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CHAPTER I 
 

INTRODUCTION 
 

1.1 General 

The study of dynamic response of a soil medium under a moving load is of 

considerable importance in civil engineering. For example, analysis of ground vibrations 

induced by surface and underground traffics from high-speed train or subway system 

has useful applications in the design of roadways, pavement and tunnels. In the past, 

several researchers have studied this problem by employing a variety of analytical and 

numerical methods. A majority of those studies considered the soil domain as a single-

phase elastic solid. However, geomaterials are often two-phase materials consisting of a 

solid skeleton with voids filled with water. Such materials are commonly known as 

poroelastic materials and widely considered as much more realistic representation of 

natural soils and rocks than ideal elastic materials. Moreover, natural soil profiles are 

normally layered in character with different properties and thicknesses. A review of 

literature indicates that studies related to a poroelastic material subjected to a moving 

load are very limited when compared to the case of an ideal elastic material.  

In this thesis, the dynamic response of a multi-layered poroelastic half space 

subjected to moving loads along its free surface with constant velocity is considered. 

The general solutions of a homogeneous poroelastic material are derived based on 

Biot’s poroelastodynamics theory through the application of the triple Fourier integral 

transform. The boundary value problems corresponding to a poroelastic half space 

subjected to moving loads are formulated in the Fourier transform domain. Time-domain 

solutions are obtained by employing the fast Fourier transform (FFT). A computer 

program has been developed to solve this problem. Finally, selected numerical results 

are presented to demonstrate influence of various governing parameters on dynamic 

response of a multi-layered poroelastic medium under moving loads. 
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1.2 Objectives of Present Study 

 The objectives of this thesis are the followings: 

1) To derive a fundamental solution of a three-dimensional homogenous 

poroelastic medium under transient loading.  

2)  To obtain an exact stiffness matrix of a multi-layered poroelastic medium 

under transient loading. 

3) To develop an efficient numerical scheme to investigate the dynamic 

response of a multi-layered poroelastic medium subjected to moving loads. 

  
1.3 Scopes of Present Study 

A general solution of a three-dimensional poroelastic medium under transient 

loading is derived by using the Fourier integral transform. The dynamic response of a 

multi-layered poroelastic medium under moving loads is studied by employing an exact 

stiffness matrix approach. Time domain solutions are obtained by using the fast Fourier 

transform. A computer program has been developed to investigate influence of various 

parameters on the dynamic response of a multi-layered poroelastic medium under 

moving loads. 

 
1.4 Basic Assumptions 

 This study is based on the following assumptions:  

 1. Each layer of a multi-layered poroelastic medium is governed by 

Biot’s poroelastodynamics theory. 

 2. The load is moving with constant velocity and vertically applied to 

the free surface of the supporting medium. 

3. An infinite plate behaves according to the classical Kirchoff theory. 

 4. The contact surface between the plate and the supporting medium is 

assumed to be smooth and either permeable or impermeable. 



CHAPTER II 
 

LITERATURE REVIEWS 
 

 Several researchers have studied the problem of an elastic medium under a 

moving load by employing a variety of analytical and numerical methods in the past. 

Most studies considered the soil domain as a single phase elastic material. Sneddon 

(1951) considered the two-dimensional problem of a line load moving with constant 

subsonic speed over the surface of a homogeneous elastic half-space by using an 

integral transform method. The three dimensional problem of steady-state motion of a 

point load in an unbounded body was considered by Eason et al. (1956). Later, Eason 

(1965) studied the three dimensional steady-state problem of a uniform half-space 

subjected to moving forces distributed over a rectangular area at uniform speeds. Cole 

and Hulth (1958) considered the problem of a concentrated line load moving along the 

surface of an elastic half plane and obtained the solution for subsonic, transonic and 

supersonic cases. Gakenheimer (1969) studied the propagation of transient waves in an 

elastic half space excited by a traveling normal point load, in which the load is suddenly 

applied and then moves rectilinearly at a constant speed along the free surface. Barros 

and Luco (1994) developed an approach for treating a multi-layered viscoelastic half 

space subjected to a buried or surface point load moving at constant subsonic, 

transonic or supersonic speeds. Hung and Yang (2001) studied elastic waves 

propagating in a visco-elastic half space generated by various vehicle loads, 

namely, moving point load, uniformly distributed wheel load, elastically distributed wheel 

load and a train load simulated as a sequence of elastically distributed wheel loads. 

Andersen and Nielsen (2003) presented the boundary element method formulation of 

the steady-state wave propagation through elastic media due to a source moving with 

constant velocity. The Green’s function for the three-dimensional full-space was 

formulated in a local frame of reference following the source. Alekseyeva (2007) 

presented the fundamental solutions of a half-space under the action of a load moving 

at constant velocity that does not change with time in a moving system of coordinates. 
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Geomaterials are often two phase materials consisting of a solid skeleton with 

voids filled with water. Such materials are commonly known as poroelastic materials and 

widely considered as a much more realistic representation of natural soils and rocks 

than ideal elastic materials. A review of literature indicates that studies related to 

poroelastic materials subjected to a moving load are very limited when compared to the 

case of ideal elastic materials. The theory of wave propagation in a poroelastic medium 

was established by Biot (1956a,b) by adding the inertia terms to his consolidation theory 

(Biot 1941). In the last fifty years, a number of researchers have employed Biot’s theory 

to study dynamic response of a poroelastic material. For example, Senjuntichai and 

Rajapakse (1994) derived two-dimensional dynamic Green’s functions of poroelastic half 

plane. Based on Senjuntichai and Rajapakse (1994), Rajapakse and Senjuntichai (1995) 

studied the dynamic responses of a multi-layered poroelastic medium under time-

harmonic loading.  In the case of moving loads, Siddharthan et al. (1993) presented an 

efficient semi-analytical continuum approach based on Boit’s formulation to evaluate the 

dynamic response of a layered soil subjected to a moving surface load by assuming 

that the response occurs under a plane-stain condition. Jin et al. (2004) examined 

stresses and excess pore pressure induced in a saturated poroelastic half space 

by a moving line load. Cai et al. (2007) studied the dynamic steady state response of 

a poroelastic half space subjected to a moving rectangular load. Later they presented 

the dynamic responses of track–ground system subjected to moving train passages by 

the substructure method (Cai et al., 2008). Lu and Jeng (2007) presented an analytical 

solution for the dynamic response of a half-space subjected to a moving point load.  



CHAPTER III 
 

THEORETICAL CONSIDERATIONS 
 

3.1 Basic Equations and General Solutions 

Consider a poroelastic medium with a Cartesian coordinate system ( , ,x y z ) 

defined such that the z − axis is a perpendicular to the free surface. Let ( , , , )iu x y z t  

and ( , , , )iw x y z t  denote the average displacement of the solid matrix and the fluid 

displacement relative to the solid matrix in the i − direction ( , ,i x y z= ), respectively. 

Then, following Biot’s theory for two-phased material (Biot,1941), the constitutive 

relations for a homogeneous poroelastic material can be expressed by using the 

standard indicial notation as  

2 , , , ,ij ij ij ije p i j x y zσ με λδ αδ= + − =              (3.1) 

p Me Mα ζ= − +                 (3.2) 

where 

,i iwζ = −                  (3.3) 

In the above equations, ijσ  is the total stress component of the bulk material; ijε  

and e  are the strain component and the dilatation of the solid matrix, respectively, 

which are related to the displacement iu  as in ideal elasticity; μ  and λ  are Lame’ 

constants of the bulk material; ijδ  is the Kronecker delta; p  is the excess pore fluid 

pressure (suction is considered negative); and ζ  is the variation of fluid content per unit 

reference volume. In addition, α  and M  are Biot's parameters accounting for 

compressibility of the two-phased material. It is noted that 0 1α≤ ≤ and 0 M≤ < ∞  for 

all poroelastic materials. For a completely dry material 0M = , whereas for a material 

with incompressible constituents 1α = and M →∞ . 

The equations of motion of a poroelastic medium in the absence of body force 

(solid and fluid) and a fluid source can be expressed in terms of displacement iu  and 

iw  as (Biot,1962) 
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2
, , ,( )i jj i ji j ji i f iu M u Mw u wμ λ α μ α ρ ρ+ + + + = +    (3.4) 

 , ,j ji j ji f i i iM Mu w u mw bwα ρ+ = + +    (3.5) 

where an overdot denotes the derivative with respect to the time parameter t ; ρ  and 

fρ are the mass densities of the bulk material and the pore fluid, respectively; m  is a 

density-like parameter that depends on fρ  and the geometry of the pores. In addition, 

b  is parameter accounting for the internal friction due to the relative motion between the 

solid matrix and the pore fluid. 

 The Fourier integral transform of function ( , , , )f x y z t  with respect to time 

domain t , is defined by (Sneddon, 1951) as 

( ) iˆ , , , ( , , , ) tf x y z f x y z t e dtωω
∞

−

−∞

= ∫               (3.6) 

and the inverse relationship is given by 

        ( ) i1 ˆ, , , ( , , , )
2

tf x y z t f x y z e dωω ω
π

∞

−∞

= ∫              (3.7) 

In view of equation (3.2), the governing partial differential equation (3.5) can be 

transformed into the frequency domain by applying Fourier transform with respect to 

time and expressed in term of fluid displacement as 

  ( )2
,2

1ˆ ˆ ˆ , , ,
ij j f jw p u j x y z

m b
ρ ω

ω ω
= − =

−
        (3.8) 

By substituting equation (3.8) into equation (3.4), the following equation is obtained  

2
, , ,ˆ ˆ ˆ ˆ( ) ( ) ( ) 0i jj j ji t f i iu u k u pμ λ μ ρ ρ α ϑ+ + + − − − =              (3.9) 

in which     

         
2

2( i )
f

m b
ρ ω

ϑ
ω ω

=
−

              (3.10) 

and applying the divergence operator on equations (3.8) yields 
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2 2

2 ( )
ˆ ˆ ˆ 0f fp p e

M
ρ ω ρ ω α ϑ
ϑ ϑ

−
∇ + + =             (3.11) 

Similarly, using the divergence operator on equations (3.9), the following equation is 

obtained 

      2 2 2ˆ ˆ ˆ( 2 ) ( ) ( ) 0t fe k e pλ μ ρ ρ ϑ α ϑ+ ∇ + − − − ∇ =             (3.12) 

Equations (3.11) can also be expressed as 

   
2

2

ˆ ˆˆ
( ) ( )f

p pe
M

ϑ
ρ ω α ϑ α ϑ
−∇

= −
− −

            (3.13) 

Substitution of equation (3.13) into equation (3.12), yields 

   4 2
1 2ˆ ˆ ˆ 0p p pβ β∇ + ∇ + =              (3.14) 

where 
2 2 2 2

1

( i )( 2 ) 2
( 2 )

fm b M M M
M

ω ω λ α μ ρ ω α ρ ω
β

λ μ
− + + + −

=
+

         (3.15) 

2 2 2 4

2

( i )
( 2 )

fm b
M

ω ω ρω ρ ω
β

λ μ
− −

=
+

            (3.16) 

By applying the double Fourier integral transform with respect to the two 

horizontal coordinates x  and y  to equation (3.6), the resulting equation can be 

expressed as follows 

( ) i i i, , , ( , , , ) x yk x k y t
x yf k k z f x y z t e dx dy dtωω

∞ ∞ ∞
− − −

−∞ −∞ −∞

= ∫ ∫ ∫          (3.17) 

and the inverse relationship is given by 

( )
( )

i i i
3

1, , , ( , , , )
2

x yk x k y t
x y x yf x y z t f k k z e dk dk dωω ω

π

∞ ∞ ∞
+ +

−∞ −∞ −∞

= ∫ ∫ ∫    (3.18) 

where the symbol  is used to denote triple-dimensional Fourier transform. In view of 

equation (3.17), the solution to equation (3.14) can then be expressed as follows 
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          1 1 2 2z z z zp Ae Be Ce Deγ γ γ γ− −= + + +             (3.19) 

where    

   2 2 2 2 , 1, 2i x y ik k L iγ = + − =              (3.20) 

   
2

1 1 22
1

4
2

L
β β β+ −

=               (3.21) 

   
2

1 1 22
2

4
2

L
β β β− −

=               (3.22) 

Similarly, in view of equations (3.13) and (3.19), it can be shown that 

1 1 2 2
1 2( ) ( )z z z ze Ae Be Ce Deγ γ γ γχ χ− −= + + +           (3.23) 

in which 

  
2 2

2 1,2,
( )

i f
i

f

ML
i

M
ϑ ρ ω

χ
ρ ω α ϑ

−
= =

−
            (3.24) 

By applying the double-Fourier integral transform with respect to the two 

horizontal coordinates x  and y  in equation (3.9), and then substituting equations 

(3.19) and (3.23) into the resulting Fourier transform of equation (3.9), it can be 

shown that the general solutions of the average displacement of the solid matrix and 

the fluid displacement relative to the solid matrix, in the i − direction ( , ,i x y z= ) 

respectively can be expressed in the Fourier transform domain as  

( ) 3 31 1 2 2
1 1 2 2i i iz zz z z z

y yu k a Ae a Be a Ce a De Ge Heγ γγ γ γ γ −− −= − + + + + +          (3.25) 

( ) ( ) 3 31 1 2 2
1 1 2 2

z zz z z z
zu a Ae Be a Ce De Ee Feγ γγ γ γ γγ γ −− −= − + − + +          (3.26) 

( ) ( ) ( )3 31 1 2 2
1 2

z zz z z z
zw h Ae Be h Ce De Ee Feγ γγ γ γ γ ϑ −− −= − − − − − +           (3.27) 

Applying the triple-dimensional Fourier transform to the dilatation of the solid 

matrix yields 

   i i z
x x y y

ue k u k u
z

∂
= + +

∂
                (3.28) 

 



    

 

9 

Substitution of equations (3.23), (3.25) and (3.26) into equations (3.28), results in 

 
( ) ( )

( )

3 31 1 2 2

3 3

3
1 1 2 2

ii

i

z zz z z z
x x

x

y z z

x

u k a Ae a Be a Ce a De Ee Fe
k

k
Ge He

k

γ γγ γ γ γ

γ γ

γ −− −

−

= − + + + − −

− +
      (3.29) 

where 
2 2 2 2
3 x yk k Sγ = + −               (3.30) 

( )2
2 t fk

S
ρ ρ ϑ
μ
−

=               (3.31) 

( )2 2
, 1, 2i i

i
i

a i
S L

λχ μχ α ϑ
μ
+ − +

= =
−

            (3.32) 

2

1 , 1, 2i i i
f t

h a i
k

γ ϑ
ρ

⎛ ⎞
= + =⎜ ⎟⎜ ⎟
⎝ ⎠

            (3.33) 

Finally, the solutions for the stresses can also be obtained as follows: 

 
( ) ( )

( ) ( ) ( )

1 1 2 2

3 3 3 3

1 2

2 2
3 3

i i

i i

z z z z
xz x x

x yz z z z

x x

g k Ae Be g k Ce De

k k
Ee Fe Ge He

k k

γ γ γ γ

γ γ γ γ

σ μ μ

μ γ μγ

− −

− −

= − + −

+
+ + + −

          (3.34) 

 
( ) ( )
( ) ( )

1 1 2 2

3 3 3 3

1 2

3

i i

i i

z z z z
yz y y

z z z z
y

g k Ae Be g k Ce De

k Ee Fe Ge He

γ γ γ γ

γ γ γ γ

σ μ μ

μ γ μ

− −

− −

= − + −

+ + − −
           (3.35) 

( ) ( )
( )

1 1 2 2

3 3

3 4

32

z z z z
zz

z z

g Ae Be g Ce De

Ee Fe

γ γ γ γ

γ γ

σ

μγ

− −

−

= + + +

− −
            (3.36) 

where  

 2i i ig a γ=   , 1,2i =             (3.37) 

 2
3 1 1 12g aλχ μ γ α= − −              (3.38) 

 2
4 2 2 22g aλχ μ γ α= − −              (3.39) 

and ( , , )x yA k k ω , ( , , )x yB k k ω , ( , , )x yC k k ω , …, ( , , )x yH k k ω  are the arbitrary 

functions to be determined by using appropriate boundary and continuity 

conditions relevant to a given problem. The superposed bar denotes the triple- 
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dimensional Fourier transform of quantities with respect to the two horizontal 

coordinates x  and y  and the time coordinate t . 

 
3.2 Influence Functions 

3.2.1 Influence functions of homogeneous poroelastic half space  
The influence functions of a poroelastic half space are obtained by solving 

the boundary-value problems related to a moving load on the free surface and in 

the interior of the half space as shown in Figure 1(a) and 1(b) respectively. 

Boundary conditions corresponding to a moving load on the free surface (Figure 

1(a)) are  

 ( , ,0, ) 0xz x y tσ =              (3.40) 

 ( , ,0, ) 0yz x y tσ =              (3.41) 

 ( , ,0, ) ( , , )zz x y t P x y tσ = −             (3.42) 

       ( , ,0, ) 0p x y t =              (3.43) 

where ( , , )P x y t  denotes the intensity of moving load in the z −direction 

 In the order to satisfy the condition of vanishing fields as z →∞ , the 

arbitrary functions ( , , )x yB k k ω , ( , , )x yD k k ω , ( , , )x yF k k ω  and ( , , )x yH k k ω  must be 

set to zero. Substitution of equations of (3.19) and (3.34)-(3.36) results in an 

algebraic linear simultaneous equation system to determine the remaining arbitrary 

functions ( , , )x yA k k ω , ( , , )x yC k k ω , ( , , )x yE k k ω  and ( , , )x yG k k ω  which are 

expressed by. 

   A = ( )21 2
3

h

P k
R

γα
+               (3.44) 

   C = ( )2 22
3

h

P k
R

γα
+               (3.45) 

   E = ( )3
1

2
2

h

kP g g
R
α

−               (3.46) 
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   G = ( )3
1 32

h
y

P g g
R

kα γ−              (3.47) 

The solutions of buried transient loading as shown in Figure 1(b) can be 

derived by defining a point at oz z=  and treating the half space as a two-domain 

boundary-value problem. The domain "1" is bounded by 0 oz z≤ ≤  and the domain 

"2" by oz z≤ ≤ ∞ . The general solutions for each domain are given by equations 

(3.19), (3.25) to (3.27), (3.29) and (3.34) to (3.36) in terms of the arbitrary functions 

( , , )i x yA k k ω  to ( , , )i x yH k k ω , where i  ( 1,2)i =  is used to identify the domain 

number. Note that for the domain "2", the arbitrary functions 2 ( , , )x yB k k ω  = 

2 ( , , )x yD k k ω  = 2 ( , , )x yF k k ω  = 2 ( , , )x yH k k ω  = 0 in order to satisfy the condition 

that the solutions vanish as z →∞ . The boundary conditions at 0z =  

corresponding to a fully permeable top surface are given by 

(1) ( , ,0, ) 0,jz x y tσ =  , ,j x y z=            (3.48) 

   (1) ( , ,0, ) 0p x y t =             (3.49) 

and the continuity conditions at oz z=  are corresponding to a homogeneous 

poroelastic half space subjected to buried transient vertical loading. 

(1) (2)( , , , ) ( , , , ) 0,j o j ou x y z t u x y z t− =  , ,j x y z=           (3.50) 

(1) (2)( , , , ) ( , , , ) 0o op x y z t p x y z t− =             (3.51) 

(1) (2)( , , , ) ( , , , ) 0,jz o jz ox y z t x y z tσ σ− =  ,j x y=            (3.52) 

(1) (2)( , , , ) ( , , , ) ( , , )zz o zz ox y z t x y z t P x y tσ σ− = −            (3.53) 

(1) (2)( , , , ) ( , , , ) 0z o z ow x y z t w x y z t− =             (3.54) 

where a superscript ( ) is used to denote the domain number  

Substitution of arbitrary functions in the general solutions for displacements, 

stresses and pore pressure defined by equations (3.19), (3.25) to (3.27), (3.29) 
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and (3.34) to (3.36) in the above boundary and continuity conditions, the non-zero 

arbitrary functions appearing in the general solutions of homogeneous 

poroelastic half space for buried transient loading cases can be obtained as 

1A = ( ) ( )( ) ( )( )2 2 23
1 2 3 3 1 2 2 3 2 3 1 3

1 2 3

4
h

k g aP
R

a kγ α α γ α γ α α φ φ
α α α

+ − + − −         (3.55) 

1B = ( )3
2 3

1 h

P
R
γ φ φ

α
− +                (3.56) 

1C = ( ) ( )( ) ( )( )2 2 23
2 1 3 3 1 2 1 3 1 3 1 3

1 2 3

4
h

k g aP
R

a kγ α α γ α γ α α φ φ
α α α

− − + − +          (3.57) 

1D = ( )
2

3
2 3

h

P
R

φ
α
γ φ+                (3.58) 

1E = ( )( ) ( ) ( )( )
2

3 4 2 1 1 2 3 3 1 2 1 2 2 3
1 2 3

2
h

k g g g gP
R

a aα α α γ α α φ φ
α α α

− − − − −         (3.59) 

1F = ( )( )
2

1 2 2 3
3 h

k aP
R

a φ φ
α

− − +               (3.60) 

1G = ( )( ) ( ) ( )( )3
3 4 2 1 1 2 3 3 1 2 1 2 2 3

1 2 3

2
h

yk
g g g g a a

P
R

γ
α α α γ α α φ φ

α α α
− − − − − −      (3.61) 

1H = ( )( )3
1 2 2 3

3 h

yk
a a

P
R
γ

φ φ
α

− − +               (3.62) 

and 

2A = ( ) ( )( )( 2 2 23
1 2 3 3 1 2 2 3

1 2 3

4
h

k g a a kP
R

γ α α γ α γ
α α α

+ − +  

 ( )( ))2
2 3 1 3 1 2 3α α φ φ α φ φ− − − +              (3.63) 

 2C = ( ) ( )( )( 2 2 23
2 1 3 3 1 2 1 3

1 2 3

4
h

k g a a kP
R

γ α α γ α γ
α α α

− − +  

 ( )( ))2
1 3 1 3 2 2 3α α φ φ α φ φ− + + +              (3.64) 
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 2E = ( )( ) ( ) ( )((
2

3 4 2 1 1 2 3 3 1 2 1 2 2 3
1 2 3

2
h

k g g g g a aP
R

α α α γ α α φ φ
α α α

− − − + + − −  

 ( )))2
1 2 3 2 3α α α φ φ+ +                (3.65) 

2G = ( )( ) ( ) ( )((3
3 4 2 1 1 2 3 3 1 2 1 2 2 3

1 2 3

2
h

yk
g g g g a a

P
R

γ
α α α γ α α φ φ

α α α
− − − − − −  

 ( )))2
1 2 3 2 3α α α φ φ+ +                (3.66) 

where 

  ( )( ) ( )2
1 2 3 4 3 2 32 2hR k a a g g γ φ φ= − + − +            (3.67) 

  i oz
i eγα =  , 1,2,3i =              (3.68) 

2 2 2
x yk k k= +                (3.69) 

( ) 2
1 21 32 g g kφ γ+=               (3.70) 

( ) 2
1 22 32 g g kφ γ−=               (3.71) 

( )( )2 2
3 4 33 g g k γφ = − +              (3.72) 

In addition, ( , , )x yP k k ω  is the Fourier transform of a buried transient vertical 

loading at ( )oz z=  and/or a moving load at the free surface. 

 
3.2.2 Influence functions of multi-layered poroelastic half space 

3.2.2.1 Stiffness matrices 
  The solution of a multi-layered poroelastic half space can be 

determined by using an exact stiffness matrix method subject to a moving load on 

the free surface that was successfully developed to study the dynamic response of 

a multi-layered poroelastic half-plane (Rajapakse  & Senjuntichai, 1995). 

 A multi-layered model consisting of N layers of different properties and 

thicknesses overlying a homogenous half space is considered as shown in Figure 1c. 

The general solutions for solid and fluid displacements, pore pressure and 
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stresses in the Fourier transform with respect to frequency and the horizontal wave 

numbers of a homogeneous poroelastic medium, equations (3.19), (3.25) to (3.27), 

(3.29) and (3.34) to (3.36), can be expressed in the following matrix form. 

( , , , ) ( , , , ) ( , , )x y x y x yk k z k k z k kω ω ω=v R c             (3.73) 

  ( , , , ) ( , , , ) ( , , )x y x y x yk k z k k z k kω ω ω=f S c             (3.74) 

where 

( , , , ) i i
T

x y x y zk k z u u u pω ⎡ ⎤= ⎣ ⎦v              (3.75) 

   ( , , , ) i i
T

x y xz yz zz zk k z wω σ σ σ⎡ ⎤= ⎣ ⎦f             (3.76) 

   [ ]( , , ) T
x yk k A B C D E F G Hω =c            (3.77) 

   1 2( , , , ) ( , , , ) ( , , , )x y x y x yk k z k k z k k zω ω ω⎡ ⎤= ⎣ ⎦R R R           (3.78) 

 1 2( , , , ) ( , , , ) ( , , , )x y x y x yk k z k k z k k zω ω ω⎡ ⎤= ⎣ ⎦S S S           (3.79) 

and the superscript T  denotes the transpose of a vector or a matrix. The arbitrary 

functions ( , , )i x yA k k ω  to ( , , )i x yH k k ω  appearing in ( , , )x yk k ωc  can be determined 

by employing appropriate boundary and continuity conditions. The matrices 

( , , , )i x yk k z ωR  and ( , , , )i x yk k z ωS  where i  ( 1,2)i =  in equations (3.78) and (3.79) 

are defined as 

 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2
1

1 1 1 1 2 2 2 2

( , , , )

z z z z
x x x x

z z z z
y y y y

x y z z z z

z z z z

a k e a k e a k e a k e

a k e a k e a k e a k e
k k z

a re a re a r e a r e

e e e e

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

ω

− −

− −

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

R            (3.80) 

 



    

 

15 

3 3 3 3

3 3

3 3

3 3

2 ( , , , ) 0 0
0 0

0 0 0 0

y yz z z z

x x x x

z z
x y

z z

k kr re e e e
k k k k

k k z e e
e e

γ γ γ γ

γ γ

γ γ

ω

− −

−

−

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥= − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R            (3.81) 

 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2
1

3 3 4 4

1 1 2 2

( , , , )

z z z z
x x x x

z z z z
y y y y

x y z z z z

z z z z

g k e g k e g k e g k e

g k e g k e g k e g k e
k k z

g e g e g e g e

h e h e h e h e

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

μ μ μ μ

μ μ μ μ
ω

− −

− −

− −

− −

⎡ ⎤− −
⎢ ⎥
− −⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

S            (3.82) 

 

( ) ( )
3 3 3 3

3 3 3 3

3 3

3 3

2 2 2 2
3 3 3 3

2 3 3

3 3

( , , , )

2 2 0 0

0 0

x x y yz z z z

x x x x

z z z z
x y y y

z z

z z

k k k k
e e e e

k k k k
k k z k e k e e e

e e

e e

γ γ γ γ

γ γ γ γ

γ γ

γ γ

μ γ μ γ μ γ μ γ

ω μ μ μγ μγ

μγ μγ

ϑ ϑ

− −

− −

−

−

⎡ ⎤+ +
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

S  (3.83) 

 

The superscript n  is used to denote quantities associated with the thn  layer ( n  

= 1, 2, 3,…., N ) as shown in Figure 1c. For the thn  layer, the following relationships 

can be established by using equation (3.73) and (3.74). 

    

( )

( ) ( )

( )
( 1)

( , , , )

.........................
( , , , )

n
x y n

n n

n
x y n

k k z

k k z

ω

ω+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

R

u c
R

             (3.84) 

 

  

( )

( ) ( )

( )
( 1)

( , , , )

.........................
( , , , )

n
x y n

n n

n
x y n

k k z

k k z

ω

ω+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

- S

σ c
S

             (3.85) 
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where 

   ( ) ( ) ( )
1( , , , ) ( , , , )

Tn n n
x y n x y nk k z k k zω ω+⎡ ⎤= ⎣ ⎦u v v            (3.86) 

   ( ) ( ) ( )
1( , , , ) ( , , , )

Tn n n
x y n x y nk k z k k zω ω+⎡ ⎤= ⎣ ⎦σ - f f            (3.87) 

In equations (3.86) and (3.87), ( )nu denotes a vector of generalized coordinates 

for the thn  layer whose element is the Fourier transforms of displacements and pore 

pressure of top and bottom surfaces of the thn  layer. Similarly, ( )nσ denotes a 

generalized force vector whose elements are the Fourier transforms of traction and fluid 

displacements of the top and bottom surfaces of the thn  layer. The matrices ( )nR and 
( )nS in equation (3.84) and (3.85) are identical to R  and S  defined in equations (3.80) 

to (3.83), respectively with the material properties of the thn  layer being used in the 

definition and nz z=  or 1nz + . The vector ( )nc  in equations (3.84) and (3.85) is the 

arbitrary coefficient vector corresponding to the thn  layer. 

 The equation (3.84) can be inverted the express ( )nc  in terms of ( )nu and 

substitution in equation (3.85) yields 

    ( ) ( )( ) n nnσ = K u ,  1, 2, 3, .... ,n N=             (3.88) 

   ( ) ( ) ( ) 1[ ]n n n −K = S R               (3.89) 

where ( )nK  can be considered as an exact stiffness matrix in the Fourier transform 

space describing the relationship between the generalized displacement vector 
( )nu and the force vector ( )nσ for the thn  layer. 

An exact stiffness matrix, ( )nK  corresponding to poroelastodynamics is very 
complicated since it involves the manipulation of fully populated 8×8 unsymmetric 
complex matrices. The computer algebra package Mathematica (Wolfram, 1988) is 
used to obtain ( )nK  explicitly. Mathematica results in very lengthy and 
complicated expressions for elements of ( )nK  which have to be manipulated and 
reduced extensively to obtain expressions which enhance the computational 
efficiency of the solution scheme. After lengthy manipulations, it is found that ( )nK  
is symmetric and its elements are given in Appendix A.1 
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For the underlying haft space, due to the regularity condition at z →∞ , the 

general solution involves only four arbitrary coefficients in the vector ( 1)N+c , i.e. ( 1)NA + , 
( 1)NC + , ( 1)NE + and ( 1)NG + . The stiffness matrix of the bottom half space can be 

expressed as 

     ( ) ( )1 1( 1) N NN + ++σ = K u              (3.90) 

    ( )1 ( 1) ( 1) 1[ ]N N N+ + + −K = S R             (3.91) 

where 

   ( 1) ( 1)
1( , , , )

TN N
x y Nk k z ω+ +

+⎡ ⎤= ⎣ ⎦u v             (3.92) 

             ( 1) ( 1)
1( , , , )

TN N
x y Nk k z ω+ +

+⎡ ⎤= −⎣ ⎦σ f             (3.93) 

The matrices ( 1)N+R and ( 1)N+S in equation (3.91) are 

3 31 2

31 2

31 2

1 2

3
1 2

( 1)
1 2

1 1 2 2

0( , , , )

0

0 0

yz zz z
x x

x x
zz zN

y yx y

zz z

z z

k
a k e a k e e e

k k

a k e a k e ek k z

a e a e e

e e

γ γγ γ

γγ γ

γγ γ

γ γ

γ

ω

γ γ

− −− −

−− −+

−− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R            (3.94) 

 

( )
3 31 2

3 31 2

31 2

31 2

2 2
3 3

1 2

( 1)
1 2 3

3 4 3

1 2

( , , , )

2 0

0

x yz zz z
x x

x x
N z zz z

x y y y y

zz z

zz z

k k
g k e g k e e e

k k
k k z g k e g k e k e e

g e g e r e

h e h e e

γ γγ γ

γ γγ γ

γγ γ

γγ γ

μ γ μ γ
μ μ

ω μ μ μ μγ

μ

ϑ

− −− −

+ − −− −

−− −

−− −

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

S          (3.95) 

The element of the stiffness matrix of the underlying half space, ( 1)N+K  are 

given in Appendix A.2. Note that exponential terms of xk , yk  and ω  are not 

involved in the expression of ( 1)N+K  and its elements depend on the material 

properties of the underlying half space and the Fourier transform parameters xk , 

yk  and ω . 
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3.2.2.2 Global stiffness matrix 
  The global stiffness matrix of a multi-layered half space is 

assembled by using the layer and half space stiffness matrices together with the 

continuity conditions of tractions and fluid flow at the layer interfaces. For example, 

the continuity conditions at the thn  interface can be expressed as  

  ( 1) ( ) ( )( , , , ) ( , , , )n n n
x y x yk k z k k zω ω− − =f f t            (3.96) 

where ( )nf  is identical to f  defined in equation (3.76) with a superscript n  denoting the 

layer number and 
( )

( ) ( ) ( ) ( )
Tn

n n n n z
x y z

QT T T
iω

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

t              (3.97) 

where ( ) ( , , )n
iT i x y z= and ( )n

zQ denote the Fourier transforms of loadings and fluid 

source (i.e. fluid injection at discharge in the i − direction ( , , )i x y z=  equal to 
( )

( )
n

n i
i

wQ
t

∂
=

∂
) respectively applied at the thn  interface. If the thn  interface is not 

subjected to external loading and fluid source then ( )nt is a null vector. 

The consideration of equation (3.96) at the each layer interface together with 

equations (3.88) and (3.90) results in the following global equation system. 

 

 

 

                  (3.98) 

 

 

 

 The global stiffness matrix of equation (3.98) is a symmetric matrix and has a 

band width equal to eight. The number of unknowns in the global equation system is 

equal to 4( N +1). The solutions of equation (3.98) represent the Fourier transform of the 

displacement and pore pressure at the layer interfaces. In this study, time domain 

solutions are obtained by employing the fast Fourier transform. 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(1)K

(2)K

( )K N

(1) (1)

(2) (2)

( ) ( )

( 1) ( 1)

u t
u t

u t
u t+ +

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

N N

N N

( 1)K +N
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 It should be noted that if an impervious rigid base is presented at 1Nz z +=  the 

global equation will be modified according to the following condition. 

 ( 1)
1( , , , ) 0,N

j Nu x y z t+
+ =  , ,j x y z=  and ( 1)

1( , , , ) 0N
z Nw x y z t+

+ =          (3.99) 

 
3.3 Moving Load Functions  

3.3.1 General loading function of moving loads 

 The vehicles induced vibrations are generally interacting with the ground 

surface. General function of a moving load can be considered into two parts as shown in 

Figure 2. The first part relates to the distribution of moving loads pattern as ( , )x ct yφ −  

where c  is the velocity of moving load along x -direction and ( , )x yφ is the distribution 

pattern of the axle loads. The second part is generated by the dynamic interaction 

between the loading and the ground surface, which is indicated by ( )f t . Therefore, the 

moving load ( , , )P x y t  can be similarly written as (Hung and Yang, 2001). 

   ( , , ) ( , ) ( )oP x y t P x ct y f tφ= −            (3.100) 

where oP  denotes the magnitude of the moving load.  

The triple-dimensional Fourier transform of equation (3.100) can be expressed 

as 

   ˆ( , , ) ( , ) ( )x y o x y xP k k P k k f k cω φ ω= +           (3.101) 

where the symbol 
∧

 denotes the Fourier transform with respect to time  variable and the 

symbol  denotes the double-dimensional Fourier transform with respect to x  and y  

coordinates respectively. 

3.3.2 Distribution function of the loading 
Theoretically, the distribution function of the moving load should be determined 

based on the field data collected for the wheel loads. However, by using simple models, 

the most fundamental features of vehicle-induced ground surface can be represented. 
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Based on considerations the different pattern of distribution function, ( , )x ct yφ −  can 

be expressed depending on the types of wheel load, for example. 

a) Single moving point load 

  For a point load, the distribution function along the free surface can be 

written in the Dirac’s delta function as 

( , ) ( ) ( )x ct y x ct yφ δ δ− = −           (3.102) 

Correspondingly, due to the double-dimensional Fourier transform 

( , ) 1x yk kφ =             (3.103) 

which is constant regardless of the value of xk  and yk . 

b) Uniformly distributed wheel load. 

  In reality, the contact point between a wheel and road is not actually a 

point but contact area; therefore it can be represented according to the nature of wheel 

load with a uniformly distributed load as 

  
1 , and 

( , )
0 ,

a x ct a b y b
x ct y

otherwise
φ

− ≤ − ≤ − ≤ ≤⎧
− = ⎨

⎩
        (3.104) 

where a  and b  are constant, representing the half width of a unit distributed load. 

Therefore, according to the double-dimensional Fourier transform 

4sin( )sin( )ˆ( , ) x y
x y

x y

ak bk
k k

k k
φ =           (3.105) 

 

3.3.3 Interaction force between wheel and road 
 In general, the interaction force between the wheels and the ground surface may 

be simulated by a quasi-static term of constant value plus a dynamic term that varies 

with time, t . The static term is contributed mainly by the wheel weight, whereas the 

dynamic term by the track irregularities and vehicle defects. In the present study, the 
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dynamic term is assumed to depend on only a single frequency oω , and can be 

expressed as  

( )( ) e oi tf t ω= .            (3.106) 

 The Fourier transform of dynamic function ˆ ( )xf k cω +  can be expressed as 

    0ˆ (
1)x xf k kc
c c

ω
ω ωδ+
−⎛ ⎞= +⎜ ⎟

⎝ ⎠
         (3.107) 

It is noted that if 0oω =  then ( ) 1f t =  implying that the moving load with no 

oscillation is considered. For the case that 0oω ≠ , the moving load oscillates by itself at 

a constant frequencies ( )/ 2o of ω π= . 

 

3.4 The Fast Fourier Transform 

 The fast Fourier transform is another method for calculating the Discrete 
Fourier transform. It is incredibly more efficient to reduce the computation time 
while produces the same result as the other approaches. 

There is a connection between the discrete inverse Fourier transform and the 

continuous inverse Fourier transform. Because the discrete inverse Fourier transform 

yields a close approximation to continuous inverse Fourier transform. The continuous 

inverse Fourier transform is defined as (Brigham, 1988) 

2ˆ( ) ( ) i f th t h f e dfπ
∞

−∞

= ∫           (3.108) 

 Consider the discrete inverse Fourier transform given by 

1
2 /

0

1 ˆ( )
N

i nk N

n

nh kT h e
N NT

π
−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ , 0, 1,..., 1k N= −        (3.109) 

where N  and T  are defined as the sample number and the sample interval 
respectively. 

 Consider the triple-dimensional Fourier transform solutions ( , , , )x yk k z ωΩ  
expressed in terms of the horizontal wave numbers and the frequency ω . The dynamic 
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response can be represented by ( ), , ,x y z tΩ in terms of the horizontal coordinate and 
time by using the triple-dimensional inverse Fourier transform as 

( )
( )

i i i
3

1, , , ( , , , )
2

x yk x k y t
x y x yx y z t k k z e dk dk dωω ω

π

∞ ∞ ∞
+ +

−∞ −∞ −∞

Ω = Ω∫ ∫ ∫         (3.110) 

In this study, the appropriate evaluation waveform has been used to perform the 

inverse Fourier transform with respect to the horizontal wave numbers and the fast 

Fourier transform with respect to the frequency domain as 

( )
( )

1
i i /

2
0

1, , , , , ,
2

x y
N

k x k y ink No
x y x y

n

T nx y z kT k k z e dk dk e
N NTπ

∞ ∞−
+

= −∞ −∞

⎡ ⎤⎛ ⎞Ω = Ω⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∫ ∫  

, 0, 1,..., 1k N= −     (3.111) 

where it is assume that there are the number of sample points, N  ( 2rN = , where 

r  is an integer number) and the sample interval, T  ( /oT T N=  , where  oT  is the 

period of sample). 

 

3.5 Infinite Plate on Multi-layered Poroelastic Medium 

 3.5.1 Mathematical models of infinite elastic thin plate 
 Consider an infinite elastic thin plate resting on a multi-layered poroelastic half 

space. The contact surface between the plate and the supporting medium assumed to 

be smooth and either permeable or impermeable. The plate behaves according to 

Kirchhoff theory. Let the reaction of the ground to the plate be denoted by ( , , )F x y t . 

According to Kirchhoff small deflection thin plate theory, the governing equation can be 

written as (Kim, 2003) 

4 4 4

4 2 2 4

2

2

( , , ) ( , , ) ( , , )
2

( , , )
( , , ) ( , , )

p p p
p

p
p

w x y t w x y t w x y t
D

x x y y

w x y t
m P x y t F x y t

t

⎡ ⎤∂ ∂ ∂
+ + +⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∂

= +
∂

           (3.112) 
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where pw  is the vertical displacement of the plate; pm  is the mass density of the plate 

per unit area and ( , , )P x y t is the traffic load pressure acting on the plate. In addition, 

pD  is the flexural rigidity of the elastic plate defined as 

    
3

212(1 )
p

p
p

Eh
D

ν
=

−
           (3.113) 

where pE , ph  and pν  is the elastic modulus, thickness and Poisson’s ratio of the plate 

respectively. 

The stresses along x  coordinate (longitudinal stress) and y  coordinate 

(transverse stress) can be obtained by 

   
2 2

2 2 21
p p p

x p
p

E w w
x y

σ ν
ν

⎛ ⎞∂ ∂
= +⎜ ⎟⎜ ⎟− ∂ ∂⎝ ⎠

          (3.114) 

   
2 2

2 2 21
p p p

y p
p

E w w
y x

σ ν
ν

⎛ ⎞∂ ∂
= +⎜ ⎟⎜ ⎟− ∂ ∂⎝ ⎠

          (3.115) 

Applying the triple-dimensional Fourier transform to equation. (3.112), the 

following equation can be obtained 

 ( )22 2 2 ( , , ) ( , , ) ( , , )p x y p p x y x y x yD k k m w k k P k k F k kω ω ω ω⎡ ⎤+ − = +⎢ ⎥⎣ ⎦
        (3.116) 

 
3.5.2 Boundary condition of infinite plate on soil medium  

 The continuity conditions of interaction between infinite thin plate and soil 

medium can be considered for two different hydraulic boundary conditions as 

a) For a fully permeable infinite elastic plate, (1) ( , , ) 0p x y t = . 

The solution for displacement and pore pressure at the surface and each layer 

interface can be determined according to the following conditions. 

   (1) (1) (1) (1)u 0
T

x y zu u u⎡ ⎤= ⎣ ⎦            (3.117) 
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(1)

(1)t 0 0
T

zQF
iω

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

           (3.118) 

   [ ](i)t 0 0 0 0 T= ,  2, 3,..., 1i N= +          (3.119) 

 

b) For a fully impermeable infinite elastic plate, (1) ( , , ) 0zQ x y t = . 

The solution for displacement and pore pressure at the surface and each layer 

interface can be determined according to the following conditions. 

   (1) (1) (1) (1) (1)u
T

x y zu u u p⎡ ⎤= ⎣ ⎦           (3.120) 

   (1)t 0 0 0
T

F⎡ ⎤= −⎣ ⎦            (3.121) 

   [ ](i)t 0 0 0 0 T= ,  2, 3,..., 1i N= +          (3.122) 



CHAPTER IV 
 

NUMERICAL SOLUTIONS 
 

 This chapter is concerned with the numerical results obtained from the 

solution scheme described in Chapter III. A computer program has been 

developed to evaluate the displacements, pore fluid pressure and stresses. 

Convergence and stability of numerical solutions are investigated. The 

accuracy of the present solution is verified by comparing with the existing 

solutions given in the literature. Numerical results are presented in this 

chapter to demonstrate the applicability of the present solution scheme and to 

portray the influence of governing parameters on the interaction problem. 

4.1 Numerical Solution Scheme 
The solution scheme described in Chapter III is implemented into a 

computer program. The properties of poroelastic materials considered in the 

numerical study are given in Tables 1 to 4. The properties of pavement 

materials given by Kim and Roesset (1998) are used in the numerical solutions 

of a plate on multi-layered medium as shown in Table 5.  

In order to obtain the time domain solutions, the inversion of the triple-

Fourier transform of displacements, stresses and pore pressure expressed in 

the form of (3.18) must be performed. By using the property of Dirac’s delta 

function, the inversion of the Fourier transform with respect to t  can be 

performed analytically by replacing x  with ( ) /o cω ω− − . Similarly, the inversion 

of the Fourier transform with respect to x  can be performed by replacing t  

with ( )x ok c ω− − . As a result, the original triple integral is reduced to a double 

integral. In this study, the numerical evaluation of these double integrals is 

performed by using the appropriate quadrature schemes proposed by 

Piessens et al. (1983) for the inverse transform and the fast Fourier transform. 

The numerical quadrature scheme subdivides the interval of integral and 

employs a 21-point Gauss-Kronrod rule to estimate the integral over each 

subinterval. The error for each subinterval is estimated by comparing of the 
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results obtained from a 21-point Gauss-Kronrod rule with those from a 10-

point Gauss-Kronrod rule. The subinterval with the largest estimated error is 

then bisected and this procedure is applied to both halves. This bisection 

procedure is continued until the error criterion is reached. For the fast Fourier 

transform, the number of sample points of the calculated function must be fine 

enough to accurately represent the function. To satisfy of the number of a 

sample point, N =4096 is used with frequency number -8 ( or )xk ω≤ ≤ 8. 

4.2 Comparison with Existing Solutions 
The accuracy of the present solution scheme of a moving load is 

verified by comparing the results from the present scheme with the existing 

solutions. Figure 6(a) presents a comparison of the time histories of vertical 

displacement at an observation point (0,0,10m) for a point load moving with 

constant subsonic and supersonic velocity at 700 and 2000 m/s respectively 

from the present solutions with those given by Barros and Luco(1994).The 

properties of an ideal elastic half space are simulated by choosing very small 

values for the poroelastic parameters ( , , ,fb M mρ and α  are set to 10-3). It is 

evidented that the two solutions are in an excellent agreement. Hung and 

Yang (2001) considered the case of a viscoelastic half space subjected to a 

surface moving load. The comparison between the normalized vertical 

displacements obtained from the present solutions and those of Hung and 

Yang (2001) is presented in Figure 6(b). The results are plotted at the 

observation point (0, 0, 1 m) during the time 0.04 ≤  t ≤ 0.04 seconds. Two 

kinds of loading speeds are considered, i.e. c = 50 m/s and 150 m/s. Note that 

the time t = 0 sec corresponds to time when the applied load is passing 

through the origin. Lu and Jeng (2007) studied the case of a homogenous 

poroelastic half space subject to a moving normal point load zF . Three cases 

of loading speed are investigated, which are corresponding to 

0.1 SHc v= , 0.5 SHc v=  and 0.9 SHc v= , where SHv is defined as /SH sv μ ρ= . In 

addition, the coordinates 2 x x ct′≤ = − ≤ 2 m and y z= = 1 m are considered. 

The normalized vertical displacement and pore pressure are defined as 
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/zz zz R R zu u a Fμ∗ =  and 2 /R zp pa F∗ =  where the reference quantities are a 

reference length ( )Ra  and shear modulus ( )Rμ  respectively. The comparison 

between the present solutions and the solutions given by Lu and Jeng (2007) 

shows an excellent agreement between the two solutions. 

The final comparison is corresponding to the case of a multi-layered 

elastic half-space subjected to a moving point load given by De Barros and 

Luco (1994) and shown in Figure 8. The layered medium consists of five layers 

of 4.0m overlying a half space. The point load moves along x -direction over 

the free surface with constant supersonic velocity c = 700 m/s. The observed 

point is located in the third layered at ( , , )r r rx y z = (0,0,10m.). The vertical 

displacement is normalized as ( )/z zu z P uμ∗ =  where z  and μ  are a 

reference length and the shear modulus in the underlying half space, 

respectively and P  is the amplitude of moving load. Once again, 

, , ,fb M mρ and α  are set to 10-3. It is clearly seen from Figure 8 that very 

good agreement between the present solution and the one from Barros and 

Luco (1994) is observed. The accuracy of the present solutions is thus 

confirmed by these comparisons. 

4.3 Numerical Results and Discussion 
In this section, the dynamic response of a poroelastic medium under a 

moving point load of magnitude oP  is investigated. All length parameters are 

nondimensionalized with respect to a unit length Ra , i.e., / Rx x a∗ = , / Ry y a∗ = , 

/ Rz z a∗ = . The normalized time, frequency and load velocities are defined as 

( / ) /R R Rt t a μ ρ∗ = , /R R Raδ ω ρ μ=  and / shc c c∗ =  respectively where Rμ  is 

the reference shear modulus; Rρ  is the reference density; and /sh R Rc μ ρ=  

is the shear wave velocity. In addition, the nondimensionalized material 

properties are defined as / Rλ λ μ∗ = , / RM M μ∗ = , /f f Rρ ρ ρ∗ = , / Rm m ρ∗ =  

and / R Rb ab ρ μ∗ = . The results are plotted at the observation point z∗ =1 for 

different values of loading velocity. Figures 3 to 5 show the geometries of a 

homogenous poroelastic medium, a multi-layered poroelastic half space and 

an infinite elastic plate overlaying a multi-layered poroelastic half space 
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respectively considered in the numerical study. In addition, the case of a 

homogeneous poroelastic layer overlaying a rigid half space is also 

considered as shown in Figure 3(b).  

 4.3.1 Response of a homogenous poroelastic half space 
 The dynamic response of a homogenous poroelastic half space 

to a moving load as shown in Figure 3(a) is considered first. Four poroelastic 

materials, identified as materials HA-1, HA-2, HA-3 and HA-4 and a dry elastic 

material (HA-5) are considered in the numerical study. The properties of these 

materials are given in Tables 1 and 2. The dynamic responses are obtained at 

the point with coordinate ( , , ) (0,0,1)x y z =  for a homogenous poroelastic half 

space. 

  Time histories of the normalized vertical displacement 

/zz R R zzu a u Pμ∗ =  and the normalized pore fluid pressure, 2 /Rp pa P∗ =   are shown 

in Figures 9 and 10 respectively for a homogeneous poroelastic half space 

subjected to a moving point load P on the free surface at the velocities 0.5 shc  

and 1.5 shc . It can be seen from Figure 9 that the peak of vertical displacement 

occurs close to the instant t∗ =0 for both the subsonic case ( )0.5 shc c∗ =  where 

the load velocity is less than shear wave velocity, and the supersonic case 

( )1.5 shc c∗ =  where the load velocity is more than shear wave velocity. It is 

found that the peak magnitude of the supersonic case is higher than that of 

the subsonic case and it occurs immediately after the instant t∗ =0. The results 

presented in Figure 10 indicate the significant influence of the poroelastic 

parameters on the pore pressure. Since the value of parameter b  is inversely 

proportional to the permeability of the porous medium the material HA-4 then 

has the lowest permeability. Therefore, the highest pore pressure generated 

under a moving load is observed in the poroelastic half space HA-4 followed 

by the half spaces HA-3, HA-2 and HA-1 respectively. Figure 11 shows the 

normalized of vertical displacement and fluid pore pressure of the material 

HA-3 for different values of oscillation frequencies of a moving load.  

 Contours of the normalized vertical displacement and pore 



 
 

29 

pressure along the surface of the homogeneous poroelastic half space HA-2 

under a moving surface load are presented in Figures 12 and 13 respectively. 

The moving load is travelled along the x − axis in moving reference frame. 

Three cases of the moving load velocity are considered, namely, subsonic 

( )0.5 shc c∗ = , transonic ( )1.0 shc c∗ =  and supersonic ( )1.5 shc c∗ =  velocities. The 

results are plotted at the instant time t∗ = 0, which is the moment that the 

moving point load passes through the origin. It is evident from Figures 12 and 

13 that the response of the half space depends significantly on the velocity of 

the load. For a moving load with low velocity (subsonic case), the contour of 

vertical displacement and pore pressure are almost symmetric and anti-

symmetric respectively with respect to the y − axis ( x =0) as shown in Figures 

12(a) and 13(a). As the speed increases, the effect of loading speed is more 

obvious. The response shows more asymmetrical and the Mach radiation 

effect can be observed. The maximum displacements occur at the point 

behind the moving load, whereas the maximum positive pore pressure occurs 

before the arrival of the moving load. The contour of pore pressure shown in 

Figure 13 indicates two distinct zones due to effects from the moving load. 

The negative pore pressure is observed in the vicinity behind the moving load. 

Note that the presence of negative pore pressure will increase the risk for 

liquefaction in the porous medium. 

 Figure 14 shows the vertical displacement at the free surface 

( 0z = ) of a homogenous poroelastic layer HA-3 overlying an impermeable 

rigid base (see Figure 3(b)) induced by a rectangular moving surface load 

with different velocities in a moving reference frame. Three cases are 

considered for different layer depths, i.e. z∗ =1, 10 and 30. It can be seen that 

the vertical displacement for the thickness z∗ =1 is smaller than those of z∗ =  

10 and 30. In addition, the moving load velocity has less influence on vertical 

displacement for the thickness z∗ =  1 than those of  z∗ =  10 and 30. 
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 4.3.2 Response of a multi layered poroelastic half space 
 The dynamic response of a multi-layered poroelastic half space 

as shown in Figure 4 to moving surface loads is presented next. The multi-

layered poroelastic half space consists of two layers and an underlying half 

space. The thickness of the first and second layers is set to Ra . Three layer 

systems are considered with the material properties being given in Table 3. 

Note that b  = 0 for all layers of the system A whereas for the systems B and 

C, the values of b  parameter for each layer are shown in Table 4.  

 Figures 15 and 16 present time histories of the nondimensional 

vertical displacement and the nondimensional pore pressure for the three 

poroelastic layer systems, namely system A, B and C, subjected to a moving 

point load at the velocities 0.1 shc , 0.5 shc  and 0.9 shc . It is found that both 

displacement and pore pressure in all layered systems are significantly 

influenced by the loading velocity. The maximum value of the peak response 

is found when the loading velocity is equal to 0.9 shc  whereas the lowest one 

occur when 0.1 shc c∗ = . It is also found that the material parameter b  and the 

loading velocity have more influence on the fluid pore pressure than the 

vertical displacement. Similar behavior is also observed in Figures 17 and 18 

for the responses in moving reference frame. Figure 19 shows the profile of 

normalized vertical displacement and fluid pore pressure along the z − axis of 

a multi-layered poroelastic half space due to the moving surface load. The 

vertical displacement rapidly decreases with depth in the first layer for all 

velocities and all layer systems. On the other hand, the pore pressure in the 

first layer increases from zero at the free surface reaching the maximum value 

in the first layer. Both displacement and pore pressure gradually decrease 

with the depth in the second layer and the underlying half space 

 Figure 20 presents the variation of the nondimensional vertical 

displacement and the nondimensional pore pressure with the normalized 

oscillation frequency in the range 0 2δ≤ ≤  for a moving load at the velocity 

0.5 shc . It is observed from Figure 20(a) that the displacement initially 
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increases reaching the maximum value in the vicinity of δ =0.5 before 

gradually decreasing with the frequency. Note that the maximum value is 

found in the layered system A. The pore pressure response presented in 

Figure 20(b) indicates that initially it remains almost constant in the frequency 

rang 0 0.4δ≤ ≤ . Thereafter, the pore pressure gradually increases with 

increasing δ for the systems B and C. For the system A, it decreases reaching 

the lowest value when 0.5δ =  before gradually increasing withδ . 

  The final problem is the case of a moving point load on an 

infinite plate resting on a multi-layered poroelastic half-space. The geometry 

of this problem is shown in Figure 5 with the material properties of the plate 

being shown in Table 5, which represent the case of pavement materials. The 

variation of the normalized vertical displacements of a moving load on the 

infinite plate on layered system B with the loading velocity is shown in Figure  

21. The flexural rigidity of the plate pD∗  equal to 0.005, 0.01, 0.05 and 0.1 

where 3/p p R RD D aμ∗ =  are considered for both fully permeable and 

impermeable cases. The case of the half-space without a plate is also 

presented for comparison. It can be seen from Figure 21 that the vertical 

displacements increase slowly in the range 0 0.5c∗≤ ≤  for both permeable 

and impermeable plates with all flexibilities. Thereafter, they rapidly increase 

reaching the peak values when 0.8c∗ > . The earliest peak is found in the case 

of the half-space without plate followed by pD∗  = 0.005, 0.01, 0.05 and 0.1 

respectively. The pore pressure response under the impermeable plate 

presented in Figure 22. It is found that the pore pressure decreases with the 

loading velocity for all plate flexibilities. It is also observed that more pore 

pressure is generated under a plate with more flexibility. Therefore, the 

maximum pore pressure occurs under the plate with pD∗  = 0.005 followed by 

pD∗ = 0.01, 0.05 and 0.1 respectively. 

 
 



 

 

CHAPTER V 
 

CONCLUSION 
 

In this thesis, the dynamic response of a multi-layered poroelastic 
medium subjected to moving loads with constant velocity is investigated. 
Analytical solutions in the frequency and wave number domains for a 
poroelastic material are derived by using the Fourier integral transform. An 
exact stiffness matrix method has been employed to study the dynamic 
response of a multi-layered poroelastic medium under transient loading. Time 
domain solutions are obtained by using the fast Fourier transform method. The 
numerical accuracy of the present exact stiffness matrix method is confirmed 
by comparing with the existing solutions give in the literatures. Excellent 
agreement is observed through several independent comparisons. Major 
findings can be summarized as follows: 

1. The influence of the parameter b , which is the internal friction of a 
poroelastic medium on the vertical displacement and the fluid pore 
pressure is more significant when the velocity of the moving load 
increases. The effect of the parameter b  on the vertical 
displacement is not apparent for the low velocity loading. 

2. The magnitude of vertical displacement of a poroelastic half space 
generated under a moving load is smaller when compared to that 
of an ideal elastic half space. 

3. Transonic velocity loading generates larger displacement and fluid 
pore pressure than supersonic and subsonic velocity loading. 

4. The influence of oscillation loading generates larger fluid pore 
pressure when the internal friction of a poroelastic medium and the 
loading velocity are increased. 

5. The magnitude of the vertical displacement decreases when the 
flexural rigidity of the elastic plate, pD  increases. 

The numerical solution scheme developed in this thesis is applicable 
for several practical problems in civil engineering. For example, seismic 
response of tunnels and pipelines buried in layered poroelastic soils, ground 
vibration induced by dynamic loading, dynamic response of pile or pile group 
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in layered soil, and the material characterization from the in-situ tests such as 
the Falling Weight Deflectometer (FWD). 
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Table 1. Material properties of a homogeneous poroelastic half space. 

 μ
†

 λ
†

 M
†

 ρ
‡

 fρ
‡

 m
‡

 α  
Material HA-1 to HA-4 2.0 2.0 24.4 2.0 1.06 2.2 0.97 

Material HA-5 2.0 2.0 - 2.0 - - - 

 †
 x 108 N/m2          ‡ x 103 kg/m3 

 

 

Table 2. Values of parameter b  for different homogeneous poroelastic  

half spaces. 

Material HA-1 HA-2 HA-3 HA-4 HA-5 

b ( N s/m4 ) 

 

6.32 x 102 

 

1.45 x 106 

 

6.32 x 106 

 

6.32 x 107 

 

- 

 

 

 
Table 3. Material properties of a three-layered poroelastic half space. 

 μ
†

 λ
†

 M
†

 ρ
‡

 fρ
‡

 m
‡

 α  
First layer 2.5 5.0 25.0 2.0 1.0 3.0 0.95 

Second layer 1.25 1.88 18.8 1.6 1.0 1.8 0.98 

Half space 10.0 10.0 20.0 2.4 1.0 4.8 0.9 
†
 x 108 N/m2               ‡ x 103 kg/m3 
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Table 4. Values of parameter b  for different poroelastic layered systems. 

 First layer 

(1)b  
(N s/m4) 

Second layer 

(2)b  
(N s/m4) 

Half space 

(3)b  
(N s/m4) 

system A 0 0 0 

system B 1.5 x 106 7.5 x 105 4.5 x 106 

system C 1.2 x 107 7.5 x 105 4.5 x 106 

 

 

Table 5. Properties of pavement material. 

 pE  

(x106 N/m2) 
pv  

 
ph  

(cm) 
pm  

(kg/m2) 

Flexible pavement 3445 0.35 15.24 354 

     

 



 

 

36 

 

 
(a)           (b) 
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  (c) 

 

Figure 1 Geometry of the poroelastic half space models 

     (a) A homogeneous poroelastic half space subject to  

a moving load on the free surface. 

   (b) A homogeneous poroelastic half space subject to  

a moving load in the interior of the half space. 

                  (c) A multi-layered poroelastic half space subject to  

a moving load on the free surface. 
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( )f t

( , )φ −x ct y

 
Figure 2 Schematic of a general moving load  

 

 
          (a) 

 

 
          (b) 

Figure 3 Geometry of a homogenous poroelastic medium 

considered in this study. 

  (a) Homogeneous poroelastic half space  

                  (b) Homogeneous poroelastic rigid half space 
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Figure 4 Geometry of a multi-layered poroelastic half space system 

considered in this study 

 

 

 
Figure 5 Geometry of pavement on a multi-layered poroelastic half space system 

considered in this study 
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(b) 

Figure 6 Comparison of the normalized vertical displacements with time induced by a 

moving point load of a homogenous elastic half space; (a) Barros&Luco(1994) and (b) 

Hung&Yang(2001). 
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(b) 

Figure 7 Comparison of the normalized dynamic responses induced by a moving point 

load of a homogenous poroelastic half space in moving reference frame; (a) vertical 

displacements and (b) fluid pore pressure. 
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Figure 8 Comparison of the normalized vertical displacements with time induced by a 

moving point load of a multi-layered elastic half space. 
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(b) 

Figure 9 Time histories of the normalized vertical displacement at / 1Rz a =  of a 

homogenous poroelastic half space induced by a moving point load ( 0)δ =  with 

different material types: (a) c=0.5csh and (b) c=1.5csh . 
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(b) 

Figure 10 Time histories of the normalized fluid pore pressure at / 1Rz a =  of a 

homogenous poroelastic half space induced by a moving point load ( 0)δ =  with 

different material types: (a) c=0.5csh and (b) c=1.5csh . 
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(b) 

Figure 11 Time histories of the normalized dynamic responses at / 1Rz a =  of a 

homogenous poroelastic half space for a material HA-3 with different oscillation 

frequencies: (a) vertical displacements and (b) fluid pore pressures. 
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(c)  

Figure 12 Contour of the normalized vertical displacement surface at / 1Rz a =  induced 

by a moving point load ( 0)δ =  for material HA-2 in moving reference frame; (a) 

c=0.5csh, (b) c=1.0csh and (c) c=1.5csh  
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(c) 

Figure 13 Contour of the normalized fluid pore pressure surface at / 1Rz a =  induced by 

a moving point load ( 0)δ =  for material HA-2 in moving reference frame; (a) c=0.5csh, 

(b) c=1.0csh and (c) c=1.5csh 
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Figure 14 The normalized vertical displacement at the free surface ( / 0)Rz a =  of a 

homogenous poroelastic layered on rigid half space induced by a rectangular load 

( 0)δ =  for material HA-3 with different depth of the layer in a moving reference frame: 

(a) H 1∗ = , (b) H 10∗ =  and (c) H 30∗ =  
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(c)        

 

Figure 15 Time histories of the normalized vertical displacement at / 1Rz a =  of a multi-

layered poroelastic half space induced by a moving point load ( 0)δ = ; (a) 0.1 shc c= , 

(b) 0.5 shc c=  and (c) 0.9 shc c=  
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Figure 16 Time histories of the normalized fluid pore pressure at / 1Rz a =  of a multi-

layered poroelastic half space induced by a moving point load ( 0)δ = ; (a) 0.1 shc c= , 

(b) 0.5 shc c=  and (c) 0.9 shc c=  
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Figure 17 The normalized vertical displacement at / 1Rz a =  of a multi-layered 

poroelastic half space induced by a moving point load ( 0)δ =  in a moving reference 

frame; (a) 0.1 shc c= , (b) 0.5 shc c=  and (c) 0.9 shc c=  
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Figure 18 The normalized fluid pore pressure at / 1Rz a =  of a multi-layered poroelastic 

half space induced by a moving point load ( 0)δ =  in a moving reference frame; (a) 

0.1 shc c= , (b) 0.5 shc c=  and (c) 0.9 shc c=  
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(b) 

Figure 19 The normalized dynamic responses along the depths of a multi-layered 

poroelastic half space induced by a moving point load ( 0)δ =  in a moving reference 

frame; (a) vertical displacement and (b) fluid pore pressure. 
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(b) 

Figure 20 The normalized dynamic responses with oscillation frequencies at / 1Rz a =  

of a multi-layered poroelastic half space induced by a moving point load in a moving 

reference frame; (a) vertical displacement and (b) fluid pore pressure. 
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(b) 

Figure 21 The normalized vertical displacement at / 1Rz a =  of a multi-layered 

poroelastic half space (system B) underlying infinite thin plate induced by a moving 

point load in a moving reference frame; (a) fully permeable plate and (b) fully 

impermeable plate. 
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Figure 22 The normalized fluid pore pressure at / 0Rz a =  of a multi-layered poroelastic 

half space (system B) underlying a fully impermeable of infinite thin plate induced by a 

moving point load in a moving reference frame. 
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APPENDIX 
 
 

 This appendix presents the elements of the layer stiffness matrix ( )nK  and 

the underlying half space stiffness matrix ( 1)NK +  for are generated the global 

stiffness matrix of a multi-layered half space. 

 
A.1 The elements of the layer stiffness matrix, ( )nK  

The elements of each layer stiffness matrix of fully populated 8×8 symmetric 

complex matrices are manipulated and reduced extensively to obtain expressions 

which enhance the computational efficiency of the solution scheme as shown 

 

1st row: 

11k = ( ) ( )( )( 2 2 2 2 2
1 2 3 3 3 32 3 1 3 11 13 328 y n y x

l

a a k
R

k kμ α γ ψ γ γ ψ− Γ + Γ − − Γ Γ  

 ( ) ( ) ( ))2 2 2 2 2 2 2 2
3 4 12 31 32 1 2 2 31 3 322 2x x yk a a S k kγ ψ ψ ψ γ ψ+ − Γ Γ + − Γ −            (A.1) 

12k = ( ) ( )( 2
1 2 3 3 3 32 3 1 11 13 328 x y n x

l
ya a k k k k

R
μ α γ ψ γ ψ− − Γ − Γ +Γ Γ  

( ) ( )( ))2 2 2 2
4 12 31 32 1 2 2 31 3 32 322 4 4x y x yk k a a k k kψ ψ ψ γ ψ ψ+ Γ Γ + − Γ + − + +       (A.2) 

13k = ( ) ( ) ( )( )( 2 2 2 2 231
1 2 3 3 3 3 3 1 3 11 134 3 2x n x

l

a a k k k k
R

μψ α γ γ γ γ− − + Γ − + Γ + Γ Γ  

 ( ) ( ) )2 2
3 4 12 31 1 2 3 3 2 324 3x xk a a k kγ ψ γ γ ψ+ Γ Γ + − + Γ              (A.3) 

14k = ( ) ( ) ( )(
2

2 2 21 2 31
1 2 1 12 21 2 11 22 31 1 1 2 2

x

l

S a a k a a k a a
R

μ ψ γ ψ ψ γ ψ ψ ψ γ γ− − − − +  

 ( ) ( )( )3 11 21 32 1 1 2 3 2 3 22 2 32 1 3 22 2 324 n n n n na aγ ψ ψ ψ α γ γ γ α ψ α ψ α ψ α ψ+ − − +  

 ( )( ))1 2 3 12 2 6 1 2 3 22 324 n na aγ γ γ ψ α α ψ ψ+ Γ + +              (A.4) 

15k = ( )( ) ( )( 2 2 2 2 2
3 3 1 3 11 13 3 3 4 12 312 4n y x n x

l

k k k
R
μ α γ γ α γ ψ− Γ + − Γ Γ + − + Γ Γ  

 ( ) ( ) ( ) )2 2 2 2 2 2 2 2
1 2 3 3 3 31 1 2 3 3 2 322 8 4y n x y na a k S k a a kα γ ψ α γ ψ− − Γ + + − Γ            (A.5) 
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16k = ( ) ( )( 2
3 3 1 11 13 3 4 12 31 1 2 3 3 2 322 4 4x y n x y n x y n

l

k k k k a a k k
R
μ α γ α ψ α γ ψΓ +Γ Γ − Γ Γ − − Γ  

( ) ( )( ))2 2 2 2
1 2 3 31 3 32 322 4 4x ya a k k k ψ γ ψ ψ− − Γ − − + +              (A.6) 

17k = ( ) ( )(
2

1 2 3 31
1 1 21 3 12 32

2 x
n n

l

S a a k
a

R
μ γ ψ

γ ψ α ψ α ψ
−

− +  

 ( ))2 2 11 3 22 2 32n na γ ψ α ψ α ψ+ −                (A.7) 

 

18k = ( ) ( )( )( 2 2 231
1 2 3 3 1 2 1 2 4 1 1 2 2 11 212 x n

l

S a a k a a a a
R

μψ α γ γ γ γ γ ψ ψ− − + Γ + +  

 ( ) ( )(2 2
1 2 1 2 2 2 11 1 1 21 312 x n nS a a k a a k α γ ψ α γ ψ ψ+ − − − +  

 ( ) ))12 2 12 1 22 32n nα ψ α ψ ψ+Γ − +                (A.8) 

 

2nd row: 

22k = ( ) ( )( )( 2 2 2 2 2
1 2 3 3 3 32 3 1 3 11 13 328 x n x y

l

a a k k k
R
μ α γ ψ γ γ ψ− Γ + Γ − − Γ Γ  

 ( ) ( ) ( ))2 2 2 2 2 2 2 2
3 4 12 31 32 1 2 2 31 3 322 2y y xk a a S k kγ ψ ψ ψ γ ψ+ − Γ Γ + − Γ −            (A.9) 

23 13
y

x

k
k k

k
= , 24 14

y

x

k
k k

k
= , 25 16k k=              (A.10) 

26k = ( )( ) ( )( 2 2 2 2 2
3 3 1 3 11 13 3 3 4 12 312 4n x y n y

l

k k k
R
μ α γ γ α γ ψ− Γ − − Γ Γ − − Γ Γ  

 ( ) ( ) ( ) )2 2 2 2 2 2 2 2
1 2 3 3 3 31 1 2 3 3 2 322 8 4x n y x na a k S k a a kα γ ψ α γ ψ− − Γ + + − Γ          (A.11) 

27 17
y

x

k
k k

k
= , 28 18

y

x

k
k k

k
=                (A.12) 

 

3rd row: 

33k = ( )( )27
3 2 31 1 2 11 21 32

l

a a k
R
μ γ ψ ψ ψ ψΓ

− Γ + −             (A.13) 
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34k = ( )( ) ( ) ( )(( 4 2 2 2 2 2 231
1 2 2 3 1 4 1 4 2 1 3 2 3 12 2

l

a a a g a g k a g a k g
R

a a kμψ γ γ− − + + + + +  

 ) ( ) ( )( )2 2 2 2
2 3 13 2 2 3 1 3 4 1 1 2 2 3 6 112 2a k a g a g g a a a kγ γ γ γ ψΓ − − + − − Γ  

 ( ) ( )( )2 2
1 1 4 2 3 4 1 2 2 1 3 5 212 2a k a g a g g a a a k γ γ ψ− − + + − Γ  

 ( )( ) )2
3 4 1 2 3 4 12 312g g a a k γ ψ− + + + Γ Γ             (A.14) 

35k = ( ) ( )( )7
1 1 21 3 12 1 32 2 2 11 3 22 2 32

2 x
n n n

l
n

k a
R

aμ γ ψ α ψ α ψ γ ψ α ψ α ψΓ
− − + + −        (A.15) 

36 35
y

x

k
k k

k
=                 (A.16) 

37k = ( )( ) ( )( )2 2
3 4 1 2 3 31 1 2 3 11 21 3 3 31

2 2
l

ng g a a k a k
R

aμ γ ψ α ψ ψ γ ψ− − + − − − Γ     (A.17) 

38k = ( ) ( )(( 21 2 7
2 11 3 22 2 32 1 2 3 2 12 1 22 31

2
n n n n

lR
a a kμ γ ψ α ψ α ψ γ γ γ α ψ α ψ ψΓ

− − + + −  

 ( )))2
21 3 12 1 32n nk ψ α ψ α ψ+ − +              (A.18) 

 

4th row: 

44k = ( )( )( )( 2 231
2 2 3 2 1 2 1 1 2 1 2 1 1 2 1 2 3 124 2n n

l

a k a h a a h h a
R
ψ α α γ ϑ γ γ γ ϑ γ γ γ ψ− − + − + +  

 ( ) ( )( ) ( )2
1 1 3 3 1 1 2 10 2 1 2 1 10 22 1 2 1 2 1 24 n na k a h a h a h a hα α γ γ γ γ ψ γ γ− + Γ + − − Γ + − +  

 ( ) ( ) ( )(2 4
3 2 2 12 21 1 1 11 22 31 1 2 2 1 12 21 1 2 11 22 31a a a a k a h a hγ γ ψ ψ γ ψ ψ ψ ψ ψ ψ ψ ψ− + + − −  

 ( ) ) ( )(2
1 2 1 12 21 2 11 22 31 1 2 3 1 2 2 9 1 104 n na a a a kϑ γ ψ ψ γ ψ ψ ψ γ α α γ γ+ − + + − Γ + Γ  

 ( ) ) )2
1 9 2 10 11 21 32 3 8 12 22 32kγ γ ψ ψ ψ γ ψ ψ ψ+ − Γ − Γ + Γ            (A.19) 

45k = ( ) ( )(31
3 3 1 1 9 2 2 10 11 21 3 3 2 2 9 1 1 102 2x n x n

l

k a a k a a
R
ψ α γ γ γ ψ ψ α γ γ γ− − Γ − Γ + Γ + Γ  

 ( ) ( ) ( )2 12 22 1 2 2 10 11 1 9 21 314 2n n s x n na a k kα α ψ ψ α ψ α ψ ψ− + + − − Γ + Γ  

 ( ) ( ) )1 2 1 2 1 2 3 2 12 1 22 322 x n nk a h a hγ γ γ α ψ α ψ ψ− − − +            (A.20) 

46 45
y

x

k
k k

k
=                 (A.21) 

47k = ( ) ( ) ( )( 2 231
1 2 1 2 1 2 3 2 12 1 22 31 1 2 3 9 212 2n n

l

a h a h a a k
R
ψ γ γ γ α ψ α ψ ψ γ ψ− − − + − − Γ  

 ( ) ( ) ( ))2
3 12 32 1 2 3 10 11 3 22 2 322n n n na a kα ψ α ψ γ ψ α ψ α ψ− − − Γ − +          (A.22) 
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48k = ( )( )( 2 2 2 2 431
1 2 3 3 8 1 2 1 2 1 3 2 1 1 2 3 1 2 108 2n n n n

l

k a a h a h a a k
R
ψ α α α γ α γ γ γ γ γ− Γ − − + − − Γ  

 ( )( ) ( )( )2 4 4 2 4 2 2
11 31 2 1 1 1 1 2 1 2 1 2 3 2 1 2 32 na a k a k h a h a h kψ ψ α ϑ γ ϑ γ γ γ γ γ γ+ − + + + +  

 ( ) ( )((2
21 31 2 3 1 3 1 9 2 10 11 21 1 2 1 2 1 1 22 2n na k a a h a a aψ ψ γ α γ γ ψ ψ α γ ϑ+ Γ + Γ + − + − +  

 ( )) ) ( )((2
1 2 1 2 1 1 2 22 32 1 3 12 2 1 2 1 10 3 222 na h h a k a hγ γ γ γ ψ ψ γ ψ γ γ α ψ+ + + + Γ −  

 ) ( )( )))2 32 1 1 2 2 32 2 2 3 22 2 322n n n na h aα ψ γ α ψ ϑ γ α ψ α ψ+ + − + +           (A.23) 

 

5th row:  55 11k k= , 56 12k k= , 57 13k k= − , 58 14k k=           (A.24) 

6th row:   66 22k k= , 67 23k k= − , 68 24k k=           (A.25) 

7th row:    77 33k k= , 78 34k k= −            (A.26) 

8th row:     88 44k k=            (A.27) 

 

where 

 lR = ( ) ( )( ) ( )( 4 2 4 2 2 2 4 2 2
31 1 2 1 1 3 2 2 3 13 1 22 2a a k a k a k a aψ γ γ γ γ− + − + Γ − −  

 ( ) )2 2
2 2 3 6 11 1 1 2 1 3 5 21 3 4 12 312 2a k a a a kγ γ ψ γ γ ψ γ ψΓ + − Γ + Γ Γ           (A.28) 

i nh
in e γα −=   , 1,2,3i =  , 1,2,...,n N=            (A.29) 

2( 1) j
ij inψ α= − +  , 1,2,3i =  , 1,2j =            (A.30) 

( )2 2
1 1 2a a kΓ −=                (A.31) 

1 1 12 21 2 2 1 222 1a aγ ψ ψ γ ψ ψΓ −=               (A.32) 

2 2 2 11 1 1 23 1n na aα γ ψ α γ ψΓ − +=               (A.33) 

24 12 224 n nα α ψ ψΓ − +=               (A.34) 

35 12 324 n nα α ψ ψΓ − +=               (A.35) 

2 3 22 326 4 n nα α ψ ψ=Γ − +               (A.36) 
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( )( )( )2 2
3 4 1 2 3 317 2 x yg g a a k k γ ψΓ − + − +=             (A.37) 

( ) ( )( )2 2
2 1 2 1 1 2 2 2 1 2 2 1 1 2 18 22 2a h a h a a a h h aγ γ ϑ γ γ ϑ γ γΓ + − − + +=          (A.38) 

19 1 1h aϑ γΓ −=                (A.39) 

10 2 2 2h aϑ γΓ −=                (A.40) 

2 2 2 2
11 1 1 2 2a aγ γΓ +=                (A.41) 

12 1 2 1 2 3a a γ γ γ=Γ                (A.42) 

13 11 21 31ψ ψ ψ=Γ                (A.43) 

 The elements of the layer stiffness matrix ( )nK  are functions of the layer 

thickness, the layer material properties and the Fourier transform parameter xk , yk  

and ω . 

 

 
A.2 The elements of the underlying half space stiffness matrix, ( 1)NK +  

For the underlying half space, due to the conditions that the solutions 

vanish as ∞→z , the general solution involves only four arbitrary coefficients in the 

vector ( 1)N+c ,i.e., ( 1)NA + , ( 1)NC + , ( 1)NE + and ( 1)NG + . The stiffness matrix , ( 1)NK +  is 

populated 4×4  symmetric complex matrix of the bottom half space can be written 

as 

1st row: 

11k = ( )( ) ( )( )( )2 2 2 2
1 1 3 1 3 2 2 3 2 3x y x y

S

a k k a k k
R
μ γ γ γ γ γ γ γ γ+ − − + −          (A.44) 

12k = ( ) ( )( )1 1 3 2 2 3
S

x yk k
a

R
a

μ
γ γ γ γ− − −             (A.45) 

 13k = ( ) ( )( )2 2 2 2
1 1 3 3 2 2 3 32 2x

S

k a k a k
R
μ γ γ γ γ γ γ− + − − +           (A.46) 

 14k =
( )2

1 2 1 2

S

xS a a k
R

μ γ γ−
−               (A.47) 
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2nd row: 

 22k = ( )( ) ( )( )( )2 2 2 2
1 1 3 1 3 2 2 3 2 3y x y x

S

a k k a k k
R
μ γ γ γ γ γ γ γ γ+ − − + −          (A.48) 

 23k = ( ) ( )( )2 2 2
1 1 3 3 2 2 3

2
32 2

S

yk
a k a

R
k

μ
γ γ γ γ γ γ− + − − +           (A.49) 

 24k =
( )2

1 2 1 2

S

yS a a k
R

μ γ γ−
−               (A.50) 

 
3rd row: 

 33k = ( )( )3
3 4 1

2
22

S

g g a
R

a kμγ
− + −              (A.51) 

 34k = ( ) ( ) ( )( )( )2 2 2
1 4 1 3 2 1 1 2 3 3 2 32

S

a g k a a k g k
R
μ γ γ γ γ γ γ γ− − + − + −          (A.52) 

 
4th row: 

 44k =
( ) ( ) ( )( )2 2

1 2 1 3 2 1 1 2 1 2 3

S

sa h k a a k h
R

kγ γ ϑ γ γ γ γ− − − − + −
          (A.53) 

 

where 

 ( ) ( )2 2
1 1 3 2 2 3S a k a kR γ γ γ γ− − −=              (A.54) 

 

 It is noted that exponential terms of xk , yk  and ω  are not involved in the 
expression of ( 1)N+K  and its elements depend on the material properties of the 
underlying half space and the Fourier transform parameter xk , yk  and ω . 
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