CHAPTER V

CONCLUSIONS

- 1. The effective partition coefficient, K, in the form of ln[(1/K)-1] has a linear relationship with the operating conditions, written in the form of u/N_r ^{0.2}, as illustrated in Eq. (4.1).
- 2. The limiting partition coefficient, K_0 , of a solute can be obtained from Eq.(4.1) based on the concentration polarization model for every true solution and colloidal solution.
- 3. For the ionic solution, K_0 was linearly proportional to the initial concentration of the solution. The K_0/C_0 ratio has a linear relationship with the hydration number, which can be ordered as follows: Li^+ , Na^+ , K^+ , and Cs^+ .
- 4. For the non-ionic solution, K₀ was also linearly proportional to the initial concentration. The type of solute, however, did not affect the K0 of this type of solution.
- 5. The K_0 of the colloidal solution was found that to be not affected by the size of the colloidal molecule and the initial concentration of the solution.
- 6. The equilibrium lines of all types of solutions could be obtained when K₀ were known.