M IdasTinulastTonesmiussuudszulanauuunia

| ! U
AULINENINYINS
ARIANTAUNNINGAE

InoiinusiiudunibisasnsinmmuninganSygimnsumansquiinda
dTimInssunsuiieas nadrinanssunaufieed
AMAAINTINMENS PIAINTHUMAINLIAY
Un1sfinwn 2552
fvAvTvaspmaInTaluminmay

e

.-

IMPLICIT LOAD SHARING STRATEGY FOR GRID COMPUTING SYSTEM

AU INININYINT
U
ARIAINTNURIINYIAY
A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalengkorn University

Academic Year 2009
Copyright of Chulalongkorn University

020034

Thesis Title IMPLICIT LOAD SHARING STRATEGY FOR GRID COMPUTING

SYSTEM
By Mr.Natthakrit Sanguandikul
Field of Study Computer Engineering

Thesis Advisor Natawut Nupairoj, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of
the Requirements for the Doctoral Degree

........ WrI A7 Dean of the Faculty of Engineering
i ' : irunwong, Dr.Ing)

LRI/ ATETT) Thesis Advisor
.._.’_”f‘ii?&, v\

(Nataw

pe
P i d | iy

"‘.(.;I-ulAquiivnia-}' v, PP =

Y — X

Mcﬂer

iv

miggnqad semdns: Imsdasssemlastioredsmiuszuudszuisnauuunia. (IM-
PLICIT LOAD SHARING STRATEGY FOR GRID COMPUTING SYSTEM) E].'?Il
Uinw : 8. a3, migyd@ vylnlsad, 70 wih.

malulafnialdgnibunldadaninrnaiadiulanseiudmiunununinens
magmdsznranadansznsegmufidngdrdsiulasedsinietedunmefifa sty
niaudazszuundenils “ssdnaadeonr iuannazdsznauldundmiaasilszuranaimon
NN BIANTAT TaqUTzaed fuiu Momquadindan zuudszulsuuunia
ﬁaﬁmné’nutﬁﬁmehamm-unﬂi-maNaﬁu‘ﬂuaﬁmniuTnuﬂﬂs.mawadauudaﬂwm
uu'lummmﬂﬂﬂanu'lﬁ%umo n?suuudnmg;dqlummwaqanmmummm.uunm
vowramuutsuuImn e Widu .

9
WelwmunsnldmFugansrizinannimanmaaisluszuunialdadwilssimsam
idnfludaniuendiinidasssetstdamnlinszais iwmnsluszuy Ensdesssauiiy
"l@'h'wLﬂuwﬁoludwﬂs:n}yfwﬁtﬁﬁLﬁ'mvﬁtﬁuﬂs:in‘imw‘lumsﬂs:mawa'uan:uun‘iﬂ
au‘w‘lsﬁﬁ’ﬁmﬁfﬂaﬁ:;tjﬂﬁqnmmua’tmﬁnﬁu Jnazanaulalasdndaindeaysyszinn
Faudsfesurslasasoieinsnudassoumeluszuusananafoiliiindassnm
Tuedainlamunzauriun }m'l'i‘lm*uuhnmawmwunwmaamna’rmmnlun’mnu

ol

ﬂuswua~mw‘1umvﬂanwﬁawag&ﬂs.mmnuuumm

/ i
’ J{’ 1da ' 2
muhmmauum'lﬂunaua-ymgamniw}pmsmaulaﬂs*mn'lwunu%a'n "dayn

FauLiu" mauamﬂm{lwaagammﬂmmst&i&fﬂfammwm'lumsﬂs-mauamanzuun
umaomn‘lmuuauwmu Salumimin waagaﬁ]ﬁnnuumwnnqnmununu'lﬂnb\m
wanamlag aoluniesaniis. g f yﬁﬂonmwaqa'ﬁaunmoow
mamsm’lﬂ'l'ﬁﬂu‘lumwuma'l-nuummnuwammﬂ?vmaNa WiafaaIusnisiiiy

7'JU7"J&|'IJUIJ‘EQLW3JWIULL%U'NI$1 St

- 2 v & V ° 2) o« v P
Wasnndayazent unliiraisogivh Wi ideya duugaudslalasass 1513
TihiaueditnisdesssemlasUsngiiacmusoRliaudmividazasisznauidugues
a [) IA a] s !
suun3an nsdurzuuyssasvine g ffesnnsdsuda ddmiaasuun dgidn
du i, Aoy awin g meubwiaiashs 19019, Assauuanfin sl szinsnm
° - d ‘ h? = -~
TunisUszlaana Wudu inldnesszuuniadudslusunsuine et oide talszansnm
as o v v oo o edv v ° - o v o aad
2335 MITasTImAladiauanaansnlaszgnib lw3suifisununanldanisauglun
= 1 A L z " = 1
8a wan1ImasadusadiinIITMIdassssmlasSoeuuidssintnmiiufisunie
| ada o a J J a :
gninitmasTmuuyidslasenizilisinnuaaainianvesteayaiiatunialuszuy

##4671842421: MAJOR COMPUTER ENGINEERING
KEYWORD: LOAD SHARING STRATEGY / GRID COMPUTING.

NATTHAKRIT SANGUANDIKUL : IMPLICIT LOAD SHARING STRATEGY FOR GRID
COMPUTING SYSTEM. THESIS ADVISOR : NATAWUT NUPAIROJ, PH.D., 70 pp.

Grid technology has been extensively introduced as a computing framework for aggregat-
ing the computing resources geographically distributed over the Internet. A single grid system
or a single “Virtual Organization” can be built in the form of multiple heterogeneous comput-
ing clusters from different organizations whe sba&e the same objective. Thus, grid system has
unique characteristics such as no direct communiciiﬁnbftween the computing nodes in different

clusters, large data transfer overhead due to \L/AN latenéy, etc. -

In order to effectively use«thcsé massively computing resources within grid system, we

’-'..-"'
must employ load sharing strategy te distribuif workload in the system. Load sharing strategy is
always one of the key compon ts o oyerall perfermance of grid computing system. However,

most strategies assign woryé? fvi-/i_gh rcéla_céct zg'explicit information. This kind of information

represents the charactenstljZ(t e‘omputing?)resnurccs which are difficult to be collected and
unreliable to be used for makin oaﬂ sharmg decision within grid computing system.
. 9%

. ;

In this work, we propose } new mmc fol:_‘ﬁmkmg load decision called “implicit informa-
tion”. It is a single metric that can repmgcnt howgﬂt_f‘computmg node can process the submitted
jobs. Moreover, it can be gathered at the coordinater nede which is responsible for distributing

workload during the exec‘uUOn Thus, this infermatien is cengf)r;henswe and can be used for

making load decision 1mxrfcd1ate]y without any resource modelsm*any monitoring services.

Since implicit information cannot be used as direct substitution of explicit information, we
decide to propose anew implicit,strategy and:its-extensions fer addressing unique characteristics
within grid computing énvirennient. We.simulaté'our experiments usiitg network simulator (NS)
to evaluate the performance of our propesed strategy. We then vary the.characteristics of both
underlying systenis and submitted applications. The obtained results of implicit strategy are com-
pared to these from other load sharing strategy in the past. The simulation results indicate that it

outperforms traditional strategies especially when information inaccuracy occurred in the system.

Department Computer Engineering. Student’s signature .
Field of study Computer Engineering. Advisor’s signature .
Academicyear 2009

Acknowledgements

To accomplish all of this work, there are many people who provide supports and reviews.
First of all, I would like to thank my advisor, Dr. Natawut Nupairoj, for his grateful advices and
technical knowledge.

The friendly environment inside this department is one of the key that bring me to the
final phase. I would like to thank every people in the department of computer engineering and
Information Systems Engineering Laboratory (ISEL) at Chulalongkorn University.

X

U

AULININTNEINS
RINNINUNIININY

Page

ABSHRCE (TRAL) - « « s : s v mus s smmps smpus smmms s dmaias s amus s 8 86558 iv

ABSract (EmglisR) . - : : s oo 53 snwaos smpms s muwonoswswosssssssmeasss v

Acknowledgements e vi

ComtemtS e e e e e e vii

Listof Tables e e X

Listof Figures e xi
Chapter

I Introduction £/ IR R PR 1

1.1 Preblem Statement "SRR ,:*:._, 1

1.2 Grid Computing . "o . ., & = - YT T Y 2

1.2.1 Cluster-Ba Mtctarchxcal Sl 3

1.2.2 WAN Cogmuﬁ PN DA 3

1.2.3 Large Computi Heteroggnexty 4

1.3 Load Sharing T80 YW BT 4

1.3.1 Communieati ricture-Based Classification 5

1.3.2 Load aséd lesiﬁcation 7

133 Self-Scheduliflg Strategy. . « . 4. &. % e rm Rk E s el u e 7

1.4 Objectives 1. . . A7 s j}_ AR ™. ... 8

1.5 Scope of the Workl . . © e ot LU UL 8

1.6 Organization - — if‘_'f._: B, 9

22l

II Backgrounds and Assumpuons_.. 7 .,?j;.ﬁ;’_'l.a_._ 10

2.1 Assumptions, A . R 10

2.1.1 SyStem-EBavitoniients— — —r . e 10

2.1.2 Apﬁ%anon Medel. s S . = f‘“.‘! 11

2.1.3 Sensitivity Model'of Load Information . . 2. 12

2.2 The Analysis of Stage-Based Self-Scheduling Strategies 13

2.2.1 ~;Prediction Model.of Paralle]l RUNUME & & yomy come om0 v v oo v v vv v 14

2.2.2 " The/Behavior of Factoring and Descendants | 15

2.2.3 " The Performance Analysis of Weighted Factoring 16

III Consuming Rate™, ! /.. .. L. ... 0. . L. I.¥IFL LEN .- ... 21

3.1¢ Definition of Consuming Rate. 21

3.2 Behaviorof ConsumingRate 21

3.2.1 Consuming Rate and Number of Computing Nodes in Clusters 22

3.3 Limitations of ConsumingRate 22

3.3.1 ApplicationSpecific. o o e 22

3.3.2 Require Certain Amount of Unit Tasks to Achieve Acceptable Accuracy . 23
3.3.3 Inaccurate Estimation of the Computing Power of Coordinator Node . . . 23
3.3.4 Non-Reusable among Other Coordinator Nodes 23
3.4 Averaged ConsumingRate, 23

viii

Chapter Page
35 ConClusion e e e 23

IV Implicit Load Sharing Strategy 25
4.1 Phases of Computation in Implicit Strategy 25

4.1.1 IncreasingPhase 25

412 DecreasingPhase 26

4.2 Unique Characteristics of Im 27

42.1 Black Box Based Self- j tratcgy 27

4.2.2 Addressing M of Load Tférmation 27

423 Phase- Base ve St{,tegy 27

4.3 Conclusion . _—_—r"
V The Performance/

5.1 The Predictio

5.2 The Simulated E " TR 33
52.1 Load ith' Di; tCQermwatwn Structures 33
522 Load Sh ‘gies Utilizing Exp nl;{onnauon 35

5.3 Conclusion . e IR > - s 36

VI Extensions of Implicit Strategy =, ..o oL Lo 37

6.1 Hierarchical Structure HET‘:— B B 37
6.1.1 CRSS Extension feFHicrar (c1111 ¢ PR RS RO e 37
6.1.2 Performance Bialiaten ./ o 38

6.2 Large Computing Heterogeneity. ’—Ag 39
6.2.1 SS I 3 rogeneity 39
6.2.2 Pcrfong'an ATOROI— 40

6.3 Inaccurate Information 40
6.3.1 iE’t 0! C IOIL e g ¢ 5 o e e s 6 41

A B Sy NS o
qp.3.1.2 Stagc Warping G ERHBEE AW RS AR ES G 44
e nce Evaluatié 45
& el T ey
6.4.1 Performancc Bvaluation : « ; s s w e sv s wsavm smsss € 5w es s 47
6.4.1.1 Applications with Different Number of Unit Tasks 47

6.4.1.2 Applications with Different Workload Patterns over Homo-
geneous SYSLemMo 48

6.4.1.3 Applications with Different Workload Patterns over Hetero-
geneous SYSIEMt i i e 49
65 Conclusion::iceossasmonsanmsssmamasss®s vomses 51

VIRelated Works o i e e e e e e e e e e e e 52

AU INenineIng
QRININTAUARINGINY

Table
2.1
22
2.3
24
5.1
5.2
53
6.1
6.2
6.3
6.4

List of Tables

Page
Related parameters in the system environment. 11
Related parameters of ApplicationModel. 11
List of related variables in predictionmodel. 15
The parameters for simulating W F'SS in single cluster environment. 19
The parameters for simulating C RS S in single cluster environment. 33
The system parameters for evaluating the effect of number of computing nodes. 34
The parameters for simulating single cluster environment. 35
The parameters for simulating multiple cluster environment. 38
The parameters for simulating highly heterogeneous environment. 40
The parameters for evaluating'the performanee of CRSS — SW. 46
The parameters for e i ¢ ifferentapplication classes. 47

AULINENTNEINS
RINNIUUNIININY

xi

List of Figures
Figure Page
1.1 Anexample ofcomputing grid. o 2
1.2 Anexample of computing cluster. 3
1.3 Hierarchical structure in grid computing system. 4
1.4 Classes of Load Sharing Strategies., 5
1.5 Centralized load sharing strategy., 5
1.6 Distributed load sharing strategy. 6
1.7 Hybrid/Hierarchical load sharing strategy. g 1 r v EREaRs TR R wA R 6
1.8 Behavior of self-scheduling strategies. . / R 8
1.9 Workload Allocation of Stage-Based Se]f—SC’hﬁﬁhﬂg Strategy. 8
2.1 Simulated grid computing envirenments O 10
2.2 Workload patterns of f,qyxadiffcrent applllcatlon classes B s 12
2.3 Parallel runtime of @S‘W different information sensitivities. 13
2.4 Four parts of prediction FEEE A R N - - e e e 14
2.5
2.6
27
2.8
3.1
4.1 : .
4.2 The chunk size per request of’fQur_clusters_dm:rg (31111 11 O 26
5.1 Four parts of prediction mo_d;Lf@r:_CRSS.a B 5 v vocs s e EE ke e R E s 30
5.2 The parallel runtithe of CRSS (rz;=0.03125). 4. oy 33
5.3 The parallel runlimeof CRSS (ray=0:5) ==+ — = 33
5.4 Parallel runtimes as.a function of computing nodes. 34
5.5 Parallel runtimes with varied estimation gapratio. . . .« 35
5.6 Parallel runtimes with.varied computing ratio,, 36
6.1 Hierarchical structure in‘gridicomputing|environments 4 4. 4t o 37
6.2 Parallel runtime-with varied estimation gapTatio..[... . . .0 L4 38
6.3 Parallel runtime with varied computingratio. 39
6.4 Parallelsuntime-of implicit-strategies-with, differentrelative:power. == ;v p 40
6.5 Chgnagsiggnpht {TASG b N Y.L - L ORI Y LS. 41
6.6 Stage number during runtime of CRSS. oL 41
6.7 Stage number during runtime of AWFSS. o . 41
6.8 Predefined amount of workload allocated in each stage during the increasing phase. . . 43
6.9 Predefined amount of workload allocated in each stage during the decreasing phase. . . 43
6.10 Chunk size assignment of CRSS — SWinidealcase.. 44
6.11 Stage number during runtime of CRSS —SW. 45
6.12 Utilization graph of CRSSandCRSS —SW.. 46
6.13 Parallel runtime of AW F'SS, CRSS and CRSS — SW with varied estimation gap. . 46
6.14 Parallel runtime of AW F'SS, CRSS and CRSS — SW with different computing

DEtETOREHEIEY. « . v m e s v mmmr v mm s s e s s ol s omemsosssniss 47

Page
6.15 Parallel runtime of application with different unittasks. 48
6.16 Parallel runtime of various applications (G =0). 48
6.17 Parallel runtime of various applications (G; =0.3).. 49
6.18 Parallel runtime of application with uniform pattern. 49
6.19 Parallel runtime of application with increasing pattern. 50
6.20 Parallel runtime of application with decreasing pattern. 50
6.21 Parallel runtime of application with random pattern. 51

AULINENINYINS
ARIANTAUNM TN

CHAPTER1

INTRODUCTION
1.1 Problem Statement

Grid technology [1][2] is introduced as a computing framework for aggregating the com-
puting resources geographically distributed over the Internet working together in the so called
“virtual organization”. A single grid system can be built in the form of multiple heterogeneous
computing clusters with more than a thousand of computing nodes. Thus, grid has unique charac-
teristics such as no direct communication between the computing nodes in different clusters, large
WAN latency, etc.

'

In order to effectively.use these massively computing resources, we must employ task
scheduling strategy to distribute werkload in the system. Although many scheduling strategies
have been proposed, the load:shazing strateg'y is considered one of the oldest and the most im-
portant research topics inithe field of distributed fomputing [3][4][5]. This strategy states that the
performance of the distributed system can be;“iricrcased by assigning an appropriate amount of
workload to keep every eomputing resource buusy u.ntll the end of computation. Hence, the under-
lying system will be fully utilized all the tirie. ’Fp address computing heterogeneity in grid system,
many load sharing strategies have been proposci [6](7][81(2][10][11]. However, these strategies
make load decision depending on information wh;ch directly represents various characteristics of
the computing resources such as the speed of an underlymg processors, available memory, and
communication bandwidth. We refér to this type_af_m‘formatlon as “explicit information” as they
can be explicitly determined even before submitting jobs. Although explicit information is easy
to be obtained and understood, each individual information is often insufficient for making load
decision. Thus, it usualiy needs some resource models for combining multiple explicit informa-
tion together as a sing‘lé_' metric [12][13]. As the performance of each computing node is highly
related to the submitted jebs, it is very difficult to find a sophisticated model that can truly predict
the performance of each resource without the complete information of computing resources and
submitted works. 'Given thé growing complexity.in'thé ¢ormputing environment and application,
this methodology is no-longer practical.

In-this work, we prepose anew-load sharing;strategy for-grid computings To solve the afore-
mentioned difficulties; our strategy ntilizes-a new metric based on the'load information called
“implicit information”. Our metric is a single metric that can represent how fast a computing
node can process the submitted jobs. Thus, it is comprehensive and can be used for making load
decision immediately without any resource models or any monitoring service. Moreover, it can
be calculated within the coordinator node which is responsible for distributing workload. This
implicit information can be obtained during the execution. Thus, it is suitable for capturing the
dynamic behavior of the computing system. The implicit information has been mentioned for per-
forming implicit coscheduling between clusters in [14]. However, it focuses on understanding the
communication behavior, not load sharing. Load sharing strategy for grid computing environment
proposed in [15] focuses on how to determine which system is homogeneous or heterogeneous.
Then, it will assign portion of workload during the first phase according to the computing het-

erogeneity and weighted value of each computing resource. While the proposed strategy claims
that it is suitable for grid computing system, this strategy requires an accurate information of the
computing power of each resource for making load decision. Therefore, information inaccuracy
of explicit information can reduce its overall performance. In addition, we also extend an implicit
strategy to address main characteristics of grid computing system such as cluster-based hierar-
chical system, communication latency in WAN, heterogeneity within computing resources, and
inaccurate information.

1.2 Grid Computing

Even though grid technology has just beenrecently introduced to the field of distributed
computing, it receives many attentiens from researchers throughout the world. This technology
focuses on aggregating the physically distriByted computing resources over the Internet. These
resources can be located in different-erganizations whe want to share their computing resources.
With this approach, the organizaions that jein the same virtual organization can have a large scale
computing power for their'computing-intensive application. Mereover, by sharing all computing
resources in the organization together, the oIerall utilization can be increased because most of
the computers usually idle while some of them overloaded. One important difference between
grid technology and peex:pfo peer applicatien is' that the owner of the computing resources (e.g.
system administrators) can siill have/control oer their resources. Every administrator can specify
the amount of shared reseuirces for each user frdm dlfferent organizations. There are many both
academic and business organizations who alreaq,y 1mplementcd grid technology for sharing their
resources. The number of partlcrpatmg pany can-"e ;.xpected larger and larger in the future.

Although there are also other dlfferent pu;ppscs of using grid technology such as data
grid and access grid which is intended for aggregating a large amount of data or control the re-
source usage within a-laggcicil&m_ﬂﬂ&mml_thﬁﬂﬂlﬂt g/xll focus on the computing grid
only. The infrastructure-6f ' computing grid usually censists of the computing clusters over WAN.
These clusters can be located at different academic laboratorles or some business departments.
An example of grid computing environment is shown in Fig. 1. 1.

Figure 1.1: An example of computing grid.

From Fig. 1.1, we can see that even though we have tremendous amount of computing
power available for the user in the virtual organization, this structure also raises some restrictions
and drawbacks to the computing system. In this work, we focus on three main characteristics of
grid computing consisting of cluster-based hierarchical structure, WAN communication, and large

Lt
-

i -+~

L€ o’n}uﬁng hetere geneity.
1.2.1 Cluster-Based Hierarchical Structure

In order to build a high performance computing system with low budget, the clustering
concept is introduced. Each computing cluster can be built by connecting a large number of
computing nodes together within high speed network making them virtually seen as a single
computing resource. The Beowulf infrastructure [16] has been extensively adopted for building
the computing cluster. Figure 1.2 illustrates an example of the computing cluster.

J
Frontend

node computing node n

il "1-"5"
1.24 An ¢xample offd;nputmg cluster.

As presented in th;l L8 there are n compﬁnngﬂnedcs com}ected to each other and to the
front-end over LAN. The conne i ?g inter-cluster communica-

tions. To utilize computltf}g_cluster users must first submit thelr app

cations at the front-end and
the front-end will assign workload to each computing node according to the load distribution pol-
icy of the scheduler. With this methodology, the users will only see an entire cluster as merely a
single computer with a large computing power-ayailable; However-this-behavior also introduces
new restriction that in erder to maintain the transparency within the cluster all the communication
between the worker nodes in different clusters must perform through their front-end nodes only.

Since grid computing system.consists of multiple clusters, its’ communication topology can
be in the férm of hierarchical structure even in the same organization. Figure 1.3 illustrates an
example organization which consists of multiple divisions, branches, and sections. Thus, the
communication structure of grid system restricts not only how workload is exchanged within
cluster, but also between clusters as well.

1.2.2 WAN Communication

Since grid technology has been proposed for aggregating computing resources from dif-
ferent organizations, the communication overhead can be large due to WAN. An amount of
inter-cluster communications will be an important factor for defining load sharing strategies. In

Figure 1.3: Hierarchical structure'in.grid computing system.
-

addition, information inaccuragy'can‘also occur as a result of out-dated information [17]. There-
fore, this behavior will degrade the pcrformanlie of the traditional strategies that require an accu-
rate information of the undefiymg system

1.2.3 Large Compuﬁng-ﬂetei‘og‘em_ity v T; 4
N -J
The difference in computing power or comgutmg heterogeneity within grid computing sys-
tem will increase overtime dug to grid’s openness ThlS characteristic will intensify the effect of
load imbalance at the end of computatmh The: rﬁnammg workload in some slow clusters can
inflict a large amount of additional ’parallel runtltn& dé&plte of the total computing power which
has been dedicated to the submitted application. =

i

1.3 Load Sharing suajegs -,

F
o

The main concept of the load sharing strategy focuses on assxgnmg proper amount of work-
load to computing nodes for obtaining an optimal resource utilization, throughput, or response
time. This strategy utilizes multiple resources simultaneously instead of using single resource to
complete the works. It can be further extended to increase the reliability of an underlying system
through redundantiexecution. The implementations of load sharing can be as a dedicated hardware
or program and has been commonly used to manage wéikload in computer'clusters, especially
high-availablity clustér, The performance of load sharing strategy|can bevaried depending on
types of information being used for making load decision and how computing resources exchange
their workload information. Note that, throughout this work, we use the term “load sharing” and
“load balancing” interchangeably. We prefer to use “load sharing” because the intention of our
proposed strategy is to optimize the parallel runtime by distributing different amounts of workload
to computation nodes with respect to their computing capacities.

Load sharing strategies can be classified using two aspects, the communication structure
and load information about computing resources as shown in Fig. 1.4. Communication structure
classifies strategies based on how they exchange load information. This can greatly effect the
communication overhead and the number of neighbor nodes during workload assignment. The

Centralized Distributed Hyord ot | A

Figure 1.4: Classes of Load Sharing Strategies.
|
f illi‘//
quality of load decision highly depends on how én{rj;ﬂqr node captures the current status of
an underlying system. In addition, types of load information for making load decision also effect
the performance of load sharing strategies. Srmc metrics can be gathered easily while others are

more sensitive to inaccuraw

1.3.1 Communication

Classification
W -

Ll

By considering h uting our_cé exchanges information and workload, we

can divide load sharing strategies i 3 thri'ee y sses consisting of centralized, distributed, and
d . i

&l

L
¥

ik ARAy

cll | $2 WaB cn

Figure 1.5: Centralized load sharing strategy.

Asshown in'Fig. 1.5, the centralized strategy [20] aggregates all related system information
into the central coordinating node. Therefore, the central coordinating node has all information
it needs to make decision. However, this class of load sharing strategy suffers from a contention
problem at the central coordinating node in a large-scale computing system. Distributed strategy
removes this contention problem by specifying the neighbor nodes for each computing resource.
The communication model of distributed load sharing strategy is illustrated in Fig. 1.6.

Using the distributed strategy [21][22][23][24], the computing resources exchange the cur-
rent information and workload with their neighbors during computation. Although this distributed
strategy can remove the contention problem, it fails to capture the overall behavior of the comput-
ing system since each computing node makes load decision based on its local information only.

&
Figure 1.6: Distribux-eﬂ__/)éfs ing strategy.

o - ———
This problem of local view can.be réduced by specifying the random neighbor nodes. However,
this behavior raises another r: 1on that each computing nede must be able to directly commu-
\ is is not true in grid system since most computing
'er_j'/ computing noede in each cluster must communicate
'é’&uénéyf;thc performance of this strategy decreases be-

_fan'al'f om t}igh latency in WAN between each cluster.
’] 'f o

nicating with each other over
resources are the computi
through its predefined fron
cause of the contention at

I i
Figure 1.7: Hybrid/Hierarchical load sharing strategy.

Hybrid strategy (or hierarchical strategy) tries to combine ¢entralized and distributed strat-
egy together by défining a tree-like structure. Each branch in the tree represents a sub-coordinating
node. This node is responsible for assigning workload té'its successor in the'tree structure which
could beeither anothér Sub-coordinating nede or the computing nede. The current status of the
entire system can be monitored at the root node which can be one of the computing resources or
just an information server. This strategy can reduce the contention problem at the coordinating
nodes while the coordinator node at the root of the tree can still capture the overall behavior of
the computing system. Many related works [25][26][27] try to specify the optimal virtual tree
structure over computing system. These strategies can achieve good parallel runtime since the
computing nodes with the large available computing power are usually sharing the same parents
in tree structure with the computing node with small computing power. However, this behavior
often results in direct communication between nodes across multiple clusters which is not feasible
in grid system.

1.3.2 Load Information-Based Classification

Load information of the computing resources can greatly effect the parallel performance
of load sharing strategy. Thus, we can classify load sharing strategies into two classes: explicit
strategies and implicit strategies. The explicit strategies refer to the traditional load sharing
strategies which perform load decision based on explicit information of the computing resources.
The explicit information represents various physical-oriented characteristics of the computing
system such as processor speed, memory capacity, or current workload. To utilize explicit infor-
mation, most explicit strategies define resource model for aggregating explicit information into
single usable value. In contrast, the implicit sirategies use more subtle approach. Instead of us-
ing physical information, the implicit strategies B_af_gj:eir load decisions on implicit information
which is basically the job processing speeds obséried aithe coordinator node. Implicit load shar-
ing strategies proposed in this work is simple, yet effective. By utilizing implicit information, we
can overcome the limitations feunded in most self-scheduling strategies in the past. More details

about the explicit and implWé 2iion cag be found in the subsequence sections.
su/‘

1.3.3 Self-Scheduling ¢

- | B 4 W
Ll

Self-scheduling strategy, re
With this strategy, the coordinat
workload to during runti
when it already finished previeus

ents 2 large class of dynamic loop scheduling strategies.
Swill ,rr;ime when and which computing nodes to send
idle nodes musl make a request back to the coordinator again
asslgned wonkioad The performance of self-scheduling strat-
egy can be further improved by fining How sizes will be changed during an execution.
Load imbalance can be occurred wb&n séme nodes‘ag still waiting for more work to arrive. Any
strategies that assign workload this. way ate consiﬂégoqi to be self-scheduling strategy. This strat-
egy can utilize dxffcrem communication topolog{es for dlstnbugmg workload although it often
uses centralized co ication s : = an make load decision based
on both explicit and lmp/hcxt information. Therefore, this straté'gy can be classified into multi-
ple subclasses according (0 how it is implemented. Due to its strength and simplicity, there are
many load sharing strategies, which based on this strategy. Figure 1.8 illustrates the behavior of
self-scheduling strategy:

There is one class of self-scheduling strategy which is famous for its robustness called
stage-based self-scheduling strategy. This strategy first'allocates a portion of workload for each
stage. These workload will be further divided according to the computing pewer of the requesting
node. This, every computing node will tend to finish its previously assigned work at the same
time during each stage. Load imbalance at the end of computation can be reduced with this
concept. Figure 1.9 illustrates how stage-based self-scheduling strategy assigns workload during
each stage. There are many strategies which can be considered as stage-based self-scheduling
strategy such as FF'SS, WF'SS, AW F'SS including our implicit strategy (C RS S) as well. More
details on these strategies will be provided later in the next chapter while other self-scheduling
strategies will be summarized in Chapter 7.

Coordinator Node

Request Task

Assign Task

(ldle) (Busy)(Bu f (Busy)

Figur_erl »Behavior Tf self-scheduling strategies.

Total Workload (U)

Allocated
For Each Stage (us)

Allocated Ki1

2 : 1 Ky
For Each Node (Kis) b I — (RN
Unit Task ﬂﬁ "_:f'z‘_': 5 ﬁi‘,‘-{i éér_\]}]

:_J?g X

1.4 Objectives

The objective of this dissertation is to define a practical load sharing strategy which is
simple to use and-suitable-for grid.computing-environment.;Qur purpesed strategy must also be
able to handle an information inaccuracy or different kinds of fluctuations within the computing
system.

1.5 Scope of the Work

This work will define a new load sharing strategy which utilizes implicit information. We
assume grid computing system as the collection of computing clusters connected together using
wide-area network. We focus on various factors which can effect the performance of load sharing
such as computing heterogeneity, communication overhead, inaccurate information, and different
classes of applications. Both mathematic and simulations are defined to evaluate the performance
of our proposed strategy. The simulated application will be submitted to the computing system
at the coordinator node with every unit task specified. Although our proposed strategy can be
extended for different type of applications with unique characteristics such as branch-and-bound
applications, load sharing strategy presented in the work is for computing intensive application

with independent unit tasks only.
1.6 Organization

This dissertation is organized as follows: In Chapter 2, we talk about backgrounds and
assumptions about system environments, prediction model, and behavior of explicit strategies.
Chapter 3 describes our proposed implicit information and its behavior. Implicit strategy utilizing
implicit information is introduced in Chapter 4 while its performance analysis will be described in
Chapter 5. Chapter 6 talks about the extensions for implicit strategy addressing the unique charac-
teristics of grid computing system and submitted applications. The related works are summarized
in Chapter 7 before we conclude our work in |

]

% g
AuEINENINYINg
RINNIUUNIININY

CHAPTER I

BACKGROUNDS AND ASSUMPTIONS

2.1 Assumptions

In our work, we assume that the system is a grid-based environment, consisting of multiple
clusters working together over W AN. We also assume that each cluster assigns one of its node to
become the front-end node responsible for distributing workload to other computing nodes in the
same cluster. Moreover, one of the front-end no c ill also serve as the coordinator node which
manages the submitted jobs and assigns worklh } luster.

2.1.1 System Environments —-—-.;_ ‘__E___,‘

Grid system consists of NV computing nodes which will be grouped together into L clusters
{Cy, Cy, ..., CL}. These compu cluster: icate with cac other over WAN with
latency and bandw1dﬁ¥ a%@% ﬂ §1cauon within each
cluster will be deﬁnedusmg ay, and G, for representing latcncy and bandwidth within LAN.
To simplifying our work, we assume that thé overheads of thie intra-cluster cMumcanon are
the same mi

U0 i | o i s i

in cluster ¢ specify p; to be the aggregated computing power in e computing power
of node j in cluster i (p;;) will be specified in comparison with the total computing power P

according to r;;. Thus:

L
P=ZP¢'
L n;

= ZZp,, @1

i=1j=1

11

All parameters related to simulated computing environment are shown in Table 2.1.

Table 2.1: Related parameters in the system environment.

Variables Definitions
L Total number of computing clusters
C; Computing cluster i
Cij Computing node j in cluster ¢
N Total computing nodes
n; Number of computing nodes in cluster ¢
P Total eompunng power in grid system

Co

Throughout this wor ainly on a computmg -intensive application which con-
umt..-lrta We assume that there is only one submitted
_en_t_ h(:.‘vnd u&br subrmts his/her application to the coordina-
will d.lsmbuﬁ these unit tasks to other clusters and its local
computing nodes. There are U u taskS%r appl-&n The total computation and communica-
tion size is represent as W and rc‘sb'c'éfi\'/ely t the computation size of each unit task
can be seen as a weighted value effectmg ‘how lqn‘?@ﬁh computing resource will take to finish

each task. The computing Tesource w1th computmg power specxﬁe(}{as one task per second means

application for each simulated ex
tor node. Then, the coordinator no

it can finish the unit tasr vith cemputatien size specified as ene in one second. The larger
computation size will rcsﬁit as an additional time for the same gp‘h'lputmg resource to finish it.
The related parameters bei j used throughout this work are shown in Table 2.2.

' Table 2.2 Relatedparameters of Applisation Model:

enion

Communication size of each unit task

To model various application types, we define four distinct classes of applications [28].
Each application class consists of multiple independent tasks with different computation size of
each task (wq) based on predefined workload pattern. The predefined workload pattern can be
either uniform, increasing, decreasing, or random distribution, which can represent popular appli-
cations such as Matrix Multiplication, SOR, Reverse Adjoint Convolution, LU Decomposition,
and Gauss Jordan Elimination, respectively. Figure 2.2 illustrates the workload patterns of all four
application classes.

12

1) Uniform 2) Increasing
3) Decreasing 4) Random

F4
__.f-

Figure 2.2: Workload patterns of four diffex.'ent' application classes.
-

For application with uniform patiern, all unit tasks have the same constant task size, which
is {wg = W/U}. This is not'the case fer the application with increasing workload pattern, whose
unit task sizes are bigger naé;:nd of computation. On the centrary, the application with
decreasing workload pattern ;?Yﬁa_ve s,ma’l}ér.boxiaﬁﬁtation size near the end of computation. The
exponential random distribution will be nsed'whe& simulating the application class with random
distribution pattern. In order t ens{lre the fairness in our simulated experiment, we specify the
total computation size of every ?pplwanon class” to be the same. Moreover, we also evaluate
the performance of load sharing strategies ‘when the number of unit tasks is limited. Finally, we
change the computing heterogenelgy of arruhderlyl ‘system to study the behavior of load sharing
strategies with different applications. == 2l

2.1.3 Sensitivity Model-of Load Information

| -

Typically, every lozid%l_laring strategy makes a load sharing dq‘siﬂlion based on the estimated
computing power of the corﬁi;ﬁ_uting resources. We define p;; to represent the estimated computing
power of node c;;. On one hand, some strategies use static j;; estimated from pre-determined
CPU and memory capacities. Om the other hand, many strategies measure p;; during run-time.
Therefore, p;; can be different from the actual value, p;;.~ We refer to this difference as the
sensitivity of load information. This sensitivity value plays an important role in load sharing
strategies as it can greatly effect their performance. To médel information sensitivity, we define
estimation(gap ratio (g;;) to'represent the ratio of incorrect estimation of the computing power at
node c;;. Anestimated computing power of node c;; (p;;) can be calculated as:

pij = (14 gij) * pij 2.2)

The estimated total computing power (P) can then be calculated as:

P=3 S b 2.3)

13

To illustrate the effect of information sensitivity, Fig. 2.3 shows the parallel runtime of
explicit strategy (W F'SS) when the information sensitivity about one computing node (gy) is
varied.

806

- -

W
i 4
3 4ee:
g o
;‘LL :

S\

1 0.5 0 05 1

) %

Figure 2.3: Parallél runtime 0f WFSS with different information sensitivities.

From Fig. 2.3, we caxrs/ th’at WFS S will achlcvc its best result when there is no informa-
tion sensitivity occurring in th computmg systcm (gzy 18 specified as zero). The obtained parallel
runtime will become worse when the 1lformatw{1 scnsmv1ty about node y in cluster = (g4y) ei-
ther increases or decreases. I»‘fle posmve/negauvb value of information sensitivity will result as
an over/under-estimation about the computing power of a specified node. Given a homogeneous
system, an over-estimation abeut the computmg_gywer of one computing node tends to effect
overall performance more than whcn we. under—estn's;_g},eJ it because other computing nodes must
wait until an over-estimated node to ﬁmleall of its workload at the end of computation. Thus, an

amount of idle computmg power will be large in th.qse. gsss

2.2 The Analysis of Stagsnmdmedmmsmnﬁs—i

In this work, we propese a mathematical model to evaluate the parallel performance of a
load sharing strategy. To simplify our model, we assume that the system has only one cluster
called cluster C; availableIn this case,.L;= 1 and P = p,: The.estimated computing powers
of all other computing hedes except computing node c;, will always be correct. Therefore, there
will be only one computing node which is incorrectly estimated for its computing power. We will
use czy to.xepresent.this.node throughout an entire work. As for.an information sensitivity (gzy),
we will use only non-negative values when we.evaluate the.performance of W F'S'S because load
information about an underlying system is usually in the form of an upper-bound value resulting

as an over-estimation about the available computing power and explicit strategies also exhibits the
same behavior with both positive and negative values of g;,,. Thus:

“ (1 + gzj) * pgj otherwise

This assumption will effect the parallel runtime depending on which load sharing strategy
is being used. Moreover, We also assume that the file size of submitted job is small with respect

14

to the communication bandwidth. Therefore, the communication overhead is very short and can
be omitted.

2.2.1 Prediction Model of Parallel Runtime

The entire execution of a stage-based self-scheduling strategy is divided into stages. In
each stage, the coordinator node assigns workload to a computing node with respect to the total
chunk size of workload remaining in the current stage and the weighted value of that particular
node. The workload that has already been assigned to one node cannot be moved to another node.
As the estimated computing power is often inaccurate, there might be some nodes stay idle while
other nodes are busy near the end of computation'l. /This leads to non-optimal parallel runtime.
Let czy be the node whose p;y is overestimated ﬁf },(x and all other nodes have accurate
estimation. In this case, cz, will finish its weorks later th st. Thus, the execution stages of
self-scheduling algorithm canlb):xﬂlped into 4";Jarts as shown in Figure 2.4. Note that the box
in the figure represents a number of unit tasks assigned during each stage. The boxes with dark

color indicate the works belo be executed at the other nodes near the end of
computation.

- LEﬁ"'l i
smEoe

-glln-
FEEET LT

-

sl

i

© @

p e— - ot
o1 A

Flgurc 2.4: Four parts of prediction moch-

3 L AR

a. Parallel runtinie until/ali nodes, €xcept ¢4y, finish their portionsof werkload (t4)

b. Parallel runtimé for c, to finish its current stage while other normal nodes execute work
from ¢, ’s portion (t B)

c. Parallel runtime for ¢, 'to finishits'subséquence stage While other normal node continue to
execute more works from cz,’s portion (t¢)

d. Parallel runtime for ¢z to finish its last stage (¢p)

The total parallel runtime (7") can be calculated as:

T=ta+tp+tc+1ip 2.5)

15
Note that the parallel runtime in part C' will occur only when there are enough workload in
Czy’s portion that can keep other nodes busy until c;y execute the last stage or else this part will

be omitted. The related variables used in this model is shown in Table 2.3.

Table 2.3: List of related variables in prediction model.

Variable Names Meaning
T Total parallel runtime
f(A/B/C/D) Parallel runtime in part A,B,C,D

wz‘;_(A/B/C/D) Remaining tasks in node ¢ of cluster = during part A,B,C,.D

W(a/B/C/D) Remaining tasks at the beginning of part A,B,C,D
@sia/B/0/D) | Expected tasks ii f cluster z during part A,B,C,D

Wa/B/C/D) Expected t: / uode during part A,B.C.D
>

2.2.2 The Behavior of Factoring and Descendants

a—

In this work, we choose on pad sharing strategies which is famous for the robustness
called “Factoring” (F'SS) [Zm: descendants to represent explicit strategy. This strategy
proposes new notation called stage -Vyery computing node will receive equal chunk size during
each stage. The total chunk size dis qxed dhiing:_-sfﬁge 8 (us) can be obtained as:

/) U= [?] 4 (2.6)

Given w/, as the remaining unit ta;sl_ciat.the beglﬁ;:(g_; of stage s, we can define a decreasing
stage size between each stage. The pgraxTz_:_tcr) is?m:pu_tcd by a probability distribution or is
suboptimally chosen as § = 2. Since 755 ‘was proposed for homogeneous system where every
computing node has the same computing power, the chunk size asséued for node j of cluster 3
during stage s (Kj;,s) can b;&;alculated as: :_J

Ug

Kyo = | 2} ‘ @

From Eq. (2.7), we can see that F'SS distributes the largest chunk in the first stage and
will decreases the,chunk-size in-the subsequence stages-with anequal propertion. ; During each
stage, every progessor will reeeive an‘eqnal chunk size of werkload. F'S S| can reduce communi-
cation overhead by sending large chunks at the beginning while it achieves sub-optimal runtime
by sending small chunks near the end of computation.

To address heterogeneity within the computing system, “Weighted Factoring” (W F'SS) [30]
is proposed as an extension of F'SS. In this strategy, the amount of total unit tasks allocated dur-
ing each stage is the same as defined in F'SS (using the same u;). However, unlike F'SS, WF'SS
can be considered as explicit strategy since it uses explicit information of the computing resources
to further assign workload allocated within each stage.

Using WF'SS, the chunk size of the first request is the largest and decreases toward the

16

Parallel Runtime

[—#—ClusterA —8—ClusterB - ClusterC —— ClusterD |

Figure 2.5: Chunk size for each request of four clusters using W FSS.

end of computation. From Fig. 2.5, we can see -tfxat each cluster receives a decreasing chunk size
according to its available computing‘power. For example, cluster D has the computing power 4
times larger than cluster A. o nl

As an extension of WF S 9 for addressing inaccurate estimator, “Adaptive Weighted Factor-
ing” (AW FSS) [31] has been intzoduced. This strategy further extends W F'SS by introducing
new weighted value called “Weighted Average Pe&for’hance”. This weighted value (W AP;; ;) of
node j of cluster during stage k can be calculatcd'is follows:

WA= —Z—li‘iﬂ*-"'— 2.8)

Where t;; s is an exeeution time for node j from cluster s to ﬁnij.h‘_all K;; ¢ iterations in stage
s. This weighted value will be re-calculated every stage using the nq@.y obtained computing rates
of each resource. Therefor€, the explicit infoermation will be uséd as a weighed value during
the first stage only. With this average value, AW FSS can address the dynamic behavior of
the heterogeneous computing System. However, since AW F'SS assigns half of the available
workload during thexfirst stage, the problem of an inaccurate. explicit information can still effect
the performance of this strategy.

ForSimplicity, we, will analyze the behavior of WF'S'S as an exampl€. of explicit strategy.
Both WF'SS and' AW F'S'S will be simulated and compared with eurimplicit strategy later in the
following chapters.

2.2.3 The Performance Analysis of Weighted Factoring

The behavior of W F'S S highly depends on the accuracy of the computing power being used
for making load sharing decision. We will use W F'SSS as a representative of explicit strategies.
By using our prediction model, we can predict the parallel runtime of W F'SS and identify the
factors that affect the parallel runtime of explicit strategy. The behavior of W F'SS within our
prediction model is illustrated in Figure 2.6

17

Other Nodes

Overestimated Node I
(Cy)

-
© @

1 for WFSS.

a
Figure 2.6: Four par Q%‘J
S

e —

a. Parallel runtime until all xwﬁ’ cxy, nish@ons of workload (t4)

Let t4 be the time that this at only the computing power of
Czy has been overestim, eir works at the same time.
Thus, we can calculate ¢ of any nodes, except cgy.

2.9

dlid=a

; Parallcl runtime fer Czy 10 finiSh jts f:p‘?enr stage ormal nodes execute work

(2.10)

o)
Based on equation(2. IOthc stage of ¢z, when pm B starts (and finishes) is [m]. Thus:

ﬂuﬂ?ﬂﬂﬂ%‘ﬂﬂ?ﬂi e
QW’W aﬂﬂwl_m ’W]Eﬂﬂ d

Wry,B * Pzy — Pzy) (2.12)

The amount of unit tasks necessary for every node to stay busy during part B (wp) becomes:

@B = wyy g + (tB * (P — pzy)) (2.13)

If the remaining tasks in part B is less than @p, the execution stops with parallel runtime
equals to the parallel runtime in A and B only.

c. Parallel runtime for cgy to finish its subsequence stage while other normal node continue to
execute more works from cz,’s portion (t¢c)

18

We will calculate how many stages that node c;, can go further while every node is busy.
To begin with, the remaining tasks in part C' (wi)can be calculated as:

U\, . =
wg = (;) (Poy — Pzy) — @B (2.14)

Since WF'SS always reduces stage size by half every stage, we can calculate the amount
of work which will be allocated to c;, given the number of stages that has been executed.
Note that part C start from stage [m] + 1 which can be calculated from (2.10). An amount
of workload assigned to c;, during stage j in part C can be calculated as:

Dgy,j = (1/% x —L p’” 2.15)

Therefore, we can find the last stage of node ¢, that, every node is still busy before phase
D starts at |n] by compasing With w(- as: 2

//.--___'iw'c

-
15) (P)

=1 (2.16)

If there is not enough tas _cfryhno:igo) stay busy, all of the remaining tasks will be

t of Wo ecessary for every node to stay busy and total
be ,olztamed j\p follows:

executed in phase D.
parallel runtime in phase

i ;L
we'= meyj "r‘;‘éﬂi) (P P:zy)] (2.17)
—mE!-—l
where —t HE
é;# —1—- (2.18)
X Py

. Parallel runtime for cz,, to finish its last stage (¢p)

In this part, we will compare how much works of c;; remain that can be distributed to other
nodes. We begin, with calculating an,ameunt.of,werk for-the.qverestimated node c;y to be
executed in this part.

Wp =) @or= WO (2.19)
@p = min(wh, (%) (’%) (1/2)ln-1+1) (2.20)
fg s ~E0B @.21)

Pxy

By combining all of the parallel runtime from every part together, we can have the overall
predicted parallel runtime. From (2.12), we can see that when g, is increased as a result
of larger gap between the estimated and real computing power of node czy (gxy), w;y, g will
increase. This means both c;y and other normal computing nodes need more works in order
to stay busy. If there is not enough remaining work, load imbalance between computing

19

nodes will occur degrading the overall parallel performance. This behavior will also appear
in part C where other nodes need more work in order to stay busy given an increasing p;y as
illustrated in (2.15). Hence, our prediction model for W F'S S indicates that an overestimated
computing power can lead to a degraded parallel performance because of an additional load
imbalance between computing nodes.

Using our prediction model, we can analyze the performance of W F'S'S by comparing the
model to the simulation results obtained from Network Simulator(N S) [32] with the parameters
given in Table 2.4. From the given simulation parameters, the parallel runtime of the prediction
model and simulated experiments are ill\i igure 2.7 and 2.8, respectively. Note that rz,

a

represents the computing ratio of “\.{twm}/)
4 7 ./

Table 2.4: The pMulaﬂlg Wﬁlc cluster environment.

VaniableNe ;’?!1 l’\\\x Values
f tasks (L - 16,384
nput e) 32
1
Imra-clustereomm 1ms , 100Mb/s

F ol o] Fa W W =~

=t
v

QRN SISO ¢

0 0.2 04 06 0.8 1
Gy

[- - @ - - Simulated —— Predicted |

Figure 2.8: The parallel runtime of WF'SS (r3,=0.5).

From simulated experiments, we can see that the performance of W F'SS is best when there
is no estimation gap(g,y = 0). The parallel runtime of W F'SS tends to increase in according to

20

an estimation gap ratio (gzy). Both prediction model and simulated experiments clearly indicate
that the overestimation of computing power at node c;, can degrade the parallel runtime of ex-
plicit strategy. This behavior is the result of load imbalance between computing nodes at the
end of computation especially when the relative computing power of node czy (7zy) is small in
comparison with other nodes.

AUTINLNINYINS
ARIANTAUNNINGAE

CHAPTER III

CONSUMING RATE
3.1 Definition of Consuming Rate

A good load sharing strategy requires a good load sharing metric that can truly represent the
computing power of the working node while taking network condition into consideration and yet
simple enough to measure accurately. While the idea of defining general-purpose load metric has
been proposed in [33], it does not introduce any new n}ctrics or load sharing strategies at all. In this
work, we propose an implicit informatien called “cd@ﬁl!}ning rate”, as load sharing metric [34].
This simple metric can satisfy as a goeod load sharing nfeﬁa_g,when being used properly.

9 o'

In general, stage-based self scheduling strategy requires the computing nodes to request
workload of the next stages frofm(th&c“o inator/front-end nedes when they complete the execu-
tion of their current stages. As'the cebrdinater/iront-end nodes know the chunk size that has been
assign to the computing node '

measure time between requests, they can estimate the

) ?nsﬁhﬁng‘,ri'te. The consuming rate (crij) is simply a

n/process T!it tasks at stage s. The definition of cry; is
.

computing nodes’ capacities usin
rate of how fast a requesting
as followed:

!'-I ?1. - V- - 'F .
crigs = (ﬁﬁl G.1)

Where cr;;,s represents the consumiing raie o'f;;tfé‘délj"of cluster i at stage s, which can be
calculated from the chunkéiz;c assigned in previous stage (K;j ;1) _aid the interval time between
requests of node c;; from th_éff'prcvious request to this ene (I ntvgj,.);‘zdis obvious that these two
variables can be collected easily at the coordinator or frent-end nodes which are responsible for

assigning workload. -

Since crij, s isimeasured at the coordinator nede;, this metric'takes an account for both actual
computing power and, communication bandwidth, even if the“owner of each computing cluster
may not dedicate the entire cluster to process the submitted application. Thus, we can make
load decision immediately. without'the-need to define any complex resource micdels with multiple
metrics or measuring any indicators at the computing nodes on the'networks.” The coordinator
node just needs to only keep track of the rate of requests from each working node.

3.2 Behavior of Consuming Rate

While this consuming rate is fairly simple, measuring it accurately requires the under-
standing of its natures. The value of consuming rate usually depends on the amount of assigned
workload and the underlying computing infrastructure. Obviously, the consuming rate can be
measured accurately when there are enough workload assigned to the working node. In this sec-
tion, we will study the behavior and effect of consuming rate upon different factors such as the
number of computing nodes in the clusters or the chunk size per each request.

22
3.2.1 Consuming Rate and Number of Computing Nodes in Clusters

In Grid computing environment, a cluster appears as a single computing resource. Thus,
the coordinator node will threat the entire cluster as a single worker node. However, a cluster
actually consists of a large number of computing nodes inside. Hence, collecting the consuming
rate of the entire cluster by assigning a few unit tasks to a computing resource in grid may not
accurately represent the actual computing power of that resource.

Figure 3.1 presents the behavior of our consuming rate as a function of chunk size given
a sample cluster with 64 computing nodes. For simplicity, we assume that each computing node

can process one task per unit time and always ha. tﬁ)ﬁ}m computing power throughout an entire
execution in this example.

6 R
- s (=
‘E i N o)
40 .
s) g
30 - "y
‘ | W,
m .‘ L - b ‘
- N
10 -
4 A ¢ A :
0 40" A 80 100 120

Figure 3.1: The comparison of con, mm Tate and
cluster.

In Figure 3.1, thgdpllectcd consuming rate dependsm.thé chunk size assigned in each
request. As chunk size igti_‘eascs, the number of working nodes l_ILdlc sample cluster increases.
The consuming rate can trmjy represents the actual computing pFwer when we assign workload
in multiples of the total nuffiber of computing nodes in that clustér. In addition, when we assign
larger chunk size, the consuringirate becomes mére accurate than when assigning smaller one.
Therefore, our cohSuming rate is a bad estimator of the computing power of an entire cluster when
the assigned chunksize per request is small.

3.3 Limitations of Consuming Rate

Although consuming rate is simple and powerful enough to be used for making load deci-
sion, it also has some limitations that we need to consider when we define implicit strategy.

3.3.1 Application Specific

Different from other explicit information such as the speed of CPU, the consuming rate is
application specific. The consuming rate can change considerably even with the same computing
system given different applications. Some applications require large communication bandwidth
while others might focus on the computing power of an underlying system instead. An obtained
consuming rate can also vary according to the different set of parameters of the same application.

23

Therefore, we must be very careful when we decide to use the consuming rate collected in the
past.

3.3.2 Require Certain Amount of Unit Tasks to Achieve Acceptable Accuracy

Although the consuming rate should be collected on-the-fly during an execution, there must
be a certain amount of unit tasks in the submitted application. Since an accuracy of the obtained
consuming rate can change with respect to the chunk size, the lack of unit tasks in the submitted
application can worsen the performance of our implicit strategy. The performance comparison
with different number of unit tasks will be shown '&n the following section.

3.3.3 Inaccurate Estimation of the Compuﬁng.-ﬁ!vf_é:;jf Coordinator Node

In some cases that the coordinaier nod:also assigns workload to itself, the consuming rate
of that node will be calculated wi cu;censidei'ing the communication overhead. Hence, it will be
different from the consumiﬂ{lh of other coﬁputing nodes resulting as an overestimation about

he/coordinator node. From this reason, the proposed implicit
andl¢ this issue.

the available computing power o
strategy must be robust enough'to

3.3.4 Non-Reusable among Other ¢ 'o'or(_ling&or'Nodu

nd 6!1 the c’otiintumcatlon structure between the coordinator
ergfhre the c_phsummg rate should not be used immediately
when we change the coordinatornode- However Wc’might use old consuming rate as a reference

The consuming rate is al
node and other computing no

when we start calculating the consummg—ratc agamjat new coordinator node.

o ol T ol

= -] ——
3.4 Averaged Consugiihg Rate £)
Yy g

As for grid computing system which consists of multiple clusters, this consuming rate will
truly represent an available computing power of the requesting cluster only when chunk size is
equal or more than the number ef the computing nedes in that cluster. Otherwise, the computing
power of idle nodes will net be taken inte considération, Since an accuracy of the consuming rate
depends on how much workload have been assigned during each'request, we define an average
value of the consuming rate so that the consuming rate obtained from assigning larger chunk will
effect this valile moreilian the others. The averaged consuring rate (cr;x).of (7 at stage k can be
calculated'as

c"'t],k(Kt j,k— 1) + CTijk—1 * Zs— K’Jy
Ek lKl,

3.2)

Crijk =

3.5 Conclusion

Consuming rate represents the capability of the computing resource to process the submit-
ted application. It is a single metric which can be used immediately for making load decision.
This value can be obtained at the coordinator node without the need to implement any monitoring

24

services.

Although the consuming rate can be collected and used easily, it also has the limitations and
unique characteristics which are different from those of explicit information. From the mathemat-
ical analysis, we find that the consuming rate can be a good estimator of the computing power by
allocating a large chunk size per request. However, the variance in the runtime will also increase
proportionally with the chunk size. These issues must be addressed when we define implicit load
sharing strategy as we will show in the following chapter.

¥

AULINENTNEINS
RINNIUUNIININY

CHAPTER 1V

IMPLICIT LOAD SHARING STRATEGY

To overcome the shortcomings of traditional load sharing strategy, we propose a new self-
scheduling strategy called consuming rate self-scheduling (CRS'S). Based on W F'S S, our algo-
rithm assigns workload into stages. The consuming rate (cr) will be used for making decision of
workload assignment to the working nodes in each stage.

4.1 Phases of Computation in Implicit Stmtep

In our implicit load sharing strategy, we utilize_{f}maldng load decision without know-
ing cr’s initial values. We can ﬂmin cr only during 'Lie‘efjegution by assigning chunks to the
requesting nodes. Although sgl_qingqlfrgi chunks allows.us to obtain accurate consuming rates,
it may also introduce load 1?1};“(the end of computation. Thus, we define two phases of
execution: increasing and decreasing phases. During the increasing phase, we gradually increase
rates. After the increasing phase completes, the de-
ured in the increasing phase, the decreasing phase can
end of putation. Note that it does not matter how we
oug :{:}p every node busy and not too largc to create

Stage Number

Figure 4.1: An example of stage séquericé in iinplicit strategy,

4.1.1 Increasing Phase

Increasing phase is important for obtaining accurate consuming rates. During this phase,
the stage sizes are defined in arithmetic sequence. This yields better parallel runtime than using
other sequence such as geographical sequence since other sequences may assign too small chunks
at the beginning resulting to an inaccurate consuming rate. In addition, we allocate an equally
half of a total workload for both increasing and decreasing phases.

Let us be the total chunk size in stage s. Suppose that there are I stages in the increasing

26

phase. We gradually increases the assigned chunk size with a constant value A. As we split total
available tasks in half and u, is specified as 1, the constant value (A) can be computed as follows:

v _
A= [7 2] @.1)

After the increasing phase completes, the coordinator node will have the consuming rate of
each working node. Our algorithm then performs the decreasing phase.

4.1.2 Decreasing Phase [
U/

The purpose of decreasing phase is to make our @s&amgy more robust against an
inaccuracy of our consuming rate. During this phase, the chunk size is decreased by a constant
proportion () to achieve near-optimal parallel runtime similar.io W F'SS. This constant propor-
tion can be calculated using a probabili istribution or suboptimally specified as 2. Thus, the
chunk size of stage s (us) becomes: \

2 n} -g > I+ 4.2)

T

__ Kijs === Xl (4.3)
\ =150 :f
=

Y #
—

Using equation(4.3), e'éfé’lfi node receives larger chunk size at the beginning. Later, it will
receive a smaller chunk size to the end of its computation. Figure 4.2 shows the sample chunk
size per each request distributed to.four clusters with different computing power during runtime. -

2000

1800 |
1600

o] %

1200 I
NI d]

1000
800
600
400
200 ry-

0 500 1000 1500 2000
Parallel Runtime

[—#—ClusterA —8—ClusterB -~ ClusterC ——ClusterD |

Figure 4.2: The chunk size per request of four clusters during runtime.

In Figure 4.2, we assume that cluster D has computing power two times larger than cluster

27

B and C. In addition, cluster B and C are also assumed to have computing power two times larger
than cluster A. Using our algorithm, cluster D will receive chunk size per request two times larger
than any clusters while cluster B and C receive an equal chunk size.

4.2 Unique Characteristics of Implicit Strategy

Using consuming rate, our proposed implicit strategy has some unique characteristics that
address many shortcomings of other explicit strategies in the past. These characteristics do not
only dictate the performance of our strategy, but also allow our strategy to focus on global load
sharing for grid computing system.

')
4.2.1 Black Box Based Self-Scheduling Strategy /=

-

Since our implicit strategy makes-ioad decision based on the consuming rate, it treats all
clusters as black boxes. Thus, it can'assiga workload properly even'without knowing the details of
an underlying computing system.. Fher Sre; our s ategy can be censidered as a black box based
self-scheduling strategy. Unlike explicit sirategies, this characteristic really simplifies our work
since we do not need to understand. el_relatiopshil)-;bgtwecn every piece of system information.
Implicit strategy can address the ¢han sﬁi"n boih;thez:émputing system and submitted application
without the need to redefine the resource model. In addition, it is also suitable to be used as a
global load sharing strategy for distd ufng wﬁrklo"gﬁ to each cluster since it can achieve sub-
optimal performance without forcing h wcrkload ts’dlstnbuted by local strategy.

s ;ﬁr‘
4.2.2 Addressing Sensitivity of qud Informatlon g

,_a -r

As explicit strategies make decisionbasBd on coi}ﬁéa:esource model, the accuracy of load
information can vary accordmg to the quality of resource model, conpuﬁng system, and submitted
application. Moreover, some 5}phcxt information might need to be upda fd more frequently than
the others. Therefore, we can say that the sensitivity of load informatien used in explicit strategies
is considerably high. Unlike explicit strategies, the performance of @ur implicit strategy is not
related to the sensitivities of any explicit information at all because it makes load decision based
on the consuming rate'that reflécts the overall' petformance of éach'reseurce-during an execution.
With implicit strategy, we do net have to worry about'the accuracy of'the monitoring service or
the resource model any more.

4.2.3 Phase-Based Adaptive Strategy

The behavior of our implicit strategy that divides the total workload into multiple stages
gives it the power to control the overall behavior during runtime and still be able to address
the changes occurring in an underlying system. By defining two phases of computation, we can
make sure that every computing resource will receive the increasing chunk size at the beginning of
computation while receives the decreasing chunk size near the end of computation. The increasing
phase is for obtaining accurate consuming rates while the decrease phase is for obtaining sub-
optimal parallel runtime. According to how consuming rates are re-calculated at the end of every
stage throughout an entire execution, our implicit strategy can adjust to the dynamic behavior of
an underlying system because it uses these consuming rates to further assign workload allocated

28

in each stage to the requesting node.
4.3 Conclusion

Our proposed implicit strategy (C RSS) consists of two phases of computation to address
the unique characteristics of consuming rate. The increasing phase is defined for obtaining an
accurate consuming rate since we do not have any information about the computing resource
before an execution. In the other hand, the decreasing phase is defined for obtaining sub-optimal
parallel runtime near the end of computation. According to how our implicit strategy can be
extended as a hierarchical strategy, its perfo is better than other centralized and distributed

strategy in the past. Moreover, since our i oes not rely on explicit information at
: ﬁ the performance of our strategy.

, our proposed implicit strategy
system. It can be used as an
s into the underlying system.
today’s large scale computing

all, the estimation gap in explicit inform:

Despite some limitations according t: imﬁcit'
has many attractive features
effective load sharing strateg
Therefore, our implicit strateg
system.

AuEINENINYINg
AMIAN TN INYAE

CHAPTER V

THE PERFORMANCE EVALUATION OF IMPLICIT STRATEGY

5.1 The Prediction Model for Implicit Strategy

Since our implicit strategy does not use any explicit information regarding to the computing
power of each node, an estimated gap ratio of overestimated node (g,) does not affect its parallel
performance at all. However, there are some differences in collecting consuming rate of the front-
end node and other computing nodes. Suppase there is only one cluster in the system named C;,.
Let c;5 denote a front-end node which is also a conﬁii‘h__g;or node. The consuming rate of c;s
does not include any communication everhead during c,gsh"request because it fetches workload
directly from itself while this communication .@verhcad will be included in consuming rate of
other computing nodes. Since.itis inefieciive to assign worklead large enough to eliminate the
effect of network latency, the gbscﬁé _of communication everhead at the front-end node will lead
to assigning too large chunk\‘?ghe front-end node. Since we predict the parallel runtime of
nmen

given c. ¢ ':eé{czl, €22, -+ ,CoN }, the estimated computing
power (zf) or the consuming sate (€r47) can be @bulatcd as:

[T (5.1)

of

I !"'J_:I' ‘.-' J'tl"
Let ¢, be a node besides ¢, . Fhe estiimated computing power of node cyx (4zx) or the
consuming rate of node cg (crzk)is: =

CRSS in a single cluster en

" o Yy =
= e o ¥ B

.y bok = CTgh = ————— (52)
N ; K toner” —

Where oy, is the communication latency within computing cluster. We then estimate an
average chunk size (K) dssigned toleach computing node by averagirig bver every stage in implicit
strategy.

4 b\ U Pk 1) (U Pz 1)
K‘z*((2*P*I *GG* T g 1) (3.3)

From equation(5.1) and equation(5.2), we can see that the consuming rate of front-end node
is obtained differently from other computing nodes. Since we assume that the size of unit tasks
is small compared to the available communication bandwidth, only the startup communication
latency is considered. Therefore, the total estimated computing power (P) can now be determined
as:

P=pos+ S ok (5.4)
zkAzf

30

From the consuming rate of both front-end and computing nodes together with the stage
size predefined in our implicit strategy, we can predict the parallel runtime of our implicit strategy
using the prediction model as shown in Figure 5.1

Other Nodes A salil

a. Parallel runtime until al

Let ¢, be a computing node. .and Qk{n implicit strategy, we have
il L,

(5.5)

b. Parallel runtime for c;¢ to finish ﬂa‘_&x‘&m t Wile other normal nodes execute work
from c;¢’s portion (tp) AR ;, @q_

To determine an m@i of workload rew{ d its current stage after

part A. First, we must determine w lecreasing or not by calculat-
ing an amount of work exaeuted..by_ Czf compz ; ork If an executed work is

more than half of total work, we can tell that czy is already ume decreasing phase. Given

both the increasing and decreasing stage size oftC'RSS, we can calculate the current stage

ofczfasfolloﬁuEJ 'g (V] iji w]él ﬂ[m] from(56)

If ¢, ¢ still in th reasing phase, its currcnt stage w
f '

ammﬂm@rﬁmwmaa
(mxm-Da),)

However, if c; s already enter a decreasing phase, the current stage of c; in part B will be
equal to [m] from (5.7) instead.
(52)(52)
Pzk Pzs

(1/2) + (1/2)m-1+2

With the current stage of c;¢, we can calculate a parallel runtime in this part from the
remaining works in c; s (w;f'B) when c;; is still in the increasing phase as

=1 (5.7)

31

g = () EHPIZ 08, (2) (B (2, o)

If cz5 is already in the decreasing phase, we have

Wipp=(1+(1/2)™- ”‘)(g) (’3—;31) - (g) (’;::) % paf (5.9)

From equation(5.8) and equation(5.9), we can calculate the parallel runtime in this part as:

The amount of unit tasks neces \‘\k“t%ry n& sy during this part is

(5.10)

.,/J- W
If cz5 is still in the i mcr:ismg phase, ., first we ﬁms r there is enough job left
for it to enter the decreasiag phasc-or-not-by Comp arcmanming jobs with a necessary
amount of work for k 2

4
RYP "” Hz+(rm1)d) (5.13)

—— k7 Tl ﬁ&mm L1l o S

tasks for every n&c to be busy until it eﬁuters the decreasmg phase (wc) can be calculated

© QRIANN TN NW’]’]'ﬂEﬂaEl

0% = ol + (;f})(P par) (5.14)

We can calculate the last stage of an overestimated node during the decreasing phase as |7 |
from a following equation:

w'c—dzg)

(%) () () (1 (52))

=1 (5.15)

32

An amount of work necessary for every node to stay busy and total parallel runtime in phase
C can be obtained as follows:

omst e ()G (552) o

where

o () GAE)) o

d. Parallel runtime for ¢, to finish its last stage (£p)

In this part, we will find how much werk is left ovesfon other computing nodes except c, ¢
to execute. If c; ¢ is already in the decreasing phase; wehave

-
= - e (5.18)
yields 1
U 2 i1
“AXTE QE):(%)UN)W"’“) (5.19)
results in /il
A AR (5.20)
— Pz! b

ol

By combining all of the parallel runtime from cy_c_rx—pan together, we can have an overall
predicted parallel runtime. From (5:8) and (5.9)',"ﬂ"iié‘ié§n see that the remain tasks at ¢
in phase B will increa,s_c;"gs the relative power of g, s and total cij't_imated computing power
(}3) increases. This beh;vior is a result of how the consuming _Eat!e of the front-end node
(zg) is calculated differently from other computing node. Therefore, it will cause other
computing nodes to ask for more work from the remaining tasks in the system. If there is not
enough work to be assigned, a“lead imbalance will‘occur. This behavior will appear again
during part C' where other-node will need more work given an increasing overestimation as
in (5.14) and (5.16). Therefore, we can say that an overestimation within consuming rate
can also cause an additional parallel runtime due to a load imbalance as ogcurs in implicit

information. However, the main difference between these two strategies;is in the origin of

an overesfimation. An overestimation in explicit information may come from an incomplete
information about the computing system or the application while an overestimation in our
implicit strategy is come from a different behavior between front-end and computing nodes
when they make a request for more work.

We compare the parallel runtime of our implicit strategy by comparing between the predic-
tion model and the simulated experiments using the system environment as shown in Table 5.1.

Figure 5.2 and 5.3 show that our prediction model can accurately estimate the parallel per-
formance of CRSS. Moreover, both prediction model and simulated experiments indicate that

33

Table 5.1: The parameters for simulating CRS'S in single cluster environment.

B T Vames_
Number of tasks (U) 16,384
Total number of compute nodes (V) 32
Number of clusters (L) 1
Intra-cluster communication (Latency, Bandwidth) (az,8.) | 1ms, 100Mb/s

Figure 5.3: The arallcl runtime of CRSS (r;,=0.5).
v

AULANYNINGINT

an information inaccuracy within explicit information is not related to the parallel performance of

e e e e

patterns in the net section.

5.2 The Simulated Experiments
5.2.1 Load Sharing Strategies with Different Communication Structures

In this section, we evaluate the performance of load sharing strategies with different com-
munication structures by varying the total number of computing nodes. In the simulated environ-
ment, there is a half of computing nodes which has computing power two times larger than the
rest. The communication network in both between and within subgroups is considered as LAN.

34

Both C — CSS and CSS represent chunk self-scheduling strategy which assign workload con-
stantly as 8 tasks per request. C — C'SS is an example of centralized load sharing strategy which
has only one coordinator node in the system. Every computing node must make a request directly
to this node. As for C'SS which is hierarchical strategy, the gateway nodes in a lower layer which
have n descendants will receive n * 8 tasks per request. W FSS and CRSS mentioned in this
section are also a hierarchical strategy which use the same strategy in both upper and lower level.
For distributed strategies(L M), the load sharing operation is assumed to be performed once every
4 tasks are executed and the threshold I' that explains the highest number of workload difference
between two neighbors before load sharing operation will be executed is also specified as 4 tasks.
Moreover, the number of neighbor nodes (for distributed strategies) and the number of member
nodes that join the same gateway node (for hierarchical str egy) is specified as 8 nodes. The sim-
ulated experiments are conducted using the system envirz ment as shown in Table 5.2. Note that
the parallel runtime presented in this paper is the average mﬁﬁr’me over 20 simulation runs with
different random seeds and W F.SS"is assumed to know the average computing power of every
computing node before an execution. T Thereforé, Wk‘S S has an advantage over other strategies.

Table 5.2: The system param . aluati Ae effect of number of computing nodes.

B SN B Values
asks (¢ = 4 | 16,384
Intra-cluster communication eficy; Band Ims, 100Mb/s
Inter-cluster communica atg andwid “OBw) | lms, 100Mb/s

0 100 200 300 400 500 600
Number of Computing Nodes -

[--®--c-cCSS—@=LM —%—CSS —m-—WFSS —A—CRSS

Figure 5.4% Parallel tuntimes/as'a function of computing nodes.

Figure 5:4 illustrates the\behavior of load sharing strategies given the|comiputing system
with different number of computing nodes. There are two major observations from this figure.
First, since we use local network communication as a communication structure in this experiment,
the centralized strategy (C' — C'SS) can perform much better than the distributed strategy (LM).
However, the parallel runtime of the centralized strategy is worse than the hierarchical load sharing
strategies due to the congestion at the coordinator node. Second, the hierarchical extension of
our implicit load sharing strategy (C RSS) can perform as good as the hierarchical extension of
weighted factoring (W F'SS). Keep in mind that W F'SS benefits the most from this setting as it
is assumed to have the perfect knowledge of the computing power of each computing node.

35
5.2.2 Load Sharing Strategies Utilizing Explicit Information
In this section, we compare the parallel runtime of WFSS, AWFSS, and CRSS over

various computing environment using different application patterns. The parameters used in our
simulation are shown in Table 5.3 (unless stated otherwise).

Table 5.3: The parameters for simulating single cluster environment.

Parameter Values
Number of tasks (U) 16,384
: 32
1ms , 100Mb/s
0.03125
- 0.3

. . e . — . .
First, we evaluation the effect of information inaccuracy by varying the estimation gap ratio
(9zy) of computing node czy. No’ the'Computing power of every node will remain the same
in all experiments.

0 02 W——o4 — 08 1
et 2 - ré '_;:ﬁ-_:‘::a_-
e
- —

” w |
Figure 5.5 Parallel runtimes with varied estimation g_ap}atio.

From Figure 5.5, we can see that the parallel runtime of both W F'SS and AW FSS will
increase according to-afl information inaccuracyin-the.computing system. Hewever, since CRSS
does not utilize explicit information for making a load decision, its parallel performance is not
effected by the varied different ratios. Moreover, the parallel runtime of CRS'S is still comparable
to WFSS and AW ESS.when an.infermation accuracy-is low while,its parallel perfformance is
much better than W F'SSand'AW F'SS given a large information inaccuracy.

To evaluate the parallel performance of different strategies in heterogeneous computing
system, we simulate several experiments with varied computing ratio of czy (7zy).

Figure 5.6 shows that W F'SS achieves better parallel runtime when the computing power
of an overestimated node dominate the entire cluster. This behavior comes from how W F'SS and
CRSS estimate the computing power. While an overestimation of W F'SS is originated from an
information inaccuracy, an overestimation in CRSS is a product of both computing power and
communication latency. Therefore, an overestimation in CRSS will increase with p, resulting
in a worse parallel runtime.

36

0 0.1 0.2 03 0.4 0.5 0.6

L

[-- - -wFss —m—aAwWFss —a—CRsS |

Figure 5.6: Parallel runtimes with ﬁg;g computing ratio.

-

5.3 Conclusion <

Our proposed implicit str‘awg’irf ';SS) consists of twe phases of computation to address
the unique characteristics of consumingate: The &crcasing phase is defined for obtaining an ac-
do net have any mfonpatlon about the computing resource before
an execution. In the other hand, the decres sing phasc 1s defined for obtaining sub-optimal parallel
runtime near the end of computati om -the behavier analysis and simulated experiments, we
icit sjfatcéyj,is not related to an information inaccuracy
o how eur implicit strategy can be extended as a hierarchi-
an otﬁer ccn&ﬁhzed and distributed strategy in the past.
docl;s not rely qﬁ@ycn information at all, the estimation
gap in explicit information does not dcgradrthc pcrﬁarmance of our strategy. In a single clus-
ter environment, CRSS can obtain a conparable pamﬁbl-tu-numc as other explicit strategies. It
can even achieve a better resﬁlt when there is a large estimation gapbccurred in the computing
system. However, basic C’RjS’ will have the worst parallel runtime oyer highly heterogeneous
system. This issue will be addressed later by intreducing an extension of implicit strategy for a

computing system with large computing heterogeneity. o

curate consuming rate since

can see that the performance of our i
of explicit information. Accordin
cal strategy, its performance is
Moreover, since our implicit strate

Despite some limitations, our proposed implicit-strategy has'manyattractive features which
are suitable for grid computing-system. It can-be used as an effective load sharing strategy without
adding additional complexities into the underlying system. Therefore, our implicit strategy might
be the right solution for teday s laige scale computing/Systeni.

CHAPTER VI

EXTENSIONS OF IMPLICIT STRATEGY

In this chapter, we extend our CRSS to support grid computing environment by consider-
ing grid’s unique characteristics. These characteristics are hierarchical structure, large latency in
WAN, and computing heterogeneity.

6.1 Hierarchical Structure

This hierarchical structure can degrade the performanc ditional load sharing strategies sig-

As grid usually consists of multiple clusters, tﬁzt})ology of grid is hierarchical by nature.
nificantly. For example, load sharing strategies in [26]] 51 suffer from large communication
overhead and information inaccuracy preblems. This is because every load sharing operation must
perform across WAN since the vistual binary iree created by coupling the fast and slow computing

resources together. Moreover, hi Structure alse causes lead imbalance problem to dis-

tributed load sharing strategy sincesac ép’m?utin node within the computing cluster can only
communicate over LAN. ; f‘ ; ‘J_ 2

=
6.1.1 CRSS Extension for Hierarchieal Structu g

re s:f inului}lumr environment, CRSS organizes the
coordinator node and all front-end nodes in, l}ierarc_]!"lfal fashion. Figure 6.1 illustrates an ex-
ample of hierarchical CRSS in gri ompﬁ‘t{ng env{r;‘;i; nt. In this structure, the coordinator
distributes workload to other front-ends!{fiﬁ;ﬂic frod@sj distribute workload to their working
nodes. CRSS can be applied at both lcyg,lg-f_xgithout _qizxi_g'diﬁcations. Under this configuration,
the coordinator node threats sach cluster as a single working nede represented by the front-end
of that cluster. Once the frontsei the ce
new sequence of stage size.

To support the hierarchical

.. o

: dinator, it will define a
his stage size will be used to determize a chunk size for its local
computing nodes afterward. o

Figure 6.1: Hierarchical structure in grid computing environment.

38

6.1.2 Performance Evaluation

To demonstrate the effectiveness of the extensions, we conduct simulations using parame-
ters specified in Table 6.1 (unless stated otherwise). In this section, we compare the performance
of our CRSS — SW with CRSS and AW F'SS, which are representatives of implicit and explicit
strategy. The experiment results are simulated using Network Simulator (IVS) [32].

Table 6.1: The parameters for simulating multiple cluster environment.

Parameter Values
Number of tasks (16,384

Total number of compute nades (64
f clusters (! 4
Intra-cluster communi ,_Y_‘ iy, Bandwidh)(ar Ims , 100Mb/s
Inter-cluster communication (Latency, Bandwidth)(g) | 30ms, 2Mb/s
ing rati ated clust - 0.0625
uster (F 0.3

~ ﬁ'ciﬁment‘so%multiple cluster environment.
e hetero — AWESS, which is the extensions of
- ve compare two strategies over a computing

] rg‘;i ('Qx)“.. o\

In this section, we co
We compare the performance
AW FSS to support the hierar:
system with information inag

iy ==

RN ARk

Figure 6.2 shows that an information ?accuracy will degrade the performance of AW F'SS.

Therefore,.our, , i c ﬁ ,lman AWFSS
ety NP G WA M et e
9
To simulate computing heterogeneity, we vary the computing power of p, by specifying

different computing ratio (R,). Moreover, we also specify gap ratio as 0.3 to simulate information
inaccuracy in the computing system.

Figure 6.3 shows that the parallel runtime of AW F'SS is better than CRSS when an over-
estimated cluster has a very small computing ratio. By varying the computing power of an over-
estimated cluster, we can see that the performance of CRSS is bad only when there is a large
computing heterogeneity between each cluster. This issue related to computing heterogeneity will
be addressed in the following section.

39

g &

Parallel Runtime
g ¥

0 0.1 0.2 0.3 04 05 06
Rx

[—m—AwFss —a—CRss |

Figure 6.3: Parallel runtime with vi/r'ﬂ}aomputing ratio.

6.2 Large Computing Heterogeneity b4 -
—

With grid’s openness, thq.i‘ffg ©§ in computing powers between grid resources will
grow over time. This gap of differ S i thc compxing powers really increases the risk of facing
the load imbalance problem. Uni zlx=':§pndi;g49m more job to the computing node with
i g nodes will result in a very bad parallel runtime
has i{jeen‘?eiicatod to the submitted application.

4

-l

one hundred times slower than other

despite of the total computing power whic

, ~f
.j..‘.’i': ‘.;J:f‘.
To address this problem, we i iee a dyna?ﬁﬁﬁ:reasing phase to specify stage size

during an execution. Similar to CRSS,J’L@W@Iicit strategy still uses two phases of
execution consisting of increasing and decreasing phasﬁ‘H‘a.wever, we introduce a new term called
“stable rate”. We call the coﬁs’;:ming rate of the requesting node “stiblé’;;only when an obtained
consuming rate is within a}ﬁaiﬁm?iﬁmnm percentage (€) ’frmora the consuming rate in a
previous stage given a two times larger chunk size assigned in the previous stage. According to
our preliminary experiments, we'will specify € as 25%. With this way, we can assure that we have
already assigned large enough chunk size for the requesting node when we obtain the stable rate.
The behavior of our dynamic increasSing phase is'défined as follows:

a. At the beginning, each cluster will be given a single task-per request.

b. The chunk size for the,requesting nedes will be increased with a constant ratio of 2 regardless
of their consuming rates until an obtained consuming rate become stable.

c. The requesting node whose consuming rate is already stable will receive the same chunk
size as in the previous stage.

d. Repeat b and c until the consuming rate of every node becomes stable or the remaining tasks
are below half of the total tasks. Then, the phase of execution will change to the decreasing
phase.

With this modified strategy we do not risk assigning too much tasks related to how we
specified stage size before an execution begin. A decreasing chunks will be sent to each node

40

in order to obtain near optimal runtime as soon as there is enough confident in every collected
consuming rate.

6.2.2 Performance Evaluation

Table 6.2: The parameters for simulating highly heterogeneous environment.

Parameter Values
Number of tasks (U) 16,384
Total number of compute nodes (V) 64
Number of clusters (L 4
Intra-cluster communication (Late: A Ims , 100Mb/s
Inter-cluster communication) | 30ms, 2Mb/s
Computing ratio of o 0.0625
— -

We evaluate the parallel NP extension of tegy by varying the relative
computing power ratio in the system. le] runtime will be compared with our base implicit
strategy. -

1800 = -
1600 i ————e
1400 ‘ B
1200 - —
e :
i 800 ey :
800 - - -
o ,
200 —
0 + - Pl
0 005 6i— o — 025 03

As shown in Fig. 6.4, CRSS obtains bad parallel runtime when the computing power of

the specified cluster i i i S ting heterogeneity
ammo y gc lqﬁ»en there are some

increases the effect o
remaining works left in the specified cluster. Hetero—C RS'S addresses this problem by not using

TSR

6.3 Inaccurate Information

Inaccurate estimators of the computing resources can cause both explicit and implicit strate-
gies to allocate too much workload for each stage. This leads to performance degradation since
over-estimated clusters can not catch up with other clusters in the later stages, which results to
load imbalance near the end of computation. Moreover, this problem becomes worse in grid sys-
tem as the underlying resources are heterogeneous. Figure 6.5 illustrates the situation when the
execution ends while cluster A is still in its increasing phase. Thus, CRSS will obtain a very
bad parallel runtime. From Fig. 6.6, we can see that the stage number of cluster A is far behind

41

those of other clusters. This behavior is a result of inaccurate information which can be occurred
in AWFSS as shown in Fig. 6.7.

.3 88883 %
™~
P

Received Chunk Size

‘
PRCHIERETNS

[=#—Cuustera —8—Ciusters |

Figure 6.7: Stage number during runtime of AW F'SS.

6.3.1 CRSS Extension for Inaccurate Information

To address this practical issue, we introduce stage-warping approach for implicit load shar-
ing strategy. This new concept adjusts an incorrect assignment by allowing clusters to skip their
predefined stages to catch up with other clusters during the execution. The performance of pro-

42

posed implicit strategy is compared to both explicit and implicit strategies with different classes
of applications over simulated grid computing environment.

In this paper, we propose new implicit load sharing strategy called “Consuming Rate Self-
Scheduling with Stage Warping” or CRSS — SW. Similar to CRSS, our CRSS — SW utilizes
implicit information for making load sharing decision. Since initial information regarding to the
system capabilities is not required in this algorithm, its execution is divided into the increasing
phase and the decreasing phase. During the increasing phase, CRSS — SW assigns half of the
total number of unit tasks to clusters and measures the consuming rate at the coordinator node to
estimate the actual computing power of each cluster, Like CRSS, our CRSS — SW allocates
chunk size during the increasing phase in a linear fashion to ensure that it obtains accurate con-
suming rates. CRSS — SW then enters the decreasing ph"a.stf_,u balance the workload between
each cluster for the remaining half of the total number jf unit tasf;
6.3.1.1 Basic Algorithm '

To describe the CRSS — S W Tithimy we mugl first rearrange stage numbers during the
execution. Let s be a stage number; whigh is'an mtcger.. Durmg the increasing phase, s is a non-
positive number, starting from —/ + 4w reJ is the total number of the increasing stages. The
stage number will gradually increase by on uptll it rcac es the last stage of the increasing stage
{s = 0}. Our algorithm then enters the egreasing pha,sp Thus, an example of stage number
sequence of our CRSS — SW can be s ow as {—-5 -—4, S 2 180, 1,2,3,4}.

In addition to rearrange the stage mlmbers, we also sp&j}}' the predefined stage size which
is the number of unit tasks that will be assngned—to clustexjiurmg each stage. Let Ing be the
predefined amount of workload i in stage s-of-the mcreasg,ﬁg;hasc The value of In, can be

calculated as shown in Eq. (6. 1) 3 i y
\Z \Y
" il —
Ing-"=1+(s+I—1)[-§_1] e (6.1)

As Ing is doubled every.stage, the predefined workload |allocation during the increasing
phase can be illustrated in Fig. 6.8. In this figure, In, represents amount of workload to be
completed at the stage s.

As for the decreasing phase, we define the decreasing chunk sizes with a constant ratio &
which will be specified as 2 throughout this work. Let De, be the predefined amount of workload
for stage s of the decreasing phase. Equation (6.2) illustrates how we calculate De, with respect
to the total unit tasks (U). The predefined workload allocation in all stages during the decreasing
phase is illustrated in Fig. 6.9.

U
Deg = [2) 6’] (6.2)

43

In.1)

m(.g)

Ing2)

In4)

Figure 6.8: Predefined amount of WOWW in }uring the increasing phase.
&-‘

.4

_ i) A L) N
Figure 6.9: Predefined amount of workload allocated in each stage diiri L?’decreasing phase.
g st

—t .—d
With these definitions, we El" now explain our (jgorithm. As mentioned

earlier, our CRSS — SW consistsof two phases, the increasing phase and the decreasing phase.
the goal of the incrcasingél:ase is t6 obtain accurate conSuiming rate of each cluster. However,

estimating the computin :% E'Jn%s%gﬁl ? r &!\%ﬂu nber of tasks can
be very inaccurate and mgﬂ ng since the computing nodes in the clusters may not be fully
utilized. To improve the accuracy of the estimation, we divide thesincreasing phaserinto two sub-
phases. The fir ﬁq m:glms@ﬁ:’a tff}\ﬁﬂtu adjust
it in the second sub-phase. ISt st signing small chunk size sters ble the
chunk sizes exponentially. During this sub-phase, we keep measuring the consuming rate of each
cluster at the coordinator node until it becomes stable without using the obtained consuming rate
at all. A consuming rate is considered stable only if it does not increase upon an increasing chunk
size. The cluster that is considered stable will receive an equal chunk size while waiting for other

clusters to become stable. After the consuming rate of every cluster is stable, CRSS — SW enters
the second sub-phase of the increasing phase to further adjust the obtained consuming rate.

Through out the second sub-phase of the increasing phase and the entire decreasing phase,
the size of the workload that the coordinator node will assign to the cluster C; (K; ;) will be cal-

g b

44

culated from the averaged consuming rate of C; (¢r; ;) and runtime amount of workload allocated
during stage s (us) as followed

CTis
Kiy= g2t sy (6.3)
b E£l=1 crkv" ’

If the estimator of each computing resource is always accurate, every cluster will arrive at
the same stage during an entire execution. Therefore, the amount of workload allocated for stage s
during runtime (u,) can be specified directly from the predefined increasing and decreasing stage

sizes according to Eq.(6.4) as shown in Fig, 6\1 l ,/

4;;.4

6.4)

12

* 'll'.i

Figure 6. lQiChunk size mnmt of
7

CRSS - %f?&l case.

6.3.1.2 Stage Warping

In the ideal case, all clusgrgvill progress to e@ stage at the same pace. In other words,
all clusters will ent stage (Ing and Dey),
and move to the nﬂm‘ﬂ mﬂmmﬁiﬂ ever happen. Some
clusters will enter the later stages before othe&: clusters. To solve this problcm ur CRSS — SW
uses a techni ﬁ s are behind
others to s ﬁﬁ) aﬁ.ﬁm ﬂﬁvﬂt‘ah lusters have
already reached

The objective of stage-warping is to define runtime stage sizes based on predefined stage
sizes of both the increasing and the decreasing phase. These runtime stage sizes include the
remaining workload in the previous stages. Every cluster will request for more workload from
the foremost stage. With this behavior, the leftover workload in the previous stages will be re-
assigned again to every cluster and the effect of inaccurate estimators which causes some clusters
to stay behind can be reduced. Each time one of the computing clusters enters the new foremost
stage, the runtime stage size will be defined using the predefined stage sizes (Ins or De,) together
with the number of total tasks (U) and the remaining tasks at the beginning of stage s (w}). The

45

runtime stage size (u,) in the increasing phase will be specified as shown in Eq. (6.5).

s—1
ug=In,+ Y, Inj—U+uw, (6.5)
j=—-I+1

As for the runtime decreasing stage sizes, they will be calculated considering the predefined
decreasing stage size (De,) and w/, as shown in Eq. (6.6).

ifs=1

/L—U) ifs>1
——

Note that there is the f ¢ warping which will eccur immediately after the first sub-
phase in the increasing phase. This firsi sta. h.,_r{in:@l‘ﬂﬁc.::cry cluster to enter their second
sub-phase from the same stagemumber. T ing stage of the second sub-phase is specified
as the smallest stage in J75 Who ge size 1S stil c::an\amount of workload distributed
during the first sub-phase. From 'f}—wg see that the stage number of cluster A skips
from time to time keeping its stag ;gtclgg . 1% othe chffdl

(6.6)

by ﬂ o8 w%‘wy 155

The rcsoury utilization of CRS S~ SW comparﬂwnh CRSS ovcwghly heterogeneous
g B A DR ik Db bt e Aoy,
dunng 0 : computation.
6.3.2 Performance Evaluation

We will compare the performance of CRSS — SW with AW FSS and CRSS with differ-
ent estimation gap and computing heterogeneity. We begin with varying the estimation gap (G;)
of computing cluster C; according to the system parameter in Table 6.3.

From Fig. 6.12, we can see that the parallel runtime of AW F'SS will become worsen with
an increasing estimation gap while the parallel runtime of our implicit strategies are unvaried as
we expected. Note that the performance of CRSS — SW is slightly better than CRSS even in a

Number
8
T
R
Colt 2 R B e
b
r

CRSS - SW.

Figure 6.12: Utili ﬁ,#

al ;@ofcms- SW.

Wll‘\\\ﬁa. N %
y S E

Table 6.3: The parame

§aN9

Figure 6.13: Parallel runtime of AW FSS,.CRSS and CRSS — SW with varied estimation gap.

AWIANNIUNNRTINE T

homogeneoﬁs environment.

Figure 6.14 illustrates the performance of load sharing strategies with different computing
heterogeneities. The simulated results indicate that both AW F'SS and CRS'S can become highly
fluctuate with different computing ratio (R,) of computing cluster C,. In the other hand, CRSS —
SW can achieve the best results in most cases and its parallel runtime barely change at all. This
behavior can be implied that C RSS — SW can tolerant to computing heterogeneity and inaccurate
information than C RS'S throughout an entire execution.

47

350
NS = —
250
{
! 150
% 100
50
, : :
0 0.1 0.2 0.3 04 0.5 0.6
Rx
I—I—AWF’ &S‘& —»— CRSS-SW

I
Figure 6.14: Parallel runtime of AW F.SS, CRSS and ﬁfﬁiﬁr— SW with different computing heterogene-
ity. ” -

— ' =
64 Application Classes™ =7/ | .
! pplication / .

gducod asx.a computing framework for computing-intensive
ust.be able to handle workload from different classes of

applications, load sharing str.

applications effectively. - -
P
6.4.1 Performance Evaluati - idd)
i w A i | T ;:

W o
In this section, we w y thﬁwfa@pe of load sharing strategies with different
application classes by changin egjqélfnumbet}gﬁt tasks and workload pattern. Simulated
computing environment is created according to %‘y}tem parameter in Table 6.4.
oy .-"F":; '..;_} e :4“_‘

Table 6.4: mw for evaluating the effect of di#oréupplication classes.
vV Y |

= . Parameter — Values
Total number of compute nod V j_rj 64
Number of clusters (L) 4
Intra-cluster communication (Latency, Bandwidth)(ar,3.) | 1ms, 100Mb/s
Inter- sation (Liate: Band , 2Mb/s
i io of overe: cluster ' 0.0625
Estimation gap ratio of overestimated cluster (R.) 0.3

6.4.1.1 " Applications, with Different Number of Unit Tasks

The number of unit tasks in the submitted application is actually one of the most important
factors that can effect the performance of our implicit strategy. Accurate consuming rates can not
be obtained when there is only a limited number of unit tasks. In this section, we will compare
the parallel runtime of both CRSS and CRSS — SW with AW FSS over different number of
unit tasks.

From Fig. 6.15, we can see that while CRSS obtains a very bad parallel runtime when
number of unit tasks is limited. However, CRSS — SW can still achieve a comparable perfor-
mance to AW FSS. These simulated results indicate that with proper defined extensions, our
implicit strategy can handle even the application with small number of unit tasks.

48

600

w B
i

300 -
.

100

0 T T r
0 5000 10000 15000 20000
Number of Unit Tasks
|—I—AWFS\ﬂCQSS —>—CRSS-SW |

Figure 6.15: Parallel runtime of appll/ :,a(ith different unit tasks.
,—"'—!-

—

- ~ —
6.4.1.2 Applications with Different Y_Varklrad Patterns ever Homogeneous System

We evaluate the paralle
AWFSS, CRSS and CRSS +'S
ulated experiments assumin

mance gf both explicit and implicit strategies including
Jover four aypllcatmn classes. We first perform the sim-
i hmcnfsilch that there is no estimation error (G; = 0).

uniform increasing decreasing random
2 [WAWFSS MCRSS BCRSS-SW|

Figure 6.16: Parallel runtime of various applications (G = 0).

As shown in Fig. 6.16, our proposed algorithm, CRSS — SW can achieve a comparable
parallel runtim@ compated to AW F'SS’s under ideal'environment: CRS S SW performs even
better especially wheu the'application class'is thelincreaSing workload pattern.’ Obviously, the
applications with increasing pattern have larger computation sizes near the end of computation.
This tends to increase load imbalance. As AW F'SS and CRS'S do not employ the stage-warping
technique, they may assign too large chunk sizes near the end of computation. For CRSS — SW,
the stage-warping technique allows the under-estimated clusters to steal workload of the over-
estimated ones while preventing the coordinator node to assign too large chunk sizes to these
clusters. On the contrary, AW F'SS performs best when the workload pattern of the submitted
application is decreasing. As expected, application with decreasing computation size tends to
reduce load imbalance issues near the end of computation.

Figure 6.17 shows the experimental results of non-ideal environment where there is an es-

49

uniform increasing decreasing random

[mAwESS MCRSS BCRSS-SW |

Figure 6.17: Parallel runtime of vaﬁeu‘s applications (G, = 0.3).

o’

timation gap in the system. It is.very clear that our CRSS — SW performs better than AW F'SS
in most cases especially with ineréasing werkload pattern. Without accurate explicit information,
AWFSS performs poorlM&ributes woxildoad based on incorrect assumptions. For CRSS
and CRSS — SW, the i asing phas¢ allows both algerithms to obtain the accurate estima-
tions of the underlying syste Howevcr CRSS— SW perferms slightly better as it distributes
workload faster and finds the st_,able estimation di.\'m}g the increasing phase, as well as, utilizes the
stage-warping for the entire @fecuiion. .

& S

l'g4 i

o 4

6.4.1.3 Applications with Different Workload?attems over Heterogeneous System

We study the effects of the cbmputmg hete}" geneity by varying the computing power of
cluster Cp, which is pp,. As the total cemputmg power of all clusters is 64, the underlying system
is considered heterogeneous when py, is less than 16 (cluster Ch is slower than the others) or py, is
more than 16 (cluster C‘;,:I&faster—&han%&e&hers)v—Smeebomcascs ¢xhibit similar behaviors, we
will present only the resuﬁs of the experiments with py, is less than‘f6 Note that we also assume
the estimation gap (G) to be 0.3 in all experiments.

L= [%)
300
£ o
1% ¢ =
2192119 .’1"’1?}‘] 1
11 00 [« & 1 1 Q | = |
50
. : i :
0 0.05 0.1 0.15 0.2 0.25 0.3
Rx

[——AWFSS —&—CRSS —%—CRSS-SW |

Figure 6.18: Parallel runtime of application with uniform pattern.

Figure 6.18 shows the performance of three load sharing strategies with constant-workload
application. Although every strategy does not fluctuate much with different computing hetero-
geneity given a constant-workload, CRSS tends to have worse parallel runtime in according to

50

the computing heterogeneity. We can see that our CRS'S — SW performs slightly better than both
AW FSS and CRSS on different computing heterogeneity.

350

Zhr:rﬂ
-

3150

% 100

50
i ; il 4 5 i
0 0.05 0.1 ilfz .02 0.25 0.3
S
[AFSS —a- ofe 5 cass]
= " —
Figure 6.19: Parallel runtime (1f application with increasing pattern.

inaccuracy of explicit information can scvet'clysecrcase the performance of AW F'SS.
v W

1 i -

025 03

T
[~=—AWFSS —a—CRSS —%—CRSS-SW |

Figure 6.20: Parallel runtime of application 'with decreasing, pattern.

In Fig. 6.20, the heterogeneity of the system does not effect the performance of CRSS —
SW whén the application class is the decreasing pattern. |In contrast, AWF'SS and CRSS
suffer froin the heterogeneity, especially CRSS. The performance of CRSS becomes much
worse as the heterogeneity increases. This is because C}, is much slower than the other clusters.
Thus, it is in the middle of the increasing phase while others have already reached the end of the
computation. Without the stage-warping, the coordinator node keeps assigning large chunks to
the slower cluster C}, and allows other faster clusters to steal very little portions of C}, workload.

For the application with random-workload pattern, Fig. 6.21 shows that the performance
of AW F'SS decreases when the computing heterogeneity in the system increases. Note that the
performance of CRSS and CRSS — SW converses when the heterogeneity is high.

51

50
o i i =¥ A
0 0.05 0.1 0.15 0.2 0.25 03
Rx
Figure 6.21: P n with random pattern.

6.5 Conclusion 7 -

In this chapter, we intr
acteristics of grid comp
large communication ove
accurate information an
sharing strategies.

ster-based computing system,
n addition, we also focus on in-
ffect the performance of load

it introducing additional extensions such as
movable coordinator node, stablg@_ﬂ?’ nd stage warping concept. Together with
proper defined extensions, CRSS can be more rob hof load sharing strategies in the
past even with different applicationclasses:—

AuEINENINYINg
RIAINTUNNIINYIAL

CHAPTER VI

RELATED WORKS

Due to its strength and its simplicity, many variations of self-scheduling strategies have
been proposed. Uniform-sized chunking (C'SS) [35] assigns equally chunk size (K) tasks per
request to reduce the communication overhead. However a load imbalance at the end of compu-
tation can significantly worsen the parallel runtime if we specify chunk size too large. Guided
self-scheduling (GSS) [36] addresses this problem by allocating large chunks at the beginning of
a computation while sending smaller chunks near the end of computation to achieve a better par-
allel runtime. The chunk size scheduled for the nextidle nede is the total remaining tasks divided
by the number of available processers. For constant-lenrgdf iterations and uneven starting times,
this strategy is proofed that all computing nodes will finish within single iteration of each other.
However, this strategy sometimes-allocaies too large chunk size in early stages. In Trapezoid self-
scheduling (T'SS) [37], the availablc.tasks w1ll be allocated to the requesting node with linearly
decreasing chunk size. Thlls‘t:}tm(que reduces l!le risk of assigning too large first chunk for each
computing node. Fixed Inci If- Schedulmg (FI SS) [38] tries to overlap the communication
and computation by scnding}({rz:casmg chunk‘snc instead.

The prefetching technigue sju‘ch as propesc; in [39] has been proposed for addressing large
latency in the communication nngofk ThlS tcchmqug assumes that the access pattern of a sub-
mitted application can be obtained or preghcted refore, the coordinator node will be able to
send workload to other clusters bgfore these clustzrs ﬂctually finish all the work. With this way,
every cluster can continue executing mbre work wmm requesting and waiting for a next batch
of workload to arrive. However, this tcchmque 18 ?brcgmpauble with our implicit information
which can only be obtameg during an execution. Although we can }’dd this prefetching technique
into our implicit strategy i wquload before they actually
finish executing every unit task assigned during the previous sta‘é'éjI this behavior can increase
load imbalance at the end of computation as a result of an over-estimated cluster still asking for
more work even though there is a remaining work left in it. The prefetching technique can be effi-
ciently utilized only‘when an infermatienaccuracy-about theyunderlyingssystem and the submitted
application is high enough.

RUM R 40].is.an extension.of load sharing strategy named UM R.or ‘Uniform Multi-
Round” aigerithm. UM Rintends to hide the communication oyerhead with the computation
time by sending an increasing chunk size. It begins with assigning a small chunk to every cluster
which inflicts only a small communication overhead. Then, it sends out larger chunks during
each round because all clusters also need more time before they can finish all the work assigned
previously. Assuming that the computing power and communication bandwidth are constant and
known before the execution begins, this strategy can calculate the chunk size to be distributed each
round by specifying that every chunk in the same round is equal. While UM R is an increasing
strategy, RU M R consists of both increasing and decreasing phase. RUM R adds the decreasing
phase near the end of computation to make it more robust when there is an information inaccuracy
occurring in the system. Note that although our proposed methodology of handling implicit in-
formation resembles to this strategy, the main purpose behind the idea is different. The proposed

53

methodology in [40] has an intention to overlapped communication and computation while our
work uses an inereasing phase to calculate the consuming rate of each computing resource.

AULINENTNEINS
ARIAATUUMINYAE

CHAPTER VIII

CONCLUSION

Grid computing has been widely used for aggregating computing resources across multi-
ple organizations. In order to effectively utilize the available computing power in grid, we need
to implement load sharing strategy which increases an overall parallel performance by ensuring
that each resource will receive workload proportionally to its computing power. In this work, we
propose a new load sharing strategy utilizing implicit information called “implicit load sharing
strategy”. Unlike explicit information which consists of many different parameters of the com-
puting system or the application, implicit informai’gl’ is'a single metric that can represent the
computing power of each resource. While an explicit information will soon become impractical
considering the complexity within the system which will eentinue to grow everyday, our implicit
information will become an impertant. metric for making a load decision. However, since the ac-
curacy of the implicit infom}jio'h‘ vily depends on the chunk size allocated to the requesting
node, our implicit strategy add ses this issue by defining twe phases of computation, increasing
and decreasing phase. At ihe be nmng, the compumng nodes will be assigned increasing chunk
sizes for obtaining their cons rates wh11e iley will reeeive decreasing chunk sizes near the
end of computation to achieve umal runtime. Mereover, we also extend our implicit strat-
egy to address the unique c
consist of a cluster-based infras
between each computing
further improve the performance'of mxphclt stratcg; sﬂch as movable coordinator node, stable
rate, and stage warping. Based on the ﬁmulatcdjxpenments our proposed strategy performs
comparable or better than other popular strategies mthwt—usmg any explicit information.

3 £

Our future work{\ijll focus on two issues: node seloci‘"o“’n-:‘gtd fault tolerance. In some
cases, it is more beneficial-to choese only a subset of computing nodes from available candi-
dates with respect to the submitted job and differences in computing powers. However, since our
implicit information can only;be.obtained during an execution, we must carefully define how to
choose the computing‘nodés.' Moreoyer, we ‘also‘want to add fault tolerance capacity to address
the dynamic behavior in"grid-computing system because some computing nodes or clusters can be
unreachable at anytime. Our implicit strategy may address this problem by sending a redundant
workload‘te other availzbleicandidate nodes to obtain/theirconisumingrate/in advance.

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]
[15]
(16]
(17]

(18]

References

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid. J. HPC Apps. 15, 3(2001): 200-222.

I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Francisco, CA, 1999.

Y. T. Wang and J. T. Morris. Load sharing in distributed systems. IEEE Trans. Comp. C-34, 3(1985):
204-217.

G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. JPDC 7(1989): 279—
301. /4

M. Willebeek-LeMair and A. P. Reeves. Strategies for dyﬁafnic load balancing on highly parallel
computers. IEEE Trans. Parallel Bisuibj’Syst. PDS=4,9(1993): 979-993.

J. Balasubramanian, D. C. Schmidg, do- 'We Dewd)(, and O. Othman. Evaluating the performance of

middleware load balaﬁ,«é&egies In]F:DOC 2004,

R. Biswas, M. A. Frumkin, W. apd R E V. der . Wijngaart. Tools and techniques for measuring
and improving grid pesformance. In IWDC, 2002.

F | #
A. T. Chronopouloes, S. Penmatsa, and N. Yu. Scaliblé loop self-scheduling schemes for heteroge-
neous clusters. In CLUS 2002 g ¥

.l..'

E. Putrycz. Design and impleme tatmn of a portabléﬁnd adaptable load balancing framework. In
CASCON, 2003. f = 77

B L
Rl

R. Wolski. Experiences with predlctmg rcsogrce perfox;nancc on-line in computational grid settings.

SIGMETRICS 30, 4(2003) 41749, - j,-

G. Sabin, R. Kettimuthu, Al lsajan and P. Sadayappan. Scheduling of’g'fgallel jobs in a heterogeneous
multi-site environement. In JSSPP, 2003.

J. D. Teresco, J. Faik, and J. B Flaherty. Resource-aware scientific -E'(_)mputation on a heterogeneous
cluster. CiSE 7, 2(2005): '40-50.

J. Cao, D. P. Spooner, S. AlJarvis, S. Saini, and G. RI:Nudd. Agent-based grid load balancing using
performance-driven task scheduling,.In IPDPS, 2003.

A. C. ArpacisDusseau, DE! Culler, and A. M. Mainwaring. Scheduling with implicit information in
distributed systems. In SIGMETRICS, 1998.

C.-T. Yang, K.-W. Cheng, and K.-C. Li. An efficient parallel loop self-scheduling on grid environ-
ments. In NPC, 2004.

D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V. Parker. Beowulf: A
parallel workstation for scientific computation. In ICPP, 1995.

K. Shen, T. Yang, and L. Chu. Cluster load balancing for fine-grain network services. In IPDPS,
2002.

V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of job-scheduling strate-
gies for grid computing. In GRID, 2000.

(19]

[20]
(21]

(22]
(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]
(33]

(34]

(35]

(36]

(37]

56

S. P. Dandamudi and K. C. M. Le. A hierarchical load sharing policy for distributed systems. Mascots
0(1997): 3.

T.-H. Kim and J. M. Purtile. Load balancing for parallel loops in workstation clusters. In ICPP, 1996.

A. Hac and X. Jin. Dynamic load balancing in a distributed system using a decentralized algorithm.
In ICDCS, 1987.

M. D. Feng and C. K. Yuen. Dynamic load balancing on a distributed system. In SPDP, 1994,

R. Luling, B. Monien, and F. Ramme. Load balancing in large networks: A comparative study. In
IPDPS, 1991.

.
i
M. Arora, S. K. Das, and R. Biswas. A de-centralized 'se!‘l'gquling and load balancing algorithm for
heterogeneous grid envirenments. In ICPP, 2602,

I. Mitrani and J. Palmer. Optimaltree structures for large service networks. Technical report, Univer-

sity of Newcastle upon dyne,January 2004.
S. N. Crivelli and T. Head-Gy‘{ A/new loal—balancing strategy for the solution of dynamical

large-tree-search problems nsing a'hierarchical approach. IBM Journal of Research and
Development 48, 2 153—460— -

A. Katartzis, M. N. Garofalak L ourtos ;and é 'G. Spirakis. A hierarchical adaptive distributed
algorithm for load balan ngj JPDC64(2004-) ¥

Y. W. Fann, C. T. Yang, C. J. Tsai, a,,nd S. SJTseng ﬁ'lsj An intelligent parallel loop scheduling for
multiprocessor systems. n IG}’ADS 1998, -J"‘

S. F. Hummel, E. Schonberg, and L. Fo Flynn Factilnn; A method for scheduling parallel loops.
Comm. of the ACM 35, 8 August 1992: 90. £

-a'a-

S. F. Hummel, J. P. Schml’(ihff R. N. Uma, and J. Wein. Load-sharmg‘in heterogeneous systems via
weighted factonng._ In SPAA, 1996.

I. Banicescu and V. Velusamy;' Performance of se¢heduling scientific applications with adaptive
weighted factoring. In IPDPS,2001.

S.McCanne and S. Floyd. VINT Network Simulator. http://www-mash.CS.Berkeley. EDU/ns/ (1999).

T. Kunz. Thejinfluence of différentwerkload/déscriptions on a heuristic/load balancing scheme. IEEE
Trans.'en Softw. Eng. 17, 7(1991):'725.

N. Sanguandikul and N. Nupairej. Implicit information approach for self-scheduling load sharing
policy. In PDCS, 2005.

C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors. IEEE Trans.
Seftware Eng. 11, 100ctober 1985: 1001-1016.

C. D. Polychrenepeules and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme for
parallel supercomputers. IEEE Trans. Comp. 36, 12(1987): 1425-1439.

T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A practical scheduling scheme for parallel
compilers. IEEE Trans. Parallel Distrib. Syst. 4, 1(1993): 87-98.

57
[38] T. Philip and C. R. Das. Evaluation of loop scheduling algorithms on distributed memeory systems. In
PDCS, 1997.

[39] P.J. Rhedes and S. Ramakrishnan. Iteration aware prefetching for remote data access. In eScience,
2005.

[40] Y. Yang and H. Casaneva. RUMR: Robust scheduling for divisible workloads. In HPDC, 2003.

AULINENINYINS
ARIANTAUUNIING 1A Y

58
Biography

Natthakrit Sanguandikul is a Ph.D. candidate in Computer Engineering at Chulalongkorn
University. He also received his B.Eng and M.Eng from Chulalongkorn University in 2002 and
2003 respectively. His research interests include distributed computing, high performance grid
computing, load balancing, and network security.

AULINENTNEINS
ARIANTAUNNINGAE

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Problem Statement
	1.2 Grid Computing
	1.3 Load Sharing Strategies
	1.4 Objectives
	1.5 Scope of the Work
	1.6 Organization

	Chapter II Backgrunds and Assumptions
	2.1 Assumptions
	2.2 The Analysis of Stage-Based Self-Scheduling Strategies

	Chapter III Consuming Rate
	3.1 Definition of Consuming Rate
	3.2 Behavior of Consuming Rate
	3.3 Limitations of Consuming Rate
	3.4 Averaged Consuming Rate
	3.5 Conclusion

	Chapter IV Implicit Load Sharing Strategy
	4.1 Phases of Computation in Implicit Strategy
	4.2 Unique Characteristics of Implicit Strategy
	4.3 Conclusion

	Chapter V The Performance Evaluation of Implicit Strategy
	5.1 The Prediction Model for Implicit Strategy
	5.2 The Simulated Experiments
	5.3 Conclusion

	Chapter VI Extensions of Implicit Strategy
	6.1 Hierarchical Structure
	6.2 Large Computing Heterogreneity
	6.3 Inaccurater Information
	6.4 Application Classes
	6.5 Conclusion

	Chapter VII Related Works
	Chapter VIII Conclusion
	References
	Vita

