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CHAPTER 1

INTRODUCTION

We separate this chapter into four sections. The first section, we shall give,
briefly, the history of a glued eraphuand a“¢clique partition of a graph. Later
we give basic definitions andSome poperties of them. Finally, some remarks for
cliques of glued graphs are stated in t“]_;e last, section.

4
#

1.1 Motivation and ou-tl_ine_"} 4

A glued graph at H=clone reqults frorp combmmg two vertex-disjoint graphs
by identifying a subgraph #1 of :eié,(d:h ongm@-l-_‘g;raph. The glue operator is a mathe-
matical operator deﬁned by Uiyyz;sathian‘-ﬁf)hsince 2003 In 2006, Promsakon [10],
who studied some: ba,SLC—pLOpQLtLQS,A-QLtCX—COlOLbLhU@S ‘and edge-colorbilities of
glued graphs. In the next year, Charoenpanitseri [3] btudled the total colorings of
glued graphs. In 2008, the subject of clique coverings of glued graphs was studied
by Pimpasaleé'[9]]of which main-results_are mseful for our study. Later, Sadu-
akdee [13, 14] studied the perfectign of glued graphs of perfect,original graphs.

A elique partition, of a graph/G.is a collection of complete subgraphs of G
that partitions the edge set of G. In this thesis, we study the problem of finding
clique partitions with minimum size among all clique partitions of a glued graph.
The question of calculating clique partition numbers was raised by Orlin [8] in
1977. Clique partitions of the variety classes of graphs were investigated by many

authors, see [5, 6, 16]. Since 1948, DeBruijn and Erdés [1] had already proved that

partitioning a complete graph K, into smaller cliques required at least n cliques.



In 1986, Gregory et al. [6] investigated the lower bound of clique partition numbers
of the cocktail party graph, T, cp(T,) > v for v > 8 and gave a characterization
of the cases where equality holds. In 1996, Monson [7] listed other results that
the effect of the vertex and edge deletion on the clique partition number of a
graph. More recently, Cavers [2] collected the clique partition numbers of graphs

Iy

Our purpose in this thesi stu/ s of clique partition numbers of

and introduced some new resu
glued graphs in terms o ers of their original graphs.
ion numbers of glued graphs

Also, we investigate

without new cliques s such as complete graphs

K2 and Kg.

s are located in Section 1.2,

In Chapter 2, we give prelin Linary re and study a bound of the clique

partition number of a glued graph. A 0, We ifwestigate clique partition numbers

at Ks-clones and K3-clones are

considered.

Finaly ﬂl%& ANYNINEARS

Throughout the thesis, we consider only simple graphs. V(&) and E(G) stand

for cnerf Bk o A el bbbl b el b of clements

q
in E(G) is represented by e(G).



1.2 Glued graphs

Let G; and G4 be two nontrivial vertex-disjoint graphs. Let H; and Hj be
nontrivial connected subgraphs of G; and G, respectively, such that H; & Hy
with an isomorphism f. The glued graph between G1 and Gy at Hy and Hs with
respect to f, denoted by 5 G1<]>G2 p

with G5 by identifying H; an ~. it /y}to the isomorphism f between H;
and Hy. Let H be the copy of H; anc H@led graph. We refer to H, H;

and Hy as the clones ( ‘

e graph that results from combining G,

A 9, respectively, and refer to G
\ \\ N

The glued graph bet and Gy, at | ertten G1<EG2, means that

ote the vertex in the glued

there exist subgraph Subgr: h 5 0 \ o and isomorphism f between

H, and H, such that . 1d /1 is the copy of Hy and Hj in the

resulting graph.
We denote GG ¢ traty efaphcill O3 oluing graphs G and G

at any isomorphic sul ‘ :‘ isomorphisms.

The clone of a gl‘ ed graph is called a K, -clone mt is a complete graph K.

The notatFT ﬁ%] @,J Qnuﬂ qmq%wcgrkeﬁﬁh on vertices

V1,02, ...

ammﬂmumwmé’ ¢)




Example 1.2.1. Let G; and G2 be graphs as shown in Figure1.2.1

% ¢ ]> ]XD
y/ Hy=p Hy
Figure 1.2.1: )¢ twe@ (G, with respect to f

Let Hy = Ks(b, c)/ [y \\‘i Ve consider an isomorphism

= 3. We show the glued

N, “ n Figurel.2.1.

O

The following exam orphisms can give the different

or the same result.

Example 1.2.2. ,_=F‘ g ,- srapl : _‘-' igure 1.2.2.

| 3 \.‘
Let H, = Kg( it " and H, are nontrivial
f T

)
connected subgraph f G1 and Go, respectively Jonsider three isomorphisms

B ) gineninens

qmamﬁﬁmﬁﬁﬁﬂfﬂwaﬂ

h(a) =4, h(b) = 1, h(c) = 3.

We show glued graphs between G and G5 with respect to f, g and h in Fig-
G1<I>G2 ~ G1<DG2 but G1<I>G2 >

ure 1.2.2. Moreover, it is easy to see that ~ i e, s e, s

G1<I>G2

Hl%hH2 : D



a
d
2
<>
c b 4 3
G'l G2
1
a=4
d
e=3 b=1
G, o G,
Hy=, Hy

This is illustrated in Exa, pl "‘i i 2

Example 1.2.3. Figure 1.2.3.

7Y ]

.r A -
M &1

q WF?L@ W &l&ﬂ&@ﬂ@ %J@@a&ls

Laee

O

Promsakon [10] proved that the glued graph of simple original graphs, Glf;GZ,
is a simple graph if and only if there are no vertices v and v in H such that there
are edges e; € E(G1)\ E(H) and e; € E(G2) \ E(H) whose endpoints are u and

v.



In this thesis, we consider only simple connected glued graphs. Next, we collect

some basic properties of glued graphs in the following remark.

Remark 1.2.4.

1. The original graphs are subgraphs of their glued graph.

2. The graph gluing does n ,//y/oy any edge.

. ISconne tewso disconnected and a glued
graph between M 13 ed

4. It u € V(Gy) ere GG and Gy are graphs
and H is a cloné of &18G e ' . AT adjacent in G1<§G2.

More details concerning g aphs ¢an be explored in Promsakon’s the-

sis [10]. In the next sectign, we ‘=;I e definition of clique partitions of

graphs.

1.3 Clique patt ’ ‘

A clique of a grapheGiis a complete subgraph of G. Note that a clique is not

ecessarly mﬂnu Bh Dot € W bigd¥ BherdTd SQname with n vertices.

A clique partztzon of a graph G i a set of cliques of G which/together contain
each e% W&)ﬁtﬁ n iﬁmnulm;z] gg)muq ﬁ E.‘L G is a clique
partition of GG with the smallest cardinality among all clique partitions of G, and
the size of a minimum clique partition of G is called the clique partition number

of a graph G, denoted by cp(G).



Example 1.3.1. Let G be the graph as shown in Figure1.3.1.

a b

Note that Ky4(a,b,d, ¢ (b ), K( \ d K3(b,d) in Figure1.3.1 are

cliques of G while only K
Example 1.3.2. Consider the _;_;:_‘, ated in Figure1.3.2.

T ’ F’&

E
ﬂ‘UEI’J'VlElEI']ﬂ‘i
ammmm URINYINY

Figure 1.3.2: A clique partition of a graph

Let 22, = {K3(a,c,d), Ks(a,b), Ka(b, )} and Py = {K3(a,b,c), Ks(a,d),
Ks(c,d)}. Note that &7, and &, are clique partitions of G. Thus ¢p(G) < 3.
Since G' cannot be partitioned by using 2 cliques, ¢p(G) = 3. This implies that
P, and P, are minimum clique partitions of G. Hence, it is possible that a graph

has more than one minimum clique partition. .



Remark 1.3.3. If G is a Kj-free graph, then ¢p(G) = e(G) because all cliques in

G have order 2.

Definition 1.3.4. Two edges e and f in a graph G are clique-independent edges
of G if there is no clique in G containing both e and f. A set of pairwise clique-

independent edges is called a clique
|

7' pendent set.

Example 1.3.5. Let G b Figure 1.3.3.

Figure 1.3.3: A pairﬂ ¢ n% clique-independent set of

a graph

o

contawwa'l] aaqiﬁ ?“m ?Wﬁ‘jﬁb ﬁt edges of G.

In contrast, ab and ac are not clique-independent edges ecause they both
are in K3(a,b,c).
Let I = {ac,cd,de,ea} be a subset of the edge set of G. Since G does not

contain ad and ce, it can be concluded that I is a set of pairwise clique-independent

edges, so [ is a clique-independent set of G. -

Example 1.3.5 suggests some properties in the following remark.



Remark 1.3.6.

1. Let e, f be any two edges in a graph G. If there exist two endpoints of e
and f that are not adjacent in GG, then e and f are clique-independent edges

of GG.

1.4 Remarks fo

Let G be any graph. /I wenience, if an edge e in E(G) is covered by a
T = I" .
2-clique in a clique partigi hen ye a efer to e as such a clique.

Moreover, we will also're

Figure 1.4.1: A minimum clique partition of the glued graph

Let &Z = {K3(a = w,c = 2,d), K3(b = z,y,¢ = 2), Ko(a = w,b = z)}. Then
Z is a clique partition of G1<EG2. Thus cp(G12G2) < 3. Consider I = {e, e, €3}

in G1<EG2 as in the Figure1.4.1. Then [ is a clique-independent set of Glf;G?.
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Thus cp(Glf};Gﬂ > |I| = 3, so ep(G) = 3. This implies that & is a minimum
clique partition of G1<11{>G2.

Note that the vertices a, b and ¢ in GGy correspond to vertices a = w, b = x
and ¢ = z, respectively, in G1<}II>G2. Also, the vertices w, x and z in G5 correspond
to vertices a = w, b = x and ¢ = z, respectively, in G1§1>02. Thus corespondence
cliques in 2 must be cliques of Gy or (b die., Ks(a = w,c = z,d) = Ks(a,b,c),
Kala,b) = Kala = w,b = )= Kalw, 7) =2,y,c=2) = Ky(,y.2).

erminologies by considering
lued graphs, and subgraphs

Hence throughout thi SIS/ el sir \ \

in the clone of a glued gr: pifade subgraphs in the e responding clones of both

T
ﬂ‘NEI’J‘VlEJ'VIiWEﬂﬂi
QW?ﬂﬁﬂiﬂJ UNIINYAY



CHAPTER I1
BOUNDS OF CLIQUE PARTTION NUMBERS OF

GLUED GRAPHS

There are two sections+ i .we, we give some preliminary

results, and show a bou
its sharpness. In the ' - ly clique partitions of clique-preserving

glued graphs.

I j or any edge e of G.
Theorems 2.1.1—@1.5 oW r%lts about the effects of an
edge deletion and an n-cligue deletion onftthe clique partition number. These help
us to 1nvest1gﬂ u&lsg mﬂ nim ’lm‘ji graphs at Ks-clones

and K. ﬁs Whlch will be considered in thediext chapter

RSN IRTTA A

TheoreQn 2.1.1. [7] Let e be an edge of a graph G and s the order of the smallest
clique containing the edge e among all of the minimum clique partitions of the

graph G. Then cp(G) — 1 < cp(G — e) < ep(G) + s — 2.

The next example illustrates the notation s in Theorem 2.1.1.



12

Example 2.1.2. Let G be the graph with an edge e as shown in Figure2.1.1

/3

c

\ partitions of a graph
Let s be the order of the -. 7‘ : ontaining the edge e among all of
the minimum clique, parti can be easily seen that

Py = {Ky(a,d), K6 d); Ks(a, b, 0) (0, ¢, d), Ky(a,b), Ky(b,c)}
are the only two mirﬂmm clique partitions of G. r@911 the smallest clique con-

taining an ed?e1 eﬂaifﬁl% ii] nfifiel E]\ g]thhus s=2. .
The°ﬁ"W"Tﬁ]\TﬂﬁﬂJ’Il‘WT”m IR

Theorem 2.1.4. [12] Forn >4, n—1<cp(K, — K3) < 2n—5.

Theorem 2.1.5. [2] If an n-vertex graph G is neither the complete graph nor

trivial graph, cp(G) + cp(G) > n

Propositions 2.1.6 and 2.1.7 are further results of a clique deletion and a path

deletion.
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Proposition 2.1.6. Let G be graph contain path Py. Then cp(G)—2 < ep(G—Ps).

Proof. Let & and £’ be minimum clique partitions of P; and G — P, respectively.

Then | 2| = 2 and £ U &' is a clique partition of G. Thus,
cp(G) < ‘WU QZ" =|2|+ ‘9" =2+ cp(G — P3).

Hence, cp(G) — 2 < cp(Gw—r ‘ U/// | 0

Proposition 2.1.7. For dﬁc of G, cp(G)—1 < ep(G—C),

For sufficiency, assume that C' € & Then & \ {C'} is a clique partition of

G-c. Thusﬁj L) DA GNEIALEL LA Tt since cpl) -1 <

(G — C’ alwa,ys we have ¢p(G < C) = cp(G)e= 1. O

AN N84 Y

A generalized concept of a ition is a clique covering which is defined
as follows.

A clique covering of a graph G is a set of cliques of G which together contain
each edge of G at least once. The clique covering number of a graph G, denoted
by cc(G), is the smallest cardinality of clique coverings of G.

For any glued graph G;<>G5, Pimpasalee [9] proved that cc(G1<>G2) < ce(Gy)+

cc(Gz). So we investigate whether or not ¢p(G) + ¢p(Gz) is an upper bound
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of clique partition numbers of any glued graphs. However, we find that the
clique partition number of a glued graph can be more than, less than or equal
to ¢p(G1) + cp(Gy). Examples2.1.8—2.1.10 show a glued graph with its clique
partition number for each of the possible cases.

It is important to first note here that, thoughout this thesis for convenience,

#/jonly the K,-clone, not an arbitrary
Z.

we refer K, in the glued graph

copy of K.
— -
Example 2.1.8. A g( '_\MGQ) > cp(Gy) + ep(Ga).
For m,n > 2, we wil ‘ >R = rﬁin{m n}
Let 2 < n < m. Since d into the sets of clique K
and all (n — 1) cliqu K, — K, cp(Em®Kn) <
14+ (n—1) = n. Since = n — 1 by Theorem2.1.3

: K, aped K,
we obtain that cp("mz2 > i “ s < tn) = n. It follows that
F Y g 2 Ay
(K <'>K n) =mn, so cp( DS }. Note that cp(K,,) = 1 = cp(K,).

TN 2 N,
Hence, cp(K,,) + C%K =2< mln{ﬁz,n

@fn) _

) 6,
Example 2.1.9. A4 ed graph Gh<>Gly with cp(Gy P ) < ep(Gr) + ep(Ga).

Let P, a ﬁ ]ﬂt ﬁﬁvely, where m,n > 2.
Let b m<DP rﬂmny?jue grap at the H-clone. romsakon [10] proved that
Py, m P

Mi‘] Wﬂﬂsﬂﬂ‘fm lﬁﬁﬂgﬁ%ﬁ Gk

= cp(Pn) + cp(P, . This shows that ¢p( P <'>P n) <

cp(Pm) + cp(Fy).
O
Example 2.1.10. A glued graph G1<>Gy with cp(G1<>G3) = ep(Gy) + cp(Ga).
Let G1, G5 be graphs and G1<11{>G2 be the glued graph at H-clone where all

clones are shown as bold edges in Figure2.1.2.
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[/ 3 i a=w

d b <> xr - d b=x
c y c=y
G, G, Gli?GQ

Cp(G].?;GQ) = 3 = 2 —|-

O
Although ¢p(Gy) (G1<>G) in general, we still
look for another bound Gl) and cp(Gy). Recall that
E(G) is also used as a se which all elements have order
2.
Theorem 2.1.11. Let G1Ga pe any glued graph at
the H-clone & ‘

1< cp(G1<'>G2w< min{cp(G1) + Cp(Gz H), Q(Gﬂ +cp(Gr — H)}

Proof. Let ﬂ%@ﬂ&kﬂ@mﬁl onb Bl and Gy, respectively.

Let 2 and ﬁ be minimum cliqué partitions e£.G; — H and Gy H, respectively.
o S LA TH A Ml Boho(c136 <
|e@1 U ;@ | and cp(G1®G2 < |,@2 ug | Note that &, and 22" are disjoint,
so are 2 and 2. Then cp(G10G2) < |2,

=121+ [7"| = en(G) +
cp(Gy — H). Similarly, cp(GlﬁGﬂ < ep(Gs) + ¢p(Gy — H). Thus,

ep(G12G2) < min{ep(Gh) + ep(Ga — H), ep(Ga) + ep(Gy — H)}.

Hence, 1 < ep(C12G2) < min{ep(Gy) + ep(Ga — H), ep(Ga) + ep(Gy — H)}. O
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Next, we give examples to show the sharpness of the bound in Theorem 2.1.11.

Example 2.1.12. Let G; be a Hamiltonian graph on n vertices with a Hamilto-

nian path P and G, = G; U P.

Example 2.1.13.

in Figure?2.1.4.

Figure 2.1.4: The sharpness of the upper bound in Theorem 2.1.11

We have that cp(K,,) = 1 = ep(K,) and by Example2.1.8, cp(Kmngn) =

min{m,n} = n. Since ¢p(K,, — K2) = m — 1 and cp(K,, — K3) = n — 1 by
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Theorem 2.1.3, we have that ¢p(K,,) + ep(K,, — K3) =14 (n—1) =n and
cp(Ky,) + ep(Kp — Ky) = 1+ (m — 1) = m. Thus, min{cp(K,,) + cp(K,, —
K5),ep(K,) + ep(K,,, — Ks)} = n. Hence, cp(Km[gKn) = n = min{cep(K,,) +
ep(K,, — K3), ep(Ky,) + ep(K,, — K») b

g

In next section, we stu ition numbers of clique-preserving

Definition 2.2.1. An edge '-‘ - alued graph G1<>Gy is called a new

ssponding vertices of a and b

edge for the originalig
: Y ) . :
in G; are not adjacent (<G5 is called a new clique

for the original gmmm

G; do not foﬂ]ﬂﬁ’g W?W gTzﬂfﬁmph is a glued graph

which does notihave a new clique for any orlglna graphs.

AR RN I DN BAF NG Yot 0

where all clones are shown as bold edges in Figure2.2.1.

l, 1 = 1 or 2 if all corresponding vertices of vy, ..., v, in



18

Figure 2.2.1: A ’ / taining new cliques
In Figure2.2.1, €’ is n 4 and ¢ are not adjacent in Gy,

so €' is a new edge fof( .~ for G3. Note that K3(a =

w,b = x,c = vy)is ac not contain Kj(a,b,c), so
Ki(a=w,b=z,c=y)i Ki(a=w,c=y,d=z)
is a new clique for preserving glued graph 0

When a glued grap ng glued graph, a clique in a
minimum clique partitio )1 g ~a clique in Gy or G5. Thus, being
a Clique—preserving glue_(_i _graphl its the investigation of its clique partition

number of each or

We first observe ﬁme ewﬁage and a new clique of a

glued graph in the follq:v remark.

Remarkzzﬁuﬂ’mﬂ'ﬂiWB'm‘i
TSP o

ha;fanewe ge

2. A new edge of a glued graph cannot be a new edge for both original graphs

at the same time.

3. Both endpoints of a new edge of a glued graph must lie in the clone.

Proposition 2.2.4. [9] If H is an induced subgraph of both Gi and Go, then

G1<I‘{>G2 18 a clique-preserving glued graph.
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Back to Example2.1.12, we have a glued graph with the property that
cp(Glng2) < max{cp(G1), cp(G2)}. We next consider a condition to guarantee
that a resulting glued graph needs at least as many cliques to partition as its

original graphs do.

Theorem 2.2.5. [f G1<>Gy is a cliqgue-preserving glued graph, then

does not have a ne G1) cliques are needed to
' < cp(G1<>Gy). Similarly,

),Cp(Gz)}- U

partition the copy
cp(Ge) < ep(G1<>Ga):

The converse of 2.5 docs motthold as shown in Example 2.2.6.

ﬁummmwmnﬁw
Flg“fﬁm%wgﬁﬁlmwwﬁ”WEI”T@’*ET@“ 29 o

Since ep(K,, — €) = n — 1 where e is an edge in K,, by Theorem 2.1.3, we have
that cp(G1) = ep(K4 — e) = 3 = ¢p(G2). Note that G1§1>G2 = K4I<5K3, by Exam-
ple2.1.8, cp(GlﬂiG?) = 3. We can see that cp(Glﬂ?GZ) = 3 = max{ep(Gy), cp(G2)}.
But 4-clique in Glj‘;GZ is a new clique for GG; and G, so G1<I?G2 is not a clique-

preserving glued graph. -
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Now we consider the set of all cliques in a minimum clique partition of a glued

graph which belong to each original graph.

Definition 2.2.7. For a glued graph GI?GZ, let &2 be a minimum clique partition

of G1§{>G2. We define

PGy ={CeP|Cisac

- ' ﬂ
E\[Z] ={e€ : not coves ~.r. clique in Z[G,]} and
Ey) 2] = {ee of's \W\n.\t lique in Z[Gs]}.

Example 2.2.8. Let &, _ ap] S % > the glued graph at H-clone

ﬂ‘UEJ’J‘VIUVI?WEﬂﬂ‘i
’QW]Nﬂ‘imﬁJWTJﬂEﬂﬂU
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i \"
Figure 2.2.3: 1;’*’ G #| of a glued graph

1

¢

Let & = foa =), Kole,= ﬁ , Jla=wb=uzxc=
y,9)}. Then %{jg Hﬁpﬂﬂ\ﬂ p ﬁkﬁi,ﬁ( 1<}II>G2) < 4. Consider
I = { omco e s Gaasin the Fi i o e auc-independent
set ofa;ﬂ2ﬁﬁ§ﬂ§mlﬂ|ﬁj cﬁcﬂj(alﬁ) = 4. Since

| 2| = 4, & is a minimum clique partition of GIT;GZ It is easy to see that

2G| = {Ky(f,a =w),Ks(c = y,d = 2),K3(f,e,9)}, P[Ga] = {Ks(c=y,d =
2)} and By [Z] = {Khy(a=w,b=2), Ky (b=x,c=y)} = B[],
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Remark 2.2.9. Let & be a minimum clique partition of GlgGZ. Then
1. Z|G1]U Z[|Gs] C 2.
2. B1[Z]UES 2] C E(H).

3. (Z[GiN Z[Ga]) U (Er[Z] U B, 2)) s a clique partition of H, moreover
(2l N 2[Ga]) U (B

4. If 2[G1] N P[Ga)« an liq@ more than two, then
(2]Gi] N PGy |

Proposition 2.2.1 1 & of a clique-preserving

glued graph G1<>Gs, | N Ey [P =

Proof. Let G1<>G4 be a r€SEIVi 1€ A . Assume that &2 is a mini-

. we have that Z[G1]UZP[Gs] C

2. Since G1<>Gy is a clique-pres
. _,.,/.*“‘M :

graph must be a copy o r G 2(C Z[G1]U Z[Go]. Hence,

P = PG| U c&u' R

Suppose that e émEl en e is rm covered by any clique in

Z [;2 f:hﬁu y Ij:i] ﬂﬁ{Mﬁ Qrﬁ a clique partition of
QR VI ADHEYGB oe t

clique-p?eserving glued graph.

ted graph, every clique in the glued

Remark 2.2.11. Let & be a minimum clique partition of a clique-preserving

glued graph G1<11{>G2. For i = 1,2, Z[G;| U E;[ ] is a clique partition of G;.
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Theorem 2.2.12. For any clique-preserving glued graph Gli‘;G%
cp(C1EG2) > ep(Gh) + ep(Gs) — e(H).

Proof. Let & be a minimum clique partition of G1<};G2. By Proposition 2.2.10,
P = P[G1] U P[Gs]. Note that Z[G;] and E;[Z] are disjoint for all i = 1,2,

Ei[Z]U E5[ 2] and Z[Gh] N 2 | are/aléo disjoint. Then,

|| = |2[G1] U 2[Gy]
= |2(C1)l + | 2 (O AP 4 |
= L@[Gl]UEl[@ ' : ‘ & : 7 | 1[G2]|—’E1[32]UE2[92]|

L AT P o NNy G BB

Note further that 2|@;] ons of G; for all i = 1,2, we
have |2[G;| U E;[Z]| = ¢cp,

(Z[Gi] N Z[Ga]) U (Er[F

Example 2ﬂfiurﬁ ﬁ%ﬁ%%ﬂ E}kq ﬂ:ﬂ?m«em 2.2.12.

Let G, G5lbe graphs and lg 2 be the glued graph at H-clone where all

- ARARINFUNINYINY
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a b v
N\ / \ <
i i d c =z Y w
T
G,

Observe that cp( ‘
y), Ks3(d = y,a,b VF w), F w,z,d = y)}. Then & is

a clique partition o ‘ (¢ <D = 4. Let I = {e, e, €3, €4}

Theorem 2.2.14. Let G <1]L1>

i j"“‘i‘tft"i" Vi -.7‘,'

Then p(150%) = cplGi=

clique partitions 22~ ana of G1 ar

e€ E(H), e must begjvere by a 2

Proof. For neﬁﬁ ﬁﬁﬂﬁ,ﬁﬁ; t]tajm(Gz) — o(H).

Let & be a minimum clique partition o 2. By Proposition 2.2.10,

2~ qRTRINTOIUN NN Y

| 2| = | Z[GIUEN[Z]|+| Z[Go] UE[Z]|=[(Z[G1] N Z[Ga) ) U(EA[Z]UER[2])] -

Since Z|G;|U E;[#] is a clique partition of G; for all i = 1,2, |2[G;| U E;[Z]| >
cp(G;). Besides, |(22[G1] N P[Ga]) U (EL[Z] U Ex[Z])| < e(H). Together with
| Z| = cp(G1)+cp(Ge)—e(H), we can conclude that | 2|G;] U E;[Z]| = cp(G;) for
all i = 1,2 and |(Z[G1] N P[Ga]) U (E1[P] U Ey|2))| = e(H). Hence, Z[G;] U

E;[#] is a minimum clique partition of G; for all i = 1,2.
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Let e be an edge in the H-clone of G1<}I?G2‘ If e € Z[G1] N P[Gs), then e
is covered by a 2-clique in Z[G4] and P[Gs]. Thus e € Z[G;] U E;[Z] for all
i = 1,2. Suppose that e ¢ P[G1] N P[Gy]. Then there exists a clique C' of
order more than two in & covering e. Without loss of generality, assume that
C € Z[G,]. Then e € Ey[Z], so e € PG| U Ey]| ).

For sufficiency, assume that Gy have minimum clique partitions &7

and P, respectively such that s ion in the right hand side of the

statement. Let A = {ei Llddyle e 2 and L ={fc E(H)|fec P}

Note that |A| + |B| — Bl £ /6l 2 (Py~B)U(ANDB)isa
r 4 "'VI ; "l l' 4. A

clique partition of G >

Thus, |(£ \ A) U (£

cp(Gh) + cplGo)f— (H) = | 23| #| = [A| — |B| + |AN B

By Theorem 2.2.1 " . 0
AULINENINYINT
RN IUNRINYIAY



CHAPTER III

MAIN RESULTS

In this chapter we focus 9) a glued gpaph at K,-clone because the clone is

always an induced subgra i '1@, so the resulting glued graph

: . opertles of clique partitions

AL \\\ investigate bounds of the

and K3-clones in Section3.2

is a clique-preserving
of glued graphs at K-
clique partition number,
and Section3.3, respecti

Recall that we refer

not an arbitrary copy of

at K,-cl -v:’?. X

n y
Theorem 3.1.1. Forﬁgn> >2,c m<l>Kn r—1)(n—r)+2.
AuEAnEnaNeNS

Proof. Let m Zin > Since m > n, we can use the m-clique, all cliques in

¢

a minﬂlﬁ ﬂt ﬂﬁmﬂﬁﬁ]ﬂﬁ w)yq)aﬁ%j of 2-clique to

partitiofi , where e is an edge of the clone. Note that by Theorem 2.1.3,

of glued graphs

3.1 Some prope

<

p(Kp—ryo—€) =(n—r+2)—1=n—r+1. Hence,

cpEmPEn)y <14 (n—r+ 1)+ (r—2)(n—1)=(r—)(n—r)+2.

T
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Lemma 3.1.2. If GlffG2 has a minimum clique partition containing the K, -

clone, then Gy or Gy has a minimum clique partition containing the K,-clone.

Proof. Let & be a minimum clique partition of G1[<'<>G2 containing the K,-clone.
Then Z|G1] and £[G,) are clique partitions of G and Gy, respectively. Suppose

that all minimum clique partitions 1 and G5 do not contain the K ,-clone.

Let &2, be a minimum clique ‘ ote that

{K.}) U LK.

Since &?; does not contai a clique partition of G; con-

consequently, | 2[G] ~ {K,}| >
\\

s {KW} +1

taining the K,-clone,
cp(Gy). Thus,

2| =

v

'_.f.r. <el nyl + 1.

S LA I
T A 't

Observe that & (& artltlon of G1<'>G2 and

|22, U (P[Ga] A A} “J is contradicts the mini-

mality of 2. Thus,‘ 1 or Gy has a minimum clime partition containing the

G U ANYNITNYINT :

The convera@ of Lemma 3.1.2 %oes not hold as shown in Exa ple3 1.3.

e BN I UUNIARLIRY o

clone where all clones are shown as bold edges in Figure3.1.1.
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a b w T a=w b=z
NN AN
d e z b d =k v

G, G, GG,

Figure 3.1.1: A glued graph illustr

ing that the converse of Lemma3.1.2 does
not hold ’ 777/’
4

Ky(c,d)} and Py = Vi, C,(y;2)} are minimum clique parti-
tions of G; and Ga, contai \ one. From Example 1.4.1,
P ={Ks3(a =w,c= . =" .] — w,b = )} is a minimum
clique partition of Gy e ontain the K3-clone and &
is the only minimum éli nce, G12G2 does not have a
minimum clique partltlb

d
Theorem 3.1.4. FG "___=_=_=_-_-_-__;_==_—. tition containing the K, -

5

Proof. Let & be a minimmam clique partition of GGy containing the K,-clone.

By Propositi%u(ﬂ@lnﬂm g[% Elnc Q ﬁntains the K,-clone,

@[Glﬁ 2|G = K,}. Note that 2(G,] and | Go] are cli artitions of G

AR S IR
ep(C12G2) = | 2| = | 2[Gh] U 2G|

= [Z[G\]] + [Z]G.]] - [Z[Gi] N 2G|

> cp(Gr) +ep(Ga) — 1.

By Lemma3.1.2, there exists a minimum clique partition of G; or G5 containing

the K,-clone. Without loss of generality, assume that G; has a minimum clique
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partition, &, containing the K,-clone. Let &2, be a minimum clique partition of
G. Then (2~ {K,})UZ, is a clique partition of G1[<{'>G2. Note that 22, ~{ K, }

and &, are disjoint. Therefore,

ep(C12G2) < (2~ {,}) U 2| = (21~ (K} P5] = ep(Cr)+ep(Ga) -

O

Theorem 3.1.5. Let

G9 has a minimum

Proof. Assume that G} inin iquepattition containing the K,-clone.

By Theorem 2.1.11, ¢p(

cp(G1—Ky,). Thus,ep(H1 73 (G~ K,)+ 2) = cp(G1)+ep(Gz)—1. O

o 4 41 1 Wﬁ P s 1 O

Recall that, wérefer K, in the gh*ed graph 1<]> 2 to be onl the Ks-clone, not

o arbﬂW?@*&ﬂ‘ﬁﬁdp@JW]’l NEIa El

Remark 3.2.1. Let & be a minimum clique partition of GlgGZ
1. Z[G1] N Z[G,y] C {K,}.

2. If the Ky-clone is contained in &, then Z[G1|NZ[G,] = { K>}, and, Z[G4]

and Z[G,] are clique partitions of G; and Gs, respectively.
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3. If the Ks-clone is not contained in &, then £[G1| N P[Gs] = @, further-
more, if the Ky-clone is contained in Z[G;] \ Z[G,] for some i,j € {1,2}
and i # j, then Z[G;] and £[G;] are clique partitions of G; and G; — K,

respectively.

Theorem 3.2.2. For any nontrivi T phs Gy and G,

cp(Gy) + ep(Ga) — 1)+ cep(Ga) + 5 — 2 (3.2.1)

where s is the order the Ky-clone among all of

the minimum clique

Proof. To prove the upp ""","‘ ; _ erality, assume that G5 has

a minimum clique partifio ining a clic order s which contains the

ep(G1:2G2) < ep(€h ) ep( Gl = Ball= ep(G1) + ep(Ga) + 5 — 2.

_,m-lj.gw')‘ '-j.’, el

To show the loivfr bound; let "W*’b a ique partition of G1<1>G2_

By Proposition 2. . E &, then cp(G1<1>G2) —

cp(Gy) + ep(Ge) — 1Er Theorem 3.1.4. Suppose tha,a( ¢ &. By Remark3.2.1,

either 2[G,| (ﬁ f Gy 9, Tespectively. Without

loss of genera@ﬂ ﬁﬂqﬂ ﬂiﬁ ﬁ(ﬁ ﬁen P[] is a clique

partit ti G5. Hence,
ORI

PGl U{K} — 1> ep(Gy) + ep(Ga) — 1.

Theorem 3.2.3. Let Gy and G5 be any nontrivial graphs. The following state-

ments are equivalent:
(i) ep(C1262) = ep(Gh) + ep(Ga) —

(ii) Gi or Gy has a minimum clique partition containing the Ky-clone, and
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(#it) cp(Gi — K3) = cp(G1) — 1 or cp(G2 — K) = cp(Ga) —

Proof. (ii) = (i) Assume that Gy or Gy has a minimum clique partition con-
taining the Kj-clone. By Theorem 3.1.5, cp(Glﬁ,zG2) < ¢p(Gy) + ep(G2) — 1. By
Theorem 3.2.2, cp(G1%G2) = cp(G1) + cp(Ga) —

(1) = (d¢i7) Assume that cp(Gl@G = ep(Gy) + ep(G3) — 1. Let & be a

minimum clique partition of Q

Since only the Kz-cloneﬁ
cases. 7 _.
Case 1. Ky € Z. LT

1 or ep(Gy —

ion 2.2.10 says & = Z[G1|UZ[G4].

ly j61@G1] N P[G,], we consider two
—

Case 2. Ky ¢ P

A

of Gy — K5. Thus CM +ep( GJE é ;
ep(Gr) — 1 = cp(Gy DK

(131) ‘ Let &, and &' be
minimum chq@ﬂijtﬁnﬁau g ‘1 :Eje:]\ﬁrihen |2, —1=|Z|.
Note Wﬁaﬁi’ 7| +1=
|,@ U‘q{ﬁ )ljence% ﬁ:ﬁﬂ; a minimum cllque partltlong(?le O

Corollary 3.2.4. If cp(Glf{zGQ) = cp(Gy) + ep(Ga), then cp(Gy) < ep(Gr — Ks)

Again, Theorem2.1.1,

and cp(Ga) < p(Ga — I).

Proof. 1t follows directly from Theorems2.1.1 and 3.2.3. O

Corollary 3.2.5 follows immediately from Theorem 3.2.3 and Lemma 3.1.2.
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Corollary 3.2.5. If there exists a minimum clique partition of Gl;‘(zG2 containing

the Ky-clone, then
(i) cp(CrEG2) = ep(Gy) + ep(Ga) — 1, or
(1t) cp(Gr— K3) = cp(G1) — 1 or ep(Ga — K3) = cp(Ga) —

For any graph G with an edge e, the statement cp(G — e) > cp(G) — 1 can be
rewritten by cp(G— e) = ep(G)+t where # " —d¢ Consider a glued graph Gl;‘(iG?,
if ep(G; — Ko) = cp(Gy) F 1, where i - 4 1, 2, then 1ts special case, namely t; = —1
for some i = 1,2, is examincd in Thoqrem 3.2.3. Now we study in general.
Theorem 3.2.6. Let GlngZ befany jlglu:ed graph al Ky-clone. If cp(Gy — K3) =
cp(G1)+ty and cp(Go= Ky) = cp(_Gg‘)—kt?fqr some integers ty, ta, then cp(Glng2) =

.u W,
cp(Gr) + ep(Ge) + t whergt = mi_n{tl, i;"z-}.

Proof. Assume that cp(G = Kz)a— cp('G'i.) + ty and cp(Go — Ks) = ep(Ga) + to
for some integers ti,ty. First Tote by ThfﬁfemQ 1.1 that t1,t; > —1.
If t; = —1 for somew =1, 2 then the statement is hold by Theorem 3.2.3. Oth-

erwise, assume tha,t @ < t; < t,. Since a union of a mmlmum clique partition of

G171 — K5 and a minimum clique partition of G is ah_chque partition of Glfgg%
cp(Glf(zGQ <.ep(Gh). + ep(Ga) + 13 ~Let” 2 be a.minimum clique partition of
GlgGZ By PRroposition 2.2.10, " = Z[G1]' U P|G,)." Since t1,ts > 0 and by
Corollary 82:5x the, [G-clone-is-not in, Paand then 72, is partitioned into F[G]
and Z[Gs]. We consider two cases.

Case 1. ZP[G4] is a clique partition of G; and Z[G5] is a clique partition
of Gy — Ky. Then |2[Gi]| > ¢p(Gh) and |2[Gs)| > ep(Ge — Ki). Thus,
p(G102) = |2 = |2(G)| + | 2(Ga)| = p(G) + cpl(Ga) + 12 2 ep(Gh) +
cp(Gq)+ty. Hence, cp(GlgG2) = |2| = |2[G\]|+|2[Gs]| > ep(Gr)+cp(Ga) -+t

Case 2. P|Gs] is a clique partition of Gy and £[Gy] is a clique partition of
G1—Ks. Then | 2[G3)| > ¢p(Gq) and | 2|G4]| > ¢p(G1—K3). Thus cp(GlgG2) =
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| 2| = | 2|G4]| + | 2[Ga]| > ep(Gh) + ep(G2) + t1. Hence cp(Glng2) = cp(Gy) +

cp(Gq) + t where t = min{ty, t2}.

Theorem 3.2.7. For m > n > 3, let Gy and G5 be nontrivial graphs of order
m and n, respectively. Let s be the order of the smallest clique containing the

Ks-clone among all minimum clique partitions of G1 and Gs. Then

(i) cp(Glng?) = cp(Gy) +ep(Gy) — Lifadnd only if s =2, and
J

(i1) cp(Glf(zG2) = cp(Gtep(Cs) + n — 2 9fand only if s =n.
Proof. (i) By the Definition of &, s :'12 if and only 1f G; has a minimum clique
partition containing the &-¢long for s&ﬁe ¢ = 1,2. Then by Theorem 3.2.3, s = 2
if and only if cp(Glng?) F cp(G-l)_+ cj?(Gg) —.

(ii) Assume that cp(G1®G2) :(p(Gf) +ep(Ga) +n—2. Since s is the order of
the smallest clique contamlng th&K 5= Clone., s <m,m. Without loss of generality,

T

we may assume that GG; has a Thintmum eh:que partition &2; containing clique C' of

H

order s which contams the K2 clone Let 322 be a minimum clique partition of Gs.

Then the union of 92, 1\ C and a minimum chque‘partltlon say €, of C'— K,
is a clique partition of GlngZ Note that ¢p(C — Ky) = s — 1 by Theorem 2.1.3.
Thus, ep(Gh) gen(Go) T 152 = gn( TSR < W75V (P1 C)UF| < ep(Gr) +
ep(Gy) — 1 +'gp(€¢—"K3) = cp(G7) + cp(Gs) 4+'5 — 2,"which implies that n < s.
Henceys =m.

In the other direction, if s = n, then Gy = K,,. Thus ¢p(G3) = 1. Note that
by Theorem2.1.11, cp(GI%G% < ep(Gy) + ep(Gy — K3) and by Theorem 2.1.3,
cp(G2—K3) = n—1. Thus, CP(G1%G2) < ep(Gr)+ep(Ga—K3) = cp(Gr)+n—1 =
cp(G1) + ¢p(Ga) +n — 2. Let & be a minimum clique partition of GlngZ. By
Proposition 2.2.10, & = Z[G1]U Z[Gs). Since by definition of s, s = n and Gy =
K,, we have that K,, ¢ &. Then Z[G,] and &[G, are clique partitions of G; and

Gy — Ky, respectively, consequently, |22[G1]| > cp(G1) and |P[Gs]| > ep(Ga —
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K,). Note that |Z| = |2[G4]| + |2]Gs]|. Then | 2| = |2[Gi]| + |2|Ga]| >
cp(Gr) +ep(Gy — K3). Again Theorem 2.1.3, ep(Gy — K3) = ep(K, — K3) = n—1.
Thus, cp(GlgGY?) = |Z| > ep(Gy) +n—1 = ep(G1) + ¢p(G2) + n — 2. Hence,

cp(GlgG2) = cp(Gh) + ep(Ga) +n — 2. O

Proof. Assume that ¢ = p(¢ ep(Gy) + s — 2. We have that
cp(GlgGﬂ < ep(Gy) + ,j € {1,2} and i # j. It follows

that cp(G; — K2) > ep(

Conversely, ass imEthat ep(G =K =>¢ Sforalli=1,2. Let Z bea
minimum clique partﬂon of © op mtibn@ZlO, P = PG1|lUL|Gy).
Since s > 3 and by Corellary 3.2.5, the #-clone is not in &?. Then |Z| =

s+ 1R Edd) EINISR T} 119 v2Ir SRF—
G, then ﬁ ﬂ is a chqﬂe %amusn of G 'ﬁ ’]13 ﬁ i]'] a E]

= |2| = |2[G\1]| + | 2G|
> cp(Gy) + ep(Gy — K»)

> cp(Gy) + ep(Ga) + s — 2.

By Theorem 3.2.2, cp(Glng2) = cp(G1) + cp(Ga) + s — 2. O
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3.3 Clique partitions of glued graphs at Kj3-clones

In this section, we now focus on clique partitions of glued graphs at Ks-clones.
Recall that, we refer K3 in the glued graph G1£G2 to be only the K3-clone, not

an arbitrary copy of Ksj.

Definition 3.3.1. Let G be 'Waining a 3-clique T and & a clique
partition of G. Then we s /
T——

1. & is type 1 wit o, i

) ntains 4
if “v\\ clique of order at least 4

HEEE L -
Example 3.3.2. Let G be a gra; ne a 3-clique T' = Kj(a, b, ¢) shown in

Figure 3.3.1.

§ |
o ¢ o A
RAINTUARIINYAY
Figure 3.3.1: A graph illustrating types of its clique partitions

Let ;@1 = {KQ(CL, d), KQ(C, d), Kg(d, f), Kg(b, d), Kg(a, b, C)}, gg = {KQ(d, f),
K4(CL, b, C, d)} and 333 = {Kg(d, f), Kz(b, d), KQ(CL, b), Kz(b, C), Kg(a, C, d)}
It is clear that &, &5 and &5 are clique partitions of G. Since &?; contains

T, & is type 1 with respect to T'. Moreover, Ky(a,b,c,d) in &5 covers T,
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so P is type 2 with respect to T'. The edges of T" are covered by different cliques

in Y5, so Y5 is type 3 with respect to T'.
O

Remark 3.3.3. Let G12G2 be any glued graph at K3-clone and &2 a minimum

clique partition of GlgGZ

1. If Z is type 1 with resp , then Z[G1]NZ|G,] = {K3}, and

hence, Z[G1] and 18 of G, and Gy, respectively.

2. If & is type 2 wi fo| the then PG| N PGs) = 2,
furthermore, & |Gyfare. rtitions of G; and G, — K,

respectively, for

3. If & is type 3 then each element in Z2[G1] N

. g ‘
P[Gs] is a propersubset %ﬁx‘ ons antly | 2[G] N P[Go]| = 0,1 or
2. !Jq._d__ ._J.n y |

S LA I
e

Theorem 3.3.4. Ley 2 -3 as a subgraph. Then

7
p G% 3. (3.3.1)

me 2
e YIS RENg :

Theorem 3.3.5. Let G1<I>G2 be gny glued graph. Then cp( G1<1>G2) = cp(Gy) +

(P P ol AFBURI TN AR 5, v

and Gz, respectively, such that for each edge e € E(K3), e must be covered by a

2-clique in &Py or Ps.

Proof. 1t follows immediately from Theorem 2.2.14. O
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Theorem 3.3.6. Let G1[<}>3G2 be any glued graph at Ks-clone and & a minimum
clique partition of G1;<{>3G2' If & is type 1 or type 2 with respect to the Ks-clone,

then cp(C1EG2) > ep(Gy) + ep(Ga) — 1.

Proof. Let & be a minimum clique partition of GlngZ By Proposition 2.2.10,
P = PG U P[Ga).

Case 1. & is type 1 wit

Then & contains the

ep(Gs) — 1. ;;:;?
Case 2. & is type

N
covering the K3-clo [ H\ y, let Q@ € Z|G,]. Then

2[G4] and Z[Gs) U cligue - ;.. tions o ‘and G, respectively. This
implies that |22[G,]| >¢cp AR {K3}| > ep(Gs). Thus,
|2|GL]| + | 2[Ga] U{K3}| — 1 >

cp(G1) + cp(Ga) 0

7 ]
The converse of "Theot S s-r-l'o in Example 3.3.7.

[ !

Example 3.3.7. Let G14G5 be graphs and G1<Gs be the glued graphs whose

oo Fo W] SRELFWENN T
ARIAINTUNRIINYINY
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Figure 3.3.2: A glued

not hold

In Figure 3.3.2,

Note that cp(Gy) +

P. Hence, P is type 3 w1thnm§ﬁéét }Q, ) O

A characteriza fion number is at the lower

bound in equation ( .1 ) is prov1ded in Theorem 3.3'5.

The follovsﬁgﬁe Akw EJ\W ﬂ%?GQ) when G or Go
E‘mon is type 1

has a minimum iclique p Wlth respect to the K3-clone.

Theoamam@mumww WRB 10,00,

has a mzmmum clique partition which is type 1 with respect to the Ks-clone, then
ep(Gh) + ep(Ga) — 3 < ep(C12G2) < ep(Gh) + ep(Ga) —

Proof. Assume that GG or G5 has a minimum clique partition which is type 1 with
respect to the K3-clone. Then there exists a minimum clique partition of G or Go

containing the K3-clone. By Theorem 3.1.5, cp(GlgGZ) < ep(Gh) + ep(Gy) — 1.
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By Theorem 3.3.4, cp(Glf(zG2) > cp(Gy) + cp(Gq) — 3. Hence,
ep(G1) + ep(Ga) — 3 < ep(C12G2) < ep(Gh) + ep(Ga) —
O

We will study bounds of cp(G1?G2 when neither GG; nor G5 has a minimum

the K3-clone. Lemmas3.3.9, 3.3.11
(G1<1>G2)‘

K3

o
&,
Proof. Assume that &2, 2y ATC 1 que partitions which are type 2
with respect to the K3-clone QJEZ;ﬁfﬁ@d G ectively. Then there exists a clique

Q, of order ry > 4 inﬁ'
that s = 2r;. Then G1 K3 can be partltloned by the union of Z; \ {Q;} and a

o o Y DY go =
R ErRUE RN LI )

By Theorem2 1.11, we have that cp(Gl@GQ) < ep(Gy — K3) + ep(Ga).

Hence, cp G1oGo < ep(Gy) 4+ e¢p(Gs) + s — 6 where s = min{2rq, 2ry }. O
K3

Example 3.3.10. The sharpness of the upper bound in Lemma 3.3.9.
Let m > 4. Consider the glued graph K4%Km. K, and K, have mini-
mum clique partitions which are type 2 with respect to the Ks-clone, say &

and Py, respectively, such that r, = 4 and r = m, where r; and ry are order
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of the cliques containing the Kj-clone in &) and &, respectively. Note that

cp(Ky) =1 = ep(K,,) and ’V(K4<IZKm)‘ = m + 1. Since K4<Il(>3K = Ky m—3, wWe
KoKy — KoK, K< Ky,

have that cp(4578m) = m—3. By Theorem 2.1.5, ¢p(R 4778 m) 4 cp(Ra52Bm) >

’V(K4§1(>3Km)‘. Thus, cp(K4<}(>3Km) +(m—3) > m+1, so cp(K4<II(>3Km) > 4.

|E(Ky — K3) U{K,}| = 3+ 1\%‘ ?ﬁ refore, cp( K4<]>K m) = 4. Hence,

cp(K4<Il<>3K)—4—1+1 ) + 2r1 — 6.

! \3 -clone. If 22, and Py are

ect to the K3-clone of Gy and

Since E(Ky — K3) U {K,,} is a clique partition of K4<'>Km, cp(K4§I(>3Km) <

O

Lemma 3.3.11. Let
mintmum clique partiti
s—6 where s = min{sy, s2},

G, respectively, then c

s; 1s the sum of orders of wning edges of the Ks-clone for

all 1 =1,2.
Proof. Assume that /| P 7 lique partitions which are type
3 with respect to the Kg-dﬂ@_@}{ 5 respectively. Then each edge of

Q1, ()2 and @3 of orders

q1, g2 and ¢z, respecﬁ/él. 1q1ﬁs Rl, Ry and Rs3 of orders

r1, ro and 73, respectiszeg, in Ss. LeEJS = min{q + ¢ + 3,71 + ro + 13}

Suppose thatﬂ:u ﬂg’a q%r%qﬁ w(i&lj Eq ﬂ@oned by the union of

P~ {0, Qg,eég} and a minimum clique parg.ion of Q; del&tﬁd an edge of the

) AR BEUHRAN I ANG -0 -

where Qz covers an edge e; of the K3-clone for all © = 1,2,3. Thus,

p(G1— K3) < [P =3+ (@ — 1)+ (= 1)+ (s — 1) = ep(G1) + @1 + g2 + g3 — 6.
By Theorem2.1.11, we have that cp(Glf(zG2) < ep(Gy — K3) + ¢p(G2). Hence,
cp(Glng2) < cp(Gy) + cp(Ga) + s — 6 where s = min{q; + ¢2 + g3, 71 + 12 + 73}

O



41

Example 3.3.12. The sharpness of the upper bound in Lemma 3.3.11.

Let p,q,r > 3. Let Gy be the graph obtained from K3(a,b,c), K, K, and K,
by identifying each of three edges in Kj3(a,b, c) with an edge in K, K,, and K,,
respectively, as shown in Figure 3.3.3. In the same way, G, is the graph obtained

from Kj(u,v,w), K, K,, and K, by identifying each of three edges in K3(u,v,w)

t vely, where I,m,n > max{p,q,r}.
a& and Kj3(u,v,w), denoted by

with an edge in K;, K,,, an

Consider the glued graph

Figure 3.3.3: in Lemma3.3.11

|| g
It is easily seen tJat both G and Gz have minitium clique partitions which

are type 3 Wlﬁrﬁ Ejtqhwﬂwwﬁm]ﬁ Tpectlvely Moreover,

cp(Gh) =3 = . Let s; be the sum of orders of all chques in &; containing

edges@twﬂfﬁﬁfﬂaﬁﬁé HRTINE Y-+

Since I, m,n > max{p,q,7}, s2 > s;. By Lemma3.3.11, we have that
ep(C12G2) < ep(Gr) +ep(Ga) +51—6 = 3+3+ (p+q+7)—6 = p+q+r. (3.3.2)

Let e, e; and e3 be edges of the clone of Glng% and & a minimum clique
partition of Gl;‘gG?. If e;, e; and e3 are covered by a 3-clique in &, then
p(C12C2) = | 2| > 1+ (p— D+ (g— D)+ (r—D+ (=1 +(m—1)+(n—1)+3 >

p+q+r. Thus by equation (3.3.2), G12G2 does not have a minimum clique par-
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tition which is type 1 with respect to the K3-clone. This implies that each e; must
be covered by distinct cliques in any minimum clique partition of G12G2 for all
i €{1,2,3}. Note that C1:2G2 = (R By (Re Koy | (Ko2 Kn). By Fxam-
ple2.1.8, we have that cp(KP;gKl) =p, cp(qusz) = ¢ and cp(Krngn) =r
Thus, cp(GI%G% > cp(KP;gKl) +cp(Kq<DK )—i—cp(Kf“ngn) = p+q+r. Hence,
cp(Glngﬂ =p+q+r=34+3+(p+qg+r —6=cp(G1)+cp(G2)+s— 6 where
s = min{sy, $2}.

2 O

Lemma 3.3.13. Let Glng2 be' any glued graph at Ks-clone. If &, and Py are
minimum clique partigionsswhich, are type 2 and 3 with respect to the Ks-clone
of Gy and Gq, respeciively, then cp(Gfl@GZ) < op(G,) + ep(Gy) + s — 6 where
s = min{2r,t}, r is thg order of a (hqu'e ;ontaznzng the Ks-clone in & and t is

the sum of orders of all clzques m P contammg edges of the Ks-clone.
il tdia

Proof. Assume that &7 andi‘i@gare muunmm clique partitions which are type

type 2 with respect o the K3-clone, there exists a chque R of order r > 4 in
S containing the K,g—clone. Then &) — K3 can be partitioned by the union
of Z; N~ {R} and a minimum clique partition of R — K3. By Theorem2.1.4,
cp(R — K3) < 2r =55Thus ep(Gr—"K;3) < | Pl=— 14 2r =5 = cp(Gy) + 2r — 6.
Since &, is.type 3. with respect.to the K3z-clone; there exists.three cliques in &
such that each one covers'different edge'in the Ks-clote, say (), Qs, Q3 of orders
q1,q2 and g3, respectively. Then Gy — K3 can be partitioned by the union of
Py~ {Q1,Q2,Q3} and a minimum clique partition of @; deleted an edge of the
Kj-clone for all i = 1,2,3. By Theorem 2.1.3, cp(Q; — ¢;) = ¢; — 1 where Q); covers

an edge ¢; in the K3-clone for all ¢ = 1,2,3. Thus,

ep(Gy—K3) <[P =3+ (1 —1)+(g2—1)+ (¢35 —1) = ep(G2) + 1 + @2+ q3 — 6.
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By Theorem 2.1.11, we have that cp(Glng?) < ep(Gy) + ep(G2) + s — 6 where

s =min{2r,q1 + ¢ + @3 }-

Example 3.3.14. The sharpness of the upper bound in Lemma 3.3.13.

Let I,m,n > 3. Let G be the graph obtained from Kj3(u,v,w), K;, K,, and K,

with an edge in K, K,,, and K,

respectively. Consider th d g - 4 at K3(u,v,w) and 3-clique in

Figure 3.3.1: E‘:;—v harpness-of the-u g Lemma3.3.13
It is easily seen trmt G and K4 have minimum cliﬂe partitions which are type
2 and type 3 %2 respectively. Note
that cp(Ky) = and ep( j mm order ijhe chque containing the
g R T Tl

the K3-@lone. Then r =4 andt =1+ m+n. Since [+ m+n > 3,t > 2r. By

Lemma 3.3.13, we have that
ep(CLE) < ep(Gy) + ep(Ga) +2r =6 =143+ 8 —6=6. (3.3.3)

Let e, e and e3 be edges of the clone of G<1§3K4’ and & a minimum clique par-
tition of Gq;f(‘l. If e1, e; and ez are covered by a 3-clique in &, then cp(G%K‘l) =

| 2| > 1+(1-1)+(m—1)+(n—1)+3 > 1434343 = 10. If ¢;, e, and e; are covered
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by a 4-clique in &, then Cp(G<l§3K4) = |2| > 1+(l-1)+(m—1)+(n—1) > 7. Thus
by the equation (3.3.3), Gq;fﬁ does not have a minimum clique partition which
is type 1 or type 2 with respect to the K3-clone. This implies that e, es and e
must be covered by an n-clique, I-clique and m-clique, respectively, in & of G<1I?3K4_
Since ¥y C & and cp(K, — K3) = 3, cp(G<}?3K4) >cp(G)+ Ky — K3 =3+3=06.

Hence cp(GQI?fQ) =6 = cp(G) + ep(Iy) 48 — 6 where s = min{2r, t}. B

Theorem 3.3.15 follows immediately from Lemmas3.3.9, 3.3.11 and 3.3.13

Theorem 3.3.15. Let G12G2 be any graph at the K3-clone and &; a minimum

clique partition of G; for all = 1, 2=hen

4
v

cp(GECH £ cp(Gl) ep(Ga), ~ 6 +min{oy, oo}
*'f
2saif é 1§ type 2 with respect to the K3-clone,
where for each i =1,2 g; =<
s 32’ =] type 3 with respect to the K3-clone

and s; is the sum of orders of all clzques—ﬁ%—@ containing edges of the Ks-clone.

iy
a4
g

Corollary 3.3.16. For m,n > 3, cp(fm ) < min{2m, 2n} — 4.

Lemma 3.3.17. [11[For2<m <n— 1, ep(K, — 5y) < cp(Kni1 — Kmir).

K<1>K

Lemma 3.3.18. For mum, > 4, all mimamum clique partitions of n qre

type 2 with respectdtol.the Ks=clone.

Proof. Auetym 2 n-andy, £, he-aminimum «clique-partition of Km;f K, By Propo-
sition 2.2.10, & = Z[K,,,| U Z|K,,]. It 77 is type 1 with respect to the Ks-clone,
then by Theorem 3.1.4, cp(Kmngn) = cp(Kp) + ep(K,) — 1 =1, it is impossible
because Km;g Ko is not a complete graph. Suppose that &2 is type 3 with respect
to the K3-clone. By Remark 3.3.3, we have 3 cases.

Case 1. |2[K,,) N P[K,]| = 2. Since the original graphs are complete graphs,

this caes does not occur. Otherwise, & is not a minimum clique partition of

K,<K,
K3
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Case 2. | 2K, )N Z[K,]| = 1. Then Z[K,,| and £[K,,| are clique partitions
of K,, — e and K,, — e, respectively, where e is an edge of the Kj3-clone and
e € P[Ky|NPZ[K,)|. By Theorem2.1.3, | 2[K,,]| > cp(K,, — e) = m — 1 and
| P[K,| > ep(K—€) = n—1. Thus, ep(BmP ) = | 2| = | 2[K,,]|+| 2[K,]| -

1>m—-1)4+(Mn—-1)—1=m+n—32> 2n— 3, which contradicts the upper

: 'fé)@ P + | 2.

K y-clo t loss of generality, we may

bound of cp(Km;{DKn) (see Co
Case 3. |2 K,|N P

Let e, e; and e3 be ed
assume that Z[K,,] 7
E(P;) ={es, e3}. B 3¢
er) =m—1and |Z _‘ ) = n ~2. Thus cp(ngKn)=|9| >

K,,— e and K,,— P; where
6, [Z[Kn]l =2 cp(K

(m—-1)+(n-2)> 2 | i per bound of cp(Km;gKn).

position 2.2.10, & = Z[K,,| U

a minimum clique p

| {
Z|K,|]. By Lemma 3j18 we have that 5@ is type 2 with respect to the K3-clone,

so | 2| = |@ﬁmuﬁ@"w&}9ﬂ% wm ﬂﬁQ with respect to the

Ks-clone, & contains an m- chqus SO L@[Kml— cp(Ky) = 1 and Z[K,] is a
o RELRYFH FEUH W'T'é“'ﬂh&ﬁ St
p(Koil= K2) = (n = 1) =1 = n = 2. Thus op(Km@Ko) = | 27| = |2[K,.]| +

|ZK,)| > ep(Kp) +ep(K, —K3) > 1+ (n—2)=n—1. O



CHAPTER IV

CONCLUSIONS AND OPEN PROBLEMS

4.1 Conclusions

In Chapter 2, we
graph at arbitrary c g | N0 rtition numbers of clique-
preserving glued gr il i _-" ) A aracterization for lower bounds of
clique partition nu raphs is obtained. Some
properties of clique p s at K,-clones are studied in
Chapter 3. Furthermor v e ted clique partition numbers of glued

graphs at Ks-clones and

- ﬁ WTERINETHY ™

Clique partl on numbers of g,hque-preservmg glued %}phs

ARIAINTUNRIINYAY

1. If %3’1<1>G2 is a clique-preserving glued graph, then

cp(G1<>G2) > max{cp(Gr), cp(Ga)}-

2. If G1<I‘{>G2 is a clique-preserving glued graph, then cp(G1<11q>G2) > cp(Gy) +
cp(Gq)—e(H). Moreover, cp(Glng?) = ¢p(Gy)+cp(Ga)—e(H) if and only if

there are minimum clique partitions &, and &, of G; and G, respectively,
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such that for each edge e € E(H), e must be covered by a 2-clique in & or
Py.

Some properties of clique partitions of glued graphs at K,-clones

1. FormZn>r22,cp(Km

ﬁ/(— )(n—r)+2.
2. If Gll?G2 has a mini ' ‘ @ntaﬂning the K,-clone, then GGy

or (G5 has a mini \ ition" ming the K,-clone.

3. If G11<{'>G2 has a taining the K,-clone, then
ep(G12G2)

4. If Gy or G5 has containing the K,-clone, then

Clique partitions of glued g é% s

-

For any graphs|C 1 and Gy cont: aining K as a subg ;1' ph:

L ep(Gh) + cp(sz— 1 < ep(Gr2G2) < cp(Gl) @ p(Ga) +5—2

mhere 8} 94 ﬂ‘?ﬂﬁ?‘lﬁ PRITEYG e oo o omere

all of thélminimum clique partltlons of G1 and GS.

> aw;mmm UBAINYAY

(i) cp(F12C2) = ep(Gh) + ep(Ga) —
(ii) G, or G has a minimum clique partition containing the Ks-clone .

(iii) cp(Gr — K32) = cp(G1) — 1 or ep(Ga — K3) = cp(G2) — 1.

3. If cp(Glng2) = cp(G1) + ep(Ga), then ep(Gy) < ep(Gr — Ks) and ep(Gy) <
cp(Gz — K3).
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4. If Gl;‘(zG2 has a minimum clique partition containing the K5-clone, then

(i) p(12C2) = ep(Gh) + ep(Ga) — 1, or

(ii) ep(Gy — K3) = ¢p(Gr) — 1 and ep(Gy — Ka) = ¢p(Ga) —

5. If ep(G1— K3) = ep(G1) +t; and e¢p(Ga— K3) = cp(G) +to for some integers

L /)/F cp(Ga) + t where t = min{ty,ta}.

ial graphs of orders m and n,

t1 and t,, then cp(GlgG2

respectively. L t clique containing the K-

clone among a and Gs. Then

(i) cp(Glz?Gi) ’ i ly if s =2, and

(ii) CP(GlffGZ ‘ -- ) " ! nd only if s = n.

Clique partitions of glued graphs aty K3-clones

oy S AL A NEL IR e s, o
R SAMATTINYNaY

1. oG 1<]> 2) > ep(Gy) + ep(Gs) — 3.

2. cp(GlgGﬂ = ¢p(Gy) + cp(Gy) — 3 if and only if there are minimum clique
partitions &, and &, of G; and Gs, respectively, such that for each edge

e€ E(H), e must be covered by a 2-clique in &) or Hs.

3. If & is type 1 or type 2 with respect to the K3-clone, then cp(G12G2) >

cp(G1) + cp(Ge) — 1 where & is a minimum clique partition of GlgGZ
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4. If Gy or G5 has a minimum clique partition which is type 1 with respect to

the K3-clone, then cp(G1)+cp(Ge) —3 < cp(Glng2) < ep(Gy) +ep(Ga) — 1.

5. cp(GII%G?) < ¢p(Gh) + ep(Gs) — 6 + min{oy, 02} where for each i = 1,2

2s; if Z;is type 2 with respect to the K3-clone,
g; =
s; if P;is type ct to the K3-clone

s in &; containing edges of the

and s; is the sum of

K3-clone. mm—

6. For m,n > 4, a [ue. partitio 5 of Km;gKn are type 2 with

respect to the \ o N
7. Ford<n < \\
.rord<n< A n .
4.2 Open proble il ) ‘
|

¥
it

We have some open proble 1_ ork as follows:

e __- .
hapter | that a glued ave a new clique. An open

1. We see in C 4P

A
sa

problem is to ﬁy values o bounds Of@e clique partition numbers

of a glued graphsswith a new cliques s

2 sk 8 S AN ANE NS

.1, an open pro nd an upper bound of a clique partition

SRR T

bound can be further investigated.

3. An open problem is to investigate bounds of the clique partition numbers

of glued graphs at K,-clone where n > 4.
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APPENDIX

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a

relation that associates with each edge two vertices (not necessary to be distinct)

W?

pmat a

called its endpoints. The order of ph G, written n(G), is the number of

vertices in G. The number resented by e(G).

A loop is an edge w An multiple edges are edges
having the same palr graph having no loops and

no multiple edges.

"".—'

E(G) and the ass1‘g_o§ment of endf>o1i{tsi is the same as in G. A

-

¥

subgraph H of G is.ah induced subgr (H)], if vertices of V(H)

are adjacent in G[V/( .2 )] whenever they are adjacent.

;1 Sﬁﬁilﬁ’ﬂ’éﬁﬂiph
Ly NI R e

A complete graph is a graph in w 1ch each pair o vertlces 1S Jomed by an edge.
The complete graph with n vertices is denoted by K,.

A graph G is bipartite if V(G) is the union of two disjoint (possible empty)
independent sets called partite set of G A complete bipartite or biclique is a simple
bipartite graph such that two vertices are adjacent if and only if they are different
partite set. When the sets have orders r and s, the (unlabeled) biclique is denoted
K, .
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A path is a simple graph whose vertices can be ordered so that two vertices
are adjacent if and only if they are consecutive in the list.

A spanning subgraph of G is a subgraph with vertex set V (G).

A Hamiltonian path is a spanning subgraph that is a path.

The union of graphs G4y, . .., G, written G1U- - -UGj, is the graph with vertex
set V(G1) U+ -+ UV/(Gy) and edge'set E(GE)U - U E(Gy).

¥
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