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CHAPTER I

INTRODUCTION

The multiplicative structure of a ring is by definition a semigroup with zero.

However, ring theory is a classical subject in mathematics and had been widely

studied before semigroup theory was considered important and of interest by its

own. Because the multiplicative structure of a ring is a semigroup with zero, it

is valid to ask whether a given semigroup S, S0 isomorphics to the multiplicative

structure of some ring. If it does, S is said to admit a ring structure. Let R be

the class of all semigroups admitting ring structure. If S is a member of R, then

there is an isomorphism ϕ from S0 onto (R, ·) for some ring (R, +, ·). If we define

an addition ⊕ on S0 by

x⊕ y = ϕ−1(ϕ(x) + ϕ(y)) for all x, y ∈ S0,

then (S0,⊕, ·) is a ring which is isomorphic to (R, +, ·) through the mapping ϕ.

Hence a semigroup S ∈ R if and only if there is an operation + on S0 such that

(S0, +, ·) is a ring where · is the operation on S0. Many well-known theorems

in ring theory are useful to study whether a semigroup S is a member of R.

For examples, Wedderburn’s theorem tells us any finite nonabelian group is not a

member ofR. Because every Boolean ring is a commutative ring, we conclude that

any left [right] zero semigroup, that is, a semigroup S in which xy = x [xy = y]

for all x, y ∈ S, containing more than one element is not a member of R. It is

interesting to know that S.R. Kogalovski [8] announced in 1961 that the class R
is not axiomatizable.

In fact, semigroups admitting ring structure have long been studied. In 1970,

R.E. Peinado [10] gave a brief survey of semigroups admitting ring structure. D.D.

Chu and H.I. Shyr [2] proved a nice result that the multiplicative semigroup N

of natural numbers is a member of R by showing that (N0, ·) ∼= (Z2[X], ·). For

various studies in this area, see [6], [9], [11], [12], [13], [15] and [7].

We know that nearrings generalize rings and many examples and important
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results of nearrings can be found in [3], the book written by J.R. Clay. Some

important right nearrings which are not rings are (M(A), +, ◦) and (M(G), +, ◦)
where A is an abelian group, G is a group, M(A) is the set of all functions

f : A → A, M(G) is the set of all functions f : G → G and + and ◦ are usual

addition and composition of functions, respectively. Observe that (M(A), +) is

an abelian group, so we say that (M(A), +, ◦) is an additively commutative right

nearring. If A and G are containing more than one element, then (M(A), +, ◦)
and (M(G), +, ◦) have no multiplicative zero. However, every left nearring has a

multiplicative right zero and every right nearring has a multiplicative left zero. It

follows that if a semigroup S has no right [left] zero, then S is not isomorphic to

the multiplicative structure of a left [right] nearring. Then the most reasonable

definition of a semigroup admitting a left [right] nearring structure is as follows

: A semigroup S is said to admit a left [right ] nearring structure if S or S0 is

isomorphic to the multiplicative structure of some left [right] nearring, or equiva-

lently

(1) there is an operation + on S such that (S, +, ·) is a left [right] nearring

where · is the operation on S or

(2) there is an operation + on S0 such that (S0, +, ·) is a left [right] nearring

where · is the operation on S0.

There were some studies of semigroups admitting left [right] nearring structure.

These can be seen from [4] and [5].

In this research, we characterize when linear transformation semigroups of

various types admit a left nearring structure and a right nearring structure.

Chapter II contains examples, basic definitions and quoted results which are

refered for our research.

Chapter III deals with some linear transformation semigroups with zero. We

will show that they do not admit the structure of both a left nearring and a right

nearring. Since every ring is a left nearring and a right nearring, semigroups in

this chapter do not admit a ring structure. Some results in [1] are useful for this

chapter.

In the last chapter, we still consider some linear transformation semigroups

with zero. We provide necessary and sufficient conditions for each these linear
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transformation semigroups to admit a left nearring structure and a right nearring

structure. Some techniques in [1] are important for this chapter.



CHAPTER II

PRELIMINARIES

For any set X, the cardinality of X will be denoted by |X|.
An element a of a semigroup S is called an idempotent if a2 = a. A left [right ]

zero of a semigroup S is an element z ∈ S such that zx = z [xz = z] for all x ∈ S.

An element 0 of S is called a zero of S if 0x = x0 = 0 for all x ∈ S. If S has a

left zero z1 and a right zero z2, then z1 = z2 which is the zero of S.

Note that right [left] zeroes of a semigroup S are idempotents of S. The

identity of a group G is exactly one idempotent of G.

In a semigroup S, we can adjoin an extra element 0 and define 0x = x0 = 0

for all x ∈ S. Then S ∪ {0} becomes a semigroup with zero 0. For a semigroup

S, we let

S0 =

S ∪ {0} if |S| = 1 or S has no zero,

S otherwise.

Observe that if |S| = 1, then S0 ∼= (Z2, ·).

A semigroup S is called a left [right ] zero semigroup if xy = x [xy = y] for all

x, y ∈ S.

A left [right ] nearring is a triple (N, +, ·) such that

(i) (N, +) is a group,

(ii) (N, ·) is a semigroup and

(iii) z · (x + y) = z · x + z · y [(x + y) · z = x · z + y · z] for all x, y, z ∈ N .

Throughout, for every x, y ∈ N, x · y is denoted by xy.

Proposition 2.1. ([3], page 19) Let (N, +, ·) be a left [right ] nearring with the

additive identity 0. Then

(i) x0 = 0 [0x = 0] for all x ∈ N .

(ii) x(−y) = −(xy) [(−x)y = −(xy)] for all x, y ∈ N .
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A zero of a left [right] nearring (N, +, ·) is an element z ∈ N such that xz =

zx = z for all x ∈ N . If z is a zero of a left [right] nearring (N, +, ·), then z is a

right [left] zero of the semigroup (N, ·). From Proposition 1.1 (i), 0 is a right [left]

zero of (N, ·). Thus z = 0. Hence the left [right] nearring (N, +, ·) has a zero if

and only if 0x = x0 = 0 for all x ∈ N where 0 is the identity of (N, +). Such left

[right] nearring is called zero-symmetric.

Example 2.2. ([3], page 14) Let (G, +) be any group with the identity 0. For

each S ⊆ G r {0}, define ·S : G×G → G by

x ·S y =

y [x] if x ∈ S,

0 otherwise.

Then (G, +, ·S) is a left [right] nearring. Moreover, if x ∗ y = y [x] for all x, y ∈ G,

then (G, +, ∗) is also a left [right] nearring. If |G| ≥ 2, then (G, +, ∗) is neither a

right [left] nearring nor a ring.

An example of a right nearring which is not a left nearring and a ring is shown

as follows:

Example 2.3. ([3], pages 7 and 19) Let (A, +) be an abelian group with identity

0, M(A) the set of all mappings f : A → A and

M0(A) = {f ∈ M(A)|f(0) = 0}.

Then (M(A), +, ◦) is a right nearring and (M0(A), +, ◦) is a zero-symmetric right

nearring where + and ◦ are the usual addition and composition of functions.

Moreover, the zero map θ, that is, θ(x) = 0 for all x ∈ A, is a left zero of (M(A), ◦)
which is not a zero if |A| > 1 and θ is the zero of (M0(A), ◦). By Proposition 2.1

(i), (M(A), +, ◦) is neither a left nearring nor a ring where |A| > 1.

Hence every left [right] nearring is a genearalization of rings.

A semigroup S is said to admit a ring structure if S0 is isomorphic to a mul-

tiplicative structure of some ring, or equivalently, there is an operation + on S0

such that (S0, +, ·) is a ring where · is the operation on S0.
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Proposition 2.1 shows that if S has no right [left] zero, then there is no oper-

ation + on S such that (S, +, ·) is a left [right] nearring. Therefore the definition

of semigroups admitting left [right] nearring structure is reasonably given as fol-

lows. We say that a semigroup S admits a left [right ] nearring structure if S or

S0 is isomorphic to the multiplicative structure of some left [right] nearring, or

equivalently,

(1) there is an operation + on S such that (S, +, ·) is a left [right] nearring

where · is the operation on S or

(2) there is an operation + on S0 such that (S0, +, ·) is a left [right] nearring

where · is the operation on S0.

Denote by R,LNR and RNR the classes of all semigroups which admit a

ring structure, a left nearring structure and a right nearring structure, respectively.

Then R ⊆ LNR∩RNR.

Throughout this research, let V be a vector space over a division ring R and

LR(V ) the semigroup under composition of all linear transformations α : V → V .

Then LR(V ) admits a ring structure under the usual addition of linear transfor-

mations. The image of v under α ∈ LR(V ) is written by vα. For α ∈ LR(V ), let

Ker α and Im α denote the kernel and the image of α, respectively. For A ⊆ V ,

let 〈A〉 stand for the subspace of V spanned by A. dimR W means the dimension

of a subspace W of V . For every α, β ∈ LR(V ), αβ means α ◦ β where ◦ is the

composition of function. The following five propositions are simple facts of vector

spaces and linear transformations which will be used. The proofs are routine and

elementary, so they will be omitted.

Proposition 2.4. Let B be a basis of V . If u ∈ B and v ∈ 〈B r {u}〉, then

(B r {u}) ∪ {u + v} is also a basis of V .

Proposition 2.5. Let B be a basis of V, A ⊆ B and ϕ : B rA → V a one-to-one

map such that (B r A)ϕ is a linearly independent subset of V . If α ∈ LR(V ) is

defined by

vα =

0 if v ∈ A,

vϕ if v ∈ B r A,

then Ker α = 〈A〉 and Im α = 〈B r A〉ϕ.
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Proposition 2.6. Let B be a basis of V and A ⊆ B. Then

(i) {v + 〈A〉 |v ∈ B r A} is a basis of the quotient space V/ 〈A〉 and

(ii) dimR(V/ 〈A〉) = |B r A|.

Proposition 2.7. Let B be a basis of V . Then for every v ∈ V , there is a unique

set of vectors v1, . . . , vn in B, along with a unique set of scalars a1, . . . , an in R,

for which v = a1v1 + · · ·+ anvn.

Proposition 2.8. Let B be a basis of V and B1, B2 and B3 are disjoint subsets

of B. Then 〈B1 ∪B2〉 ∩ 〈B1 ∪B3〉 = 〈B1〉.

Proposition 2.9. Let B be a basis of V and C a nonempty subset of B. Then⋂
v∈C

〈B r {v}〉 = 〈B r C〉 .

Proof. Since B r C ⊆ B r {v} for every v ∈ C, 〈B r C〉 ⊆
⋂
v∈C

〈B r {v}〉 .

Conversely, let w ∈ V be such that w /∈ 〈B r C〉. Then w = a1u1 + · · · +
anun+b1v1+· · ·+bmvm for some a1, . . . , an, b1, . . . , bm ∈ R, u1, . . . , un ∈ BrC and

v1, . . . , vm ∈ C. Since w /∈ 〈B r C〉, there exists i ∈ {1, . . . ,m} such that bi 6= 0.

Without loss of generality, suppose that b1 6= 0. By Proposition 2.7, we have that

w /∈ 〈B r {v1}〉, so w /∈
⋂
v∈C

〈B r {v}〉. Hence
⋂
v∈C

〈B r {v}〉 ⊆ 〈B r C〉.

Let

GR(V ) = {α ∈ LR(V ) | α is an isomorphism}.

Then GR(V ) is the unit group of the semigroup LR(V ) or the group of all units

of LR(V ). The following known result will be referred.

Proposition 2.10. ([14])GR(V ) admits a ring structure if and only if dimR V ≤1.

Next, let

OMR(V ) = {α ∈ LR(V ) | dimR Ker α is infinite},

OER(V ) = {α ∈ LR(V ) | dimR(V/Im α) is infinite}.

If dimR V is infinite, then 0 belongs to both OMR(V ) and OER(V ). Since

Ker αβ ⊇ Ker α and Im αβ ⊆ Im β, for all α, β ∈ LR(V ), it follows that OMR(V )

and OER(V ) are both subsemigroups of LR(V ) containing 0 if dimR V is infinite.
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For this case, the semigroups OMR(V ) and OER(V ) may be referred to respetively

as the opposite semigroup of MR(V ) and the opposite semigroup of ER(V ).

For any cardinal number k with k ≤ dimR V , let

KR(V, k) = {α ∈ LR(V ) | dimR Ker α ≥ k},

CIR(V, k) = {α ∈ LR(V ) | dimR(V/Im α) ≥ k},

IR(V, k) = {α ∈ LR(V ) | dimR Im α ≤ k}.

Then the zero map 0 on V belongs to all of the above three subsets of LR(V ).

Since for α, β ∈ LR(V ), Ker αβ ⊇ Ker α and Im αβ ⊆ Im β, we conclude that all

of KR(V, k), CIR(V, k) and IR(V, k) are subsemigroups of LR(V ). Observe that if

dimR V is infinite, the notations OMR(V ) and OER(V ) defined previously denote

KR(V,ℵ0) and CIR(V,ℵ0), respectively, that is,

OMR(V ) = {α ∈ LR(V ) | dimR Ker α ≥ ℵ0},

OER(V ) = {α ∈ LR(V ) | dimR(V/Im α) ≥ ℵ0}.

We know that if dimR V is finite, then for α ∈ LR(V ), dimR Ker α = dimR(V/Im α)

= dimR V − dimR Im α since dimR V = dimR Ker α + dimR Im α and dimR V =

dimR(V/Im α) + dimR Im α. Hence we have

Proposition 2.11. If dimR V <∞, then KR(V, k) = CIR(V, k) = IR(V, dimR V −
k) for every cardinal number k ≤ dimR V .

However, these are not generally true if dimR V is infinite. This is shown

by the following proposition. This proposition also shows that the semigroups

KR(V, k), CIR(V, k) and IR(V, k) should be considered independently if dimR V is

infinite.

Proposition 2.12. ([1], page 12) Let V be an infinite dimensional vector space

and a nonzero cardinal number k ≤ dimR V . Then the following statements hold.

(i) CIR(V, k) 6= KR(V, l) for every cardinal number l ≤ dimR V .

(ii) If k < dimR V , then IR(V, k) 6= KR(V, l) and IR(V, k) 6= CIR(V, l) for every

cardinal number l ≤ dimR V .
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Next, we define K ′
R(V, k), CI ′R(V, k) and I ′R(V, k) which are subsets of KR(V, k),

CIR(V, k) and IR(V, k) respectively as follows :

K ′
R(V, k) = {α ∈ LR(V ) | dimR Ker α > k} where k < dimR V,

CI ′R(V, k) = {α ∈ LR(V ) | dimR(V/Im α) > k} where k < dimR V,

I ′R(V, k) = {α ∈ LR(V ) | dimR Im α < k} where 0 < k ≤ dimR V.

Then 0 belongs to all K ′
R(V, k), CI ′R(V, k) and I ′R(V, k), moreover, they are re-

spectively subsemigroups of KR(V, k), CIR(V, k) and IR(V, k). Observe that if

k < dimR V , then K ′
R(V, k) = KR(V, k′) and CI ′R(V, k) = CIR(V, k′) where k′ is

the successor of k. Also, if 0 < k ≤ dimR V, k is a finite cardinal number and k̃ is

the predecessor of k, then I ′R(V, k) = IR(V, k̃).

For α ∈ LR(V ), let

F (α) = {v ∈ V | vα = v}.

Then for α ∈ LR(V ), F (α) is a subspace of V and α is called an almost identical

linear transformation of V if dimR(V/F (α)) is finite. The set of all almost identical

linear transformations of V will be denoted by AIR(V ), that is,

AIR(V ) = {α ∈ LR(V ) | dimR(V/F (α)) < ∞}.

Observe that 1V , the identity map on V , belongs to AIR(V ).

Proposition 2.13. ([1], page 14) AIR(V ) is a subsemigroup of LR(V ).

Notice that if dimR V < ∞, then AIR(V ) = LR(V ) which admits a ring

structure. Moreover, the semigroup AIR(V ) does not contain 0, the zero map on

V , if dimR V is infinite.

Since every linear transformation from a vector space V into a vector space W

can be defined on a basis of V , for convenience, we may write α ∈ LR(V, W ) by

using a bracket notation. For examples,

α =

B1 v

0 v


v∈BrB1

means that B is a basis of V, B1 ⊆ B and

vα =

0 if v ∈ B1,

v if v ∈ B r B1
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and

β =

u w v

w 0 v


v∈Br{u,w}

means that B is a basis of V, u, w ∈ B, u 6= w and

vβ =


w if v = u,

0 if v = w,

v if v ∈ B r {u, w}.

Chapter III deals with linear transformation semigroups on V with zero. The

purpose of this chapter is to show that if dimR V is infinite, OMR(V ), OER(V )

and some linear transformation semigroups containing OMR(V ) and OER(V ) do

not admit the structure of both a left nearring and a right nearring.

The semigroups OMR(V ) and OER(V ) are generalized to be the semigroups

KR(V, k) and CIR(V, k), respectively. We also determine in the last chapter when

the semigroups KR(V, k) and CIR(V, k) admit a left nearring and a right nearring

structure. Moreover, the semigroups IR(V, k), K ′
R(V, k), CI ′R(V, k) and I ′R(V, k)

are also studied in the same matter.



CHAPTER III

SEMIGROUPS WHICH DO NOT ADMIT

THE STRUCTURE OF A LEFT [RIGHT] NEARRING

In this chapter, we deal with linear transformation semigroups on V where

dimR V is infinite. The following linear transformation semigroups on V given in

Chapter I are recalled as follows:

LR(V ) = {α : V → V | α is a linear transformation},

GR(V ) = {α ∈ LR(V ) | α is an isomorphism},

OMR(V ) = {α ∈ LR(V ) | dimR Ker α is infinite},

OER(V ) = {α ∈ LR(V ) | dimR(V/Im α) is infinite},

AIR(V ) = {α ∈ LR(V ) | α is almost identical}

= {α ∈ LR(V ) | dimR(V/F (α)) < ∞}

where F (α) = {v ∈ V | vα = v}.

3.1 The Semigroups OMR(V ) and OER(V )

Recall that 0, the zero map on V belongs to both OMR(V ) and OER(V ) and

note that 1V /∈ OMR(V ) and 1V /∈ OER(V ).

Theorem 3.1.1. If S(V ) is OMR(V ) or OER(V ), then the following statements

hold.

(i) S(V ) does not admit a left nearring structure.

(ii) S(V ) does not admit a right nearring structure.

Proof. Let B be a basis of V . Then B is infinite, so there are subsets B1, B2 of B

such that B = B1 ∪B2, B1 ∩B2 = ∅ and |B| = |B1| = |B2|. Define α, β ∈ LR(V )

by

α =

v B2

v 0


v∈B1

and β =

B1 v

0 v


v∈B2

. (1)
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So Ker α = 〈B2〉 , dimR(V/Im α) = dimR(V/ 〈B1〉) = |B2|, Ker β = 〈B1〉 and

dimR(V/Im β) = dimR(V/ 〈B2〉) = |B1|. Then α and β are elements of OMR(V )

and OER(V ). Obviously,

α2 = α, β2 = β, αβ = βα = 0.

(i) Suppose that S(V ) ∈ LNR. Then there is an operation ⊕ on S(V ) such

that (S(V ),⊕, ◦) is a left nearring. Let λ = α⊕ β ∈ S(V ). So

αλ = α(α⊕ β) = α2 ⊕ αβ = α⊕ 0 = α,

βλ = β(α⊕ β) = βα⊕ β2 = 0⊕ β = β.

We therefore deduce from these equalities and (1) that

for every v ∈ B1, vλ = vαλ = vα = v,

for every v ∈ B2, vλ = vβλ = vβ = v.

Consequently, vλ = v for every v ∈ B. Since B is a basis of V, λ = 1V . This is a

contradiction because 1V /∈ OMR(V ) and 1V /∈ OER(V ). Hence S(V ) /∈ LNR.

(ii) Suppose that S(V ) ∈ RNR. Then there is an operation ⊕ on S(V ) such

that (S(V ),⊕, ◦) is a right nearring. Then λ = α⊕ β ∈ S(V ). Consequently,

λα = (α⊕ β)α = α2 ⊕ βα = α⊕ 0 = α,

λβ = (α⊕ β)β = αβ ⊕ β2 = 0⊕ β = β.

We therefore deduce from these equalities and (1) that

for every v ∈ B1, vλα = vα = v,

for every v ∈ B2, vλβ = vβ = v.
(2)

and

for every v ∈ B1, vλβ = vβ = 0,

for every v ∈ B2, vλα = vα = 0.
(3)

By (1) and (3), we have that

for every v ∈ B1, vλ ∈ Ker β = 〈B1〉,
for every v ∈ B2, vλ ∈ Ker α = 〈B2〉.

Then

for every v ∈ B1, vλα = vλ,

for every v ∈ B2, vλβ = vλ.
(4)
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By (2) and (4), we have vλ = v for every v ∈ B. Since B is a basis of V ,

λ = 1V . This is a contradiction because 1V /∈ OMR(V ) and 1V /∈ OER(V ). Hence

S(V ) /∈ RNR.

Therefore the theorem is proved.

Since every ring is both a left nearring and a right nearring, we have

Corollary 3.1.2. The semigroups OMR(V ) and OER(V ) do not admit a ring

structure.

3.2 Semigroups Containing OMR(V ) and Semigroups Con-

taining OER(V )

Also, dimR V is assumed to be infinite in this section. The following proposi-

tion is needed for our study.

Proposition 3.2.1. ([1], pages 22, 23 and 25) The following statements hold.

(i) OMR(V )∪H is a subsemigroup of LR(V )whereH is a subsemigroup of GR(V ).

(ii) OER(V )∪H is a subsemigroup of LR(V )whereH is a subsemigroup of GR(V ).

(iii) OMR(V )∪T is a subsemigroupof LR(V )whereT is a subsemigroupof AIR(V ).

(iv) OER(V )∪T is a subsemigroup of LR(V )whereT is a subsemigroup of AIR(V ).

It is shown in this section that any linear transformation semigroup on V

of Proposition 3.2.1 does not admit the structure of a left nearring and a right

nearring.

Theorem 3.2.2. If H is a subsemigroup of GR(V ) and S(V ) is the semigroup

OMR(V )∪H or the semigroup OER(V )∪H, then the following statements hold.

(i) S(V ) does not admit a left nearring structure.

(ii) S(V ) does not admit a right nearring structure.

Proof. Let B be a basis of V and u ∈ B a fixed element. Since B is infinite,

B r {u} has subsets B1, B2 such that B r {u} = B1 ∪ B2, B1 ∩ B2 = ∅ and
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|B1| = |B2| = |B r {u}|(= |B|). Then B = B1∪B2∪{u} and these three sets are

pairwise disjoint. Define α, β, γ ∈ LR(V ) by

α =

v B2 ∪ {u}
v 0


v∈B1

, β =

B1 ∪ {u} v

0 v


v∈B2

, γ =

u B1 ∪B2

u 0

 . (1)

So Ker α = 〈B2 ∪ {u}〉 , dimR(V/Im α) = dimR(V/ 〈B1〉) = |B2 ∪ {u}|, Ker β =

〈B1 ∪ {u}〉 , dimR(V/Im β) = dimR(V/ 〈B2〉) = |B1∪{u}|, Ker γ = 〈B1 ∪B2〉 and

dimR(V/Im γ) = dimR(V/ 〈u〉) = |B1 ∪B2|. Then α, β, γ ∈ S(V ). Obviously,

α2 = α, β2 = β, αβ = βα = γα = αγ = γβ = βγ = 0.

(i) Suppose that S(V ) ∈ LNR. Then there is an operation ⊕ on S(V ) such

that (S(V ),⊕, ◦) is a left nearring. So λ = α⊕ β ∈ S(V ). It is obtained that

αλ = α(α⊕ β) = α2 ⊕ αβ = α⊕ 0 = α,

βλ = β(α⊕ β) = βα⊕ β2 = 0⊕ β = β,

γλ = γ(α⊕ β) = γα⊕ γβ = 0⊕ 0 = 0.

We therefore deduce from these equalities and (1) that

for every v ∈ B1, vλ = vαλ = vα = v,

for every v ∈ B2, vλ = vβλ = vβ = v,

uλ = uγλ = 0,

that is,

λ =

u v

0 v


v∈B1∪B2

.

Thus Ker λ = 〈u〉 and dimR(V/Im λ) = dimR(V/ 〈B1 ∪B2〉) = |{u}| = 1. Hence

λ /∈ S(V ) which is contrary to that λ = α⊕ β ∈ S(V ). Therefore S(V ) /∈ LNR.

(ii) Suppose that S(V ) ∈ RNR. Then there is an operation ⊕ on S(V ) such

that (S(V ),⊕, ◦) is a right nearring. Then λ = α⊕ β ∈ S(V ). Hence

λα = (α⊕ β)α = α2 ⊕ βα = α⊕ 0 = α,

λβ = (α⊕ β)β = αβ ⊕ β2 = 0⊕ β = β,

λγ = (α⊕ β)γ = αγ ⊕ βγ = 0⊕ 0 = 0.
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We therefore deduce from these equalities and (1) that

for every v ∈ B1, vλα = vα = v,

for every v ∈ B2, vλβ = vβ = v,

for every v ∈ V, vλγ = 0

(2)

and

for every v ∈ B1, vλβ = vβ = 0,

for every v ∈ B2, vλα = vα = 0.
(3)

By (1) and (3), we have that

for every v ∈ B1, vλ ∈ Ker β = 〈B1 ∪ {u}〉,
for every v ∈ B2, vλ ∈ Ker α = 〈B2 ∪ {u}〉.

Claim that for every v ∈ B1, vλ ∈ 〈B1〉 and for every v ∈ B2, vλ ∈ 〈B2〉. Let

v ∈ B1. Then vλ = a1v1 + a2v2 + · · · anvn + au for some a1, a2, . . . , an, a ∈ R

and v1, v2, . . . , vn ∈ B1. Since 0 = vλγ = (a1v1 + a2v2 + · · · anvn + au)γ = au,

vλ ∈ 〈B1〉. Similarly, we have that for every v ∈ B2, vλ ∈ 〈B2〉. It is obtained

from (1) that

for every v ∈ B1, vλα = vλ,

for every v ∈ B2, vλβ = vλ.
(4)

Hence by (2) and (4), we have that for all v ∈ 〈B1 ∪ B2〉, vλ = v. Since uλγ = 0,

by the definition of γ, uλ ∈ Ker γ = 〈B1 ∪ B2〉, so (u − uλ)λ = uλ − (uλ)λ =

uλ − uλ = 0. Since B1 ∪ B2 ∪ {u} is a basis of V and uλ ∈ 〈B1 ∪B2〉, by

Proposition 2.4, B1 ∪B2 ∪ {u− uλ} is a basis of V . Hence

λ =

u− uλ v

0 v


v∈B1∪B2

.

Thus Ker λ = 〈u− uλ〉 and dimR(V/Im λ) = dimR(V/ 〈B1 ∪B2〉) = |{u−uλ}| =
1. Then λ /∈ S(V ). It is contrary to that λ = α⊕β ∈ S(V ). Hence S(V ) /∈ RNR.

Therefore the proof is complete.

The following corollary is a direct consequence of the above theorem.

Corollary 3.2.3. If H is a subsemigroup of GR(V ), then the semigroups OMR(V )∪
H and OER(V ) ∪H do not admit a ring structure.
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Remark 3.2.4. Let B be a basis of V and for distinct u, w ∈ B, let αu,w ∈ GR(V )

be defined by

αu,w =

u w v

w u v


v∈Br{u,w}

.

Then Hu,w = {1V , αu,w} is a subgroup of GR(V ) for all distinct u, w ∈ B, and

Hu,w 6= Hu′,w′ if u, w, u′, w′ are elements of B such that (u, w) 6= (u′, w′). This

fact and Theorem 3.2.2 show that if dimR V is infinite, there are infinitely many

subsemigroups of LR(V ) containing OMR(V ) and infinitely many subsemigroups

of LR(V ) containing OER(V ) which do not admit the structure of a left nearring

and a right nearring.

Theorem 3.2.5. If T is a subsemigroup of AIR(V ) and S(V ) is the semigroup

OMR(V ) ∪ T or the semigroup OER(V ) ∪ T , then the following statements hold.

(i) S(V ) does not admit a left nearring structure.

(ii) S(V ) does not admit a right nearring structure.

Proof. Let B be a basis of V and let B1, B2 ⊆ B be such that B = B1 ∪B2, B1 ∩
B2 = ∅ and |B1| = |B2| = |B|. Then there is a bijection ϕ : B1 → B2. Define

α, β ∈ LR(V ) by

α =

 v B2

vϕ 0


v∈B1

and β =

B1 v

0 vϕ−1


v∈B2

. (1)

So Ker α = 〈B2〉 , dimR(V/Im α) = dimR(V/ 〈B2〉) = |B1|, Ker β = 〈B1〉 and

dimR(V/Im β) = dimR(V/ 〈B1〉) = |B2|. Thus α, β ∈ OMR(V )∩OER(V ), and so

α, β ∈ S(V ). Obviously,

α2 = β2 = 0,

αβ =

v B2

v 0


v∈B1

and βα =

B1 v

0 v


v∈B2

.
(2)

(i) Suppose that S(V ) ∈ LNR. Then (S(V ),⊕, ◦) is a left nearring for some

operation ⊕ on S(V ). Let λ = α⊕ β ∈ S(V ). It follows from (2) that

αλ = α(α⊕ β) = α2 ⊕ αβ = 0⊕ αβ = αβ,

βλ = β(α⊕ β) = βα⊕ β2 = βα⊕ 0 = βα.
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We therefore from these facts, (1) and (2), we have

for every v ∈ B1, (vϕ)λ = vαλ = vαβ = v = (vϕ)ϕ−1,

for every v ∈ B2, (vϕ−1)λ = vβλ = vβα = v = (vϕ−1)ϕ.
(3)

We can see from (3) that

λ|B2 = ϕ−1 : B2 → B1 is a bijection,

λ|B1 = ϕ : B1 → B2 is a bijection.
(4)

Since B = B1 ∪ B2 and B1 ∩ B2 = ∅, λ|B : B → B is a bijection. So λ ∈
GR(V ). Hence λ /∈ OMR(V ) and λ /∈ OER(V ). Claim that λ /∈ AIR(V ). By (4),

B1 ∩ F (λ) = ∅, that is v + F (λ) 6= F (λ) for every v ∈ B1. Let v1, v2, . . . , vn ∈ B1

be distinct and a1, a2 . . . , an ∈ R be such that
n∑

i=1

ai(vi + F (λ)) = F (λ). Then

n∑
i=1

aivi ∈ F (λ), so

n∑
i=1

aivi = (
n∑

i=1

aivi)λ

=
n∑

i=1

ai(viλ) ∈ 〈B2〉 from (4).

Thus
n∑

i=1

aivi ∈ 〈B1〉 ∩ 〈B2〉 = {0}. Then ai = 0 for all i ∈ {1, . . . , n}. So

{v + F (λ) | v ∈ B1} is a linearly independent subset of V/F (λ) and v + F (λ) 6=
w + F (λ) for all distinct v, w ∈ B1. Hence dimR(V/F (λ)) ≥ |B1|. Since B1

is infinite, λ /∈ AIR(V ). Thus λ /∈ S(V ) which is contrary to that λ ∈ S(V ).

Therefore S(V ) /∈ LNR.

(ii) Suppose that S(V ) ∈ RNR. Then (S(V ),⊕, ◦) is a right nearring for

some operation ⊕ on S(V ). Let λ = α⊕ β ∈ S(V ). It follows from (2) that

λα = (α⊕ β)α = α2 ⊕ βα = 0⊕ βα = βα,

λβ = (α⊕ β)β = αβ ⊕ β2 = αβ ⊕ 0 = αβ.

We therefore from these facts, (1) and (2), we have

for every v ∈ B1, vλβ = vαβ = v,

for every v ∈ B2, vλα = vβα = v,
(5)
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and

for every v ∈ B1, vλαβ = vβαβ = 0αβ = 0,

for every v ∈ B2, vλβα = vαβα = 0βα = 0.

By these facts and (2), we have that

for every v ∈ B1, vλ ∈ Ker αβ = 〈B2〉 ,
for every v ∈ B2, vλ ∈ Ker βα = 〈B1〉 .

(6)

It is obtained from (1) and (5) that

for every v ∈ B1, (vλ)β = v = (vϕ)ϕ−1 = (vϕ)β,

for every v ∈ B2, (vλ)α = v = (vϕ−1)ϕ = (vϕ−1)α.

We can see from (6) that B1λ, B1ϕ ⊆ 〈B2〉 and B2λ, B2ϕ
−1 ⊆ 〈B1〉. Since β|〈B2〉

and α|〈B1〉 are monomorphisms, we have

for every v ∈ B1, vλ = vϕ,

for every v ∈ B2, vλ = vϕ−1.

Hence

λ|B1 = ϕ : B1 → B2 is a bijection,

λ|B2 = ϕ−1 : B2 → B1 is a bijection.

Since B = B1 ∪B2 and B1 ∩B2 = ∅, λ|B : B → B is a bijection. So λ ∈ GR(V ).

Hence λ /∈ OMR(V ) and λ /∈ OER(V ). Similarly (i), we have that λ /∈ AIR(V ).

Thus λ /∈ S(V ) which is contrary to that λ ∈ S(V ). Therefore S(V ) /∈ RNR.

Hence the theorem is proved.

Also, we have a corollary of Theorem 3.2.5 as follows:

Corollary 3.2.6. If T is a subsemigroup of AIR(V ), then the semigroups OMR(V )∪
T and OER(V ) ∪ T do not admit a ring structure.

Remark 3.2.7. Let B be a basis of V and for each u ∈ B, define αu ∈ LR(V ) by

αu =

u v

0 v


v∈Br{u}

.

Then F (αu) = 〈B r {u}〉, and hence by Proposition 2.6 (ii), dimR(V/F (αu)) =

|{u}| for every u ∈ B. Clearly, αu 6= αw if u and w are distinct elements of B
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and for each u ∈ B, {αu} is a subsemigroup of AIR(V ) since α2
u = αu. This fact

and Theorem 3.2.5 show that there are infinitely many subsemigroups of LR(V )

containing OER(V ) which do not admit the structure of a left nearring and a right

nearring.



CHAPTER IV

SEMIGROUPS ADMITTING THE STRUCTURE OF

A LEFT [RIGHT] NEARRING

First, let us recall the following linear transformation semigroups on V .

KR(V, k) = {α ∈ LR(V ) | dimR Ker α ≥ k}

where k ≤ dimR V,

K ′
R(V, k) = {α ∈ LR(V ) | dimR Ker α > k}

where k < dimR V,

CIR(V, k) = {α ∈ LR(V ) | dimR(V/Im α) ≥ k}

where k ≤ dimR V,

CI ′R(V, k) = {α ∈ LR(V ) | dimR(V/Im α) > k}

where k < dimR V,

IR(V, k) = {α ∈ LR(V ) | dimR Im α ≤ k}

where k ≤ dimR V,

I ′R(V, k) = {α ∈ LR(V ) | dimR Im α < k}

where 0 < k ≤ dimR V.

Note that these semigroups contain 0, the zero map on V .

4.1 The Semigroups KR(V, k) and K ′
R(V, k)

We shall characterize when KR(V, k) admits the structure of a left nearring or

a right nearring. The characterization will generalize Theorem 3.1.1 for the case

of OMR(V ) since OMR(V ) = KR(V,ℵ0) if dimR V is infinite. Since K ′
R(V, k) =

KR(V, k′) if k′ is the successor of k, by the characterization of KR(V, k) admitting

this structure, necessary and sufficient conditions for K ′
R(V, k) to admit such a

structure are also obtained.
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Theorem 4.1.1. Let k be a cardinal number with k ≤ dimRV .

(1 ) KR(V, k) admits the structure of a left nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) dimRV < ∞ and k = dimRV .

(2 ) KR(V, k) admits the structure of a right nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) dimRV < ∞ and k = dimRV .

Proof. To prove sufficiency, assume that (i) or (ii) holds. If k = 0, then KR(V, k) =

KR(V, 0) = LR(V ). So KR(V, k) ∈ R ⊆ LNR∩RNR. If dimR V < ∞ and

k = dimR V , then for every α ∈ KR(V, k), dimR Ker α = dimR V < ∞ implies that

Ker α = V and α = 0, respectively. Hence KR(V, k) = {0} ∈ R ⊆ LNR∩RNR.

Conversely, assume that (KR(V, k), ◦) admits the structure of a left nearring

or a right nearring. To prove that (i) or (ii) must hold, suppose not. Then either

(k > 0 and dimR V is infinite) or 0 < k < dimR V < ∞.

Case 1 : k > 0 and dimR V is infinite. Let B be a basis of V . Then B is infinite.

So there exist subsets B1 and B2 of B such that B = B1 ∪ B2, B1 ∩ B2 = ∅ and

|B1| = |B2| = |B|. Let α, β ∈ LR(V ) be defined by

α =

B1 v

0 v


v∈B2

and β =

v B2

v 0


v∈B1

. (1)

Then Ker α = 〈B1〉 and Ker β = 〈B2〉, so dimR Ker α = |B1| = |B| and

dimR Ker β = |B2| = |B|. Since k ≤ dimR V = |B|, we have α, β ∈ KR(V, k).

Obviously,

α2 = α, β2 = β and αβ = βα = 0.

If (KR(V, k),⊕, ◦) is a left nearring for some operation ⊕ on KR(V, k), then

α(α⊕ β) = α2 ⊕ αβ = α⊕ 0 = α and

β(α⊕ β) = βα⊕ β2 = 0⊕ β = β.
(2)
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Let λ = α⊕ β ∈ KR(V, k). Then from (2), αλ = α and βλ = β. Consequently,

for every v ∈ B1, vλ = vβλ = vβ = v,

for every v ∈ B2, vλ = vαλ = vα = v.

Since B = B1 ∪ B2, λ = 1V , the identity map on V . Since k > 0, we have

dimR Ker λ = 0 < k. Hence λ /∈ KR(V, k), a contradiction.

If (KR(V, k),⊕, ◦) is a right nearring for some operation ⊕ on KR(V, k), then

(α⊕ β)α = α2 ⊕ βα = α⊕ 0 = α and

(α⊕ β)β = αβ ⊕ β2 = 0⊕ β = β.
(3)

Let λ = α⊕ β ∈ KR(V, k). Then from (3), λα = α and λβ = β. Consequently,

for every v ∈ B1, vλβ = vβ = v,

for every v ∈ B2, vλα = vα = v,
(4)

and

for every v ∈ B1, vλα = vα = 0,

for every v ∈ B2, vλβ = vβ = 0.

It is obtained from (1) that

for every v ∈ B1, vλ ∈ Ker α = 〈B1〉 ,
for every v ∈ B2, vλ ∈ Ker β = 〈B2〉 .

By (1), we have

for every v ∈ B1, vλβ = vλ,

for every v ∈ B2, vλα = vλ.

By (4) and these facts, we have that vλ = v for every v ∈ B1 ∪ B2 = B. Since B

is a basis of V , λ = 1V . Then we have dimR Ker λ = 0 < k. Hence λ /∈ KR(V, k),

a contradiction.

Case 2 : 0 < k < dimR V < ∞. Let B be a basis of V . Since 0 < k < dimR V ,

there exists ∅ 6= B1 ⊆ B such that |B1| = k. Let u ∈ B1 be fixed. Define

α, β ∈ LR(V ) by

α =

B1 v

0 v


v∈BrB1

and β =

u B r {u}
u 0

 . (5)
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Then Ker α = 〈B1〉 and Ker β = 〈B r {u}〉. So dimR Ker α = k and dimR Ker β =

dimR V − 1 ≥ k. Thus α, β ∈ KR(V, k). Obviously,

α2 = α, β2 = β and αβ = βα = 0.

If (KR(V, k),⊕, ◦) is a left nearring for some operation ⊕ on KR(V, k), then

α(α⊕ β) = α2 ⊕ αβ = α⊕ 0 = α and

β(α⊕ β) = βα⊕ β2 = 0⊕ β = β.

Let λ = α⊕ β ∈ KR(V, k). Then αλ = α and βλ = β. Hence

Im α = Im αλ ⊆ Im λ and Im β = Im βλ ⊆ Im λ.

It then follows from (5) that

B r (B1 r {u}) = (B r B1) ∪ {u} ⊆ Im α ∪ Im β ⊆ Im λ.

This implies that

dimR Im λ ≥ |B r (B1 r {u})| = dimR V − (k − 1). (6)

Since dimR Ker λ + dimR Im λ = dimR V < ∞ and k is finite, we have that

dimR Ker λ = dimR V − dimR Im λ

≤ dimR V − (dimR V − (k − 1)) from (6)

= k − 1 < k.

So λ /∈ KR(V, k) which is contrary to that λ ∈ KR(V, k).

Next, suppose that (KR(V, k),⊕, ◦) is a right nearring for some operation ⊕ on

KR(V, k). Then

(α⊕ β)α = α2 ⊕ βα = α⊕ 0 = α,

(α⊕ β)β = αβ ⊕ β2 = 0⊕ β = β.

Let λ = α⊕ β ∈ KR(V, k). Then λα = α and λβ = β. Consequently,

for every v ∈ B r B1, vλβ = vβ = 0 and

uλα = uα = 0.
(7)
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Claim that for every v ∈ B r B1, vλ ∈ 〈B r B1〉 and uλ ∈ 〈u〉. If B1 = {u},
then by (5) and (7) we have that

for every v ∈ B r B1, vλ ∈ Ker β = 〈B r {u}〉 = 〈B r B1〉 and

uλ ∈ Ker α = 〈B1〉 = 〈u〉 .

If B1 r {u} 6= ∅, then for each w ∈ B1 r {u}, define βw ∈ LR(V ) by

βw =

w B r {w}
w 0

 . (8)

Then for every w ∈ B1r{u}, Ker βw = 〈B r {w}〉, so dimR Ker βw = |Br{w}| =
dimR V − 1 ≥ k. Thus βw ∈ KR(V, k) for every w ∈ B1 r {u}. Obviously,

for every w ∈ B1 r {u}, αβw = ββw = 0.

Since (KR(V, k),⊕, ◦) is a right nearring, for every w ∈ B1 r {u},

λβw = (α⊕ β)βw = αβw ⊕ ββw = 0⊕ 0 = 0.

Thus if w ∈ B1 r {u}, then for every v ∈ B, vλβw = 0. From (5), (7), (8) and

this fact, we have that for every v ∈ B r B1,

vλ ∈ Ker β
⋂  ⋂

w∈B1r{u}

Ker βw


= 〈B r {u}〉

⋂  ⋂
w∈B1r{u}

〈B r {w}〉


=

⋂
w∈B1

〈B r {w}〉 and

uλ ∈ Ker α
⋂  ⋂

w∈B1r{u}

Ker βw


= 〈B1〉

⋂  ⋂
w∈B1r{u}

〈B r {w}〉

 .

Since |B1| = k < ∞, by Proposition 2.8 and Proposition 2.9, we have that

for every v ∈ B r B1, vλ ∈ 〈B r B1〉 and uλ ∈ 〈u〉 .
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Hence the claim is proved. Since λα = α and λβ = β, by the claim and (5),

for every v ∈ B r B1, vλ = vλα = vα = v,

uλ = uλβ = uβ = u.

Then 〈(B r B1) ∪ {u}〉 ⊆ Im λ, so

dimR Im λ ≥ |(B r B1) ∪ {u}| = (dimR V − k) + 1. (9)

Since dimR V = dimR Ker λ + dimR Im λ and dimR V is finite,

dimR Ker λ = dimR V − dimR Im λ

≤ dimR V − ((dimR V − k) + 1) from (9)

= k − 1 < k.

So λ /∈ KR(V, k) which is contrary to that λ ∈ KR(V, k).

Therefore the proof is complete.

We give a remark here that from Theorem 4.1.1, we conclude that Theorem

3.1.1 for that case of OMR(V ) is a consequence of Theorem 4.1.1.

Corollary 4.1.2. Let k be a cardinal number with k < dimRV . Then

(1 ) K ′
R(V, k) admits the structure of a left nearring if and only if dimRV < ∞

and k = dimRV − 1.

(2 ) K ′
R(V, k) admits the structure of a right nearring if and only if dimRV < ∞

and k = dimRV − 1.

Proof. Let k′ be the successor of k. Then k′ > 0 and K ′
R(V, k) = KR(V, k′).

Suppose that K ′
R(V, k) ∈ LNR∪RNR. By Theorem 4.1.1, dimR V < ∞ and

k′ = dimR V . So k = dimR V − 1.

Conversely, assume that dimR V < ∞ and k = dimR V −1. Then k′ = dimR V .

Since K ′
R(V, k) = KR(V, k′), by Theorem 4.1.1, K ′

R(V, k) ∈ LNR∩RNR.

We can see from the proofs of Theorem 4.1.1 and Corollary 4.1.2 that KR(V, k) =

LR(V ) or {0} and K ′
R(V, k) = {0} are neccessary conditions of Theorem 4.1.1 and

Corollary 4.1.2, respectively. Hence we have
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Corollary 4.1.3. For a cardinal number k with k ≤ dimR V, KR(V, k) admits a

ring structure if and only if one of the following statements holds.

(i) k = 0.

(ii) dimR V < ∞ and k = dimR V .

Corollary 4.1.4. For a cardinal number k with k < dimR V, K ′
R(V, k) admits a

ring structure if and only if dimR V < ∞ and k = dimR V − 1.

Remark 4.1.5. If k1 and k2 are cardinal numbers such that k1 < k2 ≤ dimR V ,

then KR(V, k1) ) KR(V, k2). To see this, let B be a basis of V . Then k1 < k2 ≤
|B|, so there is a subset B1 of B such that |B1| = k1. Define α ∈ LR(V ) by

α =

B1 v

0 v


v∈BrB1

.

Then dimR Ker α = |B1| = k1 < k2. Thus α ∈ KR(V, k1) r KR(V, k2). It then

follows that if dimR V is infinite, then

KR(V, 1) = K ′
R(V, 0) ) KR(V, 2) = K ′

R(V, 1) ) KR(V, 3) = K ′
R(V, 2) ) . . .

and by Theorem 4.1.1, none of these subsemigroups of LR(V ) admits the structure

of a left nearring and a right nearring.

4.2 The Semigroups CIR(V, k) and CI ′R(V, k)

We shall characterize when CIR(V, k) admits the structure of a left nearring or

a right nearring. The characterization will generalize Theorem 3.1.1 for the case

of OER(V ) since OER(V ) = CIR(V,ℵ0) if dimR V is infinite. Since CI ′R(V, k) =

CIR(V, k′) if k′ is the successor of k, by the characterization of CIR(V, k) admitting

this structure, necessary and sufficient conditions for CI ′R(V, k) to admit such a

structure are also obtained.

From Proposition 2.11, if dimR V < ∞, then KR(V, k) = CIR(V, k) for every

cardinal number k with k ≤ dimR V . However, from Proposition 2.12 (i) that if

dimR V is infinite, then CIR(V, k) 6= KR(V, l) for all cardinal numbers k, l with

0 < k ≤ dimR V and l ≤ dimR V . Then characterizing when CIR(V, k) admits

the structure of a left nearring or a right nearring should be also considered.
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Theorem 4.2.1. Let k be a cardinal number with k ≤ dimRV .

(1 ) CIR(V, k) admits the structure of a left nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) dimRV < ∞ and k = dimRV .

(2 ) CIR(V, k) admits the structure of a right nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) dimRV < ∞ and k = dimRV .

Proof. To prove sufficiency, assume that (i) or (ii) holds. If k = 0, then CIR(V, k) =

CIR(V, 0) = LR(V ) ∈ R ⊆ LNR∩RNR. If dimR V < ∞, then CIR(V, k) =

KR(V, k). By Theorem 4.1.1, CIR(V, k) ∈ LNR∩RNR.

Conversely, assume that (CIR(V, k), ◦) admits the structure of a left nearring.

To prove that (i) or (ii) must hold, suppose not. Then either 0 < k < dimR V < ∞
or (k > 0 and dimR V is infinite).

Case 1 : 0 < k < dimR V < ∞. Since dimR V < ∞, KR(V, k) = CIR(V, k). By

Theorem 4.1.1, CIR(V, k) /∈ LNR, a contradiction.

Case 2 : k > 0 and dimR V is infinite. Let B be a basis of V and B1, B2 ⊆ B

such that B = B1 ∪B2, B1 ∩B2 = ∅ and |B1| = |B2| = |B|. Let α, β ∈ LR(V ) be

defined by

α =

B1 v

0 v


v∈B2

and β =

v B2

v 0


v∈B1

.

Then dimR(V/Im α)=dimR(V/ 〈B2〉)= |B1|= |B|=dimR V ≥k and dimR(V/Im β)

= dimR(V/ 〈B1〉) = |B2| = |B| = dimR V ≥ k. So α, β ∈ CIR(V, k). Suppose that

there is an operation ⊕ on CIR(V, k) such that (CIR(V, k),⊕, ◦) is a left nearring.

Thus α⊕ β ∈ CIR(V, k). As shown in the proof of Case 1 of Theorem 4.1.1 that

α ⊕ β = 1V . Since dimR(V/Im 1V ) = 0 < k, 1V /∈ CIR(V, k). So this is contrary

to that α⊕ β ∈ CIR(V, k).

Similarly, if (CIR(V, k), ◦) admits a right nearring structure, then (i) or (ii)

must hold.
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Corollary 4.2.2. Let k be a cardinal number with k < dimRV . Then

(1 ) CI ′R(V, k) admits the structure of a left nearring if and only if dimRV < ∞
and k = dimRV − 1.

(2 ) CI ′R(V, k) admits the structure of a right nearring if and only if dimRV < ∞
and k = dimRV − 1.

Proof. Let k′ be the successor of k. Then k′ > 0 and CI ′R(V, k) = CIR(V, k′).

Suppose that dimR V < ∞ and k = dimR V − 1. Then k′ = dimR V . Since

CI ′R(V, k) = CIR(V, k′), by Theorem 4.2.1 CI ′R(V, k) ∈ LNR∩RNR.

Conversely, assume that CI ′R(V, k) ∈ LNR ∪ RNR. Since CI ′R(V, k) =

CIR(V, k′), by Theorem 4.2.1 dimR V < ∞ and k′ = dimR V . Hence dimR V < ∞
and k = dimR V − 1.

Notice from the proofs of Theorem 4.1.1, Theorem 4.2.1, Corollary 4.1.2 and

Corollary 4.2.2 that necessary conditions of Theorem 4.2.1 and Corollary 4.2.2 are

CIR(V, k) = LR(V ) or {0} and CI ′R(V, k) = {0}, respectively. Hence the following

corollaries are obtained directly.

Corollary 4.2.3. For a cardinal number k with k ≤ dimR V, CIR(V, k) admits a

ring structure if and only if one of the following statements holds.

(i) k = 0.

(ii) dimR V < ∞ and k = dimR V .

Corollary 4.2.4. For a cardinal number k with k < dimR V, CI ′R(V, k) admits a

ring structure if and only if dimR V < ∞ and k = dimR V − 1.

Remark 4.2.5. Let k1 and k2 be cardinal numbers and B a basis of V . If

k1 < k2 ≤ dimR V , let B1 be a subset of B such that |B1| = k1. Define α ∈ LR(V )

by

α =

B1 v

0 v


v∈BrB1

.

Then dimR(V/Im α) = dimR(V/ 〈B r B1〉) = |B1| = k1 < k2, so α ∈ CIR(V, k1)r

CIR(V, k2). It then follows that if dimR V is infinite, then

CIR(V, 1) = CI ′R(V, 0) ) CIR(V, 2) = CI ′R(V, 1) ) CIR(V, 3) = CI ′R(V, 2) ) . . .
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and by Theorem 4.2.1, none of them admits the structure of a left nearring and a

right nearring.

4.3 The Semigroups IR(V, k) and I ′R(V, k)

From Proposition 2.12 (ii) if dimR V is infinite, then for a nonzero cardinal

number k with k < dimR V, IR(V, k) is not equal to KR(V, l) and CIR(V, l) for

any cardinal number l ≤ dimR V . This is also true for I ′R(V, k), K ′
R(V, l) and

CI ′R(V, l) where 0 < k ≤ dimR V and 0 ≤ l < dimR V . Then characterizing when

IR(V, k) admits the structure of a left nearring or a right nearring should be also

considered.

Theorem 4.3.1. Let k be a cardinal number with k ≤ dimRV .

(1 ) IR(V, k) admits the structure of a left nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) k = dimRV .

(iii) k is an infinite cardinal number.

(2 ) IR(V, k) admits the structure of a right nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) k = dimRV .

(iii) k is an infinite cardinal number.

Proof. To prove sufficiency of (1) and (2), assume that (i), (ii) or (iii) holds.

(i) If k = 0, then IR(V, k) = IR(V, 0) = {α ∈ LR(V ) | dimR Im α ≤ 0} = {0},
so IR(V, k) ∈ R ⊆ LNR∩RNR.

(ii) If k = dimR V , then

IR(V, k) = IR(V, dimR V )

= {α ∈ LR(V ) | dimR Im α ≤ dimR V }

= LR(V ),

so IR(V, k) ∈ R ⊆ LNR∩RNR.
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(iii) Assume that k is an infinite cardinal number. Then k + k = k. We know

that for α, β ∈ LR(V ), Im (α + β) ⊆ Im α + Im β and Im (−α) = Im α where +

is the usual addition on LR(V ). Thus for α, β ∈ IR(V, k),

dimR Im (α− β) ≤ dimR Im α + dimR Im β

≤ k + k = k.

So IR(V, k) is a subring of (LR(V ), +, ◦). Hence IR(V, k) ∈ R ⊆ LNR∩RNR.

Conversely, assume that IR(V, k) ∈ LNR∪RNR. To show that one of (i),

(ii) and (iii) must hold, suppose on the contrary that (i), (ii) and (iii) are all false.

Then 0 < k < dimR V and k is finite. Let B be a basis of V , B1 ⊆ B such that

|B1| = k and I = B r B1. Since k < dimR V , I 6= ∅. Let u ∈ I be fixed, define

α, β ∈ LR(V ) by

α =

v B r B1

v 0


v∈B1

and β =

u B r {u}
u 0

 . (1)

Then Im α = 〈B1〉 and Im β = 〈u〉. So dimR Im α = |B1| = k and dimR Im β =

|{u}| = 1 ≤ k. These imply that α, β ∈ IR(V, k). Obviously,

α2 = α, β2 = β, and αβ = βα = 0.

Suppose that (IR(V, k),⊕, ◦) is a left nearring for some operation ⊕ on IR(V, k),

then

α(α⊕ β) = α2 ⊕ αβ = α⊕ 0 = α,

β(α⊕ β) = βα⊕ β2 = 0⊕ β = β.
(2)

Let λ = α⊕β ∈ IR(V, k). Then from (2), αλ = α and βλ = β. We therefore from

these equalities and (1) that

for every v ∈ B1, vλ = vαλ = vα = v and

uλ = uβλ = uβ = u.

So Im λ ⊇ 〈B1 ∪ {u}〉. Then dimR Im λ ≥ |B1∪{u}| = k +1 > k since k is finite.

Hence λ /∈ IR(V, k), a contradiction.

Next, assume that (IR(V, k),⊕, ◦) is a right nearring for some operation ⊕ on

IR(V, k), then

(α⊕ β)α = α2 ⊕ βα = α⊕ 0 = α,

(α⊕ β)β = αβ ⊕ β2 = 0⊕ β = β.
(3)
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Let λ = α ⊕ β ∈ IR(V, k). Then by (3), λα = α and λβ = β. We therefore from

these equalities and (1) that

for every v ∈ B1, vλα = vα = v and

uλβ = uβ = u,
(4)

for every v ∈ B1, vλβ = vβ = 0 and

uλα = uα = 0.
(5)

Claim that for every v ∈ B1, vλ ∈ 〈B1〉 and uλ ∈ 〈u〉. If I = {u}, then by (1)

and (5) we have that

for every v ∈ B1, vλ ∈ Ker β = 〈B r {u}〉 = 〈B1〉 and

uλ ∈ Ker α = 〈B r B1〉 = 〈I〉 = 〈u〉 .

If I r {u} 6= ∅, then for each w ∈ I r {u}, define βw ∈ LR(V ) by

βw =

w B r {w}
w 0

 . (6)

Then if w ∈ I r {u}, we have Im βw = 〈w〉, so dimR Im βw = |{w}| = 1 ≤ k.

Thus βw ∈ IR(V, k) for every w ∈ I r {u}. Obviously,

for every w ∈ I r {u}, αβw = ββw = 0.

Since (IR(V, k),⊕, ◦) is a right nearring,

for every w ∈ I r {u}, λβw = (α⊕ β)βw = αβw ⊕ ββw = 0⊕ 0 = 0.

Thus if w ∈ I r {u}, then for every v ∈ B, vλβw = 0. From (1), (5), (6) and this

fact, we have that for every v ∈ B1,

vλ ∈ Ker β
⋂  ⋂

w∈Ir{u}

Ker βw


= 〈B r {u}〉

⋂  ⋂
w∈Ir{u}

〈B r {w}〉


= 〈B r {u}〉 ∩ 〈B r (I r {u})〉 by Proposition 2.9
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= 〈B r {u}〉 ∩ 〈B r ((B r B1) r {u})〉

= 〈B r {u}〉 ∩ 〈B1 ∪ {u}〉

= 〈B1〉 by Proposition 2.8

and uλ ∈ Ker α
⋂  ⋂

w∈Ir{u}

Ker βw


= 〈B r B1〉

⋂  ⋂
w∈Ir{u}

〈B r {w}〉


= 〈B r B1〉 ∩ 〈B r (I r {u})〉 by Proposition 2.9

= 〈B r B1〉 ∩ 〈B r ((B r B1) r {u})〉

= 〈B r B1〉 ∩ 〈B1 ∪ {u}〉

= 〈u〉 . by Proposition 2.8

Then for every v ∈ B1, vλ ∈ 〈B1〉 and uλ ∈ 〈u〉 . Hence the claim is proved.

By the claim, (1) and (4), we have that

for every v ∈ B1, vλ = vλα = v and

uλ = uλβ = u.

Then Im λ ⊇ 〈B1 ∪ {u}〉. Since k is finite, dimR Im λ ≥ |B1 ∪ {u}| = k + 1 > k.

Hence λ /∈ IR(V, k), a contradiction.

Therefore the theorem is proved.

Corollary 4.3.2. Let k be a cardinal number with 0 < k ≤ dimRV . Then the

following statements hold.

(i) I ′R(V, k) admits the structure of left nearring if and only if either k = 1 or k

is an infinite cardinal number.

(ii) I ′R(V, k) admits the structure of right nearring if and only if either k = 1 or

k is an infinite cardinal number.

Proof. Assume that k = 1 or k is an infinite cardinal number. If k = 1, then

I ′R(V, k) = I ′R(V, 1) = IR(V, 0) = {0}. So I ′R(V, k) ∈ R ⊆ LNR∩RNR. If k is

an infinite cardinal number, then k + k = k. For α, β ∈ I ′R(V, k), dimR Im α < k



33

and dimR Im β < k. So

dimR Im (α− β) ≤ dimR Im α + dimR Im β

< k + k = k.

Thus (I ′R(V, k), +, ◦) is a ring where + is the usual addition of linear transforma-

tions. Hence I ′R(V, k) ∈ LNR∩RNR.

Conversely, assume that 1 < k and k is finite. Then I ′R(V, k) = IR(V, k−1), 0 <

k−1 < dimR V and k−1 is finite. By Theorem 4.3.1, IR(V, k−1) /∈ LNR∪RNR.

Hence I ′R(V, k) /∈ LNR∪RNR.

Theorem 4.3.1 and Corollary 4.3.2 and their proofs yield the following results.

Corollary 4.3.3. For a cardinal number k with k ≤ dimR V , the semigroup

IR(V, k) admits a ring structure if and only if one of the following statements

holds.

(i) k = 0.

(ii) k = dimR V .

(iii) k is an infinite cardinal number.

Corollary 4.3.4. For a cardinal number k with 0 < k ≤ dimR V , the semigroup

I ′R(V, k) admits a ring structure if and only if either k = 1 or k is an infinite

cardinal number.

Remark 4.3.5. Assume that dimR V is infinite and let B a basis of V . Then B

contains a subset {un | n ∈ N} where un 6= um if n 6= m. For each positive integer

n, let αn ∈ LR(V ) be define by

αn =

u1 u2 . . . un B r {u1, u2, . . . , un}
u1 u2 . . . un 0

 .

Then dimR Im αn = dimR 〈u1, . . . , un〉 = n for every n ∈ N, so αn ∈ IR(V, n) r

IR(V, n− 1) for every n ≥ 1. Consequently,

IR(V, 1) = I ′R(V, 2) ) IR(V, 2) = I ′R(V, 3) ) IR(V, 3) = I ′R(V, 4) ) . . .

and Theorem 4.3.1 shows that none of these semigroups admits the structure of

a left nearring and a right nearring.
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