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Initial shape analysis of cable-stayed bridges during construction by cantilever
method is under investigation in this study. The main objective is to improve the
calculation procedure, given in recent studies, for finding the initial shape of such bridges.
A finite element computational algorithm is formulated for the analysis of the bridges at
each construction stage using substructuring technique. Forward process analysis in
accordance with the actual construction sequence is performed and geometric nonlinearity
due to the cable sag is taken into account. Successive over-relaxation (SOR) technique is
employed to accelerate the convergence rate of the shape iteration in finding the initial
shape of the bridges.

Four different types of cable-stayed bridges are examined as case studies. The
results from these case studies show that the convergence rate of the shape iteration, for
finding the initial shape of the bridges during construction, can be improved by using the
SOR technique. However, the optimum value of the over-relaxation factor cannot exactly
be determined since it varies from problem to problem and is often determined
empirically. Nevertheless;, appropriate over-relaxation factor found in the case studies
ranges between 1.1 and 1.9. For the bridges with a small number of cables, the value of
the over-relaxation factor from 1.1 to 1.4 may be used. A large value of the over-
relaxation factor tends to be suitable for the bridges with a large number of cables and
significant improvement of the convergence of the shape iteration can be achieved
especially for nonlinear analysis.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Due to advantages such as economy, ease of construction, and their aesthetic
appearance, cable-stayed bridges have rapidly gained popularity in the last five
decades. However, this kind of bridge is a very complicated structure with large
degrees of indeterminacy. Thus, advanced technology is required in both design and
construction. The complete design of a cable-stayed bridge consists of preliminary
design and detailed design. The purpose of the preliminary design is to determine
tentative dimensions ef structural members by analyzing of the whole bridge
structure. The results from the preliminary design are then used for the detailed design
which includes initial shape analysis, static deflection analysis, and dynamic analysis,
etc. First, the initial shape analysis has to be carried out. An initial shape of the bridge
is the target configuration of the bridge under the action of dead load of girders,
towers and tension force in cables. It provides geometric configuration as well as
prestressing distribution of the bridge. The purpose of the initial shape analysis is to
find such tension force in the cables under the action of dead load of girders and
towers which yield the initial shape of the bridge. Based on the determined initial
shape, the static deflection analysis under live load and dynamic analysis can then be
performed for checking the deflection and dynamic response of the bridge,
respectively.

The importance of the analysis and design of such bridges during construction,
however, cannot be overemphasized. History shows that failure of the bridges
happened much more often during construction than under service loads since
erection procedure affects the internal force distribution in the bridge structures. The
structural behavior of the bridge changes significantly as the construction progresses.
As a result, the structural system might become unsafe or unstable. Therefore, the
geometric configuration and prestressing distribution of the bridge structure during
erection stage under the action of the dead load of girders and towers, and tension
force in the cables have to be determined and examined in details. Hence, the initial

shape of the bridge during construction is important and has to be determined for the



purpose of checking and controlling the erection procedure so that the target
configuration of the bridge is achieved after construction. This research involves
developing a finite element computational algorithm and the improvement of the
solution computation for the initial shape analysis of cable-stayed bridges under the
action of the dead load of girders and towers and tension force in the cables during

construction by the cantilever method.

1.2 Literature Review

There are several studies regarding the initial shape analysis of cable-stayed
bridges. Most studies published in the literature, however, dealt with finding the
initial shape at the completed state of the whole bridge structure. Only a few of them
involved the initial shape analysis of the bridges during construction.

For the initial shape analysis of the whole bridge structure, several approaches
to determine the tension force in the cables for cable-stayed bridges have been
proposed in the literature: the load balancing method, the zero displacement method,
the force equilibrium method, the approach using the Newton-Raphson method, and
the optimization method. Lazar, Treitsky, and Douglass (1972) used load balancing
analysis to determine the tension force of stayed cables of the bridges. The influence
matrices describing various sectional forces on the girders and towers, nodal
displacements, reactions, and cable forces, etc., due to a unit force applied
successively along each cable were first set up. A system of equations can then be
formulated for the cable tension forces of each cable. Among those, one equation was
written to express that the sum of the displacements due to the unknown cable tension
forces should be opposite in sign to the displacements due to dead load and equal in
absolute value. Thus, the unknown tension forces in stay cables can be determined by
solving such system of equations.

Wang, Tseng, and Yang (1993) presented the iterative approach called ‘the
zero displacement method’ to find the initial shape of cable-stayed bridges. By
applying certain initial cable forces for starting the computation, cable forces required
to produce the initial shape of the bridge can be determined by an iterative approach
called ‘shape iteration’. In their model, the stiffness matrix based on structural
nonlinear behavior, including cable sag, beam-column, and large displacement

effects, was generated to determine the structural deformation. The obtained



displacements of some predominant points were then investigated in order to find out
whether they had met with the target configuration or not. As soon as the poor value
of the displacement was found, the shape iteration was carried out by taking the
obtained cable forces as the initial cable forces for starting the next iteration. The
shape iteration was repeated until the values of the displacement of the bridge
converge to an allowable tolerance. The computation was then stopped and the initial
shape of the bridge was found.

On the other hand, Chen et al. (2000) proposed a method called ‘the force
equilibrium method’ to determine cable tension forces under the action of the dead
loads and prestress which achieve a target moment distribution rather than the
displacement of the decks. In the proposed method, three calculation stages are
carried out. First of all the target moment distribution is determined by considering
only the bridge deck, whereas all cables and towers are replaced by rigid simple
supports. Secondly, all eables are replaced by the internal forces. The purpose of this
stage is to evaluate an initial estimate of the cable forces. Finally the interaction of the
towers, cables and decks is then taken into consideration to find a new moment
distribution under the action of the dead loads, prestress and the initial estimated cable
forces. Such moment distribution is normally different from the target moment
distribution. Hence, adjustment of cable forces at some control sections must be
introduced which is done by iteration.

Kim and Lee (2001) presented an approach based on the Newton-Raphson
method to determine the target configurations of cable-supported structures under
dead loads. In this approach, a linearized equilibrium equation of a cable element,
which includes the nodal coordinates and the unstrained element length as unknowns,
is formulated using the analytical solution of an elastic catenary cable. An incremental
equilibrium equation for a single cable is formed with the proposed equilibrium
matrices of cable elements. The geometry of the target configuration of a cable-
supported structure under dead loads is utilized to solve the incremental equilibrium
equation to find the initial tensions in the cables that yield the target configuration of
the cable-supported structures under the actions of dead loads.

In the optimization method, Tori, lkeda, and Nagasaki (1986) proposed a non-
iterative optimum analysis to find the cable tension forces. They expressed the cross
sectional area of each member as a function of the sectional force and the designed

allowable stresses by their derivation. Therefore, the objective function indicating the



total cost of the bridge, which is related to the cross sectional area of each member,
can easily be expressed by a linear form of the sectional forces. By taking the
sectional forces as residuals and the reciprocal of the designed allowable stresses as
weights, they transformed the original objective function into a new form using the
weighted least-squares method. The transformed objective function is a quadratic
form of the sectional forces. Sequentially, the relationships between the sectional
. forces of all members and the tension forces in cables, i.e., the design variables, were
established using the influence matrix. As a result, the transformed objective function
can be obtained as a quadratic function of the cable tension forces. By zeroing the
partial derivatives of the transformed objective function with each design variable
respectively, the tension forces in cables can be determined by solving the system of
equations. In other werds, unconstrained minimization was considered in their
optimal analysis approach.

Furukawa et al. (1987) proposed an optimization procedure for cable forces in
cable-stayed PC bridges based on minimum strain energy criteria. A formulation
combining the two stress adjustment systems, one based on the cable forces and the
other on the internal prestresses in the girders, was presented by way of optimization
of the cable forces. The change in cable forces due to creep of concrete was taken into
consideration in the optimization process.

Negrao and Simoes (1997), Simoes and Negrao (2000) proposed a
multiobjective optimization with goals of minimum cest of materials, stresses and
displacements to determine the optimum cable forces that yield the initial equilibrium
configuration of the cable-stayed bridges. The constraints for the actual optimization
procedure must be imposed very carefully for the resulting schemes to remain within
practical limits.

For the suspension bridge, Kim, Lee, and Chang (2002) carried out nonlinear
shape finding analysis for a self-anchored suspension bridge of which the main cable
adopts a three-dimensional profile. The unstrained lengths of main cables and hangers
are calculated using the elastic catenary cable element. The proposed procedure
consists of two successive steps of nonlinear analysis. The first step focuses on the
cable-only system and the second on the total bridge system. For the cable-only
system, the preliminary configuration of the main cable is calculated based on the
conventional method utilizing simplified force equilibrium at each node of the main

cable. Then, the iterative nonlinear analysis is carried out and repeated to obtain the



target configuration of the main cable. For the total bridge system, the deformations at
several check positions can be successfully suppressed by introducing the proper
initial forces in the cables.

All these solutions, however, are based on the configuration of the final
structure and do not take into account the actual construction process. This is very
problematic, because as stated by Cruz, Mari, and Roca (1998), the construction
sequence influences considerably the distribution of internal forces in the completed
structure. This has also been recognized by Behin and Murray (1992) who described
the so-called ‘backward solution’ whereby a desired geometry and stress distribution
are defined for the finalized structure. The structure is then virtually disassembled
based on the assumption that the sequence of events during disassembly is the
opposite of that which eccurs during assembly, including the tensioning of stay-
cables. Behin and Murray (1992) included various nonlinearities into a computer code
that followed this concept.

Janjic, Pircher, and Pircher (2003) outlined a method called ‘the unit load
method’ that allows the definition of a desired-moment distribution in the final
structure under dead load. It then computes the tensioning strategy that will achieve
exactly the distribution. This is done by analyzing some structural models for a unit
load case of bending moments at the points for which the desired-moment distribution
is given and the results are stored. A system of linear equations can then be set up
with one equation for each point. This system of equations can be directly solved for
the unknown multiplication factor for the unit load cases which give the exact values
for the bending moment at each selected point achieving the desired-moment
distribution. In the proposed method, construction methods, changes in the structural
system (for example due to the individual construction stages), time-dependent
effects, such as creep and shrinkage or relaxation of prestressing tendons, and
geometrically nonlinear behavior are taken into account in the analysis.

Wang, Tang, and Zheng (2004) applied their zero displacement method for
finding the initial shape of cable-stayed bridges during each stage of erection. Two
computational processes are established: the forward process analysis (FPA) and the
backward process analysis (BPA). The FPA is performed in accordance with the
actual construction sequence in the bridge construction. Meanwhile the BPA follows
the reverse direction of the construction sequence of the bridge. At each erection

stage, the finite element analysis model is rebuilt. Then, the system of equations is set



up and solved anew under the action of dead load and member forces determined in
the previous stage for finding the corresponding new initial shape. Their approach,
however, suffers from a slow convergence rate since when the poor value of the
displacement was found, the shape iteration was carried out. The systems of linear
equations must be solved repeatedly to update the cable forces until the values of the
displacements of the bridge converge to be within an allowable tolerance. As a result,
significant amount of computational effort is required.

The purpose of this research is to improve the convergence rate of the shape
iteration in finding the initial shape of the bridge at each stage of construction by the

cantilever method using the successive over-relaxation (SOR) technique.

1.3 Objectives

Based on the problems stated earlier, the objectives of this research are
as follows:
l. To study the procedure of initial shape analysis of cable-stayed bridges during
construction by the cantilever method.
2. To present a finite element computational algorithm for the analysis using the
substructuring technique.
3. To improve the convergence rate of the shape iteration using the successive over-
relaxation (SOR) technique.
4. To compare the results of cable forces, displacements, and computational effort (in

term of number of shape iteration) with previous studies.

1.4 Scopes of the Research

The scopes of this research are summarized as follows:
1. Consider only static analysis subject to dead load.
2. Consider only the forward process analysis of cable-stayed bridges in two
dimensions.
3. The material properties are linear and elastic.
4. Consider geometric nonlinearity due to the cable sag effect in the analysis, but
geometric nonlinearities due to the beam-column and large displacement effects are
ignored.
5. Consider only straight horizontal bridges.



CHAPTER 2

THEORIES

This chapter presents necessary theories required for the initial shape analysis
of cable-stayed bridges during construction by the cantilever method. First, the finite
element model used to represent the bridge structure is illustrated. Then, the
procedure for the initial shape analysis of the bridges during construction by the
cantilever method is described. Model for the forward process analysis employing the
substructuring technique and shape iteration technique by applying the successive
over-relaxation (SOR) technique are also presented.

2.1 Finite Element Model

The finite element model of a cable-stayed bridge structure as shown in Figure
2.1 is developed using the beam element to model the tower and girder segments and
the cable element to model the cables as shown in Figure 2.2 and 2.3, respectively.

Figure 2.1 Finite element model of a double-tower symmetric harp
cable-stayed bridge

2.1.1 Beam Element

Elementary beam theory which neglects the shear deformation is employed in
this study. The beam element as shown in Figure 2.2 is a straight line member with a
constant cross-sectional area and two nodes with six degrees of freedom. The element

stiffness matrix in local coordinate system is given by
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where E is the modulus of elasticity; A is the cross-sectional area; [ is the moment of
inertia of the cross-sectional arca; and L is the element length. This beam element is
used to model the girders and towers of the bridge.

+
R

P

4 = Local Degrees of Freedom
t.hf,..a %, ¥ = Local Coordinate System

Figure 2.2 Beam element

2.1.2 Cable Element

A cable is a line element which is capable of transmitting axial tension force
only. When a cable is subjected to its own weight and applied tension force, it will sag
into a catenary shape as shown in Figure 2.3. The axial stiffness of the cable depends
on the amount of the sag. In order to obtain a more accurate result, cable sag effect
has to be taken into account when the cable element is used in the analysis. To include
the sag effect in the cable stays, it is convenient to use a straight line element with an
equivalent modulus of elasticity proposed by Ernst (1965). The equivalent modulus of

elasticity depends on the magnitude of the cable tension force and is given by

E
E, s—— 2.2
“ (wl)* AE @2
£ e
12T



where E, is the equivalent modulus of elasticity of the cable, E is modulus of
elasticity, A4 is the cross-sectional area, w is the cable weight per unit length, / is the
herizental projected length of the cable, and T is the tension force in the cable. The
stiffness matrix in local coordinate system of the cable element with one degree of

freedom (relative axial deformation) as shown in Figure 2.3 is given by

or
k =k, =il £ “ 2.3)
[0] foru; <0

where L is the chord length of the cable element. The cable stiffness becomes zero
and no axial force in the cable for w; <0, i.e., when shortening occurs. However, if the
cable sag effect is ignored, the cable element becomes a straight line element with E,,
equal to E, hence the stiffness matrix becomes k. = [EA/L].

x
Ly
H__..--'"

Yy :Local Degrees of Freedom
% ¥ :Local Coordinate System

Figure 2.3 Cable element with sag

2.1.3 System Stiffness Equation
The element stiffness matrix in local coordinate system of each element must
be transformed into the global coordinate system, and then assembled into the

structure global stiffness. The system stiffness equation has the linear form as follows:
{F}=[x]{v} (24)

where {F} is the vector of global nodal forces, [K] is the structure global stiffness

matrix, and {U} is the vector of known and unknown structure nodal displacements.

After the imposition of the boundary conditions, equation (2.4) is solved for unknown
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structure nodal displacements. The member forces of each element can then be

determined.

2.3 Initial Shape Analysis of Cable-Stayed Bridges during Construction by the
Cantilever method

The initial shape analysis of cable-stayed bridges during construction by the
cantilever method is under investigation in this study. According to Wang et al.
(2004), the initial shape of a cable-stayed bridge is the target configuration of the
bridge under the influence of the dead load of towers and girders and the pretension in
the cables. It provides geometric configuration as well as prestress distribution of the
bridge under such loads. The purpose of the initial shape analysis is to find such
tension force in the cables under the action of dead load of girders and towers which
yield the initial shape of the bridge. The analysis is started with an estimated initial
cable forces. The new equilibrium position of the bridge under the action of dead load
and such initial cable forces is then determined. Since the bridge span is long, large
deflection and bending moment might exist in the towers and girders. The shape
iteration has to be performed in order to reduce such deflection and bending moment.
The shape iteration is carried out by taking the obtained axial forces in the towers and
girders and tension forces in the cables from the present iteration step as the initial
element forces for the next iteration. The equilibrium position of the bridge under the
action of dead load and such initial element forces will be determined again.

For the shape iteration, control points (usually at the connection between
girders and cables e.g. nodes 7, 9, and 11 in Figure 2.1) are chosen for checking the
convergence tolerance. In each shape iteration, the ratio of the vertical displacement at
control points to the bridge main span length will be checked whether the allowable
tolerance is achieved or not. The convergence check can also be carried out in a
similar manner for the towers where control points are the tip of the tower and the
connection between towers and cables e.g. nodes 3, 4, and 5 in Figure 2.1. The ratio
of horizontal displacement at such control points to the tower height will then be
checked. The convergence tolerance for the shape iteration can be expressed as

follows:
)
= 2.5
ﬂ £ (2.5)




11

where &, is the displacement at control points, Lg is the reference length selected for

the shape iteration. The main span length and tower height are selected as the
reference lengths for checking the deflection of the girder and tower, respectively, &
= 10" is used as the allowable tolerance. The shape iteration will be repeated until the
allowable tolerance is satisfied, then the computation will be stopped and the initial
shape of the bridge is obtained.

Initial shape analysis of cable-stayed bridges during construction incorporates
the initial shape analysis procedure into the forward process analysis. For the initial
shape analysis in this study, only dead load of girders is taken into account while dead
load of towers and cables are ignored. However, the cable sag effect due to the cable
dead load is included. In order to perform the initial shape analysis of a cable-stayed
bridge during construction, construction sequence of the bridge should be clearly
defined to consider the assembly of towers, girder segments, cables, boundary
conditions, applied loads, etc. Each stage must be defined to represent a meaningful
structural system, which changes during construction. As an example, the
construction sequence of a double-tower symmetric harp cable-stayed bridge by the
cantilever method is illustrated in Figure 2.4. There are 8 construction stages. Starting
from construction of towers T at stage 1, the girder segments Gl are sequentially
added to each side of each tower. In order to achieve a required architectural
geometry, at stage 3 cable stays are attached and post-tensioned to prevent excessive
deflection and overstress when additional segments are added. This procedure is
repeated until the spans are closed at the abutments and closure is achieved at the
center of midspan.

After the construction sequence has been defined, the forward process analysis
is carried out accordingly. The analysis is started from the towers at stage 1, and then
continued stage by stage until stage 8, where the bridge is closed at the center of main
span and the analysis is completed. At construction stages of even number (2, 4, 6) the
girder segments are erected without cables. Due to their own weight, large deflection
and bending moment might exist in the girders. At construction stages of odd number
(3, 5, 7) the cables are installed and post-tensioned to lift up the girders to certain
position. The bending moment is then reduced. The tension force in the cables
required to lift up the girders to the desired elevation is computed by the shape

iteration described earlier. In this study, the estimated initial cable forces for starting
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Stage 1

Ci = cable number
Gi = girder segment number
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Stage 2
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Figure 2.4 Construction sequence of the double-tower symmetric harp cable-stayed
bridge by the cantilever method

the shape iteration is calculated by the formula proposed by Wang et al. (2004) as
follows:

IWL +8W
= eq

T = 2.6
0 8sina (2:6)
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where Tj is the estimated initial cable force, W is the dead load of a girder segment,
W, is the weight of machine equipments, L is the length of the girder segment, a is
the inclined angle of the cable.

1.4 Model for the Forward Process Analysis

To perform the forward process analysis of cable-stayed bridges, construction
sequence of the double-tower symmetrical harp cable-stayed bridge as shown in
Figure 2.4 is taken as an example of the analysis. By employing the concept of the
substructuring technique (see McGuire et al. (2000)), structural members and loads
associated with each stage of construction are grouped as a ‘substructure’ as shown in
Table 2.1 and Figure 2.5. Then these substructures are assembled and analyzed stage
by stage according to the construction sequence.

Table 2.1 Substructures and loads associated with each construction stage of the
double-tower symmetric harp cable-stayed bridge

Stage Activities ' Substructure Loads

1 Towers T are constructed. ) T -

2 | Girder segments Gl are erected. : Gl Self-weight

3| Cables Cl are installed and stressed. Cl Cable pretension
4 Girder segments G2 are erecied. G2 Self-weight

5 Cables C2 are installed and siressed. c2 Cable pretension
6 Girder segments G3 are erected. G3 Self-weight

7 | Cables C3 are installed and stressed. (&) Cable pretension
8 | Girder segments G4 are erected and the bridge is closed G4 Self-weight

at the center of main span.

NS

6332311526364643362&1

Figure 2.5 ldentification of substructures associated with each construction stage of
the double-tower symmetric harp cable-stayed bridge
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2.5 Shape Iteration Technique

In this study, the successive over-relaxation (SOR) technique (Chapra and
Canale, 2006) is employed to improve the convergence rate of the shape iteration. In
the shape iteration in the previous study, the element axial forces determined from the
present iteration, including compression in the tower and girder segments and tension
in the cables, are used as the initial element forces for starting the next iteration. Here
modification is made to element axial forces determined from the present iteration
using the SOR technique before taking them as the initial element forces for starting

the next iteration as follows:

E* = wF " +(1-0)F; (2.7)

where k is shape iteration step, £' and F'*' are the initial element forces for starting

i

the present and next shape iteration, respectively, £'*" are the element axial forces

determined from the present iteration, and @ is relaxation factor ranging from 0 to 2.
If @ =1, the results are unmodified. But if 1 <@ < 2, the results of the present
iteration are weighted to accelerate the convergence as shown in Figure 2.6. This
modification is called ‘over-relaxation’. On the other hand, if 0<w <1, which is
called ‘under-relaxation’, this modification is used to make the results which diverge
from the true solution converge. In general practice, the value of @ is usually
between | and 2, which is called ‘over-relaxation factor’, for improving the

convergence.

over-rel

Fa

1 2 3 4
Shape iteration step (k)

Figure 2.6 Successive over-relaxation technique



CHAPTER 3

COMPUTER PROGRAM

This chapter presents a computer program which has been developed in this

study for the initial shape analysis of cable-stayed bridges during construction by the

cantilever method using the substructuring technique. Here flowchart of the program

is shown and the computer program is briefly described.

3.1 Flowchart of Program

Based on the initial shape analysis of cable-stayed bridges during construction

by the cantilever method described in Chapter 2, the procedure of such analysis is

briefly summarized as follows:

)
2)
3)
4)

5)

6)

Input the geometric and physical data of the bridge.

Input dead load of girders.

Input the estimated initial cable forces to start the computation.

Assemble (or reassemble) the analysis model according to each construction
stage. Then, set up and solve system of equations to find the equilibrium
position and element forces.

For the construction stages of odd numbers (3, 5, 7, etc.) where the cables are
installed and stressed, the displacement at control points are investigated
whether they meet the allowable tolerance or not. If yes, the equilibrium
configuration is the desired initial shape of the bridge. Otherwise, the shape
iteration using SOR technique is carried out by taking newly obtained element
forces as the initial element forces for next iteration, and repeat steps 4 and 5.
Output_of the initial shape includes geometric configuration and element
forces.

The construction stages 5 — 7 as shown in Figure 3.1 are chosen as examples

for explaining the analysis procedure which is summarized as follows:

1

2)

At stage 5, after finding the initial shape of the bridge, the geometric
configuration and the initial force in members are known.

At stage 6, based on the determined (constructed) structural shape at stage 5,
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the girder elements number 13, 14, 25, and 30 are installed and the analysis
model is rebuilt. The system of equations is then formulated and solve for
displacement and element forces. No shape iteration is performed here since
the cables are not yet installed.

3) Atstage 7, the cables number 15, 16, 19, and 22 are installed and stressed. The
estimated initial cable forces and dead load of the girders are applied. The
displacement and element forces are then determined anew afier solving the
system of equations. The elevation of the girders and the deflection of the
towers are checked whether the allowable tolerance of the shape iteration
achieved or not. If not, the shape iteration is carried out. Otherwise, the initial
shape of the bridge at stage 7 is found and the analysis proceeds to the next
construction stage.

4) Computation is continued for the next stage until the final stage is reached,
i.e., the bridge is completely constructed.

The flowchart of the program for the initial shape analysis of cable-stayed
bridges during construction by the cantilever method is shown in Figure 3.2.
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Figure 3.1 Finite element model of the double-tower symmetric harp cable-stayed
bridge at each construction stage
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/ . input the physical and geometric /
data of the bridge

'
- input dead load of girders
- input estimaded initial cable forces
FOR-LOOPi=1,2,3,..., nStage
i BT ST e i = constnaction stage Mo
1 nStage = number of constrction
- reassemble the analysis model -
- set up and solve the system of equations
|- find the displacment and element forces
- install garder sagments (i = even)

] - istall eables snd spply vension (i = odd =1}

of FOR-LOOP

Figure 3.2 Flowchart of the program

3.2 Description of Computer Program

In order to carry out the initial shape analysis of cable-stayed bridges during
construction by the cantilever method, a finite element computer program employing
the concept of substructuring has been developed. The program is an extension of
JSM (Smittakorn, 12008) which is an object-oriented finite element software
developed as a toolbox for structural analysis and design applications, written in Java
language. Classes available in JSM, such as Hinge, Joint, Link, Beam, Structure,
Material, Section, PointLoad, UniformLoad, Show, PrintOut, have been utilized. In
addition, cable element (class Cable) has been developed in this study by modifying
the truss element (class Link) and including the cable sag effect in order to use it in
case of nonlinear analysis. Class hierarchy of nodes and elements are established as
shown in Figure 3.3. Class Structure, which is capable to deal with the problem of
substructuring analysis, has been used to group the structural members and loads
associated with each construction stage as substructures. Then these substructures are
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assembled and solved stage by stage according to the construction sequence. Finally,
the part for the initial shape analysis of the bridges during construction by the
cantilever method is implemented according to the flowchart shown in the previous

section.

-y

Hinge Joint

Element

Link Beam Cable Structure

Figure 3.3 Class hierarchy of the program



CHAPTER 4

CASE STUDIES

This study presents a finite element computational algorithm for the initial
shape analysis of cable-stayed bridges during construction by the cantilever method
using the substructuring technique. In this chapter, four different types of cable-stayed
bridges are taken from literatures as case studies for the analysis and both linear and
nonlinear analyses are carried out. The finite element model of the bridge is idealized
using the beam element as shown in Figure 2.2 for girder and tower segments and
cable element without the sag effect for linear analysis, whereas the cable element
with the sag effect as shown in Figure 2.3 is used for nonlinear analysis. Here the
allowable tolerance & =10~ is used to terminate the shape iteration.

The results obtained from the analyses are then compared. For case study |1,
comparison between the results determined from the developed program in this study
and those from Wang et al. (2004) for linear analysis is made in order to verify the
accuracy and efficiency of the developed program. The results which are compared
include number of shape iteration (NSI), displacement at control points, and cable
forces. For case studies 2, 3, and 4, only the results from the developed program in
this study with the variation of the over-relaxation factor of the successive over-
relaxation (SOR) technique are compared to demonstrate the improvement of the
convergence rate of the shape iteration in finding the initial shape of cable-stayed
bridges during construction.

4.1 Case Study 1: A Double-Tower Symmetric Harp Cable-Stayed Bridge

For case study 1, a double-tower symmetric harp cable-stayed bridge taken
from Wang et al. (2004) as shown in Figure 4.1 is analyzed. The tower is 260 ft high.
The main and side span lengths of the bridge are 1,100 ft and 450 fi, respectively. The
length of each girder segment is 150 ft except the mid main spans where the length of
each segment is 100 ft. There are 12 stayed cables arranged in harp pattern. The
bridge is constructed by the cantilever method and there are 8 construction stages as
shown in Figure 2.4. The physical properties and weight of the bridge structure are
shown in Figure 4.1.
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girder, tower E = 4,320,000 ksf
cable E=4,320,000 ksf
girder /=131 f' 4 =344 @
tower /=244, 40, 50, 60.0 fi’ (from top to bottom)
cable  exierior: 4 =0.452 i’
interior : 4 = 0.174 i’
dead load  girder: W= 6.0 kips/fl,
cable : exterior w = 0.221 kips/ft
interior w = 0.085 kips/ft

Figure 4.1 The double-tower symmetric harp cable-stayed bridge

The forward process analysis is carried out following the order of the
construction sequence as shown in Figure 2.4, The analysis is started from the towers
at stage | and continued stage by stage until stage 8 where the bridge is completely
constructed. The control points for the shape iteration are chosen at node 7, 9, and 11
on the girders. The vertical displacements at these nodes are investigated during the
shape iteration whether they meet the allowable tolerance or not.

The comparison of number of shape iteration (NSI) at construction stages 3, 5,
7, and 8 between the results from the previous study and this study with the variation
of the over-relaxation factor from | to 2 for linear and nonlinear analysis is shown in
Table 4.1 and Table 4.2, respectively. For linear analysis, NSl used in this study with
@=1.1 and 1.2' which are the optimum values are 1, 3, 4, and 3 while those from the
previous study are 1, 3, 5, and 3, respectively. It can be seen at construction stage 7
that 3 shape iterations are required to meet the allowable tolerance in this study,
whereas 4 shape iterations were performed in the previous study. In the case of
nonlinear analysis, NSI used with the optimum value of @ =14 are 1, 3, 3, and 5,
whereas NSI used with @ =1.0 are 1, 3, 6, and 6 which are equivalent to those used
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in the shape iteration procedure of the previous study. It is seen that, for example, NSI
used at construction stage 7 with @ =1.4 is only 3 while that used with @ =1.0 is 6.
The total number shape iteration used, for the construction stages where the shape
iteration is carried out, in this study with the optimum over-relaxation factor for linear
analysis (@=1.1 and 1.2) and nonlinear analysis (@ =1.4) are less than those from

the previous study (@ =1.0) about 8.33% and 25%, respectively.

Table 4.1 Number of shape iteration (NSI) used between the results from Wang et al.
(2004) and this study with the variation of the over-relaxation factor from 1 to 2 for

linear analysis

Wang Over-relaxation factor @ (This Study)

et al. .

2004 1.0* LIJae"22.1 13 1.4 511611718119 20
Stage3 1 W™ o /7 TR N D e T T I T T
Stages 3 S U AR 4 | s | 5| 7
Stage7 5 s A4l A s Bal 71 93] 2
Stage8 3 | B AP 4 be ] 58] 6 | 8 | 10| 16
E 12 12 IFy i 12 12 13 15 18 23 29 48

Remarks: *For w = 1.0 the resulis are equivalent to those used in the shape iteration procedure of Wang
et al. 2004. **Italicized data means the optimum over-relaxation factor.

Table 4.2 Number of shape iteration (MNS1) used with the variation of the over-

relaxation factor from 1 to 2 for nonlinear analysis

~Owver-relaxation factor @
10 | L1213 |44 ]S ]16 )17 | 18] 19 ] 20
Sage3- | 1 LAl ——— ) 1 | 1 | )
Stages 3 3 3 3—-3 3 3 | 4 5 5 7
Stage7 (] 6 5 4 3 5 ] 6 7 8 15
Stage8 [ 6 6 5 5 4 6 6 8 10 | 20
Z 16 16 15 13 12 13 15 17 | 21 24 43

Remarks: Nalicized data means the optimum over-relaxation factor.

Figure 4.2 and 4.3 show the comparison of convergence of the vertical
displacement at control points (Node7, Node9, and Nodel 1) and tension forces in
cable element (CE) 8, 12, and 16, respectively, at construction stage 7 during the
shape iteration for linear analysis between the results from this study with @ = 1.2
and Wang et al. (2004). It should be noted in Figure 4.2 that the results of the vertical
displacement at control points from this study and the previous study are quite
different since the supports exist at both ends of the bridge at construction stage 6 and

7 in this study (see Figure 2.4). However, this causes only small difference afier the



23

shape iteration is completed. Figure 4.4 and 4.5 show the comparison of convergence
of the vertical displacement at the same control points and tension forces in the same
cable elements as in linear analysis, respectively, at construction stage 7 during the
shape iteration for nonlinear analysis between the results with @ = 1.0 and
@ = 14. It can be seen obviously from both linear and nonlinear analysis that the

convergence rate of the shape iteration can be improved by using the SOR technique.

1.0
0.5 1 = === Lower Bound
= - === Upper Bound
:;.' 0.0 - —a— Node7 (this study)
g ==& -~ Node7 (Wang 2004)
o —o— Node? (this study)
2 -05 +++0--- Node9 (Wang 2004)
= ~—0—Nodel (this study)
-1.0 - ---0- -~ Node 11 (Wang 2004)

1 2 3 4 5 6
Numbers of Shape Iteration (NSI)

Figure 4.2 Convergence of vertical displacement at control points at construction
stage 7 during the shape iteration for linear analysis

2500
;E. co —a— CE8 (this study)
= =--&--- CEB (Wang 2004)
1500 -
S —o— CEI2(this study)
=]
i 1000 - ««-0-- - CEI12 (Wang 2004)
= —o— CEI6 (this study)
O 500 ---0--- CEl16 (Wang 2004)
0

1 2 3 4 2 [
Numbers of Shape Iteration (NSI)

Figure 4.3 Convergence of cable forces at construction stage 7 during the shape

iteration for linear analysis
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Figure 4.4 Convergence of vertical displacement at control points at construction

stage 7 during the shape iteration for nonlinear analysis
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—0—CEI2 (w = 1.4)
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Figure 4.5 Convergence of cable forces at construction stage 7 during the shape

iteration for nonlinear analysis
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The variation of the vertical displacement at the control points (Node7, Node?9,
and Nedell) and tension forces in cable element 8, 12, and 16 at each construction
stage calculated during the shape iteration for linear analysis with @ = 1.2 and for
nonlinear analysis with @ = 1.4 are listed in Table 4.3 and Table 4.4, respectively.
Since only the towers exist at construction stage 1, no tower displacement appears. At
stage 2, 4, and 6 the pair of girder segments are erected but not the cables, the new
equilibrium position is then determined without the shape iteration. Thus, large
deflection and bending moment might appear in the girders due to their dead loads.
However, at stage 3, 5, and 7 the cables are installed and the shape iteration is
performed to find the tension forces in the cables required to lift up the girders to the
desired position for these stages. Finally, the shape iteration is done once more for the
whole bridge structure at the last stage (8) in order to find the target configuration
after construction. From the results in Table 4.4 the maximum difference (%) of the
cable forces calculated from linear analysis with @ = 1.2 and nonlinear analysis with
@ = 14 is 9.64%. Although the results from nonlinear analysis are considered more
accurate, more computational effort is needed particularly in the case of the bridges
with a large number of cables. This will be demonstrated clearly in the last case study.

Table 4.3 Vertical displacement (ft) at contrel points calculated during the shape
iteration at each construction stage

Construction | o) Linear analysis (@ = 1.2) Nonlinear analysis (@ = 14)
stage Node? ~ Node9  Nodell | Node7 Node?  Nodell
1 1 - - - - - -
2 I -0.6787 - z -0.6787 . -
3 1. | -0.0201 - - -0.0199 - -
4 1 -1.3166  -4.4980 - -1.3292  -4.5296 -
5 | -0.3635 -0.4680 = -0.3697 -0.4889 -
2 -0.1152  0.0995 = -0.0739 0.1924 =
3 -0.0927  0.0604 = -0.0911 0.0312 -
6 1 -2.1964 © <6.3795 . -=12.3380 | -2.2359 .-6.5156  -12.5855
7 1 -0.7417  -1.3956  -1.1836 | -0.9347 -1.9911  -2.4330
2 -0.1028  -0.0923 0.4324 0.0500 0.2231 0.7438
3 | -00532 -00129 0.0946 | -0.0377 -0.1014  -0.0151
4 00118 _-0.0633 _ 0.0479 - - -
8 1 -D.5798 = -1.4047  -22838 | -0.B669 -2.2393 = -3.7453
2 0.0801  0.1552 0.0060 | 0.1852 03327 0.0479
3 0.0397 00817 -0.0566 | 0.0255 00751 -0.1565
4 - - - 0.0110 00650  -0.1099
3 . - - 0.0068 0.0624  -0.0830

Remarks: N51 — number of shape iteration.
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Table 4.4 Cable force (kips) calculated during the shape iteration at each construction
stage

stage | NsI Linear analysis (@ = 12) | Nonlincar analysis (o = 14) __ Difference (%)
CE3 CEl12 CElé6 CESR CEI12 CEl6 CE8 CEl2 CElé6
1 1 - - - - - - - - -
2 1 - - - - - - - - -
3 1 8158 - - 815.9 - - 0.01 - -
4 1 | 3091.1 - - 30754 - - -0.51 - -
5 1 13604 11648 - 13624 11609 - - - -
2 16948 11521 - 1752.8 114846 - - - -
3 1903.8 10762 - 1971.2 10500 - 342  -250 -
6 1 2557.8 33265 - | 26342 32895 - 290 -1.12 -
7 1 1650.6 1589.9 13806 | 16882 17576 1245.0 - - -
2 | 21285 19657 11904 | 21792 21770 1098.6 - - -
3 23039 21356 10444 | 22809 2269.7 970.2 - - -
4 23593 22320 9875 - - - -3.44 1.66 -1.78%
8 1 22982 2500.1 22236 | 23222 - 28357 1852.7 - - -
2 2207.7 24712 245948 | 21422 28552 2285.7 - - -
3 | 21513 24066 24993 | 1980.8 26647 2360.0 - - -
4 - - - 19523 25774 2429.7 - - -
5 - - - 19622 25205 2466.0 964 452 -1.35

Remarks: NS1 - number of shape iteration. CE - cable element.

4.2 Case Study 2: The Quincy Bayview Bridge

For case study 2, the Quincy Bayview Bridge crossing the Mississippi River at
Quincy, Illinois (Wilson and Gravelle, 1991) as shown in Figure 4.6 is chosen for the
analysis. The bridge is a three span double-tower double-cable-plane structure with
semi-harp cable arrangement. However, since only two-dimensional cable-stayed
bridges are under consideration in this study, the bridge will be analyzed as a single-
cable-plane structure. The tower height is 70 m and the main span of the bridge is 274
m and there are two equal side spans of 134 m. The bridge is constructed by the
cantilever method with 16 construction stages where the construction sequence is
similar to that of case study 1. The physical properties and weight of the bridge
structure are summarized in Table 4.5 and Figure 4.7.

Figure 4.6 The Quincy Bayview bridge
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Table 4.5 Physical properties and weight of the bridge structure

Section E A 1 Weight
number*  (kN/m®) {(m*) (m*) (kN/m)
Girder - 2.06x10° 0.83 0.34 101.0
Tower 1 3.08x10’ 17.88 16.4 -
2 3.08x107 7.06 14.03 -
Cable 1 206x10° 0,009 - 0.89
2 2.06x10*  0.0068 - 0.77
3 206x10*  0.0054 - 0.708
4 2.06x10° 0.0035 - 0.52
*See Figure 4.5

1 1 2 2 4 4 4 1 4 4 4 33 2 2 |

ble sections \tnwursu‘ﬁom

Figure 4.7 Tower and cable section numbers

The comparison of NSI at construction stages of odd numbers (3, 5, 7,..., 15)
and the last stage (16) with the variation of the over-relaxation factor from 1 to 2 is
shown in Table 4.6 and Table 4.7 for linear and nonlinear analysis, respectively. It can
be seen from both linear and nonlinear analysis that @ = 1.2 is the optimum value.
The total number shape iteration used, for the construction stages where the shape
iteration is performed, with the optimum over-relaxation factor (@ =1.2) for linear
analysis and nonlinear analysis are less than those with @ =1.0 about 12% and 20%,
respectively. It should be noted in the case of nonlinear analysis with @ = 2.0 at
construction stages 11,.13,'15, and 16 that the results are invalid since compression
occurs in the cables.

Figure 4.8 and 4.9 show the comparison of convergence of the vertical
displacement at Node4 and Node5 and tension forces in-cable element 4 and 5,
respectively, at construction stage 11 as shown in Figure 4.10 during the shape
iteration for linear analysis between the results with @ = 1.0 and @ = 1.2. As can
be seen in those figures, the convergence rate of the shape iteration with @ = 1.2 is
slightly better than that with @ = 1.0.
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Table 4.6 NSI used with the variation of the over-relaxation factor from 1 to 2 for

linear analysis

Over-relaxation factor o
iofi1aJi12j13]14]15]1 16 0718119 ] 20
iR N N R EEEEEE T
Siages 1 2 | 24 3 | 2221222 a2lz2
Bage? | 2 | 2 1 21313 [T 3sol 3l ¢35 ] 35
Segedc b 3 1.3 | 3 1 3|3l &lsN-s1 79I
Stogell | 4 | 4 | 3 | 3 | 4 | 5 |5 1719 [147]28
13 4 4 3 4 5 5 7 8 11 18 | 47
| Stagels | 5 A ERE 5 s |7 o |l [21[7n
Stagel6 | 4 | 3 | 3 [ 2 | 3 | 4| 4]a]ale]es
b 25 | 24 | 22 |23 | 26| 29 | 34 [ 39 | 51 | 76 | 177

Remarks: Italicized data means the optimum over-relaxation factor.

Table 4.7 NSI used with the variation of the over-relaxation factor from 1 to 2 for

nonlinear analysis.
Over-relaxation factor @

1.0 ) 12 is (14 (1516171819120

Stage3 177 LM F 44 ] asiv ) o 1 1 1
Suges | 2 |0 W2AN2 T2 NRVNZSN2 | 2 | 2] 2
Suge?7 | 20 24l F N3 -7 L3NS | 3 |55
Saged | 3 | FIFFF LA WHINSY S | 7 19| 14
| Stagell | 4 !4{# Fl alal] SUVER7 | 9 | 14 ] -
Swpel3 | 4 1 3| A M50 65 L7 ] 8 | 111 18] -
Sagels | 5 | @ [B5 | S bsel 5 IN7M o |13 [21] -
Stagel6 | 4 3 3 gsiayiag | N4 4 4 6 2
» 25 | 23| 20023 | 26 | 290 | 34 | 39 | 50| 76 | -

*The results are invalid since mmprﬁm?h occurs in the cables. ltalicized data means the oplimum
over-relaxation factor.

0.15
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g gg;_ " — — — Lower Bound
g L e Rowd
g -0.05 « - &= - Noded (w= 1.0)
g -0.10 - —t— Noded (w=1.2)
E-n‘ls- -+ O - ~Node5 (w = 1.0)
0.20 1 —O0— Nodes (w=1.2)
-0.25

0 1 2 3 4
Number of Shape lteration (NSI)

Figure 4.8 Convergence of vertical displacement at control points at construction

stage |1 during the shape iteration for linear analysis
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Number of Shape Iteration (NSI)

Figure 4.9 Convergence of cable forces at construction stage 11 during the shape
iteration for linear analysis

zJﬂillllS ;J”

Figure 4.10 Construction stage 11

Figure 4.11 and 4.12 show the comparison el convergence of the vertical
displacement at control points (Node5 and Node7) and tension forces in cable element
5 and 7, respectively, at construction stage 15 as shown in Figure 4.13 during the
shape iteration for nonlinear analysis between the results with @ = 1.0 and
@ = 1.2. It can be seen that the convergence of the shape iteration with @ = 1.2 is2
iterations faster than that with @ = 1.0.

Table 4.8 and Table 4.9 show the variation of the vertical displacement at the
control points (node 1, 2, 3, 4, 5, 6, and 7) and tension forces in cable element 1, 2, 3,
4, 5, 6 and 7 at each construction stage calculated during the shape iteration with
@ = 12 for linear analysis and nonlinear analysis, respectively. There exists the

maximum difference about 5.09% in the results of the cable forces computed from

linear and nonlinear analysis.
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N = === Lower Bound
E = === Upper Bound
g ---& - - NodeS5 (w=1.0)
8 —i&— Node5 (w=12)
2 »++0-=+ Node7 (w= 1.0)
é ——o— Node7 (w=1.2)

0 1 2 3 4 5
Number of Shape Iteration (NSI)

Figure 4.11 Convergence of vertical displacement at control points at construction
stage 15 during the shape iteration for nonlinear analysis
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Figure 4.12 Convergence of cable forces at construction stage 15 during the shape

iteration between for nonlinear analysis

e
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Figure 4.13 Construction stage 15
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Table 4.8 Vertical displacement (m) at control points -:.al::ulaled during the iteration at each construction stage

Stage | NSI Linear analysis (& = Monlinear analysis (@ = 12)
Nodel MNode2 Noded  Moded Huﬂns Node6  Node? | ‘Nodel MNode2 Node3  MNoded  MNodeS Nodef  Node7
| 1 - - - - - - - - - - - - -
2 1 0.0236 - - - - - - -0.0236 - - - - - -
3 1 «0.00:02 - - - . - - =0,0002 - . - - -
4 1 -0.0769  -0.2349 - - - - - 0077 -0.2355 - - - - -
5 1 | -0.0209 -0,0388 . - - - - | 400210 00394 - - - - .
2 | -0.0086 -0.0038 . - - - - -0.0087  -0.0041 - - - - .
6 1 00603 02238 -0.4542 - - - - 00607 02251 04565 - - - -
7 | 00378 00900 -0.1168 - - - - 00381 00912 01194 - - - -
2 o113 00109 0.0195 - - - - 00112 00110 00189 - - - -
B 1 0,0334 01488  -0.3647 -0.6487 - - . 00335 01495 03665 -0.6516 - - -
9 | 00474 01238 01724 0172 - - - 00478 01259 00786 -0.1903 - - -
2 | 00120 40,0196 0.0010  0.058] - - - 00116 000187  0.0013  0.0565 - - -
3 | 00084 00177 -0.0127 00189 - - - 00081 -0.0169 00121 0.01856 - - -
0 1 00075 -00578  -0.1955 04309 -0.7331 - - -0.0075 -0.0585 -0.1986 -0.4381 -0.7449 - -
11 1 00525 01472 02274 02634 02568 - - 0526 01484 02319 02738 02750 - -
2 00088  -0.0160 0.0072 00316  0L1021 - - 000084 00148 00057 0U0G18 0.0998 - -
3 | 00052 00127 000190 00108 00203 - - 0051 00122 00182 00104 00195 -
12 | 0.0038 -0.0076 -0.0873 02745 015793 -0.9552 - 0.0038 -0.0080 -0.0892 -02802 -0.5911 -0.9735 -
13 | 00545 01592 02622 03312 03524 03275 - 0.0542 -0,1594 02651 -0.3408 -0.3733 -0.3629 -
2 0.0052  -0.0075 -0.0028 00162 Q0890 01342 - 0.0048 -0,0060 0.0001 0.0191 0.0593 0.1294 -
3 00028 -00055 -0.0124 -0019 -0.0163 00117 - 00030 -00055 00116 00182 -00159 00097 -
14 1 00527 -0,1235 02378 04362 0.T532  -1.1842  -1.6847 | -0.0550 -0.1290 02475 04525  -0.TT9D -1.2248  -1.7400
15 1 00795 02225 0370 05137 06163 06699 06788 | 00832 02314 03932 05407 006590 07333 JA0.7662
2 00008  0.0110 0.0291 00520 00824 01375 022470 00008 00082  0.0258 00482 00763 01260 02055
3 00013  0.0017 00031  -0.0022° "-0.0119 © -0.0072  0.0241 | -0.0022 ﬂ.ﬂﬂﬂl 0.0017 -0.0028 -0.0124 00093 0.0185
4 | 00003 0.0049 0.0093 00074 | L0008  C0U0022 . OLO29Y - - - - - -
5 =0.0006 0.0038 0.,0078 00062 -0.0022 -0.0014 0.0213 - - - - - -
16 1 L0194 00371 00506 -0.0950 -0.14T6 -0.1994 © -0.2253 | -0.0201 «B.IBTB QL0608  -0.0980  -0.1524 -0.2045  -D.2298
2 | 00037 0.0008 00088 1 GOTIS | “OW0OI0 - 00203 | 00008 | -0.0042 00009 00092 00110 -000024 00217 -0.0314
3 | -000041  -0.0027 0.0026 00064  -000006 | -000130 000198 | -0.0044 @ 200025 00033 00064  -0U0013 00136 -0.0195

Remarks: N8I — number of shape iteration.

§3



Table 4.9 Cable forces (kN) calculated during the shape iteration at each construction stage

Stage | NSI Linear analysis (@ = 12) Nonlinear analysis (@ = 1.2)
CEI CE2 CE3 CE4 CES CE6 CE7 CEIl CE2 CE3 CE4 CES CE6 CE7
1 1 - - - - - - - - - - - - - -
2 1 - - - - - - - - - - - - - -
3 1 794.5 - - - - - - T94.6 - - - - - -
4 1 1915.8 - - - - - - 1506.8 - - - - - -
3 1 10909  1319.8 - - - - - 1090.5  1316.7 - - - - -
2 | 1277 14007 - - - - - | 12780 14262 - - . - -
[ 1 | 21358 35134 - - - - - 21385 35058 - - - - -
7 1 13288 17924 1860.4 - - - - 13313 17966 18526 - - - -
2 1603.8  2062.5 1882.7 - - - - 16062 20686 18775 - - - -
8 1 20485 34256 @ 40965 - - - - 2052.0 34341 40872 - - - -
9 | 14579 20994 21924 24917 - - - 14615 21158 22230 2450.6 - - -
2 | 17681  2510.5 22921 23350 - - - 17664 25220 24277 23026 - - -
3 | 19249 27116 24673 21311 - - - 19184 27146 24985 21075 - - -
10 1 19743 32048 36280 49208 - - - 19683 3214.1 36717 48774 - - -
11 1 15183 23072 25184 30347 27323 = - 1518.7 23163 25405 30615 26857 - -
2 | 17950 2726.5 28346 31628 24758 - - 17893 27259 28523 31951 24397 - -
3 | B9 28742 2 29590 31899 22754 - - 18866 28664 2969.1 32182 22500 - -
12 | 1761.1 28713 34349 49173 50166 - - 17530 28726 34555 49686 4960.1 - -
13 1 1533.1 24059 27180  3460.0 31753 31683 - 13294 2406.1 27323 35049 32218 30819 -
2 | 17606 27657 30478 37760 32180 28299 - 17507 27514 30474 38113 32752 2762.6 -
3 18148 28282 31238 38784 32350  2642.1 - 18056 28102 31142 38996 32883 25929 -
14 1 14015 24694 3001 45489 48292  5TE9.1 - 1383.8 244735 30637 4591.1 49145 568935 -
15 1 14185 23724 27942 37435 35924  3757.7 33710 | 13977 23580 27939 3768.1 36404 37973 32834
2 | 16455 26957 30875 409035 38025 - 37549 30548 | 16190 26732 30753 40987 38472 38094 29816
3 17127 27239 30983 41317 © 38699  3Te49 28948 | 1693.0° 27078 30843 41278 39025 38163 28393
4 17478  2709.1 30719 41365 39327 ¢ 38169 28193 - - - - - - -
§ 1779.1  2692.1 30402 41263 39819 38662 27593 - - - - - - -
16 1 17343  2653.1 30318 42185 42088 42402 30874 | 16546 26704 30774 42302 414211 41969 31573
2 1760.1 26112 2949.1 |« ‘44223 422166 43653 3224.1 | 16863 26261 20904 41360 41618 43254 32883
3 1805.1 26099 28993 4034.1 41975 44144 (32922 | 17375 26227 20360 40480 41423 43767 33529

Remarks: NSI — number of shape iteration. CE ~ cable element.

32
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4.3 Case Study 3: A Double-Tower Symmetric Fan Cable-Stayed Bridge

For case study 3, a double-tower symmetric fan cable-stayed bridge taken
from Adeli and Zhang (1995) as shown in Figure 4.14 is analyzed. The dimensions of
the bridge structure are the same as those of Quincy Bayview Bridge in case study 2.
The bridge is constructed by the cantilever method with 16 construction stages where
the construction sequence is similar to the manner of the case study 1. The physical
properties and weight of the bridge structure are shown in Table 4.10 and Figure 4.15.

56.0

14.0 T2 3 4 58 7 Av ==
%-0 6@19.0 U 18130 }é‘ﬁ
k 134.0 = 274.0 * 134.0 "

Figure 4.14 The double-tower symmetric fan cable-stayed bridge

Table 4.10 Physical properties and weight of the bridge structure

“Sedlion =~ E A 1 Weight
number®*  (kM/m®) (m?) (m") (kN/m)
Girder 3 206x10°  0.83 0.34 101.0
Tower 1 3.08x10 17.88 16.4 -
2 3.08x10 7.06 14.03 -
Cable i 2.06x10°  0.009 e 0.89
2 2.06x10°  0.0068 - 0.77
2 2.06x10"  0.0054 - 0.708
3 2.06x10° _ 0.0035 . 0.52
*See Figure 4.7 .

1 1 2 2 4 4 4 3] 4 4 4 3 3 2 2

\

cable sections tower seclions

Figure 4.15 Tower and cable section numbers
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The comparison of number of shape iteration (NSI) at construction stages of
odd numbers (3, 5, 7,..., 15) and the last stage (16) with the variation of the over-
relaxation factor from | to 2 is shown in Table 4.11 and Table 4.12 for linear and
nonlinear analysis, respectively. Although the cable arrangement is different, the NSI
used in this case study is quite similar to those in case study 2 where the value of
@ = 1.2 is optimum for both linear and nonlinear analysis. The total number shape
iteration used, for the construction stages where the shape iteration is done, with the
optimum over-relaxation factor (@ =1.2) for linear analysis and nonlinear analysis
are less than those with @ =1.0 about 12.5% and 20%, respectively. The compression
also occurs in the cables at construction stages 11, 13, 15, and 16 for nonlinear

analysis with @ = 2.0, thus the results are invalid.

Table 4.11 NSI used with the variation of the over-relaxation factor from 1 to 2 for

linear analysis
ver-relaxation factor @
10 1y 121314151617 [18]191]20
Staged | 1 AV ¥ N AV G
[ Swges | 2 | @ WF2P] 2012481 24"2 2 [ 2 [ 2T 2
Smge7 | 2 2 PAAGICER A WIN] ™D | 5| 5| 6
Stage9 | 3 | 30| 8 | 3 [ 3 [ 45| 57915
Sagell | 4 | 3 [B3 [W3°1"4545s |5 | 7 | 9 | 14 | 30
Sageld | 4 | 3 Fadaa | ARl | 2 | 11|19 | Si
Sagel5 | 5§ | 4 | #SES=E5=="| 7 | 9 [ 13121 [ 74
Stagel6 | 3 | 3 | 3Tp@ (300l 4 | 4 | 4 | 6 | 10
> | 2w 2r| 20|23 |25 | 28| 34|39 52|77 |18
Remarks: Ialicized dala means the optimum over-relaxation factor.

Table 4.12 NSI used with the variation of the over-relaxation factor from | to 2 for

nonlinear analysis
Over-relaxation factor
O 1.1 112993 1411516 |17 1 1B 19 ] 20
Stage3d 1 1 ! 1 1 1 1 1 1 1 1
Stages 2 2 2 2 2 ]| 2 2 2 2 12 2
Stage7 2 2 2 3 3 3 3 3 4 5 6
Stage? 3 3 4 3 3 4 5 3 7 9 12
| Stagell 4 3 3 3 4 5 E] 7 9 14 [ -*
Stagel3 4 3 |- 3 4 4 3 6 8 11 18 -
Stagel5 5 4 3 5 3 3 7 9 13 | 21 -
Stagelt | 4 3 3 2 3 4 4 4 4 6 -
z 25 | 21 | 20 | 23 | 25 | 29 | 33 | 39 | 51 | 76 -
*The results are invalid since compression occurs in the cables. Italicized data means the optimum

over-relaxation factor.
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Figure 4.16 and 4.17 show the comparisons of convergence of the vertical
displacement at Node4 and Node5 and tension forces in cable element 4 and 5,
respectively, at construction stage 11 as shown in Figure 4.18 during the shape
iteration for linear analysis between the results with @ = 1.0 and @ = 1.2. The
convergence patterns in this case study is almost the same as those of case study 2

where the convergence rate of the shape iteration is slightly improved with @ = 12.

0.15

0.10 4
= 005 = === Lower Bound
T i = === Upper Bound
=
: 5as ==& -- Noded (w= 1.0)
: s —&r—Noded (w = 1.2)
E’ -0.10 4 ---0-- NodeS (w=1.0)
a -0.15 4 —0—NodeS (w=1.2)

-0.20

-0.25

0 1 2 3 4
Number of Shape Iteration (NSI)

Figure 4.16 Convergence of vertical displacement at control points at construction
stage 11 during the shape iteration for linear analysis

3500.0

3000.0 -
§ ~-t-- CEA (w=1.0)
§ 2NA: —a—CEA(W=12)
[-]
. - +--~ CES (w=1.0)
3 —o—CES(w=1.2)
© 15000

1000.0

0 1 2 3 4
Number of Shape Iteration (NSI)

Figure 4.17 Convergence of cable forces at construction stage 11 during the shape

iteration for linear analysis

Figure 4.19 and 4.20 show the comparisons of convergence of the vertical

displacement at Node5 and Node7 and tension forces in cable element 5 and 7,
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respectively, at construction stage 15 as shown in Figure 4.21 during the shape

iteration for nonlinear analysis between those with @ = 1.0 and @ = 1.2. It is seen

that with @ = 1.2 the NSI used is 3, whereas 5 shape iterations are required for

w = 1.0.

/1) /| \

@
%11345

Figure 4.18 Construction stage 11

~ — — — Lower Bound
===~ Upper Bound

==& -~ Node5 (w=1.0)
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<--0-- Node7 (w=1.0)
—0—Node7 (w= 1.2)

Displacement (m)

0.8 -

0 | 2 3 4 5
Number of Shape Iteration (NSI)

Figure 4.19 Convergence of vertical displacement at control points at construction

stage 15 during the shape iteration for nonlinear analysis

Table 4.13 and Table 4.14 show the variation of the vertical displacement at
the control points (node 1, 2, 3, 4, 5, 6, and 7) and tension forces in cable element 1,
2, 3, 4,5, 6 and 7 at each construction stage calculated during the shape iteration with
@ = 1.2 for linear analysis and nonlinear analysis, respectively. The result of the
cable forces determined from linear and nonlinear analysis is about 5.02%

(maximum) different.
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Figure 4.20 Convergence of cable forces at construction stage 15 during the shape
iteration for nonlinear analysis

Figure 4.21 Construction stage 15

4.4 Case Study 4: A Single-Tower Harp Cable-Stayed Bridge

For the last case study, a single-tower prestressed concrete cable-stayed bridge
located in Ningbo City, China (Chen et al., 2000) as shown in Figure 4.22 is selected.
The tower is 54 m high and is stepped with the biggest section below the deck and the
smallest section on the top. The main and back span lengths of the bridge are 105 and
90 m, respectively. There are 22 cables arranged in the harp pattern and three sizes of
cables are used, There are 24 construction stages following the same construction
sequence as case study 1. The physical properties and weight of the bridge structure
are summarized in Table 4.15 and Figure 4.23.



Table 4.13 Vertical displacement (m) at control points calculale-d during the shape iteration at each construction
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Linear analysis (

Nonlinear analysis ( @

= L2)

o | M Nodel Hmh! Noded  Noded Nnihs MNode6  Nooel | MNodel Node? Noded Noded NodeS Node6 Node7
i 1 - - - . - - - - - - - - -
2 1 | -0.0236 - - - - - - -0.0236 ® - - - - -
3 1 | <0.0002 - - - - = - -0.0002 . - - - - -
4 1 | -0.0813 -0.2460 - - - - - -0,0816 -0.2467 - - - - -
5 1 | 00213 -0.0392 - - - - - -0.0216 -0.0401 - - - . -
2 | -0.0092 -0.0043 - - - - - -0.0093  -0.0047 - - - - .
6 1 | 00613 02226 -0.4496 - - - - 00619 -0.2243 -0.4527 . - - -
7 1 | 00377 0085 -0.1073 - - - - | -0.0381 -D.0881 -0.1107 - - . -
2 | 00127 00119 00204 - - - - | -00126 -0.0121 0.0198 . - . -
8 1 | 00322 00365 03329 -0.5959 - - = £.0324 -0.1374 -0.3352 -0.59%6 - - -
9 1 | -0.0471 -0.1181 -0.1575 -0.1532 - - - 00474 -0.1206 -0.1648 -0.1676 - - -
2 | 00139 -0.0218 -0.0008 0.0553 - - - 00133 -0.0206 -0.0002 0.0538 - - -
3 | 00097 -00184 -0.0129 0.0172 * - - 0.0094 00176 -0.0121 0.0169 . - -
10 1 | 0.0068 -0.0475 -0.1670 03810 -0.6614 - - 0.0068 -0.0485 -0.1711 03905 -0.6769 - -
1 1 | 00516 -0.1394 -0.2082 02333 02174 - - 0.0517 -0.1406 -0.2131 -02447 -0.2376 . -
2 | 00105 00172 -0.0073 00291 0.0939 - - 0.0100 -0.0158 -0.0056 00295 00917 - -
3 | 00064 00125 00166 -0.0096 0.0169 - - 00063 -0.0120 -0.0157 -0.0091 0.0162 - -
12 1 00034 -0.0020 -0.0676 -02372 -0.5241 -0.8823 - 0.0034 -00023 -0.0698 -0.2443 -0.5388 -0.9050 -
13 1 | 00530 -0.1491 02390 02976 -03i4i 02850 - 00527 01491 02418 -0.3072 03352 -03238 -
2 | 00069 -0.0078 00000 00185 00550 0202 - 0.0065 -0.0064 00029 00214 00553 0.1158 -
3 | -0.0045 -0.0059 -0.0091 -0.0151 -0.0149  0.0076 - 00047 00060 -0.0086 -0.0140 -0.0146 0.0056 -
14 1 | 00549 -0.1248 02300 -0.4134 07136 -1.1281 -1.6123 | -0.0576 -0.1312 -0.2411 -0.4320 0. 7440 -1.1742 -1.6748
15 1 | 00765 -02080 -03452 04670 -0.5624 -0.6160 -0.6284 | -0.0802 -02170 -0.3615 -0.4937 £0.6041 06775 -0.7126
2 | -0.0018 0.0089 0.0308 00555 0.0820 01284 02048 | -0.0034 0.0058 00273 00515 00760 0.1176 0.1871
3 | 00036 -0.0006 00038 -0.0007 00102 -00093 0.0169 | 0.0046 -0.0023 0.0022 00002 -00108 -00115 0.0118
4 | 00022 0.0031 0.0098  0.0096 ~0.0012 * 0.0022 0.0264 - . - - - - -
16 1 | 00202 -00366 00558 -0.0889 -0.1407 -0.1923  -0.2179 | -0.0215 -0.0388 -0.0582 -0.0920 £0.1451 -0.1977 -0.2237
2 | -0.0044 0.0001 0.0095 00128 00002 -0.0193 -0.0295 | 00052 -0.0008 0.009 00121 -0.0014 -0.0217 -0.0322
3 | 00046 -0.0030 0.0034 00076  0.0005 -0.0120 -0.0183 | -0.0052 -0.0035 0.0034 0.0075  -0.0001  -0.0132 -0.0197

Remarks: NSI — number of shape iteration.
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Stage | NS Linear analysis (@ = 1.2) Nonlinear analysis (¢ = 1.2)
CEl CE2 CE3 CE4 CES CES CE7 CEl CE2 CE3 CE4 CES CE6 CE?
1 1 - - - - - - - - - - - -
2 1 - - - - - - - - - - - . - -
3 1 756.7 - - - - - - 156.7 - - - - - -
4 1 1683.1 - - - - - - 16742 - - - - - -
5 1 992.1 1203.8 - - - - - 9922 11998 - - - - -
2 | 11464 13095 - - - - - 11472 13075 - - - - -
6 1 18240 32464 - - - - - 18272 32373 - - - - -
T 1 11692 1609.7 16874 - - - 1I7TLE 16156 1677.6 . - -
2 1399.7 18652 1692.1 - - - - 1402.0 18732 1685.7 - - - -
] | 17250  3028.1 3764.4 - - - - 17283 30389 37535 - - - -
9 1 12640  1876.7 19936 22463 - - - 12669  1894.1 2030.7 21989 - - -
2 | 15256 22693 21903 20629 - - - 15232 22800 22320 20263 - - -
3 1667.8 24682 22714 1863.3 - - - 1660.7 2469.1 23069 1837.1 - - -
1] 1 1684.6 2832.8 3281.1 4466.1 - - - 1678.3 28417 33372 44134 - - -
11 1 13026  2050.7 23018 27875 24830 - - 1302.7 20596 23265 28104 24365 - -
2 | 15349 24384 26020 28977 22138 - - 1529.6 2437.1 26213 29245 21804 - -
3 1630.9 25763 2714.1 29216 20288 - - 16234 2568.1 27254 29438 2007.0 - -
12 1 15148 25226 30767 44899 46355 - - 15072 25175 31015 45444 45713 - -
13 1 13046 21227 24830 32164 29573 29564 - 13083 21220 2497.0 32615 29939 28750 -
2 14968 24432 27738 34874 29839 26369 - 14886 24294 2773.0 35224 30294 25770 -
3 | 15613 25053 2827.7 35616 29989 4T.7 - 15538 24889 2818.7 35829 30409 24355 -
14 1 11960 21297 27056 41314 45202 55438 - 11783 2106.5 26989 4178.1 46098 5440.7 -
15 1 11946 20660  2535.1 34856 33887 35913 32862 | 11754 20504 25335 35092 34342 36166 32041
2 | 13936 23602 27844 37629 35568 35803 = 30017 | 1369.5 23384 27726 ITTI9 35999 36184  2940.1
3 1476.3 2405.8 2T82.2 iTTo2 - 3607.0 35941 28684 | 14577 239100 27701 37685 36390  3620.7 28226
4 | 15309 24126 27510 37540 36590 © 36468 28052 - - - - - - -
16 1 14923 23750 27304 38308 38836 40200 0 31227 | 14278 23626 27536 38502 38670 40045 312938
2 | 15354 23541 2648.1 37259 38963 41493 32585 | 14781 23464 26700 37436 38834 41363 32632
3 15906 23674 26002 36337 38734 4203.0 33280 | 15396 23627 26196 36482 3861.1 41923  3333.0

Remarks: MS1 — number of shape iteration, CE — cable element
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Figure 4.22 The single-tower harp cable-stayed bridge

Table 4.15 Physical properties and weight of the bridge structure

Section E A [ Weight
number*  (KN/m?) (m%) (m") (kN/m)
Girder - 3.5x10 12.145 4,706 286.0
Tower 1 3.0x10° 45.0 79.688 -
2 3.0x107 19.0 19.939 -
3 3.0x107 14.46 11.212 -
Cable 1 2.1x10"  0.0208 - 16.016
2 2.1x10° 00166 - 12.782
3 2.1x10°  0.0130 - 10.010
*See Figure 4.9
tower sections..__
o i . p= & 1\ .
i &)
N

-
-l Pl

Id1122223333‘

cable sections

4 0 kol BJ2 33

Figure 4.23 Tower and cable section numbers
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The comparison of number of shape iteration at construction stages of odd
numbers (3, 5, 7,..., 23) and the last stage (24) with the variation of the over-
relaxation factor from 1 to 2 is shown in Table 4.16 and Table 4.17 for linear and
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nonlinear analysis, respectively. For linear analysis, the NSI used in various
construction stages is not much different from those of the previous case studies
where @ = 1.2 and 1.3 are the most proper value. The total number shape iteration
used, for the construction stages where the shape iteration is carried out, with the
optimum over-relaxation factor (@ =1.2 and 1.3) is less than that with @ =1.0 about
3.03%.

On the other hand, very large NSI is used in nonlinear analysis. Hence, larger
value of @ is required in order to accelerate the convergence rate of the shape
iteration. With the value of @ = 1.9 which is the optimum value for nonlinear
analysis, the NSI used for most construction stages of odd numbers is considerably
reduced. For example, the NSl used for construction stage 24 with @ = 1.0 is 114.
Meanwhile, only 51 shape iterations is needed when @ = 1.9 is used. Figure 4.24
and 4.25 show, for instance, the comparison of the convergence of the vertical
displacement at Node3 and tension force in the cable element 3 at construction stage
19 as shown in Figure 4.26 duﬂnf the sha‘pe iteration for nonlinear analysis between
@ = 1.0 and @ = 1.8. It can be seen for @ = 1.0 that the NSI required to achieve
the allowable tolerance is 22 while only 8 iterations is used for @ = 1.8. The total
number shape iteration used with the optimum over-relaxation factor (w =1.9) is less
than that with @ =1.0 about 56.52%. This clearly indicates that the use of the SOR
technique can accelerate the convergence rate of the shape iteration effectively.

Table 4.16 NSI used/with the variation of the over-relaxation factor from 1 to 2 for

linear analysis

Over-relaxation factor w

10 b At d2al d 3 d ] A5: |nlb-) LI |48 | 19 | 2.0
Staged | | WEIVEIDAIINTIIP EEEE
Suged | MY = ¥ FaARp PR VSl o [ | 1
Stger W o I ASIRNNENIID [T | 2 [ 2 |2 | 2 | 2
Speey | 2 L2 o2l @ ] 2 1 2 asa 121 393 13
IR A I E TR N VR I EED BRI
Bulgel3 |0 N2 | QU UNIF | 3 D4 | 450 | 150) B7| 9
Stagels | 3 | 3 | 3 | 3 | 3 | a5 s |7 [w0]16
Bzl E Rl Ty | 5.1 5. 1 7 19 | 13| 24
Stagel9 | 3 | 3 | 3 | 3 | 4 | 5| 5 | 7 |10]15]37
Sl betah M daledalt ] 5.6 | 8. L 1L] 18] %
Stage23 | 4 | 4 | 3 | 3 | 5 | 5 | 7 | 9 | 1]19]7
Suge2d | 71 7 1 6 161 615151514142
b 33 | 33 | 32 | 32 | 37 | 41 | 46 | 55 | 67 | 98 | 228

Remarks: Ialicized data means the optimum over-relaxation factor.
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Table 4.17 NSI used with the variation of the over-relaxation factor from 1 to 2 for

nonlinear analysis

Over-relaxation factor o

10 [ 10 [12[13[ 1415161718 19]20
Seger | 241 11 P PR LRy 1 e
Bages 191 | T | 7 [T LU F N ORCLL ) G
e T I N T i ) N I ) L T I
o R T T Tl Y T O e
TN A R T O N 3R ST ]
Sugeits | 3 | 4 | 4 LI [T 3T 2 €14 414
Sagels | 9 | 8 | 8 | 7 |7 |7 |7 |66 616
Stagel7 | 12 | 11 | 10 [ 10 | 9 | 8 | 8 [ 6 | 6 | 8 | 10
Stagel9 | 22 | 20 | 19 | 17 | 16 | 15 | 13 | 12 | 8 | 10 | 14
Stage2] | 44 | 40 | 36 | 34 | 31 | 29 | 26 | 22 | 19 | 12 | 16
Stage23 | 103 | 94 | 87 | 80 | 74 | 69 | 65 | 61 | 56 | 40 | -*
Stage24 | 114 | 104 | 95 | 88 | 82 | 77 | 72 | 69 | 66 | 51 | -
> 322 | 292 | 270 | 250 | 233 { 247 {202 | 189 [ 173 | 140 | -

*The resulis are invalid since compression occurs in the cables. ltalicized data means the optimum

over-relaxation factor.
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Figure 4.24 Convergence of vertical displacement at Node3 at construction stage 19

during the shape iteration for nonlinear analysis

4.5 Optimum Value of the Over-Relaxation Factor
From the results of previous case studies the SOR technique can be used to

improve the convergence rate of the shape iteration. However, the main difficulty in

the use of this technique is to determine the optimum value of the over-relaxation

factor. Carré (1961) proposed a method for estimating the optimum value of the over-

relaxation factor as the iteration proceeds as follows:
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Figure 4.25 Convergence of tension force in cable element 3 at construction stage 19
during the shape iteration for nonlinear analysis

Figure 4.26 Construction stage 19

_ 2
14 1-(A +@-1) /04,

L

(4.1)

where @, is the optimum over-relaxation factor, @ is the over-relaxation factor used
for starting the iteration, and 4__, is the maximum eigenvalue of the structure global
stiffness matrix, [K]. Provided that all eigenvalues of [K] are real, A, can be
estimated by

Fi‘+l" _ F*

P = i o (4.2)



44

where F*" and F*' are vectors containing all element axial forces determined
from the present and previous iteration, respectively. F* is a vector containing all
element axial forces used for starting the present iteration. The element axial forces
include compression in the tower and girder segments and tension in the cables.

The iteration should be started with a low over-relaxation factor, for example
@ =1, for construction stages where the shape iteration is carried out, and after about
every 5 or 10 iterations w,, is re-estimated according to equation (4.1). The estimated

@,,, will increase at each time of re-estimation. At the optimum over-relaxation factor
Aue Will equal to @, —1 (Young, 1954).

Here, nonlinear analysis of case study 4 is taken as an example for estimating
®,, and the allowable tolerance £ =10 is used to terminate the shape iteration.
@ =1 is used to start the estimation. @, is then re-estimated every 5 iterations as the
shape iteration proceeds until the convergence is accomplished. Table 4.18 shows the
convergence of @, and 1 for each construction stage where the shape iteration is
performed. It can be seen that, at construction stage 24 for example, after 75 iterations
the value of @,, converges to 1.5944 and 1, =w,, —1=1.5944-1=0.5944 which
is different from A_, calculated from equation (4.2) (A__ =0.6321). This might be
because the number of shape iteration is not large enough. Thus, nonlinear analysis of
case study 4 is performed again with the allowable tolerance £ =10~ in order to see
whether the value of 4_, =@, —1 will continue converging to that estimated from
equation (4.2) or not. Table 4.19 shows the convergence of w,, and A_, which are

estimated every 5 and 10 iterations during the shape iteration of construction stage 24,
It can be obviously seen that the value of A =@, ~1 is almost equal to that
determined from equation (4.2) when the shape iteration is stopped.

The convergence of w,, for construction stage 24 during the shape iteration
with the allowable tolerance £=10"" is plotted in Figure 4.27. The comparison of
number of shape iteration at construction stages where the shape iteration is carried
out between those with the variation of the over-relaxation factor from 1 to 2 and
those with @, is shown in Table 4.20. Figure 4.28 and 4.29 show the comparison of

the convergence of the vertical displacement at Node3 and tension force in the cable
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element 3 at construction stage 19 as shown in Figure 4.26 during the shape iteration
for nonlinear analysis between @ = 1.0 and @, . It can be seen that for @ = 1.0 the

NSl used is 22 while 18 iterations are needed for @, .

ﬂ'lJEJ’J‘l’IEJVliWEJ’]ﬂi
Q‘imﬂﬂﬂ‘iﬂd UA1INYAY



Table 4.18 Convergence of @, and Ay,
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Stage 3 Stape 5 Stage 7 Stage 9 Stage 11 Stage 13 Swage 15 Stage 17 Stage 19 Stage 21 Stage 23 Stage 24
NSI=1 NSI=1 NSI=3 NSI =4 NSI=4 | NSI=5 | WNSt=8-| Nsi=10 | Nsi=18 | NSi=32 | NSI=70 | NSI=76

NSI| Popr | Amax | Popr | Amax | Popr | Amax | Popt | Amax | Popv | A | Popt | A | Popr | Arnae | Dopr | Amax | Pope | Amax | Popt | Amex | Popr | Amax | Popr | Amax

1.0000) - [1.0000] - [iroo00] - [1.0000] - [1.0000] - jrooee} - [roooo| - Jiooocol - 1.0000] - 1.0000f - [1.0000{ - |1.0000] -

sl - - - - - - - > - - b < | - ls7360.9620]1.424890.8370{1.353900.7723{1.333710.7504{1.332410.7490{1.350810.7
w] - | - | - | -] - [ -1 -1 -1 - L& F-A47-F =1 - -l - |1.454800.684901.4593)0.7105{1.453300.7019]1.455500.6898]
is] - T -1 - 1T -1 -1T-1T-1T-1T4-7T-sTepPbal -] -1 - [1.48980.63071.48780.6162{1.4874)0.6268]1.5043)0.6653]
0] - T . T - T . T .- T-T-T-1T-1&£FI0 b Fsl =l - | - | - [1.505206062]1.50840.6183(1.5301)0.6492]
23] - T -1T - T -1 -1T-T1T-1-1-T-MEFE-VULSINNES T - | - | - h.siospsios]i.s257.6253]1.547610.6459
w| - 1 -T - T -1T-T-T-T-T-1&Fs] =008 s o] - | - | - [15366063451.543300.6421]1.55960.6413]
U e S ] s e e - - - Ealeiamml -] -1 -1 -1 -] - hhssaslo.sazsi.ses2io.6376
o - | - Wi ol | - | #FIE RS 3 - -1 -1 -1 -1 - lseiso.c2641.574700.6352|
sl - T -1 - T-T-T-T-1T-1T-1-W-SFFa -1 -0.-1.1.] . [Lsermusnsmsmps
so| - = 5 . 5 s = - 5 = S Fa e s - 2 - - - [1.5721}0.6223]1.583610.6305)
ss| - g 3 . - . . : - 1 =h A - 1/ : Al [ : - | - l.s752)0.6181]1.5867]0.6286|
60| - | - I I ' o P e - e B -] -1 -1 - [ - lh.smssios218{1.s89200.6274|
Sl < | <] - el = ol - | - | Sy = = | = |- |.5:lnlumh_$913h.ﬂsﬂl
o] - | - . | - - | - | -] -=grCu[c I CEii—, . | - | - | -] .| - 1.5930(0.6244]
] - T -1 -1 -0 -1 =01 -T1T-1-¢-1Tsnes] g .|-]-1-1]1-1-=-1- [1soei

9
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Table 4.19 Convergence of @,, and A, of construction stage 24 with the allowable
tolerlance £ =10~

Every 5 iterations Every 10 iterations
e =& -1| #max from =w 1| Amax from
Dopr | = @op equation (4.2) Doy [Fmax = @opy equation (4.2)
1 | 1.0000 - 5 1.0000 - 3
5 | 13598 0.3598 0.7784 1.0000 - -
10 | 1.4561 0.4561 0.6815 1.6042 0.6042 0.9391
|15 ] 1.4997 0.4997 0.6539 - - -
20 | 1.5243 0.5243 0.6414 1.6043 0.6043 0.5974
25 | 15422 0.5422 0.6417 - - d
30 | 1.5547 0.5547 0.6385 1.6044 0.6044 0.6134
35 | 1.5639 05639 | 06355 | - - -
1.5709 0.5709 06338 | 1.6047 | 0.6047 0.6176
45 | 15761 0.5761 | 0.6307 e -
1.5802 0.5802 0.6285 1.6050 |  0.6050 0.6172
: : 4 J. -3 , 5 :
460| 1.6128 06128 | 06184 | 16115 0.6115 0.6189
465| 1.6129 06129 | os185 - - -
470| 16129 | 06129 | 06184 | 16116 0.6116 0.6190
475| 1.6130 0.613 - o61B4 | - - F
480| 1.6130 st%( 06183 |converges| converges | converges
- ~ _;; i : ,- :‘ ‘-' rr
482 converges| converges | converges |

1.8
1.6 -]
1.4 -|
1.2 40
1.0 ¢
0.8 4
0.6
0.4
0.2
0.0 +r—r—rr e T
1 5 101520253035 4045 505560657075
Number of Shape Iteration (NSI)

Over-Relaxation Factor

Figure 4.27 Convergence of the optimum over-relaxation factor of construction stage

24 during the shape iteration
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Table 4.20 NSI used between those with the variation of the over-relaxation factor

from 1 to 2 and W for nonlinear analysis

Over-relaxation factor @
1.0 | 1.1 1.2 |13 | 14 | 15 |16 | L7 | 18 | L9 | 20 [ NSI
Bages | b | Wl 1 L1 [ 1011011 bu -7 oo
Stages 1 1 1 1 1 1 1 1 1 ] 1 1.0000 1
Stage7 3 3 3 3 3 3 3 3 2 2 2 1.0000 3
Suged |-4.1. 3 | 31 3 | 31 312 2122l z 0o 4
Bagell | 4 || 3 | 3 [ 3 I3l 20 2 jued=g s il s Lioeee)] 4
Stagel3 5 4 4 3 3 2 2 4 4 L) 4 1.0000 5
Stagels 9 8 8 7 7 J 7 6 6 (1 [ 1.6736 8
Stagel7 | 12 | 11 | 10 | 10 | 9 | 8 | & | 6 | 6 | 8 | 10 | 1.4248 | 10
Stagel? | 22 20 19 17 16 15 = ll 12 8 10 14 | 1.4898 | 18
Stage2] | 44 40 36 34 | 31 29 ) 261 22 19 12 16 | 1.5365 | 32
Stage23 | 103 | 94 | 87 | 80 | 74 | 69 | 65 | 61 | 56 | 40 | -* | 1.5810 [ 70
Stage24 | 114 | 104 | 95 88 | 82 b 72 | 69 | 66 3! - 1.5944 | 76
Y | 322|202 | 2702507 233 217 | 202 | 189 w3 | s0 | - | Y | 232
*The results are invalid since eompression occurs in the cables.
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Figure 4.28 Convergence of vertical displacement at Node3 at construction stage 19

during the shape iteration for nenlinear analysis
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Figure 4.29 Convergence of tension force in cable element 3 at construction stage 19
during the shape iteration for nonlinear analysis



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This study presents a finite element computational algorithm for the initial
shape analysis of cable-stayed bridges during construction by the cantilever method
using the substructuring technique. Both linear and nonlinear analyses are carried out.
For the finite element model of the bridges, the simple beam element is used to model
the tower and girder segments. The straight cable element without the sag effect is
used to model the cables in linear analysis, whereas the cable element with the cable
sag cffect is employed for nonlinear analysis. The forward process analysis in
accordance with the actual construction sequence is established to determine the
tension forces in the stayed cables which yield the initial shape of the bridge at each
stage of construction. For the forward process amalysis of the bridges, structural
members associated with each consiruction stage are grouped as a ‘substructure’.
Then substructures are assembled and amalyzed according to the construction
sequence of the bridge. The shape iteration is then carried out at each stage of cable
installation and the last stage of censtruction in order to find the desired initial shape
of the bridge.

The successive over-relaxation (SOR) technique is employed to accelerate the
convergence rate of the shape iteration. During the shape iteration, the element axial
forces determined from the present iteration are modified using the SOR technique
before taken as the initial element forces for starting the next iteration. Four different
types of cable-stayed bridges are analyzed with the over-relaxation factor varying
from 1 to 2. Based on the numerical results from the case studies in the previous
chapter, the following conclusions may be drawn:

1. Difference of less than 10% exists in the results calculated from linear and
nonlinear analysis. The results from nonlinear analysis are theoretically more
accurate, but more computational effort is needed especially for the bridges
with a large number of cables. In practice, linear analysis may be used since
the results are acceptable but the computational effort is less.
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2. The SOR technique helps accelerate the convergence rate of the shape
iteration. The optimum value of the over-relaxation factor, however, cannot
exactly be determined since it varies from problem to problem and is often
determined empirically (Chapra and Canale, 2006). Nevertheless, appropriate
over-relaxation factor found in the case studies ranges between 1.1 and 1.9.
For the bridges with a small number of cables, the value of the over-relaxation
factor from 1.1 to 1.4 may be used. Large value of the over-relaxation factor
tends to be suitable for the bridges with a large number of cables and
significant improvement of the convergence of the shape iteration is achieved
especially for nonlinear analysis.

3. The total number shape iteration used, found in the case studies for
construction stages where the shape iteration is performed, with the optimum
over-relaxation factor for linear analysis and nonlinear analysis are less than
those with @ =1.0 (which is equivalent to those from the shape iteration in the
previous study) about 3 - 12.5% and 20 - 57%, respectively.

4. The optimum value of the over-relaxation factor does not depend on types of
cable arrangement. That is, the optimum value of the over-relaxation factor
used for improving the convergence rate of the shape iteration for a bridge
with semi-harp cable arrangement yields similar results for the same bridge
with fan cable arrangement, for example.

5.2 Recommendations
In order to improve the benefit of this research, here some recommendations
are made as follows:

1) As stated by Wang et al. (1996) geometric nonlinearities due to beam-column
and large displacement effects are insignificant for the initial shape analysis,
therefore they can be ign red. However, in case of a very accurate result is
needed, they may be included in the analysis.

2) Due to the popularity of three-dimensional cable-stayed bridges, hence the
program should be able to perform the analysis of the bridges in three
dimensions.
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