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CHAPTER I

INTRODUCTION

We separate this chapter into four sections. The first section, we shall give,

briefly, the history of a glued graph and a clique partition of a graph. Later

we give basic definitions and some poperties of them. Finally, some remarks for

cliques of glued graphs are stated in the last section.

1.1 Motivation and outline

A glued graph at H-clone results from combining two vertex-disjoint graphs

by identifying a subgraph H of each original graph. The glue operator is a mathe-

matical operator defined by Uiyyasathian [15] since 2003. In 2006, Promsakon [10],

who studied some basic properties, vertex-colorbilities and edge-colorbilities of

glued graphs. In the next year, Charoenpanitseri [3] studied the total colorings of

glued graphs. In 2008, the subject of clique coverings of glued graphs was studied

by Pimpasalee [9] of which main results are useful for our study. Later, Sadu-

akdee [13, 14] studied the perfection of glued graphs of perfect original graphs.

A clique partition of a graph G is a collection of complete subgraphs of G

that partitions the edge set of G. In this thesis, we study the problem of finding

clique partitions with minimum size among all clique partitions of a glued graph.

The question of calculating clique partition numbers was raised by Orlin [8] in

1977. Clique partitions of the variety classes of graphs were investigated by many

authors, see [5, 6, 16]. Since 1948, DeBruijn and Erdős [1] had already proved that

partitioning a complete graph Kn into smaller cliques required at least n cliques.
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In 1986, Gregory et al. [6] investigated the lower bound of clique partition numbers

of the cocktail party graph, Tv, cp(Tv) ≥ v for v ≥ 8 and gave a characterization

of the cases where equality holds. In 1996, Monson [7] listed other results that

the effect of the vertex and edge deletion on the clique partition number of a

graph. More recently, Cavers [2] collected the clique partition numbers of graphs

and introduced some new results in 2005.

Our purpose in this thesis is to study bounds of clique partition numbers of

glued graphs in terms of these clique partition numbers of their original graphs.

Also, we investigate values or bounds of clique partition numbers of glued graphs

without new cliques and particularly with specified clones such as complete graphs

K2 and K3.

The definitions of glued graphs and clique partitions are located in Section 1.2,

along with examples and some basic properties.

In Chapter 2, we give some preliminary results and study a bound of the clique

partition number of a glued graph. Also, we investigate clique partition numbers

of clique-preserving glued graphs.

In Chapter 3, clique partitions of glued graphs at K2-clones and K3-clones are

considered.

Finally, conclusions and open problems are in Chapter 4.

Throughout the thesis, we consider only simple graphs. V (G) and E(G) stand

for the vertex set and edge set of a graph G, respectively. The number of elements

in E(G) is represented by e(G).
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1.2 Glued graphs

Let G1 and G2 be two nontrivial vertex-disjoint graphs. Let H1 and H2 be

nontrivial connected subgraphs of G1 and G2, respectively, such that H1
∼= H2

with an isomorphism f . The glued graph between G1 and G2 at H1 and H2 with

respect to f , denoted by G1⊳⊲G2
H1

∼=f H2
, is the graph that results from combining G1

with G2 by identifying H1 and H2 with respect to the isomorphism f between H1

and H2. Let H be the copy of H1 and H2 in the glued graph. We refer to H, H1

and H2 as the clones of the glued graph, G1 and G2, respectively, and refer to G1

and G2 as the original graphs. We use u ≡ v to denote the vertex in the glued

graph G1⊳⊲G2
H1

∼=f H2
where u ∈ V (G1), v ∈ V (G2) and f(u) = v.

The glued graph between G1 and G2 at H-clone, written G1⊳⊲G2
H

, means that

there exist subgraph H1 of G1 and subgraph H2 of G2 and isomorphism f between

H1 and H2 such that G1⊳⊲G2
H1

∼=f H2
= G1⊳⊲G2

H
and H is the copy of H1 and H2 in the

resulting graph.

We denote G1⊳⊲G2 an arbitrary graph resulting from gluing graphs G1 and G2

at any isomorphic subgraph with respect to any of their isomorphisms.

The clone of a glued graph is called a Kn-clone if it is a complete graph Kn.

The notation Kn(v1, v2, . . . , vn) denotes a complete graph on vertices

v1, v2, . . . , vn.
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Example 1.2.1. Let G1 and G2 be graphs as shown in Figure 1.2.1

Figure 1.2.1: A glued graph between G1 and G2 with respect to f

Let H1 = K2(b, c) ⊆ G1 and H2 = K2(1, 3) ⊆ G2. We consider an isomorphism

f between H1 and H2, as follows: f(b) = 1 and f(c) = 3. We show the glued

graph between G1 and G2 with respect to f , G1⊳⊲G2
H1

∼=f H2
, in Figure 1.2.1.

2

The following example shows that different isomorphisms can give the different

or the same result.

Example 1.2.2. Let G1 and G2 be graphs as shown in Figure 1.2.2.

Let H1 = K3(a, b, c) and H2 = K3(1, 3, 4). Thus H1 and H2 are nontrivial

connected subgraphs of G1 and G2, respectively. Consider three isomorphisms

between H1 and H2, namely f , g and h, as follows:

f(a) = 1, f(b) = 3, f(c) = 4,

g(a) = 3, g(b) = 4, g(c) = 1,

h(a) = 4, h(b) = 1, h(c) = 3.

We show glued graphs between G1 and G2 with respect to f , g and h in Fig-

ure 1.2.2. Moreover, it is easy to see that G1⊳⊲G2
H1

∼=f H2

∼= G1⊳⊲G2
H1

∼=gH2

but G1⊳⊲G2
H1

∼=f H2
≇

G1⊳⊲G2
H1

∼=hH2

.
2
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Figure 1.2.2: Glued graphs with different isomorphisms

Note that a glued graph of simple orginal graphs could have multiple edges.

This is illustrated in Example 1.2.3.

Example 1.2.3. Let G1 and G2 be graphs as shown in Figure 1.2.3.

Figure 1.2.3: A glued graph containing multiple edges

2

Promsakon [10] proved that the glued graph of simple original graphs, G1⊳⊲G2
H

,

is a simple graph if and only if there are no vertices u and v in H such that there

are edges e1 ∈ E(G1) r E(H) and e2 ∈ E(G2) r E(H) whose endpoints are u and

v.
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In this thesis, we consider only simple connected glued graphs. Next, we collect

some basic properties of glued graphs in the following remark.

Remark 1.2.4.

1. The original graphs are subgraphs of their glued graph.

2. The graph gluing does not create or destroy any edge.

3. A glued graph between disconnected graphs is also disconnected and a glued

graph between connected graphs is also connected.

4. If u ∈ V (G1) r V (H) and v ∈ V (G2) r V (H) where G1 and G2 are graphs

and H is a clone of G1⊳⊲G2
H

, then u and v are not adjacent in G1⊳⊲G2
H

.

More details concerning glued graphs can be explored in Promsakon’s the-

sis [10]. In the next section, we introduce the definition of clique partitions of

graphs.

1.3 Clique partitions of graphs

A clique of a graph G is a complete subgraph of G. Note that a clique is not

necessarily maximal. An n-clique or a clique of order n is a clique with n vertices.

A clique partition of a graph G is a set of cliques of G which together contain

each edge of G exactly once. A minimum clique partition of a graph G is a clique

partition of G with the smallest cardinality among all clique partitions of G, and

the size of a minimum clique partition of G is called the clique partition number

of a graph G, denoted by cp(G).
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Example 1.3.1. Let G be the graph as shown in Figure 1.3.1.

Figure 1.3.1: Some cliques of a graph

Note that K4(a, b, d, e), K3(b, c, d), K3(b, d, e) and K2(b, d) in Figure 1.3.1 are

cliques of G while only K4(a, b, d, e) and K3(b, c, d) are maximal cliques.
2

Example 1.3.2. Consider the graph G illustrated in Figure 1.3.2.

Figure 1.3.2: A clique partition of a graph

Let P1 = {K3(a, c, d), K2(a, b), K2(b, c)} and P2 = {K3(a, b, c), K2(a, d),

K2(c, d)}. Note that P1 and P2 are clique partitions of G. Thus cp(G) ≤ 3.

Since G cannot be partitioned by using 2 cliques, cp(G) = 3. This implies that

P1 and P2 are minimum clique partitions of G. Hence, it is possible that a graph

has more than one minimum clique partition.
2
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Remark 1.3.3. If G is a K3-free graph, then cp(G) = e(G) because all cliques in

G have order 2.

Definition 1.3.4. Two edges e and f in a graph G are clique-independent edges

of G if there is no clique in G containing both e and f . A set of pairwise clique-

independent edges is called a clique-independent set.

Example 1.3.5. Let G be the graph as shown in Figure 1.3.3.

Figure 1.3.3: A pair of clique-independent edges and a clique-independent set of

a graph

In Figure 1.3.3, note that bf is not an edge in G, so there is no clique in G

containing both ab and cf . Thus, ab and cf are clique-independent edges of G.

In contrast, ab and ac are not clique-independent edges of G because they both

are in K3(a, b, c).

Let I = {ac, cd, de, ea} be a subset of the edge set of G. Since G does not

contain ad and ce, it can be concluded that I is a set of pairwise clique-independent

edges, so I is a clique-independent set of G.
2

Example 1.3.5 suggests some properties in the following remark.
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Remark 1.3.6.

1. Let e, f be any two edges in a graph G. If there exist two endpoints of e

and f that are not adjacent in G, then e and f are clique-independent edges

of G.

2. Since different elements in a clique-independent set I of a graph G must be

partitioned by different cliques of G, |I| ≤ cp(G).

1.4 Remarks for our terminologies

Let G be any graph. For convenience, if an edge e in E(G) is covered by a

2-clique in a clique partition of G, then we will also refer to e as such a clique.

Moreover, we will also refer to E(G) as a set of 2-cliques.

Example 1.4.1. Let G1, G2 be graphs and G1⊳⊲G2
H

be the glued graph at H-clone

where all clones are shown as bold edges in Figure 1.4.1.

Figure 1.4.1: A minimum clique partition of the glued graph

Let P = {K3(a ≡ w, c ≡ z, d), K3(b ≡ x, y, c ≡ z), K2(a ≡ w, b ≡ x)}. Then

P is a clique partition of G1⊳⊲G2
H

. Thus cp(G1⊳⊲G2
H

) ≤ 3. Consider I = {e1, e2, e3}

in G1⊳⊲G2
H

as in the Figure 1.4.1. Then I is a clique-independent set of G1⊳⊲G2
H

.
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Thus cp(G1⊳⊲G2
H

) ≥ |I| = 3, so cp(G) = 3. This implies that P is a minimum

clique partition of G1⊳⊲G2
H

.

Note that the vertices a, b and c in G1 correspond to vertices a ≡ w, b ≡ x

and c ≡ z, respectively, in G1⊳⊲G2
H

. Also, the vertices w, x and z in G2 correspond

to vertices a ≡ w, b ≡ x and c ≡ z, respectively, in G1⊳⊲G2
H

. Thus corespondence

cliques in P must be cliques of G1 or G2, i.e., K3(a ≡ w, c ≡ z, d) = K3(a, b, c),

K2(a, b) = K2(a ≡ w, b ≡ x) = K2(w, x) and K3(b ≡ x, y, c ≡ z) = K3(x, y, z).
2

Hence throughout this thesis, we simplify the terminologies by considering

subgraphs of original graphs as subgraphs of their glued graphs, and subgraphs

in the clone of a glued graph are subgraphs in the corresponding clones of both

original graphs. For example,

• if Q is a clique in G1, then Q is also a clique in G1⊳⊲G2

• if e is an edge in the clone of G1⊳⊲G2, then e is also an edge in G1 and G2.



CHAPTER II

BOUNDS OF CLIQUE PARTTION NUMBERS OF

GLUED GRAPHS

There are two sections in this chapter. The first one, we give some preliminary

results, and show a bound of clique partition numbers of glued graphs along with

its sharpness. In the last section, we study clique partitions of clique-preserving

glued graphs.

2.1 Preliminaries

Let H be a subgraph of a graph G. We write G − H for the subgraph of

G obtained by deleting the set of edges E(H). Note that G − e stands for the

subgraph of G resulting from removing edge e out of G for any edge e of G.

Theorems 2.1.1−2.1.5 [7, 8, 12, 2] are known results about the effects of an

edge deletion and an n-clique deletion on the clique partition number. These help

us to investigate bounds of clique partition numbers of glued graphs at K2-clones

and K3-clones which will be considered in the next chapter.

Theorem 2.1.1. [7] Let e be an edge of a graph G and s the order of the smallest

clique containing the edge e among all of the minimum clique partitions of the

graph G. Then cp(G) − 1 ≤ cp(G − e) ≤ cp(G) + s − 2.

The next example illustrates the notation s in Theorem2.1.1.
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Example 2.1.2. Let G be the graph with an edge e as shown in Figure 2.1.1

Figure 2.1.1: Two minimum clique partitions of a graph

Let s be the order of the smallest clique containing the edge e among all of

the minimum clique partitions of the graph G. It can be easily seen that

P1 = {K2(a, d), K2(c, d), K3(a, b, c)} and P2 = {K3(a, c, d), K2(a, b), K2(b, c)}

are the only two minimum clique partitions of G. Then the smallest clique con-

taining an edge e is an element in P2, namely K2(a, b). Thus s = 2.

2

Theorem 2.1.3. [8] For n ≥ 3, cp(Kn − e) = n − 1 where e is any edge of Kn.

Theorem 2.1.4. [12] For n ≥ 4, n − 1 ≤ cp(Kn − K3) ≤ 2n − 5.

Theorem 2.1.5. [2] If an n-vertex graph G is neither the complete graph nor

trivial graph, cp(G) + cp(G) ≥ n.

Propositions 2.1.6 and 2.1.7 are further results of a clique deletion and a path

deletion.
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Proposition 2.1.6. Let G be graph contain path P3. Then cp(G)−2 ≤ cp(G−P3).

Proof. Let P and P
′

be minimum clique partitions of P3 and G−P3, respectively.

Then |P| = 2 and P ∪ P
′

is a clique partition of G. Thus,

cp(G) ≤
∣

∣

∣
P ∪ P

′

∣

∣

∣
= |P| +

∣

∣

∣
P

′

∣

∣

∣
= 2 + cp(G − P3).

Hence, cp(G) − 2 ≤ cp(G − P3).

Proposition 2.1.7. For any graph G and a clique C of G, cp(G)−1 ≤ cp(G−C),

and the equality holds if and only if there exists a minimum clique partition of G

containing C.

Proof. Let P and P
′

be minimum clique partitions of G and G−C, respectively.

Then P
′

∪ {C} is a clique partition of G, so cp(G) ≤
∣

∣P
′

∪ {C}
∣

∣. Note that
∣

∣P
′

∪ {C}
∣

∣ =
∣

∣P
′
∣

∣ + 1 = cp(G − C) + 1. Hence cp(G) − 1 ≤ cp(G − C).

For necessity, suppose that every minimum clique partition of G does not

contain C. Since P
′

∪ {C} is a partition of G containing C,
∣

∣P
′

∪ {C}
∣

∣ > |P|.

Hence,

cp(G − C) + 1 =
∣

∣

∣
P

′

∣

∣

∣
+ 1 =

∣

∣

∣
P

′

∪ {C}
∣

∣

∣
> |P| = cp(G).

For sufficiency, assume that C ∈ P. Then P r {C} is a clique partition of

G−C. Thus cp(G−C) ≤ |P r {C}| = |P| − 1 = cp(G)− 1. Since cp(G)− 1 ≤

cp(G − C) always, we have cp(G − C) = cp(G) − 1.

A generalized concept of a clique partition is a clique covering which is defined

as follows.

A clique covering of a graph G is a set of cliques of G which together contain

each edge of G at least once. The clique covering number of a graph G, denoted

by cc(G), is the smallest cardinality of clique coverings of G.

For any glued graph G1⊳⊲G2, Pimpasalee [9] proved that cc(G1⊳⊲G2) ≤ cc(G1)+

cc(G2). So we investigate whether or not cp(G1) + cp(G2) is an upper bound
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of clique partition numbers of any glued graphs. However, we find that the

clique partition number of a glued graph can be more than, less than or equal

to cp(G1) + cp(G2). Examples 2.1.8−2.1.10 show a glued graph with its clique

partition number for each of the possible cases.

It is important to first note here that, thoughout this thesis for convenience,

we refer Kn in the glued graph G1⊳⊲G2
Kn

to be only the Kn-clone, not an arbitrary

copy of Kn.

Example 2.1.8. A glued graph G1⊳⊲G2 with cp(G1⊳⊲G2) > cp(G1) + cp(G2).

For m,n > 2, we will show that cp(Km⊳⊲Kn
K2

) = min{m,n}.

Let 2 < n ≤ m. Since Km⊳⊲Kn
K2

can be partitioned into the sets of clique Km

and all (n− 1) cliques in a minimum clique partition of Kn −K2, cp(Km⊳⊲Kn
K2

) ≤

1 + (n − 1) = n. Since n ≤ m and cp(Kn − K2) = n − 1 by Theorem2.1.3,

we obtain that cp(Km⊳⊲Kn
K2

) > n − 1. Thus cp(Km⊳⊲Kn
K2

) ≥ n. It follows that

cp(Km⊳⊲Kn
K2

) = n, so cp(Km⊳⊲Kn
K2

) = min{m,n}. Note that cp(Km) = 1 = cp(Kn).

Hence, cp(Km) + cp(Kn) = 2 < min{m,n} = cp(Km⊳⊲Kn
K2

).

2

Example 2.1.9. A glued graph G1⊳⊲G2 with cp(G1⊳⊲G2) < cp(G1) + cp(G2).

Let Pm and Pn be paths with m and n vertices, respectively, where m,n > 2.

Let Pm⊳⊲Pn
H

be any glued graph at the H-clone. Promsakon [10] proved that

Pm⊳⊲Pn
H

is a path. Since a path is a K3-free graph, cp(Pm⊳⊲Pn
H

) = e(Pm⊳⊲Pn
H

) =

e(Pm) + e(Pn)− e(H) = cp(Pm) + cp(Pn)− e(H). This shows that cp(Pm⊳⊲Pn
H

) <

cp(Pm) + cp(Pn).

2

Example 2.1.10. A glued graph G1⊳⊲G2 with cp(G1⊳⊲G2) = cp(G1) + cp(G2).

Let G1, G2 be graphs and G1⊳⊲G2
H

be the glued graph at H-clone where all

clones are shown as bold edges in Figure 2.1.2.
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Figure 2.1.2: A glued graph G1⊳⊲G2 with clique partition number cp(G1)+cp(G2)

It is obvious that cp(G1) = 2, cp(G2) = 1 and cp(G1⊳⊲G2
H

) = 3. Hence

cp(G1⊳⊲G2
H

) = 3 = 2 + 1 = cp(G1) + cp(G2).
2

Although cp(G1) + cp(G2) is not a bound of cp(G1⊳⊲G2) in general, we still

look for another bound of cp(G1⊳⊲G2) in terms of cp(G1) and cp(G2). Recall that,

E(G) is also used as a set of clique partition of G in which all elements have order

2.

Theorem 2.1.11. Let G1 and G2 be graphs and G1⊳⊲G2
H

be any glued graph at

the H-clone . Then

1 ≤ cp(G1⊳⊲G2
H

) ≤ min{cp(G1) + cp(G2 − H), cp(G2) + cp(G1 − H)}.

Proof. Let P1 and P2 be minimum clique partitions of G1 and G2, respectively.

Let P
′

and P
′′

be minimum clique partitions of G1−H and G2−H, respectively.

Both P1∪P
′′

and P2∪P
′

are clique partitions of G1⊳⊲G2
H

. Thus, cp(G1⊳⊲G2
H

) ≤
∣

∣P1 ∪ P
′′
∣

∣ and cp(G1⊳⊲G2
H

) ≤
∣

∣P2 ∪ P
′
∣

∣. Note that P1 and P
′′

are disjoint,

so are P2 and P
′

. Then cp(G1⊳⊲G2
H

) ≤
∣

∣P1 ∪ P
′′
∣

∣ = |P1| +
∣

∣P
′′
∣

∣ = cp(G1) +

cp(G2 − H). Similarly, cp(G1⊳⊲G2
H

) ≤ cp(G2) + cp(G1 − H). Thus,

cp(G1⊳⊲G2
H

) ≤ min{cp(G1) + cp(G2 − H), cp(G2) + cp(G1 − H)}.

Hence, 1 ≤ cp(G1⊳⊲G2
H

) ≤ min{cp(G1) + cp(G2 − H), cp(G2) + cp(G1 − H)}.
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Next, we give examples to show the sharpness of the bound in Theorem2.1.11.

Example 2.1.12. Let G1 be a Hamiltonian graph on n vertices with a Hamilto-

nian path P and G2 = G1 ∪ P .

Figure 2.1.3: The sharpness of the lower bound in Theorem2.1.11

Then the resulting glued graph G1⊳⊲G2
P

is a complete graph as illustrated in

Figure 2.1.3, so cp(G1⊳⊲G2
P

) = 1. Furthermore, note that neither G1 nor G2 is a

complete graph, so its clique partition number is more than 1. It is noticeable

that the graph gluing of original graphs with any arbitrary large clique partition

number could yield a resulting glued graph with clique partition number 1.
2

Example 2.1.13. Let m ≥ n ≥ 2. Consider the glued graph Km⊳⊲Kn
K2

is shown

in Figure 2.1.4.

Figure 2.1.4: The sharpness of the upper bound in Theorem2.1.11

We have that cp(Km) = 1 = cp(Kn) and by Example 2.1.8, cp(Km⊳⊲Kn
K2

) =

min{m,n} = n. Since cp(Km − K2) = m − 1 and cp(Kn − K2) = n − 1 by
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Theorem2.1.3, we have that cp(Km) + cp(Kn − K2) = 1 + (n − 1) = n and

cp(Kn) + cp(Km − K2) = 1 + (m − 1) = m. Thus, min{cp(Km) + cp(Kn −

K2), cp(Kn) + cp(Km − K2)} = n. Hence, cp(Km⊳⊲Kn
K2

) = n = min{cp(Km) +

cp(Kn − K2), cp(Kn) + cp(Km − K2)}.

2

In next section, we study bounds of clique partition numbers of clique-preserving

glued graphs.

2.2 Clique partitions of clique-preserving glued graphs

Our purpose in this section is to study a lower bound of clique partition num-

bers of clique-preserving glued graphs and gives a characterization when its value

is at such lower bound.

Definition 2.2.1. An edge e = ab in any glued graph G1⊳⊲G2 is called a new

edge for the original graph Gi, i = 1 or 2 if the corresponding vertices of a and b

in Gi are not adjacent. A clique in any glued graph G1⊳⊲G2 is called a new clique

for the original graph Gi, i = 1 or 2 if all corresponding vertices of v1, ..., vn in

Gi do not form a clique in Gi. A clique-preserving glued graph is a glued graph

which does not have a new clique for any original graphs.

Example 2.2.2. Let G1, G2 be graphs and G1⊳⊲G2
H

be the glued graph at H-clone

where all clones are shown as bold edges in Figure 2.2.1.
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Figure 2.2.1: A glued graph containing new cliques

In Figure 2.2.1, e′ is an edge in G1⊳⊲G2
H

but b and c are not adjacent in G1,

so e′ is a new edge for G1. Similarly, e is a new edge for G2. Note that K3(a ≡

w, b ≡ x, c ≡ y) is a clique in G1⊳⊲G2
H

but G1 does not contain K3(a, b, c), so

K3(a ≡ w, b ≡ x, c ≡ y) is a new clique for G1. Similarly, K3(a ≡ w, c ≡ y, d ≡ z)

is a new clique for G2. Hence, G1⊳⊲G2
H

is not a clique-preserving glued graph.
2

When a glued graph G1⊳⊲G2 is a clique-preserving glued graph, a clique in a

minimum clique partition of G1⊳⊲G2 must be a clique in G1 or G2. Thus, being

a clique-preserving glued graph benefits the investigation of its clique partition

number of each original graph.

We first observe some basic properties of a new edge and a new clique of a

glued graph in the following remark.

Remark 2.2.3.

1. If a glued graph G1⊳⊲G2 has a new clique for Gi, i = 1 or 2, then G1⊳⊲G2

has a new edge for Gi.

2. A new edge of a glued graph cannot be a new edge for both original graphs

at the same time.

3. Both endpoints of a new edge of a glued graph must lie in the clone.

Proposition 2.2.4. [9] If H is an induced subgraph of both G1 and G2, then

G1⊳⊲G2
H

is a clique-preserving glued graph.
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Back to Example 2.1.12, we have a glued graph with the property that

cp(G1⊳⊲G2
P

) < max{cp(G1), cp(G2)}. We next consider a condition to guarantee

that a resulting glued graph needs at least as many cliques to partition as its

original graphs do.

Theorem 2.2.5. If G1⊳⊲G2 is a clique-preserving glued graph, then

cp(G1⊳⊲G2) ≥ max{cp(G1), cp(G2)}.

Proof. Assume that G1⊳⊲G2 is a clique-preserving glued graph. Then G1⊳⊲G2

does not have a new clique for G1. Hence at least cp(G1) cliques are needed to

partition the copy of G1 in G1⊳⊲G2. Therefore cp(G1) ≤ cp(G1⊳⊲G2). Similarly,

cp(G2) ≤ cp(G1⊳⊲G2). Hence cp(G1⊳⊲G2) ≥ max{cp(G1), cp(G2)}.

The converse of Theorem2.2.5 does not hold as shown in Example 2.2.6.

Example 2.2.6. Let G1, G2 be graphs and G1⊳⊲G2
H

be the glued graph at H-clone

where all clones are shown as bold edges in Figure 2.2.2.

Figure 2.2.2: A glued graph illustrating that the converse of Theorem2.2.5 does

not hold

Since cp(Kn − e) = n− 1 where e is an edge in Kn by Theorem2.1.3, we have

that cp(G1) = cp(K4 − e) = 3 = cp(G2). Note that G1⊳⊲G2
H

∼= K4⊳⊲K3
K2

, by Exam-

ple 2.1.8, cp(G1⊳⊲G2
H

) = 3. We can see that cp(G1⊳⊲G2
H

) = 3 = max{cp(G1), cp(G2)}.

But 4-clique in G1⊳⊲G2
H

is a new clique for G1 and G2, so G1⊳⊲G2
H

is not a clique-

preserving glued graph.
2



20

Now we consider the set of all cliques in a minimum clique partition of a glued

graph which belong to each original graph.

Definition 2.2.7. For a glued graph G1⊳⊲G2
H

, let P be a minimum clique partition

of G1⊳⊲G2
H

. We define

P[G1] = {C ∈ P | C is a clique of G1},

P[G2] = {C ∈ P | C is a clique of G2},

E1[P] = {e ∈ E(H) | e is not covered by any clique in P[G1]} and

E2[P] = {e ∈ E(H) | e is not covered by any clique in P[G2]} .

The following example illustrates the Definition 2.2.7.

Example 2.2.8. Let G1, G2 be graphs and G1⊳⊲G2
H

be the glued graph at H-clone

where all clones are shown as bold edges in Figure 2.2.3.
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Figure 2.2.3: P[G1], P[G2], E1[P] and E2[P] of a glued graph

Let P = {K2(f, a ≡ w), K2(c ≡ y, d ≡ z), K3(f, e, g), K4(a ≡ w, b ≡ x, c ≡

y, g)}. Then P is a clique partition of G1⊳⊲G2
H

. Thus, cp(G1⊳⊲G2
H

) ≤ 4. Consider

I = {e1, e2, e3, e4} in G1⊳⊲G2
H

as in the Figure 2.2.3. Then I is a clique-independent

set of G1⊳⊲G2
H

. Thus cp(G1⊳⊲G2
H

) ≥ |I| = 4. Therefore, cp(G1⊳⊲G2
H

) = 4. Since

|P| = 4, P is a minimum clique partition of G1⊳⊲G2
H

. It is easy to see that

P[G1] = {K2(f, a ≡ w), K2(c ≡ y, d ≡ z), K3(f, e, g)}, P[G2] = {K2(c ≡ y, d ≡

z)} and E1[P] = {K2(a ≡ w, b ≡ x), K2(b ≡ x, c ≡ y)} = E2[P].

2
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Remark 2.2.9. Let P be a minimum clique partition of G1⊳⊲G2
H

. Then

1. P[G1] ∪ P[G2] ⊆ P.

2. E1[P] ∪ E2[P] ⊆ E(H).

3. (P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P]) is a clique partition of H, moreover

|(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])| ≤ e(H).

4. If P[G1] ∩ P[G2] contains any clique of order more than two, then

|(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])| < e(H).

Proposition 2.2.10. For a minimum clique partition P of a clique-preserving

glued graph G1⊳⊲G2, P = P[G1] ∪ P[G2] and E1[P] ∩ E2[P] = ∅.

Proof. Let G1⊳⊲G2 be a clique-preserving glued graph. Assume that P is a mini-

mum clique partition of G1⊳⊲G2. By Remark 2.2.9, we have that P[G1]∪P[G2] ⊆

P. Since G1⊳⊲G2 is a clique-preserving glued graph, every clique in the glued

graph must be a copy of cliques in G1 or G2. Thus, P ⊆ P[G1]∪P[G2]. Hence,

P = P[G1] ∪ P[G2].

Suppose that e ∈ E1[P] ∩ E2[P]. Then e is not covered by any clique in

P[G1] and P[G2]. This implies that P[G1] ∪ P[G2] is not a clique partition of

G1⊳⊲G2
H

, which is a contradiction. Hence, E1[P] ∩ E2[P] = ∅.

The following remark helps us to determine the clique partition number of a

clique-preserving glued graph.

Remark 2.2.11. Let P be a minimum clique partition of a clique-preserving

glued graph G1⊳⊲G2
H

. For i = 1, 2, P[Gi] ∪ Ei[P] is a clique partition of Gi.
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Theorem 2.2.12. For any clique-preserving glued graph G1⊳⊲G2
H

,

cp(G1⊳⊲G2
H

) ≥ cp(G1) + cp(G2) − e(H).

Proof. Let P be a minimum clique partition of G1⊳⊲G2
H

. By Proposition 2.2.10,

P = P[G1] ∪ P[G2]. Note that P[Gi] and Ei[P] are disjoint for all i = 1, 2,

E1[P] ∪ E2[P] and P[G1] ∩ P[G2] are also disjoint. Then,

|P| = |P[G1] ∪ P[G2]|

= |P[G1]| + |P[G2]| − |P[G1] ∩ P[G2]|

= |P[G1]∪E1[P]|+|P[G2]∪E2[P]|−|P[G1]∩P[G2]|−|E1[P]∪E2[P]|

= |P[G1]∪E1[P]|+|P[G2]∪E2[P]|−|(P[G1] ∩ P[G2])∪(E1[P]∪E2[P])| .

Note further that P[Gi] ∪ Ei[P] is a clique partitions of Gi for all i = 1, 2, we

have |P[Gi] ∪ Ei[P]| ≥ cp(Gi) for all i = 1, 2 and

|(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])| ≤ e(H). Thus,

cp(G1⊳⊲G2
H

) = |P| ≥ cp(G1) + cp(G2) − e(H).

Example 2.2.13. The sharpness of the lower bound in Theorem2.2.12.

Let G1, G2 be graphs and G1⊳⊲G2
H

be the glued graph at H-clone where all

clones are shown as bold edges in Figure 2.2.4.
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Figure 2.2.4: The sharpness of the lower bound in Theorem2.2.12

Observe that cp(G1) = 4 = cp(G2) and e(H) = 4. Let P = {K2(f ≡ z, d ≡

y), K3(d ≡ y, a, b ≡ v), K2(b ≡ v, c ≡ w), K3(c ≡ w, x, d ≡ y)}. Then P is

a clique partition of G1⊳⊲G2
H

, so cp(G1⊳⊲G2
H

) ≤ |P| = 4. Let I = {e1, e2, e3, e4}.

Then I is a clique-independent set of G1⊳⊲G2
H

. Thus cp(G1⊳⊲G2
H

) ≥ |I| = 4. Hence,

cp(G1⊳⊲G2
H

) = 4 = 4 + 4 − 4 = cp(G1) + cp(G2) − e(H).
2

Theorem 2.2.14. Let G1⊳⊲G2
H

be any clique-preserving glued graph.

Then cp(G1⊳⊲G2
H

) = cp(G1) + cp(G2) − e(H) if and only if there are minimum

clique partitions P1 and P2 of G1 and G2, respectively, such that for each edge

e ∈ E(H), e must be covered by a 2-clique in P1 or P2.

Proof. For necessity, assume that cp(G1⊳⊲G2
H

) = cp(G1) + cp(G2) − e(H).

Let P be a minimum clique partition of G1⊳⊲G2
H

. By Proposition 2.2.10,

P = P[G1] ∪ P[G2]. Note that

|P| = |P[G1]∪E1[P]|+|P[G2]∪E2[P]|−|(P[G1] ∩ P[G2])∪(E1[P]∪E2[P])| .

Since P[Gi]∪Ei[P] is a clique partition of Gi for all i = 1, 2, |P[Gi] ∪ Ei[P]| ≥

cp(Gi). Besides, |(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])| ≤ e(H). Together with

|P| = cp(G1)+cp(G2)−e(H), we can conclude that |P[Gi] ∪ Ei[P]| = cp(Gi) for

all i = 1, 2 and |(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])| = e(H). Hence, P[Gi] ∪

Ei[P] is a minimum clique partition of Gi for all i = 1, 2.
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Let e be an edge in the H-clone of G1⊳⊲G2
H

. If e ∈ P[G1] ∩ P[G2], then e

is covered by a 2-clique in P[G1] and P[G2]. Thus e ∈ P[Gi] ∪ Ei[P] for all

i = 1, 2. Suppose that e /∈ P[G1] ∩ P[G2]. Then there exists a clique C of

order more than two in P covering e. Without loss of generality, assume that

C ∈ P[G1]. Then e ∈ E2[P], so e ∈ P[G2] ∪ E2[P].

For sufficiency, assume that G1 and G2 have minimum clique partitions P1

and P2, respectively such that satisfy the condition in the right hand side of the

statement. Let A = {e ∈ E(H) | e ∈ P1} and B = {f ∈ E(H) | f ∈ P2}.

Note that |A| + |B| − |A ∩ B| = e(H) and (P1 r A) ∪ (P2 r B) ∪ (A ∩ B) is a

clique partition of G1⊳⊲G2
H

.

Thus, |(P1 r A) ∪ (P2 r B) ∪ (A ∩ B)| ≥ cp(G1⊳⊲G2
H

). Hence,

cp(G1) + cp(G2) − e(H) = |P1| + |P2| − |A| − |B| + |A ∩ B|

= |(P1 r A) ∪ (P2 r B) ∪ (A ∩ B)|

≥ cp(G1⊳⊲G2
H

).

By Theorem2.2.12, cp(G1⊳⊲G2
H

) = cp(G1) + cp(G2) − e(H).



CHAPTER III

MAIN RESULTS

In this chapter we focus on a glued graph at Kn-clone because the clone is

always an induced subgraph of both original graphs, so the resulting glued graph

is a clique-preserving glued graph. We first study properties of clique partitions

of glued graphs at Kn-clones in Section3.1. Later, we investigate bounds of the

clique partition numbers of glued graphs at K2-clones and K3-clones in Section3.2

and Section3.3, respectively.

Recall that we refer Kn in the glued graph G1⊳⊲G2
Kn

to be only the Kn-clone,

not an arbitrary copy of Kn.

3.1 Some properties of clique partitions of glued graphs

at Kn-clones

Theorem 3.1.1. For m ≥ n > r ≥ 2, cp(Km⊳⊲Kn
Kr

) ≤ (r − 1)(n − r) + 2.

Proof. Let m ≥ n > r ≥ 2. Since m ≥ n, we can use the m-clique, all cliques in

a minimum clique partition of Kn−r+2 − e and (r − 2)(n− r) copies of 2-clique to

partition Km⊳⊲Kn
Kr

, where e is an edge of the clone. Note that by Theorem2.1.3,

cp(Kn−r+2 − e) = (n − r + 2) − 1 = n − r + 1. Hence,

cp(Km⊳⊲Kn
Kr

) ≤ 1 + (n − r + 1) + (r − 2)(n − r) = (r − 1)(n − r) + 2.
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Lemma 3.1.2. If G1⊳⊲G2
Kn

has a minimum clique partition containing the Kn-

clone, then G1 or G2 has a minimum clique partition containing the Kn-clone.

Proof. Let P be a minimum clique partition of G1⊳⊲G2
Kn

containing the Kn-clone.

Then P[G1] and P[G2] are clique partitions of G1 and G2, respectively. Suppose

that all minimum clique partitions of G1 and G2 do not contain the Kn-clone.

Let P1 be a minimum clique partition of G1. Note that

P = (P[G1] r {Kn}) ∪ (P[G2] r {Kn}) ∪ {Kn}.

Since P1 does not contain the Kn-clone and P[G1] is a clique partition of G1 con-

taining the Kn-clone, |P[G1]| > |P1| = cp(G1), consequently, |P[G1] r {Kn}| ≥

cp(G1). Thus,

|P| = |P[G1] r {Kn}| + |P[G2] r {Kn}| + 1

≥ cp(G1) + |P[G2] r {Kn}| + 1.

Observe that P1 ∪ (P[G2] r {Kn}) is also a clique partition of G1⊳⊲G2
Kn

and

|P1 ∪ (P[G2] r {Kn})| = cp(G1) + |P[G2] r {Kn}|, this contradicts the mini-

mality of P. Thus, G1 or G2 has a minimum clique partition containing the

Kn-clone.

The converse of Lemma3.1.2 does not hold as shown in Example 3.1.3.

Example 3.1.3. Let G1, G2 be graphs and G1⊳⊲G2
K3

be the glued graph at K3-

clone where all clones are shown as bold edges in Figure 3.1.1.
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Figure 3.1.1: A glued graph illustrating that the converse of Lemma3.1.2 does

not hold

From Example 1.3.2, cp(G1) = 3 = cp(G2). Then P1 = {K3(a, b, c), K2(a, d),

K2(c, d)} and P2 = {K3(w, x, z), K2(x, y), K2(y, z)} are minimum clique parti-

tions of G1 and G2, respectively, containing the K3-clone. From Example 1.4.1,

P = {K3(a ≡ w, c ≡ z, d), K3(b ≡ x, y, c ≡ z), K2(a ≡ w, b ≡ x)} is a minimum

clique partition of G1⊳⊲G2
K3

. Note that P does not contain the K3-clone and P

is the only minimum clique partition of G1⊳⊲G2
K3

. Hence, G1⊳⊲G2
K3

does not have a

minimum clique partition containing the K3-clone.
2

Theorem 3.1.4. If G1⊳⊲G2
Kn

has a minimum clique partition containing the Kn-

clone, then cp(G1⊳⊲G2
Kn

) = cp(G1) + cp(G2) − 1

Proof. Let P be a minimum clique partition of G1⊳⊲G2
Kn

containing the Kn-clone.

By Proposition 2.2.10, P = P[G1] ∪ P[G2]. Since P contains the Kn-clone,

P[G1]∩P[G2] = {Kn}. Note that P[G1] and P[G2] are clique partitions of G1

and G2, respectively, so |P[G1]| ≥ cp(G1) and |P[G2]| ≥ cp(G2). Thus,

cp(G1⊳⊲G2
Kn

) = |P| = |P[G1] ∪ P[G2]|

= |P[G1]| + |P[G2]| − |P[G1] ∩ P[G2]|

≥ cp(G1) + cp(G2) − 1.

By Lemma3.1.2, there exists a minimum clique partition of G1 or G2 containing

the Kn-clone. Without loss of generality, assume that G1 has a minimum clique
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partition, P1, containing the Kn-clone. Let P2 be a minimum clique partition of

G2. Then (P1r{Kn})∪P2 is a clique partition of G1⊳⊲G2
Kn

. Note that P1r{Kn}

and P2 are disjoint. Therefore,

cp(G1⊳⊲G2
Kn

) ≤ |(P1 r {Kn}) ∪ P2| = |(P1 r {Kn})|+|P2| = cp(G1)+cp(G2)−1.

Hence, cp(G1⊳⊲G2
Kn

) = cp(G1) + cp(G2) − 1.

Theorem 3.1.5. Let G1 and G2 be graphs containing Kn as a subgraph. If G1 or

G2 has a minimum clique partition containing the Kn-clone, then

cp(G1⊳⊲G2
Kn

) ≤ cp(G1) + cp(G2) − 1.

Proof. Assume that G1 has a minimum clique partition containing the Kn-clone.

By Theorem2.1.11, cp(G1⊳⊲G2
Kn

) ≤ cp(G1 − Kn) + cp(G2). Since G1 has a mini-

mum clique partition containing the Kn-clone, by Proposition 2.1.7, cp(G1)− 1 =

cp(G1−Kn). Thus, cp(G1⊳⊲G2
Kn

) ≤ cp(G1−Kn)+cp(G2) = cp(G1)+cp(G2)−1.

3.2 Clique partitions of glued graphs at K2-clones

In this section, we show bounds of the clique partition numbers of G1⊳⊲G2
K2

.

Recall that, we refer K2 in the glued graph G1⊳⊲G2
K2

to be only the K2-clone, not

an arbitrary copy of K2 in our graphs.

Remark 3.2.1. Let P be a minimum clique partition of G1⊳⊲G2
K2

.

1. P[G1] ∩ P[G2] ⊆ {K2}.

2. If the K2-clone is contained in P, then P[G1]∩P[G2] = {K2}, and, P[G1]

and P[G2] are clique partitions of G1 and G2, respectively.
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3. If the K2-clone is not contained in P, then P[G1] ∩ P[G2] = ∅, further-

more, if the K2-clone is contained in P[Gi] r P[Gj] for some i, j ∈ {1, 2}

and i 6= j, then P[Gi] and P[Gj] are clique partitions of Gi and Gj − K2,

respectively.

Theorem 3.2.2. For any nontrivial graphs G1 and G2,

cp(G1) + cp(G2) − 1 ≤ cp(G1⊳⊲G2
K2

) ≤ cp(G1) + cp(G2) + s − 2 (3.2.1)

where s is the order of the smallest clique containing the K2-clone among all of

the minimum clique partitions of G1 and G2.

Proof. To prove the upper bound, without loss of generality, assume that G2 has

a minimum clique partition containing a clique of order s which contains the

K2-clone. By Theorems 2.1.11 and 2.1.1, we have

cp(G1⊳⊲G2
K2

) ≤ cp(G1) + cp(G2 − K2) = cp(G1) + cp(G2) + s − 2.

To show the lower bound, let P be a minimum clique partition of G1⊳⊲G2
K2

.

By Proposition 2.2.10, P = P[G1] ∪ P[G2]. If K2 ∈ P, then cp(G1⊳⊲G2
K2

) =

cp(G1) + cp(G2) − 1 by Theorem3.1.4. Suppose that K2 /∈ P. By Remark 3.2.1,

either P[G1] or P[G2] is a clique partition of G1 or G2, respectively. Without

loss of generality, let P[G1] be a clique partition of G1. Then P[G2] is a clique

partition of G2 − K2 and P[G2] ∪ {K2} forms a clique partition of G2. Hence,

cp(G1⊳⊲G2
K2

) = |P| = |P[G1] ∪ P[G2]| = |P[G1]| + |P[G2]| = |P[G1]| +

|P[G2] ∪ {K2}| − 1 ≥ cp(G1) + cp(G2) − 1.

Theorem 3.2.3. Let G1 and G2 be any nontrivial graphs. The following state-

ments are equivalent:

(i) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1,

(ii) G1 or G2 has a minimum clique partition containing the K2-clone, and
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(iii) cp(G1 − K2) = cp(G1) − 1 or cp(G2 − K2) = cp(G2) − 1.

Proof. (ii) ⇒ (i) Assume that G1 or G2 has a minimum clique partition con-

taining the K2-clone. By Theorem3.1.5, cp(G1⊳⊲G2
K2

) ≤ cp(G1) + cp(G2) − 1. By

Theorem3.2.2, cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1.

(i) ⇒ (iii) Assume that cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1. Let P be a

minimum clique partition of G1⊳⊲G2
K2

. Proposition 2.2.10 says P = P[G1]∪P[G2].

Since only the K2-clone can possibly belong to P[G1] ∩ P[G2], we consider two

cases.

Case 1. K2 ∈ P. By Lemma3.1.2, G1 or G2 has a minimum clique partition

containing the K2-clone. Apply Proposition 2.1.7, we have cp(G1−K2) = cp(G1)−

1 or cp(G2 − K2) = cp(G2) − 1.

Case 2. K2 /∈ P. Then |P| = |P[G1]| + |P[G2]|. By Remark 3.2.1, either

P[G1] or P[G2] is a clique partition of G1 or G2, respectively. Without loss of

generality, let P[G2] be a clique partition of G2. Then P[G1] is a clique partition

of G1−K2. Thus cp(G1)+cp(G2)−1 = cp(G1⊳⊲G2
K2

) = |P| = |P[G1]|+|P[G2]| ≥

cp(G1 − K2) + cp(G2), so cp(G1) − 1 ≥ cp(G1 − K2). Again, Theorem2.1.1,

cp(G1) − 1 = cp(G1 − K2).

(iii) ⇒ (ii) Assume that cp(G1) − 1 = cp(G1 − K2). Let P1 and P
′

be

minimum clique partitions of G1 and G1−K2, respectively. Then |P1|−1 =
∣

∣P
′
∣

∣.

Note that P
′

∪ {K2} is a clique partition of G1 and cp(G1) = |P1| =
∣

∣P
′
∣

∣ + 1 =
∣

∣P
′

∪ {K2}
∣

∣. Hence, P
′

∪ {K2} is a minimum clique partition of G1.

Corollary 3.2.4. If cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2), then cp(G1) ≤ cp(G1 − K2)

and cp(G2) ≤ cp(G2 − K2).

Proof. It follows directly from Theorems 2.1.1 and 3.2.3.

Corollary 3.2.5 follows immediately from Theorem3.2.3 and Lemma3.1.2.
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Corollary 3.2.5. If there exists a minimum clique partition of G1⊳⊲G2
K2

containing

the K2-clone, then

(i) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1, or

(ii) cp(G1 − K2) = cp(G1) − 1 or cp(G2 − K2) = cp(G2) − 1.

For any graph G with an edge e, the statement cp(G− e) ≥ cp(G)− 1 can be

rewritten by cp(G−e) = cp(G)+t where t ≥ −1. Consider a glued graph G1⊳⊲G2
K2

,

if cp(Gi − K2) = cp(Gi) + ti where i = 1, 2, then its special case, namely ti = −1

for some i = 1, 2, is examined in Theorem3.2.3. Now we study in general.

Theorem 3.2.6. Let G1⊳⊲G2
K2

be any glued graph at K2-clone. If cp(G1 − K2) =

cp(G1)+t1 and cp(G2−K2) = cp(G2)+t2 for some integers t1, t2, then cp(G1⊳⊲G2
K2

) =

cp(G1) + cp(G2) + t where t = min{t1, t2}.

Proof. Assume that cp(G1 − K2) = cp(G1) + t1 and cp(G2 − K2) = cp(G2) + t2

for some integers t1, t2. First note by Theorem2.1.1 that t1, t2 ≥ −1.

If ti = −1 for some i = 1, 2, then the statement is hold by Theorem3.2.3. Oth-

erwise, assume that 0 ≤ t1 ≤ t2. Since a union of a minimum clique partition of

G1 − K2 and a minimum clique partition of G2 is a clique partition of G1⊳⊲G2
K2

,

cp(G1⊳⊲G2
K2

) ≤ cp(G1) + cp(G2) + t1. Let P be a minimum clique partition of

G1⊳⊲G2
K2

. By Proposition 2.2.10, P = P[G1] ∪ P[G2]. Since t1, t2 ≥ 0 and by

Corollary 3.2.5, the K2-clone is not in P and then P is partitioned into P[G1]

and P[G2]. We consider two cases.

Case 1. P[G1] is a clique partition of G1 and P[G2] is a clique partition

of G2 − K2. Then |P[G1]| ≥ cp(G1) and |P[G2]| ≥ cp(G2 − K2). Thus,

cp(G1⊳⊲G2
K2

) = |P| = |P[G1]| + |P[G2]| ≥ cp(G1) + cp(G2) + t2 ≥ cp(G1) +

cp(G2)+t1. Hence, cp(G1⊳⊲G2
K2

) = |P| = |P[G1]|+|P[G2]| ≥ cp(G1)+cp(G2)+t1.

Case 2. P[G2] is a clique partition of G2 and P[G1] is a clique partition of

G1−K2. Then |P[G2]| ≥ cp(G2) and |P[G1]| ≥ cp(G1−K2). Thus cp(G1⊳⊲G2
K2

) =
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|P| = |P[G1]|+ |P[G2]| ≥ cp(G1) + cp(G2) + t1. Hence cp(G1⊳⊲G2
K2

) = cp(G1) +

cp(G2) + t where t = min{t1, t2}.

Theorem 3.2.7. For m ≥ n ≥ 3, let G1 and G2 be nontrivial graphs of order

m and n, respectively. Let s be the order of the smallest clique containing the

K2-clone among all minimum clique partitions of G1 and G2. Then

(i) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1 if and only if s = 2, and

(ii) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) + n − 2 if and only if s = n.

Proof. (i) By the Definition of s, s = 2 if and only if Gi has a minimum clique

partition containing the K2-clone for some i = 1, 2. Then by Theorem3.2.3, s = 2

if and only if cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1.

(ii) Assume that cp(G1⊳⊲G2
K2

) = cp(G1)+ cp(G2)+n−2. Since s is the order of

the smallest clique containing the K2-clone, s ≤ n,m. Without loss of generality,

we may assume that G1 has a minimum clique partition P1 containing clique C of

order s which contains the K2-clone. Let P2 be a minimum clique partition of G2.

Then the union of P2, P1 rC and a minimum clique partition, say C , of C−K2

is a clique partition of G1⊳⊲G2
K2

. Note that cp(C − K2) = s − 1 by Theorem2.1.3.

Thus, cp(G1) + cp(G2) +n− 2 = cp(G1⊳⊲G2
K2

) ≤ |P2 ∪ (P1 r C) ∪ C | ≤ cp(G1) +

cp(G2) − 1 + cp(C − K2) = cp(G1) + cp(G2) + s − 2, which implies that n ≤ s.

Hence, s = n.

In the other direction, if s = n, then G2 = Kn. Thus cp(G2) = 1. Note that

by Theorem2.1.11, cp(G1⊳⊲G2
K2

) ≤ cp(G1) + cp(G2 − K2) and by Theorem2.1.3,

cp(G2−K2) = n−1 . Thus, cp(G1⊳⊲G2
K2

) ≤ cp(G1)+cp(G2−K2) = cp(G1)+n−1 =

cp(G1) + cp(G2) + n − 2. Let P be a minimum clique partition of G1⊳⊲G2
K2

. By

Proposition 2.2.10, P = P[G1]∪P[G2]. Since by definition of s, s = n and G2 =

Kn, we have that Kn /∈ P. Then P[G1] and P[G2] are clique partitions of G1 and

G2 − K2, respectively, consequently, |P[G1]| ≥ cp(G1) and |P[G2]| ≥ cp(G2 −
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K2). Note that |P| = |P[G1]| + |P[G2]|. Then |P| = |P[G1]| + |P[G2]| ≥

cp(G1)+ cp(G2 −K2). Again Theorem2.1.3, cp(G2 −K2) = cp(Kn −K2) = n− 1.

Thus, cp(G1⊳⊲G2
K2

) = |P| ≥ cp(G1) + n − 1 = cp(G1) + cp(G2) + n − 2. Hence,

cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) + n − 2.

Now a characterization of G1⊳⊲G2
K2

when its value is the upper bound in equa-

tion (3.2.1) namely cp(G1⊳⊲G2
K2

) = cp(G1)+ cp(G2)+ s−2 where s ≥ 3 is obtained

in the following theorem.

Theorem 3.2.8. Let G1⊳⊲G2
K2

be any glued graph of G1 and G2 at K2-clone, and s

the order of the smallest clique containing the K2-clone among all of the minimum

clique partitions of G1 and G2 where s ≥ 3. Then cp(G1⊳⊲G2
K2

) = cp(G1)+cp(G2)+

s − 2 if and only if, for each i = 1, 2, cp(Gi − K2) ≥ cp(Gi) + s − 2.

Proof. Assume that cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) + s − 2. We have that

cp(G1⊳⊲G2
K2

) ≤ cp(Gj) + cp(Gi − K2) for all i, j ∈ {1, 2} and i 6= j. It follows

that cp(Gi − K2) ≥ cp(Gi) + s − 2 for all i = 1, 2.

Conversely, assume that cp(Gi−K2) ≥ cp(Gi)+s−2 for all i = 1, 2. Let P be a

minimum clique partition of G1⊳⊲G2
K2

. By Proposition 2.2.10, P = P[G1]∪P[G2].

Since s ≥ 3 and by Corollary 3.2.5, the K2-clone is not in P. Then |P| =

|P[G1]| + |P[G2]|. Without loss of generality, let P[G1] is a clique partition of

G1, then P[G2] is a clique partition of G2 − K2. Thus,

cp(G1⊳⊲G2
K2

) = |P| = |P[G1]| + |P[G2]|

≥ cp(G1) + cp(G2 − K2)

≥ cp(G1) + cp(G2) + s − 2.

By Theorem3.2.2, cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) + s − 2.



35

3.3 Clique partitions of glued graphs at K3-clones

In this section, we now focus on clique partitions of glued graphs at K3-clones.

Recall that, we refer K3 in the glued graph G1⊳⊲G2
K3

to be only the K3-clone, not

an arbitrary copy of K3.

Definition 3.3.1. Let G be a graph containing a 3-clique T and P a clique

partition of G. Then we say that

1. P is type 1 with respect to T , if P contains T .

2. P is type 2 with respect to T , if P contains a clique of order at least 4

covering T .

3. Otherwise, P is type 3 with respect to T , that is, each edge of T is covered

by different cliques in P.

Example 3.3.2. Let G be a graph containing a 3-clique T = K3(a, b, c) shown in

Figure 3.3.1.

Figure 3.3.1: A graph illustrating types of its clique partitions

Let P1 = {K2(a, d), K2(c, d), K2(d, f), K2(b, d), K3(a, b, c)}, P2 = {K2(d, f),

K4(a, b, c, d)} and P3 = {K2(d, f), K2(b, d), K2(a, b), K2(b, c), K3(a, c, d)}.

It is clear that P1, P2 and P3 are clique partitions of G. Since P1 contains

T , P1 is type 1 with respect to T . Moreover, K4(a, b, c, d) in P2 covers T ,
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so P2 is type 2 with respect to T . The edges of T are covered by different cliques

in P3, so P3 is type 3 with respect to T .
2

Remark 3.3.3. Let G1⊳⊲G2
K3

be any glued graph at K3-clone and P a minimum

clique partition of G1⊳⊲G2
K3

.

1. If P is type 1 with respect to the K3-clone, then P[G1]∩P[G2] = {K3}, and

hence, P[G1] and P[G2] are clique partitions of G1 and G2, respectively.

2. If P is type 2 with respect to the K3-clone, then P[G1] ∩ P[G2] = ∅,

furthermore, P[Gi] and P[Gj] are clique partitions of Gi and Gj − K3,

respectively, for some i, j ∈ {1, 2} and i 6= j.

3. If P is type 3 with respect to the K3-clone, then each element in P[G1] ∩

P[G2] is a proper subset of E(K3), consequently |P[G1] ∩ P[G2]| = 0, 1 or

2.

Theorem 3.3.4. Let G1 and G2 be graphs containing K3 as a subgraph. Then

cp(G1⊳⊲G2
K3

) ≥ cp(G1) + cp(G2) − 3. (3.3.1)

Proof. It follows immediately from Theorem2.2.12.

Theorem 3.3.5. Let G1⊳⊲G2
K3

be any glued graph. Then cp(G1⊳⊲G2
K3

) = cp(G1) +

cp(G2)− 3 if and only if there exist minimum clique partitions P1 and P2 of G1

and G2, respectively, such that for each edge e ∈ E(K3), e must be covered by a

2-clique in P1 or P2.

Proof. It follows immediately from Theorem2.2.14.
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Theorem 3.3.6. Let G1⊳⊲G2
K3

be any glued graph at K3-clone and P a minimum

clique partition of G1⊳⊲G2
K3

. If P is type 1 or type 2 with respect to the K3-clone,

then cp(G1⊳⊲G2
K3

) ≥ cp(G1) + cp(G2) − 1.

Proof. Let P be a minimum clique partition of G1⊳⊲G2
K3

. By Proposition 2.2.10,

P = P[G1] ∪ P[G2].

Case 1. P is type 1 with respect to the K3-clone.

Then P contains the K3-clone. By Theorem3.1.4, cp(G1⊳⊲G2
K3

) = cp(G1) +

cp(G2) − 1.

Case 2. P is type 2 with respect to the K3-clone.

Then P[G1] ∩ P[G2] = ∅. Note that there is a clique Q of order at least 4

covering the K3-clone in P. Without loss of generality, let Q ∈ P[G1]. Then

P[G1] and P[G2] ∪ {K3} are clique partitions of G1 and G2, respectively. This

implies that |P[G1]| ≥ cp(G1) and |P[G2] ∪ {K3}| ≥ cp(G2). Thus,

cp(G1⊳⊲G2
K3

) = |P| = |P[G1]| + |P[G2]| = |P[G1]| + |P[G2] ∪ {K3}| − 1 ≥

cp(G1) + cp(G2) − 1.

The converse of Theorem3.3.6 does not hold as shown in Example 3.3.7.

Example 3.3.7. Let G1, G2 be graphs and G1⊳⊲G2
H

be the glued graphs whose

the clone is H as shown as bold edges in Figure 3.3.2.
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Figure 3.3.2: A glued graph illustrating that the converse of Theorem3.3.6 does

not hold

In Figure 3.3.2, we have that cp(G1) = 1, cp(G2) = 3 and cp(G1⊳⊲G2
K3

) = 4.

Note that cp(G1) + cp(G2) − 1 = 1 + 3 − 1 = 3 < 4 = cp(G1⊳⊲G2
K3

). Let e1, e2

and e3 be edges of the K3-clone. Let P = {K2(d, b ≡ w), K3(d, a ≡ t, c ≡

z), K4(u, v, b ≡ w, a ≡ t), K4(b ≡ w, x, y, c ≡ z)}. Then P is a minimum clique

partition of G1⊳⊲G2
K3

. Note that e1, e2 and e3 are contained in different cliques in

P. Hence, P is type 3 with respect to the K3-clone. 2

A characterization of G1⊳⊲G2
K3

when its clique partition number is at the lower

bound in equation (3.3.1) is provided in Theorem 3.3.5.

The following theorem shows all possible values of cp(G1⊳⊲G2
K3

) when G1 or G2

has a minimum clique partition which is type 1 with respect to the K3-clone.

Theorem 3.3.8. Let G1⊳⊲G2
K3

be any glued graph at the K3-clone. If G1 or G2

has a minimum clique partition which is type 1 with respect to the K3-clone, then

cp(G1) + cp(G2) − 3 ≤ cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) − 1.

Proof. Assume that G1 or G2 has a minimum clique partition which is type 1 with

respect to the K3-clone. Then there exists a minimum clique partition of G1 or G2

containing the K3-clone. By Theorem3.1.5, cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) − 1.
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By Theorem3.3.4, cp(G1⊳⊲G2
K3

) ≥ cp(G1) + cp(G2) − 3. Hence,

cp(G1) + cp(G2) − 3 ≤ cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) − 1.

We will study bounds of cp(G1⊳⊲G2
K3

) when neither G1 nor G2 has a minimum

clique partition which is type 1 with respect to the K3-clone. Lemmas 3.3.9, 3.3.11

and 3.3.13 provide our desired upper bounds of cp(G1⊳⊲G2
K3

).

Lemma 3.3.9. Let G1⊳⊲G2
K3

be any glued graph at K3-clone. If P1 and P2 are

minimum clique partitions which are type 2 with respect to the K3-clone of G1

and G2, respectively, then cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) + s − 6 where s =

min{2r1, 2r2}, r1 and r2 are the orders of the cliques containing the K3-clone in

P1 and P2, respectively.

Proof. Assume that P1 and P2 are minimum clique partitions which are type 2

with respect to the K3-clone of G1 and G2, respectively. Then there exists a clique

Q1 of order r1 ≥ 4 in P1 containing the K3-clone. Similarly, there exists a clique

Q2 of order r2 ≥ 4 in P2 containing the K3-clone. Let s = min{2r1, 2r2}. Suppose

that s = 2r1. Then G1 −K3 can be partitioned by the union of P1 r {Q1} and a

minimum clique partition of Q1 −K3. By Theorem2.1.4, cp(Q1 −K3) ≤ 2r1 − 5,

so,

cp(G1 − K3) ≤ |P1| − 1 + 2r1 − 5 = cp(G1) + 2r1 − 6.

By Theorem2.1.11, we have that cp(G1⊳⊲G2
K3

) ≤ cp(G1 − K3) + cp(G2).

Hence, cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) + s − 6 where s = min{2r1, 2r2}.

Example 3.3.10. The sharpness of the upper bound in Lemma3.3.9.

Let m ≥ 4. Consider the glued graph K4⊳⊲Km
K3

. K4 and Km have mini-

mum clique partitions which are type 2 with respect to the K3-clone, say P1

and P2, respectively, such that r1 = 4 and r2 = m, where r1 and r2 are order



40

of the cliques containing the K3-clone in P1 and P2, respectively. Note that

cp(K4) = 1 = cp(Km) and
∣

∣

∣
V (K4⊳⊲Km

K3

)
∣

∣

∣
= m + 1. Since K4⊳⊲Km

K3

∼= K1,m−3, we

have that cp(K4⊳⊲Km
K3

) = m−3. By Theorem2.1.5, cp(K4⊳⊲Km
K3

)+cp(K4⊳⊲Km
K3

) ≥
∣

∣

∣
V (K4⊳⊲Km

K3

)
∣

∣

∣
. Thus, cp(K4⊳⊲Km

K3

) + (m − 3) ≥ m + 1, so cp(K4⊳⊲Km
K3

) ≥ 4.

Since E(K4 − K3) ∪ {Km} is a clique partition of K4⊳⊲Km
K3

, cp(K4⊳⊲Km
K3

) ≤

|E(K4 − K3) ∪ {Km}| = 3 + 1 = 4. Therefore, cp(K4⊳⊲Km
K3

) = 4. Hence,

cp(K4⊳⊲Km
K3

) = 4 = 1 + 1 + 8 − 6 = cp(K4) + cp(Km) + 2r1 − 6.
2

Lemma 3.3.11. Let G1⊳⊲G2
K3

be any glued graph at K3-clone. If P1 and P2 are

minimum clique partitions which are type 3 with respect to the K3-clone of G1 and

G2, respectively, then cp(G1⊳⊲G2
K3

) ≤ cp(G1)+cp(G2)+s−6 where s = min{s1, s2},

si is the sum of orders of all cliques in Pi containing edges of the K3-clone for

all i = 1, 2.

Proof. Assume that P1 and P2 are minimum clique partitions which are type

3 with respect to the K3-clone of G1 and G2, respectively. Then each edge of

the K3-clone is contained in different cliques in P1, say Q1, Q2 and Q3 of orders

q1, q2 and q3, respectively. Similarly there are cliques R1, R2 and R3 of orders

r1, r2 and r3, respectively, in P2. Let s = min{q1 + q2 + q3, r1 + r2 + r3}.

Suppose that s = q1 + q2 + q3. Then G1 − K3 can be partitioned by the union of

P1 r {Q1, Q2, Q3} and a minimum clique partition of Qi deleted an edge of the

K3-clone for all i = 1, 2, 3. By Theorem2.1.3, we have that cp(Qi − ei) = qi − 1

where Qi covers an edge ei of the K3-clone for all i = 1, 2, 3. Thus,

cp(G1 −K3) ≤ |P1| − 3+ (q1 − 1)+ (q2 − 1)+ (q3 − 1) = cp(G1)+ q1 + q2 + q3 − 6.

By Theorem2.1.11, we have that cp(G1⊳⊲G2
K3

) ≤ cp(G1 − K3) + cp(G2). Hence,

cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) + s − 6 where s = min{q1 + q2 + q3, r1 + r2 + r3}.
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Example 3.3.12. The sharpness of the upper bound in Lemma3.3.11.

Let p, q, r ≥ 3. Let G1 be the graph obtained from K3(a, b, c), Kp, Kq and Kr

by identifying each of three edges in K3(a, b, c) with an edge in Kp, Kq, and Kr,

respectively, as shown in Figure 3.3.3. In the same way, G2 is the graph obtained

from K3(u, v, w), Kl, Km and Kn by identifying each of three edges in K3(u, v, w)

with an edge in Kl, Km, and Kn, respectively, where l,m, n ≥ max{p, q, r}.

Consider the glued graph of G1 and G2 at K3(a, b, c) and K3(u, v, w), denoted by

G1⊳⊲G2
K3

which is shown in Figure 3.3.3

Figure 3.3.3: The sharpness of the upper bound in Lemma3.3.11

It is easily seen that both G1 and G2 have minimum clique partitions which

are type 3 with respect to the K3- clone, say P1 and P2, respectively. Moreover,

cp(G1) = 3 = cp(G2). Let si be the sum of orders of all cliques in Pi containing

edges of the K3-clone for all i = 1, 2. Then s1 = p + q + r and s2 = l + m + n.

Since l,m, n ≥ max{p, q, r}, s2 ≥ s1. By Lemma3.3.11, we have that

cp(G1⊳⊲G2
K3

) ≤ cp(G1)+cp(G2)+s1−6 = 3+3+(p+q+r)−6 = p+q+r. (3.3.2)

Let e1, e2 and e3 be edges of the clone of G1⊳⊲G2
K3

, and P a minimum clique

partition of G1⊳⊲G2
K3

. If e1, e2 and e3 are covered by a 3-clique in P, then

cp(G1⊳⊲G2
K3

) = |P| ≥ 1+(p−1)+(q−1)+(r−1)+(l−1)+(m−1)+(n−1)+3 >

p + q + r. Thus by equation (3.3.2), G1⊳⊲G2
K3

does not have a minimum clique par-
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tition which is type 1 with respect to the K3-clone. This implies that each ei must

be covered by distinct cliques in any minimum clique partition of G1⊳⊲G2
K3

for all

i ∈ {1, 2, 3}. Note that G1⊳⊲G2
K3

∼= (Kp⊳⊲Kl
K2

) ∪ (Kq⊳⊲Km
K2

) ∪ (Kr⊳⊲Kn
K2

). By Exam-

ple 2.1.8, we have that cp(Kp⊳⊲Kl
K2

) = p, cp(Kq⊳⊲Km
K2

) = q and cp(Kr⊳⊲Kn
K2

) = r.

Thus, cp(G1⊳⊲G2
K3

) ≥ cp(Kp⊳⊲Kl
K2

)+ cp(Kq⊳⊲Km
K2

)+ cp(Kr⊳⊲Kn
K2

) = p+ q +r. Hence,

cp(G1⊳⊲G2
K3

) = p + q + r = 3 + 3 + (p + q + r)− 6 = cp(G1) + cp(G2) + s− 6 where

s = min{s1, s2}.
2

Lemma 3.3.13. Let G1⊳⊲G2
K3

be any glued graph at K3-clone. If P1 and P2 are

minimum clique partitions which are type 2 and 3 with respect to the K3-clone

of G1 and G2, respectively, then cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) + s − 6 where

s = min{2r, t}, r is the order of a clique containing the K3-clone in P1 and t is

the sum of orders of all cliques in P2 containing edges of the K3-clone.

Proof. Assume that P1 and P2 are minimum clique partitions which are type

2 and 3 with respect to the K3-clone of G1 and G2, respectively. Since P1 is

type 2 with respect to the K3-clone, there exists a clique R of order r ≥ 4 in

P1 containing the K3-clone. Then G1 − K3 can be partitioned by the union

of P1 r {R} and a minimum clique partition of R − K3. By Theorem2.1.4,

cp(R − K3) ≤ 2r − 5. Thus cp(G1 − K3) ≤ |P1| − 1 + 2r − 5 = cp(G1) + 2r − 6.

Since P2 is type 3 with respect to the K3-clone, there exists three cliques in P2

such that each one covers different edge in the K3-clone, say Q1, Q2, Q3 of orders

q1, q2 and q3, respectively. Then G2 − K3 can be partitioned by the union of

P2 r {Q1, Q2, Q3} and a minimum clique partition of Qi deleted an edge of the

K3-clone for all i = 1, 2, 3. By Theorem2.1.3, cp(Qi− ei) = qi−1 where Qi covers

an edge ei in the K3-clone for all i = 1, 2, 3. Thus,

cp(G2 −K3) ≤ |P2| − 3+ (q1 − 1)+ (q2 − 1)+ (q3 − 1) = cp(G2)+ q1 + q2 + q3 − 6.
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By Theorem2.1.11, we have that cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) + s − 6 where

s = min{2r, q1 + q2 + q3}.

Example 3.3.14. The sharpness of the upper bound in Lemma3.3.13.

Let l,m, n ≥ 3. Let G be the graph obtained from K3(u, v, w), Kl, Km and Kn

by identifying each of three edges in K3(u, v, w) with an edge in Kl, Km, and Kn,

respectively. Consider the glued graph of G and K4 at K3(u, v, w) and 3-clique in

K4, denoted by G⊳⊲K4
K3

which is shown in Figure 3.3.4.

Figure 3.3.4: The sharpness of the upper bound in Lemma3.3.13

It is easily seen that G and K4 have minimum clique partitions which are type

2 and type 3 with respect to the K3-clone, say P1 and P2, respectively. Note

that cp(K4) = 1 and cp(G) = 3. Let r be the order of the clique containing the

K3-clone in P1 and t the sum of orders of all cliques in P2 containing edges of

the K3-clone. Then r = 4 and t = l + m + n. Since l + m + n ≥ 3, t > 2r. By

Lemma3.3.13, we have that

cp(G⊳⊲K4
K3

) ≤ cp(G1) + cp(G2) + 2r − 6 = 1 + 3 + 8 − 6 = 6. (3.3.3)

Let e1, e2 and e3 be edges of the clone of G⊳⊲K4
K3

, and P a minimum clique par-

tition of G⊳⊲K4
K3

. If e1, e2 and e3 are covered by a 3-clique in P, then cp(G⊳⊲K4
K3

) =

|P| ≥ 1+(l−1)+(m−1)+(n−1)+3 ≥ 1+3+3+3 = 10. If e1, e2 and e3 are covered
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by a 4-clique in P, then cp(G⊳⊲K4
K3

) = |P| ≥ 1+(l−1)+(m−1)+(n−1) ≥ 7. Thus

by the equation (3.3.3), G⊳⊲K4
K3

does not have a minimum clique partition which

is type 1 or type 2 with respect to the K3-clone. This implies that e1, e2 and e3

must be covered by an n-clique, l-clique and m-clique, respectively, in P of G⊳⊲K4
K3

.

Since P2 ⊆ P and cp(K4 −K3) = 3, cp(G⊳⊲K4
K3

) ≥ cp(G)+K4 −K3 = 3+3 = 6.

Hence cp(G⊳⊲K4
K3

) = 6 = cp(G) + cp(K4) + s − 6 where s = min{2r, t}.
2

Theorem3.3.15 follows immediately from Lemmas 3.3.9, 3.3.11 and 3.3.13

Theorem 3.3.15. Let G1⊳⊲G2
K3

be any graph at the K3-clone and Pi a minimum

clique partition of Gi for all i = 1, 2. Then

cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) − 6 + min{σ1, σ2}

where for each i = 1, 2 σi =















2si if Pi is type 2 with respect to theK3-clone,

si if Pi is type 3 with respect to theK3-clone

and si is the sum of orders of all cliques in Pi containing edges of the K3-clone.

Corollary 3.3.16. For m,n > 3, cp(Km⊳⊲Kn
K3

) ≤ min{2m, 2n} − 4.

Lemma 3.3.17. [11] For 2 ≤ m < n − 1, cp(Kn − Km) ≤ cp(Kn+1 − Km+1).

Lemma 3.3.18. For m,n ≥ 4, all minimum clique partitions of Km⊳⊲Kn
K3

are

type 2 with respect to the K3-clone.

Proof. Let m ≥ n and P be a minimum clique partition of Km⊳⊲Kn
K3

. By Propo-

sition 2.2.10, P = P[Km]∪P[Kn]. If P is type 1 with respect to the K3-clone,

then by Theorem3.1.4, cp(Km⊳⊲Kn
K3

) = cp(Km) + cp(Kn)− 1 = 1, it is impossible

because Km⊳⊲Kn
K3

is not a complete graph. Suppose that P is type 3 with respect

to the K3-clone. By Remark 3.3.3, we have 3 cases.

Case 1. |P[Km] ∩ P[Kn]| = 2. Since the original graphs are complete graphs,

this caes does not occur. Otherwise, P is not a minimum clique partition of

Km⊳⊲Kn
K3

.



45

Case 2. |P[Km] ∩ P[Kn]| = 1. Then P[Km] and P[Kn] are clique partitions

of Km − e and Kn − e, respectively, where e is an edge of the K3-clone and

e ∈ P[Km] ∩ P[Kn]. By Theorem2.1.3, |P[Km]| ≥ cp(Km − e) = m − 1 and

|P[Kn]| ≥ cp(Kn−e) = n−1. Thus, cp(Km⊳⊲Kn
K3

) = |P| = |P[Km]|+ |P[Kn]|−

1 ≥ (m − 1) + (n − 1) − 1 = m + n − 3 ≥ 2n − 3, which contradicts the upper

bound of cp(Km⊳⊲Kn
K3

) (see Corollary 3.3.16).

Case 3. |P[Km] ∩ P[Kn]| = 0. Then |P| = |P[Km]| + |P[Kn]|.

Let e1, e2 and e3 be edges of the K3-clone. Without loss of generality, we may

assume that P[Km] and P[Kn] are clique partitions of Km−e1 and Kn−P3 where

E(P3) = {e2, e3}. By Theorems 2.1.3 and Proposition 2.1.6 , |P[Km]| ≥ cp(Km −

e1) = m − 1 and |P[Kn]| ≥ cp(Kn − P3) = n − 2. Thus cp(Km⊳⊲Kn
K3

) = |P| ≥

(m − 1) + (n − 2) ≥ 2n − 3, which contradicts the upper bound of cp(Km⊳⊲Kn
K3

).

Hence, P is type 2 with respect to the K3-clone.

Theorem 3.3.19. For 4 ≤ n ≤ m − 2, n − 1 ≤ cp(Km⊳⊲Kn
K3

) ≤ 2n − 4.

Proof. The upper bound, follows immediately from Corollary 3.3.16. Let P be

a minimum clique partition of Km⊳⊲Kn
K3

. By Proposition 2.2.10, P = P[Km] ∪

P[Kn]. By Lemma3.3.18, we have that P is type 2 with respect to the K3-clone,

so |P| = |P[Km]| + |P[Kn]|. Since m > n and P is type 2 with respect to the

K3-clone, P contains an m-clique, so |P[Km]| = cp(Km) = 1 and P[Kn] is a

clique partition of Kn −K3. By Lemma3.3.17 and Theorem2.1.3, cp(Kn −K3) ≥

cp(Kn−1 − K2) = (n − 1) − 1 = n − 2. Thus cp(Km⊳⊲Kn
K3

) = |P| = |P[Km]| +

|P[Kn]| ≥ cp(Km) + cp(Kn − K3) ≥ 1 + (n − 2) = n − 1.



CHAPTER IV

CONCLUSIONS AND OPEN PROBLEMS

4.1 Conclusions

In Chapter 2, we have found bounds of the clique partition number of a glued

graph at arbitrary clone. We have focused on clique partition numbers of clique-

preserving glued graphs in Section 2.2. A characterization for lower bounds of

clique partition numbers of clique-preserving glued graphs is obtained. Some

properties of clique partition numbers of glued graphs at Kn-clones are studied in

Chapter 3. Furthermore, we have investigated clique partition numbers of glued

graphs at K2-clones and K3-clones. The results are as follows:

A bound of clique partition numbers of glued graphs:

For any graphs G1 and G2 containing H as a subgraph,

1 ≤ cp(G1⊳⊲G2
H

) ≤ min{cp(G1) + cp(G2 − H), cp(G2) + cp(G1 − H)}.

Clique partition numbers of clique-preserving glued graphs:

1. If G1⊳⊲G2 is a clique-preserving glued graph, then

cp(G1⊳⊲G2) ≥ max{cp(G1), cp(G2)}.

2. If G1⊳⊲G2
H

is a clique-preserving glued graph, then cp(G1⊳⊲G2
H

) ≥ cp(G1) +

cp(G2)−e(H). Moreover, cp(G1⊳⊲G2
H

) = cp(G1)+cp(G2)−e(H) if and only if

there are minimum clique partitions P1 and P2 of G1 and G2, respectively,
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such that for each edge e ∈ E(H), e must be covered by a 2-clique in P1 or

P2.

Some properties of clique partitions of glued graphs at Kn-clones

1. For m ≥ n > r ≥ 2, cp(Km⊳⊲Kn
Kr

) ≤ (r − 1)(n − r) + 2.

2. If G1⊳⊲G2
Kn

has a minimum clique partition containing the Kn-clone, then G1

or G2 has a minimum clique partition containing the Kn-clone.

3. If G1⊳⊲G2
Kn

has a minimum clique partition containing the Kn-clone, then

cp(G1⊳⊲G2
Kn

) = cp(G1) + cp(G2) − 1

4. If G1 or G2 has a minimum clique partition containing the Kn-clone, then

cp(G1⊳⊲G2
Kn

) ≤ cp(G1) + cp(G2) − 1

Clique partitions of glued graphs at K2-clones:

For any graphs G1 and G2 containing K2 as a subgraph:

1. cp(G1) + cp(G2) − 1 ≤ cp(G1⊳⊲G2
K2

) ≤ cp(G1) + cp(G2) + s − 2

where s is the order of the smallest clique containing the clone K2 among

all of the minimum clique partitions of G1 and G2.

2. The following statements are equivalent:

(i) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1.

(ii) G1 or G2 has a minimum clique partition containing the K2-clone .

(iii) cp(G1 − K2) = cp(G1) − 1 or cp(G2 − K2) = cp(G2) − 1.

3. If cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2), then cp(G1) ≤ cp(G1 −K2) and cp(G2) ≤

cp(G2 − K2).
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4. If G1⊳⊲G2
K2

has a minimum clique partition containing the K2-clone, then

(i) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1, or

(ii) cp(G1 − K2) = cp(G1) − 1 and cp(G2 − K2) = cp(G2) − 1.

5. If cp(G1−K2) = cp(G1)+t1 and cp(G2−K2) = cp(G2)+t2 for some integers

t1 and t2, then cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) + t where t = min{t1, t2}.

6. For m ≥ n ≥ 3, let G1 and G2 be nontrivial graphs of orders m and n,

respectively. Let s be the order of the smallest clique containing the K2-

clone among all minimum clique partitions of G1 and G2. Then

(i) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) − 1 if and only if s = 2, and

(ii) cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) + n − 2 if and only if s = n.

7. cp(G1⊳⊲G2
K2

) = cp(G1) + cp(G2) + s − 2 if and only if, for each i = 1, 2,

cp(Gi − K2) ≥ cp(Gi) + s − 2 where s is the order of the smallest clique

containing the clone K2 among all of the minimum clique partitions of G1

and G2.

Clique partitions of glued graphs at K3-clones

For any graphs G1 and G2 containing K3 as a subgraph. Let P1 and P2 be

minimum clique partitions of G1 and G2, respectively:

1. cp(G1⊳⊲G2
K3

) ≥ cp(G1) + cp(G2) − 3.

2. cp(G1⊳⊲G2
K3

) = cp(G1) + cp(G2) − 3 if and only if there are minimum clique

partitions P1 and P2 of G1 and G2, respectively, such that for each edge

e ∈ E(H), e must be covered by a 2-clique in P1 or P2.

3. If P is type 1 or type 2 with respect to the K3-clone, then cp(G1⊳⊲G2
K3

) ≥

cp(G1) + cp(G2) − 1 where P is a minimum clique partition of G1⊳⊲G2
K3

.
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4. If G1 or G2 has a minimum clique partition which is type 1 with respect to

the K3-clone, then cp(G1)+cp(G2)−3 ≤ cp(G1⊳⊲G2
K3

) ≤ cp(G1)+cp(G2)−1.

5. cp(G1⊳⊲G2
K3

) ≤ cp(G1) + cp(G2) − 6 + min{σ1, σ2} where for each i = 1, 2

σi =















2si if Pi is type 2 with respect to the K3-clone,

si if Pi is type 3 with respect to the K3-clone

and si is the sum of orders of all cliques in Pi containing edges of the

K3-clone.

6. For m,n ≥ 4, all minimum clique partitions of Km⊳⊲Kn
K3

are type 2 with

respect to the K3-clone.

7. For 4 ≤ n ≤ m − 2, n − 1 ≤ cp(Km⊳⊲Kn
K3

) ≤ 2n − 4.

4.2 Open problems

We have some open problems for future work as follows:

1. We see in Chapter 1 that a glued geaph can have a new clique. An open

problem is to find values or improve bounds of the clique partition numbers

of a glued graphs with a new clique.

2. In Section 2.2.1, an open problem is find an upper bound of a clique partition

number of a clique-preserving glued graph. Moreover, finding another lower

bound can be further investigated.

3. An open problem is to investigate bounds of the clique partition numbers

of glued graphs at Kn-clone where n ≥ 4.



REFERENCES
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APPENDIX

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a

relation that associates with each edge two vertices (not necessary to be distinct)

called its endpoints. The order of a graph G, written n(G), is the number of

vertices in G. The number of edges in G is represented by e(G).

A loop is an edge whose endpoint are equal. An multiple edges are edges

having the same pair of endpoints. A simple graph is a graph having no loops and

no multiple edges.

A graph is trivial if it has no edge; otherwise it nontrivial.

An isomorphism from a simple graph G to a simple graph H is a bijection

f : V (G) −→ V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say

G isomorphic to H, written G ∼= H, if there is an isomorphism from G to H.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆

E(G) and the assignment of endpoints to edges in H is the same as in G. A

subgraph H of G is an induced subgraph, denoted by G[V (H)], if vertices of V (H)

are adjacent in G[V (H)] whenever they are adjacent in G.

A graph G is H-free if G does not contain H as a subgraph.

The complement G of a simple graph G is the simple graph with vertex set

V (G) defined by uv ∈ E(G) if and only if uv /∈ E(G).

A complete graph is a graph in which each pair of vertices is joined by an edge.

The complete graph with n vertices is denoted by Kn.

A graph G is bipartite if V (G) is the union of two disjoint (possible empty)

independent sets called partite set of G A complete bipartite or biclique is a simple

bipartite graph such that two vertices are adjacent if and only if they are different

partite set. When the sets have orders r and s, the (unlabeled) biclique is denoted

Kr,s.



52

A path is a simple graph whose vertices can be ordered so that two vertices

are adjacent if and only if they are consecutive in the list.

A spanning subgraph of G is a subgraph with vertex set V (G).

A Hamiltonian path is a spanning subgraph that is a path.

The union of graphs G1, . . . , Gk, written G1∪· · ·∪Gk, is the graph with vertex

set V (G1) ∪ · · · ∪ V (Gk) and edge set E(G1) ∪ · · · ∪ E(Gk).
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