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CHAPTER I

Introduction

The physics phenomena which we shall be concerned involve not one or two

but of order 1023 particles. It is not possible to observe the motion of each of 1023

particles. However, they exhibit scaling. The scaling phenomena provide us with

something simple out of very complicated things, not depending on such details

as types of particles, interactions, dynamics, etc. The scaling phenomena in phase

transitions and, in particular, critical phenomena have been already known for a

long while. The first notion of scaling theory of equilibrium phase transitions was

formulated in the 1960s [9] and, later, it has been successfully applied to many

different systems. Now, the scaling theory of equilibrium phase transitions are well

understood. Nonetheless, the scaling theory of nonequilibrium phase transitions

is not fully appreciated because the theory of nonequilibrium phase transitions

is not completed. The study of nonequilibrium phase transitions will need many

explanations. The scaling phenomenon in nonequilibrium phase transitions is the

subject matter of this thesis. Before going into details, we will state the problems.

A system quenched from a high-temperature disordered phase into a low-

temperature ordered phase does not order instantaneously. Instead, the length

scale of ordered regions grows with time as the different broken-symmetry phases

compete to select the equilibrium state. The dynamical evolution of the system

is known as phase-ordering dynamics [2]. It is worth noticing that, from the

computer simulations and the experimental results, most phase-ordering systems

show a scaling phenomenon when they approach to an equilibrium state. Such

ordering processes are observed in many systems such as spin systems, solids and
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fluids. These stochastic and nonequilibrium processes have been very challenging

problems in condensed matter physics [5].

Next, we address the other ordering process. Consider a system quenched

from either a high-temperature disordered or low-temperature ordered state into

the critical state (i.e. the state of the system at or near the critical point). Fol-

lowing the quench, the system tries to equilibrate itself from the initially nonequi-

librium critical state to the equilibrium critical state. The study of this kind of

dynamics known as nonequilibrium critical dynamics [40]. Same as phase-ordering

systems, most nonequilibrium critical dynamics systems exhibit scaling.

How important is the study of the theories of phase-ordering and nonequilib-

rium critical dynamics? As mentioned above, we are, now, lacking of the general

theory of nonequilibrium statistical mechanics. The study of these theories par-

tially answer the problem.

There are various kinds of models in statistical mechanics. The case where

the dimensionality d = 2 is very interesting and weird. In this case, the behaviour

of a spin system depends crucially on the numbers of component n of the order-

parameter [39]. There is a phase transition with spontaneous magnetisation for

the case n = 1 (Ising model). While, in the case n ≥ 2, there is no spontaneous

magnetisation. However, the case n = 2 (XY model) is the special case. One

can prove that there is a phase transition with no spontaneous magnetisation

concerned. The two-dimensional (2D) XY model, in addition, is not only an

interesting model on its own, but is also as a prototype of various models in

condensed matter physics such as superfluids and superconductors [19]. The 2D

XY model is the model which we used in our study.

In this work, we will investigate the scaling property of the 2D XY model

in theory of phase-ordering dynamics. We consider first-order correction to cor-

relations associated with the amplitude fluctuations for quench the system to the

critical state. In order to solve this problem, we treat the amplitude fluctuations

small compared to the phase fluctuations. Then, the dynamics of phase and am-
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plitude fields become uncoupled. The dynamics of the phase variable is refered

as the zeroth-order theory while for the amplitude variable is refered as the first-

order correction. We find that the nonequilibrium part of the correlations both

zeroth-order and first-order exhibit scaling. The scaling form of the amplitude-

amplitude correlations is refered as the corrections to scaling in phase-ordering

dynamics of the 2D XY model. The study of the form of corrections to scaling is

very important since the form of corrections to scaling can used to determine the

correct asymptotic scaling exponents and scaling functions which characterise the

systems [37]. A brief content of the thesis is as follows.

In Chapter 2, we give a brief review of theories of phase-ordering and non-

equilibrium critical dynamics. We will introduce the dynamical quantities of a

system such as the equal-time and two-time pair correlation functions and auto-

correlation functions as well as its scaling forms. We end the chapter with some

remarks on modelled Hamiltonians.

In Chapter 3, 4 and 5, we will examine the phase-ordering dynamics of the

2D XY model. In Chapter 3, we will introduce the 2D XY model used in our

study. The spin-wave approximation which we refered as the zeroth-order theory,

allows us to solve the problem exactly. The first-order approximation which is

the key technical point in the thesis will be discussed. In this study, we assume

that the dynamics of the system is of purely relaxational and nonconserved type,

i.e. the dynamics is governed by the time-dependent Ginzburg-Landau (TDGL)

model or model A. We also calculated the approximated correlation functions.

In Chapter 4 and 5, the scaling properties of the 2D XY model in the theory

of phase-ordering dynamics will be studied. In Chapter 4, we solve the zeroth-

order theory analytically. We give an explicit formulation for the two-time pair

correlation function and show that, at late times, the equal-time pair correlation

function is scaled with a single characteristic length L(t) ∼ t1/2. These results

confirm the prediction by Rutenberg and Bray [20].

In Chapter 5, we will present a detailed calculation of the first-order cor-
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rection. We find scaling solution for equal-time correlations characterised by a

time-dependent length L(t) ∼ t1/2 associated with states with vortex pairs.

Finally, we end this thesis with Chapter 6. This chapter will give a brief

summary and conclusion of all results obtained under the investigation pursued

in this study.



CHAPTER II

Theories of Phase-ordering and

Nonequilibrium Critical Dynamics

The theory of phase-ordering dynamics has a story going back more than

four decades to the pioneering work of Lifshitz [10], Lifshitz and Slyozov [11] and

Wagner [12], including many excellent reviews by Gunton et al [13], Binder [14],

Furukawa [15] and Langer [16]. The scaling approach to phase-ordering dynamics

began about two decades ago and the study has been concentrated mostly on

simple scalar order parameters, such as binary alloys and Ising models [2, 15, 21,

22]. The recent interest focuses on system with complicated order parameters, for

example vector and tensor fields.

While, in the theory of nonequilibrium critical dynamics, a lot of progress

has been made since the introduction of the idea of dynamical scaling hypothesis

[40]. As one knows, scaling concepts are very important in the study of equilib-

rium critical phenomena. Janssen and colleagues has opened up the way for a

scaling treatment in nonequilibrium critical dynamics [17]. Moreover, Zheng and

colleagues have successfully applied the scaling hypothesis to determine all static

critical exponents [40].

In this chapter, we review the theory of phase-ordering dynamics in Section

2.1 and theory of nonequilibrium critical dynamics in Section 2.2. Some remarks

on the Hamiltonian are briefly disscussed in Section 2.3.
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2.1 Phase-ordering Dynamics

A system tries to equilibrate itself from the initially nonequilibrium state when it

is quenched from the homogeneous phase into a broken-symmetry phase, called

phase-ordering dynamics. The theory remains a challenge more than four decades

after the first theoretical papers appeared. Here, we will give an example: the

ferromagnetic Ising model in zero magnetic field. The ferromagnetic Ising model

is one of the simplest and most fundamental models of statistical mechanics. Each

such system can be described by classical spin variables ~Si with two possible values

Si = ±1. The two values stand for an elementary magnet pointing up or down.

The schematic phase diagram of the Ising model is shown in Figure 2.1. The sys-

tem is in a disordered (paramagnetic) phase and the spontaneous magnetisation

is zero at high temperatures, while at low temperatures, below the critical tem-

perature Tc, the system is in an ordered (ferromagnetic) phase. For 0 < T < Tc,

the system exhibits a net magnetisation, which can be either positive or negative.

Suppose that the system is suddenly quenched from an initially disordered equilib-

rium phase at high temperature, Ti, into an ordered nonequilibrium phase at low

temperature, Tf . Following the quench, the system tries to equilibrate itself from

the initially nonequilibrium state. During the evolution, different two equilibrium

phases compete to grow or coarsen with time.

2.1.1 Dynamical Models

First of all, we need to set up a model for describing the system that we want to

study. In principle, the model may be a lattice or continuum model depending on

the nature of the system. However, in practice, it is more convenient to work with

the continuum model and, even though the true microscopic nature of the system

is not continuous, this kind of model can always be set up as an effective model

(see Section 2.3).

Let the system be described by a scalar order-parameter field φ(x, t) as a
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Figure 2.1: Schematic phase diagram of the Ising model.
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function of position x = (x1, ..., xd) and time t. A suitable Hamiltonian functional

describing the ordered phase is

H [φ(x, t)] =

∫

ddx

{
1

2
[∇φ(x, t)]2 + V [φ(x, t)]

}

, (2.1)

where V [φ(x, t)] is the potential function. The Hamiltonian functional is usually

taken to be of Ginzburg-Landau form,

H [φ(x, t)] =

∫

ddx

{
1

2
[∇φ(x, t)]2 +

1

2
roφ

2(x, t) +
1

4
uoφ

4(x, t)

}

, (2.2)

all of coefficients ro and uo, in principle, depend on temperature. The Hamil-

tonian, Eq. (2.2), provides a good description associated with long-wavelength,

slow spatial variations of φ(x, t). In general, V [φ(x, t)] need only have a double-

well structure in the ordered phase such that the two minima correspond to the

two equilibrium states, while the gradient-squared term in Eq. (2.1) associates an

energy cost with an interface between the phases.

Now, to describe the dynamical process, an equation of motion for the order-

parameter field is needed. The simplest stochastic dynamical model is one in which

there is a single nonconserved field in contact with a constant temperature heat

bath. This model is variously called the Glauber model and the time-dependent

Ginzburg-Landau (TDGL) model. The only “slow” variable is φ(x, t), whose

equation of motion is

∂φ(x, t)

∂t
= −Γ

δH [φ(x, t)]

δφ(x, t)
+ ξ(x, t)

= Γ

{

∇2φ(x, t) − V ′[φ(x, t)]

}

+ ξ(x, t), (2.3)

where Γ is a kinetic coefficient, V ′[φ(x, t)] ≡ dV [φ(x, t)]/dφ(x, t) and ξ(x, t) is the

noise from thermal fluctuation. We assume that ξ(x, t) is a Gaussian white noise

with zero average and satisfies the fluctuation-dissipation theorem

〈ξ(x, t)ξ(x′, t′)〉ξ = 2ΓkBTδ(x − x′)δ(t − t′), (2.4)

where 〈...〉ξ means the statistical average over the ensemble of noises. This equa-

tion is simply the generalisation to continuous fields of the Langevin equation
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for a velocity. It provides a good description for dynamics of the Ising model as

well as an order-disorder transition in binary alloys and the equation of motion of

this type represents purely relaxational dynamics. The equation of motion seems

to have been first employed by Landau and Khalatnikov in order to explain the

anomalous attenuation of sound in helium near the λ-point [3].

A simple modification of the nonconserved dynamics gives us a conserved

dynamics. This model, which is called the Cahn-Hilliard model, can be obtained

by replacing Γ by −λ∇2:

∂φ(x, t)

∂t
= λ∇2 δH [φ(x, t)]

δφ(x, t)
+ ξ(x, t)

= −λ∇2

{

∇2φ(x, t) − V ′[φ(x, t)]

}

+ ξ(x, t). (2.5)

Similarly, the thermal noise is a Gaussian distributed with zero mean and must

satisfy

〈ξ(x, t)ξ(x′, t′)〉ξ = −2λkBT∇2δ(x − x′)δ(t − t′) (2.6)

to ensure that the fluctuation-dissipation theorem is obeyed. As in nonconserved

case, the conserved case is a purely relaxational dynamics. It describes, for ex-

ample, the phase seperation of the binary alloys. In the language of Halperin and

Hohenberg classification scheme [3], these dynamical equations are called model

A and B, respectively. As the system was quenched from a high-temperature

disordered phase, we shall take the initial conditions to represent a completely

disordered state, given by

〈φ(x, 0)φ(x′, 0)〉o = ∆δ(x − x′), (2.7)

where 〈...〉o represents the statistical average over the ensemble of initial conditions

and ∆ controls the size of the initial fluctuations in φ.

2.1.2 Correlation Functions and the Scaling Hypothesis

Now, we will define dynamical quantities of the system, i.e. correlation func-

tions. The first two correlation functions to be introduced are the equal-time pair
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correlation function

C(r, t) ≡ 〈φ(x, t)φ(x + r, t)〉, (2.8)

and its Fourier transform, the equal-time structure factor,

S(k, t) ≡ 〈φk(t)φ−k(t)〉, (2.9)

where 〈...〉 indicates an average over the ensembles of thermal noises and initial

conditions. The structure factor can be directly measured in experiments such as

neutron scattering experiments [2].

From the computer simulation and the experimental results [2], we found

that, at late times, phase-ordering systems will grow in a special manner such

that the domain patterns look statistically the same, if rescaled. The dynamical

scaling hypothesis states that, at late times, there would be only one characteristic

length scale which is solely responsible for the evolution of the system. This means

that if we rescale all the length scales of the system by the characteristic length

scale we will essentially end up with the same system at any time. It should be

emphasised that the dynamical scaling has not been proved directly but arises out

of the computer simulation and the experimental results, except in some simple

models such as the one-dimensional Glauber model [23] and the n-vector model

with n → ∞ [24]. The existence of a single characteristic length scale, according

to the scaling hypothesis, implies that the pair correlation function has the scaling

form

C(r, t) = f [r/L(t)], (2.10)

where L(t) is the single characteristic length scale. The function f(x) is called the

scaling function for the equal-time pair correlation function. The corresponding

scaling form for the equal-time structure factor is given by

S(k, t) = L(t)dg[kL(t)], (2.11)

where d is the spatial dimensionality and g(y) is the Fourier transform of f(x).

The scaling forms, Eq. (2.10) and Eq. (2.11), are well supported by simulation

data and experiment [2].
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The other correlation functions, the two-time pair correlation function, de-

fined by

C(r, t, t′) ≡ 〈φ(x, t)φ(x + r, t′)〉, (2.12)

and, in particular, the autocorrelation function, defined by

A(t) ≡ 〈φ(x, t)φ(x, 0)〉, (2.13)

are also of interest. If the dynamical scaling hypothesis holds, the two-time pair

correlation function, C(r, t, t′), and the autocorrelation function, A(t), can be

written in the scaling form as

C(r, t, t′) = h

[
r

L(t)
,

r

L(t′)

]

(2.14)

and

A(t) ∼ L(t)−λ, (2.15)

where λ is a non-trivial scaling exponent and h(x, y) is the scaling function for the

two-time pair correlation function.

2.1.3 Growth Laws

We have seen that as time proceeds this domain structure coarsens and the average

radius of the domain grows. It is found that, in the scaling regime, the dynamics

are governed by a single characteristic length scale, the domain size L(t), which

increases with a power law in time. Most systems usually have a power growth

law, characterised by a dynamical exponent, z, as

L(t) ∼ t1/z . (2.16)

The exponent, 1/z, is often called the growth exponent. The exponent z depends

on the symmetry of the order-parameter field but not on the microscopic details

of the system [2].

However, there still be no general method to find the exponent z for all

systems but some models are well understood. For example, It is well established

that z = 2 for nonconserved scalar and vector fields, z = 3 for conserved scalar

fields and z = 4 for conserved vector fields [2].
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2.2 Nonequilibrium Critical Dynamics

Critical phenomena are one of the old subjects of statistical mechanics. Many

of the basic facts of critical phenomena were observed. However, the completed

theory of equilibrium critical phenomena was formulated nearly 40 years ago. In

contrast to the equilibrium theory, the theory of nonequilibrium critical dynamics

is not yet fully completed because we are lack of the general theory of nonequi-

librium statistical mechanics. Nonetheless, a lot of progress has been made since

the introduction of the dynamical scaling hypothesis [40]. Janssen, Schaub and

Schmittmann has opened up the way for a scaling treatment in nonequilibrium

critical dynamics [17]. Many authors attempted to extend the dynamical scaling

hypothesis to a variety of model systems [25, 26].

In this thesis, we will be looking at the nonequilibrium critical dynamics of

the two-dimensional (2D) XY model. We may say that theory of phase-ordering

dynamics of the 2D XY model is the subject matter of this thesis in the sense

that the model tries to equilibrate itself when it is quenched from the homoge-

neous phase into a broken-symmetry phase (i.e. critical phase). In the following

subsection, we will give an introduction to the scaling theory of nonequilibrium

critical dynamics. We will introduce dynamical models and the dynamical scaling

hypothesis. However, the definition of the 2D XY model and its approximation

are not given here, but in Chapter 3.

2.2.1 Dynamical Models and the Scaling Hypothesis

As in the theory of phase-ordering dynamics, we first need to define a dynamical

model for describing the system in order to be able to explain the phenomena

being studied. Since, we have already done this in a rather general way in Section

2.1, we will not repeat it again here. However, in addition to quenches from the

high-temperature disordered phase, quenches from the low-temperature ordered

phase to the critical state can also be considered. In this case, the initial condition
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is given by

〈φ(x, 0)φ(x′, 0)〉o = Ceq(r, Ti), (2.17)

where r = |x − x′|, Ti is the temperature of the system before the quench and

Ceq(r, T ) is the equilibrium correlation function at temperature T .

According to the conventional theory of nonequilibrium critical dynamics

[17], the system will relax to the new equilibrium critical state through a non-

equilibrium scaling state characterised by a single characteristic length scale, ξ(t),

after it is quenched from the initial state. In this nonequilibrium scaling state, the

equal-time pair correlation function and the structure factor have the form

C(r, t) =
c

rd−2+η
f [r/ξ(t)], (2.18)

and

S(k, t) = k−2+ηg[ξ(t)k], (2.19)

where d is the dimension of the space, c is a constant and η is the usual equilibrium

critical exponent. The first factor in Eq. (2.18) is just the equilibrium critical

correlation function, Ceq(r). It is thus necessary that the scaling function, f(x)

at x = 0 must be unity, i.e. as t → ∞, the system should be in equilibrium. The

single characteristic length scale, ξ(t), can, in fact, be interpreted as the length

scale up to which the equilibrium critical correlation has been established at time

t. Hence, it may be called the “nonequilibrium correlation length”.

Janssen et al showed that the nonequilibrium correlation length increases in

time with a power law

ξ(t) ∼ t1/z, (2.20)

where z is the so-called dynamic exponent in (near) equilibrium critical dynam-

ics. This results implies that both nonequilibrium and (near) equilibrium critical

dynamics are governed by the same exponent. Furthermore, it was also showed

that the relation ξ(t) ∼ t1/z does not depend on the nonequilibrium initial states.
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Next, the other dynamical quantity of interest is the two-time pair correla-

tion function. For t ≫ t′, the correlation is given by

C(r, t, t′) =

[
ξ(t′)

ξ(t)

]λ

h

[
r

ξ(t)

]

, (2.21)

where the exponent λ is a new non-trivial critical exponent [18, 27]. The exponent

λ can be obtained from the decay of the autocorrelation function, which satisfies

the power law

A(t) ∼ ξ−λ ∼ t−λ/z . (2.22)

Note that the similarities of the scaling forms for correlations in both theories

do not, in any sense, imply that the physics of both dynamics are the same. In

particular, the scaling exponents z and λ which have been used in both theories

are totally different exponents and do not have any obvious relationship between

them. If there exists any relationship, it has yet been proved.

2.3 Some Remarks on Hamiltonians

In the study of the phase transition in modern statistical mechanics, there has

been considerable interest in model Hamiltonian such as the Ising model, the

Potts model, the Heisenberg model, the XY model, the Baxter model, and even

the non-linear sigma model [9]. Nevertheless, there have been only a handful of

exactly solvable model. For example, the two-dimensional Ising model in zero

magnetic field was solved by Lars Onsager in 1944 but it still has not been solved

in an external magnetic field [9]. Much effort has been extended to solve it in

three dimensions in zero field but it remain unsolved. However, these models have

been of very importance in modern statistical mechanics [9].

All model Hamiltonians may be broadly divided into two categorises, i.e.

lattice and continuum models. In this section, we will give a briefly discuss about

these models.
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2.3.1 Lattice Models

The Ising, Potts, Heisenberg and XY models are examples of microscopic or lattice

models. These models are defined on a lattice which a variable is allowed to take a

definite value at each site. For example, to define the Ising model a spin variable,

~Si, i = 1, 2, 3, ..., N which is allowed to take the value ±1, is placed on each lattice

site. These kinds of models are usually aimed to be models at the microscopic level

and the Hamiltonian is called the microscopic Hamiltonian. For an equilibrium

state, physical informations are kept in the partition function. The canonical

partition function is given by

Z =
∑

r

e−βEr , (2.23)

where the sum is over all the state r with energy Er and β = 1/kBT with kB Boltz-

mann’s constant and T the temperature. In the study of statistical mechanics, we

begin with the microscopic Hamiltonian and try to evaluate the partition func-

tion directly. However, it is often very difficult to work out in the critical states

where correlation lengths diverge. To study critical phenomena, it is more useful

to introduce semi-phenomenological field theories, where the order-parameter is

treated as a continuous classical field. The continuum limit of the lattice model

will be described below.

2.3.2 Continuum Models

In contrast to lattice models, continuum models are generally meant to be models

at an intermediate level between the microscopic and macroscopic level called

mesoscopic or coarse-grained models. Furthermore, these models may also be

considered as the continuum limit of a lattice model providing what is called an

effective field theory. Examples of continuum models are the Gaussian model and

Ginzburg-Landau model.

In this thesis, our problem is treated as a coarse-grained model. So, we will

introduce the idea of coarse graining and its partition function. The system is
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divided up into blocks with dimensions large compared to any microscopic length

such as the interparticle spacing. There are a large number of particles and ap-

proximately uniform in each block. The average of the order-parameter field, φ(x),

over the particles in a block centered at x is φ̃(x). This process of averaging over

many particles in some volume of space is called coarse graining and φ̃(x) is often

called the coarse-grained order-parameter field [19]. The partition function is a

functional integration:

Z =

∫

Dφ̃(x) e−[H̃−
R

ddx h(x)φ̃(x)]/kBT . (2.24)

H̃ is called the coarse-grained Hamiltonian or the free energy and h(x) is an

external field.

Note that, in this work, we denote φ̃(x) by φ(x).



CHAPTER III

The Model and Dynamics

The rotations in a two-dimensional plane is the simplest continuous sym-

metry (U(1) or O(2)). In the language of group theory, the symmetry associated

with these groups is often called XY-symmetry because rotations are usually done

in the XY-plane. The order-parameter that breaks this symmetry can be either

a two-dimensional vector or a complex number. The XY model is used for the

systems such as superfluid helium, superconductors and hexatic liquid crystals

with a complex or two-dimensional vector order-parameter [19]. According to

the theorem of Mermin and Wagner, the two-dimensional (2D) XY model has

no long-range order at any finite temperature [28]. However, the system has a

phase transition, but it cannot be of the usual type with finite order-parameter

below Tc. Kosterlitz and Thouless [6, 7] first predicted that the system under-

goes a rather special kind of phase transitions, known as the Kosterlitz-Thouless

transition. They predicted a phase transition from a short-range disordered phase

to a quasi-long-range ordered phase, called the Kosterlitz-Thouless phase, where

the order-parameter is everywhere zero. The transition temperature is called the

Kosterlitz-Thouless transition temperature, TKT . Above the transition tempera-

ture TKT , the order-parameter pair correlation function decays exponentially as

usual, with some correlation length ξ. Below the transition temperature, it de-

cays like a power law of distance. In the conventional phase transition, critical

state is characterised by a power-law decay of the order-parameter pair correlation

function. Then, the Kosterlitz-Thouless phase is critical.

The Kosterlitz-Thouless transition may also be interpreted as a topological
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phase transition because a simple heuristic argument due to the paper of Kosterlitz

and Thouless [7] indicates how vortices can lead to a second-order phase transition

in the XY model. Vortices are topological defects. Apart from the spin-wave

excitations, there exists vortices which are closely bound in pairs, i.e. the vortex-

antivortex pairs, below the Kosterlitz-Thouless transition temperature, TKT . The

size of defect pairs increases when the temperature is increased. They becomes free

vortices at T = TKT . We can see that the spin-wave excitations are responsible

for destroying any long-range order in the system while the interaction energy of

the vortices causes the phase transition. The simplest form of topological defect

is the domain walls which occur in systems described by scalar fields. They are

walls which seperate domains of the two equilibrium phases. The local changes

in the order-parameter can move the wall but cannot destroy it. The existance

of such defects requires that n ≤ d, where n is the number of components of

the order-parameter and d is the dimension of the system. For n = 2 these

defects are points (“vortices”) for d = 2 or lines (“strings” or “vortex lines”) for

d = 3. For n = 3, d = 3, they are points (“hedgehogs” or “monopoles”) [2].

The roles played by vortices have already been studied intensively [2]. However,

their roles in nonequilibrium systems are still not completely understood. In

this and the rest of the thesis, we will investigate the roles of the vortices in

nonequilibrium dynamics of the 2D XY model. Quenching from at or below the

Kosterlitz-Thouless transition temperature, TKT , to low-temperature phase will

be studied here.

This chapter is organised as follows. In Section 3.1, we will introduce the

coarse-grained two-dimensional XY model used in our study. We will propose

some approximation scheme. First, the concept of the spin-wave approximation

are presented. This analysis is refered as the zeroth-order theory. Next, we will

introduce the first-order approximation to obtain the approximated Hamiltonian.

In Section 3.2, the dynamics of the system is given. Finally, the approximated

correlation functions are calculated within the first-order approximation.
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3.1 The Coarse-grained 2D XY Model

The microscopic two-dimensional (2D) XY model consists of N two-component

spins, denoted by ~Si lying on a two-dimensional square lattice of size L × L =

N . The magnitude of the spins are constant which usually is set to unity. The

Hamiltonian of the microscopic 2D XY model is given by

H = −J
∑

〈ij〉

~Si · ~Sj , (3.1)

where J is the exchange coupling constant and 〈ij〉 denotes a sum over nearest

neighbour spins. Nonetheless, it is convenient to study the continuum limit of a

lattice model in terms of a coarse-grained order-parameter field (as discussed in

Sec. 2.3). The coarse-grained 2D XY model is a system of a two-component order-

parameter field, ~φ(x, t), constrained to rotate in the XY-plane. The Hamiltonian

of the 2D XY model is given by

H [~φ] =

∫

d2x

[
1

2
|∇~φ|2 + V (|~φ|)

]

, (3.2)

where V (|~φ|) need only have a wine bottle structure in the ordered phase such

that the global minima correspond to the infinite ground states. In this work, the

potential V (|~φ|) = V0(1 − |~φ|2)2 is used. In the ground states, the field has unit

magnitude.

According to the Kosterlitz-Thouless theory [7, 8], the equilibrium correla-

tion function, Ceq(r) ≡ 〈~φ(x, t) · ~φ(x + r, t)〉eq, of the Kosterlitz-Thouless phase

has the asymptotic equilibrium correlations through

Ceq(r) ∼ r−η, (3.3)

where η is the equilibrium critical exponent. The exponent η depends on tem-

perature, with η(T ) = kBT/2πρs(T ). They are directly measured in experiments.

The quantity ρs is the coarse-grained spin-wave stiffness of the system which we

will describe in the following subsection.
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3.1.1 The Zeroth-order Theory

Above zero temperature, the system deviates from the completely ordered or

ground state, where all the spins align in the same direction. However, at very

low temperature, only low-lying excited states dominate in equilibrium. Low-lying

excited states of the system are states in which neighbouring spins almost aligns

in the same direction. In this chapter, we use the limit V0 → ∞, i.e. neglect-

ing the fluctuation of the amplitude of the field altogether. Then, the field has

constant unit magnitude and the potential V becomes zero. The dynamics have

only phase fluctuations. Then, the order-parameter field is written in terms of the

phase variable as

~φ = cos θ i + sin θ j, (3.4)

where i and j are Cartesian unit vectors, and the Hamiltonian functional takes the

form

H =
ρs

2

∫

d2x (∇θ)2. (3.5)

This approximation is the so-called spin-wave approximation and the resultant

Hamiltonian is called the spin-wave Hamiltonian. The coefficient ρs is called the

spin-wave stiffness or helicity modulus in magnetic systems, the superfluid density

in superfluids, and is often referred to simply as a rigidity. In d dimensions, ρs

has units of energy/(length)d−2 or force/(length)d−3.

3.1.2 The First-order Approximation

According to the zeroth-order theory, the phase of the field fluctuates only but,

with the nature at the coarse-grained level, the field fluctuates both in its ampli-

tude and phase. So, we may write the order-parameter field in terms of these two

variables as

~φ = φ cos θ i + φ sin θ j. (3.6)

Inserting Eq. (3.6) in Eq. (3.2) one has

H =

∫

d2x

{
1

2
[φ2(∇θ)2 + (∇φ)2] + V (φ)

}

. (3.7)



21

At this stage no approximations has been done. The key step in this work is the

introduction of some approximation scheme. Investigation of the Hamiltonian Eq.

(3.7) shows that the fields φ and θ are coupled through the term
∫

d2x1
2
φ2(∇θ)2.

The first step is to introduce, in addition to the order-parameter fields φ(x, t) and

θ(x, t), the fluctuating field ρ(x, t) defined by

φ = 1 − ρ. (3.8)

The field ρ(x, t) is to describe the fluctuations of amplitude about the ordered

state, which goes to zero at late times. It is interesting to contrast that the field

ρ is referred as the “fast” variable while the field θ is the “slow” variable of the

system.

According to the physical picture described above, we treat the amplitude

fluctuations small compared to the phase fluctuations. Then, we obtain the ap-

proximated Hamiltonian in terms of ρ, ∇ρ and ∇θ as

H ≈
∫

d2x
ρs

2
(∇θ)2 +

∫

d2x

[
1

2
(∇ρ)2 + 4V0ρ

2

]

. (3.9)

The first term is the energy due to phase fluctuations, called spin-wave Hamil-

tonian and the last term is the energy due to amplitude fluctuations. It is worth

noticing that the approximated Hamiltonian, Eq. (3.9), reduces to the spin-wave

Hamiltonian, Eq. (3.5), in the limit V0 → ∞.

3.2 Dynamics

In this work, we consider quenches in the nonconserved coarse-grained 2D XY

model between any two temperatures at or below the Kosterlitz-Thouless transi-

tion temperature, TKT
1. Now, to describe the dynamical process, an equation of

motion for the order parameter field is needed. Since, in this approximation, the

system has two degree of freedom (i.e. the phase and amplitude variables) which

1The Kosterlitz-Thouless temperature of the 2D XY model on a square lattice is estimated

to be 0.90 [29, 30].
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are independent each other. The dynamics of each of the fields is treated as the

time-dependent Ginzburg-Landau (TDGL) model or model A in the presence of

Gaussian noise. The equations of motion satisfied by the order-parameter fields

θ(x, t) and ρ(x, t) are

∂θ(x, t)

∂t
= −Γθ

δH

δθ(x, t)
+ ξ(x, t), (3.10)

and
∂ρ(x, t)

∂t
= −Γρ

δH

δρ(x, t)
+ ζ(x, t). (3.11)

The thermal noises ξ(x, t) and ζ(x, t) can be assumed to be Gaussian white-noise

with zero mean, with correlations satisfy the fluctuation-dissipation theorem

〈ξ(x, t)ξ(x′, t′)〉ξ = 2ΓθkBTδ(x − x′)δ(t − t′), (3.12)

and

〈ζ(x, t)ζ(x′, t′)〉ζ = 2ΓρkBTδ(x − x′)δ(t − t′), (3.13)

where 〈...〉ξ and 〈...〉ζ denotes the statistical average over the noise ensembles. Γθ

and Γρ are the kinetic coefficient for phase and amplitude variables, respectively.

Using the appoximated Hamiltonian, Eq. (3.9), one easily finds that

∂θ(x, t)

∂t
= Γθρs∇2θ(x, t) + ξ(x, t). (3.14)

and
∂ρ(x, t)

∂t
= Γρ[∇2ρ(x, t) − 8V0ρ(x, t)] + ζ(x, t). (3.15)

As mentioned above, the approximated Hamiltonian, Eq. (3.9) reduces to

the spin-wave Hamiltonian, Eq. (3.5) in the zeroth-order theory (i.e. in the limit

V0 → ∞). Then, the equations of motion reduce to the equation of motion of

phase variable only, Eq. (3.14). While at first-order approximation, we extend to

include the dynamics with amplitude fluctuation corresponding to the equation of

motion Eq. (3.15).

The system was initially in equilibrium at the temperature Ti (at or below

TKT ) and was then quenched to the temperature Tf below TKT . The Hamiltonian
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of the system is the approximated Hamiltonian, Eq. (3.9) and, then, the Fourier

transform of the initial phase-phase and amplitude-amplitude correlation function

are denoted by 〈θk(0)θ−k(0)〉o and 〈ρk(0)ρ−k(0)〉o, respectively. 〈...〉o denotes the

average over all initial configurations, i.e. with respect to the canonical distribution

at Ti and e−H/kBTi.

3.3 Correlation Functions

It is now time to discuss the dynamical quantities of interest. We start with the

definition of the two-time pair correlation

C(r, t, t′) ≡ 〈~φ(x, t) · ~φ(x + r, t′)〉

= 〈φ(x, t)φ(x + r, t′) cos[θ(x, t) − θ(x + r, t′)]〉, (3.16)

where 〈...〉 represents the average over initial conditions and over the thermal

noises. By using Eq. (3.8), the correlations are written in the form

C(r, t, t′) = 〈[1− ρ(x, t)− ρ(x+ r, t′)+ ρ(x, t)ρ(x+ r, t′)] cos[θ(x, t)− θ(x+ r, t′)]〉.
(3.17)

At first-order the cross terms 〈ρ(x, t) cos[θ(x, t) − θ(x + r, t′)]〉 and 〈ρ(x +

r, t′) cos[θ(x, t) − θ(x + r, t′)]〉 vanish and the correlation becomes

C(r, t, t′) ≈ Cθ(r, t, t′) + Cρ(r, t, t′)Cθ(r, t, t′), (3.18)

where Cθ(r, t, t′) ≡ 〈cos[θ(x, t)−θ(x+ r, t′)]〉 and Cρ(r, t, t′) ≡ 〈ρ(x, t)ρ(x+ r, t′)〉.

Similarly, the autocorrelation function is given by

A(t) ≡ 〈~φ(x, t) · ~φ(x, 0)〉

= 〈φ(x, t)φ(x, 0) cos[θ(x, t) − θ(x, 0)]〉. (3.19)

In the first-order approximation, the autocorrelation becomes

A(t) = 〈[1 − ρ(x, t) − ρ(x, 0) + ρ(x, t)ρ(x, 0)] cos[θ(x, t) − θ(x, 0)]〉

≈ Aθ(t) + Aρ(t)Aθ(t), (3.20)
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where Aθ(t) ≡ 〈cos[θ(x, t) − θ(x, 0)]〉 and Aρ(t) ≡ 〈ρ(x, t)ρ(x, 0)〉. Note that

A(t) ≡ C(0, t, 0). So, Aθ(t) = Cθ(0, t, 0) and Aρ(t) = Cρ(0, t, 0).



CHAPTER IV

The Zeroth-order Theory

There are few exactly solvable models in theory of phase-ordering dynamics

but these models are quite far from describing the physical systems of interest.

However, the models are interesting because they showed the scaling property

at late times [2]. Here, we will give a few examples of exactly solvable models.

First is the n-component vector model in the limit that the number n goes to

infinity. Many authors have studied in this limit, mostly for nonconserved fields

[24, 27, 32-35]. A rather complete discussion for both conserved and noncon-

served dynamics in the large-n limit is discussed in ref. [33]. A simple model that

has been solved exactly is the one-dimensional Ising model with Glauber dynam-

ics [23]. The last example is the one-dimensional XY model with nonconserved

order-parameter which is first given by Newman et al [34]. Based upon the scaling

hypothesis, theories of phase-ordering dynamics are mainly concerned with two

things, i.e. the determination of growth laws and scaling functions. It is interest-

ing that the nonconserved one-dimensional XY model exhibits the “anomalous”

growth law, namely L(t) ∼ t1/4. In the conserved case, there are no exact solution

for the model. However, computer simulations give L(t) ∼ t1/6 [31] instead of the

standard growth law L(t) ∼ t1/4. In this chapter, we will examine phase-ordering

dynamics of the coarse-grained 2D XY model below the Kosterlitz-Thouless transi-

tion temperature, TKT . An exact solution is possible within the spin-wave theory.

We work in the limit V0 → ∞, where |~φ|2 = 1. Then, the problem are treated as

dynamics with phase fluctuations only. This analysis is refered as the zeroth-order

theory. Here, the dynamics of the system will be assumed to be nonconserving

and purely relaxing. The main purpose of this chapter is to confirm the prediction
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by Rutenberg and Bray [20].

This chapter is organised as follows. In the next section, the dynamics of

phase variable will be described. We will then perform the calculation for the case

of a quench to an arbitary temperature below TKT . Next, we will calculate the

zeroth-order correlation functions. Finally, we will end this chapter by giving a

detailed discussion in the scaling regime and asymptotic behaviour.

4.1 Dynamics

The evolution of the phase variable is governed with the equation of evolution,

Eq. (3.14),
∂θ(x, t)

∂t
= Γθρs∇2θ(x, t) + ξ(x, t). (4.1)

By making the Fourier transformation of Eq. (4.1), the equation of evolution

for the Fourier transform of the phase variable, θk, can be written as

θ̇k = −ρsΓθk
2θk + ξk , (4.2)

where θk and ξk are the Fourier transforms of the phase variable and the thermal

noise given by

θk(t) =
1

2π

∫

d2x θ(x, t) e−ik·x (4.3)

and

ξk(t) =
1

2π

∫

d2x ξ(x, t) e−ik·x. (4.4)

We only keep the component of the thermal noise locally orthogonal to the field

~φ, with

〈ξk(t)ξk′(t′)〉 = 2ΓθkBTδk,−k′δ(t − t′). (4.5)

We make [t] dimensionally equivalent to [l]2 while Γθ and ρs are adsorbed into the

time scale for the rest of the chapter. Thus, the equation (4.2) becomes

θ̇k = −k2θk + ξk . (4.6)
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The resultant equation is just the first-order linear ordinary differential equa-

tion, which can be solved exactly by the method of integrating factor, and the

solution reads

θk(t) = θk(0)e−k2t +

∫ t

0

dt̃e−k2(t−t̃)ξk(t̃), (4.7)

where t > 0 is measured from the time of the quench. Before going further, we

need the initial correlations of the system. Since the system is quenched from at

or below TKT , the initial correlations are given by the spin-wave Hamiltonian, Eq.

(3.5). The Fourier transformed spin-wave Hamiltonian is given by

H =
ρs

2

∑

k

k2θk(0)θ−k(0). (4.8)

Then, the probability distribution reads

P [{θk(0)}] ∝ exp

{

−
∑

k

k2

4πηi
θk(0)θ−k(0)

}

, (4.9)

where ηi and ηf are used to describe the initial and final quench states of our

system, respectively. We, thus, can calculate the initial conditions directly, but

we will use a short calculation that is to use the equipartition of energy.1 Then,

ρsk
2〈|θk(0)|2〉o = 2 × kBTi

2
, (4.10)

where Ti is the initial temperature and the factor of 2 accounts for the fact that

θk has both real and imaginary parts ( i.e. using the fact that θk = θ∗−k
). Hence

〈θk(0)θ−k(0)〉o =
2πηi

k2
. (4.11)

4.2 Correlation Functions

In this section, we briefly show the results of calculations for correlation functions.

For the details of calculations see Appendix A. Since, the noise and the initial

1The theorem of the equipartition of energy states that if a degree of freedom makes only a

quadratic contribution to the Hamiltonian, then the average energy of the corresponding term

in the Hamiltonian is kBT/2 [9].
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conditions are Gaussian distributed. The general two-point two-time correlation

function is

Cθ(r, t, t′) ≡ 〈cos[θ(x, t) − θ(x + r, t′)]〉,

= Re
〈

ei[θ(x,t)−θ(x+r,t′)]
〉

,

= exp[−Bθ(r, t, t′)/2], (4.12)

where Bθ(r, t, t′) ≡ 〈[θ(x, t)−θ(x+r, t′)]2〉 is the phase-difference correlation func-

tion. The last equality above is obtained using the Gaussian cumulant expansion.

The phase-difference correlation, Bθ(r, t, t′), can be written in terms of the average

of the Fourier transforms of the phase variable as

Bθ(r, t, t′) =

∫
d2k

(2π)2
[ 〈θk(t)θ−k(t)〉 + 〈θk(t

′)θ−k(t
′)〉

−2 cos(k · r)〈θk(t)θ−k(t
′)〉 ]. (4.13)

The average of the Fourier transforms of the phase variable at general times after

a quench at t = 0 from a temperature Ti to a temperature Tf , both at or below

TKT , can be calculated straight away by using Eq. (4.7),

〈θk(t)θ−k(t
′)〉 =

2π

k2
[ ηf e−k2|t−t′| + (ηi − ηf) e−k2(t+t′) ], (4.14)

where the initial phase-phase correlation function, Eq. (4.11), and the following

fluctuation-dissipation theorem, Eq. (4.5) have been used. Notice that the first

term of Eq. (4.14) is just the equilibrium phase-phase correlation function, which

can be obtained from the equilibrium theory, while the last term is the nonequi-

librium contribution, which goes to zero as t → ∞. Substituting Eq. (4.14) into

Eq. (4.13), we obtain the Bθ(r, t, t′) in the form

Bθ(r, t, t′) = Bθ
eq(r, t, t

′) + Bθ
neq(r, t, t

′), (4.15)

where Bθ
eq and Bθ

neq are the equilibrium and nonequilibrium correlations at the

final temperature, respectively. We, then, have

Bθ
eq(r, t, t

′) = ηf{γ + ln(r2/4a2
0) + E1[r

2/4(a2
0 + |t − t′|)]}, (4.16)
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and

Bθ
neq(r, t, t

′) = (ηi − ηf)

{

γ + ln

(
r2

4
√

(a2
0 + 2t)(a2

0 + 2t′)

)

+E1[r
2/4(a2

0 + t + t′)]

}

, (4.17)

where E1(x) ≡
∫ ∞

x
dye−y/y for x > 0 and γ ≃ 0.577 is Euler’s constant. A

soft ultraviolet cutoff, through a factor of exp(−a2
0k

2) in the integrand of each k

integral, is used in our calculation, where a0 is of the order of the lattice spacing.

Finally, we obtain

Cθ(r, t, t′) = Cθ
eq(r, |t − t′|)Cθ

neq(r, t, t
′), (4.18)

where

Cθ
eq(r, |t − t′|) ≡ exp[−Bθ

eq(r, t, t
′)/2]

= exp

{

− ηf

2
{γ + ln(r2/4a2

0)

+E1[r
2/4(a2

0 + |t − t′|)]}
}

(4.19)

and

Cθ
neq(r, t, t

′) ≡ exp[−Bθ
neq(r, t, t

′)/2]

= exp

{

− (ηi − ηf )

2

{

γ + ln

(
r2

4
√

(a2
0 + 2t)(a2

0 + 2t′)

)

+E1[r
2/4(a2

0 + t + t′)]

}}

. (4.20)

4.3 Analytic Results

The late time t ≫ a2
0, long-distance r2/t ≫ 1 and short-distance r2/t ≪ 1 behav-

iour of the theory are analysed in this section. The asymptotic correlations are

evaluated by using the asymptotics of E1(x):

E1(x) ∼







−γ − ln x, x ≪ 1

e−x/x, x ≫ 1.
(4.21)
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Consider first Cθ
eq at equal times t = t′. One obtains the asymptotic equilibrium

correlations

Cθ
eq(r, 0) ∼ (r/a0)

−ηf , r ≫ a0 (4.22)

which reproduces the standard result, Eq. (3.3). The full equal-time pair correla-

tions have the asymptotic behaviour

Cθ(r, t, t) ≃







(r/a0)
−ηf (r/

√
t)−(ηi−ηf ), r2/t ≫ 1

(r/a0)
−ηf , r2/t ≪ 1

(4.23)

where r,
√

t ≫ a0. We see that both long and short distances have the same

equilibrium correlations, but have an additional amplification factor at long dis-

tances. The nonequilibrium part are scaled with the single characteristic length

L(t) ∼ t1/2. It is worth noticing the similarities of the single characteristic length

scale, L(t), and the nonequilibrium correlation length, ξ, in the 2D XY system.

However, these similarities may not occur in the other systems.

Next, the autocorrelation function reads at late times,

Aθ(t) = Cθ(0, t, 0)

∼

(
t

a2
0

)−(ηi+ηf )/4

, (4.24)

where again we take t ≫ a2
0. Using L(t) ∼ t1/2 and Aθ(t) ∼ L−λ, Eq. (2.22) we

determine the exponent λ = (ηi + ηf)/2. We set ηi = ηf = η and find λeq = η for

the case of the decay of equilibrium correlations.

4.4 Discussion

In this chapter, we have considered phase-ordering dynamics of the coarse-grained

2D XY model below the Kosterlitz-Thouless transition temperature, TKT . Within

the spin-wave approximation, the dynamics are treated as phase fluctuations only.

The phase dynamics has been taken to be the time-dependent Ginzburg-Landau

(TDGL) model or model A in the presence of Gaussian noise. We are able to

obtain the growth laws and we can solve explicitly the correlation functions.
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From our results of the spin-wave theory, we may say that the prediction

given by Rutenberg and Bray is positively supported with our calculations. We

will give a brief discussion of the results. The equilibrium part of the correlation

function of the 2D XY model decays asymptotically like a power law, Eq. (4.22),

with the exponent ηf corresponding to the Kosterlitz-Thouless theory. This result

confirms that the Kosterlitz-Thouless phase is critical state. We can see that the

equal-time pair correlation function exhibits the scaling form in accordance with

Eq. (2.18), with the characteristic length scale L(t) ∼ t1/2. The system quenched

from at or below TKT into below TKT with nonconserved dynamics contain vortex-

antivortex pairs and then their approaches to equilibrium which are governed by a

power growth law for the single time-dependent length, L(t) ∼ t1/2 at late times.

In contrast, the system quenched from above TKT containing free vortices which

give the growth law L(t) ∼ (t/ ln t)1/2 [36]. We also measure the decay of the

autocorrelations which is characterised by an exponent λ through Aθ(t) ∼ L−λ.

In conclusions, we have found that the equal-time pair correlation function

Cθ(r, t, t) for the 2D XY model following quenches to low-temperature phase sat-

isfy the scaling form,

Cθ(r, t, t) ≃ r−ηf [r/L(t)], (4.25)

where the single time-dependent length L(t) is given by

L(t) ∼







t1/2, Ti ≤ TKT

(t/ ln t)1/2, Ti > TKT ,
(4.26)

where Ti denotes the temperature of the initial state.



CHAPTER V

The First-order Correction

As mentioned in Chapter 1, the dynamical evolution of a system in theory of

phase-ordering dynamics is a very interesting problem. It is now well established

that, at late times, most phase-ordering systems approach a scaling coarsening

regime. This means that the equal-time pair correlation function of the order

parameter, C(r, t) = 〈~φ(x, t) · ~φ(x + r, t)〉 can be written in the scaling form as

C(r, t) = f [r/L(t)]. On the other hand, corrections to scaling which tells us how

the scaling coarsening regime is approached, is very important in interpreting ex-

perimental results or simulation data correctly. The form of corrections to scaling

determines the correct asymptotic scaling exponents and scaling functions [37].

However, there has not been much studied in determining the form of corrections

to scaling.

Corrections to scaling in theory of phase-ordering dynamics are arised out

of many sources. In phase-ordering systems with topological defects there is, in

addition to the characteristic length scale L(t), a second characteristic length scale,

the “defect core size” ξ. The corrections to scaling associated with nonzero defect

core size are expected to enter as a power of ξ/L. Thermal fluctuations give also

corrections to scaling when systems are quenched to a final temperature Tf , where

0 < Tf < Tc, with Tc the critical temperature [38].

Rapapa and Bray [38] have considered corrections to scaling, associated

with deviations of the order-parameter from the scaling morphology in the initial

state, for system with O(n) symmetry in phase-ordering dynamics. They supposed

that the leading corrections to scaling enter the correlation function in the form
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C(r, t) = f0(r/L) + L−ωf1(r/L), where f0(x) is the “scaling function”, f1(x) is

the “correction-to-scaling function” and ω is the “correction-to-scaling exponent”.

While the structure factor is S(k, t) = Ldg0(y) + Ld−ωg1(y), where g0(y) and

g1(y) are the d-dimensional Fourier transforms of f0(x) and f1(x) respectively, and

y = kL. In their work, corrections to scaling are calculated for the nonconserved

one-dimensional XY model in the limit V0 → ∞ (i.e. |~φ|2 = 1), where an exact

solution is possible. They found that the correction-to-scaling exponent is ω = 2.

While, “memory” of the initial conditions are retained in the correlation function

C(r, t, t) even in the long time limit.

In this chapter, we determine corrections to scaling associated with ampli-

tude fluctuations in the nonconserved coarse-grained two-dimensional XY model

below the Kosterlitz-Thouless transition temperature TKT . For the time-dependent

Ginzburg-Landau (TDGL) model or model A, we quench the system between any

two temperatures at or below TKT . In the work here the analysis is extended

from the zeroth-order theory to include the first-order correction. We evaluate

the first-order correction due to the amplitude-amplitude correlations. We find

scaling solution for nonequilibrium equal-time correlations characterised by a sin-

gle characteristic length L(t) ∼ t1/2 associated with states with vortex-antivortex

pairs. We also measure the first-order correction to autocorrelation and show its

asymptotic behaviour.

In the next section, we will describe the dynamical model for the amplitude

fluctuations. Next, we will try to evaluate the amplitude-amplitude correlations

analytically. In the next section, the analysis results are presented and analysed.

Finally, in the last section, the discussion and conclusion are given.

5.1 Dynamics

In this section we work out the first-order correction in details. The results of this

section show that the general two-point two-time correlation function C(r, t, t′)
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contains physical properties that we wish to describe. In order to proceed one

needs to know the solution of equation of motion, Eq. (3.15),

∂ρ(x, t)

∂t
= Γρ[∇2ρ(x, t) − 8V0ρ(x, t)] + ζ(x, t). (5.1)

In Fourier space, the equation of motion for the amplitude fluctuations be-

comes

ρ̇k = −Γρ(k
2 + 8V0)ρk + ζk, (5.2)

where ρk and ζk are the Fourier transforms of the amplitude variable and the noise

given by

ρk(t) =
1

2π

∫

d2x ρ(x, t) e−ik·x (5.3)

and

ζk(t) =
1

2π

∫

d2x ζ(x, t) e−ik·x. (5.4)

The component of the noise is kept locally orthogonal to the field ~φ, with

〈ζk(t)ζk′(t′)〉 = 2ΓρkBTδk,−k′δ(t − t′). (5.5)

Similar to the zeroth-order theory, we will adsorb Γρ into the time scale, making

[t] dimensionally equivalent to [l]2 for the rest of the chapter. The equation of

motion, then, becomes

ρ̇k = −(k2 + 8V0)ρk + ζk. (5.6)

By using the method of integrating factor, we obtain the solution for the

equation of motion, Eq. (5.6),

ρk(t) = ρk(0)e−(k2+8V0)t +

∫ t

0

dt̃e−(k2+8V0)(t−t̃)ζk(t̃), (5.7)

where t > 0 is measured from the time of the quench. Since the system is quenched

from at or below TKT , The initial correlations are given by the approximated

Hamiltonian Eq. (3.9). First, we make the Fourier transformation of the approxi-

mated Hamiltonian. The Hamiltonian for the Fourier transform of the phase, θk,
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and amplitude, ρk, variables can be written as

H ≈
∫

d2x
ρs

2
(∇θ)2 +

∫

d2x

[
1

2
(∇ρ)2 + 4V0ρ

2

]

= −ρs

2

∑

k

∑

k′

θk(0)θk′(0)[k1k
′
1 + k2k

′
2]

1

(2π)2

∫

d2x ei (k+k′)·x

︸ ︷︷ ︸

δ(k+k′,0)

−1

2

∑

k

∑

k′

ρk(0)ρk′(0)[k1k
′
1 + k2k

′
2]

1

(2π)2

∫

d2x ei (k+k′)·x

︸ ︷︷ ︸

δ(k+k′,0)

+4V0

∑

k

∑

k′

ρk(0)ρk′(0)
1

(2π)2

∫

d2x ei (k+k
′)·x

︸ ︷︷ ︸

δ(k+k′,0)

. (5.8)

If k = −k′, we obtain

H =
ρs

2

∑

k

k2θk(0)θ−k(0) +
∑

k

(
k2

2
+ 4V0

)

ρk(0)ρ−k(0). (5.9)

Notice that, in the limit V0 → ∞, the Hamiltonian, Eq. (5.9), reduces to the spin-

wave Hamiltonian, Eq. (4.8), and the analysis becomes the zeroth-order theory.

Since the variables θk and ρk are “statistically independent”, the probability

distribution P [{θk(0)}, {ρk(0)}] can then be expressed in terms of the probability

distribution P [{θk(0)}] and the probability distribution P [{ρk(0)}]:

P [{θk(0)}, {ρk(0)}] = P [{θk(0)}]P [{ρk(0)}]

∝ exp

{

−
∑

k

k2

4πηi

θk(0)θ−k(0)

}

× exp

{

−
∑

k

(
k2

2
+ 4V0

)

ρk(0)ρ−k(0)/kBTi

}

.(5.10)

Next, we can, now, calculate the initial correlation directly.

〈ρk(0)ρk′(0)〉o =

∫ ∞

−∞
dρk1

dρk2
... dρk... dρk′... e−βHρk(0)ρk′(0)

∫ ∞

−∞
dρk1

dρk2
... dρk... dρk′... e−βH

, (5.11)

where H is given by Eq. (5.9). All the integrals cancel out between the numerator

and denominator, except ρk and ρk′ . By collecting both real and imaginary parts

( i.e. using the fact that ρk = ρ∗
−k

), the correlation, Eq. (5.11), becomes

〈ρk(0)ρk′(0)〉o =

∫ ∞

−∞
dρkdρk′ ρk(0)ρk′(0) e

−2(k2

2
+4V0)

|ρk|2
kBTi e

−2(k′2
2

+4V0)
|ρ

k′ |
2

kBTi

∫ ∞

−∞
dρkdρk′ e

−2(k2

2
+4V0)

|ρk|2
kBTi e

−2(k′2
2

+4V0)
|ρ

k′ |
2

kBTi

. (5.12)
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We must now consider in two cases:

(i) k 6= ±k′. This means that ρk and ρk′ are distinct. The integrals in Eq.

(5.12) factorise, and each of the integrals has the form

∫ ∞

−∞

dρk ρk(0) e
−2(k2

2
+4V0)

|ρ
k
|2

kBTi = 0. (5.13)

This yields

〈ρk(0)ρk′(0)〉o = 0 |k| 6= |k′|. (5.14)

(ii) k = ±k′. If k = k′ then we must calculate 〈ρ2
k
(0)〉o. We, now, use plane

polar coordinates ρk = (|ρk|, θk), for convenience, so

dρk = |ρk| d|ρk| dθk. (5.15)

Thus

〈ρ2
k
〉o ∝

∫ 2π

0

dθk e2iθk = 0. (5.16)

Then, the case k = −k′ is only non-zero. Since, if k = −k′, we must calculate

〈|ρk(0)|2〉o. The initial correlation in the Kronecker delta symbol reads

〈ρk(0)ρk′(0)〉o = δ k+k′,0〈|ρk(0)|2〉o. (5.17)

After the angular integral over θk in the numerator and denominator are cancelled,

we obtain

〈|ρk(0)|2〉o =

∫ ∞

0
|ρk|d|ρk| e−2(k2

2
+4V0)

|ρk|2
kBTi |ρk|2

∫ ∞

0
|ρk|d|ρk| e−2(k2

2
+4V0)

|ρk|2
kBTi

. (5.18)

By defining the dummy variable z ≡ |ρk|, and using the differential form zdz =

d(z2/2), finally, we obtain

〈ρk(0)ρ−k(0)〉o =
kBTi

k2 + 8V0

. (5.19)

The amplitude-amplitude correlations at general times after a quench are then

calculated straightforwardly from Eq. (5.7)

〈ρk(t)ρ−k(t
′)〉 =

kB

k2 + 8V0

[Tf e−(k2+8V0)|t−t′| + (Ti − Tf ) e−(k2+8V0)(t+t′)]. (5.20)
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5.2 Correlation Functions

Corrections due to amplitude fluctuations follow directly from the amplitude cor-

relations. We, now, briefly show the results of calculations (for more details see

Appendix B). The amplitude-amplitude correlation is

Cρ(r, t, t′) ≡ 〈ρ(x, t)ρ(x + r, t′)〉

=

∫
d2k

(2π)2
〈ρk(t)ρ−k(t′)〉 eik·r

= Cρ
eq(r, t, t

′) + Cρ
neq(r, t, t

′), (5.21)

where Cρ
eq and Cρ

neq are the equilibrium and nonequilibrium correlations at the

final temperature, respectively. In our calculation we use a soft ultraviolet cutoff,

through a factor of exp(−a2
0k

2) in the integrand of each k integral, where a0 is of

the order of the lattice spacing.

To proceed further one must carry out the correlations Cρ
eq and Cρ

neq. Unfor-

tunately, we can not calculate these correlations exactly. However, at late times,

the theory simplifies considerably to obtain

Cρ
eq(r, t, t

′) =
kBTf

32πV0

e−8V0|t−t′|−r2/4(a2
0+|t−t′|)

a2
0 + |t − t′| , (5.22)

and

Cρ
neq(r, t, t

′) =
kB(Ti − Tf )

32πV0

e−8V0(t+t′)−r2/4(a2
0+t+t′)

a2
0 + t + t′

. (5.23)

5.3 Analytic Results

Similar to the zeroth-order theory, we determine the late time t ≫ a2
0, long-

distance r2/t ≫ 1 and short-distance r2/t ≪ 1 behaviour of the first-order correc-

tion in this section. First, we consider Cρ
eq at equal times t = t′. We obtain the

asymptotic equilibrium correlations

Cρ
eq(r, t, t) =

kBTf

32πV0

e−r2/4a2
0

a2
0

≈ 0, r ≫ a0. (5.24)
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This means that, at late times, the amplitude-amplitude correlation is uncorrelated

as expected. While, the full equal-time correlations after the quench have the

asymptotic behaviour

Cρ(r, t, t) ≃







0, r2/t ≫ 1

kB(Ti−Tf )

32πV0

e−16V0t−(r/
√

t)2/8

2t
, r2/t ≪ 1

(5.25)

where r,
√

t ≫ a0. We see that Cρ(r, t, t) has a scaling form, with a length scale

of L ∼ t1/2 characterising the nonequilibrium factor Cρ
neq through Eq. (5.25) at

short distances.

Next, we find the asymptotic behaviour of the autocorrelation function at

late times

Aρ(t) = Cρ(0, t, 0)

=
kBTi

32πV0

e−8V0t

a2
0 + t

∼

kBTi

32πV0

e−8V0t

t
, (5.26)

where again we take t ≫ a2
0. We see that the asymptotic autocorrelation de-

pends only on the initial conditions (through Ti) and decays asymptotically like

an exponential.

5.4 Discussion

In this chapter, we extend the analysis from the zeroth-order theory, which treats

only the phase fluctuations, to include the amplitude fluctuations, which is refered

as the first-order correction. We start this chapter with the dynamical evolution

for the amplitude variable and, then, try to work out the amplitude-amplitude

correlation function directly but it does not succeed. However, we simplify the

theory by considering at long time limit to obtain the two-time correlation func-

tion. For the case t = t′, we found that the nonequailibrium part of the correlation

is scaled with a single characteristic length L ∼ t1/2 associated with states with
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the vortex-antivortex-pair at late times. The scaling form of the nonequilibrium

part of the amplitude-amplitude correlations is refered as the corrections to scaling

in phase-ordering dynamics of the 2D XY model.

In conclusions, the full equal-time pair correlation function has the modified

scaling form of Eq. (2.18), at late times

C(r, t, t) ≃ r−η

{

f0

[
r

L(t)

]

+ α(t)f1

[
r

L(t)

]}

, (5.27)

with

f0(x) ≃







x−(ηi−ηf ), x2 ≫ 1

1, x2 ≪ 1,
(5.28)

and

f1(x) ≃







0, x2 ≫ 1

e−x2/8, x2 ≪ 1,
(5.29)

with L(t) ∼ t1/2 and we take r,
√

t ≫ a0. The coefficient α(t) is of the form

α(t) =
kB(Ti − Tf )

32πV0

e−16V0t

2t
. (5.30)

We found that our results are similar to the form C(r, t, t) = f0(r/L)+L−ωf1(r/L)

which is proposed by Rapapa and Bray [38]. However, it is worth to emphasis

that the source of corrections to scaling of our work and of Rapapa and Bray are

differrent.

The full autocorrelation function reads, at late times,

A(t) ∼

(
t

a2
0

)−(ηi+ηf )/4[

1 +
kBTi

32πV0

e−8V0t

t

]

, (5.31)

where we take t ≫ a2
0.



CHAPTER VI

Conclusions

In this thesis, we have examined the scaling phenomena and its correction

in nonequilibrium statistical mechanics. The problems of interest are the phase-

ordering dynamics and nonequilibrium critical dynamics. We will summarise and

conclude the study as follows.

The first chapter is an introduction of the thesis. We give a brief historical

development of the scaling theory both equilibrium and nonequilibrium phenom-

ena. Basic statements of theories of phase-ordering and nonequilibrium critical

dynamics are mentioned. The 2D XY model which is the model of our study are

introduced. We give the approximation scheme to obtain the corrections to scaling

function. The chapter ends with the outline of this thesis.

In Chapter 2, theories of phase-ordering and nonequilibrium critical dynam-

ics are explained in details. We introduce the dynamical models used in our study.

The existance of the dynamical scaling hypothesis and the scaling forms of quanti-

ties of interest such as correlation functions, structure factors and autocorrelation

functions are explained. The growth law which is the law that governs the evolu-

tion of the system in the scaling coarsening regime is stated. We also give some

remarks on modelled Hamiltonians.

Chapter 3 and the rest, phase-ordering dynamics of the coarse-grained 2D

XY model below the Kosterlitz-Thouless transition temperature, TKT have been

studied. In Chapter 3, first, the definition of the coarse-grained 2D XY model is

introduced. We employed the spin-wave approximation to investigate the problem

in the low-temperature limit, i.e. quenches from at or below TKT to below TKT .
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In this limit, the field fluctuates only its phase. The analysis is refered as the

zeroth-order theory of the thesis. However, the field, indeed, fluctuates both in its

amplitude and phase at the coarse-grained level. In order to solve this problem, we

treat the amplitude fluctuations small compared to the phase fluctuations. Then,

the dynamics of phase and amplitude fields become decoupled. The dynamics of

the amplitude variable is refered as the first-order correction. Next, the dynamics

and the initial conditions of the two variables are stated. The dynamical model of

the system is a purely relaxational and nonconserved. Finally, the approxiamated

correlations are explained.

In Chapter 4, we have considered the zeroth-theory which gave exact solu-

tions. We start with the equation of motion for the phase variable. By solving the

problem analytically, we are able to obtain exact solutions. The results are as fol-

lows. We found that the system approaches the scaling coarsening regime at late

times, i.e. it exhibits scaling form. The growth laws are given by L(t) ∼ t1/2, in

comparison to the growth laws for quenching from above TKT , L(t) ∼ (t/ ln t)1/2.

This result agrees with the prediction by Rutenberg and Bray [20].

In Chapter 5, we have examined the first-order correction of the problem.

Similar to the zeroth-order theory, we first tried to solve the equation of motion

for the amplitude variable analytically. We tried to perform exactly analytical

calculation for correlations but, however, without any success. Nonetheless, at long

time limit, the theory simplifies considerably to obtain the two-time amplitude-

amplitude correlations. The results at late times are as follows. We found that the

nonequilibrium part of the equal-time amplitude-amplitude correlations exhibits

scaling with a single characteristic length L(t) ∼ t1/2. This means that the system

approaches the scaling coarsening regime both in its amplitude and phase with the

same growth law. We refer to the scaling form of the nonequilibrium part of the

amplitude-amplitude correlations as the corrections to scaling in phase-ordering

dynamics of the 2D XY model.
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Appendix A

Determination of Cθ(r, t, t′)

We start with the two-point two-time pair correlation function for the phase

variable, Eq. (4.12)

Cθ(r, t, t′) = exp[−Bθ(r, t, t′)/2], (A.1)

where Bθ(r, t, t′) ≡ 〈[θ(x, t)−θ(x+r, t′)]2〉 is the phase-difference correlation func-

tion and, in terms of the average of the Fourier transforms of the phase variable,

the correlation can be written as

Bθ(r, t, t′) =

∫
d2k

(2π)2
[ 〈θk(t)θ−k(t)〉 + 〈θk(t

′)θ−k(t
′)〉

−2 cos(k · r)〈θk(t)θ−k(t
′)〉 ]. (A.2)

The phase-phase correlation at general times after a quench at t = 0 from a

temperature Ti to a temperature Tf , both at or below TKT , is given by Eq. (4.14),

〈θk(t)θ−k(t
′)〉 =

2π

k2
[ ηf e−k2|t−t′| + (ηi − ηf) e−k2(t+t′) ]. (A.3)

The phase-difference correlation function then reads

Bθ(r, t, t′) = Bθ
eq(r, t, t

′) + Bθ
neq(r, t, t

′), (A.4)

where

Bθ
eq(r, t, t

′) =
ηf

π

∫
d2k

k2
[1 − cos(k · r) e−k2|t−t′|] (A.5)

and

Bθ
neq(r, t, t

′) =
(ηi − ηf)

2π

∫
d2k

k2
[e−2k2t + e−2k2t′ − 2 cos(k · r) e−k2(t+t′)], (A.6)

are the equilibrium and nonequilibrium correlations, respectively.
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We first calculate the equilibrium correlation. The technical point is the use

of the integral representation

1

k2
=

∫ ∞

0

du exp(−k2u), (A.7)

and we use a soft ultraviolet cutoff through a factor of exp(−a2
0k

2). Then, we have

Bθ
eq(r, t, t

′) =
ηf

π

∫

d2k

∫ ∞

0

du e−k2u [1 − cos(k · r) e−k2|t−t′|] e−a2
0k2

=
ηf

π
Re

∫

d2k

∫ ∞

0

du [e−k2(u+a2
0) − eik·r−k2(u+a2

0+|t−t′|)]

= 2ηf Re

∫ ∞

0

du

∫ ∞

0

dkk e−k2(u+a2
0)

︸ ︷︷ ︸
1

2(u+a2
0
)

−ηf

π
Re

∫ ∞

0

du

∫

d2k eik·r−k2(u+a2
0+|t−t′|)

︸ ︷︷ ︸

π

u+a2
1

e−r2/4(u+a2
1
)

= ηf

∫ ∞

0

du

[
1

u + a2
0

− e−r2/4(u+a2
1)

u + a2
1

]

. (A.8)

For the last two equations, we set a2
1 ≡ a2

0 + |t− t′|. Let x = u+a2
0 and x = u+a2

1

for the first and the last term, respectively. Then, we have

Bθ
eq(r, t, t

′) = ηf

[ ∫ ∞

a2
0

dx

x
−

∫ ∞

a2
1

dx
e−r2/4x

x

]

= ηf

[ ∫ a2
1

a2
0

dx

x
︸ ︷︷ ︸

ln (a2
1/a2

0)

+

∫ ∞

a2
1

dx

(
1 − e−r2/4x

x

)]

. (A.9)

Let y = r2/4x for the second integral. By changing the limit of integration, the

integral becomes
∫ r2/4a2

1

0

dy

(
1 − e−y

y

)

. (A.10)

By using the formula of the exponential integral E1(x):

E1(x) = −γ − ln x +

∫ x

0

dy

(
1 − e−y

y

)

, (A.11)

where E1(x) ≡
∫ ∞

x
dye−y/y for x > 0 and γ ≃ 0.577 is Euler’s constant. Finally,

by substituting a2
1 = a2

0 + |t − t′|, we obtain

Bθ
eq(r, t, t

′) = ηf{γ + ln(r2/4a2
0) + E1[r

2/4(a2
0 + |t − t′|)]}. (A.12)
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Next, we calculate the nonequilibrium part of the correlation

Bθ
neq(r, t, t

′) =
(ηi − ηf)

2π

∫

d2k

∫ ∞

0

du e−k2u [e−2k2t + e−2k2t′

−2 cos(k · r) e−k2(t+t′)] e−a2
0k2

=
(ηi − ηf)

2π
Re

∫

d2k

∫ ∞

0

du [e−k2(u+a2
0+2t) + e−k2(u+a2

0+2t′)

−2eik·r−k2(u+a2
0+t+t′)]

= (ηi − ηf) Re

∫ ∞

0

du

∫ ∞

0

dkk [e−k2(u+a2
0+2t) + e−k2(u+a2

0+2t′)]

︸ ︷︷ ︸
[

1

2(u+a2
0
+2t)

+ 1

2(u+a2
0
+2t′)

]

−(ηi − ηf )

π
Re

∫ ∞

0

du

∫

d2k eik·r−k2(u+a2
0+t+t′)

︸ ︷︷ ︸

π

u+a2
1

e−r2/4(u+a2
1
)

= (ηi − ηf)

∫ ∞

0

du

[
1

2(u + a2
0 + 2t)

+
1

2(u + a2
0 + 2t′)

−e−r2/4(u+a2
1)

u + a2
1

]

. (A.13)

For the last two equations, we set a2
1 ≡ a2

0+t+t′. Let x = u+a2
0+2t, x = u+a2

0+2t′

and x = u + a2
1 for the first, second and the last term, respectively. Hence

Bθ
neq(r, t, t

′) = (ηi − ηf)

[ ∫ ∞

a2
0+2t

dx

2x
+

∫ ∞

a2
0+2t′

dx

2x
−

∫ ∞

a2
1

dx
e−r2/4x

x

]

= (ηi − ηf)

[ ∫ a2
1

a2
0+2t

dx

2x
︸ ︷︷ ︸

ln (a1/
√

a2
0+2t)

+

∫ a2
1

a2
0+2t′

dx

2x
︸ ︷︷ ︸

ln (a1/
√

a2
0+2t′)

+

∫ ∞

a2
1

dx

(
1 − e−r2/4x

x

)]

.

(A.14)

Similarly, let y = r2/4x for the third integral. By changing the limit of integration,

using Eq. (A.11) and substituting a2
1 = a2

0 + t + t′, we obtain

Bθ
neq(r, t, t

′) = (ηi − ηf)

{

γ + ln

(
r2

4
√

(a2
0 + 2t)(a2

0 + 2t′)

)

+E1[r
2/4(a2

0 + t + t′)]

}

. (A.15)

In summary, the two-point two-time pair correlation function for the phase

variable, Cθ(r, t, t′), has the form
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Cθ(r, t, t′) = exp[−Bθ(r, t, t′)/2]

= exp[−Bθ
eq(r, t, t

′)/2] exp[−Bθ
neq(r, t, t

′)/2]

= exp

{

− ηf

2
{γ + ln(r2/4a2

0) + E1[r
2/4(a2

0 + |t − t′|)]}
}

× exp

{

− (ηi − ηf )

2

{

γ + ln

(
r2

4
√

(a2
0 + 2t)(a2

0 + 2t′)

)

+E1[r
2/4(a2

0 + t + t′)]

}}

. (A.16)
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Appendix B

Evaluation of Cρ(r, t, t′)

For the two-point two-time amplitude correlation function, we start with

Eq. (5.21)

Cρ(r, t, t′) = Cρ
eq(r, t, t

′) + Cρ
neq(r, t, t

′), (B.1)

where Cρ
eq and Cρ

neq are the equilibrium and nonequilibrium correlations at the

final temperature, given by the terms proportional to Tf and Ti−Tf , respectively,

in Eq. (5.20):

Cρ
eq(r, t, t

′) =
kBTf

(2π)2

∫
d2k

k2 + 8V0
e−(k2+8V0)|t−t′|+ik·r, (B.2)

and

Cρ
neq(r, t, t

′) =
kB(Ti − Tf )

(2π)2

∫
d2k

k2 + 8V0
e−(k2+8V0)(t+t′)+ik·r. (B.3)

The key technical point in our calculations is the use of the integral representation

1

(k2 + 8V0)
=

∫ ∞

0

du exp[−(k2 + 8V0)u]. (B.4)

We use a soft ultraviolet cutoff through a factor of exp(−a2
0k

2). For the equilibrium

correlations, we have

Cρ
eq(r, t, t

′) =
kBTf

(2π)2

∫

d2k

∫ ∞

0

du e−(k2+8V0)ue−(k2+8V0)|t−t′|+ik·r e−a2
0k2

=
kBTf

(2π)2
e−8V0|t−t′|

∫ ∞

0

du e−8V0u

∫

d2k e−k2(u+a2
1)+ik·r

︸ ︷︷ ︸

π

u+a2
1

e−r2/4(u+a2
1
)

=
kBTf

4π
e−8V0|t−t′|

∫ ∞

0

du
e−r2/4(u+a2

1)−8V0u

u + a2
1

. (B.5)

For the last two equations, we set a2
1 ≡ a2

0 + |t − t′|. The integration in Eq. (B.5)

cannot be done explicitly. So, we will consider in long time limit. At late time (a2
1
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is very large), the integral becomes

∫ ∞

0

du
e−r2/4a2

1−8V0u

a2
1

. (B.6)

The integral becomes
e−r2/4a2

1

8a2
1V0

. (B.7)

By substituting a2
1 = a2

0 + |t − t′|, the equilibrium correlation becomes

Cρ
eq(r, t, t

′) =
kBTf

32πV0

e−8V0|t−t′|−r2/4(a2
0+|t−t′|)

a2
0 + |t − t′| . (B.8)

Next, we calculate the nonequilibrium correlation

Cρ
neq(r, t, t

′) =
kB(Ti − Tf )

(2π)2

∫

d2k

∫ ∞

0

du e−(k2+8V0)ue−(k2+8V0)(t+t′)+ik·r e−a2
0k2

=
kB(Ti − Tf )

(2π)2
e−8V0(t+t′)

∫ ∞

0

du e−8V0u

∫

d2k e−k2(u+a2
1)+ik·r

︸ ︷︷ ︸

π

u+a2
1

e−r2/4(u+a2
1
)

=
kB(Ti − Tf )

4π
e−8V0(t+t′)

∫ ∞

0

du
e−r2/4(u+a2

1)−8V0u

u + a2
1

. (B.9)

For the last two equations, we set a2
1 ≡ a2

0 + t+ t′. Similar to the equilibrium part,

we consider the integral in long time limit and substituting a2
1 = a2

0 + t + t′ back.

Finally, we obtain

Cρ
neq(r, t, t

′) =
kB(Ti − Tf )

32πV0

e−8V0(t+t′)−r2/4(a2
0+t+t′)

a2
0 + t + t′

. (B.10)

In summary, the two-point two-time pair correlation function for the ampli-

tude variable, Cρ(r, t, t′), has the form

Cρ(r, t, t′) = Cρ
eq(r, t, t

′) + Cρ
neq(r, t, t

′)

=
kBTf

32πV0

e−8V0|t−t′|−r2/4(a2
0+|t−t′|)

a2
0 + |t − t′|

+
kB(Ti − Tf )

32πV0

e−8V0(t+t′)−r2/4(a2
0+t+t′)

a2
0 + t + t′

. (B.11)
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