CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, I will give a general review of the properties of

semiconductors. Also, included in g} l,)z:pter are the principles of operation and

the electrical characteristics o

2.1 Review of Semiiconiductor Properties

The aim of thi 1 Are ‘ perties of semiconductors from

fundamentals. Rather,t i light th operties that are important in the

_ ﬁsﬂed the valence band (E, ), which is

n‘
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BT
separated by a forbxdp_yn energy gap (f ) from the ne>
‘T

states completely occupied by'

and of allowed states, the

J;jeferred to electrons, which
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can move freely and cagry electric currents The removal of an electron from a

nucleus leaves lﬂ,u ﬁog Hiecfedn %ﬁw%}’ﬂﬂﬁm can fill this hole and

thus cause the Hole to move toga new site. Therefore, the current flow in

sniconditifh i3 5 Sk didcnd i i bordeoh band and ot

in the valence band.

2.1.1 Energy Density of Allowed States

The number of allowed states per unit volume in a semiconductor is

obviously zero for energies corresponding to the forbidden gap and nonzero in the
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allowed bands. The expression of the number of allowed states per unit volume and

energy, N.(E), at an energy E near the conduction band edge is given by '

N (E)=—L 4”(2'" ) JE= @.1)

where m,: effective mass of the electron. A similar expression holds for energies

near the valence band edge, so that

(2.2)

where m, : effective

2.1.2 Charge Ca

For the intrinsi i energy is near mid gap. The

number of electrons i volume, n,, at the thermal

equilibrium is given by
(2.3)

,' the top of the allowed

conduction band. u

Since ﬁ ﬁ gmr‘] WWmﬂtj E,)>> kT hence the

Fermi-Dirac distfbution function rgduces to the goltzman dlstlaputlon function,

VRPN AR,

1+exp

where £(E) is the Eérmi-Dirac.

Substituing Eq. (2.4) into Eq. (2.3) and replace the upper limit, E, .. » by infinity,

one obtains

oo aEm)” £ exp[ﬁﬁr_)]dg. 2.5)



By changing the variable of integration to x =(E - E..)/ kT , Eq. (2.5) becomes

. 47:(211;31(T)’ xpl: (E. EF)]le’zexp( x)dx (2.6)

The integral is the gamma function and equals %\/; , Eq. (2.6) then becomes

Xp) :—(E—Z—;ﬁ)] ; 2.7)

One can define a parameter N, \} ’ ///

(2.8)
Hence,
o= QQ\\ 2.9)
where N, is called the ive.de ity. Q v\'\ ¢ conduction band.
Similarly, the total n b .:-,5-. ...... s ifi-the valence band per unit volume can
be written as
) : (2.10)

« which is called the effective density of states in valence

U ANENI NN
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band is equal to the holes concentration in the valence band. Hence, apply Eq. (2.9)

band.

and Eq. (2.10) to the intrinsic semiconductor, we can write

_(Ec —E )]
=n =N I o o 2.11
n, = n, c €X ( )

and

~(Eq-E,)
=p =N, ol V) 2.12
Po = P; vexp[ = (2.12)
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where n,, p,are known as “the intrinsic carrier concentration”, which refers to the
intrinsic electron and hole concentration, respectively. E,, is known as the intrinsic

Fermi level.

Take the product of Eq. (2.11) and Eq. (2.12), we obtain

—n?_ —(EC—EFI') X —(EFi_EV)jl
nyp, =n; =N_.N, exp[ o ] exp[ o (2.13)
=N_.N, 2.14
7 = Nely exp @W/} oo ) 19
The intrinsic Fe sition, glven by

(2.15)

That means the Fe perfect semiconductor lies close to

midgap and shifts from larger density of states in order to
maintain equal numbers of ele

For the extringic semicondu onductor in which controlled

amounts of impurity quilibrium electron and hole

ier concentration. The Fermi

energy may vaﬂtﬂﬂ%ﬁﬁﬂ%’rﬂ liich illthen change the value of

n, and p, givédl by Egs. (2.9) ar‘;d (2.10). The change in the Fermi energy is a

ruciodpYfie] G} o ISl FIRER & ases 1 e

semlconductor

concentrations are different from the intrinsic ca

The equations for the thermal equilibrium electron and hole concentration

can be written from Egs. (2.9) and (2.10), then

n,=n, expl:E—Fk-TE—F":l " (2.16)
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Do =1; exp[——(éfl?;E—”'):l " (2.17)

Egs. (2.16) and (2.17) show that the Fermi-level changes from the intrinsic

Fermi-level, n, and p, change from the n, value. In n-type semiconductor,
Ep>Ep, so that n,>n, and p,<n;; thus n,>p,. Similarly, in p-type
semiconductor, E, < E,, so that p, > n,and n, < n,; thus, Py > By

Consequently, the n,p, pr

(2.18)

Eq. (2.18) is M 2, (2.14) is the case of an intrinsic

(2.19)
However, the Eg ( ; S ived using Boltzman approximation. If

the Boltzman approximation * the (2.19) is not valid.

g;l“','.,{ ur

2.1.3 Compensqﬁd Semﬁ}ond" c tors !
Figure (2.1) shé ;

——

a4 semiconductor when both

I -
donor and acceptor iﬂ‘burity atoms are added to thie same region. The charge

neuteelly °°""?1‘Ti‘ﬂ'??]“ﬁ NINYINT

n,+N; =P Ny, (2.20)

AN NIRTUUNAINYINY can
where n, and P, are the thermal equilibrium concentrations of electrons and holes
in the conduction band and valence band, respectively. n, is the concentration of
electron in the donor energy states, N; =N, —n, is the concentration of positively
charged donor states, p, is the concentration of holes in the acceptor energy states,

and N; =N, - p, is the concentration of negatively charged acceptor states.
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Figure 2.1: Energy band diagran f.'é ensated iconductor showing ionized

_-.f"/flf"'l‘-"'r
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Assuming conrralete ionization, 5«&“‘?‘ zero, Eq. (2.21) becomes
' (2.22)

I
If we express p0 as n ?/ n,, then Eq. (2 22) can be written as

ﬂ‘lJEJ’Mleﬂ%]'ﬁWEJ']ﬂ'ﬁ 23)
o awwaﬁﬂm mmwmaa

n; —(N,~N,)a,—n}=0. (2.24)

Hence,

=(Nd;N‘)+J(Nd;NIJ2+H? ) (2.25)
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Eq. (2.25) is used to calculate the electron concentration in an n-type

semiconductor (N, > N,). Although Eq. (2.25) was derived for a compensated
semiconductor, this equation is also valid for N, =0.

Similarly, the hole concentration is given by

(NN) NN

+n,.2 5 (2.26)
and is used to calcula ’f? equilibrium majority carrier hole
concentration in a p-type se It also applies for N, =0.

The position of e bandgap can be determined

using Eq. (2.9).
Thus,
(2.27)
where n, is given by Eq
For n-type semiconduct >n,, then n, = N, thus
V; — E = &T Jnf —= ‘ (2.28)

If we have a ﬂmpensated semiconductor ﬂn we can replace N, by

Mot orte ﬂ‘ﬂ“&?“ﬂ“?‘?ﬂ”‘i“f‘ﬁ'\"ﬁ] na
PR NS SRURA N Y

E,-E, =kT N] (2.29)

Py

If we assume that N, >> n,, then Eq. (2.29) can be written as

N,
E.-E, =kT! L. 2.30
r~E, “(N) (230)
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The expression for the relationship between the Fermi level and the intrinsic

Fermi level given by

E.-E, =kT 1n("—°) , (2.31 a)
n;

By~E, =len(p°J (2.31b)

where the electron concentration, »

)ole concentration, p,, are given by Egs.
(2.26) and (2.27), respectively."

creating electron-hole pairs. On tt other hand, ith the energy less than

for photovoltaic energy

conversion.

Electronsa ﬁ m%«rﬂﬁxmtwn or some other

type of junction where a strong 1ntemal electric ﬁeld exists. Electrons and holes are

Separatedq' W‘qeaa@iﬂﬁ rﬁutﬂjlm @% Hq\aeﬂln the external

circuit.
The I-V characteristic of a solar cell can be obtained by an equivalent circuit
of the device shown in Fig. 2.2(c). Light-generated current 7 . 1s represented by a

current generator in parallel to a diode which represents the p-n junction.
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Figure 2.2: (a) Schelﬂil er_ﬂtransport in a p-n junction

under illumination. (b) Current-voltage characteristic curves of a solar cell in the

dark and under @;%&ch&eﬂ@%ﬂﬂﬂ ‘Qlar cell.
o) W QAN WAL Y ANEe st

current flow in the dark, so that the output current, 7, can be expressed as a

I=Io[exp(%)—l]—]L. (2.32)

The first term of the right hand side of Eq. (2.32) is the forward current driven

by voltage V', I, is often called the reverse saturation current, 4 is the diode

0.8
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ideality factor that depending on the mechanism of the junction transport, kis the
Boltzmann constant, and T is the temperature.
In evaluating a practical solar cell, four parameters of interest are the values

of open-circuit voltage V,_, the short-circuit current 7, the fill factor FF, and the
conversion efficiency n. I, is equal to light-generated current 7,. The open-

circuit voltage, corresponding to 7 =0 in Eq. (2.32), is given by >3

V. (233)
The power output ' ing poi the fourth quadrant is equal to
the area of the rect li i ' 2.2 (b)."One particular operating point
(Vi > 1 1, ) Will maximi i " outpu r FF is defined as **
(2.34)
It is a measure of how “s 1\ tics are
The energy-conversion 6fﬁctenc en defined as
(2.35)

where 2, is the total pcger in

2.3 Semlﬂ}éucto nter‘f?lc‘@sEJ "] ﬂ‘j
W ENﬂi‘élJ URIINYIAY

Theére is an exchange of particles and energy whenever dissimilar materials
are placed in intimate contact, which continues until thermodynamic equilibrium is
established. This means that a flow of electrons, holes, and energy occurs across the
interface until there is one electrochemical potential (Fermi level). The space charge

(barrier or junction) region develops, which gives rise to an electrostatic potential
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energy contribution across the interface. This potential energy developed
across the space-charge region at the interface shifts the energy levels until their
Fermi levels coincide, as in thermodynamic equilibrium (no bias, no light present).

The total built-in electrostatic potential energy V, is related to the

electrostatic field &, existing in thermodynamic equilibrium;

(2.36)
and

(2.37)
where p is charge den and states and in localized gap
states all contributes t in shaping the electrostatic
field region at an interf:
2.3.1 Semiconductor-Se omojunctions

The general fatures of the se nductor homojunction are

the same semiconductor on e Dd ping changes at interface

either from ntop ora)m n'ton or p top.

@ummm HaNe
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Figure 2.3: An n-p homojunction in thermodynamic equilibrium .
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Figure 2.3 shows an n-p homojunction in thermodynamic equilibrium. The
built-in electrostatic potential energy is equal to the difference between the work
functions, V,; =¢, - 4,. The width of the space-charge region, w =/, + /, , where l
and /, is the extent in the n-type and p-type material respectively. The quantities
w,l,l, and &=¢(x) may be obtained by applying Poisson’s equation to the
interface region . There are no interface states at the metallurgical junction because

the homojunctions is made one dopant into oppositely doped

(2.38)
and
(2.39)
The homojunction
£ = dic - dfxv gis ¥, with E,(x=-1)=0 and
determined as a function 6f f
E, “"1‘2’2" ;for -/, < x <0, (2.40)
" ﬂUEJ'WlEJWiWEJ']ﬂ'ﬁ

_—eN _ x

TR o

Whén the p-n homojunction is biased by light or by a temperature gradient,

then V,, in Eqgs. (2.40) and (2.41) becomes V,, -V, where V is the change in the

band bending across the junction. The p-n junction solar cell will be discussed latter

in Chapter 3.
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2.3.1.2 Semiconductor n*-n (p*-p) Homojunctions

n* Region n Region

*-___._——r_ +— DONOR LEVEL
s 3 ot it EF

Ev

namlc equilibrium 2.

the doping concentration in

the n* region is large, Arge i g ill be o‘hmited extent spatially. The

photovoltage develope due to lack of band bending
(both sides are n-type) 0: substantial region over which
conductivity can be modul dight. g
From Fig. 2.4, it is see ti tthe n* w junction forms a barrier which
(N .
hinders minority carricr-flows-fr om-the-n-to-n—regior n solar cell structures, this

has been used to reﬂe;: photogener: caﬁers away from the high-low

junction and toward some depleted barrieregion where a large photovoltage can be

s FIUEINENINEN
22 SRR INHINL,

The general features of the semiconductor-semiconductor heterojunctions are
different semiconductor on either side of the junction. If the doping changes type at
the interface, the structure is referred to as being anisotype. Band bending is quite

often dominated by interface states.
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2.3.2.1 Anisotype Heterojunctions *

VACUUM LEVEL
A ? A
Z &
#, V4! (a)
E -
v AE,
* E.
g2
E,,
VACUUM LEVEL
A A
9,
(b)
. B
Y
E,

n-type i p-type

Figure 2.5: Equilibrium energy band diagrams before (a), and after (b) the
formation of an abrupt n-p heterojunction in thermodynamic equilibrium. In this
example, it is assumed that there are no interface states at x =0, the metallurgical

junction.



18

Figure 2.5 presents an ideal n-p (anisotype) heterojunction structure
(Anderson model). It is assumed that there are no interface states. The n-type
material has an electron affinity z, and the work function is ¢, =z, +V,, . The p-
type material has an electron affinity y», and the work function is

Ppy = X2+ E,y < g

The band bending V,;,in material 1 and the band bending V,,, in material 2

represent the electrostatic p uired to equate the Fermi levels

(2.42)

The discontinuitysin etion. d edge and in the valence band edge
AE.,and AE, are ‘ =

(2.43)

(2.44)

where AE. and AE, must be

oy
i

The space charge wid g as a function of position

are given by *°

Epy =52 Npx! +Z Nyl fNoh g <x<o, (2.45)

» ﬂuﬂ%%ﬂﬂﬁﬂﬂﬂﬂi
QW?Wﬁw%iﬂﬂ’l JRREY e

where A =- 266N (¢"2—¢"‘) , (2.47)
cND(s N,+&,N,)
(202N, (8,0 -0 )]"
h= | eN (s N, +e, ND)J ’ (&48)

The sum of /, and /, yields w. Also, from Egs. (2.45) and (2.46), it follows that
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eN , I?

VvV, =—=2L | 2.49

bil 2851 ( )
2

and v, = 24k (2.50)
832

The maximum electric field in the interface region is at x = 0. One obtains

2.51)

(2.52)

{2.53)

(2.54)

(2.55)

With Egs. (2. 54%??7% ﬂﬁwgﬁeﬁ ﬁsed in terms of the bias

voltage V.

™ R 7S 0 e

transport. If the junction were used as a solar cell, photogenerated electrons in -
and to the right, would tend to pile up at x=0 and then recombine at this plane.
This would reduce the current generating effectiveness of the device.

For real heterojunctions, it is quite possible that the interface states will play
a significant role in determining the junction configuration and it is quite possible

that the change from one material to another will not be abrupt.
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Figure 2.6: The n-p heterowngt\mh\\" !A/ but with interface states present.
Junction is shown in thermm qulhblﬁ_

can develop any change necessary Wrt Wll displacement of the Fermi level

-"'-"-.

position at x =0 oﬂ(ﬁg o w:mm:w@ﬁs present, a given V is

distributed differently om it would be if interface states. [Localized

gap states at the 1nterface (arlslng from defects or 1mpur1t1es) can have a major

influence on Junﬂ u%}n%teoﬂ E}‘l%r@l%(&j e hgterojunction solar cell

will be discussed 1(H more details in Chapter 3.

ARIANNIEM RIINYIR

24 Trapplng and Recombination

When electrons are excited to higher energy levels, they can return to a low-
energy level by one of several recombination processes: (a) an electron can give up
its energy through radiative recombination which involves emission of a photon; (b)

an electron can give up its energy through Auger recombination, which involves the
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transfer of its energy to another electron or hole; or (c) an electron can give up its
energy by emission of a photon or phonons. Generally, this latter process will

involve localized states existing in the bulk of a material, at surface, and at the grain

boundaries.

2.4.1 Trapping

An allowed energy sta

recombination center, ca

V/ ithin the band gap may act as a
& and holes with almost equal
9

—
probability. There are four ig. 2.7, that may occur at this
single trap
Process 2
A E
£
ST e B 30 ekl .

Electron capture . Electron emission

T

‘o

Hole capturc Hole emlsslon

Figure 77 ﬁ’kﬁﬂaﬂ ‘a;mmn ) ‘YLEl'lﬁfEJ e oese of

acceptor-type trap '

For example, an acceptor-type trap, the trap is negatively charged when it
contains an electron and is neutral when it does not contain an electron. The four

basic processes are as follows:
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Process 1:  The capture of an electron from the conduction band by an empty
trap.

Process2:  The emission of an occupied electron from a trap level back into the
conduction band.

Process 3:  The capture of the hole from the valence band by a trap containing an

,1 eutral trap into the valence band.

Process 4: The emission of‘a@“ /1
(&

electron.

Z.
2.4.2 Shockley-Read- m

The net recombi
localized gap states ation rate for a single level

recombination center N, is given by °

(2.60)

n; is intrinsic carrier concentration, and ngp are electron and hole non-equilibrium

concentration r%emq NENINEIND
locatedzﬁjﬁjﬁgﬁ%Sﬁjﬂ%ﬁﬁ%ﬁﬁiﬁﬂg center or trap is

Under low level injection in p-type, n=n, and p>>n>>n,, and the

recombination center is located at the mid- band gap, E, =E,, then the

recombination rate for electron is given by:

R =0

n

Val,(n, —ny )= 222 (2.61)
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and for holes in p-type:

Rp p th (p Pno)_% > (262)

po

where n, and p, are the non-equilibrium concentration of electrons and holes

respectively. n,, and p,, are the equilibrium concentration of electrons and holes,

respectively.
The minority carrier lifeti in p-type can be written as
(2.63)
The minority carrie pe can be written as
(2.64)

Under high level injectio nority carrier lifetime for both

)
holes and electrons in n-typé afd p<type can be expressed as

(2.65)

R= (2.66)

ﬂ‘UEJ’J ‘VIEJ"M‘WEJ’]ﬂ‘ﬁ
2.5 caaarammfu URNINYINY

In this chapter, I have given a brief review of semiconductor properties,
semiconductor-semiconductor homojunction and heterojunction including the

operation and electrical characteristics of solar cell.
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