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CHAPTER 1

Introduction

The physics phenomena which we shall be concerned involve not one or two
but of order 10%* particlese -t is not p_(}ssible to-ebserve the motion of each of 10
particles. However, theyeexhibit scaling. The sealing phenomena provide us with
something simple outwof vesy compliogted things, not depending on such details
as types of particles, imferaetions. dynamﬂks, etc. The scaling phenomena in phase
transitions and, in pagticular, (tritic_al ﬁh'enomena have been already known for a

long while. The first nogion/of sééﬂing tllfaeé;ry of equilibrium phase transitions was

il

formulated in the 1960s |9] and, later. it has been successfully applied to many
different systems. Now, the scahng ’theoré:-r ef equlhbrlum phase transitions are well
understood. Nonetheless, the' scahng theg%y of nonequilibrium phase transitions
is not fully appre(nated becatise the theOry of nonethbrlum phase transitions
is not completed. THe—study—O'f“Irorrequﬂrbmnn—phase tIansmons will need many

explanations. The scaling phenomenon in nonequlhbrlum phase transitions is the

subject matter of this thesis. Before going into detailS-, we will state the problems.

A system quenched from a high-temperature disordered phase into a low-
temperature ordered phase does mot order instantaneously. Instead, the length
scale ofiordered regions grows with time as the different broken-symmetry phases
compete'to select the equilibrium state. The dynamical evolution of the system
is known as phase-ordering dynamics [2]. It is worth noticing that, from the
computer simulations and the experimental results, most phase-ordering systems
show a scaling phenomenon when they approach to an equilibrium state. Such

ordering processes are observed in many systems such as spin systems, solids and



fluids. These stochastic and nonequilibrium processes have been very challenging

problems in condensed matter physics [5].

Next, we address the other ordering process. Consider a system quenched
from either a high-temperature disordered or low-temperature ordered state into
the critical state (i.e. the state of the system at or near the critical point). Fol-
lowing the quench, the system tries to equilibrate itself from the initially nonequi-
librium critical state to the equilibrium critical state. The study of this kind of
dynamics known as nonequilibrium critical dynamics [40]. Same as phase-ordering

systems, most nonequilibrium eritical dynamicsssystems exhibit scaling.

J
How important is thestudy of the theories of phase-ordering and nonequilib-

rium critical dynamicgZeAs mentioned above, we are, now, lacking of the general
\

theory of nonequilibrium sgatistical mJ'echanics. The study of these theories par-

4 ¥

tially answer the problem.

- =t

[
|lI ,-

There are varioug kinds of'.lmodelsfxin’ statistical mechanics. The case where
the dimensionality d = 24s very iﬂtereqt'iﬁg and weird. In this case, the behaviour
of a spin system depends cruclally on the numbers of component n of the order-
parameter [39]. There is a phase tIdIlblf:;Il Wlth spontaneous magnetisation for

the case n =1 (Ismg model) Whlle in the case n > 2 there is no spontaneous

magnetisation. However the case n = 2 (XY modeI)_ is the special case. One
can prove that there is a pliase transition with no $pontaneous magnetisation
concerned. The two-ditnensional (2D) XY model, in addition, is not only an
interesting modell onits own, but is also as a“prototype of various models in
condensed matter physics such assuperfluids and superconductors [19]. The 2D

XY meodellis the model which we used inour study.

In this work, we will investigate the scaling property of the 2D XY model
in theory of phase-ordering dynamics. We consider first-order correction to cor-
relations associated with the amplitude fluctuations for quench the system to the
critical state. In order to solve this problem, we treat the amplitude fluctuations

small compared to the phase fluctuations. Then, the dynamics of phase and am-



plitude fields become uncoupled. The dynamics of the phase variable is refered
as the zeroth-order theory while for the amplitude variable is refered as the first-
order correction. We find that the nonequilibrium part of the correlations both
zeroth-order and first-order exhibit scaling. The scaling form of the amplitude-
amplitude correlations is refered as the corrections to scaling in phase-ordering
dynamics of the 2D XY model. The study of the form of corrections to scaling is
very important since the form of corrections to scaling can used to determine the
correct asymptotic scaling exponents andiscaling functions which characterise the

systems [37]. A brief content of the thesi¢ i€ as follows.

In Chapter 2, we givera brief review of theories of phase-ordering and non-
equilibrium critical dynamies.«We will intfroduce the dynamical quantities of a
system such as the equalstime and tvx;?g)—time pair correlation functions and auto-
correlation functions as welliag its scaling forms. We end the chapter with some
remarks on modelled Hamiltonia__ns.‘ T é

4

In Chapter 3, 4 and', wve will exé}r}llin‘e the phase-ordering dynamics of the
2D XY model. In Chapter 3, we will .i;(]:rﬁ'l:c!)duce the 2D XY model used in our
study. The spin-wave approxfﬁiafion whiéi VJVJe refered as the zeroth-order theory,
allows us to solve the probiem exactly. ""fi‘}!lfl'e‘ﬁrst—ord_.er approximation which is
the key technical pom%—m—the—theb}b—wﬂl—be—dﬁe&bbed. 'IIn this study, we assume
that the dynamics of the system is of purely relaxatidi;z;l and nonconserved type,
i.e. the dynamics is ébverned by the time-dependent Ginzburg-Landau (TDGL)

model or modeél At We also calculatéd the approximated éorrelation functions.

In Chapter 4 and 5, the scaling properties of the 2D XY model in the theory
of phage-ordering dyunamics will be studied. ' In| Chapter 4, we Solve the zeroth-
order theory analytically. We give an explicit formulation for the two-time pair
correlation function and show that, at late times, the equal-time pair correlation
function is scaled with a single characteristic length L(t) ~ t/2. These results

confirm the prediction by Rutenberg and Bray [20].

In Chapter 5, we will present a detailed calculation of the first-order cor-



rection. We find scaling solution for equal-time correlations characterised by a

time-dependent length L(t) ~ t'/? associated with states with vortex pairs.

Finally, we end this thesis with Chapter 6. This chapter will give a brief
summary and conclusion of all results obtained under the investigation pursued

in this study.
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CHAPTER II

Theories of Phase-ordering and

Nonequilibrium Critical Dynamics

The theory of phase-ordering d§namics has a story going back more than
four decades to the pioneering work of Lifshitz [10], Lifshitz and Slyozov [11] and
Wagner [12], includingafany of dellendd reviews by Gunton et al [13], Binder [14],
Furukawa [15] and Langér [16]¢ The scéli'hg approach to phase-ordering dynamics
began about two decadgs ago and the"; study has been concentrated mostly on
simple scalar order parametess, such as'_pi_ngm_ry alloys and Ising models [2, 15, 21,
22]. The recent interestfocuses o_f; systeﬁj{yvith complicated order parameters, for

example vector and tensor fields:* 4

While, in thestheory of "ﬁonequilibf{l‘ﬁﬁ; critical dynamics, a lot of progress
has been made sinéef the introduction of the idea of dypamical scaling hypothesis
[40]. As one knows, scaling concepts are very important in the study of equilib-
rium critical phenoména. Janssen and colleagues hés opened up the way for a
scaling treatment jin nonequilibrinm ¢ritical dynamics [17].\Moreover, Zheng and

colleagues have'successfully applied the scaling hypothesis to determine all static

critical exponénts-[40}:

In this chapter, we review the theory of phase-ordering dynamics in Section
2.1 and theory of nonequilibrium critical dynamics in Section 2.2. Some remarks

on the Hamiltonian are briefly disscussed in Section 2.3.



2.1 Phase-ordering Dynamics

A system tries to equilibrate itself from the initially nonequilibrium state when it
is quenched from the homogeneous phase into a broken-symmetry phase, called
phase-ordering dynamics. The theory remains a challenge more than four decades
after the first theoretical papers appeared. Here, we will give an example: the
ferromagnetic Ising model in zero magnetic field. The ferromagnetic Ising model
is one of the simplest and most fundamental models of statistical mechanics. Each
such system can be described by classical spin variables S, with two possible values
S; = 1. The two values'stand for an eleflientary magnet pointing up or down.
The schematic phase diagram of the Ising modelis shown in Figure 2.1. The sys-
tem is in a disordereds(pazaimagnefic) phase and the spontaneous magnetisation
is zero at high temperatuses, Whilfa at_lcgw temperatures, below the critical tem-
perature T,, the system 1sdn an o.rdere:dl(ferromagnetic) phase. For 0 < T < T,
the system exhibits a net magnef"isatior;?_, which can be either positive or negative.
Suppose that the system is suddenly quel_ﬁched from an initially disordered equilib-
rium phase at high temperature’;"fﬂ, intgf’%n ordered nonequilibrium phase at low
temperature, Ty. Following the q-uench, thﬁ;;fstem tries to equilibrate itself from

o

the initially nonequilibrium state. During the ‘evolutions different two equilibrium

phases compete to fgiow or coarsen with time.

2.1.1 Dynamical Models

First of all, we meed to set up a model for describing the system that we want to
study.’ In principle, ithe model may be a'lattice or eontimuum ‘miodel depending on
the nature of the system. However, in practice, it is more convenient to work with
the continuum model and, even though the true microscopic nature of the system
is not continuous, this kind of model can always be set up as an effective model

(see Section 2.3).

Let the system be described by a scalar order-parameter field ¢(x,t) as a
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function of position x = (1, ..., z4) and time ¢. A suitable Hamiltonian functional

describing the ordered phase is

Hio(x 0] = [ a'e{ 5 1Volx 0 + VigGx, 0] 2.)

where V[¢p(x,t)] is the potential function. The Hamiltonian functional is usually

taken to be of Ginzburg-Landau form,

Hlotx0) = [ d{% V60,1 4 5 rod?(x,1) + 16 (x, t)}, (2:2)

all of coefficients r, and u,, in principle. depend on temperature. The Hamil-
tonian, Eq. (2.2), provides-a good descripion-éassociated with long-wavelength,
slow spatial variations-ef@(x,¢).-In general, V{d(x¢)] need only have a double-
well structure in the-ordered phase schh that the two minima correspond to the
two equilibrium states; while the gradient-squared term in Eq. (2.1) associates an

energy cost with an interface between the phases.

Now, to describedhe dynamical pfo_cess, an equation of motion for the order-

parameter field is neededs The 's.irﬁplest sizéc}iastic dynamical model is one in which
ald T/
there is a single nonconserved field in cor_;l}_é_bgt with a constant temperature heat

bath. This model is variously called the@aluber model and the time-dependent
o mg—

Ginzburg-Landau (BDGL) model. The only “slow”/variable is ¢(x,t), whose

equation of motionis s

dp(xst)  OH[p(x,1)] -
o em U oemny T
= F{V2¢(x,t)—v’[¢(x,t)]}+§(x,t), (2.3)

where B\ isiankinetie, ceefficient V' [o(x; ) [i="dV{o et} [do(xt) and E(x, ) is the
noise from thermal fluctuation.” We assume that £(x, )is a GausSian white noise

with zero average and satisfies the fluctuation-dissipation theorem
(E(x,0)E(x,t)e = 2TkpTo(x — x')d(t — t'), (2.4)

where (...)¢ means the statistical average over the ensemble of noises. This equa-

tion is simply the generalisation to continuous fields of the Langevin equation



for a velocity. It provides a good description for dynamics of the Ising model as
well as an order-disorder transition in binary alloys and the equation of motion of
this type represents purely relaxational dynamics. The equation of motion seems
to have been first employed by Landau and Khalatnikov in order to explain the

anomalous attenuation of sound in helium near the A-point [3].

A simple modification of the nonconserved dynamics gives us a conserved
dynamics. This model, which is called the Cahn-Hilliard model, can be obtained
by replacing I' by —AV?2:

8¢(X7 t) _ = 6H[¢(X7 t)]
5 = AV Rt L i)
= —sz{v%(x, t) =V [o(X, t)]} +&(x,t). (2.5)

Similarly, the thermal moise'is a @anssian distributed with zero mean and must

4 ¥

satisfy

(&(x, )@ ) e i—%kBTVQ(S( x)o(t —t) (2.6)

to ensure that the fluctuation- d18$1pat10n theorem is obeyed. As in nonconserved
case, the conserved case ig a purel} rela}’ca'tlonal dynamics. It describes, for ex-
ample, the phase seperation ofehe bmary:a—Hoys In the language of Halperin and

Hohenberg classification scheime [3] these dffnamlcal equatlons are called model

A and B, respectii_f_efiy. As the system was quencned _from a high-temperature

disordered phase, we shall take the initial conditions to represent a completely

disordered state, given by

<¢(X7 O)¢(X/v 0)>0 = A(;(X - X,)v (27)

where (. )5 zepresentsithestatistical mverage-over, theiensemble-of initial conditions

and A centrols the size of the initial fluctuations in ¢.

2.1.2 Correlation Functions and the Scaling Hypothesis

Now, we will define dynamical quantities of the system, i.e. correlation func-

tions. The first two correlation functions to be introduced are the equal-time pair



10

correlation function
C(r,t) = {o(x, t)o(x +1,1)), (2.8)
and its Fourier transform, the equal-time structure factor,

S(k, 1) = {ox(t)p-k(t)), (2.9)

where (...) indicates an average over the ensembles of thermal noises and initial

conditions. The structure factor can be directly measured in experiments such as

neutron scattering experlments ‘ ’ ///

From the computer n ar erlmental results [2], we found
that, at late times, p@; ste ” row in a special manner such

that the domain patter e, if rescaled. The dynamical

scaling hypothesis stat d be only one characteristic

- - -;_‘ ‘ \\.
length scale which is so : : w% of the system. This means

y the characteristic length

scale we will essentia v Tt Y at any time. It should be

of the computer simulati '; “th experinent a results, except in some simple
models such as the one- dlmeijﬁﬁg,raﬂ — n [23] and the n-vector model
length scale, according

ion function has the scaling

AU AYEISHENNS e

where L(t) is the single characterlstlc length scale The function f (x) is called the

scahng{rm M) %ﬂﬁewu?;ﬁﬂihjwﬂuoraFElcorrespondlng

form

scalin e equal-tim actor 1s given by
S(k,t) = L(t)"g[kL(t)], (2.11)

where d is the spatial dimensionality and g(y) is the Fourier transform of f(z).
The scaling forms, Eq. (2.10) and Eq. (2.11), are well supported by simulation

data and experiment [2].
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The other correlation functions, the two-time pair correlation function, de-
fined by
C(r.t,t) = (o(x,t)p(x +1,1)), (2.12)
and, in particular, the autocorrelation function, defined by
A(t) = (o(x,1)o(x,0)), (2.13)

are also of interest. If the dynamical scaling hypothesis holds, the two-time pair

correlation function, C(r,¢,t'), an e autocorrelation function, A(t), can be

(2.14)

and

(2.15)

where A is a non-tri he scaling function for the

two-time pair correl

We have seen that as time pro 'a’E E
radius of the domf@agrows. It is found aling regime, the dynamics

are governed by a silig beris
increases with a powE law 1 ems @ally have a power growth

law, characterised by agynamical exponent, z, as

AUSINUNINEINT e
A ARl T TR
[2].

of the system
However, there still be no general method to find the exponent z for all
systems but some models are well understood. For example, It is well established

that z = 2 for nonconserved scalar and vector fields, z = 3 for conserved scalar

fields and z = 4 for conserved vector fields [2].
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2.2 Nonequilibrium Critical Dynamics

Critical phenomena are one of the old subjects of statistical mechanics. Many
of the basic facts of critical phenomena were observed. However, the completed
theory of equilibrium critical phenomena was formulated nearly 40 years ago. In
contrast to the equilibrium theory, the theory of nonequilibrium critical dynamics
is not yet fully completed because we are lack of the general theory of nonequi-
librium statistical mechanics. Nonetheless, a lot of progress has been made since
the introduction of the dynamical scaling hiypothesis [40]. Janssen, Schaub and
Schmittmann has openedup ilie way, for a-sealing treatment in nonequilibrium
critical dynamics [17]..Many authors attempted to extend the dynamical scaling

hypothesis to a variety*of model systems (25, 26].
i

In this thesis, we will be lookingat the nonequilibrium critical dynamics of
the two-dimensional (2D /X ¥ model. Wermay say that theory of phase-ordering
dynamics of the 2D X¥ model .is the éubject matter of this thesis in the sense
that the model tries to equilibfa‘jﬁe it,sei_%j})vﬂen it 18 quenched from the homoge-
neous phase into a broken—symrﬁ&ry ph;ségge critical phase). In the following
subsection, we will give an _ipntlfoductionﬁjcl}? scaling theory of nonequilibrium

=i

critical dynamics. W‘e will infroduce dynamical models and the dynamical scaling

hypothesis. Howev‘ef‘,‘ ‘the definition of the 2D XY médel and its approximation

are not given here, buf in Chapter 3.

2.2.1 Dynamical Models and the Scaling Hypothesis

As in the theory of phase-ordering dynamics, we first need to, define a dynamical
model for describing the system in order to be able to explain the phenomena
being studied. Since, we have already done this in a rather general way in Section
2.1, we will not repeat it again here. However, in addition to quenches from the
high-temperature disordered phase, quenches from the low-temperature ordered

phase to the critical state can also be considered. In this case, the initial condition
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is given by
(6(x,0)p(x',0))o = Ceq(r, Ti), (2.17)

where r = |x — x/|, T; is the temperature of the system before the quench and

Cey(r,T) is the equilibrium correlation function at temperature 7.

According to the conventional theory of nonequilibrium critical dynamics

[17], the system will relax to the new equilibrium critical state through a non-

equilibrium scaling state characterisﬂpa single characteristic length scale, £(1),
|

_this nonequilibrium scaling state, the
equal-time pair correlati and ure factor have the form

ﬁ!

after it is quenched from the init

(2.18)
and

(2.19)
where d is the dimension o d 7 is the usual equilibrium
critical exponent. The just the equilibrium critical
correlation function, Ce,( ary that the scaling function, f(x)

j‘u," }‘:’,-J_,;:-?f__ o
- - E N g
smgle Characterist'%ﬂength scalg, §(tﬁ #Ca_bg:‘interpreted as the length

scale up to which quilibrium cr ‘been established at time

t. Hence, it may be (gled the “ corre@tion length”.

J ansser;aaﬁn ‘eﬁ}% tgj %{Wi r laﬁon length increases in
time with a e E] IC Eﬁl E]"C]Oﬁ
U

CE(t) ~ 17 e o/ (2.20)
"Lm@ﬁdﬂiﬁl@lﬂt LAY LR o

ics. This results implies that both nonequilibrium and (near) equilibrium critical

dynamics are governed by the same exponent. Furthermore, it was also showed

that the relation £(t) ~ /% does not depend on the nonequilibrium initial states.
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Next, the other dynamical quantity of interest is the two-time pair correla-

tion function. For ¢ > t/, the correlation is given by

Clrt,t) = E((’;))} b [%] , (2.21)

where the exponent \ is a new non-trivial critical exponent [18, 27]. The exponent

A can be obtained from the decay of the autocorrelation function, which satisfies

the power law

Al ~ME P 2tV (2.22)

Note that the similarities of the E’caling forms for correlations in both theories
do not, in any sense, imply that the physics of-both dynamics are the same. In
particular, the scalingseXponents z and A which hiave been used in both theories
are totally different exponents and do n?t have any obvious relationship between
them. If there exists any I'elati()néhjp, E'has vet been proved.

2.3 Some Remarks on '-;I;);Idémiltonians

b i )

L N

In the study of the phase transition:in _I;Q'@el;n statistical mechanics, there has

been considerable ‘__ilit.erest in model Hamiltonian su‘d_il_;as the Ising model, the

Potts model, the H'e'i":%_enberg model, the XY model, thé Baxter model, and even
the non-linear sigma=model [9]. Nevertheless, there have been only a handful of
exactly solvable maodel, “For, example, the two-dimensional Ising model in zero
magnetic field was'solved by Lars-Onsager in 1944 but'it' still has not been solved
in an external magnetic field [9].“ Much effort=has been exténded to solve it in
three dimensions in zéro field butiit remain unsalved. However, these models have

been of very importance in modern statistical mechanics [9].

All model Hamiltonians may be broadly divided into two categorises, i.e.
lattice and continuum models. In this section, we will give a briefly discuss about

these models.
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2.3.1 Lattice Models

The Ising, Potts, Heisenberg and XY models are examples of microscopic or lattice
models. These models are defined on a lattice which a variable is allowed to take a
definite value at each site. For example, to define the Ising model a spin variable,
5}-, 1 =1,2,3,..., N which is allowed to take the value £1, is placed on each lattice
site. These kinds of models are usually aimed to be models at the microscopic level
and the Hamiltonian is called the microscopic Hamiltonian. For an equilibrium
state, physical informations are kept in fhe partition function. The canonical

partition function is given by

v
7 = e (2.23)

where the sum is over allithestate r Wi;%h energy F,and = 1/kgT with kg Boltz-
mann’s constant and 7' the temperature ‘In the study of statistical mechanics, we
begin with the microscopic Hamlltoma,}l and try to evaluate the partition func-
tion directly. However, it s often Very dlfﬁcult to work out in the critical states
where correlation lengths diverge: 10 stu_;dy critical phenomena, it is more useful
to introduce semi-phenomenalogical ﬁeld-_th_ebrles, where the order-parameter is
treated as a continuous classical field. T-}i%-b@ntinuum limit of the lattice model

will be described bel_i)x&r.

2.3.2 Continuﬁm Models

In contrast to'lattice modeéls, ‘continuum modelstare generally meant to be models
at an intermediate level between"the microsedpic and macréscopic level called
mesoscopi¢ or coarse-grained models: Furthemmore, 'these models may also be
considered as the continuum limit of a lattice model providing what is called an
effective field theory. Examples of continuum models are the Gaussian model and

Ginzburg-Landau model.

In this thesis, our problem is treated as a coarse-grained model. So, we will

introduce the idea of coarse graining and its partition function. The system is
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divided up into blocks with dimensions large compared to any microscopic length
such as the interparticle spacing. There are a large number of particles and ap-
proximately uniform in each block. The average of the order-parameter field, ¢(x),
over the particles in a block centered at x is q~5(x) This process of averaging over
many particles in some volume of space is called coarse graining and &(x) is often

called the coarse-grained order-parameter field [19]. The partition function is a

functional integration:

(2.24)

AULINENINYINT
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CHAPTER III

The Model and Dynamics

The rotations in a two-dimensional plame is the simplest continuous sym-
metry (U(1) or O(2)). In-the language of gtouptheory, the symmetry associated
with these groups is oftensealled XY-symmetry because rotations are usually done
in the XY-plane. The ordor-parametelr that breaks this symmetry can be either
a two-dimensional vegtor or a C()r{lplex 'Illumber. The XY model is used for the

systems such as supesfluid hehuﬁk superconductors and hexatic liquid crystals

with a complex or twodlindenSional Ve"gtgr order-parameter [19]. According to
the theorem of Mermin and Wagner, ti}e two-dimensional (2D) XY model has
no long-range order at any ﬁn1‘ee~tempe:fa{11re 128]. However, the system has a
phase transition, but it cannot-be of th&_usual type with finite order-parameter
below T.. Kosterhtz and-Thotiless 6, 7] ﬁf'ét predlcted that the system under-
goes a rather spemal—knrd—of‘phase—transrtrons—kmmas the Kosterlitz-Thouless

transition. They predicted a phase transition from a short—range disordered phase
to a quasi—long-range{ordered phase, called the Kosterlitz-Thouless phase, where
the order-parameter is everywhere zero. The fransition temperature is called the
Kosterlitz-Thouless transition temperature, Tx7. Above the transition tempera-
ture Ty, tthe order-parameter: pairticorrélation funGtion dece¥s @xponentially as
usual, with some correlation length &. Below the transition temperature, it de-
cays like a power law of distance. In the conventional phase transition, critical

state is characterised by a power-law decay of the order-parameter pair correlation

function. Then, the Kosterlitz-Thouless phase is critical.

The Kosterlitz-Thouless transition may also be interpreted as a topological
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phase transition because a simple heuristic argument due to the paper of Kosterlitz
and Thouless [7] indicates how vortices can lead to a second-order phase transition
in the XY model. Vortices are topological defects. Apart from the spin-wave
excitations, there exists vortices which are closely bound in pairs, i.e. the vortex-
antivortex pairs, below the Kosterlitz-Thouless transition temperature, Tx7. The
size of defect pairs increases when the temperature is increased. They becomes free
vortices at T" = Txr. We can see that the spin-wave excitations are responsible
for destroying any long-range order in the system while the interaction energy of
the vortices causes the phase transition " Fhessimplest form of topological defect
is the domain walls which 6eeur in systems-described by scalar fields. They are
walls which seperate demains.ofthe two equilibrium phases. The local changes
in the order-parametet can'move the“llwall but cannot destroy it. The existance
of such defects requires that < d. Where n 18 the number of components of
the order-parameter and d is the -dlmensmn of the system. For n = 2 these
defects are points (“voptices”) o e 2 or lines (“strings” or “vortex lines”) for
d=3. Forn=3,d =3, they are pomts (“hedgehogs” or “monopoles”) [2].
The roles played by vortices have aheady ‘been studied intensively [2]. However,
their roles in nonequﬂlbrlum qystems a}:e;thJlll not completely understood. In

this and the rest of, the thes1s we will 1nvest1gate the roles of the vortices in

nonequilibrium dyl}z}_HHCS of the 2D XY model. Quenc_bmg from at or below the
Kosterlitz-Thouless transition temperature, T, to low—temperature phase will

be studied here.

This chapterfisiorganised as follows. In Section' 3.1 we will introduce the
coarse-grained two-dimensional XY model used, in our studyasWe will propose
some approximation schemes Eirst, the concept of the spin-wave approximation
are presented. This analysis is refered as the zeroth-order theory. Next, we will
introduce the first-order approximation to obtain the approximated Hamiltonian.
In Section 3.2, the dynamics of the system is given. Finally, the approximated

correlation functions are calculated within the first-order approximation.
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3.1 The Coarse-grained 2D XY Model

The microscopic two-dimensional (2D) XY model consists of N two-component
spins, denoted by S, lying on a two-dimensional square lattice of size L x L =
N. The magnitude of the spins are constant which usually is set to unity. The

Hamiltonian of the microscopic 2D XY model is given by

H=-JY 58S (3.1)

(#5)
where J is the exchange coupling constant-and (ij) denotes a sum over nearest
neighbour spins. Nonetheless; it is convenent-to-study the continuum limit of a
lattice model in terms of aw€0arse-grained order-parameter field (as discussed in
Sec. 2.3). The coarse-graimed2D) XY r'g‘lodel is a system of a two-component order-

parameter field, 5()(, t), gonstrained to rotate in the XY-plane. The Hamiltonian

of the 2D XY modelds givenby _" p
Mo
— ']_'N_ P -
x| Gmay w1 32
i ] #
o 1

where V(|¢]) need only have & wine bottle structure in the ordered phase such

that the global minima correspond to thé",'iinﬁ_"-nije ground states. In this work, the

potential V(|| :.%(1 — 1612)2 is used. Tn the grounﬁi.states, the field has unit

magnitude.

According to the Kosterlitz-Thouless theory [7, 8], the equilibrium correla-

tion function«Cey(7) = (O(x6) L (X +T4 1)) ey, Of the Kosterlitz-Thouless phase

has the asymptotic equilibrium correlations through
CQQ(T> 8 | 7«‘77’ (33)

where 7 is the equilibrium critical exponent. The exponent 7 depends on tem-
perature, with n(7T") = kT /2mps(T). They are directly measured in experiments.
The quantity ps is the coarse-grained spin-wave stiffness of the system which we

will describe in the following subsection.
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3.1.1 The Zeroth-order Theory

Above zero temperature, the system deviates from the completely ordered or
ground state, where all the spins align in the same direction. However, at very
low temperature, only low-lying excited states dominate in equilibrium. Low-lying
excited states of the system are states in which neighbouring spins almost aligns
in the same direction. In this chapter, we use the limit V[ — oo, i.e. neglect-
ing the fluctuation of the amplitude of the field altogether. Then, the field has
constant unit magnitude and the potential ¥ becomes zero. The dynamics have
only phase fluctuations. Then, the order-pasamecter field is written in terms of the

phase variable as .
(E:eoeﬁi—i—sin@j, (3.4)

.

where i and j are Cartesiandinit vectors, and the Hamiltonian functional takes the

form =

&3 % /f d*x (V). (3.5)
This approximation is the so—e'alled spi'rfi'w'ave approximation and the resultant

Hamiltonian is called the bpln—wave Hamﬂfoman The coefficient p; is called the
Y dd

spin-wave stiffness or helicity modu]us in fﬁaénetlc systems, the superfluid density

in superfluids, andis often referred to sunply as a r1g1d1ty In d dimensions, ps

has units of energy/ (length) % or force/(length)?=3. '_

3.1.2 The First-order Approximation

According to the zeroth-order theory, the phase of the field fluctuates only but,
with the néture al, the coarse-grained léevel, the field fluctuates both in its ampli-
tude and phase. So, we may write the order-parameter field in terms of these two
variables as

¢ = dcosbi+ psinbj. (3.6)

Inserting Eq. (3.6) in Eq. (3.2) one has

o= / i { 2(V0)? <v¢)2]+v<¢)}. (3.7)
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At this stage no approximations has been done. The key step in this work is the
introduction of some approximation scheme. Investigation of the Hamiltonian Eq.
(3.7) shows that the fields ¢ and 6 are coupled through the term [ d?x3 ¢*(V6)?.
The first step is to introduce, in addition to the order-parameter fields ¢(x,t) and
0(x,t), the fluctuating field p(x,t) defined by

p=1-p. (3.8)

The field p(x,t) is to describe the flu¢tuations of amplitude about the ordered
state, which goes to zero at late times. It i€ interesting to contrast that the field
p is referred as the “fast™ variable while the field ¢ is the “slow” variable of the

system.

According to the physical pictuflle described above, we treat the amplitude
fluctuations small comparedite the phase fluctuations. Then, we obtain the ap-

proximated Hamiltonian in terms of p,?Vp. and V6 as
: \

H =~ /dQX %S;(V,é))z - /d2x B(fo + 4V0p2] : (3.9)
; L )
ald ¥ K

The first term is the energy due to phase .:fl}actuations, called spin-wave Hamil-
tonian and the last term is the energy d»t_lTej.___tQ_z_implitude fluctuations. It is worth

noticing that the a_b@roximated Hamiltonian, Eq. (3.9_‘5,_,reduces to the spin-wave

Hamiltonian, Eq. (3‘5), in the limit V5 — oo. Nt

3.2 Dynamics

In this woérk, “we/Considen Guenches in‘the noneconserved ¢oarse-grained 2D XY
model between any two temperatures at or below the Kosterlitz-Thouless transi-
tion temperature, Tx7'. Now, to describe the dynamical process, an equation of
motion for the order parameter field is needed. Since, in this approximation, the

system has two degree of freedom (i.e. the phase and amplitude variables) which

IThe Kosterlitz-Thouless temperature of the 2D XY model on a square lattice is estimated

to be 0.90 [29, 30].
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are independent each other. The dynamics of each of the fields is treated as the
time-dependent Ginzburg-Landau (TDGL) model or model A in the presence of
Gaussian noise. The equations of motion satisfied by the order-parameter fields

0(x,t) and p(x,t) are

00(x, t) 0H
——==-T t 1
ot 060( ) +£(X7 )’ (3 O)
and
0H
) + ((x,1). (3.11)
The thermal noises £(x, t) Ve med to be Gaussian white-noise
with zero mean, with ce selations i Qion—dissipation theorem
'i 'md(t ), (3.12)
and
(t—t), (3.13)
where (...)¢ and (...)¢ fcal e over the noise ensembles. 'y
and I', are the kinetic 1 T ph Y s l litude variables, respectively.
Using the appoxunated H . (3.9), one easily finds that
(3.14)
and
S = D0l 1) = SVaplx, 0]+ Clx.t). (3.15)
As menﬂ uij) gtn ﬂngt“}ﬂn’]ﬂj Eq. (3.9) reduces to
the spin-wave Hamlltonlan in the zetoth-order theoty (i.e. in the limit

o - B b & SRR e

phase Varlable only, Eq. (3.14). While at first-order approximation, we extend to
include the dynamics with amplitude fluctuation corresponding to the equation of

motion Eq. (3.15).

The system was initially in equilibrium at the temperature T; (at or below

Txr) and was then quenched to the temperature 7y below Txr. The Hamiltonian
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of the system is the approximated Hamiltonian, Eq. (3.9) and, then, the Fourier
transform of the initial phase-phase and amplitude-amplitude correlation function
are denoted by (A (0)0_1(0)), and (py(0)p_k(0)),, respectively. (...), denotes the
average over all initial configurations, i.e. with respect to the canonical distribution

at T, and e H#/ksT:,

3.3 Correlation Func

It is now time to discuss the dy amic &QS of interest. We start with the

—Ox+r1,0)),  (3.16)

where (...) represent ns and over the thermal

noises. By using Eq. in the form

C(r,t,t) o r, )] cos[f(x, t) — O(x +1,)]).
= £ (3.17)
At first-orde (x +1,t')]) and (p(x +

r,t') cos[f(x,t) — 0 iou becomes
) C’e(rtt)+0p(rtt)@6(rtt) (3.18)

whereowﬂwa VA TWEATAE oo

Slmllarly, the autocorrelation function is,given by

RS0 U UBINGAY

= (o(x,1)(x,0) coslf(x, ) — 0(x, 0)]). (3.19)
In the first-order approximation, the autocorrelation becomes

A(t) = ([L—=p(xt) = p(x,0) + p(x,)p(x, 0)] cos[b(x, 1) — O(x, 0)])
AP(t) + AP() A% (1), (3.20)

Q
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where A%(t) = (cos[f(x,t) — 0(x,0)]) and A°(t) = (p(x,t)p(x,0)). Note that
A(t) = €(0,t,0). So, A%(t) = C?(0,t,0) and A?(t) = C*(0,t,0).
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CHAPTER IV

The Zeroth-order Theory

There are few exactly solvable modelsdn theory of phase-ordering dynamics
but these models are quite far from _(}escribing the physical systems of interest.
However, the models are intercstingrbecause they showed the scaling property
at late times [2]. Heregwe aill give 8 few examples of exactly solvable models.
First is the n-compounent wector mod%l in the limit that the number n goes to
infinity. Many authorgdhaye studiégi iﬁ: ’;;his limit, mostly for nonconserved fields
[24, 27, 32-35]. A rathér g¢omplete diécﬁésion for both conserved and noncon-
served dynamics in the lagge-n limit is &;Scussed in ref. [33]. A simple model that
has been solved exactly'is the ome:dunensmnal Ising model with Glauber dynam-
ics [23]. The last example is Jche ofie- dlmen51onal XY model with nonconserved
order-parameter Wthh is first -given by Newmati et al [34] Based upon the scaling
hypothesis, theorics. of—ph&ae—eféemg—dyﬁﬂm&eb—afe—mamly concerned with two
things, i.e. the determmatlon of growth laws and scahng functions. It is interest-
ing that the nonconserved one-dimensional XY model exhibits the “anomalous”
growth law, namdly |Ii{t) <t¥#) Tnlthé|conserved ¢ase, Fhefe are no exact solution
for the model. However, computer simulations give L(t) ~ t*/¢ [31] instead of the
standard gnowth lew & (#)y~et'/4 Ingthis chaptex, we will examine phase-ordering
dynamigs of the coarse-grained 2D XY model below the Kosterlitz-Thouless transi-
tion temperature, Txr. An exact solution is possible within the spin-wave theory.
We work in the limit V; — oo, where |qz_5)|2 = 1. Then, the problem are treated as
dynamics with phase fluctuations only. This analysis is refered as the zeroth-order

theory. Here, the dynamics of the system will be assumed to be nonconserving

and purely relaxing. The main purpose of this chapter is to confirm the prediction
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by Rutenberg and Bray [20].

This chapter is organised as follows. In the next section, the dynamics of
phase variable will be described. We will then perform the calculation for the case
of a quench to an arbitary temperature below Tx7r. Next, we will calculate the
zeroth-order correlation functions. Finally, we will end this chapter by giving a

detailed discussion in the scaling regime and asymptotic behaviour.

.

T——
The evolution of the ‘ ‘M the equation of evolution,
Eq. (3.14), '

4.1 Dynamics

(4.1)

By making the Fo , the equation of evolution

for the Fourier transform 1se variable .“h,\ can be written as
(4.2)

where 6y and & are the e.phase variable and the thermal
noise given by v

(4.3)

AU ik YA T w

We only keep the component of the thermal neise locally orthogonal to the field

A WIANNIUARIINETREY

(&) (1) = 2T6kpT oy 100 (t — ). (4.5)

and

We make [t] dimensionally equivalent to [[]* while I'p and p, are adsorbed into the

time scale for the rest of the chapter. Thus, the equation (4.2) becomes

e = —k*0p + & (4.6)
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The resultant equation is just the first-order linear ordinary differential equa-
tion, which can be solved exactly by the method of integrating factor, and the

solution reads

Ouc(t) = O(0)e " + / die g, ), (4.7)

0

where ¢t > 0 is measured from the time of the quench. Before going further, we
need the initial correlations of the system. Since the system is quenched from at

or below Tk, the initial correlations are given by the spin-wave Hamiltonian, Eq.

(3.5). The Fourier transformed spi

f'
Then, the probabilitw I

fx has both real and@{agl a 0 theﬂact that 6, = 0*, ). Hence

27'('7]1'

AU IEVETEINS
1.2 G GRGOT TGS Y1 E 6

In this section, we briefly show the results of calculations for correlation functions.

(4.11)

For the details of calculations see Appendix A. Since, the noise and the initial

!The theorem of the equipartition of energy states that if a degree of freedom makes only a
quadratic contribution to the Hamiltonian, then the average energy of the corresponding term

in the Hamiltonian is kgT'/2 [9].
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conditions are Gaussian distributed. The general two-point two-time correlation

function is

Clr,t,t') = (cos[f(x,t) — O(x +r,t)]),
_ Re< i0(x,t)— 0(x+r,t’)]>’

= exp[-B’(r,t,1)/2], (4.12)

where BY(r,t, ') = ([0(x,t) — f(x+r,t')]?) is the phase-difference correlation func-

tion. The last equality above i the Gaussian cumulant expansion.

The phase-difference correlation, e written in terms of the average

BY(r,t, Oxc ()0 (1))
(4.13)
The average of the Four ariable at general times after
a quench at t = 0 fr era ure Tito at ature T, both at or below
Y e ; - 3
Txr, can be calculated
B (g —ny) e MO, (4.14)
where the initial phase-phase-correlation-—functionstuq. (4.11), and the following

ee' ‘used. Notice that the first

term of Eq. (4.14) is Just the equlhbrlum phase-phase correlation function, which
can be obtai WI?WABI term is the nonequi-
librium cont‘ﬂtlon the goezzf!)l zero as t — é.]Substl utlng Eq. (4.14) into
" Wﬁbﬁﬁ“ﬁm ANTINYNAY

BP(r,t,t') = BS,(r,t,t') + Bl (r,t, 1), (4.15)

neq

where Be and Bzeq are the equilibrium and nonequilibrium correlations at the

final temperature, respectively. We, then, have

qu(r, t,t) = np{y +In(r?*/4ad) + Ey[r?/4(af + [t — '])]}, (4.16)
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and
1t t) = (- -
Bne T, t,t = i — + In
q e {” (4¢<a3+2t><a3+2t'>>
+Ey[r?/4(ad +t + t’)]}, (4.17)
where Fj(x f dye Y/y for x > 0 and v ~ 0.577 is Euler’s constant. A

soft ultraviolet cutoff, through a factor of exp(—a2k?) in the integrand of each k

integral, is used in our calculation e ag is of the order of the lattice spacing.

Finally, we obtain

N (r,t,t), (4.18)
where ‘ ' X
opb BB
(r*/4a5)
PGl -t (4.19)
and £ ;,:-
LR IN
Co (rt,t) =
= i

702
ag + 2t)(ad + 2t’)>

+E1 [r?/4(ad +t + t’)]}} ‘ (4.20)

ﬂ‘NEl’J'V]EWI"JWH’]ﬂ‘E
4.3 Anaﬂytlc Resu

’QW'l@ﬁﬂ‘iflJ UNIINYAY

The late time ¢ > a2, long-distance 72/t > 1 and short-distance r?/t < 1 behav-
iour of the theory are analysed in this section. The asymptotic correlations are

evaluated by using the asymptotics of E(z):

—y—lnz, rzK1
E@)~{ (4.21)
e’ /x, x> 1.
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Consider first C’fq at equal times ¢t = ¢/. One obtains the asymptotic equilibrium
correlations

Cey(r,0) ~ (r/ag)™™, 1> ag (4.22)

which reproduces the standard result, Eq. (3.3). The full equal-time pair correla-

tions have the asymptotic behaviour

(/o) ™ (VB0 12/t 1

CO(r,t,t) ~ (4.23)

r/t< 1
where r, vt > ay. We see that bot y d short distances have the same
equilibrium correlations, | 9 &mpliﬁca’cion factor at long dis-
tances. The nonequilibzi : J i single characteristic length

L(t) ~ tY/2. Tt is wor e single characteristic length

scale, L(t), and the &, in the 2D XY system.

However, these similari ur i s systems.

Next, the autoco e times,

(4.24)

where again we ta&g}.\'t > a3. Using Lt) ~ (t) ~ L™ Eq. (2.22) we

determine the exp =n and find Ay, = 7 for

the case of the decay.of equilibrium correlations.

AUHANYNTNYNS

4.4 Diseéussion

ARSI HNANERD.........

2D XY model below the Kosterlitz-Thouless transition temperature, Tx7. Within
the spin-wave approximation, the dynamics are treated as phase fluctuations only.
The phase dynamics has been taken to be the time-dependent Ginzburg-Landau
(TDGL) model or model A in the presence of Gaussian noise. We are able to

obtain the growth laws and we can solve explicitly the correlation functions.
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From our results of the spin-wave theory, we may say that the prediction
given by Rutenberg and Bray is positively supported with our calculations. We
will give a brief discussion of the results. The equilibrium part of the correlation
function of the 2D XY model decays asymptotically like a power law, Eq. (4.22),
with the exponent 7 corresponding to the Kosterlitz-Thouless theory. This result
confirms that the Kosterlitz-Thouless phase is critical state. We can see that the
equal-time pair correlation function exhibits the scaling form in accordance with

Eq. (2.18), with the characteristic

from at or below Tk into b ‘ erved dynamics contain vortex-
antivortex pairs and then thei @rmm which are governed by a

h, L(t) ~ t*/? at late times.

(t) ~ t'/2. The system quenched
S

power growth law for
In contrast, the syst \ \

give the growth law nt)z [36]. »-\ measure the decay of the
seds \. A through A%(t) ~ L=

e Tyxs containing free vortices which
‘.

autocorrelations whi

5

A, . . .
In conclusions, 3 pupgjﬂi the equal-time pair correlation function
i - )kl
C%(r,t,t) for the 2D XY el | o low-temperature phase sat-

followi
Qligw
isfy the scaling form, -

r/L(t)], (4.25)

. 5 ol
where the single time-dependent-length L{{) s given by
i — <
ID P S
a @T (4.26)

¢ a (t/Int)d/?, T; > Tkr,
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CHAPTER V

The First-order Correction

As mentioned in Chapter 1, the dynawical evolution of a system in theory of
phase-ordering dynamics is-a very int_géresting problem. It is now well established
that, at late times, mostephase-ordering systems.approach a scaling coarsening

regime. This means.that ghe equal—tlime pair correlation function of the order

i —
f

)
parameter, C(r,t) =A0(xgf) # P(x +{ r, 1)) can be written in the scaling form as

C(r,t) = flr/L(t)]. Om'the other.h_and; corrections te scaling which tells us how
the scaling coarsening regime is 5pproaé’ahé’d, Is very important in interpreting ex-
perimental results or simulation data correctly. The form of corrections to scaling

{

determines the correct asymptot:ic scalfﬁéﬂexponents and scaling functions [37].

iy adn 1o sz . .
However, there has not been much studied in determining the form of corrections

F I

to scaling. - = -

Corrections t'd:_"scaling in theory of phase—orderiﬂg‘ dynamics are arised out
of many sources. In phase-ordering systems with topological defects there is, in
addition to the characteristic length scale L(t), a second characteristic length scale,
the “defect core size’ (€. The corrections to scaling associated with nonzero defect
core size are expected to enter as @ power of {/L. Thermal fluctuations give also
corrections to scaling'when systems aré quenched to a fimal temiperature 7', where

0 < Ty < T, with T, the critical temperature [38].

Rapapa and Bray [38] have considered corrections to scaling, associated
with deviations of the order-parameter from the scaling morphology in the initial
state, for system with O(n) symmetry in phase-ordering dynamics. They supposed

that the leading corrections to scaling enter the correlation function in the form
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C(r,t) = fo(r/L) + L™ fi(r/L), where fo(z) is the “scaling function”, fi(x) is
the “correction-to-scaling function” and w is the “correction-to-scaling exponent”.
While the structure factor is S(k,t) = Ligo(y) + L4 “gi(y), where go(y) and
g1(y) are the d-dimensional Fourier transforms of fy(z) and f;(z) respectively, and
y = kL. In their work, corrections to scaling are calculated for the nonconserved
one-dimensional XY model in the limit Vy — oo (i.e. |¢|2 = 1), where an exact
solution is possible. They found that the correction-to-scaling exponent is w = 2.
While, “memory” of the initial conditions are retained in the correlation function

C(r,t,t) even in the long time limit.

In this chapter, werdetermine corrections to scaling associated with ampli-
tude fluctuations in the nem€onServed coarse-grained two-dimensional XY model
below the Kosterlitz-Thouless transiti(;';l temperature ['xr . For the time-dependent
Ginzburg-Landau (TDGE) modal or model A, we quench the system between any
two temperatures ator below TKq: I_ﬁ the work here the analysis is extended
from the zeroth-orderstheory to includ%e" the first-order correction. We evaluate

d 4

the first-order correction due to the am;;,lit‘ude-amplitude correlations. We find
ald 7N

scaling solution for nonequilib¥iuin equal—‘!;i_m@ correlations characterised by a sin-

gle characteristic length L(t) 117 assoc?éfgid with states with vortex-antivortex

pairs. We also measure the first-order correction to autocorrelation and show its

asymptotic behaviout ¢ s

In the next secti)n, we will describe the dynamical model for the amplitude
fluctuations. Next, fwe will tty) t0 evaluate the @amplitiidesamplitude correlations
analytically. Imthe next section, the analysis results are presented and analysed.

Finallymingthedast-section, thediscussionsand eonelusion are siven;

5.1 Dynamics

In this section we work out the first-order correction in details. The results of this

section show that the general two-point two-time correlation function C(r,t,t")
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contains physical properties that we wish to describe. In order to proceed one
needs to know the solution of equation of motion, Eq. (3.15),

Ip(x,t)
ot

= T,[V2p(x,t) — 8Vop(x, )] + ((x, 1). (5.1)

In Fourier space, the equation of motion for the amplitude fluctuations be-

comes
(5.2)
where py and (i are the Fou e amplitude variable and the noise
given by
(5.3)
and
(5.4)
The component of t C a o the field ¢, with
\ t— ). (5.5)
Similar to the zeroth-order t __u_ we W ,or Fp into the time scale, making
[t] dimensionally equivalent. £o{/ {v’ - the test of the chapter. The equation of
motion, then, becomni
| (5.6)

By using the methed of integrating factor, we obtain the solution for the

equamnofnﬂiu%l ANENINEINTD
awmaﬁwﬂmﬁw iy o

where t 0 is measured from the time of the quench. Since the system is quenched
from at or below Tkr, The initial correlations are given by the approximated
Hamiltonian Eq. (3.9). First, we make the Fourier transformation of the approxi-

mated Hamiltonian. The Hamiltonian for the Fourier transform of the phase, 6y,
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and amplitude, py, variables can be written as
s 1
H = /d2x p_(ve)2+/d2x|:_(vp)2+4%p2:|
1 y /
Z Z 61 (0)61 (0)[k1ky + Eok)] /d2x ot (ktk')x
(27)?

- i
-~

O(k+K,0)

1 , )
—_— ZZ pk pk/ klk + ka/] ( 7T)2 /dQX 61(k+k )'X

- J
-~

O(k+K,0)

d*x e (kKD x (5.8)

)pk<o>p_k<o>. (5.9)

q. (5.9), reduces to the spin-
the zeroth-order theory.

ol
(£ +4Iv]o)pk< 0)p (0 >/kBT}<5.1o>

@ML W &J?ﬂ JPLEJJ] fld
TRAR

where [‘ﬁlS given by Eq. (5.9). All the integrals cancel out between the numerator

X exp

and denominator, except px and py. By collecting both real and imaginary parts

(i.e. using the fact that py = p*,), the correlation, Eq. (5.11), becomes

o0 _ (ﬁ+4VO)|Pk|2 _2(k2+4v)|Pk/|
f_ dpxdpy /Ok(O)pk/(O) 25 kBT; ¢ 5T;
{p1c(0)prer (0)) = > 3 — (5.12)
B Vo BT; kpT;
2. dprdpe 2T T (72T )
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We must now consider in two cases:

(i) k # +k’. This means that py and py are distinct. The integrals in Eq.
(5.12) factorise, and each of the integrals has the form

o0 Loy 12
/ dpx pic(0) € T (5.13)

—00

This yields

(5.14)
(i) k=+Kk" Ifk = : (0))o. We, now, use plane
polar coordinates px = .
(5.15)
Thus
(5.16)
Then, the case k = i ince, if k = —k’, we must calculate
p(0)[*)o. The initial ion it the Kronecker delta symbol reads
A
(5.17)
After the angular in F,;an_——-iﬁﬁ\' i nommator are cancelled,
btai = |
we obtain !B R 22+4,El|pk|T il
pxld|pxl e B | Pk
(o), = 2 . (5.18)

o e ) 2 amﬂﬂﬁﬁmjﬁm -
”%”ﬁ’ﬁadﬁm UM ANAY

)o 5.19
k2 + 8V, ( )
The amplitude-amplitude correlations at general times after a quench are then

calculated straightforwardly from Eq. (5.7)

]C (12 / 2 /
(p()p-x(t)) = F[T j e WSO (T, — Ty) e WH8WH0] - (5.20)
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5.2 Correlation Functions

Corrections due to amplitude fluctuations follow directly from the amplitude cor-
relations. We, now, briefly show the results of calculations (for more details see

Appendix B). The amplitude-amplitude correlation is

C(r,t,t") = (p(x,t)p(x+r,t))
d’k

Cr..(rt,t), (5.21)

where C7, and Cf,, ar

neq
final temperature, res(

through a factor of e integrand of each k integral, where ag is of

the order of the latti

To proceed fu tions C7, and CF,,. Unfor-

tunately, we can not c¢tly. However, at late times,
the theory simplifies co
r?/A(ad+[t—t'])

22
T (5.22)

and

(5.23)

3 AERE T EN T
sV GTIGT HAADYIIR 51 > o e

distance®?/t > 1 and short-distance 72/t < 1 behaviour of the first-order correc-
tion in this section. First, we consider C¥, at equal times ¢t = t'. We obtain the
asymptotic equilibrium correlations

kBTf e—r2/4a§

327Vy  ad
0, > ap. (5.24)

Cepq (’l“, ta t)

Q
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This means that, at late times, the amplitude-amplitude correlation is uncorrelated
as expected. While, the full equal-time correlations after the quench have the
asymptotic behaviour

0, r?/t>1

kp(T;—Ty) e—16Vot—(r/VD)2/8
327 Vo 2t

CP(r,t,t) ~ (5.25)

, rPltkl

where 7, v/t > ag. We see that C?(r,t,t) has a scaling form, with a length scale

T’?ium factor Cf,, through Eq. (5.25) at

of L ~ t'/? characterising the none

short distances.

Next, we find th

late times

5.4 Discussm)n

¢ a LY |
In this Chaptﬂwuﬂghnﬂmfgmmﬂgkﬂgﬁ theory, which treats
as the qs d rrection. ‘ this chapter with t ical evolution

for the amplitude variable and, then, try to work out the amplitude-amplitude
correlation function directly but it does not succeed. However, we simplify the
theory by considering at long time limit to obtain the two-time correlation func-
tion. For the case t = ¢/, we found that the nonequailibrium part of the correlation

is scaled with a single characteristic length L ~ t'/? associated with states with
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the vortex-antivortex-pair at late times. The scaling form of the nonequilibrium
part of the amplitude-amplitude correlations is refered as the corrections to scaling

in phase-ordering dynamics of the 2D XY model.

In conclusions, the full equal-time pair correlation function has the modified

scaling form of Eq. (2.18), at late times

Clr,t,t) ~ 7’_"{ fo [ﬁ] o) f [ﬁ] } (5.27)

with

(5.28)
and

(5.29)
with L(t) ~ t'/2 and > o o coeff nt () is of the form

(5.30)

(rt.8) = folr/L)+ L F,(r/ L)

which is proposed by Rapap AT M 3. However, it is worth to emphasis

We found that our results

that the source of _m aiid of Rapapa and Bray are

differrent. \Y '}

The full autocomelatlon function reads at lateﬂlmes

ﬂw&m@ﬂ)ﬁﬂ“ﬁm&ﬂﬁ] -
RTINS NN INGIAE



CHAPTER VI

Conclusions

In this thesis, we have examined fhe scaling phenomena and its correction

in nonequilibrium statistical mechanics. The preblems of interest are the phase-
J

ordering dynamics and nenequilibrium critical dynamics. We will summarise and

conclude the study asdellows:

)
The first chapter isan ingroduction of the thesis. We give a brief historical

development of the sgaling theory both equilibrium and nonequilibrium phenom-

ena. Basic statementsfof gheories Of pflaée—ordering and nonequilibrium critical

dynamics are mentioneds The 2D =Y mode‘l which is the model of our study are

introduced. We give the approx1mat10n Séileme to obtain the corrections to scaling
,1

function. The chapter ends Wlth the outI'_ of this thesis.

,'il Vo

In Chapter 2, t;heories of phase—ordering and non_‘equilibrium critical dynam-

ics are explained in"'d'étails. We introduce the dynamical'models used in our study.
The existance of the dynamical scaling hypothesis and‘the scaling forms of quanti-
ties of interest.such as, cotrélation, functions, structure factors and autocorrelation
functions are explained. The ‘growth'law “which is'the law that governs the evolu-
tion of the system in the scaling €oarsening regime is stated. ®™We also give some

remarks on modelled Hamiltonians.

Chapter 3 and the rest, phase-ordering dynamics of the coarse-grained 2D
XY model below the Kosterlitz-Thouless transition temperature, Tk have been
studied. In Chapter 3, first, the definition of the coarse-grained 2D XY model is
introduced. We employed the spin-wave approximation to investigate the problem

in the low-temperature limit, i.e. quenches from at or below Tk to below Tkr.
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In this limit, the field fluctuates only its phase. The analysis is refered as the
zeroth-order theory of the thesis. However, the field, indeed, fluctuates both in its
amplitude and phase at the coarse-grained level. In order to solve this problem, we
treat the amplitude fluctuations small compared to the phase fluctuations. Then,
the dynamics of phase and amplitude fields become decoupled. The dynamics of
the amplitude variable is refered as the first-order correction. Next, the dynamics
and the initial conditions of the two variables are stated. The dynamical model of
the system is a purely relaxational.and nonconserved. Finally, the approxiamated

correlations are explained.

In Chapter 4, we have considered the zeroth=theory which gave exact solu-
tions. We start with the eguation of motion for the phase variable. By solving the
problem analytically, wesare able to oﬂtain exact solutions. The results are as fol-
lows. We found that thesystem approaches the scaling coarsening regime at late
times, i.e. it exhibits scaling form.‘Th_é“ growth laws are given by L(t) ~ t'/2 in
comparison to the growth faws for querfehmg from above Txr, L(t) ~ (t/Int)"/2.

This result agrees with the predlctlon by Rutenberg and Bray [20].

In Chapter 5, we have éxammed the’ ‘ﬁrst—order correction of the problem.

Similar to the zeroth—order theory, we ﬁrst Hled to solve the equation of motion

for the amplitude V _perform exactly analytical
calculation for correlatlons but, however, without any sticcess. Nonetheless, at long
time limit, the theory simplifies considerably to obtain the two-time amplitude-
amplitude contéelations. | The teSults at/late timhes are asdollows. We found that the
nonequilibriumg part of the equal-time amplitude-amplitude correlations exhibits
scaling-withsa single characteristic length (L (#) ~tH? Thissmeanssthat the system
approaches the scaling coarsening regime both i its amplitude and phase with the
same growth law. We refer to the scaling form of the nonequilibrium part of the

amplitude-amplitude correlations as the corrections to scaling in phase-ordering

dynamics of the 2D XY model.
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Appendix A

Determination of CY(r,t,¢)

We start with the two-point two-time pair correlation function for the phase

variable, Eq. (4.12)

r,t,t')/2], (A1)

where B(r,t,t') = ([0(x, ase-difference correlation func-
tion and, in terms of , LieT"t orms of the phase variable,

the correlation can

BY(r,t,t -‘ i B(t)01(t)
(A.2)
The phase-phase ion : ; aral times after a quench at ¢ = 0 from a
temperature T} to a temperatiie L. bot r below Ty, is given by Eq. (4.14),
J.:’a' "
Ak P e F ], (A.3)

The phase-diffi
'y / 4 / 0 / '
quitnedngas -
where i
| %

MREASEIAGNTEY o

nce co

a

R 2 , ’
B (7“, ¢, t/) _ (m: nf) / d°k [e—2k2t + e 2k _ 2 cos(k - I‘) e R+t )]’ (AG)

ned 27 k2

are the equilibrium and nonequilibrium correlations, respectively.
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We first calculate the equilibrium correlation. The technical point is the use
of the integral representation

i:/ du exp(—k*u), (A.7)
k2 0

and we use a soft ultraviolet cutoff through a factor of exp(—a2k?). Then, we have
ng(r, tt') = Ui /d2 / du e ¥ —cos(k-r)e —k?[t— t’l] —a2k?

= ﬂRe/de du [e~ W (uad) _ gikr—k*(urag+t=t])

(A.8)

For the last two equatio $ \ Let r=u+a}and r = u+a?

for the first and the last t [V . we have

—r? 4z

5 _rz/“)]. (A.9)

Let y = r?/4x_for the %é@nd 1nte ral. %/charil ;]the limit of integration, the

e BTN S
\ Q AR A

Fi(z) = —~ lnx—i—/o dy(l_ye_y>, (A11)

where F;(x f dye™¥/y for x > 0 and y ~ 0.577 is Euler’s constant. Finally,

(A.10)

by substltutlng a3 = a2 + |t —t'|, we obtain

ng(r, t,t) = np{y +In(r?/4ad) + Ei[r?/4(ad + |t — '])]}. (A.12)
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Next, we calculate the nonequilibrium part of the correlation

Bzeq(r, t, t/) — 771 77f /de/ d’U/ e_k u —2k2t + 6_2k2t,
-2 cos(k r) e K] gmath
= 771 77f /de/ —k‘ (u—|—a0_|_2t) + €_k2(u+a8—|—2t’)

— 9% iker— k2(u+a2+t+t’

/ dkkf[ —k2(u+a0+2t)+ —k2(u+a0+2t’)]

’p// ‘ 2(u+a2+2t) 2(u+a2+2t’)

/ dul-d’ke kl‘ k2 (utad+t+t')
0

P

—r2 /4(u+a2)

(A.13)

For the last two equations, w s&%_._, a

Lot @ = utad+2t, v = u+ai+2t
Y22 ‘
and z = u + a? for the firs cotitda last term, respectively. Hence
dr 00 e—r2/4z
0
B, (rt,t) = — / dx ”

N o0 T
e 1 (=)
pr ok a? Z
In ( al/w/a0+2t)

AU INYNINEING

Similarly, let % r2/4x for the thlréi integral. By changing the hmlt of integration,

| W“ﬁmﬂ“ﬁ"fﬂ“ﬁmﬁﬂtﬂﬁﬁﬂ d

BZeq(rtt/) = (771 nf) 7—'_1

ln (a1/y/ad+2t")

(A.14)

44/ (ad + 2t)(a0 + 2t')

B [r?/4(a2 +t + t’)]}. (A.15)

In summary, the two-point two-time pair correlation function for the phase

variable, C?(r,¢,t'), has the form
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COlr,t,t)) = exp[-B’(r,t,t')/2]
= eXp[—ng(T, t t,)/Q] eXp[—Bzeq(T‘, t, t,)/2]

= o — Ly () + B4+ e~ D)

xexp{ - (ni;nf){’}’+ln(4\/(a%+2Tt2)(a%+2t’)>

(A.16)

AULINENINYINT
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Appendix B

Evaluation of C”(r,t,t)

For the two-point two—tlme a

Eq. (5.21)

mfhtude correlation function, we start with

r/& (r,t,t") (B.1)

where C”’ and C? libr m and moncquilibrium correlations at the

neq

final temperature, gi portion 1o 't and T; — T, respectively,

in Eq. (5.20):
qu( .0)|t—t’|+ik-r7 (B.2)
and ,
T' 3 ) 4 F ; N1
Oyl .t R L
The key technical point in oug ¢ 1S is the use of the integral representation
. R s L

= | duwesp{= (82 81 ()

We use a soft ultraviqmt cutoff through a factor of expmagl?). For the equilibrium

correlations, We have

L (ot 190 = u aL;;?I m lj W gV!) —D+§%>|t—t'|+ik.r a2k
a ) am‘éw T HA

T e—r2/4(u+a2)

u+a%
o] —r2/4(u+a?)—8Vpu
_ k8T s / g € S (B3
4 0 u+ aj

For the last two equations, we set a? = a3 + |t — ¢/|. The integration in Eq. (B.5)

cannot be done explicitly. So, we will consider in long time limit. At late time (a?
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is very large), the integral becomes

) e—r2/4a%—8vou
0 ay
The integral becomes
6—7‘2 /4a?
m . (B . 7)

By substituting af = a3 + [t — ¢'|, the equilibrium correlation becomes

C’neq(r ¢ t) _ J )ue—(k2+8V0)(t+t’)+ik~r e—agk2
— d2k €—k2 u+a?)+ik-r
- e—:;/4(u+a%)
’ 1
4(u+a?)—8Vou
= (B.9)
For the last two equations e, sét-a; =4 + ¢/, Similar to the equilibrium part,
we consider the integral in lon nit and substituting a? = a3 + ¢ + ¢’ back.
Finally, we obtain
| ; ‘Hﬂ (aZ+t+t")
. B.10)
neq 't 2 4 (
H ) as h +t

tude VI;:;THM iﬂﬂmﬁw ﬂﬁaﬂwﬁ-\mtlon for the ampli-

kpTy e 4la
321V ag + |t
kp(T; —Ty)e _SVO(tJFt') 72 /4(ad+t+1)

327V, a:i+t+t

(B.11)
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