which combines 

Genetic Programming (GP) and Evolutionary Strategies (ES) to evolve a hybrid kernel 

function for an SVM classifier.  The hybrid kernel functions are represented as trees that have 

the adjustable parameters.  The experimental results are compared with a standard SVM 

classifier using the polynomial and radial basis function kernels with various parameter 

settings on benchmark datasets. 

6.1 Motivation 

As described previously, the complexity of the separating hyperplane of SVM 

depends on the nature and the properties of the used kernel function.  Although the combined 

kernel functions, which have been proposed in the previous chapter, are more flexible than 

conventional kernel functions; the forms of those kernel functions are fixed as the non-

negative linear combination or the multiplication of kernel functions.  There are the other 

combined kernel functions that use the addition and the multiplication operators.  Therefore, 

the genetic programming (GP) is proposed to improve the classification performance by 

creating the hybrid Mercer’s kernel functions for each task.  

GP is an application of genetic algorithm (GA) approach to derive mathematical 

equations, logical rules, or program functions automatically [82].  As in a conventional GA, 

the solution to a problem is represented by a string of parameters.  GP usually uses a tree 

structure, the leaves of which represent input variables or numerical constants.  Their values 

are passed to nodes, which perform some numerical or program operation before passing on 

the result further towards the root of the tree [83].  This concept of GP is used to create the 

hybrid kernel functions, which are represented as the tree structure.  The basic kernel 

functions with different parameters may be weighted and combined.  These new hybrid kernel 

functions also correspond to the Mercer’s theorem and they are flexible to the given tasks. 

The parameters of sub-kernels and their weights are adjustable parameters.  In 

general, these parameters are usually determined by a grid search.  However, for hybrid 

kernel functions, the grid search will consumes a lot of time because there are more adjustable 

parameters.  Hence, ES is a better alternative for adjusting many parameters.  Although the 

representation of ES is different from the GP, both GP and ES are the evolutionary 
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algorithms.  Therefore, we propose the GPES algorithm that uses GP for creating a hybrid 

kernel function which satisfies the Mercer’s theorem.  Then, the parameters and weights of 

sub-kernels are adjusted by ES. 

Moreover, the objective function is an important part in evolutionary algorithms.    

We carefully design the objective function in order to avoid the overfitting problem that may 

occur when the complex kernel functions are used.  This proposed algorithm is tested on 

some classification datasets; the results show that GPES effectively searches the good hybrid 

kernel functions and their parameters when we use a suitable objective function.  However, 

the running time is a disadvantage of the algorithm that which should be improved. 

6.2 GPES 

One of the most important design choices for SVMs is the kernel function and its 

parameters, which implicitly define the structure of the high dimensional feature space where 

a maximal margin hyperplane will be found [17].  The chosen kernels have influence to the 

classification accuracy.  A complex kernel may be needed for a complex problem.  Hence, we 

propose to use the hybrid kernel functions that combine several Mercer’s kernels with 

different parameters.  These hybrid kernel functions should correspond to the Mercer’s 

theorem. 

The corollary 3-1 is used to create these hybrid kernel functions.  Therefore, there are 

two operators for combining kernel functions that are the addition of kernel functions and the 

multiplication of kernel functions.  For scalar multiplication, it will appear in terms of a 

weight of each sub-kernel.  According to this corollary, we can construct hybrid Mercer’s 

kernels from the conventional Mercer’s kernels.  The Polynomial and RBF kernels are well-

known conventional Mercer’s kernels, which will be used as the basic kernel functions in this 

research. 

6.2.1 GPES Algorithm 

The approach presented here combines the two techniques of GP and ES to evolve a 

hybrid kernel for SVM.  The goal is to eliminate the need for testing various kernels and their 

parameter settings.  A hybrid kernel is represented as tree of sub-kernels and operators.  For 

each sub-kernel, there are two parameters, i.e. the weight and the degree of polynomial kernel 

or the width of an RBF kernel, which can be adjusted.  An overview of the ( λμ + )-GPES is 

shown below. 
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Algorithm 6-1: ( λμ + )-GPES Algorithm 

Step 1. Create a random population of μ  hybrid kernels (parents), represented as trees. 

Step 2. Evaluate the fitness of each individual by building an SVM from the kernel tree and 

test it on the training data. 

Step 3. Apply reproduction operators to create λ  new hybrid kernels (offsprings). 

Step 4. Randomly mutate nodes of the trees. 

Step 5. Randomly mutate the parameters of leaf nodes. 

Step 6. Evaluate and keep the μ  fittest individuals. 

Step 7. Go to step 3 unless an acceptable solution has been found or a fixed number of 

generations has been produced and evaluated. 

Step 8. Build final SVM using the fittest kernel tree found.    

This research proposes to use (5+5)-GPES because the population size is not too large 

and the optimal solutions can be found in a limited time.  This algorithm starts with the 0th 

generation ( 0=t ) that creates 5 solutions and 2 standard deviation vectors ( 51 ,, vv v
K

v  and 

Polyσv , RBFσv 2
+∈R ) using randomization.  These 5 initial solutions are evaluated to calculate 

their fitness.  Then, 5 new solutions are created by reproduction, crossover, function mutation, 

and parameter mutation.  Only 5 solutions from 5+5 solutions are selected to be parents in the 

next generation.  These processes are repeated until a fixed number of generations have been 

produced and evaluated.  The (5+5)-GPES algorithm is shown in Figure 6-1. 

 

  0=t ; 
 initialization ( 51 ,, vv v

K
v , Polyσv , RBFσv ); 

 evaluation )(,),( 51 vfvf v
K

v ; 
 while ( 500<t ) do 
  for i =1 to 5 do 
   iv ′v  = reproduction( 51 ,, vv v

K
v ); 

   iv ′v  = mutate_function )( iv ′v ; 
   iv ′v  = mutate_parameter )( iv ′v ; 
   evaluate )( ivf ′v ; 
  end 
  ( 51 ,, vv v

K
v ) = select( 51 ,, vv v

K
v , 51 ,, vv ′′ v

K
v );  

  Polyσv  = mutate )( Polyσσ ; 
  RBFσv  = mutate )( RBFσσ ; 
  1+= tt ; 
 End 

Figure 6-1: (5+5)-GPES Algorithm 
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6.2.2 Terminal and Function Sets 

To ensure that a new hybrid kernel function is still a Mercer’s kernel, there are two 

operators that have been proved in Corollary 3-1.  The addition ( + ) and the multiplication 

(× ) are used as the membership in the function set of evolutionary process.  For the terminal 

set, some basic Mercer’s kernel functions are considered.  The polynomial kernel function is 

an inner-product based kernel and the RBF kernel function is a distance based kernel.  Thus, 

the combination of these two kernel functions is a new kernel function that is both inner-

product based and distance based kernel.  Hence, polynomial and RBF kernels are selected as 

two Mercer’s kernels in the terminal set.  Each function is multiplied by a non-negative real 

value that is the weight of each sub-kernel function.  

 Polynomial: ( )dxxaxxK ′⋅+=′ 1),(  (154) 

 Gaussian RBF: ( )2exp),( xxbxxK ′−−⋅=′ γ  (155) 

6.2.3 Creating an Individual 

The Grow method is used to initialize the population of trees.  Each tree is grown 

until no more leaves could be expanded, all leaves are terminals, or until a preset initial 

maximum depth, i.e. 5 for the experiments reported here, is reached.  

Algorithm 6-2 (Grow Method): 

Step 1. Starting from the root of the tree, every node is randomly chosen as either a function 

or terminal. 

Step 2. If the node is a terminal, the random parameters of terminal are chosen. 

Step 3. If the node is a function, a random function is chosen, and that node is given two 

children.   

Step 4. For every one of the function’s children, the algorithm starts again, unless the child is 

at depth d , in which case the child is made a randomly selected terminal.  

This method does not guarantee individuals of a certain depth (although they will be 

no deeper than d ).  An example of the hybrid kernel is shown in Figure 6-2. 
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Figure 6-2: A Hybrid Kernel Function (Represented as Tree)  

6.2.4 Genetic Operations 

The main genetic operations used in the genetic programming are crossover and 

mutation.  Crossover operation is performed by switching one of an individual’s nodes with 

another node from another individual in the population.  Since the individual is represented as 

tree, replacement of a node means we are replacing whole branch.  This makes the results 

very much different from their initial parents.  A mutation operation is applied to an 

individual in the population.  This operation can be performed by substitution of a whole node 

in the individual, or replacement of just the node’s information.  The mutation operation must 

be aware of binary operation node, and this operation must be able to handle the missing 

values.  In GPES, there are three main genetic operations, i.e. reproduction, function 

mutation, and parameter mutation.   

(1) Reproduction: This operation is divided into 2 parts.  In order to produce a new 

structure of hybrid kernels, 60% of new individuals are newly created by the Grow method.  

Moreover, 40% of new individuals are generated by crossover operation.  This operation 

requires two individuals to produce an offspring.  The crossover is described in Algorithm 6-3 

and Figure 6-3. 
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Algorithm 6-3 (Crossover Operation): 

Step 1. Two individuals are randomly chosen from the population to be the primary 

individual and secondary individual, respectively. 

Step 2. Randomly select positions of sub-trees on both primary and secondary individuals.  

Step 3. Replace the sub-tree of the secondary individual to the sub-tree of the primary 

individual. 

 

Figure 6-3: Crossover Operation  

(2) Function Mutation: Since we have only two types of operands and two types of 

operators, function mutation is performed by randomly selecting the position for mutation 

with probability 0.7.  Then, swapping between (“ + ” and “× ”) or (“Polynomial Kernel” and 

“RBF Kernel”) is performed. 

 function_mutate( + ) = ×  (156) 

 function_mutate(× ) = +  (157) 

 function_mutate(Poly) = RBF (158) 

 function_mutate(RBF) = Poly (159) 
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(3) Parameter Mutation: The leaf nodes are randomly selected with probability 0.7.  

Let uv  be the vector of non-negative real numbers that represent the parameters of a sub-

kernel.  Therefore, ),( dau =
v  when the leaf node is a polynomial function or ),( γbu =

v  when 

the leaf node is RBF, where a  and b  are the weighting constants, d  is the degree of 

polynomial sub-kernel function, and γ  is the width of RBF sub-kernel function.  For each 

selected leaf node, its parameters are mutated by the following function: 

parameter_mutate( uv )  =  ( 11 zu + , 22 zu + ) 

),0(~ 2
iii Nz σ . 

(160) 

The uv  is mutated by adding each of them with ),( 21 zzz =v , and iz  is a random value 

from a normal distribution with zero mean and 2
iσ  variation.  In each generation, the standard 

deviation is adjusted by 

mutate )(σσ
v   =  ( 1

1
ze⋅σ , 2

2
ze⋅σ ) 

),0(~ 2
iii Nz τ , 

(161) 

where τ  is an arbitrary constant.  In the GPES algorithm, there are 2 standard deviation 

vectors, i.e. Polyσv  and RBFσv . 

6.2.5 Fitness Test 

Another key for this approach is the choice of the fitness function.  An obvious 

choice for the fitness function is the classification error on the training set, but this function 

might produce the hybrid kernel trees for SVM that overfit to the training data.  One 

alternative is to base the fitness on a cross-validation test in order to give a better estimation 

of a kernel tree’s ability to produce a model that generalizes well to unseen data.  However, 

this would obviously increase computational effort greatly.  Therefore, we propose to use the 

bound of generalization error that is derived from the complexity of the learning algorithm as 

the objective functions.   

)(vfitness v  = ( ))1log(log 2 δ++ mh
m
cRemp , (162) 

where empR  is the empirical error, c  is a constant, m  is the number of sample, δ−1  is the 

probability of this bound, and h  is a non-negative real number called the Vapnik-

Chervonenkis (VC) dimension. 
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There is another bound of the generalization error that was proposed in Chapter 3.   

That bound was derived from the assumption of stability and it yielded the good results on 

many datasets.  However, the stability bound is not suitable for evaluating the kernel trees 

because the bound of a kernel function must be used for calculating the bound of 

generalization error.  Sometimes, the bound of a kernel tree cannot be calculated or it is very 

difficult to estimate the tight bound.  Hence, the bound of generalization error that was 

derived from the complexity of the learning algorithm is proposed to be an objective function 

in our GPES algorithm.  Also, we appreciate a set of kernel parameters that provide a lower 

bound. 

6.3 Experimental Results 

In order to verify the performance of GPES, SVMs with the hybrid kernels are trained 

and tested on only 7 datasets from the UCI repository [7], i.e. German, Heart, Ionosphere, 

Liver-Disorder, Pima-Indians-Diabetes, Sonar, and Tokyo.  These datasets are selected for 

two reasons: they are high average percentage error (more that 20%) or their numbers of 

features are large (more than 20).  GPES is evaluated by 5-folds cross-validation.  The value 

of τ  in evaluation process of these experiments is 1.0.  The weight of sub-kernels ( a  or b ) 

are between 0.0 and 1.0, the degrees of polynomial ( d ) are integer numbers in [1,10], and the 

width of RBF ( γ ) are non-negative real numbers no more than 10.  The hybrid kernels are 

inspected within 500 generations of (5+5)-GPES.  The average accuracies of the proposed 

algorithm are compared with those of the standard SVM using Polynomial and RBF kernels 

with various parameter settings in Table 6-1. 

The experimental results show the ability of GPES that creates the hybrid kernels 

which yields high average accuracy on testing.  Although the parameter settings may provide 

a good average accuracy in some cases, the results are not good in many cases.  If unsuitable 

kernels are chosen or unsuitable parameters are selected, the average accuracy will decrease.  

Practically, we do not have any prior knowledge about kernel functions and their parameters.  

Therefore, GPES is a better choice as it is able to choose a good hybrid kernel and suitable 

parameters without any knowledge about kernel functions. 
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Table 6-1: Average Error on Classification 

Datasets 
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Polynomial Kernel  
– Degree 

1 (Linear) 76.20 84.44 86.90 57.68 77.33 79.29 91.87 

2 74.30 80.74 89.45 62.61 76.82 87.00 92.70 

3 69.40 77.41 87.45 68.41 76.69 88.93 90.51 

4 68.20 73.70 86.89 72.75 76.56 87.97 89.89 

5 68.90 74.07 86.32 71.30 76.42 88.43 90.20 

RBF Kernel  
– Width 

10 70.20 69.63 88.89 67.54 75.77 59.12 90.72 

1 74.60 80.74 94.59 59.13 76.56 88.95 92.70 

0.1 75.10 84.44 91.74 57.97 76.29 83.65 91.45 

0.01 70.00 82.96 74.07 57.97 65.10 65.88 89.05 

0.001 70.00 55.56 64.10 57.97 65.10 53.37 65.38 

Nearest Neighbor, SVM with GridSearch, and 
SVM with Adaptive Combined Kernel Functions and GPES 

1-NN 67.40 75.19 87.48 60.29 70.56 87.00 90.83 

Grid Search – RBF 71.10 71.48 89.45 67.25 73.68 69.14 90.40 

Grid Search – Polynomial  68.90 76.30 87.17 70.72 68.87 88.43 88.01 

SVM with ES on 10-RBF  73.20 80.37 94.90 68.41 77.08 87.02 92.91 

SVM with (5+5)-GPES 72.40 80.37 95.44 68.41 73.55 92.30 91.87 
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However, the running time of GPES depends on the number of training data, the 

number of population, and the number of generation in evolutionary process.  Therefore, it is 

rather obvious that the running time of GPES is more than the SVM with a set of parameters.  

Moreover, in the case of GPES, the running time is higher than the non-negative linear 

combination kernels in Chapter 3, since GPES needs time for creating kernel trees whereas 

the form of kernel functions in Chapter 3 are fixed.  Nevertheless, as in the previous chapters, 

GPES is performed on SVM learning that is the off-line process, and thus the running time is 

not our main problems and it can be solved by other computing techniques, such as parallel 

computing, distributed computing, or cluster computing.     

In conclusion, GPES is proposed to evolve the hybrid kernel functions and their 

parameters for support vector machines.  A hybrid kernel is represented as a tree.  The 

crossover and the mutation operations are similar to those of the genetic programming.  

Besides, the parameters of sub-kernels are mutated in the same way as the mutation in the 

evolutionary strategy.  By GPES, a hybrid of several Mercer’s kernel functions is also a 

Mercer’s kernel.  Moreover, the stability of SVM is a good objective function that can avoid 

the overfitting problem.  The experimental results show the performance of the proposed 

method through the average accuracy on 5-folds cross-validation.  GPES chooses the hybrid 

kernel that yields better results. 



CHAPTER VII    

CONCLUSION AND FUTURE WORK 

In this chapter, the proposed methods are concluded.  The advantage and 

disadvantage of them are described.  Moreover, some suggestions for the future work are 

presented.   

7.1 Conclusion 

In order to improve the performance of classification or approximation in SVM, this 

research proposed the adaptive combined kernel functions.  These proposed kernel functions 

are the non-negative linear combination of the common Mercer’s kernels, i.e. polynomial and 

RBF kernels.  Furthermore, these combined kernel functions were proved to be the admissible 

kernels by the Mercer’s theorem.  Although these proposed kernel functions are more flexible 

to the problems, they are many adjustable parameters.   

In general, the parameters of SVM and kernel function are determined by the grid 

search.  However, when the combined kernel functions are used, there are more adjustable 

parameters and the number of possible combinations on these parameters is much larger.  

Therefore, the grid search will consume a lot of time and it is not a suitable method for 

adjusting the parameters of the combined kernels.  Hence, ES is a better choice that can 

search these parameters simultaneously. 

The (5+10)-ES was applied to determine the optimal parameters of the kernel 

function and SVM.  Although ES can find a good set of parameters of the combined kernel 

function in a fixed number of generations, a more flexible kernel can be the cause of the 

overfitting problem.  In order to avoid this problem, the difference objective functions were 

proposed.  The training error, the subsets cross-validation, the bound of generalization error, 

and the stability of SVM are considered to be the objective function in evolutionary process.   

Eventually, we suggest for using the stability of SVM as it provides the best 

performance on many datasets.  Although the subsets cross-validation is a good objective 

function, its running time is more than the other objective functions.  For the stability 

objective function, a bound of generalization error was derived from the stability property of 

soft margin SVM.  It is a tight bound and it is a good estimator for the generalization error of 

SVM learning.     



 
 
 
 

134

The experimental results showed the performance of the proposed method through 

the average error on 5-fold cross-validation in both classification and regression problems.  

The adaptive combined kernel functions yielded better results, when they were compared with 

the common kernels, the grid search, or k-NN.  When SVM used the proposed kernels, it is 

able to learn from data very well.  This research showed that the performance of classification 

and regression can be further enhanced by these combined kernel functions.  Furthermore, the 

evolutionary strategy with a suitable objective function is effective in optimizing the 

parameters. 

Furthermore, the proposed methods were applied on two real world problems, i.e. 

sentiment classification and handwritten recognition.  The sentiment classification is a binary 

classification problem, which has a lot of noise.  The linear kernel (polynomial kernel with 

degree 1) yielded the best result when it was compared to the other common kernels such as 

the polynomial with various degrees or the RBF at various scales.  However, the performance 

of sentiment classification can be enhanced by the adaptive combined polynomial kernel, 

which is the non-negative linear combination of multiple polynomial kernels with difference 

degrees.  Although the mixed kernel that combines both polynomial and RBF does not yield 

the best result, the training rate is rather well.   

For the handwritten recognition, we showed that the proposed methods can be 

implemented for the multi-class problems.  SVM with the adaptive combined kernel functions 

can be used to create each binary classifier.  Then, the voting schema on these binary 

classifiers can be applied to classify unseen examples.  The experimental results show that the 

proposed methods yielded the good results on handwritten recognition and the other multi-

class problems. 

Moreover, the evolving kernel tree was proposed.  Sometimes, we would like to get a 

more flexible kernel functions.  The non-negative linear combination of multiple kernel 

functions is only a kind of the combination.  There are the other forms of kernel combination 

that can be created by the genetic programming.  In this research, GPES is proposed to evolve 

the hybrid kernel functions and their parameters for SVM.  A hybrid kernel is represented as a 

tree.  The polynomial and RBF sub-kernels were used as the terminal set.  The members of 

function set were the addition and the multiplication, which had been proved that they 

correspond to the Mercer’s theorem.  The experimental results showed the ability of GPES 

through the average accuracy on 5-fold cross-validation.  GPES chooses the hybrid kernel 

that yielded good results. 

From all experiments, the proposed methods showed good performance on 

classification or regression problems.  They are suitable for the complex problems where we 
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have no prior knowledge about kernel functions and their parameters.  Moreover, the non-

negative linear combination can be applied to other Mercer’s kernels such as Fourier series, or 

spectrum kernels, as the general form of linear combination of the Mercer’s kernels has been 

proved to be a Mercer’s kernel already.  In the same manner, GPES can also be applied to the 

other Mercer’s kernels. 

7.2 Future Work 

Similar to with the other scientific research studies, the process of solving problems 

can be applied to many new problems.  Our proposed methods are not different.  The time 

series prediction is a kind of problems that can use the proposed methods.  Although the 

implementation of this kind of problems is very similar to any regression problems, the 

training data are temporal and the features (or attributes) must be defined by the researchers.  

Therefore, an evaluation of the proposed methods on this problem would be interesting.  

In the evolutionary process, the new objective functions should be investigated.  

Actually, the good objective function should guarantee the stability and the robustness.  The 

probability that an outlier occurs should be minimized, as the globally optimal results should 

be found.  Moreover, it would be interesting to compare the other parameter selection 

methods for the hybrid kernel functions, such as gradient descent methods or Tabu search.   

Furthermore, the complex kernel functions can be generated by the other methods 

such as the composite of kernel functions.  The further research studies should give more 

analysis and a proof of those combinations.   
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