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CHAPTER 1
INTRODUCTION

The multiplicative structure of a ring is by definition a semigroup with zero.
However, ring theory is a classical subject in mathematics and had been widely
studied before semigroup theory was considered important and of interest by its
own. Because the multiplicative structure of a ring is a semigroup with zero, it
is valid to ask whether a given semigroup S, S° isomorphics to the multiplicative
structure of some ring. If it does, S is said to admit a ring structure. Let R be
the class of all semigroups admitting ring structure. If S is a member of R, then
there is an isomorphism ¢ from S° onto (R, -) for some ring (R, +,-). If we define

an addition @ on S° by
@y =¢ (px) +¢(y) foralzye s

then (S° @, ) is a ring which is isomorphic to (R, +,-) through the mapping .
Hence a semigroup S € R if and only if there is an operation + on S° such that
(S° +,-) is a ring where - is the operation on S°. Many well-known theorems
in ring theory are useful to study whether a semigroup S is a member of R.
For examples, Wedderburn’s theorem tells us any finite nonabelian group is not a
member of R. Because every Boolean ring is a commutative ring, we conclude that
any left [right] zero semigroup, that is, a semigroup S in which zy = z [zy = 3]
for all z,y € S, containing more than one element is not a member of R. It is
interesting to know that S.R. Kogalovski [8] announced in 1961 that the class R
is not axiomatizable.

In fact, semigroups admitting ring structure have long been studied. In 1970,
R.E. Peinado [10] gave a brief survey of semigroups admitting ring structure. D.D.
Chu and H.I. Shyr [2] proved a nice result that the multiplicative semigroup N
of natural numbers is a member of R by showing that (N°,-) & (Z,[X],-). For
various studies in this area, see [6], [9], [11], [12], [13], [15] and [7].

We know that nearrings generalize rings and many examples and important



results of nearrings can be found in [3], the book written by J.R. Clay. Some
important right nearrings which are not rings are (M (A),+,0) and (M(G), +,0)
where A is an abelian group, G is a group, M(A) is the set of all functions
f:+A— A M(G) is the set of all functions f : G — G and + and o are usual
addition and composition of functions, respectively. Observe that (M(A),+) is
an abelian group, so we say that (M(A),+,0) is an additively commutative right
nearring. If A and G are containing more than one element, then (M(A),+,o0)
and (M(G), +, o) have no multiplicative zero. However, every left nearring has a
multiplicative right zero and every right nearring has a multiplicative left zero. It
follows that if a semigroup S has no right [left] zero, then S is not isomorphic to
the multiplicative structure of a left [right] nearring. Then the most reasonable
definition of a semigroup admitting a left [right] nearring structure is as follows
. A semigroup S is said to admit a left [right] nearring structure if S or S is
isomorphic to the multiplicative structure of some left [right] nearring, or equiva-

lently

(1) there is an operation + on S such that (S,+,-) is a left [right] nearring
where - is the operation on .S or
(2) there is an operation + on S° such that (S° +,-) is a left [right] nearring

where - is the operation on S°.

There were some studies of semigroups admitting left [right] nearring structure.
These can be seen from [4] and [5].

In this research, we characterize when linear transformation semigroups of
various types admit a left nearring structure and a right nearring structure.

Chapter II contains examples, basic definitions and quoted results which are
refered for our research.

Chapter III deals with some linear transformation semigroups with zero. We
will show that they do not admit the structure of both a left nearring and a right
nearring. Since every ring is a left nearring and a right nearring, semigroups in
this chapter do not admit a ring structure. Some results in [1] are useful for this
chapter.

In the last chapter, we still consider some linear transformation semigroups

with zero. We provide necessary and sufficient conditions for each these linear



transformation semigroups to admit a left nearring structure and a right nearring

structure. Some techniques in [1] are important for this chapter.



CHAPTER II
PRELIMINARIES

For any set X, the cardinality of X will be denoted by | X].

An element a of a semigroup S is called an idempotent if a®> = a. A left [right]
zero of a semigroup S is an element z € S such that zx = z [z = 2] forall z € S.
An element 0 of S is called a zero of S if 0z = 20 = 0 for all x € S. If S has a
left zero z; and a right zero zy, then z; = 25 which is the zero of S.

Note that right [left] zeroes of a semigroup S are idempotents of S. The
identity of a group G is exactly one idempotent of G.

In a semigroup S, we can adjoin an extra element 0 and define Ox = 20 = 0
for all x € S. Then S U {0} becomes a semigroup with zero 0. For a semigroup

S, we let
G0 SuU{0} if |S| =1 or S has no zero,
S otherwise.
Observe that if |S| = 1, then S° & (Zs, -).
A semigroup S is called a left [right] zero semigroup if xy = x [xy = y] for all
x,y €8.
A left [right] nearring is a triple (N, +, ) such that
(i) (NV,+) is a group,
(ii) (N,-) is a semigroup and
(i) z-(z+y)=z-x+z-yl(r+y) - z=x-2+y-z] forall z,y,z € N.
Throughout, for every z,y € N,z -y is denoted by xy.
Proposition 2.1. ([3], page 19) Let (N,+,-) be a left [right] nearring with the
additive identity 0. Then
(i) 20=0[0x =0] for allx € N.

() z(—y) = —(zy) [(—z)y = —(xy)] for all z,y € N.



A zero of a left [right] nearring (N, +,-) is an element z € N such that xz =
zx = z for all x € N. If 2z is a zero of a left [right] nearring (N, +,-), then z is a
right [left] zero of the semigroup (XV, -). From Proposition 1.1 (i), 0 is a right [left]
zero of (N,-). Thus z = 0. Hence the left [right] nearring (N, +, ) has a zero if
and only if 0z = 20 = 0 for all z € N where 0 is the identity of (N,+). Such left

[right] nearring is called zero-symmetric.

Example 2.2. ([3], page 14) Let (G,+) be any group with the identity 0. For
each S C G \ {0}, define -5 : G x G — G by

ylz] ifzes,
sy =
0 otherwise.
Then (G, 4, -s) is a left [right] nearring. Moreover, if x xy = y [z] for all z,y € G,
then (G, +, %) is also a left [right] nearring. If |G| > 2, then (G, +, %) is neither a

right [left] nearring nor a ring.

An example of a right nearring which is not a left nearring and a ring is shown

as follows:

Example 2.3. ([3], pages 7 and 19) Let (A, +) be an abelian group with identity
0, M(A) the set of all mappings f: A — A and

Mo(A) = {f € M(A)|f(0) = 0}.

Then (M(A),+,0) is a right nearring and (My(A), +, o) is a zero-symmetric right
nearring where + and o are the usual addition and composition of functions.
Moreover, the zero map 6, that is, (z) = 0 for all z € A, is a left zero of (M (A), o)
which is not a zero if |A| > 1 and 6 is the zero of (My(A), o). By Proposition 2.1
(i), (M(A),+,0) is neither a left nearring nor a ring where |A| > 1.

Hence every left [right] nearring is a genearalization of rings.

A semigroup S is said to admit a ring structure if S° is isomorphic to a mul-
tiplicative structure of some ring, or equivalently, there is an operation + on S°

such that (S° +,-) is a ring where - is the operation on S°.



Proposition 2.1 shows that if S has no right [left] zero, then there is no oper-
ation + on S such that (S5, +,-) is a left [right] nearring. Therefore the definition
of semigroups admitting left [right] nearring structure is reasonably given as fol-
lows. We say that a semigroup S admits a left [right] nearring structure if S or
SY is isomorphic to the multiplicative structure of some left [right] nearring, or

equivalently,

(1) there is an operation + on S such that (S,+,-) is a left [right] nearring

where - is the operation on S or

(2) there is an operation + on S° such that (S° +,) is a left [right] nearring

where - is the operation on S°.

Denote by R, LNR and RNR the classes of all semigroups which admit a
ring structure, a left nearring structure and a right nearring structure, respectively.

Then R C LNRNRNTR.

Throughout this research, let V' be a vector space over a division ring R and
Lr(V) the semigroup under composition of all linear transformations av: V' — V.
Then Lgr(V) admits a ring structure under the usual addition of linear transfor-
mations. The image of v under a € Lg(V) is written by va. For a € Lr(V), let
Ker o and Im o denote the kernel and the image of «, respectively. For A C V|
let (A) stand for the subspace of V spanned by A. dimgr W means the dimension
of a subspace W of V. For every o, € Lg(V), af means a o § where o is the
composition of function. The following five propositions are simple facts of vector
spaces and linear transformations which will be used. The proofs are routine and

elementary, so they will be omitted.

Proposition 2.4. Let B be a basis of V. If u € B and v € (B~ {u}), then
(B~ Au})U{u+ v} is also a basis of V.

Proposition 2.5. Let B be a basis of V,;AC B and ¢ : BN A — V a one-to-one
map such that (B ~ A)yp is a linearly independent subset of V. If a € Lr(V') is
defined by

0 ifveA,

va =
ve ifvE BN A,

then Ker o = (A) and Im o = (B \ A) ¢.



Proposition 2.6. Let B be a basis of V and A C B. Then
(1) {v+(A)|ve B~ A} is a basis of the quotient space V/ (A) and
(i) dimg(V/ (A)) =|B \ A|.

Proposition 2.7. Let B be a basis of V.. Then for everyv € V, there is a unique
set of vectors vy, ...,v, in B, along with a unique set of scalars aq,...,a, in R,

for which v = ayvy + -+ + a,v,.

Proposition 2.8. Let B be a basis of V and By, By and Bs are disjoint subsets
Of B. Then <B1 U BQ) N <B1 U B3> = <B1>

Proposition 2.9. Let B be a basis of V and C' a nonempty subset of B. Then

(B~ {v}) =(B~C).

veC

Proof. Since B~ C C B~ {v} for every v € C, (B~ C) C ﬂ (B~ {v}).

vel
Conversely, let w € V be such that w ¢ (B~ C). Then w = aju; + --- +

QpUp+bivr+- - -+bpv, for some ay,...,a,,b1,...,b, € R,uy,...,u, € BNC and
V1, Uy € C. Since w ¢ (B~ C), there exists ¢ € {1,...,m} such that b; # 0.
Without loss of generality, suppose that b; # 0. By Proposition 2.7, we have that

w ¢ (B A{v}), sow ¢ () (B~ {v}). Hence [ (B~ {v}) C (B~ C). O

veC veC
Let
Gr(V) ={a € Lr(V) | a is an isomorphism}.

Then Gg(V') is the unit group of the semigroup Lg(V') or the group of all units
of Lr(V'). The following known result will be referred.

Proposition 2.10. ([14]) Gr(V') admits a ring structure if and only if dimg V <1.

Next, let

OMg(V)={a € Lr(V) | dimgKer « is infinite},
OFRr(V)={a € Lg(V) | dimg(V/Im «) is infinite}.

If dimgV is infinite, then 0 belongs to both OMpg(V) and OFEg(V). Since
Ker af O Ker a and Im a8 C Im g, for all o, 5 € Lg(V), it follows that OMg (V)
and OEg (V') are both subsemigroups of Lg(V') containing 0 if dimg V' is infinite.



For this case, the semigroups OMg (V') and OEr(V') may be referred to respetively
as the opposite semigroup of Mr(V') and the opposite semigroup of Er(V).
For any cardinal number k£ with £ < dimg V, let

Kr(Vk) ={a € Lgr(V) | dimgKer a > k},
Clgr(Vk) ={a € Lg(V) | dimg(V/Im «) > k},
[R<‘/7 k’) = {Oé € LR(V) ‘ dimgpIm o < ]{7}

Then the zero map 0 on V' belongs to all of the above three subsets of Lg(V).
Since for o, f € Lgr(V),Ker aff O Ker a and Im a8 C Im [, we conclude that all
of Kr(V,k),CIr(V, k) and Ig(V, k) are subsemigroups of Lr(V'). Observe that if
dimp V' is infinite, the notations OMg(V') and OFEr(V') defined previously denote
Kr(V,Rg) and Clg(V,Ng), respectively, that is,

OMgr(V)={a € Lg(V) | dimgKer o > Ny},
OFgr(V) ={a € Lg(V) | dimg(V/Im ) > Rg}.

We know that if dimp V' is finite, then for & € Lg(V'), dimg Ker a = dimg(V/Im «)
= dimg V — dimgIm « since dimg V = dimg Ker a + dimg Im o and dimg V' =

dimg(V/Im a) + dimg Im «. Hence we have

Proposition 2.11. If dimp V < oo, then Kg(V, k) = CIgr(V, k) = Ig(V,dimgr V —

k) for every cardinal number k < dimg V.

However, these are not generally true if dimgz V' is infinite. This is shown
by the following proposition. This proposition also shows that the semigroups
Kgr(V,k),CIg(V, k) and Ig(V, k) should be considered independently if dimg V' is

infinite.

Proposition 2.12. ([1], page 12) Let V' be an infinite dimensional vector space

and a nonzero cardinal number k < dimg V. Then the following statements hold.
(i) CIgr(V, k) # Kg(V,l) for every cardinal number | < dimpg V.
(i) If k <dimgV, then Ir(V, k) # Kgr(V,l) and Ir(V, k) # CIg(V,l) for every

cardinal number | < dimg V.



Next, we define K5(V, k), CI5(V, k) and I(V, k) which are subsets of Kr(V, k),
CIg(V, k) and Ig(V, k) respectively as follows :
Ky(V k) ={a € Lr(V) | dimgKer o > k} where k < dimp V,
CIz(V,k) ={a € Lr(V) | dimg(V/Im «) > k} where k < dimg V,
In(Vik) ={a € Lg(V) | dimgIm o < k} where 0 < k < dimg V.
Then 0 belongs to all K(V,k),CIL(V, k) and IL(V, k), moreover, they are re-
spectively subsemigroups of Kgx(V, k), CIgr(V,k) and Ig(V,k). Observe that if
k < dimgV, then Ki(V k) = Kr(V, k') and CIL(V, k) = Clg(V, k') where k' is
the successor of k. Also, if 0 < k < dimp V, k is a finite cardinal number and & is
the predecessor of k, then I (V, k) = Ix(V, k).
For a € Lg(V), let
Fla)={v eV |va=nv}.

Then for o € Lr(V), F(«) is a subspace of V and « is called an almost identical
linear transformation of V if dimg(V/F(«)) is finite. The set of all almost identical

linear transformations of V' will be denoted by AIx(V'), that is,
AlR(V) ={a € Lg(V) | dimg(V/F(a)) < co}.

Observe that 1y, the identity map on V', belongs to AIg(V).

Proposition 2.13. ([1], page 14) AIg(V) is a subsemigroup of Lr(V').

Notice that if dimgV < oo, then AIr(V) = Lg(V) which admits a ring
structure. Moreover, the semigroup Alg(V') does not contain 0, the zero map on
V', if dimg V is infinite.

Since every linear transformation from a vector space V' into a vector space W
can be defined on a basis of V', for convenience, we may write a € Lg(V, W) by

using a bracket notation. For examples,

Bl (%
o=
0 w
veEB~B1
means that B is a basis of V, B; C B and
0 ifve Bh

va =

v ifve BN B;
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and
U w v

ﬂ:
w 0 v
veB~{u,w}

means that B is a basis of V,u,w € B,u # w and

w if v =u,
v =10 if v=w,

v if v € B~ {u,w}.

Chapter III deals with linear transformation semigroups on V' with zero. The
purpose of this chapter is to show that if dimg V' is infinite, OMg(V), OER(V)
and some linear transformation semigroups containing OMpg(V') and OEgR(V') do
not admit the structure of both a left nearring and a right nearring.

The semigroups OMp (V') and OEg(V') are generalized to be the semigroups
Kgr(V,k) and CIr(V, k), respectively. We also determine in the last chapter when
the semigroups Kg(V, k) and CIr(V, k) admit a left nearring and a right nearring
structure. Moreover, the semigroups Ir(V, k), K5(V. k), CI(V, k) and IR(V, k)

are also studied in the same matter.



CHAPTER III
SEMIGROUPS WHICH DO NOT ADMIT
THE STRUCTURE OF A LEFT [RIGHT] NEARRING

In this chapter, we deal with linear transformation semigroups on V' where
dimp V' is infinite. The following linear transformation semigroups on V' given in
Chapter I are recalled as follows:

Lp(V)
Gr(V) =A{
OMg(V) ={a € Lg(V) | dimg Ker « is infinite},
(V) ={
V)

{a:V — V| «ais a linear transformation},

OEgR(V V) | dimg(V/Im «) is infinite},

v

~—

(
(
(

AIR(V) = {a € Lg(V) | a is almost identical}
(V) | dimgp(V/F(a)) < oo}
(

~—

a)={v eV |va=uv}

3.1 The Semigroups OMg(V) and OFEg(V)

Recall that 0, the zero map on V' belongs to both OMg(V') and OER(V') and
note that 1V ¢ OMR(V) and 1V ¢ OER<V)

Theorem 3.1.1. If S(V') is OMg(V') or OER(V'), then the following statements
hold.

(i) S(V) does not admit a left nearring structure.

(1) S(V) does not admit a right nearring structure.

Proof. Let B be a basis of V. Then B is infinite, so there are subsets By, By of B
such that B = By U By, BiN By = & and |B| = |By| = |Bs|. Define a, 3 € Lg(V)
by
v B By v
a= 2 and B= [ : (1)
v 0 0 wv

veEB] vE B>
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So Ker a = (By),dimg(V/Im ) = dimg(V/(B1)) = |Bs|,Ker § = (B;) and
dimg(V/Im B) = dimg(V/ (B2)) = |B1|. Then « and [ are elements of OMpg(V)
and OFEg(V). Obviously,

o’ =a, (=0, af = fa=0.

(i) Suppose that S(V) € LAN'R. Then there is an operation @& on S(V') such
that (S(V'),®,0) is a left nearring. Let A\ =a ® 5 € S(V). So

ad=ala®fB)=a’Paf=ad®0=aq,

Br=pBla®f)=pad =060 =0
We therefore deduce from these equalities and (1) that

for every v € By, vA = va\ =va = v,

for every v € By, v\ = v\ =v83 =w.

Consequently, vA = v for every v € B. Since B is a basis of V., A = 1. This is a
contradiction because 1y ¢ OMz(V) and 1y ¢ OFEg(V). Hence S(V) ¢ LNR.

(ii) Suppose that S(V) € RNR. Then there is an operation & on S(V') such
that (S(V),®,0) is a right nearring. Then A = a & 5 € S(V). Consequently,

A= (a®Bla=a’®pfa=ad0=a,
N=(a®p)f=afdF=000=0

We therefore deduce from these equalities and (1) that

for every v € By, v\a = va = v,

for every v € By, vA\G = v = v.
and

for every v € By, vAB =v3 =0,

for every v € By, vAa = va = 0.

By (1) and (3), we have that

for every v € By, vA € Ker = (By),
for every v € By, vA € Ker av = (Bs).
Then
for every v € By, vha = v,

for every v € By, A3 = vA.
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By (2) and (4), we have vA = v for every v € B. Since B is a basis of V|
A = 1ly. This is a contradiction because 1y ¢ OMg(V) and 1y ¢ OER(V). Hence
S(V) ¢ RNR.

Therefore the theorem is proved. O

Since every ring is both a left nearring and a right nearring, we have

Corollary 3.1.2. The semigroups OMg(V') and OEg(V) do not admit a ring

structure.

3.2 Semigroups Containing OMpz (V) and Semigroups Con-
taining OFr(V)

Also, dimp V' is assumed to be infinite in this section. The following proposi-

tion is needed for our study.

Proposition 3.2.1. ([1], pages 22, 23 and 25) The following statements hold.
i) OMg(V)U H is asubsemigroup of Lr(V') where H is a subsemigroup of Gr(V').
(V).
V)
V)

iii) OMRg(V)UT isasubsemigroup of Lr(V') whereT is a subsemigroup of AIgr(V).
(V)

(
(i) OER(V)U H is asubsemigroup of Lr(V') where H is a subsemigroup of G r
(

(iv) OEgR(V)UT isasubsemigroup of Lr(V') whereT is a subsemigroup of AIr(V).

It is shown in this section that any linear transformation semigroup on V'
of Proposition 3.2.1 does not admit the structure of a left nearring and a right

nearring.

Theorem 3.2.2. If H is a subsemigroup of Gr(V') and S(V') is the semigroup
OMRg(V)UH or the semigroup OEr(V)U H, then the following statements hold.
(i) S(V) does not admit a left nearring structure.

(i) S(V') does not admit a right nearring structure.

Proof. Let B be a basis of V and u € B a fixed element. Since B is infinite,
B ~ {u} has subsets By, By such that B \ {u} = B; U By, B N By = & and
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|B1| = |Bs| = |B~{u}|(=|B|). Then B = B;UByU{u} and these three sets are
pairwise disjoint. Define «, 3,y € Lr(V') by

a(v B2U{u}) 75<B1U{u} v) 77(1& BIUB2>. )
v 0 vEB] 0 v VE By ¢ 0

So Ker a = (By U{u}),dimg(V/Im o) = dimg(V/ (By)) = |By U {u}|,Ker g =
(B1 U{u}),dimg(V/Im B) = dimg(V/ (Bs)) = |B1U{u}|,Ker v = (B, U By) and
dimp(V/Im 7v) = dimg(V/ (u)) = |By U By|. Then «, 3,7 € S(V). Obviously,

oF =a, =0, af=pPa=ya=ay=7y8=py=0.

(i) Suppose that S(V) € LANR. Then there is an operation & on S(V') such
that (S(V),®,0) is a left nearring. So A =a @ 5 € S(V). It is obtained that

ad=ala®fB)=a’®af=a®d0=aq,
Brx=pBa®pB)=pa® =000 =7,
N=7v(a®p)=ya®yB8=080=0.

We therefore deduce from these equalities and (1) that

for every v € By, vA = va\ = va = v,
for every v € By, vA =vfBA =v3 = v,
ul = uyA =0,

u v
A= .
0 v
vEB1UB>

Thus Ker A = (u) and dimg(V/Im \) = dimg(V/ (B1 U By)) = |{u}| = 1. Hence
A ¢ S(V) which is contrary to that A = a @ € S(V). Therefore S(V) ¢ LNR.

that is,

(ii) Suppose that S(V) € RN'R. Then there is an operation @ on S(V') such
that (S(V),®,0) is a right nearring. Then A = a @ 5 € S(V). Hence

A= (a®Bla=a’®pfa=ad®0=a,
M=(adp)f=afdF=003=7,
M=(a®f)y=ay®By=050=0.
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We therefore deduce from these equalities and (1) that

for every v € By, vAa = va = v,
for every v € By, vAB = v = v, (2)
for every v € V, vAy =0

and
for every v € By, vAB =v3 =0,

for every v € By, vAa = va = 0.

By (1) and (3), we have that

for every v € By, v\ € Ker 8 = (By U {u}),
for every v € By, v\ € Ker av = (By U {u}).

Claim that for every v € By, vA € (By) and for every v € By, v\ € (Bs). Let
v € By. Then v\ = a1v; + asvs + -+ - a,v, + au for some ay,as,...,a,,a € R
and vy, vg,...,v, € By. Since 0 = vAy = (a1v1 + agve + - - - ayv, + au)y = au,
v\ € (By). Similarly, we have that for every v € By, vA € (Bs). It is obtained
from (1) that

for every v € By, vAa = v,
(4)

for every v € By, vA\G = vA.
Hence by (2) and (4), we have that for all v € (B U By),vA = v. Since ul\y =0,
by the definition of v, uh € Ker v = (B U By), 80 (u — uA)A = uX — (uA)\ =
uA — uX = 0. Since By U By U {u} is a basis of V and u\ € (B; U By), by
Proposition 2.4, By U Bo U {u — uA} is a basis of V. Hence

U— U\ v

0 v

A\ =

veEB1UB2
Thus Ker A = (u — uA) and dimg(V/Im \) = dimg(V/ (B U By)) = [{u—ul}| =
1. Then A ¢ S(V). It is contrary to that A = a®f € S(V). Hence S(V) ¢ RN'R.

Therefore the proof is complete. O
The following corollary is a direct consequence of the above theorem.

Corollary 3.2.3. If H is a subsemigroup of Gr(V'), then the semigroups OMg(V)U
H and OER(V)U H do not admit a ring structure.
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Remark 3.2.4. Let B be a basis of V and for distinct u, w € B, let ay,, € Gr(V)
be defined by

u w v

Ay =

w u
veEB~{u,w}

Then Hy,. = {lv,uw} is a subgroup of Gg(V) for all distinct uw,w € B, and
Hyw # Hyw if u,w,u',w" are elements of B such that (u,w) # (v/,w). This
fact and Theorem 3.2.2 show that if dimg V' is infinite, there are infinitely many
subsemigroups of Lz(V') containing OMg (V') and infinitely many subsemigroups
of Lr(V') containing OEg(V) which do not admit the structure of a left nearring

and a right nearring.

Theorem 3.2.5. If T is a subsemigroup of AIr(V) and S(V') is the semigroup
OMg(V)UT or the semigroup OEg(V)UT, then the following statements hold.

(i) S(V) does not admit a left nearring structure.

(i) S(V') does not admit a right nearring structure.

Proof. Let B be a basis of V and let By, By C B be such that B = B; U By, B; N
By = @ and |By| = |By| = |B|. Then there is a bijection ¢ : By — Bs. Define
avﬂ € LR(V) by

v B B v
a= ? and 3 = ' : (1)
vp 0 0 wve!

vEBy vEB2
So Ker a = (By),dimg(V/Im ) = dimg(V/(Bs2)) = |Bi|,Ker § = (B;) and
dimg(V/Im B) = dimg(V/ (B1)) = |B2|. Thus o, 5 € OMg(V)NOER(V), and so
a, 3 € S(V). Obviously,

B B 2
aff = v and fa = vy : 2)
0

vEB] vEB>

(i) Suppose that S(V) € LNR. Then (S(V),®,0) is a left nearring for some
operation & on S(V). Let A\=a @ g € S(V). It follows from (2) that
ad=ala®B)=a’*®af=0daf = af,
pA=pBla®f) =Pad = Pa®0=pa.
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We therefore from these facts, (1) and (2), we have

for every v € By, (vp)\ = val =vaf =v = (vp)p*,

for every v € By, (v )X = vfBX = vfBa =v = (v ).
We can see from (3) that

A, = ¢! By — B is a bijection, n

A B, = ¢ : By — By is a bijection.

Since B = By U By and BiN By = &, Mg : B — B is a bijection. So A €
Gr(V). Hence A ¢ OMg(V) and A ¢ OFEg(V). Claim that A ¢ AIr(V). By (4),
BiNF(\) =@, that is v + F(\) # F(A) for ever};v € B;. Let vy, v9,...,v, € B;
be distinct and ai,as...,a, € R be such that Zai(vi + F(\)) = F(\). Then

i=1
n

Z(IZ”UZ' S F(/\), SO

=1

i a;v; = (i aivi))\
i=1 =1

= Zai(vi)\) € (By) from (4).

Thus ZCMU@ € (B1) N (By) = {0}. Then a; = 0 for all i € {1,...,n}. So
=1

{v+ Fi(/\) | v € By} is a linearly independent subset of V/F(X) and v + F(\) #
w + F(A) for all distinct v,w € B;. Hence dimg(V/F (X)) > |By|. Since B
is infinite, A ¢ AIg(V). Thus A ¢ S(V) which is contrary to that A € S(V).
Therefore S(V) ¢ LNR.

(ii) Suppose that S(V) € RNR. Then (S(V),®,0) is a right nearring for
some operation @ on S(V). Let A\=a & [ € S(V). It follows from (2) that

Aa = (a® f)a=a’® fa=0d Pa=[fa,
M=(adp)B=afd® 3 =afd0=af.

We therefore from these facts, (1) and (2), we have

for every v € By, vAG = vaf = v,

for every v € By, va = vfa = v,
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and
for every v € By, vhaf = vfaf = 0af =0,

for every v € By, vABa = vafa = 08a = 0.
By these facts and (2), we have that

for every v € By, v\ € Ker aff = (By),
for every v € By, vA € Ker fa = (By) .

It is obtained from (1) and (5) that

for every v € By, (vA)B = v = (vp)p~"' = (vp)B,
for every v € By, (vA)a =v = (vo~ ') = (ve)a.

We can see from (6) that By, Bip C (Bs) and B, Bop™ C (By). Since (g,

and o(p,) are monomorphisms, we have

for every v € By, v\ = vy,
for every v € By, vA = vp L.

Hence
Alp, = ¢ : By — By is a bijection,

A, = ¢! : By — By is a bijection.
Since B = By U By and BN By = @, Ap: B — B is a bijection. So A € Gr(V).
Hence A ¢ OMg(V') and A ¢ OFEg(V). Similarly (i), we have that A ¢ Alg(V).
Thus A ¢ S(V) which is contrary to that A € S(V'). Therefore S(V) ¢ RNR.

Hence the theorem is proved. O
Also, we have a corollary of Theorem 3.2.5 as follows:

Corollary 3.2.6. If T is a subsemigroup of AIgr(V'), then the semigroups O Mg(V )U
T and OERr(V)UT do not admit a ring structure.

Remark 3.2.7. Let B be a basis of V' and for each u € B, define o, € Lg(V') by

veB~{u}
Then F(a,) = (B~ {u}), and hence by Proposition 2.6 (ii), dimg(V/F(«,)) =

[{u}| for every u € B. Clearly, a,, # a,, if u and w are distinct elements of B
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and for each u € B,{a,} is a subsemigroup of AIR(V) since o> = «,,. This fact
and Theorem 3.2.5 show that there are infinitely many subsemigroups of Lz(V)
containing O Eg(V') which do not admit the structure of a left nearring and a right

nearring.



CHAPTER IV
SEMIGROUPS ADMITTING THE STRUCTURE OF
A LEFT [RIGHT] NEARRING

First, let us recall the following linear transformation semigroups on V.

Kr(V k) ={a € Lg(V) | dimg Ker a > k}
where k£ < dimpg V,
KR(V,k) ={a € Lg(V) | dimg Ker a > k}
where k£ < dimpg V,
CIr(V, k) ={a € Lr(V) | dimg(V/Im a) > k}
where k£ < dimg V,
CIR(V k) ={a € Lp(V) | dimp(V/Im a) > k}
where k£ < dimpgV,
Ir(V,k) ={a € Lr(V) | dimp Im o < k}
where k£ < dimg V,
IL(V k) ={a € Lg(V) | dimgIm a < k}

where 0 < k < dimp V.

Note that these semigroups contain 0, the zero map on V.

4.1 The Semigroups Kz(V, k) and Kj(V,k)

We shall characterize when Kr(V, k) admits the structure of a left nearring or
a right nearring. The characterization will generalize Theorem 3.1.1 for the case
of OMg (V') since OMgr(V) = Kr(V,Ry) if dimg V' is infinite. Since K(V, k) =
Kgr(V, k') if k' is the successor of k, by the characterization of Kg(V, k) admitting
this structure, necessary and sufficient conditions for K7,(V, k) to admit such a

structure are also obtained.
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Theorem 4.1.1. Let k be a cardinal number with k < dimgV .

(1) Kr(V,k) admits the structure of a left nearring if and only if one of the
following statements holds.
(i) k=0.
(i1) dimgrV < oo and k = dimgV .

(2) Kr(V, k) admits the structure of a right nearring if and only if one of the
following statements holds.
(i) k=0.
(i1) dimgrV < oo and k = dimgV .

Proof. To prove sufficiency, assume that (i) or (ii) holds. If & = 0, then Kr(V, k) =
Kp(V,0) = Lp(V). So Kp(V,k) € R € LNRARNR. If dimpV < oo and
k = dimpg V', then for every a € Kr(V, k), dimg Ker o = dimgr V' < oo implies that
Ker o = V and a = 0, respectively. Hence Kr(V, k) = {0} € R C LNRNRNR.

Conversely, assume that (Kgr(V, k), o) admits the structure of a left nearring
or a right nearring. To prove that (i) or (ii) must hold, suppose not. Then either

(k > 0 and dimpg V is infinite) or 0 < k < dimp V' < 0.

Case 1: k > 0 and dimp V is infinite. Let B be a basis of V. Then B is infinite.
So there exist subsets B; and By of B such that B = B; U By, By N By = & and
|By| = |Bs| = |B|. Let a, 5 € Lg(V') be defined by
B B
a= """ and = oo . (1)
0 v v 0

vEBy veEB]

Then Ker a = (B;) and Ker f = (By), so dimgKer a = |By| = |B| and
dimg Ker 8 = |By| = |B|. Since k < dimg V' = |B|, we have o, € Kg(V,k).
Obviously,

o’ =a, =0 and aff = fa =0.

If (Kr(V,k),®,o0) is a left nearring for some operation & on Kg(V, k), then

ala®p)=a’*®af=a®0=a and
Bladp)=Ppa® =065 =40.
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Let A\=a® (8 € Kg(V,k). Then from (2), aX = a and S\ = 3. Consequently,

for every v € By, vA = v\ = v = v,

for every v € By, v\ = va\ = va = v.

Since B = B; U By, A = 1y, the identity map on V. Since k > 0, we have
dimg Ker A =0 < k. Hence A ¢ Kg(V, k), a contradiction.

If (Kr(V,k),®,0) is a right nearring for some operation @ on Kg(V, k), then

(a®Bla=a*®fa=ad0=a and
(c@p)f=afe=0&08=70

Let A\=a® (8 € Kg(V,k). Then from (3), Aa = « and A3 = 3. Consequently,

(3)

for every v € By, vAG =vf3 = v, )

for every v € By, v\a = va = v,
and

for every v € By, vha =va =0,

for every v € By, vA\3 = v = 0.
It is obtained from (1) that

for every v € By, v\ € Ker a = (By),
for every v € By, vA € Ker 3 = (Bs) .

By (1), we have
for every v € By, vA\3 = v,

for every v € By, vAa = vA.
By (4) and these facts, we have that vA = v for every v € B; U By = B. Since B
is a basis of V', A = 1. Then we have dimg Ker A =0 < k. Hence A\ ¢ Kgr(V, k),

a contradiction.

Case 2 : 0 < k <dimpV < oco. Let B be a basis of V. Since 0 < k < dimg V,
there exists @ # B; C B such that |By| = k. Let u € By be fixed. Define
avﬁ € LR(V) by

By v u B~ {u}

a= and (= : (5)
0 w U 0
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Then Ker a = (By) and Ker § = (B ~ {u}). Sodimg Ker a = k and dimpg Ker g =
dimgpV — 1> k. Thus «, § € Kg(V, k). Obviously,

a?=a, =70 and aff = fa = 0.
If (Kr(V,k),®,o0) is a left nearring for some operation & on Kg(V, k), then

ala®B)=a’Paf=a®0=a and
Bla®f)=paef=0s5=70.

Let \=a® (€ Kg(V,k). Then a\ = a and S\ = 3. Hence
Ima=ImaACIm A\ and Im S =1Im g\ CIm \.
It then follows from (5) that
B~ (Bi~{u})=(B~B)U{u} CIm aUIm § CIm A
This implies that
dimpIm A > |B~ (By ~ {u})| = dimp V — (k — 1). (6)
Since dimpg Ker A + dimg Im A = dimg V < oo and k is finite, we have that

dimp Ker A = dimg V — dimgIm \
<dimgpV — (dimgV — (k — 1)) from (6)
=k—-1<k.
So A ¢ Kgr(V, k) which is contrary to that A € Kgr(V, k).

Next, suppose that (Kgr(V,k),®,0) is a right nearring for some operation @& on
Kgr(V,k). Then

(a®Bla=a’@Ba=a®0=a,
(@ep)f=af®p=005=7.
Let \=a® (€ Kg(V,k). Then Aa = a and A\ = 3. Consequently,

for everyv € BN\ By, vAf=v3=0 and

ulo = uoe = 0.
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Claim that for every v € B\ By, vA € (B~ By) and u\ € (u). If By = {u},
then by (5) and (7) we have that

for every v € B\ By, vA € Ker = (B~ {u}) = (B~ B;) and
uX € Ker a = (By) = (u).

If By ~{u} # @, then for each w € By \ {u}, define g8, € Lr(V) by

5, — w B~ A{w} . (8)

w 0

Then for every w € By~{u}, Ker 5, = (B ~ {w}), sodimg Ker g, = |[B~{w}| =
dimgrV — 1 > k. Thus 3, € Kg(V, k) for every w € By \ {u}. Obviously,

for every w € By ~ {u}, af, = 0, =0.
Since (Kgr(V,k),®,0) is a right nearring, for every w € By ~\ {u},

Aw = (a® 3)Bw = afy ® BB, =050=0.

Thus if w € By ~ {u}, then for every v € B, vAfB, = 0. From (5), (7), (8) and
this fact, we have that for every v € B \ By,

v € Ker ﬁﬂ ﬂ Ker 3,

weB~{u}

=B~ )V () B~{w)

weBy ~{u}

=) B~{w}) and

weBy

ul € Ker aﬂ ﬂ Ker 3,

weB~{u}

=B)| ) (B~ {w})

weBi~{u}

Since |By| = k < 0o, by Proposition 2.8 and Proposition 2.9, we have that

for every v € BN\ By,vA € (B~ By) and ul € (u).
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Hence the claim is proved. Since A\ = o and A\ = 3, by the claim and (5),

for every v € B\ By, v\ = via = va = v,

uX = uN\G = uf = u.
Then (B ~ By) U{u}) CIm A, so
dimgIm A > [(B \ By) U{u}| = (dimgV — k) + 1. (9)
Since dimg V' = dimg Ker A + dimpg Im X\ and dimg V' is finite,

dimg Ker A = dimgV — dimg Im A
<dimgV — ((dimg V — k) + 1) from (9)
=k—-1<k.

So A ¢ Kg(V, k) which is contrary to that A € Kg(V, k).
Therefore the proof is complete. m

We give a remark here that from Theorem 4.1.1, we conclude that Theorem

3.1.1 for that case of OMg(V) is a consequence of Theorem 4.1.1.

Corollary 4.1.2. Let k be a cardinal number with k < dimgV'. Then

(1) K%(V,k) admits the structure of a left nearring if and only if dimgV < oo
and k = dimgV — 1.

(2) Ki(V,k) admits the structure of a right nearring if and only if dimgV < oo
and k = dimgV — 1.

Proof. Let k' be the successor of k. Then k' > 0 and K,(V,k) = Kg(V, k).
Suppose that Kx(V, k) € LNRURNR. By Theorem 4.1.1, dimzp V' < oo and
k' =dimg V. So k = dimp V' — 1.

Conversely, assume that dimp V' < oo and k£ = dimzp V' —1. Then &' = dimg V.

Since Ki(V, k) = Kgr(V, k'), by Theorem 4.1.1, K,(V, k) € LNRNRNR. O

We can see from the proofs of Theorem 4.1.1 and Corollary 4.1.2 that Kr(V, k) =
Lr(V) or {0} and K,(V, k) = {0} are neccessary conditions of Theorem 4.1.1 and

Corollary 4.1.2, respectively. Hence we have
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Corollary 4.1.3. For a cardinal number k with k < dimgV, Kg(V, k) admits a
ring structure if and only if one of the following statements holds.
(i) k=0.

(i) dimgrV < oo and k = dimg V.

Corollary 4.1.4. For a cardinal number k with k < dimg V, KR(V, k) admits a

ring structure if and only if dimgV < oo and k = dimg V' — 1.

Remark 4.1.5. If k; and ks are cardinal numbers such that &k < ky < dimgV/,
then Kg(V, k1) 2 Kg(V, k). To see this, let B be a basis of V. Then ky < kg <
|B|, so there is a subset B; of B such that |Bi| = k;. Define a € Lr(V) by

vEBN\B1
Then dimRKer o = ‘Bly = kl < k‘g. Thus o € KR(V, k’l) AN KR(V, kg) It then
follows that if dimpg V' is infinite, then

Kr(V,1) = Kp(V,0) 2 Kr(V,2) = KR(V,1) 2 Kr(V,3) = Kp(V,2) 2 ...

and by Theorem 4.1.1, none of these subsemigroups of Lz(V') admits the structure

of a left nearring and a right nearring.

4.2 The Semigroups Clz(V,k) and CIL(V, k)

We shall characterize when C'Ix(V, k) admits the structure of a left nearring or
a right nearring. The characterization will generalize Theorem 3.1.1 for the case
of OER(V) since OER(V) = CIg(V,Ny) if dimg V' is infinite. Since CIR(V, k) =
CIg(V, k) if k' is the successor of k, by the characterization of CIg(V, k) admitting
this structure, necessary and sufficient conditions for CIy(V, k) to admit such a
structure are also obtained.

From Proposition 2.11, if dimg V' < oo, then Kg(V, k) = CIg(V, k) for every
cardinal number £ with & < dimgr V. However, from Proposition 2.12 (i) that if
dimp V' is infinite, then CIr(V, k) # Kgr(V,l) for all cardinal numbers k, [ with
0 <k <dimgV and | < dimgV. Then characterizing when CIr(V,k) admits

the structure of a left nearring or a right nearring should be also considered.
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Theorem 4.2.1. Let k be a cardinal number with k < dimgV .

(1) CIr(V,k) admits the structure of a left nearring if and only if one of the
following statements holds.
(i) k=0.
(i1) dimgrV < oo and k = dimgV .

(2) CIr(V,k) admits the structure of a right nearring if and only if one of the
following statements holds.
(i) k=0.
(i1) dimgrV < oo and k = dimgV'.

Proof. To prove sufficiency, assume that (i) or (ii) holds. If £ = 0, then CIx(V, k) =
CIn(V,0) = Lp(V) € R C LNRARNR. If dimgV < oo, then CIx(V,k) =
Kgr(V,k). By Theorem 4.1.1, CIg(V, k) € LNRNRNR.

Conversely, assume that (CIg(V, k), o) admits the structure of a left nearring.
To prove that (i) or (ii) must hold, suppose not. Then either 0 < k < dimg V' < o0
or (k> 0 and dimg V' is infinite).

Case 1: 0 <k <dimgV < oo. Since dimgpV < oo, Kr(V, k) = CIg(V,k). By
Theorem 4.1.1, CIr(V, k) ¢ LN'R, a contradiction.

Case 2 : k > 0 and dimg V is infinite. Let B be a basis of V and By,By; C B
such that B = B; UBQ,Bl N By = & and |Bl| = |B2| = |B| Let O[,ﬁ € LR(V) be
defined by

Bl (Y (Y BQ
o= and 3 =

0 w v
vEBy vEB]

Then dimpg(V/Im o) =dimg(V/ (By)) =|B1|=|B|=dimg V >k and dimg(V/Im f3)
= dimg(V/(B1)) = |Bs| = |B| =dimgV > k. So «, 3 € CIg(V, k). Suppose that
there is an operation @ on CIg(V, k) such that (CIr(V,k),®, o) is a left nearring.
Thus a @ 5 € CIr(V, k). As shown in the proof of Case 1 of Theorem 4.1.1 that
a® (= 1y. Since dimg(V/Im 1y) =0 < k, 1y ¢ CIg(V, k). So this is contrary
to that o ® 8 € CIr(V, k).

Similarly, if (CIg(V,k),o) admits a right nearring structure, then (i) or (ii)
must hold. O
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Corollary 4.2.2. Let k be a cardinal number with k < dimgV'. Then
(1) CIR(V, k) admits the structure of a left nearring if and only if dimgV < oo
and k = dimgV — 1.

(2) CIR(V, k) admits the structure of a right nearring if and only if dimgV < co
and k = dimgV — 1.

Proof. Let k' be the successor of k. Then k' > 0 and CIR(V k) = Clg(V, k).
Suppose that dimgpV < oo and k = dimzpV — 1. Then ¥’ = dimzp V. Since
CI,(V, k) = CIr(V, k'), by Theorem 4.2.1 CIL(V, k) € LNRNRNR.

Conversely, assume that CIL(V k) € LNR URNR. Since Clh(V, k) =
CIr(V, k'), by Theorem 4.2.1 dimr V' < oo and k' = dimg V. Hence dimg V' < o0
and k = dimgpV — 1. O

Notice from the proofs of Theorem 4.1.1, Theorem 4.2.1, Corollary 4.1.2 and
Corollary 4.2.2 that necessary conditions of Theorem 4.2.1 and Corollary 4.2.2 are
CIg(V k) = Lr(V) or {0} and CI,(V, k) = {0}, respectively. Hence the following

corollaries are obtained directly.

Corollary 4.2.3. For a cardinal number k with k < dimg V, CIr(V, k) admits a
ring structure if and only if one of the following statements holds.
(i) k=0.

(7) dimgV < oo and k = dimg V.

Corollary 4.2.4. For a cardinal number k with k < dimg V,CI,(V, k) admits a

ring structure if and only if dimgV < oo and k = dimg V' — 1.

Remark 4.2.5. Let k; and ky be cardinal numbers and B a basis of V. If
k1 < ke < dimg V, let B; be a subset of B such that |B;| = k;. Define o € Lr(V)
by

vEBN\B1
Then dimg(V/Im o) = dimg(V/ (B \ By)) = |B1| = k1 < kg, soa € CIg(V, k1)~
CIg(V, kq). It then follows that if dimp V' is infinite, then

CIR(V,1) = CIR(V,0) 2 CIn(V,2) = CIR(V,1) 2 CIn(V,3) = CI;(V,2) 2 ...
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and by Theorem 4.2.1, none of them admits the structure of a left nearring and a

right nearring.

4.3 The Semigroups Iz(V, k) and I,(V, k)

From Proposition 2.12 (ii) if dimg V' is infinite, then for a nonzero cardinal
number k£ with k£ < dimg V, Ir(V, k) is not equal to Kg(V,l) and CIg(V,l) for
any cardinal number | < dimg V. This is also true for I(V,k), K5(V,l) and
CIL(V,1) where 0 < k < dimgV and 0 <! < dimg V. Then characterizing when
Ir(V, k) admits the structure of a left nearring or a right nearring should be also

considered.

Theorem 4.3.1. Let k be a cardinal number with k < dimgV .

(1) Ir(V,k) admits the structure of a left nearring if and only if one of the
following statements holds.
(i) k=0.
(i) k=dimgV.
(#i) k is an infinite cardinal number.

(2) Ir(V, k) admits the structure of a right nearring if and only if one of the

following statements holds.
(i) k=0.
(i) k=dimgV.

(#i) k is an infinite cardinal number.

Proof. To prove sufficiency of (1) and (2), assume that (i), (ii) or (iii) holds.

(i) If k=0, then Ir(V, k) = Ig(V,0) = {a € Lg(V) | dimgIm a <0} = {0},
so Ip(V,k) € R C LNRNRNR.

(ii) If £ = dimpg V, then

In(V, k) = Ip(V,dimg V)
={a € Lg(V) | dimgIm a < dimg V'}
= LR(V)7

so Ir(V,k) € RC LNRNRNR.
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(iii) Assume that k is an infinite cardinal number. Then k + k = k. We know
that for o, 8 € Lr(V),Im (a+ 3) C Im a + Im § and Im (—a) = Im « where +
is the usual addition on Lr(V'). Thus for «, 5 € Ig(V, k),

dimg Im (o — 8) < dimg Im a + dimg Im g

<k+k=k.
So Igr(V, k) is a subring of (Lr(V),+,0). Hence Ix(V,k) € R C LNRNRNR.

Conversely, assume that Ig(V, k) € LNRURNR. To show that one of (i),
(ii) and (iii) must hold, suppose on the contrary that (i), (ii) and (iii) are all false.
Then 0 < k < dimg V' and k is finite. Let B be a basis of V', B; C B such that
|B1| = k and I = B~ By. Since k < dimg V', I # @&. Let u € I be fixed, define
a,3 € Lr(V) by

B\ B B
a=|" 7> and (= w B : (1)
v 0 u 0

vEB]
Then Im o = (B;) and Im 8 = (u). So dimgIm o = |B;| = k and dimgIm § =
{u}| =1 < k. These imply that «, 5 € Iz(V, k). Obviously,

od=a, /=03, and af = Pa=0.

Suppose that (Ig(V, k), ®,0) is a left nearring for some operation @& on Ig(V, k),

then
ala®B)=a’*®af=a®0=aq,

Bla®f)=paef=065=70.
Let A\ =a@® [ € Ig(V,k). Then from (2), oA = o and g\ = 3. We therefore from
these equalities and (1) that

(2)

for every v € By, v\ = val =va =v and
uA = ufA = uf = u.

SoIm A D (B; U{u}). Then dimgIm A > |ByU{u}| = k+1 > k since k is finite.
Hence A ¢ Ig(V, k), a contradiction.

Next, assume that (Ig(V,k),®,0) is a right nearring for some operation & on
Ir(V k), then
(a®dBla=a*®Pa=ad®0=a,

3
(@@B)B=aBoF=008=4 (3)
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Let A =a® p € Ig(V,k). Then by (3), Aa = a and A3 = 3. We therefore from
these equalities and (1) that

for every v € By, vAa = va =wv and

4
uA\B = uf = u, @

for every v € By, vAf =v08 =0 and %)
ula = ua = 0.
Claim that for every v € By, v\ € (By) and uX € (u). If I = {u}, then by (1)

and (5) we have that

for every v € By, vA € Ker 8 = (B~ {u}) = (By) and
ul € Ker a = (B~ By) = (I) = (u).

If I\ {u} # @, then for each w € I \ {u}, define 3, € Lg(V) by

5, = w B~ A{w} ' (©)

w 0

Then if w € I ~ {u}, we have Im 3, = (w), so dimgIm 3, = {w}| =1 < k.
Thus 8, € Ig(V, k) for every w € I \ {u}. Obviously,

for every w € I ~{u}, af, = B, = 0.
Since (Igr(V, k), ®,0) is a right nearring,
for every w € I ~ {u}, A3y = (a® B)fyw = af, ® B0, =000=0.
Thus if w € I\ {u}, then for every v € B, vAB,, = 0. From (1), (5), (6) and this

fact, we have that for every v € By,

v € Ker ﬂﬂ ﬂ Ker 3,

wel~{u}

=B~{uh)()| () B~{wh

wel~{u}

= (B~ A{u}) N (B~ (I ~{u})) by Proposition 2.9
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= (B~ A{u}) N (BN (B~ Bi) ~A{u}))
= (B~ A{u}) N (B UA{u})
= (B1) by Proposition 2.8

and u\ € Ker « ﬂ ﬂ Ker 3,

wel~{u}

=(B~B)()| (] B~{w})

wel~{u}
= (B~ By)N (B~ (I~ {u})) by Proposition 2.9
= (B~ By)N (B~ ((B~ By)~{u}))
= (B~ By)N (B U{u})
=

u) . by Proposition 2.8

Then for every v € By, v\ € (B;) and uA € (u). Hence the claim is proved.

By the claim, (1) and (4), we have that

for every v € By, vA = v a =v and

u\ = uAf = u.

Then Im A D (B U{u}). Since k is finite, dimpIm A > |By U {u}| =k +1 > k.
Hence A ¢ Ig(V, k), a contradiction.

Therefore the theorem is proved. O

Corollary 4.3.2. Let k be a cardinal number with 0 < k < dimgV'. Then the

following statements hold.

(i) IR(V, k) admits the structure of left nearring if and only if either k =1 or k
18 an infinite cardinal number.
(i) I5(V, k) admits the structure of right nearring if and only if either k =1 or

k is an infinite cardinal number.

Proof. Assume that £k = 1 or k is an infinite cardinal number. If £ = 1, then
IL(V k) = I(V,1) = Ir(V,0) = {0}. So Ix(V,k) € R C LNRNRNR. If k is
an infinite cardinal number, then k£ + k = k. For o, 5 € IL(V,k),dimgIm o < k
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and dimgIm (6 < k. So

dimgIm (o — ) < dimg Im a + dimg Im S

<k+k=k.

Thus (I(V, k), +,0) is a ring where + is the usual addition of linear transforma-

tions. Hence IL(V k) € LNRNRNR.

Conversely, assume that 1 < k and k is finite. Then I(V, k) = Ir(V,k—1),0 <
k—1 < dimgr V and k—1 is finite. By Theorem 4.3.1, Ix(V,k—1) ¢ LNRURNR.
Hence I%(V, k) ¢ LNRURNR. O

Theorem 4.3.1 and Corollary 4.3.2 and their proofs yield the following results.

Corollary 4.3.3. For a cardinal number k with k < dimg V', the semigroup
Ir(V k) admits a ring structure if and only if one of the following statements

holds.
(i) k=0.
(i) k=dimgV.

(#ii) k 1s an infinite cardinal number.

Corollary 4.3.4. For a cardinal number k with 0 < k < dimg V', the semigroup
IL(V k) admits a ring structure if and only if either k = 1 or k is an infinite

cardinal number.

Remark 4.3.5. Assume that dimpg V' is infinite and let B a basis of V. Then B
contains a subset {u, | n € N} where u,, # u,, if n # m. For each positive integer

n, let a,, € Lr(V') be define by

up uy ... u, B~ A{up,ug, ... un}
ay, =
UL Uy ... Up 0
Then dimg Im o, = dimpg (uy,...,u,) = n for every n € N, so a, € Ig(V,n) \

Ir(V,n — 1) for every n > 1. Consequently,
Ir(V,1) = I(V,2) 2 Ir(V,2) = I5(V,3) 2 Ir(V.3) = Ip(V.4) 2 ...

and Theorem 4.3.1 shows that none of these semigroups admits the structure of

a left nearring and a right nearring.
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