
- - ml.L::1f11 n1'UJfl1LUI1 ~W1~\ln1mlJ· .. n1'YllJ1~ lJ

i1m1fln1f1 2552

IMPLICIT LOAD SHARING STRATEGY FOR GRID COMPUTING SYSTEM

Mr.N atthakrit Sanguandikul

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkom University

Academic Year 2009

Copyright of Chulalongkom University

520054

Thesis Title

By

Field of Study

Thesis Advisor

IMPLICIT LOAD SHARING STRATEGY FOR GRID COMPUTING

SYSTEM

Mr.Natthakrit Sanguandikul

Computer Engineering

Natawut Nupairoj, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of

the Requirements for the Doctoral Degree

..... ~: .. ~ ~. Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing)

THESIS COMMITTEE

cj1 ~ ~ Chairman

(Professor Prabhas Chongstitvatana, Ph.D.)

/4f/ .. Thesis Advisor

(Natawut Nup .

... .. f;G.~ Member

(Yunyong Teng-amnuay, Ph.D.)

... d.~ ... t~(p.)~ Member

(Assistant Professor Veera Muangsin, Ph.D.)

.... 4L Member

(Assistant Professor Putchong Uthayopas, Ph.D.)

iv

~int)fI £f ~..:J1'\..4iiTJ~: 1~nT~itl~11..:J1'\..4ttl £JmEJ1EHh'H'llJ1:;lJlJl.h:;1I1~~ ~ LLlJlJn1tl. (IM­

PLICIT LOAD SHARING STRATEGY FOR GRID COMPUTING SYSTEM) u.~
.~ .., .. 'II t ~ ...
u1nlf1 : u. tl1. rnilfiJ ~'-:~Yi 1'i1 '\..4 , 70 ~'\..41.

L ~ u 1 ""~11111tll i''Yl1Yi EJ1n 1U1:;1I1~ ~ ~~1'\..41'\..4111n1l1£J 1 '\..4 1:;lJlJn1tl Li u th"iiu1:;«'Yli111Yi

L 11~1 LU'\..4i U..:J \t1 Lu11~n11~fl~11..:J1'\..4L ,)11111i'n1:;'il1£J ..:J1'\..4111£J 1 '\..4 1:;lJlJ 1~n11itl~11..:J1'\..4 d',rlJ
"'''''!'I ~ 1 '.1 • .., ..1..1 "''''.1 1 .1 ..
~~ 11 Lu'\..4 ~'\..4..:J '\..4~1'\..4u1:;n ulJ ~1f1tlJ 'Yl Ln £J1Yi'\..4nlJ u1:;~'Yl1i111Yi '\..4n11u1:;111~ ~~ ~ u..:J 1:;lJlJ n1tl

'"
u cl1..:JL 1nii1~n11~tl~11..:J1'\..4~..:JLitJn\t1 L~'\..4tll '\..4uiifl,x'\..4 ~n'il:;tltl«'\..4 h ttl £J ti'1..:J~..:J;l1n,) m.!~u1:;Ll1'Yl
if! LL~..:J ~ tlilJ1£J tfl £J fl1..:J t;..:J ~m~rn:; LLt1~ :;R1'\..41l1£J 1 '\..4 1:;lJlJU1:;1I1~ ~ ~~" Yi11 ""1~n11~fl~11..:J1'\..4
1 ... ~ '" ' .., 0 1~·1 ... ~ 1· '"tlflfl,"," ~11 L ~ 1I1:;~lInlJn11,"1111 ". ~ '" 1:;lJlJu1:;1I1~ ~ ~ LLlJlJn1fl L '"tl..:J'il1nfl1111 EJ1n ,"n11LnlJ

11lJ 1111 LL~ :;fl1111L~l-i 1L ~tl t; il~ tl..:J,) il ~ ~U1:; Ll1 'Yli'tl LL ~..:J,r ,"Ltl..:J

1
... ..,.: 'II.... ... ~ -J 1 .., ... 1 .1 1 ,..1,(, ...

111£J ,"..:J1,"1'i1£J'\..4L 11 ~fl,"1L~'\..4tl~tl~~LYiil·D1£J '\..4n11f1tl~'\..4 ;)u1:;Ll1'Yl ~1I'Yl1l"'il11 "~il~~
-J:!It... ..1..1 ... 1 .1 ..I
"D u,"L 1'"" "11 tl~ ~"''"tl'\..4Lu,"~ il~ ~ Ltl £J1'Yl ~11111tl LL~tl..:J tl..:Jfl1111 L 11 '\..4n11u1:;111~ ~~~ D..:J1:;lJlJ'Yl
... , ..1"1, ..: "I. 1 ,~ ... • 1 .: .., • 'IIIt
1Iflil..:J1,"'Yl ~fl1lJ1IDlJ~1I1£J £J..:J ~un11,"," ~D);!~u1:;Ll1'Yl,"£J..:J~11111tltJnLnlJ11lJ1111 ~fl'Yl ~,"fl

LL'iln ..:J1," tfl £J fl1..:J 1 '\..4"11rn:;~ ..:J1'\..4ri1~..:J tJnu1:;1I1~ ~ ~ £I ~ ~1 £J L ~ 91 ~ ~ il..:Jn~11,) £I);! ~rrlil,"L ~,"~..:J~1£J
flil n11\t1 Lul i'tfl £J L~ ~1LU'\..4tl tl..:J 1 i' LLlJlJ~1~ £l..:J ~ il..:J 'Yl1Yi EJ1n1U1:;1I1~ ~ ~ ~1il flfl~..:J lJ1n11LnlJ

11lJ1111,) tl);!~ L ~11 Lfl1l LLt1 il cl1..:J lfl

L itD..:J'il1n,) D);!~rrlil'\..4L ~,",x," L~~11111tltJn\t1Luli'LL 'Yl'\..4,) D);!~ LLlJlJi'tl LL~..:JL~tl £J fl1..:J L 11~..:J
L.i\t1L~,"D1~n11~tl~11..:J1'\..4 ttl £JmEJ1£J LL~:;tl1~ EJ1£J L~ 11 Lfl1l ff1~1lJ LLt1~:;D"ffu1:;n illJ LflW)~ D..:J

1:;lJlJ n1fl L'1f," n11 LU'\..4 1:;lJlJU1:;1I1~ ~,"1tll ~ qJ ~ Lnfl 'il1n n11L~D 11t1 D fI' ~~LfI Df~," 1tl t11..:J ') L,)1

~1 £J rl,", L1 ~1 LLt-J..:J"1I," 1fll ~ ru111£J 1 ,"Lfl1tl'll1£J 1..:J n11..:J, LL~:;fl1111 LLflnf11..:J 'Yl1..:J ~1'\..4U1:;«'Yli111Yi
'"

1 ,"n11U1:;1I1~ ~ ~ LU,"tl," L 11Li~1~ D..:J1:;lJlJn1f!4'\..4i1 £J tU1LLn111~1~ D..:J Lfl1D'll1m~£l1tlU1:;«'Yli111Yi
........, ..I", ... • .., ~..I"1'" • "'. 1 • ~, ..1"1 ~ 1

~D..:J11in11'i1tl~11..:J1,"'Yl ~~,"1L~,"D~~~Yi1i'Yl ~tl'il:;tJn'\..41 ~uLu1£JlJL'Yl£JlJnlJ~~'Yl ~fl'il1n11iil,"') '"

iliifl ~ ~ n11'Ylfl ~ il..:J LL~fl..:J 1 "" L~," 111~n11~tl~11..:J1'\..4 tfl £JmEJ1£J,x'\..4iiu1:;«'Yli111Yi L 'Y11L fi£J1I~1£l
I, ... t ~oI.......r 1

~..:Jn1111in11'i1f!~11..:J1'\..4LLlJlJ Lfl1l fl £J LUYi1:;L1I D 1Ifl1111f1~1fl Lfl ~ D,"~ £l..:J~ D 11~ Lntl~,"111£J '" 1:;lJlJ . ..

Ao ... A ~

~1"1111"'1 1f11n1111f1D1IYi1LflD1

t1n11t;nlf1 2552

4671842421: MAJOR COMPUTER ENGINEERING

KEYWORD: LOAD SHARING STRATEGY / GRID COMPUTING.

v

NATTHAKRIT SANGUANDIKUL : IMPLICIT LOAD SHARING STRATEGY FOR GRID

COMPUTING SYSTEM. THESIS ADVISOR: NATAWUT NUPAIROJ, PH.D., 70 pp.

Grid technology has been extensively introduced as a computing framework for aggregat­

ing the computing resources geographically distributed over the Internet. A single grid system

or a single "Virtual Organization" can be built in the form of multiple heterogeneous comput­

ing clusters from different organizations who share the same objective. Thus, grid system has

unique characteristics such as no direct communication between the computing nodes in different

clusters, large data transfer overhead due to WAN latency, etc.

In order to effectively use these massively computing resources within grid system, we

must employ load sharing strategy to distribute workload in the system. Load sharing strategy is

always one of the key components to overall performance of grid computing system. However,

most strategies assign workload with respect to explicit information. This kind of information

represents the characteristics of the computing resources which are difficult to be collected and

unreliable to be used for making load sharing decision within grid computing system.

In this work, we propose a new metric for making load decision called "implicit informa­

tion". It is a single metric that can represent how fast a computing node can process the submitted

jobs. Moreover, it can be gathered at the coordinator node which is responsible for distributing

workload during the execution. Thus, this information is comprehensive and can be used for

making load decision immediately without any resource models or any monitoring services.

Since implicit information cannot be used as direct substitution of explicit information, we

decide to propose a new implicit strategy and its extensions for addressing unique characteristics

within grid computing environment. We simulate our experiments using network simulator (NS)

to evaluate the performance of our proposed strategy. We then vary the characteristics of both

underlying systems and submitted applications. The obtained results of implicit strategy are com­

pared to those from other load sharing strategy in the past. The simulation results indicate that it

outperforms traditional strategies especially when information inaccuracy occurred in the system.

Department Computer Engineering

Field of study Computer Engineering

Academic year 2009

Student's signature . ~w,.~ .. lb··
Ad ·'· :L __ VIsor s SIgnature

vi

Acknowledgements

To accomplish all of this work, there are many people who provide supports and reviews.

First of all, I would like to thank my advisor, Dr. Natawut Nupairoj, for his grateful advices and

technical knowledge.

The friendly environment inside this department is one of the key that bring me to the

final phase. I would like to thank every people in the department of computer engineering and

Information Systems Engineering Laboratory (ISEL) at Chulalongkom University.

Finally, I would like to thank my parents for their kindly support and love which give me

strength to reach this moment.

Abstract (Thai) . . .

Abstract (English) .

Acknowledgements .

Contents

List of Tables .

List of Figures .

Chapter

I Introduction

1.1 Problem Statement

1.2 Grid Computing .

Contents

1.2.1 Cluster-Based Hierarchical Structure

1.2.2 WAN Communication

1.2.3 Large Computing Heterogeneity . . .

1.3 Load Sharing Strategies

1.3.1 Communication Structure-Based Classification

1.3.2 Load Information-Based Classification

1.3.3 Self-Scheduling Strategy .

1.4 Objectives

1.5 Scope of the Work

1.6 Organization ...

II Backgrounds and Assumptions

2.1 Assumptions

2.1.1 System Environments

2.1.2 Application Model.

2.1.3 Sensitivity Model of Load Information

. '

2.2 The Analysis of Stage-Based Self-Scheduling Strategies

2.2.1 Prediction Model of Parallel Runtime

2.2.2 The Behavior of Factoring and Descendants

2.2.3 The Performance Analysis of Weighted Factoring .

III Consuming Rate

3.1 Definition of Consuming Rate.

3.2 Behavior of Consuming Rate .

Page

iv

.

v

vi

vii

x

xi

1
1

2

3

3

4

4

5

7

7

8

8

9

10
10

10

11

12

13

14

15

16

21
21

21

3.2.1 Consuming Rate and Number of Computing Nodes in Clusters 22

3.3 Limitations of Consuming Rate. 22

3.3.1 Application Specific . 22

3.3.2 Require Certain Amount of Unit Tasks to Achieve Acceptable Accuracy . 23

3.3.3 Inaccurate Estimation of the Computing Power of Coordinator Node 23

3.3.4 Non-Reusable among Other Coordinator Nodes 23

3.4 Averaged Consuming Rate 23

Chapter

3.5 Conclusion

IV Implicit Load Sharing Strategy

4.1 Phases of Computation in Implicit Strategy

4.1.1 Increasing Phase

4.1.2 Decreasing Phase

4.2 Unique Characteristics of Implicit Strategy

4.2.1 Black Box Based Self-Scheduling Strategy .

4.2.2 Addressing Sensitivity of Load Information

4.2.3 Phase-Based Adaptive Strategy .

4.3 Conclusion

V The Performance Evaluation of Implicit Strategy

5.1 The Prediction Model for Implicit Strategy

5.2 The Simulated Experiments

viii

Page

23

25

25

25

26

27

27

27

27

28

... 29

29

33

5.2.1 Load Sharing Strategies with Different Communication Structures 33

5.2.2 Load Sharing Strategies Utilizing Explicit Information 35

5.3 Conclusion

VI Extensions of Implicit Strategy

6.1 Hierarchical Structure

6.1.1 CRSS Extension for Hierarchical Structure.

6.1 .2 Performance Evaluation.

6.2 Large Computing Heterogeneity

6.2.1 CRSS Extension for Large Computing Heterogeneity .

6.2.2 Performance Evaluation

36

37
37

37

38

39

39

40

6.3 Inaccurate Information 40

6.3.1 CRSS Extension for Inaccurate Information 41

6.3.1.1 Basic Algorithm . 42

6.3.1.2 Stage Warping . . 44

6.3 .2 Performance Evaluation . 45

6.4 Application Classes 47

6.4.1 Performance Evaluation. . 47

6.4.1.1 Applications with Different Number of Unit Tasks 47

6.4.1.2 Applications with Different Workload Patterns over Homo-

geneous System . 48

6.4.1 .3 Applications with Different Workload Patterns over Hetero-

geneous System 49

6.5 Conclusion 51

VII Related Works 52

ix

Chapter Page

VIIConclusion . S4

References . .. 55

Biography . 58

List of Tables

Table

2.1 Related parameters in the system environment.

2.2 Related pa;ameters of Application Model. . . .

2.3 List of related variables in prediction model. .

2.4 The parameters for simulating W F S S in single cluster environment.

5.1 The parameters for simulating C RS S in single cluster environment. .

x

Page

11

11

15

· 19

33

5.2 The system parameters for evaluating the effect of number of computing nodes. 34

5.3 The parameters for simulating single cluster environment.

6.1 The parameters for simulating multiple cluster environment. .. .

6.2 The parameters for simulating highly heterogeneous environment.

6.3 The parameters for evaluating the performance of CRBS - SW.

. 35

38

· 40

· 46

6.4 The parameters for evaluating the effect of different application classes. 47

List of Figures

Figure

1.1 An example of computing grid.

1.2 An example of computing cluster..

1.3 Hierarchical structure in grid computing system.

1.4 Classes of Load Sharing Strategies . .

1.5 Centralized load sharing strategy.

1.6 Distributed load sharing strategy.

1.7 HybridlHierarchicalload sharing strategy.

1.8 Behavior of self-scheduling strategies. . .

1.9 Workload Allocation of Stage-Based Self-Scheduling Strategy . .

2.1 Simulated grid computing environment.

2.2 Workload patterns of four different application classes.

2.3 Parallel runtime of WFSS with different information sensitivities.

2.4 Four parts of prediction model.

2.5 Chunk size for each request of four clusters using W F SS.
2.6 Four parts of prediction model for W FSS
2.7 The parallel runtime of W FSS (rxll =(>.03125)

2.8 The parallel runtime of W F SS (rxll=O.5)

xi

Page

2

3

4

5

5

6

6

8

8

10

12

13

14

16

17

. 19

19

3.1 The comparison of consuming rate and the actual aggregated computing power in

a 64-node cluster.

4.1 An example of stage sequence in implicit strategy.

4.2 The chunk size per request of four clusters during runtime.

5.1 Four parts of prediction model for C RS S
5.2 The parallel runtime of CRSS (rxll=O.03125)

5.3 The parallel runtime of CRSS (rxll=O.5)

5.4 Parallel runtimes as a function of computing nodes.

5.5 Parallel runtimes with varied estimation gap ratio. .

5.6 Parallel runtimes with varied computing ratio

6.1 Hierarchical structure in grid computing environment.

6.2 Parallel runtime with varied estimation gap ratio. . . .

6.3 Parallel runtime with varied computing ratio.

6.4 Parallel runtime of implicit strategies with different relative power ..

6.5 Chunk assignment of CRSS
6.6 Stage number during runtime of CRSS
6.7 Stage number during runtime of AW FSS

22

25

26

30

33

33

34

35

36

37

38

39

40

41

41

. 41

6.8 Predefined amount of workload allocated in each stage during the increasing phase.. 43

6.9 Predefined amount of workload allocated in each stage during the decreasing phase.. 43

6.10 Chunk size assignment of C RS S - SW in ideal case. . 44

6.11 Stage number during runtime of CRSS - SW. 45

6.12 Utilization graph of CRSS and CRSS - SW 46

6.13 Parallel runtime of AW FSS, CRSS and CRSS - SW with varied estimation gap. 46

6.14 Parallel runtime of AW FSS, CRSS and CRSS - SW with different computing

heterogeneity 47

xii

Page

6.15 Parallel runtime of application with different unit tasks. .. 48

6.l6 Parallel runtime of various applications (Gx = 0) . . . 48

6.17 Parallel runtime of various applications (Gx = 0.3) 49

6.18 Parallel runtime of application with uniform pattern. . . 49

6.19 Parallel runtime of application with increasing pattern . . 50

6.20 Parallel runtime of application with decreasing pattern. 50

6.21 Parallel runtime of application with random pattern. . . 51

CHAPTER I

INTRODUCTION

1.1 Problem Statement

Grid technology [1][2] is introduced as a computing framework for aggregating the com­

puting resources geographically distributed over the Internet working together in the so called

"virtual organization". A single grid system can be built in the form of multiple heterogeneous

computing clusters with more than a thousand of computing nodes. Thus, grid has unique charac­

teristics such as no direct communication between the computing nodes in different clusters, large

WAN latency, etc.

In order to effectively use these massively computing resources, we must employ task

scheduling strategy to distribute workload in the system. Although many scheduling strategies

have been proposed, the load sharing strategy is considered one of the oldest and the most im­

portant research topics in the field of distributed computing [3][4][5] . This strategy states that the

performance of the distributed system can be increased by assigning an appropriate amount of

workload to keep every computing resource busy until the end of computation. Hence, the under­

lying system will be fully utilized all the time. To address computing heterogeneity in grid system,

many load sharing strategies have been proposed [6][7][8][9][10][11] . However, these strategies

make load decision depending on information which directly represents various characteristics of

the computing resources such as the speed of an underlying processors, available memory, and

communication bandwidth. We refer to this type of information as "explicit information" as they

can be explicitly determined even before submitting jobs. Although explicit information is easy

to be obtained and understood, each individual information is often insufficient for making load

decision. Thus, it usually needs some resource models for combining multiple explicit informa­

tion together as a single metric [12][13] . As the performance of each computing node is highly

related to the submitted jobs, it is very difficult to find a sophisticated model that can truly predict

the performance of each resource without the complete information of computing resources and

submitted works. Given the growing complexity in the computing environment and application,

this methodology is no longer practical.

In this work, we propose a new load sharing strategy for grid computing. To solve the afore­

mentioned difficulties, our strategy utilizes a new metric based on the load information called

"implicit information". Our metric is a single metric that can represent how fast a computing

node can process the submitted jobs. Thus, it is comprehensive and can be used for making load

decision immediately without any resource models or any monitoring service. Moreover, it can

be calculated within the coordinator node which is responsible for distributing workload. This

implicit information can be obtained during the execution. Thus, it is suitable for capturing the

dynamic behavior of the computing system. The implicit information has been mentioned for per­

forming implicit coscheduling between clusters in [14]. However, it focuses on understanding the

communication behavior, not load sharing. Load sharing strategy for grid computing environment

proposed in [15] focuses on how to determine which system is homogeneous or heterogeneous.

Then, it will assign portion of workload during the first phase according to the computing het-

. ~

2

erogeneity and weighted value of each computing resource. While the proposed strategy claims

that it is suitable for grid computing system, this strategy requires an accurate information of the

computing power of each resource for making load decision. Therefore, information inaccuracy

of explicit information can reduce its overall performance. In addition, we also extend an implicit

strategy to address main characteristics of grid computing system such as cluster-based hierar­

chical system, communication latency in WAN, heterogeneity within computing resources, and

inaccurate information.

1.2 Grid Computing

Even though grid technology has just been recently introduced to the field of distributed

computing, it receives many attentions from researchers throughout the world. This technology

focuses on aggregating the physically distributed computing resources over the Internet. These

resources can be located in different organizations who want to share their computing resources.

With this approach, the organizations that join the same virtual organization can have a large scale

computing power for their computing-intensive application. Moreover, by sharing all computing

resources in the organization together, the overall utilization can be increased because most of

the computers usually idle while some of them overloaded. One important difference between

grid technology and peer-to-peer application is that the owner of the computing resources (e.g.

system administrators) can still have control over their resources. Every administrator can specify

the amount of shared resources for each user from different organizations. There are many both

academic and business organizations who already implemented grid technology for sharing their

resources. The number of participating party can be expected larger and larger in the future .

Although there are also other different purposes of using grid technology such as data

grid and access grid which is intended for aggregating a large amount of data or control the re­

source usage within a large collaboration group, in this work we will focus on the computing grid

only. The infrastructure of computing grid usually consists of the computing clusters over WAN.

These clusters can be located at different academic laboratories or some business departments.

An example of grid computing environment is shown in Fig. 1.1 .

Figure 1.1: An example of computing grid.

From Fig. 1.1, we can see that even though we have tremendous amount of computing

power available for the user in the virtual organization, this structure also raises some restrictions

and drawbacks to the computing system. In this work, we focus on three main characteristics of

grid computing consisting of cluster-based hierarchical structure, WAN communication, and large

1.2.1 Cluster-Based Hierarchical Structure

In order to build a high performance computing system with low budget, the clustering

concept is introduced. Each computing cluster can be built by connecting a large number of

computing nodes together within high speed network making them virtually seen as a single

computing resource. The Beowulf infrastructure [16] has been extensively adopted for building

the computing cluster. Figure 1.2 illustrates an example of the computing cluster.

computing node 1 computing noele 2 computing node n

Figure 1.2: An example of computing cluster.

As presented in Fig. 1.2, there are n computing nodes connected to each other and to the

front-end over LAN. The front-end connects to WAN for handling inter-cluster communica­

tions. To utilize computing cluster, users must first submit their applications at the front-end and

the front-end will assign workload to each computing node according to the load distribution pol­

icy of the scheduler. With this methodology, the users will only see an entire cluster as merely a

single computer with a large computing power available. However, this behavior also introduces

new restriction that in order to maintain the transparency within the cluster all the communication

between the worker nodes in different clusters must perform through their front-end nodes only.

Since grid computing system consists of multiple clusters, its communication topology can

be in the form of hierarchical structure even in the same organization. Figure 1.3 illustrates an

example organization which consists of multiple divisions, branches, and sections. Thus, the

communication structure of grid system restricts not only how workload is exchanged within

cluster, but also between clusters as well.

1.2.2 WAN Communication

Since grid technology has been proposed for aggregating computing resources from dif­

ferent organizations, the communication overhead can be large due to W AN. An amount of

inter-cluster communications will be an important factor for defining load sharing strategies. In

4

Figure 1.3: Hierarchical structure in grid computing system.

addition, information inaccuracy can also occur as a result of out-dated information [17]. There­

fore, this behavior will degrade the performance of the traditional strategies that require an accu­

rate information of the underlying system.

1.2.3 Large Computing Heterogeneity

The difference in computing power or computing heterogeneity within grid computing sys­

tem will increase overtime due to grid's openness. This characteristic will intensify the effect of

load imbalance at the end of computation. The remaining workload in some slow clusters can

inflict a large amount of additional parallel runtime despite of the total computing power which

has been dedicated to the submitted application.

1.3 Load Sharing Strategies

The main concept of the load sharing strategy focuses on assigning proper amount of work­

load to computing nodes for obtaining an optimal resource utilization, throughput, or response

time. This strategy utilizes multiple resources simultaneously instead of using single resource to

complete the works. It can be further extended to increase the reliability of an underlying system

through redundant execution. The implementations of load sharing can be as a dedicated hardware

or program and has been commonly used to manage workload in computer clusters, especially

high-availablity cluster. The performance of load sharing strategy can be varied depending on

types of information being used for making load decision and how computing resources exchange

their workload information. Note that, throughout this work, we use the term "load sharing" and

"load balancing" interchangeably. We prefer to use "load sharing" because the intention of our

proposed strategy is to optimize the parallel runtime by distributing different amounts of workload

to computation nodes with respect to their computing capacities.

Load sharing strategies can be classified using two aspects, the communication structure

and load information about computing resources as shown in Fig. 1.4. Communication structure

classifies strategies based on how they exchange load information. This can greatly effect the

communication overhead and the number of neighbor nodes during workload assignment. The

5

Figure 1.4: Classes of Load Sharing Strategies.

quality of load decision highly depends on how coordinator node captures the current status of

an underlying system. In addition, types of load information for making load decision also effect

the performance of load sharing strategies. Some metrics can be gathered easily while others are

more sensitive to inaccurate information.

1.3.1 Communication Structure-Based Classification

By considering how each computing resource exchanges information and workload, we

can divide load sharing strategies into three classes consisting of centralized, distributed, and

hybrid/hierarchical strategy [18][19].

e1 e2 e3 en

Figure 1.5: Centralized load sharing strategy.

As shown in Fig. 1.5, the centralized strategy [20] aggregates all related system information

into the central coordinating node. Therefore, the central coordinating node has all information

it needs to make decision. However, this class of load sharing strategy suffers from a contention

problem at the central coordinating node in a large-scale computing system. Distributed strategy

removes this contention problem by specifying the neighbor nodes for each computing resource.

The communication model of distributed load sharing strategy is illustrated in Fig. 1.6.

Using the distributed strategy [21][22][23][24], the computing resources exchange the cur­

rent information and workload with their neighbors during computation. Although this distributed

strategy can remove the contention problem, it fails to capture the overall behavior of the comput­

ing system since each computing node makes load decision based on its local information only.

6

Figure 1.6: Distributed load sharing strategy.

This problem of local view can be reduced by specifying the random neighbor nodes. However,

this behavior raises another restriction that each computing node must be able to directly commu­

nicating with each other over the network. This is not true in grid system since most computing

resources are the computing clusters. Every computing node in each cluster must communicate

through its predefined front-end . Consequently, the performance of this strategy decreases be­

cause of the contention at the front-end and from high latency in WAN between each cluster.

Figure 1.7: HybridlHierarchicalload sharing strategy.

Hybrid strategy (or hierarchical strategy) tries to combine centralized and distributed strat­

egy together by defining a tree-like structure. Each branch in the tree represents a sub-coordinating

node. This node is responsible for assigning workload to its successor in the tree structure which

could be either another sub-coordinating node or the computing node. The current status of the

entire system can be monitored at the root node which can be one of the computing resources or

just an information server. This strategy can reduce the contention problem at the coordinating

nodes while the coordinator node at the root of the tree can still capture the overall behavior of

the computing system. Many related works [25][26][27] try to specify the optimal virtual tree

structure over computing system. These strategies can achieve good parallel runtime since the

computing nodes with the large available computing power are usually sharing the same parents

in tree structure with the computing node with small computing power. However, this behavior

often results in direct communication between nodes across multiple clust~s which is not feasible

in grid system.

7

1.3.2 Load Information-Based Classification

Load information of the computing resources can greatly effect the parallel performance

of load sharing strategy. Thus, we can classify load sharing strategies into two classes: explicit

strategies and implicit strategies. The explicit strategies refer to the traditional load sharing

strategies which perform load decision based on explicit information of the computing resources.

The explicit information represents various physical-oriented characteristics of the computing

system such as processor speed, memory capacity, or current workload. To utilize explicit infor­

mation, most explicit strategies define resource model for aggregating explicit information into

single usable value. In contrast, the implicit strategies use more subtle approach. Instead of us­

ing physical information, the implicit strategies base their load decisions on implicit information

which is basically the job processing speeds observed at the coordinator node. Implicit load shar­

ing strategies proposed in this work is simple, yet effective. By utilizing implicit information, we

can overcome the limitations founded in most self-scheduling strategies in the past. More details

about the explicit and implicit information can be found in the subsequence sections.

1.3.3 Self-Scheduling Strategy

Self-scheduling strategy represents a large class of dynamic loop scheduling strategies.

With this strategy, the coordinator node will determine when and which computing nodes to send

workload to during runtime. Any idle nodes must make a request back to the coordinator again

when it already finished previously assigned workload. The performance of self-scheduling strat­

egy can be further improved by defining how the chunk sizes will be changed during an execution.

Load imbalance can be occurred when some nodes are still waiting for more work to arrive. Any

strategies that assign workload this way are considered to be self-scheduling strategy. This strat­

egy can utilize different communication topologies for distributing workload although it often

uses centralized communication structure. Moreover, this strategy can make load decision based

on both explicit and implicit information. Therefore, this strategy can be classified into multi­

ple subclasses according to how it is implemented. Due to its strength and simplicity, there are

many load sharing strategies which based on this strategy. Figure 1.8 illustrates the behavior of

self-scheduling strategy.

There is one class of self-scheduling strategy which is famous for its robustness called

stage-based self-scheduling strategy. This strategy first allocates a portion of workload for each

stage. These workload will be further divided according to the computing power of the requesting

node. Thus, every computing node will tend to finish its previously assigned work at the same

time during each stage. Load imbalance at the end of computation can be reduced with this

concept. Figure 1.9 illustrates how stage-based self-scheduling strategy assigns workload during

each stage. There are many strategies which can be considered as stage-based self-scheduling

strategy such as F S S, W F S S, A W F S S including our implicit strategy (C RS S) as well. More

details on these strategies will be provided later in the next chapter while other self-scheduling

strategies will be summarized in Chapter 7.

Tolal Workload (U)

Alocaled
For Each Slage (u.)

Allocaled
F or Each Node (K,.)

Un~ Task

Coordinator Node

ReqUeSITa~
;f Ass¥Jn Task

••••••••• c1 c2 c3
(Idle) (Busy) (Busy)

en
(Busy)

Figure 1.8: Behavior of self-scheduling strategies.

~U

Ku

.... u.

Figure 1.9: Workload Allocation of Stage-Based Self-Scheduling Strategy.

1.4 Objectives

8

The objective of this dissertation is to define a practical load sharing strategy which is

simple to use and suitable for grid computing environment. Our purposed strategy must also be

able to handle an information inaccuracy or different kinds of fluctuations within the computing

system.

1.5 Scope of the Work

This work will define a new load sharing strategy which utilizes implicit information. We

assume grid computing system as the collection of computing clusters connected together using

wide-area network. We focus on various factors which can effect the performance of load sharing

such as computing heterogeneity, communication overhead, inaccurate information, and different

classes of applications. Both mathematic and simulations are defined to evaluate the performance

of our proposed strategy. The simulated application will be submitted to the computing system

at the coordinator node with every unit task specified. Although our proposed strategy can be

extended for different type of applications with unique characteristics such as branch-and-bound

applications, load sharing strategy presented in the work is for computing intensive application

9

with independent unit tasks only.

1.6 Organization

This dissertation is organized as follows: In Chapter 2, we talk about backgrounds and

assumptions about system environments, prediction model, and behavior of explicit strategies.

Chapter 3 describes our proposed implicit information and its behavior. Implicit strategy utilizing

implicit information is introduced in Chapter 4 while its performance analysis will be described in

Chapter 5. Chapter 6 talks about the extensions for implicit strategy addressing the unique charac­

teristics of grid computing system and submitted applications. The related works are summarized

in Chapter 7 before we conclude our work in Chapter 8.

CHAPTER II

BACKGROUNDS AND ASSUMPTIONS

2.1 Assumptions

In our work, we assume that the system is a grid-based environment, consisting of multiple

clusters working together over W AN. We also assume that each cluster assigns one of its node to

become the front-end node responsible for distributing workload to other computing nodes in the

same cluster. Moreover, one of the front-end nodes will also serve as the coordinator node which

manages the submitted jobs and assigns workload to every cluster.

2.1.1 System Environments

Cluster Ct

Figure 2.1: Simulated grid computing environment.

Grid system consists of N computing nodes which will be grouped together into L clusters

{C1. C2, .. . , Cd. These computing clusters communicate with each other over WAN with

latency and bandwidth specified as ow and f3w respectively. The communication within each

cluster will be defined using CtL and f3L for representing latency and bandwidth within LAN.

To simplifying our work, we assume that the overheads of the intra-cluster communication are

the same in all clusters. cluster Ci consists of ni computing nodes where Cij represents node j

in cluster i. We specify Pi to be the aggregated computing power in Ci. The computing power

of node j in cluster i (Pij) will be specified in comparison with the total computing power P

according to Tij. Thus:

L

P = LPi
i=l

L n,

LLPij (2.1)
i=l j=l

11

All parameters related to simulated computing environment are shown in Table 2.1.

Table 2.1: Related parameters in the system environment.

Variables Definitions
L Total number of computing clusters
Ci Computing cluster i
Cij Computing node j in cluster i
N Total computing nodes
ni Number of computing nodes in cluster i
p Total computing power in grid system
Pi Computing power of cluster i
Pij Computing power of node j in cluster i
~ Computing ratio of cluster i
Tij Computing ratio of node j in cluster i
Ow Inter-cluster latency
{3w Inter-cluster bandwidth
OL Intra-cluster latency
{3L Intra-cluster bandwidth

2.1.2 Application Model

Throughout this work, we focus mainly on a computing-intensive application which con­

sists of a large number of independent unit tasks. We assume that there is only one submitted

application for each simulated experiment. Grid user submits hislher application to the coordina­

tor node. Then, the coordinator node will distribute these unit tasks to other clusters and its local

computing nodes. There are U unit tasks per application. The total computation and communica­

tion size is represent as W and V respectively. Note that the computation size of each unit task

can be seen as a weighted value effecting how long each computing resource will take to finish

each task. The computing resource with computing power specified as one task per second means

it can finish the unit task with computation size specified as one within one second. The larger

computation size will result as an additional time for the same computing resource to finish it.

The related parameters being used throughout this work are shown in Table 2.2.

Table 2.2: Related parameters of Application Model.

Variables Definitions
U Total number of tasks in submitted application
W Computation size of submitted application
Wq Computation size of each unit task
V Communication size of submitted application
Vq Communication size of each unit task

To model various application types, we define four distinct classes of applications [28] .

Each application class consists of multiple independent tasks with different computation size of

each task (Wq) based on predefined workload pattern. The predefined workload pattern can be

either uniform, increasing, decreasing, or random distribution, which can represent popular appli­

cations such as Matrix Multiplication, SOR, Reverse Adjoint Convolution, LU Decomposition,

and Gauss Jordan Elimination, respectively. Figure 2.2 illustrates the workload patterns of all four

application classes.

12

1) Uniform 2)ln lng

3) OecrMSing 4) Random

Figure 2.2: Workload patterns of four different application classes.

For application with uniform pattern, all unit tasks have the same constant task size, which

is {Wq = W jUl . This is not the case for the application with increasing workload pattern, whose

unit task sizes are bigger near the end of computation. On the contrary, the application with

decreasing workload pattern will have smaller computation size near the end of computation. The

exponential random distribution will be used when simulating the application class with random

distribution pattern. In order to ensure the fairness in our simulated experiment, we specify the

total computation size of every application class to be the same. Moreover, we also evaluate

the performance of load sharing strategies when the number of unit tasks is limited. Finally, we

change the computing heterogeneity of an underlying system to study the behavior of load sharing

strategies with different applications.

2.1.3 Sensitivity Model of Load Information

Typically, every load sharing strategy makes a load sharing decision based on the estimated

computing power of the computing resources. We define Pij to represent the estimated computing

power of node Cij. On one hand, some strategies use static Pij estimated from pre-determined

CPU and memory capacities. On the other hand, many strategies measure Pij during run-time.

Therefore, Pij can be different from the actual value, Pij ' We refer to this difference as the

sensitivity of load information. This sensitivity value plays an important role in load sharing

strategies as it can greatly effect their performance. To model information sensitivity, we define

estimation gap ratio (9ij) to represent the ratio of incorrect estimation of the computing power at

node Cij . An estimated computing power of node Cij (Pij) can be calculated as:

Pij = (1 + 9ij) * Pij (2.2)

The estimated total computing power (F) can then be calculated as:

L n;

F= EEpij (2.3)
i =1 j=1

13

To illustrate the effect of infonnation sensitivity, Fig. 2.3 shows the parallel runtime of

explicit strategy (W F SS) when the infonnation sensitivity about one computing node (gxy) is

varied.

., -0,5

, ,
, ,

:~
, ,
, ,
, , ,
, ,
, ,

o

""
0,5

~

./

Figure 2.3: Parallel runtime ofWFSS with'different information sensitivities.

From Fig. 2.3, we can see that W F S S will achieve its best result when there is no informa­

tion sensitivity occurring in the computing system (gxy is specified as zero). The obtained parallel

runtime will become worse when the infonnation sensitivity about node y in cluster x (gxy) ei­

ther increases or decreases. The positive/negative value of infonnation sensitivity will result as

an over/under-estimation about the computing power of a specified node. Given a homogeneous

system, an over-estimation about the computing power of one computing node tends to effect

overall perfonnance more than when we under-estimates it because other computing nodes must

wait until an over-estimated node to finish all of its workload at the end of computation. Thus, an

amount of idle computing power will be large in these cases.

2.2 The Analysis of Stage-Based Self-Scheduling Strategies

In this work, we propose a mathematical model to evaluate the parallel perfonnance of a

load sharing strategy. To simplify our model, we assume that the system has only one cluster

called cluster ex available. In this case, L = 1 and P = Px' The estimated computing powers

of all other computing nodes except computing node cxy will always be correct. Therefore, there

will be only one computing node which is incorrectly estimated for its computing power. We will

use cxy to represent this node throughout an entire work. As for an infonnation sensitivity (gxy) ,

we will use only non-negative values when we evaluate the perfonnance of W F S S because load

• infonnation about an underlying system is usually in the fonn of an upper-bound value resulting

as an over-estimation about the available computing power and explicit strategies also exhibits the

same behavior with both positive and negative values of 9xy . Thus:

~ { Pxj if j =f. y
Pxj = (1 + 9xj) * Pxj otherwise

(2.4)

This assumption will effect the parallel runtime depending on which load sharing strategy

is being used. Moreover, We also assume that the file size of submitted job is small with respect

14

to the communication bandwidth. Therefore, the communication overhead is very short and can

be omitted.

2.2.1 Prediction Model of Parallel Runtime

The entire execution of a stage-based self-scheduling strategy is divided into stages. In

each stage, the coordinator node assigns workload to a computing node with respect to the total

chunk size of workload remaining in the current stage and the weighted value of that particular

node. The workload that has already been assigned to one node cannot be moved to another node.

As the estimated computing power is often inaccurate, there might be some nodes stay idle while

other nodes are busy near the end of computation. This leads to non-optimal parallel runtime.

Let Cxy be the node whose Pxy is overestimated Pxy > Pxy and all other nodes have accurate

estimation. In this case, cxy will finish its works later than the rest. Thus, the execution stages of

self-scheduling algorithm can be grouped into 4 parts as shown in Figure 2.4. Note that the box

in the figure represents a number of unit tasks assigned during each stage. The boxes with dark

color indicate the works belong to cxy , which may be executed at the other nodes near the end of

computation.

~
• • • • • • • • • • • • • •

Other Nodes • • • • • • • • • • • •

Overestimated Node I I ...
I (C'..y)

(a) (c) (d)

Figure 2.4: Four parts of prediction model.

a. Parallel runtime until all nodes, except cxy , finish their portions of workload (tA)

b. Parallel runtime for cxy to finish its current stage while other normal nodes execute work

from cxy's portion (tB)

c. Parallel runtime for cxy to finish its subsequence stage while other normal node continue to

execute more works from cxy's portion (tc)

d. Parallel runtime for cx y to finish its last stage (tD)

The total parallel runtime (T) can be calculated as:

(2.5)

15

Note that the parallel runtime in part C will occur only when there are enough workload in

CXlI's portion that can keep other nodes busy until CXlI execute the last stage or else this part will

be omitted. The related variables used in this model is shown in Table 2.3.

Table 2.3: List of related variables in prediction model.

Variable Names Meaning
T Total parallel runtime

t(A/B/C/D) Parallel runtime in part A,B,C,D
I

w:z;i,(A/ B/C/ D) Remaining tasks in node i of cluster x during part A,B,C,D
I

W(A/B/C/D) Remaining tasks at the beginning of part A,B,C,D

W:Z;i,(A/ B/C/ D) Expected tasks for node i of cluster x during part A,B,C,D

W(AIBICID) Expected tasks for every node during part A,B,C,D

2.2.2 The Behavior of Factoring and Descendants

In this work, we choose one of the load sharing strategies which is famous for the robustness

called "Factoring" (FSS) [29] and its descendants to represent explicit strategy. This strategy

proposes new notation called stage. Every computing node will receive equal chunk size during

each stage. The total chunk size distributed during stage s (us) can be obtained as:

(2.6)

Given w~ as the remaining unit tasks at the beginning of stage s, we can define a decreasing

stage size between each stage. The parameter {) is computed by a probability distribution or is

suboptimally chosen as {) = 2. Since FSS was proposed for homogeneous system where every

computing node has the same computing power, the chunk size assigned for node j of cluster i

during stage s (Kij,s) can be calculated as:

(2.7)

From Eq. (2.7), we can see that FSS distributes the largest chunk in the first stage and

will decreases the chunk size in the subsequence stages with an equal proportion. During each

stage, every processor will receive an equal chunk size of workload. F S S can reduce communi­

cation overhead by sending large chunks at the beginning while it achieves sub-optimal runtime

by sending small chunks near the end of computation.

To address heterogeneity within the computing system, ''Weighted Factoring" (W F S S) [30]

is proposed as an extension of FSS. In this strategy, the amount of total unit tasks allocated dur­

ing each stage is the same as defined in FSS (using the same us). However, unlike FSS, W FSS
can be considered as explicit strategy since it uses explicit information of the computing resources

to further assign workload allocated within each stage.

Using W F S S, the chunk size of the first request is the largest and decreases toward the

4000

3500

3000

1000

500

o
o

"-.....
~
~

"' ~ ---- ,.

500 1000

P Runtime

I--Clua .. ,. ___ CIuaIerB

~
~

1500 2000

Figure 2.5: Chunk size for each request of four clusters using W F 88.

16

end of computation. From Fig. 2.5. we can see that each cluster receives a decreasing chunk size

according to its available computing power. For example, cluster D has the computing power 4

times larger than cluster A.

As an extension of W F S S for addressing inaccurate estimator. "Adaptive Weighted Factor­

ing" (AW F S S) [31] has been introduced. This strategy further extends W F S S by introducing

new weighted value called "Weighted Average Performance". This weighted value (W APij,k) of

node j of cluster i during stage k can be calculated as follows:

(2.8)

Where t ij,s is an execution time for node j from cluster i to finish all K ij,s iterations in stage

s. This weighted value will be re-calculated every stage using the newly obtained computing rates

of each resource. Therefore. the explicit information will be used as a weighed value during

the first stage only. With this average value. AW FSS can address the dynamic behavior of

the heterogeneous computing system. However. since A W F S S assigns half of the available

workload during the first stage. the problem of an inaccurate explicit information can still effect

the performance of this strategy.

For simplicity. we will analyze the behavior of W F SS as an example of explicit strategy.

Both W F S Sand AW F S S will be simulated and compared with our implicit strategy later in the

following chapters.

2.2.3 The Performance Analysis of Weighted Factoring

The behavior of W F S S highly depends on the accuracy of the computing power being used

for making load sharing decision. We will use W FSS as a representative of explicit strategies.

By using our prediction model. we can predict the parallel runtime of W F S S and identify the

factors that affect the parallel runtime of explicit strategy. The behavior of W F S S within our

prediction model is illustrated in Figure 2.6

Other Nodes

Overestimated Node ..
(cxy) • ...

(a)

• • • • • •

(c)

• • • • • •

(d)

Figure 2.6: Four parts of prediction model for W F BB.

a. Parallel runtime until all nodes, except CXI/' finish their portions of workload (tA)

17

Let t A be the time that this part ends. Since we assume that only the computing power of

CXI/ has been overestimated, other nodes ,beside Cxl/' will finish their works at the same time.

Thus, we can calculate tA by considering the completion time of any nodes, except Cxl/.

(2.9)

b. Parallel runtime for CXI/ to finish its current stage while other normal nodes execute work

from CXI/'s portion (tB)

To determine an amount of workload remaining in CXI/ during part B, we must first find

the stage that CXI/ is in when part B starts. Given the decreasing stage size of W PBS with

constant ratio as 2, we have the following equation:

PXI/ = 1
PXI/ * (1 - (1/2)m)

(2.10)

Based on equation(2.1 0), the stage of CXI/ when part B starts (and finishes) is r m 1- Thus:

(2.11)

where

(2.12)

The amount of unit tasks necessary for every node to stay busy during part B (WB) becomes:

(2.13)

If the remaining tasks in part B is less than WB, the execution stops with parallel runtime

equals to the parallel runtime in A and B only.

c. Parallel runtime for CXI/ to finish its subsequence stage while other normal node continue to

execute more works from CXI/'s portion (tc)

18

We will calculate how many stages that node CXlI can go further while every node is busy.

To begin with, the remaining tasks in part C (We)can be calculated as:

(2.14)

Since W PSS always reduces stage size by half every stage, we can calculate the amount

of work which will be allocated to CXlI given the number of stages that has been executed.

Note that part C start from stage r m 1 + 1 which can be calculated from (2.10). An amount

of workload assigned to CXlI during stage j in part C can be calculated as:

WxlI,j = (1/2)j * N * P; (2.15)

Therefore, we can find the last stage of node CXlI that every node is still busy before phase

D starts at l n J by comparing with we as:

w' ___ ~ __ ---,=e,--____ ----::- = 1

~j=m+1 [WxlI,j + (W;zV~i) * (P - PXlI)]

(2.16)

If there is not enough tasks for every node to stay busy, all of the remaining tasks will be

executed in phase D. An amount of work necessary for every node to stay busy and total

parallel runtime in phase C can be obtained as follows:

LnJ [-] we = L WxlI,j + tXlI,j) * (P - PXlI)
j=m+l PXlI

(2.17)

where

te = U * (P:lI) * ((1/2)m _ (1/2t) * _1
P Pxy

(2.18)

d. Parallel runtime for cxy to finish its last stage (tD)

In this part, we will compare how much works of CXlI remain that can be distributed to other

nodes. We begin with calculating an amount of work for the overestimated node CXlI to be

executed in this part.

I I -wD =we -we

WD = min(wD' (~) (P;y) (1/2)LnJ-l+l)

t
Wxy,D

D=--
PXlI

(2.19)

(2.20)

(2.21)

By combining all of the parallel runtime from every part together, we can have the overall

predicted parallel runtime. From (2.12), we can see that when Pxy is increased as a result

of larger gap between the estimated and real computing power of node cxy (YxlI)' W~lI,B will

increase. This means both CXlI and other normal computing nodes need more works in order

to stay busy. If there is not enough remaining work, load imbalance between computing

19

nodes will occur degrading the overall parallel performance. This behavior will also appear

in part C where other nodes need more work in order to stay busy given an increasing PXI/ as

illustrated in (2.15). Hence, our prediction model for W F S S indicates that an overestimated

computing power can lead to a degraded parallel performance because of an additional load

imbalance between computing nodes.

Using our prediction model, we can analyze the performance of W FSS by comparing the

model to the simulation results obtained from Network Simulator(N S) [32] with the parameters

given in Table 2.4. From the given simulation parameters, the parallel runtime of the prediction

model and simulated experiments are illustrated in Figure 2.7 and 2.8, respectively. Note that rXI/

represents the computing ratio of an overestimated node.

Table 2.4: The parameters for simulating W FSS in single cluster environment.

Variable Names
Number of tasks (U)

Total number of compute nodes (N)
Number of clusters (L)

Intra-cluster communication (Latency, Bandwidth) (oL.fh)

800

700

800

i 500

0::400

1300
0..

200

100

o

-

o

------........ ,.,..... ----

0.2 0 .• 0.8 0.8

I· • + .. smAIed ---Predicted 1

Values
16,384

32
1

1 ms , lOOMb/s

.....

Figure 2.7: The parallel runtime of W FSS (rx l/=O.03125).

700

800
...

--- ----- -----
100

o
o 0.2 0 .• 0.8 0.8

I· . + .. smAIed ---PredIcted 1

Figure 2.8: The parallel runtime of W FSS (rx l/=O.5).

From simulated experiments, we can see that the performance of W F S S is best when there

is no estimation gap(9xl/ = 0). The parallel runtime of W F S S tends to increase in according to

20

an estimation gap ratio (gXlI) . Both prediction model and simulated experiments clearly indicate

that the overestimation of computing power at node CXlI can degrade the parallel runtime of ex­

plicit strategy. This behavior is the result of load imbalance between computing nodes at the

end of computation especially when the relative computing power of node CXlI (rxlI) is small in

comparison with other nodes.

CHAPTER III

CONSUMING RATE

3.1 Definition of Consuming Rate

A good load sharing strategy requires a good load sharing metric that can truly represent the

computing power of the working node while taking network condition into consideration and yet

simple enough to measure accurately. While the idea of defining general-purpose load metric has

been proposed in [33], it does not introduce any new metrics or load sharing strategies at all. In this

work, we propose an implicit information called "consuming rate", as load sharing metric [34].

This simple metric can satisfy as a good load sharing metric when being used properly.

In general, stage-based self scheduling strategy requires the computing nodes to request

workload of the next stages from the coordinator/front-end nodes when they complete the execu­

tion of their current stages. As the coordinator/front-end nodes know the chunk size that has been

assign to the computing nodes and can measure the time between requests, they can estimate the

computing nodes' capacities using the consuming rate. The consuming rate (C1'ij,s) is simply a

rate of how fast a requesting node Cij can process unit tasks at stage s. The definition of C1'ij,s is

as followed:

C1'ij,s = (
Kij,S-l)

Intvij,s
(3.1)

Where C1'ij,s represents the consuming rate of node j of cluster i at stage s, which can be

calculated from the chunk size assigned in previous stage (Kij,s-l) and the interval time between

requests of node Cij from the previous request to this one (I ntvij,s)' It is obvious that these two

variables can be collected easily at the coordinator or front-end nodes which are responsible for

assigning workload.

Since C1'ij,s is measured at the coordinator node, this metric takes an account for both actual

computing power and communication bandwidth, even if the owner of each computing cluster

may not dedicate the entire cluster to process the submitted application. Thus, we can make

load decision immediately without the need to define any complex resource models with multiple

metrics or measuring any indicators at the computing nodes on the networks. The coordinator

node just needs to only keep track of the rate of requests from each working node.

3.2 Behavior of Consuming Rate

While this consuming rate is fairly simple, measuring it accurately requires the under­

standing of its natures. The value of consuming rate usually depends on the amount of assigned

workload and the underlying computing infrastructure. Obviously, the consuming rate can be

measured accurately when there are enough workload assigned to the working node. In this sec­

tion, we will study the behavior and effect of consuming rate upon different factors such as the

number of computing nodes in the clusters or the chunk size per each request.

22

3.2.1 Consuming Rate and Number of Computing Nodes in Clusters

In Grid computing environment, a cluster appears as a single computing resource. Thus,

the coordinator node will threat the entire cluster as a single worker node. However, a cluster

actually consists of a large number of computing nodes inside. Hence, collecting the consuming

rate of the entire cluster by assigning a few unit tasks to a computing resource in grid may not

accurately represent the actual computing power of that resource.

Figure 3.1 presents the behavior of our consuming rate as a function of chunk size given

a sample cluster with 64 computing nodes. For simplicity, we assume that each computing node

can process one task per unit time and always has the same computing power throughout an entire

execution in this example.

70

/'
/' ~

/ V"
/

/'
o V

o 20 40 60 60 100 120

Chunk Size per R-'

I-CR-Cpl

Figure 3.1: The comparison of consuming rate and the actual aggregated computing power in a 64-node
cluster.

In Figure 3.1, the collected consuming rate depends on the chunk size assigned in each

request. As chunk size increases, the number of working nodes in the sample cluster increases.

The consuming rate can truly represents the actual computing power when we assign workload

in multiples of the total number of computing nodes in that cluster. In addition, when we assign

larger chunk size, the consuming rate becomes more accurate than when assigning smaller one.

Therefore, our consuming rate is a bad estimator of the computing power of an entire cluster when

the assigned chunk size per request is small.

3.3 Limitations of Consuming Rate

Although consuming rate is simple and powerful enough to be used for making load deci­

sion, it also has some limitations that we need to consider when we define implicit strategy.

3.3.1 Application Specific

Different from other explicit information such as the speed of CPU, the consuming rate is

application specific. The consuming rate can change considerably even with the same computing

system given different applications. Some applications require large communication bandwidth

while others might focus on the computing power of an underlying system instead. An obtained

consuming rate can also vary according to the different set of parameters of the same application.

23

Therefore, we must be very careful when we decide to use the consuming rate collected in the

past.

3.3.2 Require Certain Amount or Unit Tasks to Achieve Acceptable Accuracy

Although the consuming rate should be collected on-the-fty during an execution, there must

be a certain amount of unit tasks in the submitted application. Since an accuracy of the obtained

consuming rate can change with respect to the chunk size, the lack of unit tasks in the submitted

application can worsen the performance of our implicit strategy. The performance comparison

with different number of unit tasks will be shown in the following section.

3.3.3 Inaccurate Estimation or the Computing Power or Coordinator Node

In some cases that the coordinator node also assigns workload to itself, the consuming rate

of that node will be calculated without considering the communication overhead. Hence, it will be

different from the consuming rates of other computing nodes resulting as an overestimation about

the available computing power of the coordinator node. From this reason, the proposed implicit

strategy must be robust enough to handle this issue.

3.3.4 Non-Reusable among Other Coordinator Nodes

The consuming rate is also depend on the communication structure between the coordinator

node and other computing nodes. Therefore, the consuming rate should not be used immediately

when we change the coordinator node. However, we might use old consuming rate as a reference

when we start calculating the consuming rate again at new coordinator node.

3.4 Averaged Consuming Rate

As for grid computing system which consists of multiple clusters, this consuming rate will

truly represent an available computing power of the requesting cluster only when chunk size is

equal or more than the number of the computing nodes in that cluster. Otherwise, the computing

power of idle nodes will not be taken into consideration. Since an accuracy of the consuming rate

depends on how much workload have been assigned during each request, we define an average

value of the consuming rate so that the consuming rate obtained from assigning larger chunk will

effect this value more than the others. The averaged consuming rate (cri,k) of Ci at stage k can be

calculated as

(3.2)

3.5 Conclusion

Consuming rate represents the capability of the computing resource to process the submit­

ted application. It is a single metric which can be used immediately for making load decision.

This value can be obtained at the coordinator node without the need to implement any monitoring

24

services.

Although the consuming rate can be collected and used easily, it also has the limitations and

unique characteristics which are different from those of explicit information. From the mathemat­

ical analysis, we find that the consuming rate can be a good estimator of the computing power by

allocating a large chunk size per request. However, the variance in the runtime will also increase

proportionally with the chunk size. These issues must be addressed when we define implicit load

sharing strategy as we will show in the following chapter.

CHAPTER IV

IMPLICIT LOAD SHARING STRATEGY

To overcome the shortcomings of traditional load sharing strategy, we propose a new self­

scheduling strategy called consuming rate self-scheduling (CRSS). Based on W FSS, our algo­

rithm assigns workload into stages. The consuming rate (er) will be used for making decision of

workload assignment to the working nodes in each stage.

4.1 Phases of Computation in Implicit Strategy

In our implicit load sharing strategy, we utilize er for making load decision without know­

ing er's initial values. We can obtain er only during the execution by assigning chunks to the

requesting nodes. Although sending large chunks allows us to obtain accurate consuming rates,

it may also introduce load imbalance at the end of computation. Thus, we define two phases of

execution: increasing and decreasing phases. During the increasing phase, we gradually increase

the stage size to obtain accurate consuming rates. After the increasing phase completes, the de­

creasing phase starts. Utilizing the er measured in the increasing phase, the decreasing phase can

reduce the variance of runtime during the end of computation. Note that it does not matter how we

assign chunks as long as they are large enough to keep every node busy and not too large to create

load imbalance near the end of computation. Hence, there are only two phases in our implicit

strategy. Figure 4.1 illustrates how implicit strategy allocates workload during each stage where

U is 16,384 and the number of stages in the increasing phase is specified as 5 .

1500

1000

500

o /
o

•
/\

I \
/ \

/ \.
/ \

/ \
I "-

~
4 6 8 10 12 14 16

Stage Number

Figure 4.1: An example of stage sequence in implicit strategy.

4.1.1 Increasing Phase

Increasing phase is important for obtaining accurate consuming rates. During this phase,

the stage sizes are defined in arithmetic sequence. This yields better parallel runtime than using

other sequence such as geographical sequence since other sequences may assign too small chunks

at the beginning resulting to an inaccurate consuming rate. In addition, we allocate an equally

half of a total workload for both increasing and decreasing phases.

Let Us be the total chunk size in stage s. Suppose that there are I stages in the increasing

26

phase. We gradually increases the assigned chunk size with a constant value ~. As we split total

available tasks in half and Ul is specified as 1, the constant value (~) can be computed as follows:

~= r~-21
I-I

(4.1)

After the increasing phase completes, the coordinator node will have the consuming rate of

each working node. Our algorithm then performs the decreasing phase.

4.1.2 Decreasing Phase

The purpose of decreasing phase is to make our implicit strategy more robust against an

inaccuracy of our consuming rate. During this phase, the chunk size is decreased by a constant

proportion (8) to achieve near-optimal parallel runtime similar to W F SS. This constant propor­

tion can be calculated using a probability distribution or suboptimally specified as 2. Thus, the

chunk size of stage s (us) becomes:

(4.2)

Given Us and the average consuming rate during the previous stages CTij ,s-l, the chunk

size for node Cij during stage s (Kij ,s) can now be determined as:

K .. _ CTij ,s-l
1) ,S - ",n, _. . * Us

L..Jj=l crt)

(4.3)

Using equation(4.3), each node receives larger chunk size at the beginning. Later, it will

receive a smaller chunk size to the end of its computation. Figure 4.2 shows the sample chunk

size per each request distributed to four clusters with different computing power during runtime.

2000

1800

1600

1400

.~ 1200
<Il

g 1:
600

400

200

o

,,/
./

x'
/

1 " / r~

------;..-

o 500

/'\.
'\.

'\.
'\.

F\ X

.... " ----
1000

P"'- Runtimo

'\.
~

. tS '"
~

1500 2000

Figure 4.2: The chunk size per request of four clusters during runtime.

In Figure 4.2, we assume that cluster D has computing power two times larger than cluster

27

Band C . In addition, cluster B and C are also assumed to have computing power two times larger

than cluster A. Using our algorithm, cluster D will receive chunk size per request two times larger

than any clusters while cluster B and C receive an equal chunk size.

4.2 Unique Characteristics of Implicit Strategy

U sing consuming rate, our proposed implicit strategy has some unique characteristics that

address many shortcomings of other explicit strategies in the past. These characteristics do not

only dictate the performance of our strategy, but also allow our strategy to focus on global load

sharing for grid computing system.

4.2.1 Black Box Based Self-Scheduling Strategy

Since our implicit strategy makes load decision based on the consuming rate, it treats all

clusters as black boxes. Thus, it can assign workload properly even without knowing the details of

an underlying computing system. Therefore, our strategy can be considered as a black box based

self-scheduling strategy. Unlike explicit strategies, this characteristic really simplifies our work

since we do not need to understand the relationship between every piece of system information.

Implicit strategy can address the changes in both the computing system and submitted application

without the need to redefine the resource model. In addition, it is also suitable to be used as a

global load sharing strategy for distributing workload to each cluster since it can achieve sub­

optimal performance without forcing how workload is distributed by local strategy.

4.2.2 Addressing Sensitivity of Load Information

As explicit strategies make decision based on complex resource model, the accuracy of load

information can vary according to the quality of resource model, computing system, and submitted

application. Moreover, some explicit information might need to be updated more frequently than

the others. Therefore, we can say that the sensitivity of load information used in explicit strategies

is considerably high. Unlike explicit strategies, the performance of our implicit strategy is not

related to the sensitivities of any explicit information at all because it makes load decision based

on the consuming rate that reflects the overall performance of each resource during an execution.

With implicit strategy, we do not have to worry about the accuracy of the monitoring service or

the resource model any more.

4.2.3 Phase-Based Adaptive Strategy

The behavior of our implicit strategy that divides the total workload into multiple stages

gives it the power to control the overall behavior during runtime and still be able to address

the changes occurring in an underlying system. By defining two phases of computation, we can

make sure that every computing resource will receive the increasing chunk size at the beginning of

computation while receives the decreasing chunk size near the end of computation. The increasing

phase is for obtaining accurate consuming rates while the decrease phase is for obtaining sub­

optimal parallel runtime. According to how consuming rates are re-calculated at the end of every

stage throughout an entire execution, our implicit strategy can adjust to the dynamic behavior of

an underlying system because it uses these consuming rates to further assign workload allocated

28

in each stage to the requesting node.

4.3 Conclusion

Our proposed implicit strategy (CRSS) consists of two phases of computation to address

the unique characteristics of consuming rate. The increasing phase is defined for obtaining an

accurate consuming rate since we do not have any information about the computing resource

before an execution. In the other hand, the decreasing phase is defined for obtaining sub-optimal

parallel runtime near the end of computation. According to how our implicit strategy can be

extended as a hierarchical strategy, its performance is better than other centralized and distributed

strategy in the past. Moreover, since our implicit strategy does not rely on explicit information at

all, the estimation gap in explicit information does not degrade the performance of our strategy.

Despite some limitations according to implicit information, our proposed implicit strategy

has many attractive features which are suitable for grid computing system. It can be used as an

effective load sharing strategy without adding additional complexities into the underlying system.

Therefore, our implicit strategy might be the right solution for today's large scale computing

system.

CHAPTER V

THE PERFORMANCE EVALUATION OF IMPLICIT STRATEGY

5.1 The Prediction Model for Implicit Strategy

Since our implicit strategy does not use any explicit information regarding to the computing

power of each node, an estimated gap ratio of overestimated node (gxy) does not affect its parallel

performance at all. However, there are some differences in collecting consuming rate of the front­

end node and other computing nodes. Suppose there is only one cluster in the system named CX.
Let cx! denote a front-end node which is also a coordinator node. The consuming rate of Cx!

does not include any communication overhead during each request because it fetches workload

directly from itself while this communication overhead will be included in consuming rate of

other computing nodes. Since it is ineffective to assign workload large enough to eliminate the

effect of network latency, the absence of communication overhead at the front-end node will lead

to assigning too large chunk size to the front-end node. Since we predict the parallel runtime of

C RS S in a single cluster environment, given Cx! E {Cxl ' Cx2, . . . , CxN }, the estimated computing

power (Px!) or the consuming rate (CTx!) can be calculated as:

Px! = CTx! = Px! (5.1)

Let Cxk be a node besides cx! . The estimated computing power of node Cxk (Pxk) or the

consuming rate of node Cxk (CTxk) is:

K
Pxk = CTxk =,.".---­

k + 2 * (XL
p z k

(5.2)

Where (XL is the communication latency within computing cluster. We then estimate an

average chunk size (K) assigned to each computing node by averaging over every stage in implicit

strategy.

- 1 (U Pxk 1) (U Pxk 1)) K=-*(-*-*- + -*-*::----:::-::---
2 2 P I 2 P log2 U + 1

(5.3)

From equation(5.l) and equation(5.2), we can see that the consuming rate of front-end node

is obtained differently from other computing nodes. Since we assume that the size of unit tasks

is small compared to the available communication bandwidth, only the startup communication

latency is considered. Therefore, the total estimated computing power CP) can now be determined

as :

P = Px! + 2: Pxk (5.4)
xki'x!

30

From the consuming rate of both front-end and computing nodes together with the stage

size predefined in our implicit strategy. we can predict the parallel runtime of our implicit strategy

using the prediction model as shown in Figure 5.1

Other Nodes L:J ...

Overestimated Node
(cxy)

(a)

• • • ·

.
(c) (d)

Figure 5.1: Four parts of prediction model for C RS S .

a. Parallel runtime until all nodes. except cx!. finish their portions of workload (tA)

Let Cxk be a computing node. Given Pxk and cr xk of node Cxk in implicit strategy. we have

(5.5)

b. Parallel runtime for cx! to finish its current stage while other normal nodes execute work

from cx/s portion (tB)

To determine an amount of workload remaining in Cx!. we must find its current stage after

part A. First. we must determine whether Cx! is already in its decreasing or not by calculat­

ing an amount of work executed by Cx! compared with a total work. If an executed work is

more than half of total work. we can tell that Cx ! is already in the decreasing phase. Given

both the increasing and decreasing stage size of CRSS. we can calculate the current stage

of cx! as followed:

If Cx! still in the increasing phase. its current stage will be equal to r m 1 from (5.6).

u(~)(~)
-(----,.:(2:-+~(m---l""-)Ll"""):-) = 1
m 2

(5.6)

However. if Cx! already enter a decreasing phase. the current stage of cx! in part B will be

equal to r m 1 from (5.7) instead.

(5 .7)

With the current stage of Cx!. we can calculate a parallel runtime in this part from the

remaining works in cx! (W~!.B) when Cx! is still in the increasing phase as

31

I -(r 1(2+Um1-1)~))(P;f) (U)(PXk) wfB- m -.- - "'7 - *Pf x , 2 P P Pxk x
(5.8)

If cxf is already in the decreasing phase, we have

W~f,B = (1 + (1/2)rm
l-

I
+

1
) (~) (P;:) - (~) (~::) * Pxf (5.9)

From equation(5.8) and equation(5.9), we can calculate the parallel runtime in this part as:

Wi
tB = xf,B (5.10)

Pxf

The amount of unit tasks necessary for every node to stay busy during this part is

(5.11)

If the remaining tasks in part B is less than WB, an execution stop with parallel runtime

equals to the parallel runtime in part A and B only.

c. Parallel runtime for C:r;f to finish its subsequence stage while other normal node continue to

execute more works from cx/s portion (te)

We will calculate how many stages that cxf can go further while every node is busy given

we as:

I (U) (• (PXk))_ we = p Pxf - Pxk * Pxf - W B (5.12)

If cxf is still in the increasing phase, first we must determine whether there is enough job left

for it to enter the decreasing phase or not by comparing a remaining jobs with a necessary

amount of work for keeping every node busy until cxf enters the decreasing phase or w~'i.e.

-(1) = (Pxf) (U _ r 12 + Um1- 1)d) wxf,e p 2 m 2 (5.13)

If there is enough work for C:r;f to be busy until entering the decreasing phase, a number of

tasks for every node to be busy until it enters the decreasing phase (wg» can be calculated

as

- (1)
-(1) _ -(1) + (Wxf,e)(p_) we - wxfe -- Pxf , Pxf

(5.14)

We can calculate the last stage of an overestimated node during the decreasing phase as L n J
from a following equation:

I - (1)
~~~~~ __ w~e~-_w~e~ __ ~ ____ ~ = 1 

( 0/ ) ( ~ ) ( ~ (n-l+l») (1 + ( ~ ) ) 
(5.15) 



32 

An amount of work necessary for every node to stay busy and total parallel runtime in phase 

C can be obtained as follows: 

- _-(I) (PX!)(U) (1 (LnJ-l+l»)( (P-PX!)) we - we + -.- - -2 1 + 
P 2 Px! 

(5.16) 

where 

te = (p~!) [w;j,e + (P;:) (~) ((l/2)(LnJ-I+l») ] (5.17) 

d. Parallel runtime for ex! to finish its last stage (tD) 

In this part, we will find how much work is left over for other computing nodes except ex! 

to execute. If ex! is already in the decreasing phase, we have 

(5.18) 

yields 

(5.19) 

results in 

tD = Wx!,D (5.20) 
Px! 

By combining all of the parallel runtime from every part together, we can have an overall 

predicted parallel runtime. From (5 .8) and (5.9), we can see that the remain tasks at ex! 

in phase B will increase as the relative power of Px! and total estimated computing power 

(P) increases. This behavior is a result of how the consuming rate of the front-end node 

(Px!) is calculated differently from other computing node. Therefore, it will cause other 

computing nodes to ask for more work from the remaining tasks in the system. If there is not 

enough work to be assigned, a load imbalance will occur. This behavior will appear again 

during part C where other node will need more work given an increasing overestimation as 

in (5.14) and (5 .16). Therefore, we can say that an overestimation within consuming rate 

can also cause an additional parallel runtime due to a load imbalance as occurs in implicit 

information. However, the main difference between these two strategies is in the origin of 

an overestimation. An overestimation in explicit information may come from an incomplete 

information about the computing system or the application while an overestimation in our 

implicit strategy is come from a different behavior between front-end and computing nodes 

when they make a request for more work. 

We compare the parallel runtime of our implicit strategy by comparing between the predic­

tion model and the simulated experiments using the system environment as shown in Table 5.1. 

Figure 5.2 and 5.3 show that our prediction model can accurately estimate the parallel per­

formance of CRSS. Moreover, both prediction model and simulated experiments indicate that 



33 

Table 5.1: The parameters for simulating C RS S in single cluster environment. 

Variable Names Values 
Number of tasks (U) 16,384 

Total number of compute nodes (N) 32 
Number of clusters (L) I 

Intra-cluster communication (Latency, Bandwidth) (aL'{h) Ims, lOOMbls 

eoo 
... ..... ..... ... .... ..... .... .... ..... 

500 

100 

o 
o 20 eo eo 100 

I· • + . ·SirnIAIC - Predicted 1 

Figure 5.2: The parallel runtime of CRSS (rxll=O.03l25). 

eoo 
... ..... ..... ... .... ..... ..... ..... ..... 

500 

100 

o 
o 20 eo eo 100 

I· . + . . snu.t _PredIcted 1 

Figure 5.3: The parallel runtime of C RSS (rxll=O.5). 

an information inaccuracy within explicit information is not related to the parallel performance of 

implicit strategy at all. We will further compare the parallel performance of our proposed strat­

egy with other explicit strategies regarding to other parameters such as with different application 

patterns in the next section. 

5.2 The Simulated Experiments 

5.2.1 Load Sharing Strategies with Different Communication Structures 

In this section, we evaluate the performance of load sharing strategies with different com­

munication structures by varying the total number of computing nodes. In the simulated environ­

ment, there is a half of computing nodes which has computing power two times larger than the 

rest. The communication network in both between and within subgroups is considered as LAN. 



34 

Both C - CSS and CSS represent chunk self-scheduling strategy which assign workload con­

stantly as 8 tasks per request. C - C S S is an example of centralized load sharing strategy which 

has only one coordinator node in the system. Every computing node must make a request directly 

to this node. As for C S S which is hierarchical strategy, the gateway nodes in a lower layer which 

have n descendants will receive n * 8 tasks per request. W F S S and C RS S mentioned in this 

section are also a hierarchical strategy which use the same strategy in both upper and lower level. 

For distributed strategies(LM), the load sharing operation is assumed to be performed once every 

4 tasks are executed and the threshold r that explains the highest number of workload difference 

between two neighbors before load sharing operation will be executed is also specified as 4 tasks. 

Moreover, the number of neighbor nodes (for distributed strategies) and the number of member 

nodes that join the same gateway node (for hierarchical strategy) is specified as 8 nodes. The sim­

ulated experiments are conducted using the system environment as shown in Table 5.2. Note that 

the parallel runtime presented in this paper is the average runtime over 20 simulation runs with 

different random seeds and W F SS is assumed to know the average computing power of every 

computing node before an execution. Therefore, W F S S has an advantage over other strategies. 

Table 5.2: The system parameters for evaluating the effect of number of computing nodes. 

Variable Names 
Number of tasks (U) 

Intra-cluster communication (Latency, Bandwidth)(aL,,Bd 
Inter-cluster communication (Latency, Bandwidth)(aw ,,Bw) 

200 

100 

o 
o 

.. 
'\ , 

\\. 

"''' ,---. ~ 
100 200 300 500 

NUITIb« 01 Computing NocM. 

Values 
16,384 

Ims, looMb/s 
Irns, looMb/s 

600 

, •••• 'C-CSS _LM _CSS ~WFSS ---6-CRSS I 

Figure 5.4: Parallel runtimes as a function of computing nodes. 

Figure 5.4 illustrates the behavior of load sharing strategies given the computing system 

with different number of computing nodes. There are two major observations from this figure. 

First, since we use local network communication as a communication structure in this experiment, 

the centralized strategy (C - CSS) can perform much better than the distributed strategy (LM). 

However, the parallel runtime of the centralized strategy is worse than the hierarchical load sharing 

strategies due to the congestion at the coordinator node. Second, the hierarchical extension of 

our implicit load sharing strategy (CRSS) can perform as good as the hierarchical extension of 

weighted factoring (W F S S). Keep in mind that W F S S benefits the most from this setting as it 

is assumed to have the perfect knowledge of the computing power of each computing node. 



35 

5.2.2 Load Sharing Strategies Utilizing Explicit Information 

In this section, we compare the parallel runtime of W F S S, AW F S S, and C RS S over 

various computing environment using different application patterns. The parameters used in our 

simulation are shown in Table 5.3 (unless stated otherwise). 

Table 5.3: The parameters for simulating single cluster environment. 

Parameter Values 
Number of tasks (U) 16,384 

Total number of compute nodes (N) 32 
LAN (Latency, Bandwidth) Ims, looMb/s 

Computing ratio of node Czll(rzlI ) 0.03125 
Estimation gap ratio of node CzIl(gZIl) 0.3 

First, we evaluation the effect of information inaccuracy by varying the estimation gap ratio 

(9xy) of computing node cxy . Note that the computing power of every node will remain the same 

in all experiments. 

8OOr------------------, 
700r-------------~~+-~ .................. 

j : f;;~-" ~-.~. ~·'~~~·~~..A:i·~·~· ~.-~-. ::·--:·;::.JLf~;;~~;~~-r~~;;~==j 
a:400r----------------~ 

1300 r---------------i 
A. 

~ ~---------------~ 

100~---------------~ 

o ~--~--~---~--~--~ 
o 0.2 0.4 0.6 0.8 

I·· •. ·WFSS ~AWFSS -'-CRSS 1 

Figure 5.5: Parallel runtimes with varied estimation gap ratio. 

From Figure 5.5, we can see that the parallel runtime of both W F S S and A W F S S will 

increase according to an information inaccuracy in the computing system. However, since CRSS 

does not utilize explicit information for making a load decision, its parallel performance is not 

effected by the varied different ratios. Moreover, the parallel runtime of C RS S is still comparable 

to W F S Sand AW F S S when an information accuracy is low while its parallel performance is 

much better than W F S S and A W F S S given a large information inaccuracy. 

To evaluate the parallel performance of different strategies in heterogeneous computing 

system, we simulate several experiments with varied computing ratio of cxy (rxy ). 

Figure 5.6 shows that W FSS achieves better parallel runtime when the computing power 

of an overestimated node dominate the entire cluster. This behavior comes from how W F S S and 

C RS S estimate the computing power. While an overestimation of W F S S is originated from an 

information inaccuracy, an overestimation in C RS S is a product of both computing power and 

communication latency. Therefore, an overestimation in C RS S will increase with Pxy resulting 

in a worse parallel runtime. 



36 

700 

600 .. 
f: . ......•. ....... 

..: 

1300 

11.200 

100 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 

' .. 
I··.· ·WFSS _AWFSS __ CRSS 1 

Figure 5.6: Parallel runtimes with varied computing ratio. 

5.3 Conclusion 

Our proposed implicit strategy (CRSS) consists of two phases of computation to address 

the unique characteristics of consuming rate. The increasing phase is defined for obtaining an ac­

curate consuming rate since we do not have any information about the computing resource before 

an execution. In the other hand, the decreasing phase is defined for obtaining sub-optimal parallel 

runtime near the end of computation. From the behavior analysis and simulated experiments, we 

can see that the performance of our implicit strategy is not related to an information inaccuracy 

of explicit information. According to how our implicit strategy can be extended as a hierarchi­

cal strategy, its performance is better than other centralized and distributed strategy in the past. 

Moreover, since our implicit strategy does not rely on explicit information at all, the estimation 

gap in explicit information does not degrade the performance of our strategy. In a single clus­

ter environment, C RS S can obtain a comparable parallel runtime as other explicit strategies. It 

can even achieve a better result when there is a large estimation gap occurred in the computing 

system. However, basic C RS S will have the worst parallel runtime over highly heterogeneous 

system. This issue will be addressed later by introducing an extension of implicit strategy for a 

computing system with large computing heterogeneity. 

Despite some limitations, our proposed implicit strategy has many attractive features which 

are suitable for grid computing system. It can be used as an effective load sharing strategy without 

adding additional complexities into the underlying system. Therefore, our implicit strategy might 

be the right solution for today's large scale computing system. 



CHAPTER VI 

EXTENSIONS OF IMPLICIT STRATEGY 

In this chapter, we extend our CRSS to support grid computing environment by consider­

ing grid's unique characteristics. These characteristics are hierarchical structure, large latency in 

WAN, and computing heterogeneity. 

6.1 Hierarchical Structure 

As grid usually consists of multiple clusters, the topology of grid is hierarchical by nature. 

This hierarchical structure can degrade the performance of traditional load sharing strategies sig­

nificantly. For example, load sharing strategies in [26][27][25] suffer from large communication 

overhead and information inaccuracy problems. This is because every load sharing operation must 

perform across WAN since the virtual binary tree created by coupling the fast and slow computing 

resources together. Moreover, hierarchical structure also causes load imbalance problem to dis­

tributed load sharing strategy since each computing node within the computing cluster can only 

communicate over LAN. 

6.1.1 CRSS Extension for Hierarchical Structure 

To support the hierarchical structure of multi-cluster environment, CRSS organizes the 

coordinator node and all front-end nodes in hierarchical fashion. Figure 6.1 illustrates an ex­

ample of hierarchical C RS S in grid computing environment. In this structure, the coordinator 

distributes workload to other front-ends and the front-ends distribute workload to their working 

nodes. CRSS can be applied at both levels without any modifications. Under this configuration, 

the coordinator node threats each cluster as a single working node represented by the front-end 

of that cluster. Once the front-end receives new workload from the coordinator, it will define a 

new sequence of stage size. This stage size will be used to determine a chunk size for its local 

computing nodes afterward. 

Figure 6.1: Hierarchical structure in grid computing environment. 



38 

6.1.2 Performance Evaluation 

To demonstrate the effectiveness of the extensions, we conduct simulations using parame­

ters specified in Table 6.1 (unless stated otherwise). In this section, we compare the performance 

of our CRSS -SW with CRSS and AW FSS, which are representatives of implicit and explicit 

strategy. The experiment results are simulated using Network Simulator (N S) [32]. 

Table 6.1: The parameters for simulating multiple cluster environment 

Parameter Values 
Number of tasks (U) 16,384 

Total number of compute nodes (N) 64 
Number of clusters (L) 4 

Intra-cluster communication (Latency, Bandwidth)(aL,lh) lms, lOOMbls 
Inter-cluster communication (Latency, Bandwidth)(aw ,(3w) 3Oms,2Mb1s 

Computing ratio of overestimated cluster (G:J:) 0.0625 
Estimation gap ratio of overestimated cluster (Rx) 0.3 

In this section, we conduct the simulated experiments over a multiple cluster environment 

We compare the performance of C RS S with the hetero - A W F S S, which is the extensions of 

A W F S S to support the hierarchical structure. First, we compare two strategies over a computing 

system with information inaccuracy by varying gap ratio (Gx ). 

300 
~ ------

o 
o 0.2 0.4 0.8 0.8 

Gx 

I--AWFSS -+-CRSS I 

Figure 6.2: Parallel runtime with varied estimation gap ratio. 

Figure 6.2 shows that an information inaccuracy will degrade the performance of A W F S S. 
Therefore, our proposed C RS S will have a comparable or better parallel runtime than A W F S S 

especially when there is an information inaccuracy occurred in the system. 

To simulate computing heterogeneity, we vary the computing power of Px by specifying 

different computing ratio (Rx). Moreover, we also specify gap ratio as 0.3 to simulate information 

inaccuracy in the computing system. 

Figure 6.3 shows that the parallel runtime of AW F S S is better than C RS S when an over­

estimated cluster has a very small computing ratio. By varying the computing power of an over­

estimated cluster, we can see that the performance of CRSS is bad only when there is a large 

computing heterogeneity between each cluster. This issue related to computing heterogeneity will 

be addressed in the following section. 

· .~ 



350 

.... 
~ 

300 

50 

o 
o 0.1 

~ 

0.2 0.3 

Rx 

0.4 

I ___ AWFSS -+-CRSS I 

"' 

0.5 0.8 

Figure 6.3: Parallel runtime with varied computing ratio. 

6.2 Large Computing Heterogeneity 

39 

With grid's openness, the differences in computing powers between grid resources will 

grow over time. This gap of differences in the computing powers really increases the risk of facing 

the load imbalance problem. Unintentionally sending one more job to the computing node with 

one hundred times slower than other computing nodes will result in a very bad parallel runtime 

despite of the total computing power which has been dedicated to the submitted application. 

6.2.1 CRSS Extension for Large Computing Heterogeneity 

To address this problem, we introduce a dynamic increasing phase to specify stage size 

during an execution. Similar to CRSS, our extended implicit strategy still uses two phases of 

execution consisting of increasing and decreasing phase. However, we introduce a new term called 

"stable rate". We call the consuming rate of the requesting node "stable" only when an obtained 

consuming rate is within a predefined differences percentage (to) from the consuming rate in a 

previous stage given a two times larger chunk size assigned in the previous stage. According to 

our preliminary experiments, we will specify f as 25%. With this way, we can assure that we have 

already assigned large enough chunk size for the requesting node when we obtain the stable rate. 

The behavior of our dynamic increasing phase is defined as follows: 

a. At the beginning, each cluster will be given a single task per request. 

b. The chunk size for the requesting nodes will be increased with a constant ratio of 2 regardless 

of their consuming rates until an obtained consuming rate become stable. 

c. The requesting node whose consuming rate is already stable will receive the same chunk 

size as in the previous stage. 

d. Repeat b and c until the consuming rate of every node becomes stable or the remaining tasks 

are below half of the total tasks. Then, the phase of execution will change to the decreasing 

phase. 

With this modified strategy we do not risk assigning too much tasks related to how we 

specified stage size before an execution begin. A decreasing chunks will be sent to each node 



40 

in order to obtain near optimal runtime as soon as there is enough confident in every collected 

consuming rate. 

6.2.2 Performance Evaluation 

Table 6.2: The parameters for simulating highly heterogeneous environment. 

Parameter Values 
Number of tasks (U) 16,384 

Total number of compute nodes (N) 64 
Number of clusters (L) 4 

Intra-cluster communication (Latency, Bandwidth)(aL,lh) Ims, lOOMb/s 
Inter-cluster communication (Latency, Bandwidth)(aw ,/3w) 30ms, 2Mb/s 

Computing ratio of overestimated cluster (G:,:> 0.0625 

We evaluate the parallel runtime of this extension of implicit strategy by varying the relative 

computing power ratio in the system. Its parallel runtime will be compared with our base implicit 

strategy. 

1800 

1800 

1400 

j:: 
J : 

400 

200 

o 
o 

\ 
:\ 

0.05 0.1 0.15 
Ax 

0.2 

I ......... CRSS __ hetero-CRSS I 

0.25 0.3 

Figure 6.4: Parallel runtime of implicit strategies with different relative power. 

As shown in Fig. 6.4, CRSS obtains bad parallel runtime when the computing power of 

the specified cluster is very small in comparison with other clusters. Computing heterogeneity 

increases the effect of load imbalance at the end of computation especially when there are some 

remaining works left in the specified cluster. H etero- C RB B addresses this problem by not using 

the obtained consuming rates until they are stable. Thus, load imbalance from an over-estimated 

information is reduced. 

6.3 Inaccurate Information 

Inaccurate estimators of the computing resources can cause both explicit and implicit strate­

gies to allocate too much workload for each stage. This leads to performance degradation since 

over-estimated clusters can not catch up with other clusters in the later stages, which results to 

load imbalance near the end of computation. Moreover, this problem becomes worse in grid sys­

tem as the underlying resources are heterogeneous. Figure 6.5 illustrates the situation when the 

execution ends while cluster A is still in its increasing phase. Thus, CRBS will obtain a very 

bad parallel runtime. From Fig. 6.6, we can see that the stage number of cluster A is far behind 



41 

those of other clusters. This behavior is a result of inaccurate information which can be occurred 

in AW FSS as shown in Fig. 6.7. 

1400 r--------------------------------, 
1200 1-----------------,11'.-----------------1 

~ 1~ I-------------~~~--------------I 

~ ~~--------~L---~----------~ 

1 : ~-~_____l 

20 

18 

16 

} 14 

~ 12 
z 10 

i 8 
6 

4 

2 

o 

o 50 100 150 250 300 350 

P...- Runtime 

Figure 6.5: Chunk assignment of CRSS. 

J 
~ .,. 

----------...... 
.r ., 

Il[ 

o 50 100 250 300 350 

I--C ...... A ......... CluaIlrB I 

Figure 6.6: Stage number during runtime of CRSS. 

9 

8 

7 

2 

o 
o 50 

1 
I 

../ 
./ 

~ --- ----
100 150 

P"'- Runlime 

I--Clua .. A ---CluaIlrB I 

250 300 

Figure 6.7: Stage number during runtime of AW FSS. 

6.3.1 CRSS Extension for Inaccurate Information 

To address this practical issue, we introduce stage-warping approach for implicit load shar­

ing strategy. This new concept adjusts an incorrect assignment by allowing clusters to skip their 

predefined stages to catch up with other clusters during the execution. The performance of pro-

-------------~~~ .. _. --_.- _ .... 



42 

posed implicit strategy is compared to both explicit and implicit strategies with different classes 

of applications over simulated grid computing environment. 

In this paper, we propose new implicit load sharing strategy called "Consuming Rate Self­

Scheduling with Stage Warping" or CRSS - SW. Similar to CRSS, our CRSS - SW utilizes 

implicit information for making load sharing decision. Since initial information regarding to the 

system capabilities is not required in this algorithm, its execution is divided into the increasing 

phase and the decreasing phase. During the increasing phase, C RS S - SW assigns half of the 

total number of unit tasks to clusters and measures the consuming rate at the coordinator node to 

estimate the actual computing power of each cluster. Like C RS S, our C RS S - SW allocates 

chunk size during the increasing phase in a linear fashion to ensure that it obtains accurate con­

suming rates. CRSS - SW then enters the decreasing phase to balance the workload between 

each cluster for the remaining half of the total number of unit tasks. 

6.3.1.1 Basic Algorithm 

To describe the C RS S - SW algorithm, we must first rearrange stage numbers during the 

execution. Let s be a stage number, which is an integer. During the increasing phase, s is a non­

positive number, starting from -I + 1 where I is the total number of the increasing stages. The 

stage number will gradually increase by one until it reaches the last stage of the increasing stage 

{s = o} . Our algorithm then enters the decreasing phase. Thus, an example of stage number 

sequence of our CRSS - SW can be shown as {-5, -4, -3, -2, -1,0,1,2,3, 4}. 

In addition to rearrange the stage numbers, we also specify the predefined stage size which 

is the number of unit tasks that will be assigned to clusters during each stage. Let In" be the 

predefined amount of workload in stage s of the increasing phase. The value of In" can be 

calculated as shown in Eq. (6.1). 

(6.1) 

As Ins is doubled every stage, the predefined workload allocation during the increasing 

phase can be illustrated in Fig. 6.8. In this figure, Ins represents amount of workload to be 

completed at the stage s . 

As for the decreasing phase, we define the decreasing chunk sizes with a constant ratio 8 

which will be specified as 2 throughout this work. Let De" be the predefined amount of workload 

for stage s of the decreasing phase. Equation (6.2) illustrates how we calculate De" with respect 

to the total unit tasks (U). The predefined workload allocation in all stages during the decreasing 

phase is illustrated in Fig. 6.9. 

(6.2) 



43 

In(-1) 

In(-3) 

In (-5) In(o) 
In (-2) 

In(-4) 

, 

Figure 6.8: Predefined amount of workload allocated in each stage during the increasing phase. 

Oe(2) 

Oe(1) 

Oe(4) 

Oe(3) 

]= 
Figure 6.9: Predefined amount of workload allocated in each stage during the decreasing phase. 

With these definitions, we can now explain our CRSS - SW algorithm. As mentioned 

earlier, our C RS S - SW consists of two phases, the increasing phase and the decreasing phase. 

the goal of the increasing phase is to obtain accurate consuming rate of each cluster. However, 

estimating the computing powers by measuring consuming rates with small number of tasks can 

be very inaccurate and misleading since the computing nodes in the clusters may not be fully 

utilized. To improve the accuracy of the estimation, we divide the increasing phase into two sub­

phases. The first sub-phase is to find a stable consuming rate of every cluster before we adjust 

it in the second sub-phase. We first start assigning small chunk sizes to clusters and double the 

chunk sizes exponentially. During this sub-phase, we keep measuring the consuming rate of each 

cluster at the coordinator node until it becomes stable without using the obtained consuming rate 

at all. A consuming rate is considered stable only if it does not increase upon an increasing chunk 

size. The cluster that is considered stable will receive an equal chunk size while waiting for other 

clusters to become stable. After the consuming rate of every cluster is stable, C RS S - SW enters 

the second sub-phase of the increasing phase to further adjust the obtained consuming rate. 

Through out the second sub-phase of the increasing phase and the entire decreasing phase, 

the size of the workload that the coordinator node will assign to the cluster Ci (Ki,s) will be cal-



44 

culated from the averaged consuming rate of Ci (cr i,a ) and runtime amount of workload allocated 

during stage s (us) as followed 

(6.3) 

If the estimator of each computing resource is always accurate, every cluster will arrive at 

the same stage during an entire execution. Therefore, the amount of workload allocated for stage s 

during runtime (us) can be specified di~ectly from the predefined increasing and decreasing stage 

sizes according to Eq.(6.4) as shown in Fig. 6.10. 

• 
1\ 

if s :::; 0 

otherwise 

I \ 
j \ 

f ~ , \ 
.; \ 

I '" j ~ 
·2 o 8 8 10 12 

Figure 6.10: Chunk size assignment of C RS S - SW in ideal case. 

6.3.1.2 Stage Warping 

(6.4) 

In the ideal case, all clusters will progress to each stage at the same pace. In other words, 

all clusters will enter the same stage s, complete all tasks allocated in that stage (Ins and Des), 

and move to the next stage (s + 1) at the same time. In reality, this will never happen. Some 

clusters will enter the later stages before other clusters. To solve this problem, our CRSS - SW 

uses a technique called stage-warping. This technique allows the clusters whose stages are behind 

others to skip (or warp) from their current stages to the foremost stage which other clusters have 

already reached. 

The objective of stage-warping is to define runtime stage sizes based on predefined stage 

sizes of both the increasing and the decreasing phase. These runtime stage sizes include the 

remaining workload in the previous stages. Every cluster will request for more workload from 

the foremost stage. With this behavior, the leftover workload in the previous stages will be re­

assigned again to every cluster and the effect of inaccurate estimators which causes some clusters 

to stay behind can be reduced. Each time one of the computing clusters enters the new foremost 

stage, the runtime stage size will be defined using the predefined stage sizes (Ins or Des) together 

with the number of total tasks (U) and the remaining tasks at the beginning of stage s (w~). The 



runtime stage size (u8 ) in the increasing phase will be specified as shown in Eq. (6.5). 

8-1 

Us = Ins + L Inj - U + w~ 
j=-I+l 

45 

(6.5) 

As for the runtime decreasing stage sizes, they will be calculated considering the predefined 

decreasing stage size (Des) and w~ as shown in Eq. (6.6). 

{
Des + (Q2 + w~ - U) if s = 1 

U -
s - Des + (!f + L~:l Dek + w~ - U) if s > 1 

(6.6) 

Note that there is the first stage warping which will occur immediately after the first sub­

phase in the increasing phase. This first stage warping will make every cluster to enter their second 

sub-phase from the same stage number. The beginning stage of the second sub-phase is specified 

as the smallest stage in I nj whose stage size is still larger than the amount of workload distributed 

during the first sub-phase. From Fig. 6.11, we can see that the stage number of cluster A skips 

from time to time keeping its stage to catch up with other clusters. 

30 

25 

20 

j 
..".-

-------
115 

z 10 

I 5 

o rM} 100 1M} 200 250 3~ 
·5 

·10 

P ...... Runtime 

I--Cllla." __ CIu.t.s I 

Figure 6.11: Stage number during runtime of C RS S - SW. 

The resource utilization of C RS S - SW compared with C RS S over highly heterogeneous 

computing system is shown in Fig. 6.12. We can see that C RS S - SW can increase the utilization 

during the increasing phase while it also reduces load imbalance near the end of computation. 

6.3.2 Performance Evaluation 

We will compare the performance of C RS S - SW with AW F S Sand C RS S with differ­

ent estimation gap and computing heterogeneity. We begin with varying the estimation gap (Gx ) 

of computing cluster Cx according to the system parameter in Table 6.3. 

From Fig. 6.12, we can see that the parallel runtime of AW F S S will become worsen with 

an increasing estimation gap while the parallel runtime of our implicit strategies are unvaried as 

we expected. Note that the performance of CRSS - SW is slightly better than CRSS even in a 



46 

70 

,.j: I , , , , 
~. , , 

, , 
, 

: , 

,"II'" 
, , , 

I 
, 

~ 1.. '-'- , 
, 10 , , 

o , 
o 50 100 150 200 250 300 350 400 

Runtime 

1-_u _· CRSS --CRSS-SW I 

Figure 6.12: Utilization graph of CRSS and CRBS - SW. 

Table 6.3 : The parameters for evaluating the performance of CRBS - SW. 

Parameter Values 
Number of tasks (U) 16,384 

Total number of compute nodes (N) 64 
Number of clusters (L) 4 

Intra-cluster communication (Latency, Bandwidth)(aL,,BL> lms , lOOMbis 
Inter-cluster communication (Latency, Bandwidth)( aw ,,Bw ) 3Oms,2Mb1s 

Computing ratio of overestimated cluster (Gz ) 0.0625 
Estimation gap ratio of overestimated cluster (Rz) 0.3 

Number of the increasing stages (I) 20 

350 

-- --300 -....-

50 

o 
o 0.2 0.4 0.8 0.8 

Gx 

I ___ AWFSS -'-CRSS ~CRSS-SW I 

Figure 6.13: Parallel runtime of AW FSS, CRSS and CRSS - SW with varied estimation gap. 

homogeneous environment. 

Figure 6.14 illustrates the performance of load sharing strategies with different computing 

heterogeneities. The simulated results indicate that both AW F S Sand C RS S can become highly 

fluctuate with different computing ratio (Rx) of computing cluster Cz . In the other hand, C RS S­

sw can achieve the best results in most cases and its parallel runtime barely change at all. This 

behavior can be implied that C RS S - SW can tolerant to computing heterogeneity and inaccurate 

information than C RS S throughout an entire execution. 



r 
! 

350 

300 

I: 
1150 

CL 100 

50 

0 
0 0.1 0.2 0.3 

Rx 

0.4 0.5 

I--AWFSS ....... CRSS """*""CRSS-SW I 

47 

0.6 

Figure 6.14: Parallel runtime of AW FSS, CRBS and CRSS - SW with different computing heterogene­
ity. 

6.4 Application Classes 

Since grid technology is introduced as a computing framework for computing-intensive 

applications, load sharing strategy must be able to handle workload from different classes of 

applications effectively. 

6.4.1 Performance Evaluation 

In this section, we will study the perf.ormance of load sharing strategies with different 

application classes by changing the total number of unit tasks and workload pattern. Simulated 

computing environment is created according to the syst-em parameter in Table 6.4. 

Table 6.4: The parameters for evaluating the effect of different application classes. 

Parameter Values 
Total number of compute nodes (N) 64 

Number of clusters (L) 4 
Intra-cluster communication (Latency, Bandwidth)(aL,{h) lens, looMb/s 

Inter-cluster communication (Latency, Bandwidth)(aw ,(3w) 3Oms,2Mb/s 
Computing ratio of overestimated cluster (G.,) 0.0625 

Estimation gap ratio of overestimated cluster (R.,) 0.3 

6.4.1.1 Applications with Different Number of Unit Tasks 

The number of unit tasks in the submitted application is actually one of the most important 

factors that can effect the performance of our implicit strategy. Accurate consuming rates can not 

be obtained when there is only a limited number of unit tasks. In this section, we will compare 

the parallel runtime of both C RS S and C RS S - SW with A W F S S over different number of 

unit tasks. 

From Fig. 6.15, we can see that while CRSS obtains a very bad parallel runtime when 

number of unit tasks is limited. However, CRSS - SW can still achieve a comparable perfor­

mance to AW FSS. These simulated results indicate that with proper defined extensions, our 

implicit strategy can handle even the application with small number of unit tasks. 



600 

500 I~ 

i~ 
-

100 

o 
o 5000 10000 

N'- d Unit Teotca 

15000 

I--AWFSS ....... CRSS ...... CRSS-SW I 

20000 

Figure 6.15: Parallel runtime of application with different unit tasks. 

6.4.1.2 Applications with Different Workload Patterns over Homogeneous System 

48 

We evaluate the parallel performance of both explicit and implicit strategies including 

AW FSS, CRSS and CRSS - SW over four application classes. We first perform the sim­

ulated experiments assuming ideal environment such that there is no estimation error (Gx = 0). 

The obtained results are illustrated in Fig. 6.16. 

300 

250 

I: 
I 100 

50 

0 
o..niform 

Figure 6.16: Parallel runtime of various applications (G x = 0). 

As shown in Fig. 6.16, our proposed algorithm, CRSS - SW can achieve a comparable 

parallel runtime compared to AW F S S's under ideal environment. C RS S - SW performs even 

better especially when the application class is the increasing workload pattern. Obviously, the 

applications with increasing pattern have larger computation sizes near the end of computation. 

This tends to increase load imbalance. As A W F S S and C RS S do not employ the stage-warping 

technique, they may assign too large chunk sizes near the end of computation. For CRSS - SW, 
the stage-warping technique allows the under-estimated clusters to steal workload of the over­

estimated ones while preventing the coordinator node to assign too large chunk sizes to these 

clusters. On the contrary, A W F S S performs best when the workload pattern of the submitted 

application is decreasing. As expected, application with decreasing computation size tends to 

reduce load imbalance issues near the end of computation. 

Figure 6.17 shows the experimental results of non-ideal environment where there is an es-



49 

300,.....-------------------, 
250 

50 

o 
uniform ".,.10", 

Figure 6.17: Parallel runtime of various applications (Gx = 0.3). 

timation gap in the system. It is very clear that our C RS S - SW performs better than A W F S S 
in most cases especially with increasing workload pattern. Without accurate explicit information, 

AW FSS performs poorly as it distributes workload based on incorrect assumptions. For CRSS 
and CRSS - SW, the increasing phase allows both algorithms to obtain the accurate estima­

tions of the underlying system. However, CRSS - SW performs slightly better as it distributes 

workload faster and finds the stable estimation during the increasing phase, as well as, utilizes the 

stage-warping for the entire execution. 

6.4.1.3 Applications with Different Workload Patterns over Heterogeneous System 

We study the effects of the computing heterogeneity by varying the computing power of 

cluster Ch, which is Ph. As the total computing power of all clusters is 64, the underlying system 

is considered heterogeneous when Ph is less than 16 (cluster Ch is slower than the others) or Ph is 

more than 16 (cluster Ch is faster than the others). Since both cases exhibit similar behaviors, we 

will present only the results of the experiments with Ph is less than 16. Note that we also assume 

the estimation gap (Gx ) to be 0.3 in all experiments. 

350,.....-----------------, 

300 t~~§.§~~.~~;;;;;;=J VI 

i : 1------------------1 
a: 1150 1------------------1 

~ l00~---------------~ 

5O~---------------~ 

oL--~--~--~--~-~--~ 
o 0.05 0.1 0.15 

Rx 

0.2 0.25 

1 __ AWFSS -6-CRSS """*"" CR8S-SW 1 

0.3 

Figure 6.18: Parallel runtime of application with uniform pattern. 

Figure 6.18 shows the performance of three load sharing strategies with constant-workload 

application. Although every strategy does not fluctuate much with different computing hetero­

geneity given a constant-workload, CRSS tends to have worse parallel runtime in according to 



50 

the computing heterogeneity. We can see that our C RS S - SW performs slightly better than both 

A W F S S and C RS S on different computing heterogeneity. 

350 .-----------------~ 

300~~~~2 
i : I--~---------------~ 
0<: I 1~1___---------------~ 
~ 100~---------------~ 

~~---------------~ 

oL--~--~--~--~-~--~ 
o 0.05 0.1 0.15 

Rx 

0.2 0.25 

I--AWFSS ......... CRSS -M-CRSS-SW I 

0.3 

Figure 6.19: Parallel runtime of application with increasing pattern. 

When the application class is the increasing-workload pattern as presented in Fig. 6.19, 

however, CRSS - SW can achieve a noticeable improvement over AW FSS and CRSS. This 

is very similar to the results of the homogeneous system presented in the previous section. The 

inaccuracy of explicit information can severely decrease the performance of AW FSS. 

4~ 

400 

350 

j: 
I: 

100 

~ 

0 
0 0.05 0.1 0.15 

Rx 

0.2 0.25 0.3 

Figure 6.20: Parallel runtime of application with decreasing pattern. 

In Fig. 6.20, the heterogeneity of the system does not effect the performance of CRSS -

SW when the application class is the decreasing pattern. In contrast, AW FSS and CRSS 
suffer from the heterogeneity, especially CRSS. The performance of CRSS becomes much 

worse as the heterogeneity increases. This is because Ch is much slower than the other clusters. 

Thus, it is in the middle of the increasing phase while others have already reached the end of the 

computation. Without the stage-warping, the coordinator node keeps assigning large chunks to 

the slower cluster Ch and allows other faster clusters to steal very little portions of Ch workload. 

For the application with random-workload pattern, Fig. 6.21 shows that the performance 

of AW F S S decreases when the computing heterogeneity in the system increases. Note that the 

performance of C RS Sand C RS S - SW converses when the heterogeneity is high. 



6.5 Conclusion 

~ ,---------------------------------, -~ ~-~~~-----=------------------------4 

i :: ~------------------------------~ 
0:: I 1~ ~------------------------------~ 
~ 100 ~------------------------------~ 

~ ~------------------------------~ 

o ~--~----~----~----~----~--~ 
o 0.05 0.1 0.15 

Rx 

0.2 0.25 

I---AWFSS ......... CRSS """,*""CRSS-SW I 

0.3 

Figure 6.21: Parallel runtime of application with random pattern. 

51 

In this chapter, we introduce the extensions of implicit strategy for addressing unique char­

acteristics of grid computing. These characteristics consist of cluster-based computing system, 

large communication overhead, and computing heterogeneity. In addition, we also focus on in­

accurate information and different application classes which can effect the performance of load 

sharing strategies. 

From the simulated experiments, we can conclude that our implicit strategy is suitable for 

grid computing system according to how it can be extend as an efficient hierarchical strategy. 

Moreover, we can further improve its performance by introducing additional extensions such as 

movable coordinator node, stable consuming rate, and stage warping concept. Together with 

proper defined extensions, C RS S can be more robust than other load sharing strategies in the 

past even with different application classes. 



CHAPTER VII 

RELATED WORKS 

Due to its strength and its simplicity, many variations of self-scheduling strategies have 

been proposed. Uniform-sized chunking (CSS) [35] assigns equally chunk size (K) tasks per 

request to reduce the communication overhead. However a load imbalance at the end of compu­

tation can significantly worsen the parallel runtime if we specify chunk size too large. Guided 

self-scheduling (CSS) [36] addresses this problem by allocating large chunks at the beginning of 

a computation while sending smaller chunks near the end of computation to achieve a better par­

allel runtime. The chunk size scheduled for the next idle node is the total remaining tasks divided 

by the number of available processors. For constant-length iterations and uneven starting times, 

this strategy is proofed that all computing nodes will finish within single iteration of each other. 

However, this strategy sometimes allocates too large chunk size in early stages. In Trapezoid self­

scheduling (TSS) [37], the available tasks will be allocated to the requesting node with linearly 

decreasing chunk size. This technique reduces the risk of assigning too large first chunk for each 

computing node. Fixed Increase Self-Scheduling (F ISS) [38] tries to overlap the communication 

and computation by sending an increasing chunk size instead. 

The prefetching technique such as proposed in [39] has been proposed for addressing large 

latency in the communication network. This technique assumes that the access pattern of a sub­

mitted application can be obtained or predicted. Therefore, the coordinator node will be able to 

send workload to other clusters before those clusters actually finish all the work. With this way, 

every cluster can continue executing more work without requesting and waiting for a next batch 

of workload to arrive. However, this technique is not compatible with our implicit information 

which can only be obtained during an execution. Although we can add this prefetching technique 

into our implicit strategy by allowing clusters to request for more workload before they actually 

finish executing every unit task assigned during the previous stage, this behavior can increase 

load imbalance at the end of computation as a result of an over-estimated cluster still asking for 

more work even though there is a remaining work left in it. The prefetching technique can be effi­

ciently utilized only when an information accuracy about the underlying system and the submitted 

application is high enough. 

RU M R [40] is an extension of load sharing strategy named U M R or "Uniform Multi­

Round" algorithm. U M R intends to hide the communication overhead with the computation 

time by sending an increasing chunk size. It begins with assigning a small chunk to every cluster 

which inflicts only a small communication overhead. Then, it sends out larger chunks during 

each round because all clusters also need more time before they can finish all the work assigned 

previously. Assuming that the computing power and communication bandwidth are constant and 

known before the execution begins, this strategy can calculate the chunk size to be distributed each 

round by specifying that every chunk in the same round is equal. While U M R is an increasing 

strategy, RUM R consists of both increasing and decreasing phase. RUM R adds the decreasing 

phase near the end of computation to make it more robust when there is an information inaccuracy 

occurring in the system. Note that although our proposed methodology of handling implicit in­

formation resembles to this strategy, the main purpose behind the idea is different. The proposed 



53 

methodology in [40] bas an intention to overlapped communication and computation while our 

work uses an increasing phase to calculate the consuming rate of each computing resource. 



CHAPTER VIII 

CONCLUSION 

Grid computing has been widely used for aggregating computing resources across multi­

ple organizations. In order to effectively utilize the available computing power in grid, we need 

to implement load sharing strategy which increases an overall parallel performance by ensuring 

that each resource will receive workload proportionally to its computing power. In this work, we 

propose a new load sharing strategy utilizing implicit information called "implicit load sharing 

strategy". Unlike explicit information which consists of many different parameters of the com­

puting system or the application, implicit information is a single metric that can represent the 

computing power of each resource. While an explicit information will soon become impractical 

considering the complexity within the system which will continue to grow everyday, our implicit 

information will become an important metric for making a load decision. However, since the ac­

curacy of the implicit information heavily depends on the chunk size allocated to the requesting 

node, our implicit strategy addresses this issue by defining two phases of computation, increasing 

and decreasing phase. At the beginning, the computing nodes will be assigned increasing chunk 

sizes for obtaining their consuming rates while they will receive decreasing chunk sizes near the 

end of computation to achieve sub-optimal runtime. Moreover, we also extend our implicit strat­

egy to address the unique characteristics in grid computing environments. These characteristics 

consist of a cluster-based infrastructure, a large latency in WAN, and a computing heterogeneity 

between each computing resource. There are several concepts proposed in this work which can 

further improve the performance of implicit strategy such as movable coordinator node, stable 

rate, and stage warping. Based on the simulated experiments, our proposed strategy performs 

comparable or better than other popular strategies without using any explicit information. 

Our future works will focus on two issues: node selection and fault tolerance. In some 

cases, it is more beneficial to choose only a subset of computing nodes from available candi­

dates with respect to the submitted job and differences in computing powers. However, since our 

implicit information can only be obtained during an execution, we must carefully define how to 

choose the computing nodes. Moreover, we also want to add fault tolerance capacity to address 

the dynamic behavior in grid computing system because some computing nodes or clusters can be 

unreachable at anytime. Our implicit strategy may address this problem by sending a redundant 

workload to other available candidate nodes to obtain their consuming rate in advance. 



References 

[1] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid. J. HPC Apps. 15,3(2001): 200--222. 

[2] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan 

Kaufmann, San Francisco, CA, 1999. 

[3] Y. T. Wang and J. T. Morris. Load sharing in distributed systems. IEEE Trans. Compo C-34, 3(1985): 

204-217. 

[4] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. JPDC 7(1989): 279-

301. 

[5] M. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load balancing on highly parallel 

computers. IEEE Trans. Parallel Distrib. Syst. PDS-4, 9(1993): 979-993. 

[6] J. Balasubramanian, D. C. Schmidt, L. W. Dowdy, and O. Othman. Evaluating the performance of 

middleware load balancing strategies. In EDOC, 2004. 

[7] R. Biswas, M. A. Frumkin, W. Smith, and R. F. V. der Wijngaart. Tools and techniques for measuring 

and improving grid performance. In IWDC, 2002. 

[8] A. T. Chronopoulos, S. Penmatsa, and N. Yu. Scalable loop self-scheduling schemes for heteroge­

neous clusters. In CLUSTER, 2002. 

[9] E. Putrycz. Design and implementation of a portable and adaptable load balancing framework. In 

CASCON,2003. 

[10] R. Wolski. Experiences with predicting resource performance on-line in computational grid settings. 

SIGMETRICS 30,4(2003): 41-49. 

[11] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan. Scheduling of parallel jobs in a heterogeneous 

multi-site environement. In JSSPP, 2003. 

[12] J. D. Teresco, J. Faik, and J. E. Flaherty. Resource-aware scientific computation on a heterogeneous 

cluster. CiSE 7, 2(2005): 40-50. 

[13] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd. Agent-based grid load balancing using 

performance-driven task scheduling. In IPDPS, 2003. 

[14] A. C. Arpaci-Dusseau, D. E. Culler, and A. M. Mainwaring. Scheduling with implicit information in 

distributed systems. In SIGMETRICS, 1998. 

[15] C.-T. Yang, K.-W. Cheng, and K.-C. Li. An efficient parallel loop self-scheduling on grid environ­

ments. In NPC, 2004. 

[16] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V. Parker. Beowulf: A 

parallel workstation for scientific computation. In ICPP, 1995. 

[17] K. Shen, T. Yang, and L. Chu. Cluster load balancing for fine-grain network services. In IPDPS, 

2002. 

[18] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of job-scheduling strate­

gies for grid computing. In GRID, 2000. 



56 

[19] S. P. Dandamudi and K. C. M. Lo. A hierarchical load sharing policy for distributed systems. Mascots 

0(1997): 3. 

[20] T.-H. Kim and J. M. Purtilo. Load balancing for parallel loops in workstation clusters. In ICPP, 1996. 

[21] A. Hac and X. Jin. Dynamic load balancing in a distributed system using a decentralized algorithm. , 
In ICDCS, 1987. 

[22] M. D. Feng and C. K. Yuen. Dynamic load balancing on a distributed system. In SPDP, 1994. 

[23] R. Luling, B. Monien, and F. Ramme. Load balancing in large networks: A comparative study. In 

IPDPS, 1991. 

[24] M. Arora, S. K. Das, and R. Biswas. A de-centralized scheduling and load balancing algorithm for 

heterogeneous grid environments. In ICPP, 2002. 

[25] I. Mitrani and 1. Palmer. Optimal tree structures for large service networks. Technical report, Univer­

sity of Newcastle upon Tyne, January 2004. 

[26] S. N. Crivelli and T. Head-Gordon. A new load-balancing strategy for the solution of dynamical 

large-tree-search problems using a hierarchical approach. IBM Journal of Research and 

Development 48,2(2004): 153-160. 

[27] A. Katartzis, M. N. Garofalakis, I. Mourtos, and P. G. Spirakis. A hierarchical adaptive distributed 

algorithm for load balancing. JPDC 64(2004). 

[28] Y. W. Fann, C. T. Yang, C. J. Tsai, and S. S. Tseng. IPLS: An intelligent parallel loop scheduling for 

multiprocessor systems. In ICPADS, 1998. 

[29] S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: A method for scheduling parallel loops. 

Comm. of the ACM 35, 8August 1992: 90. 

[30] S. F. Hummel, J. P. Schmidt, R. N. Uma, and J. Wein. Load-sharing in heterogeneous systems via 

weighted factoring. In SPAA, 1996. 

[31] I. Banicescu and V. Velusamy. Performance of scheduling scientific applications with adaptive 

weighted factoring. In IPDPS, 2001 . 

[32] S. McCanne and S. Floyd. VINT Network Simulator. http://www-mash.CS.Berkeley.EDU/ns/ (1999). 

[33] T. Kunz. The influence of different workload descriptions on a heuristic load balancing scheme. IEEE 

Trans. on Softw. Eng. 17,7(1991): 725. 

[34] N. Sanguandikul and N. Nupairoj. Implicit information approach for self-scheduling load sharing 

policy. In PDCS, 2005. 

[35] c. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors. IEEE Trans. 

Software Eng. II, 100ctober 1985: 1001-1016. 

[36] c. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme for 

parallel supercomputers. IEEE Trans. Compo 36, 12(1987): 1425-1439. 

[37] T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A practical scheduling scheme for parallel 

compilers. E EE Trans. Parallel Distrib. Syst. 4, 1(1993): 87-98. 



57 

[38] T. Philip and C. R. Das. Evaluation of loop scheduling algorithms on distributed memory systems. In 

PDCS, 1997. 

[39] P. J. Rhodes and S. Ramakrishnan. Iteration aware prefetching for remote data access. In eScience, 

2005. 

[40] Y. Yang and H. Casanova. RUMR: Robust scheduling for divisible workloads. In HPDC, 2003. 



58 

Biography 

Natthakrit Sanguandikul is a Ph.D. candidate in Computer Engineering at Chulalongkom 

University. He also received his B.Eng and M.Eng from Chulalongkom University in 2002 and 

2003 respectively. His research interests include distributed computing, high performance grid 

computing, load balancing, and network security. 


	Cover (Thai) 
	Cover (English) 
	Accepted 
	Abstract (Thai)
	Abstract (English) 
	Acknowledgements 
	Contents
	Chapter I Introduction
	1.1 Problem Statement
	1.2 Grid Computing
	1.3 Load Sharing Strategies
	1.4 Objectives
	1.5 Scope of the Work
	1.6 Organization

	Chapter II Backgrunds and Assumptions
	2.1 Assumptions
	2.2 The Analysis of Stage-Based Self-Scheduling Strategies

	Chapter III Consuming Rate
	3.1 Definition of Consuming Rate
	3.2 Behavior of Consuming Rate
	3.3 Limitations of Consuming Rate
	3.4 Averaged Consuming Rate
	3.5 Conclusion

	Chapter IV Implicit Load Sharing Strategy
	4.1 Phases of Computation in Implicit Strategy
	4.2 Unique Characteristics of Implicit Strategy
	4.3 Conclusion

	Chapter V The Performance Evaluation of Implicit Strategy
	5.1 The Prediction Model for Implicit Strategy
	5.2 The Simulated Experiments
	5.3 Conclusion

	Chapter VI Extensions of Implicit Strategy
	6.1 Hierarchical Structure
	6.2 Large Computing Heterogreneity
	6.3 Inaccurater Information
	6.4 Application Classes
	6.5 Conclusion

	Chapter VII Related Works
	Chapter VIII Conclusion
	References 
	Vita



