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CHAPTER |

INTRODUCTION

1.1 Background

Asynchronous circuit design has been restudied because of clock skew in
synchronous circuits since the last decade. Synchronous circuits that synchronize their
operations by global clocks are used widely in industries because they are easy to
design and verify. However, as size of devices become smaller, their speed are faster,
and hardware systems become significantly complex, time spent to distribute signals
between gates and wires causes the clock skew. The clock skew occurs when the
global clock can not be distributed to entire system at a same frequency. It is a serious
problem because the system may malfunction if the clock is not contributed evenly. It is
very hard to avoid this problem when designers want to design high-speed circuits. As a

result, clock skew limits speed of synchronous circuits.

Asynchronous circuits do not use the global clock to control their operations, so
the clock skew is avoided. Circuit responses to signal transitions at any time, and output
can be sensed as soon as the operation is completed. Accordingly, another advantage
of the asynchronous circuit over the synchronous one is that its speed are not limited by
the slowest part in order to synchronize all parts-of the system. The speed of
asynchronous circuit depends on the signal- transition. Low power consumption is

another advantage because the signal transitions are made only when necessary.

Nevertheless, asynchronous circuits are harder to design and verify than the
synchronous ones. In addition, there are a few tools that support the asynchronous
circuit design. Therefore, their obstructions cause asynchronous circuits study to be

limited not only in human resources but also in areas.



The propose of this research is to expand the area of the asynchronous circuit
study, especially for an increase of speed. Consequently, pipelining is chosen because
it is a popular technique used to increase speed of a circuit. Its operation is split into
parts called Pipe stage or Pipe Segment (called stage in this thesis). Each stage is
overlapped to each other; every stage can operate simultaneously that is why the circuit

is faster.

This thesis focuses on Dynamic Pipeline that can be reconfigured to perform
multifunction: it performs variable function at different time. Therefore, the number of
circuits in a system can be reduced, but control and scheduling part become

dramatically more complex.

Floating-point Arithmetic Circuit is chosen for this thesis because it can operate
a number of calculations in one circuit. The floating-point representation allows a range
of very large and very numbers to be represented. Thus, it is more appropriate than
integer representation for tasks that need high resolution such as scientific graphic
tasks. Beside, this circuit can be used to demonstrate the dynamic pipeline obviously

and is useful.

This thesis is -asynchronous floating-point arithmetic circuit’'s design using
dynamic pipeline to study the application of dynamic pipeline to asynchronous circuits.
Moreover, effective dynamic pipeline controller design-is also focused to be a choice to

design faster asynchronous circuits.

1.2 Objective

To design asynchronous dynamic pipelined floating-point arithmetic circuits, and

verify results by simulation.

1.3 Scope

1. A design of asynchronous dynamic pipelined floating-point arithmetic circuits

that include these functions: Add/Subtract, Multiply, Negate, Absolute, and Compare.



2. The design is capable single precision (32 bits) of the IEEE 754-4985 floating-
point number representation, precise exceptions, and rounding.
3. Scheduling scheme based on the reservation table, the collision matrix, and

the state diagram.

1.4 Methodology

The methodology consists of 9 steps as below:
1. Study of Pipeline and pipeline scheduling.
Study of floating-point arithmetic.

Study of asynchronous circuit design.
Study of asynchronous pipeline.

Top level design.

Component Design/Simulation and Testing
System Integration and Testing.

Research conclusion.

© © N o g M~ W N

Thesis book writing.

1.5 Expected Result

1. An implementation -of ~asynchronous dynamic pipelined floating-point
arithmetic circuits.

2. A way for asynchronous dynamic pipeline research.

3. A way for asynchronous dynamic pipeline scheduling research.

1.6 Parts of Thesis Book

This thesis book is divided into 7 chapters. First, chapter 1 is an introduction that
includes background, related work, objective, scope, methodology, expected results
and published paper. Second, chapter 2 gives a briefly background of related
researches and theorems used in this thesis. Third, chapter 3 is a design of control unit
for asynchronous dynamic pipeline. Fourth, chapter 4 is about asynchronous dynamic
pipelined floating-point arithmetic unit design. Then, chapter 5 is control unit application;
it describes methods to apply control unit in chapter 3 to any asynchronous dynamic

pipeline. Dynamic pipeline used in my floating-point arithmetic unit is used as an



example in chapter 5. Next, chapter 6 is results that consist of 2 sections: control unit
results and floating-point arithmetic results. Finally, chapter 7 is conclusion including

problems and future works.

1.7 Published Paper

A part of this thesis is published in “An Implementation of Asynchronous
Dynamic Pipeline Controller” topic by Benjawan Trabanpreuk and Arthit Thongtak in
“The first Thailand Computer Science Conference (Thcsc 2004)”. The conference is
organized by Department of Computer Science, the faculty of Science, Kasetsart
University. Thcsc 2004 is held at the faculty of Science, Kasetsart University, Bangkok,
Thailand on December 16-17, 2004

A part of this thesis is published in “A Design of Asynchronous Dynamic
Pipelined Floating-point Arithmetic Unit” topic by Benjawan Trabanpreuk and Arthit
Thongtak in “The second ECTI Annual Conference (ECTI-CON 2005)”. The conference
is organized by Electrical Engineering/ Electronics, Computer, Telecommunications and
Information Technology (ECTI) Association. ECTI-CON 2005 is held at Asia Pattaya

Beach Resort, Cholburi, Thailand on May 12-13, 2005.



CHAPTER I

RELATED RESEARCHES AND THEOREMS

The related idea and theorem is divided into 6 sections. First, preliminary works
are discussed briefly in section 2.1. Second, section 2.2 describes operations and types
of asynchronous pipeline. Third, section 2.3 gives some background about Pipeline
scheduling that keep pipeline performance and stage collision avoidance. Then, section
2.4 is asynchronous circuit design because it is dramatically different from synchronous
circuit design techniques. Next, synthesis of asynchronous circuits from signal transition
graph is in section 2.5 because it is applied to control parts of our design. Finally, binary

floating-point representation standard and format are briefly described in section 2.6.

2.1 Preliminary works

The preliminary works is divided into 3 parts: Pipelined floating-point arithmetic

circuits, Dynamic pipeline controller, and an example of dynamic pipelined computer.

2.1.1 Pipelined floating-point arithmetic circuits

There are a number of Pipelined floating-point arithmetic circuits that have been
presented, but all of them are synchronous circuits. Therefore, some modifications are
necessary for asynchronous circuits. In this section, operations, application, advantages

and disadvantages of each circuit are described briefly.

2.1.1.1 MIPS R4000’s FPU [1,2]

The MIPS floating point Unit, FPU, with ‘@associated system software fully
conforms to the ANSI/IIEEE standard. 754-1985 (IEEE 754) which is the standard for
Binary Floating-Point Arithmetic. The IEEE 754 includes 5 precise exceptions: Inexact,
Overflow, Underflow, Division by zero and Invalid operation. If these exceptions are
detected, numbers can not be represented in IEEE 754 standard. This FPU supports
single format, 32 bits, and double format, 64 bits (IEEE 754 representation is described

in section 2.6).



Data Cache
FiCu
Contro
Pl _
7
FF Bypass
Pipeling Chain
L ¥ L '
FP Mul FP Div
g0
w
il |

FP Reg File

Figure 2.1: MIPS R4000°s floating-point Unit [2]

This FPU that is shown in figure 2.1 is a part of MIPS R4000
microprocessor, and it operates as a coprocessor for CPU and extends the CPU
instruction set to perform arithmetic operations on floating-point value. The FPU
operations include Add/Subtract, Multiply, Division, Square root, Negate, Absolute, and

Compare.

The FPU consists of 3 pipelined functional units.

1. FP Add + FP Sqgrt is adder and square root circuit.
2. FP Mul is multiplier.

3. FPDivis divider.

Each functional unit consists of 2-3 pipelined stages, for example Mul1,
Mul2, Div1, and Div2, to increase speed of circuit because circuit of each stage is
smaller and faster. If two instructions need to use the same stage, a later instruction is

stalled until a required stage is available.



This thesis refers some operations of MIPS R4000‘s FPU because it is

fully supports floating-point operations.

2.1.1.2 Multi-Mode Pipelined Floating-Point Adder and Multiplier [3,4]
The multi-mode adder (FPA) and the multi-mode multiplier (FPM) are
capable of both single and double precision of IEEE 754. It supports five formats
conversion in four formats: single precision, double precision, integer, and block
floating-point. The primary requirements to be met by the design of FPA and FPM were:
1. Single and double precision floating-point capabilities
40 MHz clock capability
CMOS logic
IEEE 754-1985 compliance

ok~ w0

Block floating-point to floating-point format conversion
These circuits consist of 2 main sections: Exponent processing and

Mantissa processing circuits. Each section is pipelined, and both of them are paralleled.

The result showed that FPA and FPM met all of requirements. Moreover,
hardware resources among the various modes are cleverly shared, so the area was
significantly decreased. However, their control parts are very complicated because they
are pipelined and paralleled in a circuit. Beside, two pipelined sections that are
paralleled used some stages together, so one of them might be stalled. Thus, circuits

might be slower than they should be.

In the future, researchers of FPA and FPM plan to combine them

togetherto operate add and multiply in a circuit.

2.1.1.3 Pipelined Packet-Forwarding Floating Point [5,6]

This packet-forwarding floating-point circuit that operates as a
cooperating adder and multiplier is capable the single precision of the IEEE 754. It
employs a four-stage execution sequence with the latter two stages of each being the
rounder phase as illustrated in figure 2.2. Moreover, conventional pipeline operation is

also illustrated in figure.2.2 too.



The packet-forwarding technique is proposed to handle data hazard, the

problem of the order of read/write accesses, in pipeline. Stage one accepts an operand

in standard format at its start. Both pipelines accept the packet-forwarding operand in

packet at the start of packet one and two, and output their results in packets after stage

two and three. Stage four output is rounded and normalized to the standard format for

retirement to a register. This design cuts the effective latency in half and reduces the

stall cycle because outputs of each stage are forwarded to the next operand as

illustrated in figure.2.2.

data

\
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—» A1 A2 R1 R2

dat
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A

Standard format
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—

data qata
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Figure.2.2: 2 types of pipeline

Conventional pipeline (a) Packet-forwarding pipeline (b)

Standard format
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However, this design doesn’t have any shared stage despite some

stages can be shared for both adder and multiplier. Therefore its area is too big.

1.2.1.4 Amphion Floating-Point Operators [7]

Amphion proposed five 32-bit floating-point operators:

1.Sm2FP - sign magnitude to floating point operator; maximal clock
frequency is 46 MHz

2.FP2Sm - floating point to sign magnitude operator; maximal clock
frequency is 48 MHz

3.FpSubAdd - floating point adder and subtractor; maximal clock
frequency is 34 MHz

4. FpMult - floating point multiplier; maximal clock frequency is 32 MHz

5.FpNrsDiv - floating point divider; maximal clock frequency is 32 MHz

The floating-point functions have registers on both the inputs and outputs
of the cores. Each function is a stage of pipeline in operators. They also have additional
internal pipeline cuts to improve performance accordingly. Because maximal clock
frequencies of operators are not equal, when two operators with different maximal clock
frequency work together, the slower function will limit the maximal clock frequency of the

whole system.

There are 2 styles of number formats in Amphion floating-point operators
as below:
1. Floating point number format: a floating-point number in a core is

represented by 32-bit-std_logic.vectoras illustrated.in figure.2.3.

8-bit Exponent
Sign 23-bit mantissa
(2's complement)

Figure 2.3.: Amphion’s floating-point number format

The sign bit and the 23-bit mantissa are as same as |IEEE 754 standard

format. The 8-bit exponent is coded in 2’s complement form, so it is easy to add or
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subtract the exponent. However, an amphion’s floating point format number to IEEE 754
format convertor must be added when it cooperates with other system s that are
capable IEEE 754. The most negative exponent (1000...000) indicates that the value of

the floating —point number approach zero.

2. Sign-magnitude format: the fixed-point sign magnitude number in

Amphion library is represented by a 32-bit std_logic_vector as illustrated in figure 2.4.

Sign Integer part Fractional part

1 - Ibs 2w 32-Ibs-1 >

Figure 2.4: Sign-magnitude format

Parameter Ibs describes the number of integer bits of the sign-
magnitude number. This enables the user to control the number of integer bits in the
sign-magnitude inputs or outputs to adjust the precision of numbers to the user’s
application. The Ibs is provided as an input signal on Sm2Fp and Fp2Sm.

Nevertheless, the Amphion’s floating-point operators are capable the

precise exception of IEEE 754.

2.1.2 Dynamic Pipeline Controller [8.9]

A number of hardware controls have been proposed to keep performance and
correctness of dynamic pipeline. There are 4 factors-that must-be included in the
controller:

1. Generation of an “initiation complete” signal
Activation of logic within a stage

Route control

> N

Function selection within a stage.

There are many ways to implement the controller to meet all four factors. A

simple implementation of the first two involves extra bit added to a staging latch that is
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clocked just as others in its group are. It is connected to extra bit in the next staging
latch by “noncompute” logic that simply replicates the value. This implementation was

proposed by cf. Cotton.

The route control and function selection are often similar. Their hardware
mechanisms depend on the initiating mechanism, the complexity of the reservation
table, and degree of reconfiguration. These mechanisms may fall between two control

mechanisms: time-stationary control and data-stationary control.

A time-stationary control mechanism provides the route control and function
selection signals for the entire pipeline from a single source external to the pipeline. This

mechanism is centralized control.

A data-stationary control mechanism is extremely opposite with the time-
stationary control. The control signal “follow” the data through the pipeline providing the
control signals at each single as needed. There is no centralized control source. A code
enters each stage must be decoded to determine what the logic should do, what path to

take next.

The time-station control is simpler, but it is not flexible for operations while the

data-stationary is more complex, but it is quite flexible.

2.1.3 An example-of dynamic pipelined computer [10]

This example is a design and implementation of a pipelined virtual computer of
Eric Kasten' from Michigan State University. The virtual computer /s a distributed
collection of processors connected by a network, and may operate in symphony to
complete a task. Dynamic pipeline is a technique chosen to get the best throughput in a
virtual computer because there are 2 functions, function A and function B, that use
redundant stages in his design. They are image processing functions. The reservation
table, the collision matrix, and the state diagram are used for scheduling the pipeline

tasks (they is described in section 2.3). Figure 2.5 and 2.6 are definitions of function A
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and B respectively. Function A and function B can be combined to a dynamic pipeline
that can perform both functions as shown in figure 2.7. This virtual pipeline computer
was implemented by PVM 3.4. The two functions were run separetely and together by
the TCP/IP protocol stack over both an Ethernet and atop ATM network. In addition, they
were implemented and run in serial. The result presented that dynamic pipeline

implementation provided dramatically performance over serial implementation.

4
A J A
—> 1 > 2 3 > 4 > 5 —

Stage id |Description

1 Read image

2 Sobel Gx

3 Sobel Gy

4 Combine Gx and Gy

5 Write image

Figure 2.5: Definition of function A

Y \
B
—> 1 2 = 4 5 6

Y

\

Y

Stage id |Description

1 Read image

2 Histogram equal
3 Sobel Gx
4 Sobel Gy

5 Combine Gx and Gy

5 Write image

Figure 2.6: Definition of function B
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AB
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Figure 2.7: Dynamic Pipeline for function A and function B

2.2 Asynchronous pipeline

Asynchronous pipeline was first introduced in 1989 by Ivan E. Sutherland who

named his pipeline “micropipeline” [11]. It is used to improve performance and speed of

asynchronous circuits.

= JRout Rin R4yt Rin Rout
i i .. b - ¥ | =
|
1
|dowt Afn Aout Adn Aout
— e =
- "", '| - M r"._
r:! : ¥ I
| I | | Data ow

Figure 2.8: An asynchronous pipeline structure

Figure 2.8 represents the asynchronous pipeline structure used in this research.
It uses bundle data channel that consists. of two control signals, request and
acknowledge, and data. The request signal is sent to the next state when data is valid,
and the next stage send back the acknowledge signal. In addition, a stage of pipeline is
composed  of combination circuit (s) and latch (s). The request signal and the

acknowledge signal labels depend on the direction of data; for example the request

signal is called R out at the output of stage | and becomes Rin at input of stage i+1.

According to transitions of control signals, the asynchronous pipeline falls into 2

protocols.
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2.2.1 Two-phase signalling prorocol

This protocol used in Sutherland’s micropipeline. Either rising or falling transition
of control signals has the same meaning, so the signal level has no significance. Its
event is indicated by a change in logic level (either ‘0’ to ‘1’ or ‘1’ to ‘0’), and the next
event is simply the opposite transition. The latch employed on two-phase micropipeline

is edge-sensitive.

2.2.2 Four-phase Signaling Protocol

Here an event is indicated by a level (often logic ‘1’) and before the next event
the wire must return to zero [12] as represented in figure.2.9. The latter protocol was
developed by the AMULET group [13, 14] to eliminate two-phase to four-phase
converter that make circuits more complex because latches used their micropipeline are
level-sensitive. Now, four-phase micropipeline is more popular and used by a number of
researches such as [13, 14, 15] etc. In our design, the latter protocol is used because

level-sensitive latches are used.

Data, :X )
Rin _"/ /‘v\

out

Figure.2.9: The four-phase micropipeline

Our design uses semi-coupled four-phase micropipeline of S.B. Furber and Paul
Day [14] because latches in circuits are level-sensitive latches. Level-sensitive latch is
a better choice because it is more popular than edge-sensitive latch. Moreover,
synthesis of VLSI circuits from Signal Transition Graph (STG) used in this thesis supports
four-phase signaling protocol. If edge-sensitive latch were applied to our circuits,

converters for two-phase and four-phase protocol would be required. To increase the
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decoupling between input and output side of the latch, and to allow the circuit to fill all

its stages, two internal signals, A and Lt, are added to the semi-coupled control circuit

as shown in figure. 2.10. Lﬂm Ain data in@

ﬂ D F | latch
’ 1 data nut@

L
Aout Rout

Figure.2.10: Semi-decoupled control circuit [14]

2.3 Pipeline scheduling

Pipeline scheduling is important for pipeline to guarantee its performance and
collision avoidance. If pipeline is a purely linear, the scheduling is simply. Unfortunately,
pipelines used in real circuits are more complex, and scheduling also becomes

complicated.

The first thing should be known when studying about pipeline scheduling is
types of pipeline. There are two types of pipeline.

1. Static pipeline: a static pipeline can be reconfigured to perform only one
function (unifuction) at anytime.

2. Dynamic pipeline: a dynamic pipeline can be reconfigured to perform variable
functions (multifunction) at different times.

Figure.2.11 represents an example of a four-stage pipeline. This pipeline can
perform two functions; X and Y. If the pipeline can perform only one function, X or Y, at

anytime,itis static pipeline; otherwise it.is the dynamic pipeline.

X X
Y > > >
— A > B «— C «— D v

Figure. 2.11: A four stages pipeline
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The most important for pipeline scheduling algorithms is two restrictions.

1. The execution time for all stages is a multiple of a stage (some basic clock for
synchronous pipeline).

2. Once a computation starts through a pipeline, its time-pattern of stage usage
is fixed.

The scheduling for dynamic pipeline is significantly more complex than static

pipeline because of the complexity of stage usage.

The pipeline scheduling algorithms used in our design based on three keys: the

reservation table, the collision matrix, and the state diagram.

2.3.1 Reservation table

Reservation table represents the dataflow of pipeline. It is described in a two-
dimension tabular. Each row of the reservation table corresponds to the time usage of
each stage. Each column is diagram of the internal usage of a pipeline at an instant of
time. One reservation can represent the dataflow of only one function of the pipeline.
The number of column is evaluation time that is the total time to complete a function.
Reservations tables of three functions of the pipeline in figure.2.11 are shown in table
2.1and 2.2.

Table 2.1: reservation table for function X

stage /time 0 1 2 3
A
B X
C X X
D X

Table 2.2 reservation table for function Y

stage /time 0 1 2 3 4

o |lO|w | >
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2.3.2 Collision Matrix

An initiation of a reservation table occurs when a function started. The number
of time unit between two initiations is latency. When two or more initiation try to use a
same stage in a pipeline at the same time, the collision occurs. Forbidden latency is the

latency that causes the collision.

Forbidden and non-forbidden (permissible) latencies in a reservation table are
used to build a collision vector. M is the evaluation time of table; collision vector = (C,,
cpr-- Chq). Ciis O if latency iis the permissible latency. Ci is 1 if latency i is the

forbidden latency. For example, collision vector for function X is 10100; it is initial

collision vector.

Collision vector is sufficient for static pipeline because it performs only one
function. For dynamic pipeline, collision matrix is applied. A collision matrix C is an r x t
binary matrix where r is number of reservation tables in a pipeline, and t is a maximum
evaluation time of tables[15]. The jth row of the ith matrix, CMi, is the collision vector
between an initiation of a reservation i and a later initiation of reservation j. In all cases
the ith row of Cmi is the same as the initial collision vector for function i. This collision
matrix is called initial collision matrix. For example, the initial collision matrix for the
pipeline in figure 2.11 is:

CM,;=[10100" 01000]
CM,=[01110 10100]

2.3.3 State Diagram

A state diagram gives two information that are when to make new initiation
without collision and the current state of a pipeline (current collision vector in static
pipeline and collision matrix in dynamic pipeline). The initial collision matrix is states
one. They are shift left until at least one of first bits in the matrices is 0. Then, they are
ORed with OR results between initial collision matrices that their first bits are 0, and

become the current states. The next state is the OR result between the current state and
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the OR result of initial collision matrices. The procedure in detail is in [8] and [9]. The
state diagram of the pipeline in figure.2.11 is shown in figure.2.12. Moreover, another
example of a system that adopted the dynamic pipeline is Design and Implementation of

a Pipelined Virtual Computer of E.Kasten [10].

>>3X >>4Y

10100
01000 = CMx

01110
% 4% |10100 = CMy

0X,1Y,>>4XY

2Y
Y,3Y,>4XY
3y

Figure.2.12: The state diagram of the pipeline in figure.2.11

2.4 Asynchronous circuit design

2.4.1 Environmental and delay Model

The two main things that define the asynchronous design style are environment
model and delay. model. They affect the asynchronous circuits directly because the
environment model defines a protocol between them and their environment, and the
delay model defines delay in their gates and wires. If designers use too pessimistic
environment and/or delay model, their circuits can be very hard to design, but inefficient
and expensive. On the other hand, if they choose too optimistic environment and/or
delay model, their circuits are easy to design, but can’t be guaranteed the correctness

of circuit operations.



19

2.4.1.1 Environmental model

An asynchronous system is composed of a set of circuits and
environment as shown in figure.2.13. An environment sends a set of inputs to a circuit,

and the circuit sends a set of input to the environment.

There are three styles of environment model:

1. The fundamental mode (Huffman mode): all gates in all circuits should
be stable before they receive a new set of inputs from the environment.

2. The generalized mode operation: all gates in a circuit should be
stable it receives a new set of inputs from the environment.

3. The input/output mode: the environment can send a new set of inputs

to circuits whenever it receives a set of outputs from a circuit.

environment

ESCou TP

circuit

:L:C}é’_}:}D*

circuit

Figure 2.13: An asynchronous system

2.4.1.2 Delay model

According to delay variance in gates and wires in a circuit, delay model

can be divided into three main styles:

1. The Fundamental-mode Model (The Huffman Model): gate and wire

delay are bounded and the designer known the upper bound.

2. The Speed-Independent Model (The Muller Model or Sl): gate delay is
unbounded and no wire delay.
3. The Delay-Insensitive Model (DI): gate and wire delay are finite, but

unbounded.
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The DI model can guarantee the correctness of circuits, but they are
hard to design and can include only C-element in order to ensure that their operations
are correct. The C-element is a storage element that its size is quite big as shown in
figure.2.14. Its output becomes 0 when all of its inputs are 0, and becomes 1 when all of

its inputs are 1; otherwise its output is the previous output.

A

I
%

Environment

Figure 2.14: A Two-Input C-element

Isochronic fork is added to DI model to decrease the complexity and
size of circuits; the new model called the Quasi-Delay insensitive model (QDI) [16]. The
isochronic fork is a fork interconnection, and delay in all branches are the same as
shown in figure 2.15. Signal d1, d2, d3, d4 are delay; d3 and the d4 are in the fork
interconnection, so they are the same delay. QDI circuit is equivalent to the Sl circuit if a
sequence of inputs from an environment is sent to its circuits in order of its sequence.

d1i d3

d2 d4

Figure 2.15: The quasi-delay insensitive model

For our design, the input /output mode model and QDI are used to

design circuits.

2.4.2 Dual-rail encoding
As | described above that there is no global clock in asynchronous circuits, the
single-rail implementation, a signal line for 1 bit-data, is not sufficient to represent the

data in asynchronous circuit. If the current value of data is 1,and the new value is also 1,
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we can not distinguish the arrival of the new data. Therefore, The dual-rail
implementation is used to represent the 1-bit data: a signal line for logic ‘0’, and the
another for logic “1". The following example is the dual-rail encoding presented by TITAC
[16]: dO for logic ‘0", d1 for logic ‘1. At any time, only one of a pair of 1-bit data can be
‘“1; otherwise, it's an invalid data. Beside, (0,0) is a spacer code word used to
distinguish between the current data and the new data. Both dO and d1 must be reset to
0 before the arrival of the new data.

D=0 <->(d1,d0) = (0, 1)

D=1<->(d1,d0)=(1,0)

(0, 0) = Spacer

(1, 1) = Invalid

2.5 Synthesis of asynchronous circuits from signal transition graph

2.5.1 STG

STG ia a graph-based method used to described a behavior of a circuit. It is an
interpreted Petri-Net introduced in 1987 by T.A. Chu [17]. It can describe concurrent
and choice operation in a circuit. There are 3 types of signals: input, output, and internal
signal. Input is distinguished by underline. Rising and falling transition of signal t
represented by t+ and t-. Arcs represent the relationship between signals. For one STG,
it is a single cycle of STG if signals have only one rising and falling transition, otherwise
it is multicycle. STG must satisfy 2 properties, which are live, and CSC (complete state
coding). There is not any deadlock /if-the STG satisfy the first property. The second

property prevents malfunction of a circuit.

Definition 1 (CSC property) [18]: A live STG satisfies the complete state coding
(CSC) property if
1. Every state on its reachability graph has a different binary code,or
2. When two or more states have an identical binary code, all the internal

and output signal transitions enabled in these states are the same
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A single cycle STG of C-element in figure 2.14 shown in figure.2.16 , and

it satisfy both two properties.

Figure.2.16: a STG of two input C-element

2.5.2 Asynchronous circuit synthesis procedures from STG

The circuit synthesis procedures from STG used in our design based on Park’s
[18]. Circuits operate correctly under the input/output mode and QDI. A signal network
is a circuit structure used to implement every non-input signal. Each signal network is
composed of four subnetwork; the set region network, the set acknowledgement
network, the reset region network and the set acknowledgement network as shown in

figure.2.17.
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Figure.2.17: Signal network N (t) for signal t [18]
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Definition 2 (Region)[18]: A maximal set of transitions which can be fireable from

t* to the immediately following t*(not including t*) is in a region for a signal t.

Definition 3 (Set/Reset Region)[18]: if a region for signal t starts from transition

£ (t'/i), it is a set (reset) region of signal t.

The set (reset) region network n (t, +) (n (t,-)) of signal t is constructed with a set
of region network which implement all the rising (falling) transitions of signal t, and
output to the C-element. Each region network n (t,*,i) ,i are the number rising (falling)
transitions of signal t , is constructed by AND gate and OR gate. Region network for all
rising (falling) transitions must be ORed before output to the C-element. The set (reset)
acknowledgement network used to check if each region network completes its

operations is constructed by a set of OR gate.

There are two methods for circuit synthesis: synthesis based on lock relations

and synthesis based on state assignment.

2.5.2.1 Synthesis based on lock relations

This method can be used with single cycle STG which have no choice
operations. There are 5 lock relations used for this method; semi,full, associate,
transitive,and super lock [18]. The following definitions described lock relations are from
Park’s thesis.

Definition 4. (semi-lock): If there rare two signal a and b such that

a* ->b*->(a*) or b* ->a*->(b*)’ on a simple cycle, they are semi-locked.

Definition 5 (full-lock): If there are two signal a and b such that

a* -> b*-> (a*)’ -> (b*)’ on a simple cycle, they are fully-locked.

Definition 6 (associate-lock): When a minimal set A of fully locked signals

and signal b are such that dat,a2 € A:a1 >b*->a2-> (b*)’ on a simple cycle, then

A and b are associatively locked, and A U b becomes a level-0 transitive-lock set.
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Definition 7 (super-lock): When a set of fully locked signals and signal t
are associatively locked, and t* is concurrent with a transition in set A, then t* has the

super-lock relation with set A.

Definition 8 (transitive-lock): When a signal b and s level-I transitive-lock

set A are such that a1 a2 € A:al ->Db*->a2-> (b*) on a simple cycle, then A and

b are a transitively locked, and A U b becomes a level-(I+1) transitive-lock set.
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Figure.2.18: An example of synthesis based on lock relation. [18]
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Semi-lock used to find full lock. Every relation, except semi lock, used to
satisfy the four-phase handshake protocol of signals on a circuit. These lock-relations
used to construct a signal network. Assume that a+ is a signal transition and b is a
trigger signal of a. If a and b are fully-locked; it's sufficient, otherwise find another lock-
relations between them and the others signal in order. If a and these signals are
ordered, then put signals as inputs of AND gate in set-region network.-If a and these
signals are concurrent, then put signals as inputs of OR gate. Input signal of OR gates

must be super-lock.

Figure.2.18 is an example. First step is finding semi-lock relations . We
find that a signal z1 has the semi-lock relation with signal z2, z3, and z5. More over, A
signal z2 has the semi-lock relation with z1, z3, and z4. Next, we use semi-lock set to

find full-lock relation. As a result, a signal z2 has the full-lock relation with signal z3, and
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signals z1 and z5 have the fully lock with each other. After that, we can find the
associate lock between a signal and set of full-lock relation signals: (z2, z3) and (z1,z5)
if, a signal is ordered with full-lock relation signals. A signal z4 has the associate-lock
relation with a set (z2, z3) because of transition sequence of z2 -> z4 >z3" ->z4"
Furthermore, we can use sets of full-lock relation signals to find a super-lock relation, if a
signal is concurrent with full-lock relation signals. Accordingly, a transition z4- is super-
locked with the set (z2, z3) because z4 is concurrent with z3. The next step is finding
level 1 transitive-lock relations from sets of associate-lock signal: (z2, z3, z4). A signal z1
is transitively locked with a set (z2,z3,z4) of associatively locked signal. After a set (z1,
z2, z3, z4) is found, a signal z5 is a transitively locked with the set. As a result, all the

signals in a given STG are included in level-2 transitive-lock signal.

After we get all of the lock relations in a given STG, we can synthesis
circuits from those lock-relations. A circuit is synthesized for an output signal. For the
example STG, there are two output signals, so we must synthesis two circuits for z1 and
z4. Each signal consists of two regions network: set region network and reset region
network.

First, we will consider a circuit for z1. For set region network n(z1,+) for
z1+, z4 is its trigger, so we must find a full-lock relation between z1 and z4. Fully-lock
relation between z1 and z4 is not found. So, we must find an associate-lock relation
between them. There is also no any associate-lock relation, but there exists a levell-
transitive-lock relation with z1-and a set (z2, z3, z4).-After this level-1 lock relation is
found, finding a lock relation is over. Signal z4is ordered to signal z1, so it is assigned
to the AND-gate for n (z1, +). Transitions 72" and z3 are-concurrent with'z1" so they are
assigned- to an OR-gate, and.the output of the ~OR-gate inputs to the set
acknowledgement network. Since there is only one OR-gate for the region network, the
set acknowledgement network is constructed with a wire. For z1, its trigger z5, and z5

is fully-locked with z1. As a result, only z5 is sufficient for reset region network.

Second we will consider a circuit for z4. In case of set region network

(z4, +) for z4.lts trigger transition 75 is transitively locked with a set (z1, z2, z3, z4).
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Thus, we z1, z2, z3, z4, and z5 are used to implement the set region network of z4. They
all are assigned to the AND-gate for the region network because there is no signal which
has the super-lock relation with transition z4". For reset region network n(z4,-), its trigger
is z2-. A super-lock relation between z4 and full-lock relation set (z2, z3) is found. So, z2
and z3 are assigned to an OR-gate. The reset acknowledgement network consists of a
wire because there is only one OR-gate for the reset acknowledgement network.
Accordingly, the acknowledgement is not required because there is only one OR-gate

and no- AND-gate.

2.5.2.2 Synthesis based on state assignment

The current state of a given STG is decided by a combination called a
state code of values of all state variables. Let consider states code of figure.2.12 signals
are ordered alphabetically, a state code position are crr, cs, eq,egbar, mrr, trr, twa, xen.
Examples of state code are in table 2.3. In addition, trigger cube must be considered to
construct a circuit. The trigger cube TC(t*/1) of t*/1 is a state code in which the value of
state variables that are not trigger signals of t*/1 are changed to the don’t care.
Examples of state codes and trigger cubes of a signal crr are also shown in table 2.4.
State code and trigger cube of every element in a circuit must be concerned, if there is
any CSC in the given STG, it must be modified. Adding internal signal to the STG is a

choice to modify the STG. An example of synthesis based on state assignment shown in

figure.2.19
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Figure.2.19: An example of synthesis based on state assignment.[18]



Table 2.3 Examples of state code [18]

Element |State code |Element |[State code
pl x0000100 |p2 x0000000
crr-/1 10x00x01 |crr-/2 110x0x00
crr-/3 100000x1 |crr+/1 00x00x00
crr+/2 000x0x00 |crr+/3 000010x0
cs- 01001000 |cs+ 10010100
eq- x0100001 |eq+ x0000100
eqgbar- x101x000 |egbart+ x0000100
mrr- 100010x1 |mrr+ 010x0x00
trr-/1 x0000000  |trr-/2 x101x100
trr+ x0000000- |twa- x000x011
twa+ x0001000 |xen-/1 00000001
xen-/2 00000001 fxen+/1 10100x00
xen+/2 10001010

Table 2.4 State codes and trigger cube of crr [18]

Transition [State code Trigger Cube
crr-/1 10x00x01 XXXXXXX |
crr/-2 110x0x00 X 1 XXXXXX
cre-/3 100000x1 XxxX0xxX
crr+*1 00x00x00 xxxxxxx0
crr+/2 000x0x00 xxXxxxxx0
crr+/3 000010x0 XOXXXXXX

The resulting circuits for signal crr are as follows.

n (crr,+)
n (crr,-,1,3)

n(crr,-,2)

= CS

CS.Xen

mrr .xen

27
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2.6 Binary floating-point representation

Floating-point number can represent smaller and bigger number than integer, so
very large number or very small fraction can be represented. It is called floating —point
because it represents number in which the point is not fixed. The floating-point number
must be normalized to a format that the most significant digit of the significand is
nonzero. for decimal, numbers in front of point can be 1 to 9. For example, 0.852 x 10°
must be normalized to 8.52 x 10°. For binary, numbers in front of point can be only 1,
and the normalized number is one in the form.

(-1)°x 1.bbb...bx 2°

IEEE754-1985 is the standard for floating point representation and arithmetic as

shown in figure.2.20.

Sign Bit (S): indicates the sign of number: 0 = positive, 1 = negative.
Exponent (E): the representation used is biased representation. A fixed value,

- 1)

where k is the number of bits in the binary exponent, so bias equals 127 for single

bias, is subtracted from the field to get the true exponent. The bias equals (ZM

format, 1023 for double format.

8-bit
Sign 23-bit mantissa
Exponent

Single Format

11-bit

Sign Exponent 52-bit mantissa

Double “Format

Figure 2.20: IEEE 754-1985 representation

Mantissa (b): (sometimes called Fraction or Significand) for binary, base b is

always 2, so it is implicit and need not be stored. Similarly, 1 in front of the point is

implicit and need not be stored in mantissa.
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For my design, | use the single format (or single precision) of IEEE 754 standard

including precise exception and rounding. The details of floating-point are in [20].
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CHAPTER 1lI

CONTROL UNIT

This chapter is about the control unit used for dynamic pipeline scheduling and
stage control. The control unit is described in 3 sections. Section 3.1 describes overall
of the control unit composed of 2 main parts: pipeline scheduler and stage control. The
first and second parts in details are discussed in section 3.2 and 3.3 respectively. Since
the configuration of dynamic pipeline used in floating point arithmetic unit is quite
complex, the simpler example is illustrated in figure. 2.11 is discussed in this chapter for

better understanding. The last section 3.4 is about circuit design and circuit synthesis.

3.1 Overall of Control Unit

The asynchronous dynamic pipeline control unit is shown in figure 3.1. As
described above that the control unit consists of two main parts (two blocks in a dash
block). They are interconnected with control signals. The pipeline scheduler handles all
of pipeline scheduling and collision check, while stage controller controls function and

data transfer of every stages in the dynamic pipeline.

Three signals: f, n_f, and fi are sent from the outside of the controller; such as
CPU etc. Signal f goes high when one (or more) function is initiated; in contrast, signal nf
goes high when no function initiated in-this cycle. Signal-fi, one bit for one function, used
to indicate initiated functions: O function is not initiated, 1 function is initiated. In this
research | assume that three signals are always valid,-and will not be checked by the

controller.

Two signals: p_c and fs is sent to outside. Signal p_c sent from stage controller
goes high when operations of a cycle are complete. Signal fs, one bit for one function,
indicates functions that are executed in a cycle. Moreover, fs is also gotten by the stage
controller for correct operation of every stages. These two signals are important for the

outside unit to get correct inputs from the dynamic pipeline.
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Two signals, s_o and n_o, interconnected between the two main parts are used
to distinguish operations of the stage controller. S_o (same operation) is actived when
there is not any new function that will be executed in a cycle. It will be active if nf is low
or there is not permissible function because of the stage collison. If f is high, and any

function can be executed without stage collision, n_o (new_operation) will be actived.

Two sets of signals, ct_si — ct_sj and c_i-c_j, are interconnected between the
stage controller and the dynamic pipeline. Set i-j is stages inside the dynamic pipeline:
a, b, ¢, and d for the dynamic pipeline in figure. 2.3. Signal ct_si — ct_sj are used to
indicate function and data transfer direction of each stage because a stage may
executed more than one function. After stage operation completion, c_i-c_j are sent

back to the stage controller

A fi (function
nf f input)

Pipeline Scheduler

Stage Controller

Ct_si| - fpt.sj ci|-—-|cC]

Y

Asynchronous
Dynamic Pipeline

Figure 3.1: Asynchronous Dynamic pipeline controller
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3.2 The pipeline scheduler

This block consists of four function blocks and a scheduler control as shown

in figure 3.2. The design is based on pipeline scheduling scheme described in chapter

2.

T I _ l l A
en_orl
e or Scheduler  [* i
- o Control _nc fi (function
o r .y input)
i A
Y
Initial Collision
Matrix ench _
ack_rc ..
= » | Collision Check
A Ao ,_,lﬂ o en_or2 g read_rc
JOL ! ‘_| c or2 9% 4
& g ° & ol oo A
Y Y write_r Y Y o | x
o
o 8 c
ack_wr Shifter & data_r
State Generator <=
data_wr  recent_state
| A read_r | T 9, (function
F i o select)
ack r ©
T

Figure 3.2: Block Diagram of Pipeline scheduler
Before discussing the operation of each block in pipeline scheduler, we discuss

overall operation. The operation of pipeline scheduler are described below and

illustrated by a flowchart in figure 3.3:

First, scheduler control block receives p_c signal-that represent states operation

completed from stage. controller, and. then shift left registers in Shifter and recent state

Block.

Second, The scheduler’s control block checks whether there is function comes
into pipeline. If nf is high, there is no new operation for pipeline, and scheduler control
block sends back s_o (same operation) to the stage controller and ends the operation of

pipeline scheduler. The shift result becomes a current state of the pipeline. If f is high,
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one or more new functions come into the pipeline, and then collision check block shown
in figure 3.6 is enable. It requests current state, and uses that value and fi value to
check stage collision. C is high, if the pipeline can not operate those functions without
collision, so functions will not be operated at this moment. The scheduler control block
sets s_o high and ends the operation. If n_c (no collision) is high, the collision check
block sends fs to initial collision matrix block to select initial matrices that will be ORed

together by state generator block that is shown in figure 3.7.

Start

Shift left Current state

Y

Pipeline execute old

function

Pipeline exacute new

function

Y
OR - initial collision

matrixes

\ 4

Curent state

= Current state

OR or result

- .

Y

End

Figure 3.3: Flow chart of Pipeline scheduler
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The first block is will be describe is Scheduler Control that is used to control
another blocks and synchronize them. There is only a circuit inside because there is no
combination circuit here. The circuit is a control circuit, and is generated from STG as

we described in chapter2.

For initial collision matrix block Two initial collision matrices, CMX= [10100

01000], CMY = [01110 10100] are stored in two registers inside as shown in
figure.3.4. Moreover, there are four latches inside this block: two are in Or1 block, one in
function selection block and another one is temp_register. Data in every latch is used in
combinations circuits, so 1-2 converter. The 2-1 converter is not required because we
can send only data.t to temp_register. A control block operation is similar to the main
control block. First, function selection block receives fs that inicates the permissible
function and store it in an inside latch. Then, Or function block uses data in this latch to
capture data in CMX or CMY or both. After that, it generates or-result and sends it to

temp_register that is requested by State generator block. Finally, the control block

gene en_orl c orl
read_t
en_or I
= Control Block —
> ack_t
. c_or
ack i1 i 4
CMX | req.il
di en_fi |c f
ack_i2 vy v
CMY TediZ . rf _
‘ dzl OR function :—— Function selector = fg

en_tc
result l I

ack_ reg.c

f

Temp_register

l or_re

Figure 3.4: Block Diagram of Initial collision matrix block
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All O’s are stored in the registers of shifter and recent state block that is
illustrated in figure 3.5 at initial time. Size of shift register is as same as CMX. Beside,
there is a latch in these blocks: sender_c, sender_o and receiver_o. Data stored in shift
register is shifted every cycle, and c_sh goes high after shift operation is complete. If
any function is initiated, collision check block requests first bits of shift register that
stored in a latch inside sender_c. Then, there are two cases of operation: 1. en_q goes
high to indicate that there is no initiated function and more operations are not requires,
2. en_sh goes high again means functions are initiated so further operations are
required. For case 2, data in shift register is requested by State generator block via
sender_o to or with or_result from Initial Collision Matrix Block. Next, data that was ored
by State generator is sent back via receiver_o and becomes the recent state of dynamic
pipeline. Finally, c_sh goes high again as a completion signal. In this block, operations

is shift, send and receive data,so 1-2 converter or 2-1 converter is not required.

en_q en sh c_sh

efPso . read_rc
€S0 . Control Block
en_ro[ | 2
f A
c-ro en_sh| | c_sh c_sc en_sc
read r Y | 4
ack ~ack rc
-] Sender_o Shifter (left) Sender_c -
e
data_r " data_r
rstate
write_r v |
ack_wr 3 ™ Recent_state f_b
- Receiver_o o> | '
—_— register
data_wr

Figure 3.5: Block Diagram of shifter and recent_state block

The Collision check block shown in figure 3.6 is enabled only when any new

function is initiated. It requests first bits of recent state from Shifter and recent_state
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block and then compare with fi bit by bit. If fi is 1 (this function is initiated), collision is
occurred when first bit is also 1. We must compare every bit; and then, ¢ (collision) or
n_c (not collision) will goes high depends on the characteristics of that dynamic
pipeline.
1. If more than one function can be initiated at a sametime, ¢ goes high only
when all functions cause stage collision.
2. If only one function can be initiated at a same time, ¢ goes high when only

one function cause stage collision.

If ¢ goes high, operation is completed. Otherwise, fs is generated and sent to

Initial collision matrix block via sender_or1 block.

en_ch
A4
en_rrc . ¢ n_c
c_rr Control Block
t > -
en_cc
ack_rc Y Y
read rg Receiver_rc d rr {atohT Colhg:)n l((:heck
— d Il ocC
data r
en_|2
en_so C_so [—> -
ack ¢ v Latch2 d_cc
- | — -
—p
req ¢ Sender_orl d_I2
<

Figure 3.6: Block Diagram of collision check block

The last block of pipeline scheduler is State generator as shown in figure 3.7.
State generator is enabled when new function is initiated and stage collision doesn’t
occur. It receives data from Initial Collision Matrix and Shifter and recent_state, and
stores them in latch 1 and latch 2 respectively. Next, it or them together and stores result

in latch3 until Shifter and recent_state requests it. A combination circuit in Or function is
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dual-rail so 1-2 converters are required for latch1 and latch2. Finally, c_or2 goes high

after all operations are completed.

en_or2 c or2

<& data_r

en_rt |
crt . write_wr
en_or Control Block ——»
ack_t > ack_w
e c_or r
read_t . 1
P— Receiver _t
—- .
drt v di2 ‘T drrrr
en_I1 !
Latchl < Or function S Receiver_r
di1
en_lc
or_result l I
read r ack_r
Latch3 |«
*data_wr

Figure 3.7: Block Diagram of state generator block

Next, ORed result is sent to state generator block that also requests current

state. This block ors them together, and send it back as a current state to Shifter and

recent state Block.

Finally, the scheduler control block ends the operation of pipeline scheduler by

setting all.enable signals to 0.

3.3 The stage controller

The stage controller is composed of three main parts and a stage control block

as shown in figure 3.8.
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Figure 3.8: Block Diagram of stage controller

The operation of the stage controller is divided into two modes as shown in

flowchart in figure 3.9

1. n_o is high: The controller receives fi ,and then function selection block shifts
the value of registers. Then function registers and direction registers are ored together
depends on functions that are initiated. Then, ored results re or with the value in shift
register and become the current functions and directions of stages. Then first rows of
registers are sent to Ctrl_block. Ctrl_block send control-signal to each pipe stage. After

all execute stage (define by ex_st signal) are completed, s_c is high, and - P_c goes

high.

2. s_o is high: There is no changes in the first row of registers, and follows the

steps when n_o is high.
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v)

Shift left Current function

and direction registers

OR FR and DR

A 4
Set Current function and

direction reqisters

Send control signal to all

stages

A 4
All enabled stages are

completed

Figure'3.9: Flow.chart of Stage-controller

Next, we will move on to each module of stage controller.

The first part is function selection; its operation is to generate function and data
transfer direction for every control_stage block. Shift registers in function_selection block
is stored a set of functions and directions for each pipe stages in sequence as shown in
figure 3.10. This shift register is shift every cycle. There are a three set of register in this

block.
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1. An initial function register (FR): It represents function that a stage executes at
a unit time. Size of register, i x j, depends on maximum evaluation time of stages and a
maximum number of functions that a stage can execute. Where i = number of stages,
and j = number of functions. For example, look back to figure. 2.5, i = 4 and j=2
because a stage can execute two functions at most. Each bit in a column of FR register
represents a function: 0 is not execute, 1 is execute. For example, the following FR is FR
of dynamic pipeline in figure 2.11. We get FR from the reservation tables. For pipeline in
figure 2.111=15,j=2:j(0) = function x j(1) = function y.

Stage A: FRax = [00 00 00 00 00]

FRay = [10 00 00 00 00]

Stage B: FRbx=[0100 00 00 00]

FRby = [00 10 00 10 00]

Stage C: FRex = [00 01 00 01 00]

FRcy = [00 00 10 00 00]

Stage D: FRdx = [00 00 01 00 00]

FRdy = [00 00 0000 10]

2. An initial direction register (DR): It represents data transform direction that a
stage executes at a unit time. It is similar to FR, but function is changed to direction. For
pipeline in figure 2.111= 5, j = 2: j(0) = first time direction j(1) = second time direction.
J=2 because the maximum direction of satges is 2.

Stage A: DRax =[00 00.00 00 00]
DRay = [01 00 00 00 00]
Stage B: DRbx = [01 00 00 00 00]
DRby = [00.01.00 10 00]
Stage C: DRcx = [00 01 00 10 00]
DRcy = [00 00 01 00 00]
Stage D: DRdx = [00 00 01 00 00]
DRdy = [00 00 00 00 01]
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3. Shift register: There are two sets of shift registers: the first set represents the
current function and the second set represents the current direction of stages. The
scheme to generate the current state register is similar to the scheme to generate
current state of pipeline scheduling scheme. The FR and DR of every stage is fetched
into OR block. Stage A is an example, if function x is initiated, FRax and DRax are
fetced; and then, they are ORED with values in the first set and the second set of shift
registers respectively. After that, The ORed results become the current function and
current direction of stage A. If function x and y are initiated, FRax, FRay, DRax and
DRay are fetced; and then, FR and DR are ORED with each other before they will be or

with the values in the first set and the second set of shift registers respectively.

FR and DR of each stage are combined together, and sent to each control block

of stage (ctrl_a — ctrl_d) via f_stage (f_a —f_d) signals.

For shift register, the register size of a stage is 4 x 4; 4 is the number of stages.
Each row consists of four bits; the first two bit represent function, 00 = no function, 01 =
function X, 10 = function Y, 11 is not used. A stage can be used more than one time for
a function; for example stage B of Y is used in time 1 and time 3, and data transfer for
time 1 and time 3 are different. Thus, the last two bits of row in the register is used to

represent data transfer of stage; 01 for first data transfer, and 10 for later.

Function selection block get the value of function from shift register, and detect
what stages will be enabled in this cycle. Then, ex_st is sent to ' Stage_complete. A
number of ex_st bits is equal the number-of stage. For-example, 0011 ‘means stage A

and stage B will be enabled in this cycle

The second part is Stage control block (ctrl_a — ctrl_d) as shown in figure 3.11.
Control block function is similar to another control block. F_a is split into two parts and
sent to Function_control and Direction_control block. Combination circuit inside these
two blocks depends on characteristics of stages. Outputs of these two blocks are

control signal used to enable a stage and select a data transfer direction. After
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Figure 3.10: Block Diagram of function selection
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Figure 3.11: Block Diagram of completion block
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c-fs
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The last part is Stage_complete block as shown in figure 3.12.

The operation of the stage completion is divided into two operations. A compare
block operates as a control block plus a compare block. Strobe signal is used to enable
the 1-2 converter. After all enabled stages are completed, they send s_c(stage) to this
block. Next, compare block set s_c high to indicate that the operation of enabled stages

in this cycle is completed.

en_sc C_SC

s_c(i) - s_c(j) strobe
—  Compare Block

A

4

ex_std ex_st
1-2 converter N

Figure 3.12: Block Diagram of Stage_complete block

3.4 Circuit design and circuit synthesis

| started my design inside each main part by module design. Each part
consists of 2 parts: control. block. and-function blocks.-There-is only one main control
block in the pipeline scheduler and the stage controller. A 'number of function blocks
and their-function-depend: on-the-operation 'in the-pipeline scheduler-and the stage
controller. After | got all modules, | designed datapaths between each module. Then,
submodules inside each module except control block are designed. The control block
is a circuit that is synthesized from STG. Each module includes its control block and
combination circuits in submoduls. As a result, | got block diagram of each main part as

shown in figure 3.2 and 3.7.
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Next, | design STG of two main control blocks and module’s control block. For
each main part, STG is carefully design to avoid conflicts and confusions of control
signals because an out put signal in a STG is an input signal in other STGs. Moreover, a
signal might be used several times to generate other signals. When all STG in a main
part is satisfy, we started circuit synthesis from STG based on Park’s scheme as
described in chapter 2. During synthesis, some STGs may be modified to satisfy Park’s
definations. An example of circuit synthesis from STG is shown in figure 3.13; itis a STG

of the control block of the pipeline scheduler. Figure 3.14 is a circuit of signal en_sh.

C_or2- (_T)-sh-/Z
En_or2- En_sh-/2
N-c+
2“_\ Enjch-/
Co t
C-sh+/2
4 } N ¢o+
En_qQr2+ En_sh+/2 .
Q\ i e+
/ /\
C_or1- P_c-/1 F-/1
En_or1- En_or+

Figure 3.13: STG of control block of the pipeline scheduler
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N_c
C_or

Figure 3.14: a circuit for signal en_sh

Then, combinations circuits inside modules are designed. The design method
based on asynchronous circuit design in chapter 2. Since data between each module is
bundle data and it is single rail, 1-2 converter and 2-1 converter is necessary in some
modules. Bundle data is applied to reduce data size and data wire. Furthermore, latches

used in control unit are based on S-R latch.



CHAPTER IV

ASYNCHRONOUS FLOATING-POINT ARITHMETIC UNIT

The proposed asynchronous floating-point arithmetic unit is discussed in this
chapter. The arithmetic unit operates five functions: add/subtract, multiply, negate,
absolute and compare. Overall of the arithmetic unit is described in section 4.1. The

following section 4.2 - 4.6 discuss details of each function.

4.1 Overall

This unit is based on single precision (32 bits) IEEE standard 754-1985 [22-24]
including standard format and exceptions. The special bit, Guard Bit, is extended to the
LSB of Mantissa in standard format to increase the precision of the arithmetic result.
Then, the rounding technique is used to convert the result to the 32 bits standard format.
The round to nearest is a rounding technique used in my design: under half is 0 and
above half is 1. Beside, rounding to infinity and rounding to zero is included in my

design.

The arithmetic unit operates four functions: add/subtract, negate, absolute and
compare. The operation of each function is split into stages to work as a pipelined
arithmetic unit. After consideration and comparison in terms of operation and stage, the

arithmetic unit can then be divided into-stages as follow:

- U (Unpack): get input: a number of input (1-for absolute and negate, 2 for
Add/Subtract, Multiply ,and Compare). Next, this stage distributes input into 3 parts:
Sign bit, Exponent and Mantissa.

- C (Check for zero/Change sign bit): check that input is 0 or infinity or precise
exception or not, and change sign bit for negate and absolute function.

- E (Exponent Adder/Subtractor): add and subtract exponents of the input.

- A (Adder): add and subtract mantissa of the input. The complement circuit is in

this stage.
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- M (Multipier): multiply mantissa of the input.

- Ch (Check for Exception): check whether the result is precise exception or not.

- N (Normalize): convert the result into formatted number used in circuit, not a
standard format.

- R (Rounding): round the result and convert the result to 32 bits IEEE 754
standard format.

All functions use redundancy stages as shown in Table 1. The usage and data
transfer stages in the dynamic pipeline used for this arithmetic unit is shown in Figure.
4.1.

Table 4.1: Arithmetic function and stage usage

Arithmetic Function Stage Usage

1. Add/Subtract U,C, E, A Ch, N, Ch,R
2. Multiply U, C, E, M, Ch, N, Ch,R
3. Negate U@

4. Absolute -8

5. Compare U,C,E,AR

Stages Ch and N are considered to be a loop because some results need to be
checked more than once and to format them to the standard format. In figure 4.1, we
need to reserve Ch twice to avoid stage collision because we can not know that whether
Ch will be used once or twice when inputs come into the arithmetic unit. It is time
consumption that happens when the result uses Ch only once, but it is still better than

stage collision.

Standard
format

Standard A
format J’ ——L Yy Sormar
— U » C > E Ch > N > R —
e It
Exception £ i
report xception

report
p Compare

Result

Figure 4.1: Stage and Data transfer between stages



4.2 Add/Subtract

There are five steps of Add/Subtract function after unpack as following.
1. Check for zero.
2. Align the significands.
- Compare components
- Shift right significand (smaller exponent)
3. Add or subtract the significand.
4. Normalize the result.
5. Round the rersult.

A block diagram of Add/subtract function is shown in figure 4.2.

X Y

A
‘ Unpack Block ‘<—¥ Unpack Block @————

k. v 3

Resulu—{ Check for zero ‘4—
Xe Ye

Y Y
Subtract Exponents ‘
Il smallers
.| Increment & De Shift right& Left
7 exponent significant |

> Szo
3 ) Rounding
Complement le A
j Adder |
2, |2, |4
"""""""" v y
Under & Over Check for
Order flow &
Over flow b Iz, 3
2 Pack F* No

|

result

Figur. 4.2: Block diagram of Add/Subtract function

4.3 Multiply

There are five steps of Multiply function after unpack as following.

1. Check for zero.
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Add exponents

Subtract bias

Multiply the significand.
- Check Q,Q-1

- Add, subtract significands and count

- Shift right A, Q,Q-1

Normalize the result.

Round the rersult

A block diagram of Add/subtract function is shown in figure 4.3.
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Figure 4.3: Block diagram of Add/Subtract function
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4.4 Negate

There is only one step after unpack: it is checking for exception and changing

the sign bit.

4.5 Absolute

There is only one step after unpack: it is checking for exception and assign 0 to

the sign bit.

4.6 Compare

There are five steps of Compare function after unpack as following.
1. Check for zero.

Compare sign bit.

Compare exponent.

Subtract significands.

Round the result

Return compare result.

> o o A~ 0N

block diagram of Add/subtract function is shown in figure 4.4.

ok
Unpack FPNo [* Control
A A ?

Compare sign bit

Ys
I —

Subtract exponent |

XS
‘ compliment E—,—
[«

Rounding -

l

Result

Figure 4.4: Block diagram of Compare function



CHAPTER V

CONTROL UNIT IMPLEMENTATION

This thesis presents the controller that can be used as a template to design
the controller of dynamic asynchronous pipelines. Steps of implementation for any
dynamic asynchronous pipeline are the same and described in section 5.1-5.5.
However, the modification is necessary because of the characteristics of each pipeline;
the number of stage, the number of function, and function configuration, but the main
parts of their controllers are the same. An implementation for a dynamic asynchronous
pipeline and its controller consists of five steps as presented in figure 5.1. In chapter 3,
the control unit for a four stage dynamic pipeline is discussed. In this chapter, how to
apply it to other dynamic pipeline is discussed. Each section gives an example: the

proposed floating point arithmetic unit.

A 4

Pipeline
Configuration

v

Reservation table
generation

v

Collision Matrix
generation

v

State diagram
generation

v

Hardware
modification

End

Figure 5.1: Steps of Control unit implementation
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5.1 Pipeline configuration

Function is the most important thing for pipeline configuration i.e. a number of
functions and how each function work. In addition, the designer must decide how to
divided function into stages, and balance time usage of each stage. Furthermore, the
designer must know which stages can be used by only one function, and which stages
which stage can be used more than one function. Finally, construct control and data
paths between stages in the pipeline. The configuration of the proposed floating-point

arithmetic unit is shown in table 4.1, and figure 4.1.

5.2 Reservation table generation

The reservation table is used to check the correctness of pipeline functions and
generate the collision matrix, but it is not included in the circuit. The floating-point
arithmetic unit has 5 functions, so there are 5 reservations table as shown in table 5.1-
5.5.

Table 5.1: the reservation table for function Add/Subtract (Ad)

stage /time 0 1 2 3 4 S 6 7

U X

2l |=|a
~

R X

Table 5.2: the reservation table for function Multiply (M)

stage /time 0 1 2 3 4 5 6 7

U X

C X

E X

A

M X
Ch X X

X
R X




Table 5.3: the reservation table for function Negate (N)

stage /time 0 1

U X

2l |=|a

R

Table 5.4: the reservation table for function Absolute (A)

stage /time 0 1

U X

R

=

Table 5.5: the reservation table for function Compare (C)

stage /time 0 1 2 3 4

U X

Zlx|=|a
>

=
>

53
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5.3 Collision Matrix generation

The collision matrix generated from this step will be store in registers of initial
collision matrix block and is used to generate the current state of pipeline. A set of
collision matrixes of the floating-point arithmetic unit is below.

CMad = [10100000 10100000 10000000 10000000 10010000]

CMm

[10100000 10100000 10000000 10000000 10010000]

CMn (10000000 10000000 10000000 10000000 10000000]
CMab =[10000000 10000000 10000000 10000000 10000000]

CMc = [10000000 10000000 10000000 10000000 10000000]

5.4 State Diagram generation

The state diagram is used to check correctness of the controller by checking the
current state of pipeline generated from state generator block. The state diagram is not
included in the controller circuit. Figure 5.2 is a part of state diagram of the floating-point

arithmetic unit.

5.5 Hardware modification

Because of the configurations of the controllers for each pipeline are little
different. Note that, scheduler control and stage control module will not be modified
because they are the control circuits that can be used by any dynamic pipeline.
Similarly, control block of every module of both pipeline scheduler and stage controller
will not be modified.Combination circuits of modules must be modified to support each
different dynamic pipeline.

For pipeline scheduler, the number and size of registers in initial collision matrix,
state generator, shifter & current state module depends on the number of functions and
pipeline stages. Furthermore, combination circuit in callision check module must be

modified too, and can be improved to support the requirement of designers.

For stage controller, function selection, and ctrl_block must be modified to
support the pipeline configuration. The number and size of registers (FR, DR, and shift
register) in function_selection modules depends on the number of functions and pipeline

stages. Similarly, the number of ctrl_block is equal the number of pipeline stage that is
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8. An example of FR and DR is below. A size of column in FR and DR is 3 because there

are at most 3 functions that can be executed in a stage: Ch stage 001 = absolute, 010 =

nagate, and 100 = another function. In addition, there are 3 data directons in a circuit at

most: Ch stage and R stage.

<<lad l

>>3n 4 lad,1m
10100000 >>3m 10100000 <<3n 10000000
1ad,1m| 10100000 >>3a 10100000 »{ 10000000
10000000 g 10000000 <<1im 10000000 .
10000000 < 10000000 < 10000000
10010000 = CMad ) 10010000 = CMm 10000000 = CMn

<<lm
<<

J

«<labl 10000000 10000000 <<l1r
10000000 10000000
<<2ad |10000000 10000000 <<lc
| 10000000 » pd 0 10000000 .
10000000 = CMab 10000000 = CMc
| <<1n
<<lab
<<3ad 1n,1ab,1c ¥
11100000 10000000 11000000
11100000 2n,2ab 10000000 lab,1n 11000000
- 10000000 > 10000000 10000000
10000000 10000000 10000000
10110000 11000000 11100000
<<3m <<ilad <<2c
v v v

Figure 5.2: A part of state diagram of the floating-point arithmetic unit

Stage U: FRuad

Frum

=[001 000 000 000 000 000 000 000]

= [001 000 000-000 000 000 000 000]

FRuab =[001 000 000 000 000 000 000 000]

FRuab =[001 000 000 000 000 000 000 000]

FRuac =[001 000 000 000 000 000 000 000]

DRuad
DRum

DRuab

= [001 000 000 000 000 000 000 000]

=[001 000 000 000 000 000 000 000]

= [001 000 000 000 000 000 000 000]
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DRuab = [001 000 000 000 000 000 000 000]
DRuac =[001 000 000 000 000 000 000 000]

Stage Ch : FRchad = [000 000 000 000 001 000 001 000]
FRchm = [000 000 000 000 001 000 001 000]
FRchab = [000 000 000 000 000 000 000 000]
FRchab =[000 000 000 000 000 000 000 000]
FRchac = [000 000 000 000 000 000 000 000]

DRchad = [000 000 000 000 001 000 100 000]
DRchm =000 000 000 000 010 000 100 000]
DRchab = [000 000 000 000 000 000 000 000]
DRchab = [000 000 000 000 000 000 000 000]
DRchac = [000 000 000 000 000 000 000 000]

Step 1 depends on the regchirement of designers. Step 2 — Step 4 based on
pipeline schedchling described in section 3. Step 5 is based on ideas presented in this

thesis.



CHAPTER VI

EXPERIMENTS AND RESULTS

This chapter is divided into 2 sections: Experiments, section 6.1, and
experimental results. Moreover, the experimental results is composed of 2 sections:
control unit result and asynchronous floating-point arithmetic unit. Section 6.2 shows
comparison between results of two control units: figure2.11 and the floating-point

arithmetic unit.

6.1 Experiments

According to timing assumption used to design circuits in this thesis, the real
circuits are not synthesized because the synthesis tools are not fully support
asynchronous circuit design. Thus, simulation results were used to test and verify

circuits. Experiments consist of 3 steps as follow.

6.1.1 Adding delays

Delays are added to circuits to make circuits to be asynchrony. Delays in

a gate is assumed to be 1. The following-code demonstrates-adding delays to circuits.

cS_ic <=n_oors_o after 1 ns;
cr_ic <= not(en_sh and p_c) after 2 ns;
ic <= (ecs_ic and cr_ic) or (cs_ic and i.c)

or (cr_ic and i_c) after 2 ns;

6.1.2 Writing Testbench
A testbench is used to create an input sequence to a design, then
observe the response. The following code is a fragment of testbench for control unit: it is

initialize value before the circuits is started.
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f <: IOI,
nf <=0
ﬁ <: IIOO"’.

data_x  <=("10100","01000");
data_y <=("01110""10100");

6.1.3 Simulation

The simulation results are generated by Model-SIM. First, we change the

directory to the directory that program is. In figure 6.1, the directory to the directory in

shaded box on screen.

' I'r" ﬂ'uudelsm SE/EE PLUS 5.4e

| M odelSim:

w1

<No Design Loadeds RRYaRE TN

Figure 6.1 Changing Directory

Then, we load design that is an entity we want to test in our design as

figure 6.2.

Next, we select view from menu bar, and select.a thing we want to

observe as shown-in figure 6.3.
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File Edit Design Yew Hun Maco Optish: Window  Help
S BRI 0

# Reading C:/EDAMODELTECH_54EAWIM3ZS. Al vsim/ pref.tel =
# Reading C:/EDA/Modeltech_ 5 delexamples/modelzim.tcl
cd {C: My Documents/Thesis/floating point/program}

4 adelSim:

Design | VB [Viria| FSBE ]
<HoDesignl  Simulator Resolution: dsfault y

Library: Iwork . = ﬂ Bmwse..J

Simuféfe::] 4 &dd
Design Uit | Descintion [l
ful E ity
o B ot E ntity

scheduler

shift_reg E it

zhift _req_th Ertity
“,pi zhifter_ratate E ity
f shifter_rstate_ctil Entity
B shifter_rstate_th E ity
dl 1 stage th E ity =
F 4 rs - —
/' s s
/ L’baﬁ "ﬂiﬁt, Save Settings... | Caticel
add Ndia £
IS8 2L

Sz (D& I |
#loadingwortkcolr—— ———ich) =
# Loading wark callis)  Sounce ck_arch)
# Loading work.orlio:Sinysturs
ﬂ_ Loau;llng wrk ar2c i-"ariéi:ules
wiew signals
# zignalz m
destroy . signals List:
Process
WSIM 55 Wb ot
How: Ons Delta:|  Dataflow Jscheduler th W
Datazets...
Hew 4
DOther 4

Figure 6.3 Viewing responses
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6.2 control unit results

The circuit is simulated by Model Sim as shown in figure.6.4. P_c to re_st
are signal of pipeline scheduler, and the rest are stage cintroller. Let consider
the left hand side of figure 10, or_rs and or2_rs is the result of initial collition matrix
and state generator block. Re_st is the value of recent state register which is a shift
register.Re_st=[11000,10000]. fi represents the function initiation ; it consists of
two bits ,and each bit represent each initiation of function (Y,X). In the figure
10 , fi = “01"; X function are initiated. When p_c goes high, shift register must be

shifted left. And then, the collision check block is enable by setting en_ch.

The first bit of the first column is 1 , so function X can not be
executed without collision. Check collision block checked set ¢ signal high to tell
the control block that B function can not be executed at this moment. S_o
(same operation) goes high ; then the scheduler control block end the operation.
For stage controller block, the operation begin after receiving s_o. Function X
can not be executed at that time and the old function (Y) is operated from
time 2 to time 3 (reservation table in table 2.2). The value in registers become
[000,101,000,000] ; its mean only stage B are enable. Then en_nctrl is fired ,and
all ctrl_i are enable. After ctrl_a to ctrl_d operation are completed c_nctrl is
fired. Then, stage B is completed and set s_c high. Finally, stage control block

end the operation of stage controller and set p_c high.

Next, Function Y is initiated because fi'is “11”. After collision check, function
X can be executed, n_c is high and every block in pipeline “scheduler are
enabled in order. In. addition ,n_o .is high to indicate that stage controller block
must execute the new function (X). The operation are similar to the previous
cycle except new function ,A and B, are executed [Look at time 0 table 2.2].At
this cycle , re_st = [11100,11000] , and registers value in stage control is

[000,010,000,100]
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For the next cycle ,right hand side of the picture, function X is initiated.

Let consider re_st, it indicates that function x can not be executed at this cycle.

The operation are the same of the two previous cycle. Function X must wait until

the first bit of re_st (current state)is 0.

pc

f

nf

fi
en_sh
o _zh
en_ch
(=

nc
n_o
0
en_orl
en_or?
c_orl
c_ore
&h_q
re_st
en_f
o
en_nchl
c_netl
ex_st
zc

1 B e o G I B e B 1
]

]

1 o i o

] 1] 1 [ 1 [1

1 1 1 L 1 M1 1
0 A

] el

]

i [ [

o I N 1 1
]

]

: - =

0 1

]

{11700 11000} | 11000 10000% | 1110000 0o00nt 11110 11008 JE1100 11000t

] 1 NN [T

] 7l M [T

i M1 ‘ 1

i [ [

10 0010 10 J0110
0 1 [ [

Figure 6.4: Simulation result

of asynchronous dynamic pipeline control unit

Table 6.1 show a number of gates used in control unit for both dynamic pipeline

in figure 2.11 that is a 2-function pipeline and dynamic pipelined floating-point arithmetic

circuits that is a 5-function pipeline.

Table 6.1 number of gates in control unit

Block 2-function pipeline 5-function pipeline
Pipeline Scheduler 1846 5273
Stage Controller 5499 33787
Total 7345 39060

6.3 Floating-point arithmetic unit results

The simulation shown in figure.6.5 presents operations of two functions:

Adder/Subtractor (0.5, + 0.75,,,) and compare in the last four stages. p_c is the signal
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that starts the cycle of operations. It is high when every enabled stages completes their

operation. std_result is the result of adder/subtrator function (fourth cycle). Cmp_result is

the result of compare function (third cycle). Out_type is used to identify the result: 0 is

adder/s

ubtrator, 1 is compare.

For adder/subtractor, Ch stage is used twice (first and third bubble) because the

output from A stage is not normalized. The third cycle in figure.6.2 shows that two

function

s are operated at the same time and it is an advantage of dynamic pipeline.

Moreover, negate function can be initiated (fi in a rectangle) in this cycle because it will

not cause the stage collision (consider from stage diagram).

pc
n_o
]

ch_r
zhd_result
cmp_rezult
oul_type

Fig

00000 ' {00100

L

[00000aoaa00na0a0A000OAOCMNOIO00
000000000000000000000000000000000 | 1 I
I

ure 6.5: Simulation result of asynchronous floating-point arithmetic unit

Table 6.2 show average time spent for 1 cycle of each stage. Table 6.3 shows

number of gates used in overall circuits.



Table 6.2 average time for 1 cycle

Time
Stage (ns)
U 157
C 204
E 187
A 238
M 451
Ch 197
N 161
R 181

Table 6.3 number of gates in

overall circuits

Block No. of gate % of gate
Pipeline Scheduler 5273 1.93
Stage Controller 33787 12.35
Floating-point 234559 85.72
Total 273619 100
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Chapter VII

CONCLUSION

Clock skew problem in synchronous circuits can be avoided by an
asynchronous circuit design. To increase speed and performance of
asynchronous circuits, pipelining technique is adopted. In addition, this research
focused on dynamic pipeline to expand the study area of asynchronous pipeline
and apply it to multifunction circuits. The simulation result in section 10 showed

that the circuit can work properly without stage collision.

This circuit can be applied by any multifunction circuits using dynamic
pipeline with a little modification as described in design methodology (Chapter
5). The first thing is changing the initial matrix in OR1 block. Second, change a
little operation in every block ,except control block, to support your pipeline.

Notice, no need to change anything in control part of every block.

The challenge is to modify the controller to be a purely asynchronous
circuit. There is not global clock in circuit, but stages must wait until the other

stage are completed. To speed up pipeline this problem should be eliminated.

According to the number of gate in table 6.1, it shows that a number of gate in a
control unit is increased when the complexity and number of functions and number of

stage increase.

In this thesis, | have presented the asynchronous floating-point arithmetic unit
using the dynamic pipelining technique. It can work properly without stage collision and
cover the |IEEE 754 standard. Dynamic pipelining reduces size and increases the speed
of the arithmetic unit. This is the main advantage of my design. Furthermore, this

arithmetic unit can be applied to other asynchronous processors or systems because |



65

use the four-phase micropipeline as the backbone of the arithmetic unit. This circuit
applies the controller | designed for pipeline scheduling and stage control to maintain

performance and stage collision avoidance.

The controller must know the data flow of functions before their inputs come to
the pipeline. Thus, the configuration must be fixed; it is satisfactory for every function
except the add/subtract function and multiplier. The stage usage of the add/subtract
function and multiplier varies because it might be used more than once to check and
normalize results. It cannot be predicted, so we must reserve stages for recursion in
order to avoid stage collision, which causes time consumption. This point is a future
challenge because the performance will be better if the time consumption can be

eliminated.

Table 6.2 shows average time for a cycle of each stage, and it present that
stage M is the slowest stage. Thus, stage M limit speed of throughput when Multiply

function is initiated. A solution for this problem is splitting it into 2 circuits.

Table 6.3 presents that control unit is a small part when compared with floating-

point arithmetic circuits. It does not increase too much complexity for circuits.
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Appendix A

STG and Circuits

1 Pipeline Scheduler

1.1 Control Block of Pipeline Scheduler
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1.2 Collision Check Block
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1.3 Shifter and Recent state Block
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1.4 Initial Collision Matrix Block
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1.5 State Generator
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2. Stage Controller

2.1 Control block of stage controller
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2.2 Function Selector
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Abstract

Asynchronous pipeline used to increase speed and performance of asynchronous circuits has been introduced
for years. Most studies focus on static asynchronous pipelines. In order to keep performance and avoid stage
collision, the scheduling is the main technique for complex pipeline such as dynamic pipeline. This paper
presents an implementation of a controller of asynchronous dynamic pipeline for multifunction circuits. The
proposed controller consists of two main parts; pipeline scheduler and stage controller. The scheduling scheme
based on the reservation table, the collision matrix, and the state diagram. The synthesis procedure from STG
(signal transition graph) used for all control parts of circuit. In addition, VHDL was used for this circuit. The
simulation result shows that pipeline can work properly, and stage collision is avoided. Furthermore, the
controller can be easily applied to any complex asynchronous dynamic pipelines.

Key words— Dynamic pipeline, Asynchronous pipeline, Pipeline scheduling

1. Introduction

Since clock skew limits the speed of synchronous
circuits [Nanya et.al., 1994], asynchronous circuit
design has been widely restudied since the last
decade. Instead of the use of global clock; the
asynchronous circuits response to their signal
transitions in the circuits, and output can be sensed
as soon as the operation is completed. Accoerdingly,
this becomes one of the advantage of asynchronous
citcuits in term of speed. Moreover, power
consumption of asynchronous circuits is another
advantage due to no global clock signal transition.

However, asynchronous circuits are more
complicate to design and verify ~than ~the
synchronous ones. In addition, there ‘are few tools
that support asynchronous, circuit design. Therefore,
the propose of this research is to expand the area of
the asynchronous circuit study, especially for an
increase of speed. Consequently, in order to increase
speed of circuits, asynchronous pipelining s
considered here.. Conventional pipeline technique
has been adopted since late 1960 [Culler D.E., 1999]
[Crichow J.M., 1988] [Willkinson B. , 1999].
Asynchronous pipeline was first introduced in 1989
by Ivan E. Sutherland [I.E.Sutherland, 1989].
However, there are mainly studied on static pipeline
but still few research papers considered on the
asynchronous dynamic pipeline.

Hence, this research focuses on dynamic pipeline
that can be reconfigured to perform multifunction
[P.M. Kogge, 1981]. As a result, the number of

circuits in a system can be reduced, but control and
scheduling part become much more complex [K.
Hwang, 1993].

To examine control part and scheduling, and then
make them simply is the main purpose of this
research. This research used pipeline-scheduling
scheme introduced by Kogge. Reservation table,
collision matrix, and state diagram are keys. for this
scheme. He also presented scheduling circuits for
both static and dynamic pipeline. Although they are
not suitable for asynchronous circuits, some ideas of
his circuits can be used in this research.

STG (signal transition graph) is applied to the
circuit because the controller is controlled by
hardware,-and quite complex. The controller can be
controlled by a simpler.scheme i.e. software control,
but it is slower. After STGs of control part are
completed, they must be synthesis circuits. The
synthesis procedure adopted. to this research is
Park’s [S.B.Park,1996] because it appropriate for
asynchronous circuits. Park introduced the synthesis
of asynchronous VLSI circuits from STG based on
SDI delay model with isochronic fork (QDI).

Section 2 and 3 gives brief explanation about
asynchronous pipeline and pipeline scheduling. STG
and circuit synthesis procedures from STG are in
section 4. The design methodology is described in
section 5. Then, section 6 and 7 show the overall of
asynchronous dynamic pipeline controller circuits
and results. Finally, section 8 and 9 are conclusion
and acknowledgement.



2. Asynchronous Pipeline

Micropipeline [I.E. Sutherland, 1989] was first
introduced to asynchronous pipeline in order to
improve performance and speed of asynchronous
circuits, as shown in figure 1.

stage (-1 stage | stage i+l
Ri | Faui Ri Faui Ri Roui :__
Ain _‘Auul Ain _‘Auul Ain ] Aaut
) y y
Data in Dats au

Figure 1 : An asynchronous pipeline structure [8]

It uses bundle data channel that consists of two
control signals, request and acknowledge, and data.
The request signal is sent to the next state when data
is valid, and the next stage send back the
acknowledge signal. In addition, there are
combination circuit and latch in each pipe stage.
Figure 2 represents asynchronous pipeline operation
used in this research.

Datain T X F F 3
= A
Reut i /; - =

Figure 2: Asynchronous Pipeline operation [8]

3. Pipeline Scheduling

Pipeline scheduling is important to guarantee
pipeline performance and collision avoidance. If
pipeline is a purely linear, the scheduling is simply.
Pipelines used in real circuits are more complex, and
scheduling also becomes complicated.

The first thing should be known when studying
about pipeline scheduling is types of pipeline. There
are two types of pipeline.

1. Static pipeline : a static pipeline can be
reconfigured _to. -perform _only- one _function
(unifuction) at anytime.

2. Dynamic pipeline : a dynamic pipeline can be
reconfigured to perform variable functions
(multifunction) at different time.

s P

—» A |— B c D [

Figure 3 : A four stages pipeline
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Figure 3 represent a four stages pipeline used in this
research. This pipeline can perform two functions; X
and Y. If the pipeline can perform only one function,
X or Y, at anytime, it is static pipeline, otherwise it
is the dynamic pipeline.
3.1 Reservation table

Reservation table represents the dataflow of
pipeline. It is described in a two-dimensions tabular.
Each row of the reservation table corresponds to the
time usage of each stage. Each column is diagram of
the internal usage of a pipeline at an instant of time.
One reservation can represent the dataflow of only
one function of the pipeline. The number of column
is evaluation time that is the total time to complete a
function. Reservations tables of three functions of
the pipeline in figure 3 shown in figure 4

stage/time{ 0 | 1 | 2 | 3
A
B X
C X X
D X

(a) reservation table for function X

stage/time| 0 | 112 (3| 4
A Y
B Y Y
C Y
D Y

(b) reservation table for function Y

Figure 4 : Reservations tables of the pipeline in
figure 3
3.2 Collision Vector

An initiation of a reservation table occurs when a
function started. The number of time unit between
two initiations is latency. When two or more
initiation try to use a same stage in a pipeline at the
same time, the collision occurs. Forbidden latency is
the latency that causes the collision.

Forbidden ‘and = nonforbidden (permissible)
latencies in a reservation table are used to build a
collision vector. M is the evaluation time of table;
collision vector = (Cy, cy,-.., Cm.1). Ci is O if latency
i is the permissible latency. Ci is 1 if latency i is the
forbidden latency. For example, collision vector for
function X is 10100; it is initial collision vector.

Collision vector is sufficient for static pipeline
because it performs only one function. For dynamic
pipeline, collision matrix is applied. A collision
matrix C is an r X t binary matrix where r is number
of reservation tables in a pipeline, and t is a



maximum evaluation time of tables [P.M.Kogge,
1981]. The jth row of the ith matrix, CMi, is the
collision vector between an initiation of reservation
i and a later initiation of reservation j. In all cases
the ith row of Cmi is the same as the initial collision
vector for function i. This collision matrix is called
initial collision matrix. For example, the initial
collision matrix for the pipeline in figure 3 is:
CMx=[ 10100 01000]
CMy=[ 01110 10100]

3.3 State Diagram

A state diagram gives two information that are
when to make new initiation without collision and
the current state of a pipeline (current collision
vector in static pipeline and collision matrix in
dynamic pipeline). The initial collision matrix is
states one. They are shift left until at least one of
first bits in the matrixes is 0. Then, they are ORed
with OR results between initial collision matrixes
that their first bits are 0, and become the current
states. The next state is the OR result between. The
procedure in details are in [P.M.Kogge, 1981] and
[K.Hwang, 1993]. The state diagram of the pipeline
in figure 3 is shown in figure 5

>>3X >>4Y

.\
>>3Y

10100 7 lo1110
01000=CMx | >>4X [10100=CMy

-«

A 0Y,>4XY

1X
>> 3X

>>3Y

0X,1Y ,>>4XY

>>3XY 11110
11100

2Y
>>4X
3Y

Y,3Y,>4XY
\

11110
10100

Figure 5 The state diagram ot the pipeline in figure 3

4. Circuit synthesis procedures from STG

STG is a graph-based method used to describe a
behavior of a circuit. It is an interpreted Petri-Net
introduced in 1987 by T.A. Chu. It can describe
concurrent and choice operation in a circuit.

The circuit synthesis procedures from STG based
on Park’s [S.B.Park, 1996]. Circuits operate
correctly under the input/output mode and QDI. A
signal network is a circuit structure used to
implement every non-input signal. Each signal
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network is composed of four subnetwork ; the set
region network, the set acknowledgement network,
the reset region network and the set
acknowledgement network.

There are two methods for circuit synthesis:
synthesis based on lock relations and synthesis based
on state assignment.

4.1 Synthesis procedure based on lock relations

This method can be used with single cycle STG
which have no choice operations and can be non-
persistent. There are 5 lock relations used for this
method; semi, full, associate, transitive, and super
lock. Semi-lock used to find full lock. Every
relation, except semi lock, used to satisfy the four-
phase handshake protocol of signals on a circuit.
These lock-relations used to construct a signal
network.

4.2 Synthesis
assignment

This method covers STG which can have
multicycle and choice operations and can be non-
persistent. The current state of a given STG is
decided by a combination called a state code of
values of all state variables. If there is any conflict
codes in the given STG, it must be modified.
Adding internal signal to the STG is a choice to
modify the STG.

procedure based on state

5. Design Methodology

This paper presents the controller that can be
used as a template to design the controller of
dynamic asynchronous pipelines. Steps of design
methodology for any dynamic asynchronous
pipeline are the same. However, the modification is
necessary because of the characteristics of each
pipeline; the number of stage, the number of
function, and function configuration, but the main
parts of their controllers are the same. Design
methodology for a dynamic asynchronous pipeline
and its controller consists of five steps as presented
in figure 6.
5.1 Pipeline configuration: Function is the most
important thing for pipeline. configuration i.e. a
number of functions and how each_function work.
In addition, the designer must decide how to divided
function into stages, and balance time usage of each
stage. Furthermore, the designer must know which
stages can be used by only one function, and which
stages which stage can be used more than one
function. Finally, construct control and data paths
between stages in the pipeline.
5.2 Reservation table generation: The reservation
table is used to check the correctness of pipeline
functions and generate the collision matrix, but it is
not included in the circuit.



Pipeline
Configuration

v

Reservation table
generation

v

Collision Matrix
generation

v

State diagram
generation

v

Hardware
modification

Figure 6: Steps of Design methodology

5.3 Collision Matrix generation: The collision
matrix generated from this step will be store in
registers of initial collision matrix block and is used
to generate the current state of pipeline.

5.4 State Diagram generation: The state diagram
is used to check correctness of the controller by
checking the current state of pipeline generated
from state generator block. The state diagram is not
included in the controller circuit.

5.5 Hardware modification: Because of the
configurations of the controllers for each pipeline
are little different. Note that, scheduler control and
stage control module will not be modified because
they are the control circuits that can be used by any
dynamic pipeline. Similarly, control block of every
module of both pipeline scheduler and stage
controller will not be modified.Combination
circuits of modules must be modified to support
each different dynamic pipeline. For pipeline
scheduler, the number and size of registers in-initial
collision matrix, state generator, shifter & current
state modules depends on the number of functions
and pipeline stages. Furthermore, combination
circuit in collision check module must be modified
too, and can be improved to support the
requirement of designers. For stage controller,
function selection, and ctrl_block must be modified
to support the pipeline configuration. The number
and size of registers in function_selection modeles
depends on the number of functions and pipeline
stages.Similarly, the number of ctrl_block is equal
the number of pipeline functions.
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Step 1 depends on the requirement of designers.
Step 2 — Step 4 based on pipeline scheduling
described in section 3. Step 5 is based on ideas
presented in this paper.

6. The asynchronous dynamic pipeline
controller

The asynchronous dynamic pipeline controller is
shown in figure 7. The pipeline scheduler and the
stage controller are interconnected with control
signals. The scheduler pipeline controller handle all
of pipeline scheduling and collision check, while
stage controller controls function and data transfer
of every stages of the dynamic pipeline. Three
signals f, n_f, and fi are sent from the outside of the
controller; such as CPU etc.. In this research we
assume that three signals are always valid, and will
not be checked by the controller. The asynchronous
dynamic pipeline controller consists of two main
circuits (two blocks in a dash block ).

fi (function
nf nput)

Pipeline Scheduler

Stage Controller

ct_si ct_sj c_i| . cj

Asynchronous
Dynamic Pipeline

Figure 7. Asynchronous Dynamic pipeline
controller

6.1 The pipeline scheduler

This block consists of four function blocks and a
scheduler control as shown in figure 8. The design
is based on pipeline scheduling scheme described in
section 3.

Two initial collision matrixes, CMy, CMy are
stored in three registers in initial collision matrix
block. All 0’s are stored in the registers of shifter
and recent state block at initial time. The scheduler
control block is used to control another blocks and
synchronized them. The operation of pipeline
scheduler are described below:



First, scheduler control block receives p_c signal
that represent states operation completed from stage
controller, and then shift left registers in Shifter and
recent state Block. Second, The scheduler control
block checks whether there is function comes into
pipeline. If nf is high, there is no new operation for
pipeline, and scheduler control block sends back
s 0 (same operation) to the stage controller and
ends the operation of pipeline scheduler. The shift
result becomes a current state of the pipeline. If f is
high, one or more new functions come into the
pipeline, and then collision check block is enable. It
requests current state, and uses that value and fi
value to check state collision. C is high , if the
pipeline can not operate those functions without
collision, so functions will not be operated at this
moment. The scheduler control block sets s_o high
and ends the operation. If n_c (no collision) is high,
the collision check block sends fs to initial collision
matrix block to select initial matrixes that will be
ORed together. Next, ORed result is sent to state
generator block that also requests current state. This
block ors them together, and send it back as a
current state to Shifter and recent state Block.
Finally, the scheduler control block ends the
operation of pipeline scheduler.

6.2 The stage controller

The stage controller is composed of three main
parts and a stage control block as shown in figure 9.
Shift registers in function_selection block is stored
a set of functions for each pipe stages in sequence.
The register size is 2 x 4; 5 is the number of stages.
Each row consists of three bits; the first two bit
represent function,00 = no function,01 = function
X,10 = function Y, 11 is not used. A stage can be

no so f

tr

nf

!
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used more than one time for a function; for example
stage B of Y is used in time 1 and time 3, and data
transfer for time 1 and time 3 are different. Thus,
the last bit of row in the register is used to represent
data transfer of stage; O for first data transfer, and 1
for later. For example, the register value is
[000,100,000,000]. The value represent that stage
B execute function Y at time 1, and another stages
doesn’t execute function. The next value of register
is [000,000,100,000,000]

The operation of the stage controller is divided
into two operations.
6.2.1 n_o is high: The controller receives fi ,and
then function selectionblock shifts the value in
rows of registers to the next stage (depends on
reservation table) and changes the first row of
register to be the function that will be executed.
Then rows of registers are sent to Ctrl_block.
Ctrl_block send control signal to each pipe stage.
After all execute stage (define by ex_st signal) are
completed, s_c is high, and P_c goes high.
6.2.2 s o is high: There is no changes in the first
row of registers, and follows the steps in 6.2.1.

7. Results

The circuit is simulated by Model Sim as
shown in figure 10. P_c to re_st are signal of
pipeline scheduler, and the rest are stage
cintroller.Let consider  the left hand side of
figure 10, or_rs and or2_rs is the result of initial
collition matrix and state generator block. Re_st is
the value of recent state register which is a shift
register.Re_st=[11000,10000]

en_orl
Scheduler ) p_c
corl - . .
- Control <« fi (function
i n c input)
v
Initial Collision
Matrix ench _
ack_rc .
ATE 1251, en or2 read 1| Collision Check
+— | s = = =
xl g o c_orZz 7} -5|
|2 e gl o A oo [y
v Y v write_r Y v g' X fs
—_— et [ .
Shifter & data_r (function
State Generator |=2SK-Wr select)
data_wr recent_state
o
YR cad i 42
ack r 5

Figure 8: Block Diagram of Pipeline scescheduler
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ct_sb
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Figure 9: Block Diagram of stage controller
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Figure 10 : Simulation result of asynchronous dynamic pipeline controller

fi represents the function initiation ; it consists of
two bits ,and each bit represent each initiation of
function (Y,X). In the figure 10 , fi = “01”; X
function are initiated. When p_c goes high, shift
register must be shifted left. And then, the collision
check block is enable by setting en_ch.

stage controller block, the operation begin after
receiving s_o. Function X can not be executed at
that time and the old function (Y) is operated from

The first bit of the first column is 1, so function X
can not be executed without collision. Check
collision block checked set ¢ signal high to tell the
control block that B function can not be executed at
this moment. S_o (same operation) goes high ; then
the scheduler control block end the operation. For
time 2 to time 3 (reservation table in figure 4b). The
value in registers become [000,101,000,000] ; its
mean only stage B are enable. Then en_nctrl is fired



,and all ctrl_i are enable. After ctrl_a to ctrl_d
operation are completed ¢_nctrl is fired. Then, stage
B are completed and set s_c high. Finally, stage
control block end the operation of stage controller
and set p_c high.

Next, Function Y are initiated because fi is “11”.
After collision check, function X and Y can be
executed at the same time, n_c is high and every
block in pipeline scheduler are enabled in order. In
addition ,n_o is high to indicate that stage controller
block must execute the new function (X and Y).
The operation are similar to the previous cycle
except new function ,A and B, are executed [Look at
time 0 of figure 4a and 4b].At this cycle , re_st =
[11110,11100] , and registers value in stage control
is [010,100,000,100]

For the next cycle ,right hand side of the picture,
function X is initiated. Let consider re st, it
indicates that function x can not be executed at this
cycle. The operation are the same of the two
previous cycle. Function X must wait until the first
bit of re_st (current state)is 0.

8. Conclusion

This research focused on dynamic pipeline to
expand the study area of asynchronous pipeline and
apply it to multifuction circuits. The effort is the use
of STG to implement the pipeline controller from
the collision matrix. The simulation result in section
10 showed that the circuit can operate properly
without stage collision.

This circuit can be applied to any multifunction
circuits using dynamic pipeline with modification as
described in design methodology (section 5). The
first thing is changing the initial matrix in OR1
block. Second, change a little operation in every
block, except control block, to support your pipeline.
Notice, no need to change anything in control part of
every block.

The challenge is to modify the controller to be a
purely asynchronous circuit. Global clock is absent
in circuit, but stages must wait until the other stage
are completed. To speed up pipeline this problem
should be eliminated.
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ABSTRACT

This paper proposes the asynchronous dynamic
pipeline floating-point arithmetic unit which consists of
two main parts: the dynamic pipelined arithmetic unit
and the controller. Dynamic pipelining is used to
increase speed and reduce the size of the circuit. The
arithmetic unit architecture based on a four-phase
micropipeline can operate four functions: add/subtract,
negate, absolute and compare. The controller is divided
into two main parts: pipeline scheduler and stage
controller. The format of floating point is single-
precision (32 bits) IEEE 754.VHDL is used to design
the circuit, and it is simulated by ModelSim. The
simulation result shows that the circuit can operate
correctly without stage collision, and cover the IEEE
754 including the exceptions.

Key words: PDF, Floating-point arithmetic unit,
Dynamic pipeline, Asynchronous pipeline

1. Introduction

Asynchronous circuit design has been studied in
wider areas because of the clock skew in synchronous
circuits since the last decade [1]. The clock skew occurs
when the global clock used to synchronize their
operation can not be distributed to the entire system at
the same frequency. It is a serious problem because the
system may malfunction. It is very hard to avoid this
problem when designers want to design- high-speed
circuits. As a result, it limits the speed of synchronous
circuits.

Asynchronous circuits do not use the global clock,
so the clock skew is avoided. Circuits respond to signal
transitions at any time, and outputs can be sent instantly
after the operation completion. Thus, another advantage
of the asynchronous circuit is speed because it is not
limited by the slowest part. Moreover, Low power
consumption is another advantage because the signal
transitions are made only when necessary.

Nevertheless, asynchronous circuits are harder to
design and verify than the synchronous ones. Therefore,
close study of the asynchronous circuits is neither now
popular nor in wide area, although asynchronous
circuits have been studied for decades. Therefore, the
expansion of asynchronous circuits studying is required

To extend the area of asynchronous circuits design is
the first proposal of our research. There have been
many asynchronous processors presented since the last
decade, such as FAM, AMULET1-2, NSR etc. [2].
However, the asynchronous floating-point arithmetic
unit required for the processor to serve scientific
calculation or graphic design is not proposed.

Designing the asynchronous floating-point
arithmetic unit is the main purpose of our research. In
addition, increasing the speed of the circuit is another
purpose, so pipelining is applied to the circuit. The
operation of arithmetic unit is split into pipe stages
(called stage in this paper).

Pipelined floating-point circuits have been
introduced such as MIPS R4000 [3], Multi-Mode
pipeline [4-5], Pipeline Packet Forwarding [6-7],
Floating point operator of Amphion [8], etc. However,

all of them are synchronous circuits.

The floating-point arithmetic unit presented here
can be operated four functions: add/subtract, negate,
absolute and compare. After stages of each function are
considered, we find the redundancy of stages usage.
Accordingly, four functions can be combined into one
circuit and reduce the circuit’s size. Then, the dynamic
pipelining is considered because it is a type of pipeline
that can perform multifunction. Unfortunately, the
pipeline scheduling becomes dramatically complex and
leads to the complex controller. The controller applied
to the circuit uses the pipeline-scheduling scheme
introduced. by Kogge [9]. Reservation table, collision
matrix, and state diagram are keys for this scheme.

Section 2 ‘and” 3 give the background of the
dynamic pipeline and asynchronous pipeline. Section 4
and 5-is the architecture-of our design of the arithmetic
unit and controller. The simulation result shown in
section 6.Finally, the conclusion and acknowledgements
are in section 7 and 8.

2. Dynamic pipeline
There are two types of pipeline:

1. Static pipeline: a static pipeline can be configured to
perform only one function (unifuction) at anytime.
2. Dynamic pipeline: a dynamic pipeline can be
configured to perform  variable  functions
(multifunction) at different times.

Fig. 4 represents the seven stages pipeline used in
this asynchronous floating point arithmetic unit. This



pipeline is configured to perform four functions as
described above. If the pipeline can perform only one
function at anytime, only add/subtract function or only
negate function, it is the static pipeline; otherwise it is

the dynamic pipeline.

The dynamic pipeline scheduling scheme used in
the controller is based on three keys: reservation table,
collision matrix and state diagram. The three keys used
to describe the behavior of dynamic pipeline and define
its current operation and state. In addition, it can keep
the performance and avoid stage collision. The pipeline
scheduling begins with the two column diagram called
the reservation table that represents the dataflow of
pipeline. Fig. 1-a and 1-b represent the dataflow of
add/subtract and negate function shown in fig.4. Note
that one reservation table is for one function. Then, the
initial collision matrixes that indicate the set of possible
initiation, a function or more can be initiated without
stage collision are created from every reservation tables
of dynamic pipeline. Finally, the state diagram is
created by the initial collision matrixes that become
state one. The next stage are constructed by state one,
initiation set and collision matrixes consideration, and
become the current state. After that, the current state
and collision matrixes are used to construct the next
step. Repeat that until all initiation sets are considered.
The procedure of dynamic pipeline scheduling in details
isin [9] and [10].

Nﬂelz345678 timel 1| 2
stag stag
U A U N
C A C N
E A E
A A A
Ch A A Ch
N A N
R A R

a: add/subtract function b: negate function

Fig 1: Example of reservation tables

3. Asynchronous pipeline

Asynchronous pipeline was first introduced in 1989
by Ivan E. Sutherland  who named his pipeline
“micropipeline” 111.

Rin | Roui Rin 'Rout Rin Rout
- 4 - ! b -
Ain Aout Ain Aout Ain Aout
- { - ) - =
K | h
— E —
Data in Data out

Fig. 2: An asynchronous pipeline structure

Fig. 2 represents the asynchronous pipeline
structure used in our design. It uses bundle data channel
that consists of two control signals, request and
acknowledge, and data channel. Fig. 3 represents the
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four-phase asynchronous pipeline operation presented
in [12], and it is applied to be a backbone pipeline of
our floating—point arithmetic unit.

Datain 3 X

out —/ |

—_—
Aout e — _\_

Fig. 3: A four-phase asynchronous pipeline operation

4. Arithmetic Unit

This unit is based on single precision (32 bits)
IEEE standard 754-1985 [13-15] including standard
format and exceptions. The special bit, Guard Bit, is
extended to the LSB of Mantissa in standard format to
increase the precision of the arithmetic result. Then, the
rounding technique is used to convert the result to the
32 bits standard format. The round to nearest is the
rounding technique used in our design: under half is 0
and above half is 1.

The arithmetic unit operates four functions:
add/subtract, negate, absolute and compare. The
operation of each function is split into stages to work as
a pipelined arithmetic unit. After consideration and
comparison in terms of operation and stage, the
arithmetic unit can then be divided into stages as
follow:

- U (Unpack): distribute input into 3 parts: Sign bit,
Exponent and Mantissa.

- C (Check for zero/Change sign bit): check that input is
0 or precise exception or not, and change sign bit for
negate and absolute function.

- E (Exponent Adder/Subtractor): add and subtract
exponents of the input.

- A (Adder): add and subtract mantissa of the input. The
complement circuit is in this stage.

- Ch (Check for Exception): check whether the result is
precise exception or not.

- N (Normalize): convert the . result into formatted
number used in circuit, not a standard format.

-'R (Rounding): round the result and convert the result
to 32 bits IEEE 754 standard format.

All functions use redundancy stages as shown in
Table 1. The usage and data transfer stages in the
dynamic pipeline used for this arithmetic unit is shown
in Fig. 4.

Stages Ch and N are considered to be a loop
because some results need to be checked more than
once and to format them to the standard format. In Fig.
1-a, we need to reserve Ch twice to avoid stage collision
because we can not know that whether Ch will be used
once or twice when inputs come into the arithmetic unit.
It is time consumption that happens when the result uses
Ch only once, but it is still better than stage collision.



Table 1: Arithmetic function and stage usage

Arithmetic Function | Stage Usage

1. Add/Subtract U,C E A ChN,ChR
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normalized. The third cycle in fig.6 shows that two
functions are operated at the same time and it is an
advantage of dynamic pipeline. Moreover, negate
function can be initiated (fi in a rectangle) in this cycle
because it will not cause the stage collision (consider
from stage diagram).

2. Negate U, C
3. Absolute U, C .
4. Compare UC,EAR 7. Conclusion
In this paper, we have presented the asynchronous
floating-point arithmetic unit using the dynamic
Standard
format
Standard
format ; | v SEan:g;d
— U > C > E > A » Ch > N > R >
Exception Exception Con}pare

report

report Rearlt

Fig. 4: Stage and Data transfer between stages

5. Control Unit

The asynchronous dynamic pipeline controller is
shown in Fig. 5. The pipeline scheduler and the stage
controller are interconnected with control signals. The
pipeline scheduler handles all of the pipeline scheduling
and collision check, while the stage controller controls
functions and data transfer of every stage. Three
signals—f, n_f, and fi— are sent from the outside of the
controller; such as the CPU etc. In our design we assume
that the three signals are always valid, and will not be
checked by the controller. The asynchronous dynamic
pipeline controller consists of two main circuits (two
blocks in a dash block).

All of the operations of the control parts of the
controller are described by STG (Signal Transition
Graph); they are then synthesized to circuits. The circuit
synthesis procedures from the STG based on Park’s [17].
Circuits operate correctly under the input/output mode
and QDI. STG is a graph-based method used-to describe a
behavior of a circuit. It «is" an interpreted  Petri-Net
introduced in 1987 by T.A. Chu [18-19]. It can describe
concurrent and choice operation in a circuit. The control
unit is our own design and has been proposed in [20].

6. Simulation result

The simulation base on adding delay element in order
to check the asynchronousity of the circuit. Therefore, the
result is based on estimate delay, not actual delay.

The simulation shown in fig.6 presents operations of
two functions: Adder/Subtractor (0.5, + 0.75,) and
compare in the last four stages. p_c is the signal that starts
the cycle of operations. It is high when every enabled
stages completes their operation. std_result is the result of
adder/subtrator function (fourth cycle). Cmp_result is the
result of compare function (third cycle). Out_type is used
to identify the result: 0 is adder/subtrator, 1 is compare.

fi (function

nff input)

Pipeline Scheduler

Stage Controller

CLsi| - ctsj ci|-- [c]j

Asynchronous
Floating-point
Arithmetic Unit

Fig. 5: Asynchronous.Dynamic pipeline controller

pipelining technique. It can work properly without stage
collision and cover the IEEE 754 standard. Dynamic
pipelining reduces size and increases the speed of the
arithmetic unit. This is the main advantage of our design.
Furthermore, this arithmetic unit can be applied to other
asynchronous processors or systems because we use the
four-phase micropipeline as the backbone of the
arithmetic unit. This circuit applies the controller we
designed for pipeline scheduling and stage control to
maintain performance and stage collision avoidance.

The controller must know the data flow of functions
before their inputs come to the pipeline. Thus, the
configuration must be fixed,; it is satisfactory for every
function except the add/subtract function. The stage usage
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Fig. 6: The simulation result

of the add/subtract function varies because it might be
used more than once to check and normalize results. It
cannot be predicted, so we must reserve stages for
recursion in order to avoid stage collision, which causes
time consumption. This point is a future challenge
because the performance will be better if the time
consumption can be eliminated.

However, the synthesize tools are not fully support
asynchronous delay model. The realization of
asynchronous dynamic pipeline floating-point arithmetic
unit is our next future work.
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