CHAPTER 3

SOLUTIONS OF FINITE PIEZOELECTRIC CYLINDER

In this chapter, the derivation of analytical solutions for a homogeneous
piezoelectric cylinder under axisymmetric end loading and electric field is presented.
Figure 3.1 shows a piezoelectric | f diameter D (2R) and length H
(2h). A cylindrical polar co

with the z -axis along the

as shown in Figure 3.1 is used
er. The cylinder is made ofa -
piezoelectric material arallel to the z-axis. Both
mechanical and electric etric and applied at the top

and bottom surfaces of

The constitutive relati aterial undergoing axisymmetric
deformation can be expressed as follow nd Kudryavtsev, 1988)

o, = 3.1

Gy = 32
5 ﬁﬁﬁﬂﬁﬂ‘i’wmm
2c44€ ~€. K. (3.4)

el

Qjﬁ']@ﬂﬂ“; BIANYIAY o
D, = e,€, +e,€,+e,€_+6¢,E, (3.6)

where o, €;, D,, and E, are the components of stress, strain, electric displacement

and electric field, respectively.c,,, c,, ¢, ¢, and c,, are elastic constants under .

zero or constant electric field. e, e, and e,, are piezoelectric coefficients. g,and ¢,
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are dielectric constants under zero or constant strain. The components of strain and

electric field can be expressed as

ou, -
€, == (3.7)
€, =2 (3.8)
B
€, = (3.9)
€. = (3.10)

where u, (r,z) and u,(r m -\\ ements in the »— and z -

direction, respectively. ] ion, ac ationship between the electric field E, '

(3.11)

(3.12)

The  equilibrium | equations cylinder subjected to

axisymmetric end loading @Jge expressed as ,

o FLHH’J:(IWI?WEI']T]?

(3.13)
awr]?ﬁ\l_zliﬁu l]iﬂ']‘}]ﬂﬁ]']ﬂ EJ (3.14)
%+%+%;0 (3.15)

A ou, ou, o’
ar +_;_—z'“rj+c«?+(cu +c«)gr§+(e|s+e:u)ar_a¢;=o (3.16)
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2 2 2 2
(c,3+c“)(au lau,)+c“(6 1., ]+c,,au‘+eI (ﬂ+la¢)+eug=0 317

oroz r oz or? r or oz’ or* ror

o’u, 1 Ou, ou, 1 Ou, o%u, o*¢ 10¢ o :
(esl+e|s)(araz+'; % J+e"(ar’ +r pw )"'ess Py 'gn(y - B 53352_?=0 (3.18)

The above equations are the governing equations of a transversely isotropic

piezoelectric cylinder undergoing axisymmetric deformations.

The fact that the elastic conste

_\\\

iezoelectric constants and the dielectric

oblem and numerical instability

&of material constants are as

follows

c;~10° N/
Therefore, all variable zed belore solving the equations
(3.16) to (3.18). The coo _and' q splacements », and u_ are non-

dimensionalized by the radi 1er R ; the Stresses and elastic constants are

non-dimensionalized by cd displacements and piezoelectric

constants are non-dimensionalized by ¢, . F nvenience, the non-dimensional,

coordinate, mechanical= displaceiments: * Y displacements, elastic

!

or e Same symbols. In addition,

the following non-dimens onal parameters of coordmates electric potential and the

i constanwgdw HNINYINT

constants and piezoelec

ﬁmﬂimumqwmaa
5,, “11Cu (3.20).
&y = 8’;;]“‘ (3.21)

By using the above non-dimensional quantities, equations (3.16) to (3.18) then

becomes
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2 b 2 2 27
o S B L b T (1) P e ) 2 <0 (3.22)
or or r 0z oroz Oroz
O’u, 10u, ) (0u, 10u, o’u, ¢ 104 o’¢
Malaa 't o v e ) o e v )t e 2
o’u, 10u, O’u, 10u, ou, . (0% 104) . 86 394
ealoa'ra ) o ra ) o oo tra ) Bm =t (29

i

3.2 General Solution of Piezoelectrie Cvline
- o
\ 4

It seems to be extre; Tar"f'.: to obtain_the olution by means of direct

integration due to the co (3.24). But the problem may

become rhore tractable if 1/ //f ! \\\\' f p otentlal functions that can
e

transform equations (3.22) {0 (3424 fam : a1 equatlons
N 4 \ ,
= 3.25
U, =— £ \\ (3.25)
u, =k 3 (3.26)
;5—k O — = (3.27)
. xXJ o

where y(r,z)is the poﬂ-tlal function, and k and £, ge the unknown constants.

KA LkAAL R e A
aﬁm%mmﬁ?ﬁ%ﬁ g o®

2
(I1+c;, +k +ek, )( +la—)+[c33k +eyk, ] =1 (3.29)

r or

. o 10 L
(1+e, +ek, —a,,kz)(?'f+;§wJ+[e”k, —enkz]?‘/z/ -0 (3.30).
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2

10 0’ S
In equations (3.28) to (3.30), the terms 68!/2/ +-2Y and azvzl are not identically

¥~ r Or
equal to zero. Under this condition, a nontrivial solution of equations (3.28) to (3.30)

will exist only if they are identical equations, i.e.,

1+(1+¢ )k +(1+ey)k, _ ek tesk
& Iy +k +ek

=) (3.31)

1+(1+c¢,) b +(1+ey)k =) (3.32)

cll

By eliminating &, and k, | 3 1)%&1 cubic algebra equation of

Q is obtained as

AQ® + BO? (3.33)

where

A=ce+c,E (3.34)

s

B =2¢e; - 1+2¢,,0 5522 . 553 13811~ CnCaéy — s (3.35)

(3.36)

=—el, - sl (3:37)

The three roots @eya\g!] 2 Y] ﬂl‘li? uﬂ ’]( ,‘;, 3) in which Q, is
assumed Lﬁ\ TTT‘ZII l lﬂ positive real
numbers orja pair of conjugate complex roots wi pos1t1ve real parts Corresponding

to these three roots, there are three potential functions w,(i =1, 2, 3) in which each of

them must satisfy one of the following equations.

2
g Xy L +Q, i _g (i=12,3) (3.38)
or r Or 0z*

Therefore, the mechanical displacements and electric potential in equations (3.25) to

(3.27) can be written as
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4 _
u, =5(l//1+t//2+w3) | (3.39)
0 0 0
w, =k, Lok, a";z +k, a"f (3.40)
0 0 oy .
P =k, . +ky, a'/’z kyy 523 (3.41)
By substituting equations (3.39) to (3.4 0 equations (3.1) to (3.6), the stresses and
electric displacements can be obfain follows:
O, = (cn (3.42)
o = (c,z (3.43)
or
o, =G (a_ (3.44)
or
O, = (14 + gk 8 (3.45)
62 - ;!i' O Y
D, = (§+ - ~ . 2 I (3.46)

2i

et ARSI HBAT N AB L e

deformatior?s can be obtained by solving equation (3.38) for a function v, and then’ |

D, =@us£jjnm%?] %Jw E]I] ﬂ i (3.47)

substituting the solution of y, into equations (3.39) to (3.47). To obtain the solution

fory,, first consider equations (3.38) in the following form

o'y, 1y, &y,
iy - LRNS =O’ '=1’ 2,3 3.48
o v o o ¥ ; )
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where z; = z/,/€Q; . The solution of equation (3.48) can be written as

v; =[CJy({7)+GYy({)][ 4 cosh({z) + B, sinh(( z) ] (3.49)

- where J,({r) and Y, ({r) are Bessel functions of the first and second kind of zero
order (Abramowitz and Stegun, 1972), respectively, and ¢, 4, B;, C and G are

arbitrary constants to be determined.

On the other hand, equatio;

Ty, 10y, (3.50)
o’ 6’/
where 7, = 1/Q,.r . The solui ove Laplace ions are in the form of
Vi _[Hilo(, (3.51)
where 1,(Ar;) and K ( ctions of the first and second
kind of zero order (Abramowi 9T )h respectively, and A, H,, L, M
and N are arbitrary constants to he de
In equations (3:42) to (3.45), all normal stresses &2i"io,, and o_ must be an

even function of z, whiie . The linear combination

7z

of the two general solutloné yields the solutlon for i as

ﬂ u ’ar - qﬂ‘y{j’(w EJI (p,ni Kot

lnr+ (3.52)

q WRIBTER AN 6 e

where A, is the s™ root of J,(4,)=0, ¢,=1/,/Q,, p,=:/Q;,and ¢, =nz/h.Note

that the first three terms with constant coefficients 4, and B, of the potential

function contribute to the case where only constant normal stresses are applied on the

surfaces of the cylinder.

The solutions for mechanical displacements, electric potential, electric fields,

stresses and electric displacements of piezoelectric cylinder are obtained by
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substituting the function y(r,z) given by equation (3.52) into equations (3.39) to

(3.47). The details of derivation for these solutions are given in Appendix A. First, the

solution for displacements and electric potential can be expressed as

208, + S 2 CED_y 1 (pr)+ B K (5L
y <o, $ Y (3.53)

rooia +i%[ J(Ar) + DY, (A0)]
s=1 - s
®© K (pléynr)]
u, =2k, (3.54)
i=1
@© )+ By (Plgn )]
¢= §k2.~ (3.55)
The electric fields can be Metdrmiries y substituting, electric potential given by
equation (3.55) into equations
0 ié— )]
E, =Y, [ (3.56)
= 3,;;.—” X 1[

» r ) o
N ﬁ
; cosh(g Yo (A7)

ot 8 maﬂnmm VANENALL oo

expressions for stresses and electric displacements.
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G, =(Gy = cu) 7 Ao + Z [2(012 +¢,) —4c,ky, +k2[)qi2:|

354, (- + by k(P o)+ - ), AL2E) (?4 )]cos(c 2)

+jl gB,.,, _(—c,, P2+ ek, + kKo (Do) + (- €1, 5%-’] cos(¢,z) (3.58)
’é ilc E(cll kgt — kg )y (A7) + (e, — 6, )J—'/(?j;—r)}cosh(q,lsz)

+.~zi|:§;D“ (¢, — kgl —kyq?)Y, SO »Y;' :lcosh(q,lz)

3 o v , . - ( v
+2,2. 4,1 (-6, ; ¥ (e —¢)p, cos(¢,z)
i=l n=1 | L T
3 o [ " a .‘ J ‘ - r
+§Z|Bln (—cxzpiz +¢, T . :Icos(g wZ) (3:59)
3 o » y
+§Z;C1s (¢, — kg, o (A5 ”_ , = cosh(g,4,z)
3 & i g , ‘ | ,
+2,2.5; (5, _CIJkqulz - Ar) AL ~ A.2)
imsal | A ’

+§§4 [-eupi
+§’§B,,, [(~ep? +epk +ék2,)K (p<, r)] 0s({,z) (3.60)
Sl SN AN ASNYINT
= TSI Ingnay
A ZZ 4n (1+ K, +esky) P (pi&,P)sin(C,2)
> 3B, (1+k, +esky ) pK,(pg,r)sin(S,2)
o (3.61)

+ZZC (1+kli+e15 Zl)ql‘] (4,r)sinh(g,A, z)

i=ls=1

+ZZD (1 +k, + elSkZI)qIY(A' r)sinh(g,4,z)

i=1s=1
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3 o

D, ZZAl (eIS +esk, — €I1k21)pll (p,¢,r)sin(£,2)

i=ln=1

_ZZBM (eIS +ek, _EllkZK)le (pg,r)sin(g,2)

i=l n=1

(3.62)

+§Z;C (eIS + ek, — €, zt)qu ('1' r)sinh(g;4,z)
+zl:§Dts (elS +esk, — EllkZl)qlYl(Z'sr) sinh(g,4,2)

2 ~ 2

B, = ZBIO [463, —4(eyk,; — Es3ky,)g; :I

3 o L
+§§‘41n [( ~p; +esky ~&

3 o
+23 B, [ (=P} +eyk, = (3.63)

i=l n=1
3 o

+IZI:Z=}C [(1 —eysk,q
3 ®

+22.D, [(l —euk,q;

i=1 s=1

3.3 Piezoelectric Cylinder Electric Field

In the previous secti ents, electric potential, electric

fields, stresses and electric -~;na;_g: expressed in terms of arbitrary

constants. Those consta

an e appropriate boundary

conditions correspo .-'5 g oblem. In this section,
boundary value problgs involving “a piezoelectric @er mechanical loads and

electric fields are cons1de

3.3.1 C)@tuﬂa mﬂlnﬁ mﬂd ﬂ ‘j
ST NN -

be expressed as follows:

e For the curved surface, i.e. r=1land -h<z<h
o,(,z2) = 0 3.64)

o.(1,z) - 0 (3.65)
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D.(1,2) = 0 (3.66)
e For the top and bottom surfaces, i.e. z=thand 0<r <1

P(r) _ (3.67)

o, (r,th) =
o, (r,th) = 0 (3.68)
D, (r,%h) = (3.69)
where P(r) denotes the no : ressure applied at the top and
. .—J
bottom surfaces of the cyl given by equations (3.58) to

(3.63) will be used to constants  A,,B,,C, and D,

G=L2,3:8,5=1273, der, all terms related to Inr,
K,(p,r) and Y,(Ar) ess field at the center of a

solid cylinder must be finit

First, consider the s o, on the curved surface

which can be obtained by se
(
B[ 2(c,, 4a)24(e, ki, + k)7 ]
3 0 v'_." e
o, (L,2)=) {+> 4, [(-—c“ G|+ C ol ]cos({nz) - (3.70)
i=1 n=1 o

+ZC [(cn ~eskiigl ~ kud!)o(2,) ] eqshiq,2,2)

| ﬂ‘UEJ’J'VIﬂﬂ‘ﬁWH']ﬂ‘i

By expressing theéfhiyperbolic cosine ft}nctlons in the followmg form

amgm@mg&mm ﬁi;ﬂ an

n=1 q[ ys

and substituting equation (3.70) into the boundary condition, equation (3.64), the
following set of the relationship between the arbitrary functions can be established

, | Bo [2(012 +oy,) = 4(esky; + kzi)qiz] +
PRE sinh(g,4,h) { =0 (3.72)-
= ZC:, [(Cu — sk — kg7 ), (A, )] q(j' .

s=1 il's
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II (plé,n) |
¢

. ] =0 (3.73)
2(-1)"g;4, sinh(g,A,h)

22’2 (

2 4, |:(—cnpi2 + ek + k), (p,6,) + (e, —¢,)p;
2

i=1

2.Cs [(Cn - cikug; —ky97), (/ls)]

The condition of zero shear stress, i.e. o, =0 on the curved surface r=1,

equation (3.65), and the two end surface z=+h, equation (3.68), leads to the

following equations, respeétively,

iA’in (1 +ky; tés ; (3.74)

(3.75)

i G 1+
i=1

The condition of at both end surfaces, equation

(3.67), can be written as

-

By, [4C13 —44

o (rsth)= +i 4, I:(—cnp 5 % r=P(r) (3.76)

-
Il w
LY

A

The function P(r) and Iogpé ¥} {i=132, 3%91 the above equation can be expressed

oo i 4R BIH 1 E 171D _
aRiTnAm Ingndy o

and

I,(pL,r)= 21, (p<,) + v 2p6.1L(p4g,) Jy (A7)

3.78
ps, SR+ pi)NA) i

where
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1
a, =2 |\rP(r)dr (3.79)

0

a,=7 (2&) ;jrp(r)Jo (A,r)dr (3.80)

The equation (3.76) can then be written as

, |:2(c13 +¢;,)—4(c ]

PR ] =8, (3.81)
e +ZA: (—ai

Zs}ZI:A"" J =a, (3.82)

The final set of equations' répresenting the bot condition for electric

displacement along the cylinder, f
3 ~
Z 4, (es +esk,—& (3.83)
i=1

for D,(1,z)=0,i.e., «{-—

. [Bo [4- 4(e‘§l& Eky,)q] |
g, mm&lﬂﬁﬁ
mﬁqnimw ANY1AY

+ &Lk
(P} + ek —Eky) /12+p; )J A4) |t=0 (3.85)

s[(l — ek +Enkyg! ):ICOSh(‘I1'1sh)

I 1

for D,(r,+h) =0, i.e., equation (3.69).

The equations (3.73), (3.74), (3.75), (3.82), (3.83) and (3.85) yield a system of
linear algebraic equations of order 3n+3s with arbitrary constants 4, and C, (i=l,
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2, 3; n,s=1, 2, 3,...,0). The three remaining boundary conditions B, (i=1, 2, 3)
can be obtained by solving equations (3.72), (3.81) and (3.84). All arbitrary constants

are obtained numerically and the procedure of their numerical evaluation is discussed

in Chapter 4.
3.3.2 Cylinder under Electric Field

Consider a piezoelectric cylinder subjected to electric potential applied over a

circular area of radius 7, at the to aces as shown in Figure 3.3. The

oblem at the curved surface are
given by equations (3.64) to-
(3.66). For the top an AGE ¢ n er, the boundary conditions

very flexible electrode n0oth' comtact with the nder and a rigid electrode

perfectly bonded to the gylinder. Fi __:'_ ot sider the case of the electrodes of
negligible stiffness with s face s case, the boundary conditions
at the top and bottom surface

o, (r (3.86)

o, (r,th ;o (3.87)

o(r,h) for @< sy (3.88)

#(r, ﬂ)u 8 ’e] 'ﬂ ﬂm ‘j W &l f]oajro (3.89)
RGN ﬂ“‘im’ﬂl PVMNETREY o

where ¢, and —¢, are non-dimensional electric potentials of the top and bottom

electrodes, respectively. The first two boundary conditions lead to

. B, [2(C13 +3) —4(esshy + k)] ] +

S 2 2(-1)"I,(p, =0 (391). -
- él“i"[(_cwpi +eyky +esks;) ( )p‘,é'fp'gn)]
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2(-1)° o (Pign )
(A2 +p2¢2) 02 |L=0 (3.92)

+C,-, [(Cn o= CJBkliq,-z —833k2,-q,-2 ):I cosh(q,.,‘tsh)

>

i=1

z 4, l:(—'cmp,-z +Cyk,; +egky,;)
n=1

To obtain the electric displacement under the electrodes, the contact surface

between the electrode and the cylinder which is a circular area of radius r, is
discretized into a total number of N, ring elements as shown in Figure 3.4. In

addition, D, within each ring eleme sumed to be constant. The relationship

between unknown electri vlace ; oplied electric potential on the
—

o N, (3.93)

vhich is the normalized electric

potential at the center ofithe ing ¢lem € 10 a uniform electric displacement
over the j” ring element ;/_, > 3 acement D, can be obtained by

solving equation (3.93) with ¢, /ein e; 13 e applied electric potential ¢, . Then,

(o= X7
D, =a,, ) a,, ]B (3.94)

= AUINENINYINS

ly J+l

NS Angndy o

’j+l

a, . =——— | rD.J,(A.r)d 3.96'
and 7; and r,,, are the inner and outer radii, respectively, of the j* ring element. The

boundary conditions governing the electric displacement at the top and bottom

surfaces can be written as
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B, [4 —4(essk, —Esky)a; :I +

3 i

PR 3 I(p;)] =4 py (3.97)
i=1 k : .
ZAm[( p. +eyk,; — Exky;) oL,

n=l1

20

3 |24, [(_piz +eyky; — k)

2-1) pLL(pL) ]

= (A2 +pX¢2) (A |b=a, ,, (3.98) -
i=1
+C, [(l —enkg; +Ekg; ):I cosh(g;A,1)
Therefore, for the case a piezoe bjected to electric field with very
flexible and smooth electrod and C, (i=1, 2, 3, n,s=1
2, 3,...,0) can be obtai . quati \ 3),(3:74), (3.75), (3.83), (3.92) and

(3.98), and the arbitr

, \ determined from equations
(3.72), (3.91) and (3.9

Next, let consi hich the electrode is rigid and it

is perfecﬂy bonded to boundary conditions along

the curved surface at r= anged, i.e., they are given by-

equations (3.64) to (3.66). For thgboundarn o tions at the top and bottom surfaces

of the cylinder, since the electrodes are rigi
B R A

perfectly bonded with the cylinder

surfaces, then under thé.c

L7
u, (r,+h) m (3.99)
’ﬁumwﬂ’mwmm "

ammmzuumwmaa

and for the region outside the electrodes,
o, (r,th) = 0 (3.103)
o, (r,th) = 0 (3.104)

D,(r,£h) - 0 (3.105)
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Similar to the case of a flexible electrode in smooth contact with the cylinder,

the circular contact area is discretized into a number of N, ring elements to determine
the unknown tractions 7, and 7, and the unknown electric displacement D, under the

electrodes. In addition, 7,, 7, and D, are assumed to be constant within each ring

element. Then, the following matrix equation can be established

Grr Gzr Gﬂ'
G” G* G* (3.106)
G"* G* Gg¥
id
In above equation, G,f’, §2, %otes the influence function
which is the non-dim "\ em \‘* r), vertical displacement
-th

(k=2z) and electric po ring element due to the
d unit electric displacement
all elements of u, and u, are

By expanding 7, and T f,,’% : ssel series, respectively, as

- ———————————— (3.107)

iy

J‘gug ’JMEJVI?W g1N73 -
e o W' AINIURIINAE

and

'jfl

a,7; = FI) ,;[ rT,J,(A,r)dr (3.109)

Tjw o
Gozy =2 [ rT,dr (3.110)

b
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Tis

as,sz = J:(l_‘_) ’:[ r'T;jJO(ﬂ’sr)dr (3.111) _

and D, as given by equation (3.94), the following equations can be established

3
Z Cs (1 +hy; + e15k2i)q,‘ sinh(g,A.h) = a, ,,, (3.112)
i1

]=ao,,,j C(3.113)

n=1
3 iAm ('_cl =i
= [ , ] =0 (3.114)
i=1
+C [(cls y
Equations (3.112) to (3 : ' : ' \ .72) to (3.74), (3.83), (3.97)
and (3.98) constitute the /fequati L Systern 5‘\' n+3s+3 to determine the
arbitrary constants 4, , B, o he of applied electric field with rigid

= —J
[

AULINENINYINg
PRI TUNNINGAY
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Figure 3.1 A p fé%-4-“":f.f linder considered in this thesis.
e TR

,,;—ﬁ ]

FI‘HEJ’J‘VIEWI?WEI"Iﬂ‘i
’QW'lﬁﬁﬂiﬂJNﬁTmEﬂﬁﬂ
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Figure 3.2 A piezoeleq» _.;5-:_; ﬁ-t: I applied mechanical loading.

7 X

AULINENINYINS
AR TN TN



Figure 3.3 A piezoelectric« hinde applied electric potential.
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Assumed uniform
distribution each ring

l SV
AU ANENTYINg
RRDALAIBNIBIANALL...

electrodes for applied electric field.
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