CHAPTER III

EXPERIMENTAL RESULTS

We tested the rule extraction approach by using the generated ambiguous data set
and the real world classification problems sucf\ /ns the Glass data set [27], Iris data set

[28] and Wisconsin breast cancer data set [29]. "“" ,
= - -

2N
3.1 Generated Ambigtious Data Set.

'assé‘s ( ass A and class B) with two input features

r both class A and class B. The data are generated in

)‘-* i

We generate data
(x1 and x»). There are 1,50

two orientations: (i) on the x-axi ongfkt—atlon a;[d (11) on the diagonal orientation. There
et el
are three different degrees of overlappmg data?betWeen two classes at 20; 2\/20’ and 40

o J ] _—

distances apart, where g.gsigma” is the standard deviation (]S@,Qf the data. The six data

wdi :
sets for the experiment arei(1) bpx, (2) apx, (3) bgx, (4) aq*‘:&(S) brx, and (6) arx. The

A

A

representation of the data set names are as follows. The first character in the data set

“ bt |

names indicates the orientation of the two ¢lasses, where indicates x-axis orientation

and “b” indicates diagonal orientation. The second=character of thesdata set names
indicates the SD of' the distances’ betweein two ‘classes of overlappiilg data, where "p"
indicates 20 ambiguous SD, “q” indicates 220 ambiguous SD, and “r” indicates 40
ambiguous SD. The examples of the generated ambiguous data sets are given in Figure
3. Figure 3.1(a) shows the most complex data set with 20 ambiguous SD of overlapping

data on the diagonal orientation from the data set “(1) bpx” while Figure 3.1(b) shows

the less complex data set with 4o ambiguous SD of overlapping data on the x-axis
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orientation from the data set “(6) arx”.

Figure 3.1 The generated ambiguous data set. (a) Data set with bpx format has the most

complex data set. (b) Data set with arx format has the less complex data set.
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In the first step, a neural network was trained by using the Stuttgart Neural
Network Simulator (SNNS) software. The data set was divided into two sets. The training
set contained 750 input vectors and the test set contained 750 input vectors selected
randomly. The network has two input units (x; and x;), ten hidden nodes, and one output
node (2:10:1). The value of the output node equals to 1 when the training input is in class

A and O when it is in class B. In the REA{H’ )lgorithm, the parameter setting for the

maximum number of accepted ambiguous activaﬁéﬂ‘frjﬂue v is 5%. The threshold value
—-— - —

for the feature extraction @ 1 the RECEF algorithm, the threshold value for the

accepting the certainty factor yalu %;',is 0%

The result from oo _m‘rs slfwn in Table 3.1. The names of all six data
sets are (1) bpx, (2) apx, (3) b. 4) aqx (SYJbrx, and (6) arx while the accuracy results
LY J'T #

for the SNNS are 84.1%, 87.7%, 9_1 7% 955%, o 3%, and 99%, respectively. The

== L
accuracy results of all six data sets ﬁem the test—BE*t for the RECF algorithm and RENL

i
S J “l__;u-

algorithm with parameter_»,settmg y/ 5% and @ = 50% are 63(7%, 82.7%, 81.2%, 92.8%,

——

97.2%, and 98.3%, respe‘éuve]y The accuracy results of all _1,“deata sets from the test set

| |

for the RECF algorithmy;md RENL algorithm with parz;—r;leter setting ¥ = 1% and
@ = 40% are 56.9%, 67.7%, 72 4%, 88.0%} 92.5%, and98.0%), respectively. A number of
rules with parameter setting = 5% and @ = 50% forof all six data séts are 5, 4, 5, 3, 5,
and 3, respectively. A'number of rules with parameter setting = 1% and @ = 40% of all
six data sets are 5, 3, 5, 3, 5, and 3, respectively. For the diagonal orientation, there are
five rules for all three standard deviations. But for the x-axis orientation, there are three
to four rules for 2o ambiguous standard deviation and three rules for 2\2o and 4o

ambiguous standard deviation.



Table 3.1 The experimental results of generated ambiguous data set.

Data Set | Ambiguous | Ambiguous SNNS RECF& RECF& Number | Number
Name Orientation Standard (%) RENL (%) | RENL (%) | of Rules | of Rules
Derivation v=5% v=1% v=5% v=1%
®=50% =40% 0=50% | ®=40%
(1) bpx | diagonal 20 84.1 63.7 56.9 5 3
(2) apx X-axis 20 87.7 82.7 67.7 4 3
(3) bgx | diagonal 220 9L | 81.2 72.4 3 5
F
(4) agx X-axis 2o 934 /A 908 88.0 3 3
(5)brx | diagonal 4o 974 S 025 5 5
g— |
e |
(6)arx | x-axis ,47 99.(1) 98.3 98.0 3 3
y
" TTINEY
The comparison of thesaceur .g:{y Emo"g'g -RENL algorithm with parameter setting

v =5% and @ = 50%, y ="1%an

W )

| © =40%, and SNNS is shown in Figure 3.2(a). The

classification accuracy for both SNNS and REEI;:'algorithm will be. The comparison of
L G-
the number rules for x;éfis orientation with parameter settigfg_i.y/ = 5% and @ = 50%,

\7 )
v = 1% and w = 40%, and-the diagonal orientation is shown in Figure 3.2(b). The number

of rules for diagonal orientation is higher because the diagonal orientation is more
complex than the X-axis orientation, The more ambiguous standard deviation (or less

complex data set) is, the smaller numbers of rules for x=axis orientation"will be.

The CF rule with parameter setting ¥ = 5% and @ = 50% from all six data sets is
shown in Table 3.2. From REAP algorithm, the feature extraction eliminates the input
feature x, from the data set with x-axis orientation.

So, the rules from the x-axis

orientation consist of input feature x; only. Meanwhile, the rules from the diagonal
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orientation consist of both input features x; and x,, The CF values that represent the

certainty factor of the data are indicated on each rule.

Il RENL with 1% and 40%
RENL with 5% and 50%

Figure 3.2 The experimental results of generated ambiguous data set.

(a) The comparison of the accuracy. (b) The comparison of number of rules.



Table 3.2 The CF rules of generated ambiguous data set with parameter setting y = 5%

and @ = 50%.

Data Set Name Rule No CF Rules
(1) bpx R11 If x >2 Then class A CFo=95
[diagonal, 24] R12 If x >2 Then class A CF, =96
R13 class B CFg =97
Rl4, class B CFy=55
Rl class B CFp=97
(2) apx R21 class A CF,=92
[x-axis, 2] R22 class A CF,=58
R23¢ class B CFp =86
R24 class B CFg =98
(3) bgx R31 class A CF,=091
[diagonal, 2\20] |  R32q class A CFA=98
R33; class B CFp =98
R34 class B CFg=176
R35cr class B CF=100
(4) agx R41 class A CF, =97
[x-axis, 2120] RA42 7 7 class B CFg =99
R43 0.5 Saikre. - ikl ™ class B CFp=72
(5) brx R51 class A CF, =98
[diagonal, 4c] class A CFA=99
class B CFg =99
class B CFg =63
x; <03 class B CFz =99
(6) arx R61 > 2.1 class A CF,=99
[x-axis, 40] % }/a % Ej w i w EJ ’j ﬁ CFg=T72
63cr hen  class B CFp =99

ARRIDTMIBIANES By e

the given class) are rule numbers R15, R21, R24, R31, R32, R33, R35, R41, R42, R51,
R52, R53, R55, R61, and R63. While the rules that have the CF value less than 60 (low
certainty to be in the given class) are rule numbers R14 and R22. The larger CF values

are, the smaller ambiguous region between the data set will be. Thus, the CF value can
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help user gain the knowledge of how certain the answer should be in a given class.
The CF rule base with parameter setting = 1% and @ = 40% from all six data sets is

shown in Table 3.3.

Table 3.3 The CF rules of generated ambiguous data set with parameter setting = 1%
and @ = 40%.

Data Set Name Rule No §§w1 r, ﬁ E
(1) bpx R1l 2 class A CF,=100
—

[diagonal, 2] R12 class A CF,=100
R13¢¢ class A CFg=53
Rl4 class B CFy=100

R15¢¢ class B CFg=100

class A CF,=99
class B CF=100

(2) apx R21
[x-axis, 20] R22

R23¢¢ class B CFp=53

(3) bgx R31¢ class A CF,=99
[diagonal, 2\24] R32¢ class A CF,=99
R33 class B CFp=100

R34y ‘ 2 class B CFy =64

R33e FE class B CFy=100

(4) agx R4l — class A CF, =99
[x-axis, 220] R42; 72 < 01 class B CF3=100

R43; . en class B CFp =67
(5) brx R51¢ xl Then class A CF,=99

Fm"ziqﬂmwsm‘z“‘ .

If 0<x<22and 0<x,< 2& Then classw CFp =64

gl CFy =100

(6) arx = CF,=99
[x-axis, 46] R62¢ If 1.1<x<22 Then class B CFy=78
R63 If x <1 Then class B CFp =100

The NL rules with parameter setting ¥ = 5% and @ = 50% are shown in Table

34.
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Table 3.4 The NL rules of generated ambiguous data set with parameter setting = 5%
and @ = 50%.

Data Set Name Rule No NL Rules
R11y If x, is large Then class A CF,=95
R12, If x, islarge Then class A CF,=96
(1) bpx
R13, If x; is sm Then class B CFg =97
[diagonal, 20] o il
R14, = um an class B CFp =55
RIS, ' ' / class B CFg =97
R21, class A CF,=95
(2) apx R22, class A CF,=58
[x-axis, 20] R23, ( g e Then class B CFz =86
R24, » class B CFp=98
R31, class A CF,= 91
R32, class A CF,= 98
(3) bgx
R33, class B CFp = 98
[diagonal, 2V2 0]
R34, class B CFg= 76
R35, class B CFg =100
(4) agx R41, : — class A CF,=97
[x-axis, 2\20] R42y, " . Then classB CFg= 99
R4)'f_),— A«Qfelass B CFy=T72
RS51y | i :ﬁn class A CF, =98
R52, zu.J If x, islarge n class A CF, =99
S R53 is small Th lass B CF =99
is sm en class =
[diagonal, 40] . ﬂfé‘ g %
5 If x5 is sSm L 1 ‘class B CFg =99
q
ROLu [ Ifx, islarge = % Then classA™  CF,=99
AW AR NN RDER 8 o
i i class =
[x-axis, 40 \ ) ! ;
nl If x, is small Then class B CFp=99

For the diagonal orientation data sets ((1) bpx, (3) bgx, and (5) brx), there are
three intervals to represent the input features x; and x, with the NL terms as “small”,
“medium”, and “large”. For data set (1) bpx, the ranges of NL terms for x; are

[-10,-0.9], [-1,1.9], and [2,10] and for x; are [-10,-0.9], [-1,1.9], and [2,10], respectively.



40

For data set (3) bgx, the ranges of NL terms for x; are [-10,-0.3], [-0.4,1.4], and [1.5,10]
and for x; are [-10,-0.5], [-0.6,1.9], and [2,10], respectively. For data set (5) brx, the
ranges of NL terms for x; are [-10,0.6], [0.7,1.9], and [2, 10] and for x; are [-10,0.3],
[0.4,2.4], and [2.5,10], respectively. On the other hand for the x-axis orientation data
sets, since we use only x; to represent the NL rules while the data set (2) apx uses four

intervals as “small”, “medium”, “lar ‘\ ,f//arge where the ranges of NL terms

for x; are [-10,-0.3], [-0.4,0. 5] and [ ectlvely The data set (4) agx

« h “
(&

and (6) arx use three inte g e”’. For data set (4) agx,

the ranges of NL terms fi ,10] while for data set (6)

arx, the ranges of NL terms f ,10], respectively.

3.2 Glass Data Se

The data set concerns icaf f ture of different minerals for
£ : !

making various glass products.r-e,'.g;,‘ ilding low, vehicle window, container,

tableware, or headlamp] The-glass-data-set-has-2t4-entitie: ith six classes [27]. The six

class types are as follows:D ' !_rj

ass,1: “buildin@window with fléat processed”,
U0

clasg’!i “vehicle window with float processed”,

A RERR U ARINET A%

class 5: “tableware”, and

class 6: “headlamp”.

The data consist of nine input features of real values which are:

RI: Refractive index (x;) with range [1.151115,1.153393],
Na:  Sodium (x;) with range [10.73,17.38],
Mg: Magnesium (x3) with range [0.33,4.49],
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Al: Aluminum (x4) with range [0.29,3.5],

Si: Silicon (xs) with range [69.81,75.41],
K: Potassium (x¢) with range [0.02,6.21],

Ca: Calcium (x7) with range [5.43,16.19],
Ba:  Barium (xg) with range [0.06,3.15], and
Fe: Iron (x9) with range [0.01,0.51].

In the first step of rule extra l}‘\ 'éf/s the neural network was trained by

SNNS software. The data seuha ed mto ; training set and test set. The
=

s seld ted‘.Mile the test set contained the

training set contained 107 i
other 107 input vectors. \%as nine input nodes, four hidden nodes,

[0,1]. The target of all data i idered\class i 1 while the target of all data

- - ‘ .
not in the considered class is -0 Fhere are : issing data. There are six network

value for the accepting thejertéi_fff actor valu %. L'j

From theﬁﬁﬁﬁwlgtm%’aw mﬂhﬁe 99% classification

accuracy for SNNS/from the training data sets of all six classes. The accuracy results
o R TRIRAAIA B.on
95%, 92%, and 94%, respectively. The average accuracy for all classes is 86%. The
accuracy results from all data of class 1 to class 6 for RENL algorithm are 77%, 75%,
82%, 94%, 92%, and 94%, respectively. The average accuracy for all classes is 86% as

shown in Table 3.5.
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Table 3.5 The experimental results of glass data set .

Glass type SNNS SSRGS R
Algorithm Algorithm
Class 1 99% 78% 77%
Class 2 99% T76% 75%
Class 3 100% . 83% 82%
Class 4 100% f/f{’, 95% 4%
Class 5 ~100%. "92:% 92%
Class 6 el 00% | 94% 94%

The classification A/’meqlassés,;e.g. class. 1 and class 2, in the experiment
i r _

es
f ] =
are rather low compared 6 the results from ?e'neural network. It is due to an obvious
ighlf". overlapped in some dimensions. This
LhAS ¥

reason. The data of all“ClagSes’ are ‘1

i i
distribution is not good for interval rule exﬁ;af;&i_on which each separating hyperplane

T el
i . Fomae i A
: Vs — G et 3 » . . .
must be orthogonal to its corresponding principal dimensional axis. In this situation, the
e -

neural network can give a better result since each separatinig yperplane is not necessary
o —

-

orthogonal to the prin(l:?’igal dimensional axis. However, the accuracy of interval rule
extraction can be increasgé by adding more rules to further refine the classification of
some highly overlapped data space. But this approach- can create an “overfit” situation
which reduces the generalization of the rhles. The example of ambiguity glass data set for
class 1 of Mgi(x3) and Al'(xz) is shown in'Figure 3.3.Note that Mgi(x3).and Al (x4) are

not eliminated in the feature extraction when we set the threshold value for the feature

extraction @ to 50%.

There are six NL rules. For class 1 to class 6 as shown in Figure 3.4. Four NL

terms as “small”, “medium”, “large”, and “very large” are used in this experiment. The
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NL rules provide the concept of how input features x, x3, xa, X6, X7, xg and xo effect the
result of the rules defining class 1 to class 6. Note that x; and x5 can be eliminated. For
example, in R6y, if Na is very large and Mg is small or medium, then the glass type is

headlamp (class 6) with 94% certainty. The ranges for x; to xo are shown as follows:

Na(x) range: [10.73,12.53], [12.54,13.39], [13.40,14.06], [14.07,17.38],

Mg (xs) range: [0.33.2. « 2.5 , 51, [3.46,3.99], [4.00,4.49],

Al (xs) range: [0.29 \ / 2.47], [2.48,3.50],
.@66}, [4.67,6.21],

K (x(,) range: 0.02,0.647, [0 3
Ca(x7) range: -

Ba(xs) rangdl / // .38, \\\\ [2.3’93.15],and
7, \ I, [0.40,0.51].

Fe (JC9)

O Class 1
4+ Non-Class 1

Figure 3.3 The ambiguity glass data set.



Rlge If (0.28 <Na<0.4) and (0.73 <Mg<0.81) and (0.25 < Al <0.35)
Then Building window with float processed CFpus = 77
R2s If (0.14<Ca<0.27)
Then Building window with non float processed CFount = 75
R3;: If (0.75 <Mg <0.88) and (0.08 <K <0.1) and (0.28 < Ca<0.35)
Then Vehicles with float processed CFs =82
R4 If (0<Mg<042)a ﬁi .68) and (Ba = 0) and (Fe = 0)
Then Container ‘\‘ 7} CF, =94
R5s  If 0< Mg Ba 0)
Then Tableware . —— CF, =92
R6y:  If ©.5 s 0
Then / / CF, =94
Rl If A ‘ d ' : li ‘*ﬁum)
Then ilding wi ith | p CFoue, = 77
Rly: If
Then CFowntp= 75
Rly: If K
Then Vehicles with ﬂoa}‘g@cess T CFy =82
Riy  If mall) and (Al is lﬂge)l?hd (Fe is small)
Then T CF., =9%
Rly: If
Then CFpw =92
Rly: If (Na is very-arge) and (Mg is léss'than or equal to medium)
Thﬂ Headl N 215 NEINAY & =9

q ARSI NS

33 Ir1s Data Set

The well-known Iris data set has been used in the rule extraction process. The Iris
data set consists of three classes of flowers with 50 patterns each. The Setosa class is

linearly separable while the Versicolor and Virginica classes are not. The data consist of
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real values and have a feature dimensionality of four. The four features are sepal length

(x1), sepal width (x;), petal length (x3), and petal width (x4) [28].

In the first step of rule extraction process, the neural network was trained by
SNNS software. The data set is divided into two sets: training set and test set. The

training set contains 120 input vectors (40 input vectors from each class) selected

randomly and the test set contains 30 input vépf/gr} (10 input vectors from each class).
The network structure has four input uni‘t’s, foui-hidden nodes, and one output node

(4:4:1). There are three netWork ‘ ictires tL) be trained (the Setosa network structure, the
/Sem r

Versicolor network structure; d the nginica network structure). In the training

process, the Setosa networksstruct e'w1‘1_1 Se_t, Jf:he data in the class of Setosa to have the

output value equals to 1 while dgtei:ﬁotéﬁl the class of Setosa will have the output

value equals to 0. This training p é‘éspé }s alsé’,—dj};ﬁiied to other two network structures. In
Al L

the REAP algorithm, the p . setting for the maximum number of accepted

- -

ambiguous activation value y is-5%: The threshold value for the feature extraction @ is
A -
T , : ——) .
50%. In the RECF algggyhm, the threshold value for the accepting the certainty factor

value &£is 50%. i £l

The experimental resultsiwith the Iris data set using thé¢ REAP, RECF, and RENL
algorithm are shown in Table 3.6. The results of Setosa network structure show 100%
accuracy on all'of the.data set for all SNNS, REAP, RECF, and RENL algorithms. The
Versicolor network structure shows 100% accuracy for SNNS, 94% accuracy for all
REAP algorithm, RECF algorithm, and RENL algorithm on all of the data set with 3
data out of 50 are classified into the wrong group. The Virginica network structure
shows 99% for SNNS and 88% accuracy for REAP algorithm on all of the data set with

18 data out of 150 are classified into the wrong group, and 100% accuracy for RECF
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algorithm and RENL algorithm on all of the data set. The averages of classification
accuracy on all of the data set with three network structures are 99.7% for SNNS, 94%

for REAP, and 98% for and RECF algorithm and RENL algorithm.

Table 3.6 The experimental results of Iris data set.

Iris Class SNNS f / REAP RECF & RENL
LAJgonthm Algorithm
Setosa 100% “100% 100%
- =
Versicolor -—-"mo% ‘ 94.0% 94.0%

|
Virginica / O0g%/] |\ 88.0% 100%

Overall Performance /;yﬁ /1'/ L 94.0% 98.0%

aflgomhm }he CF rule base from RECF algorithm,

.1.-‘: '-J’-h.

NL, a!gonthm aref;,hown in Figure 3.5(a), 3.5(b), and

The crisp rule from
and the NL rule base from
3.5(c), respectively. From REAP‘an'd_ﬂthm wiﬂr-f.eﬁture extraction, we can eliminate

2

sepal length (x;) and sepa 1its gse only petal length (x3)
L s

and petal width (xg). Th_;;;e are four rules for REAP rule ;;_zld seven rules for both the
RECF rule and the NL rule“The natural langtage terms in NL rule are “small”’,
“medium”, “large”, and “‘very large”. “The ranges of natural language terms for x; are
[1,2.9], [374.934(555.1]y and<[52:69} and for (x4 avey[@: 1309],7f1.L6]0[1.7,1.8], and
[1.9,2.5]. All of the conditional parts of the rules are projected on the input vector
values, so we can understand the relationship between the conditions of the rules and the
given class. For examples, in Figure 3.5(a), the crisp rule R1, is “If (1.0 < petal length <
1.9) Then Setosa”. In Figure 3.5(b), the CF rule R1. provides the CF value equal to

100. So, we can be certain that there is only Setosa class in the given ranges. In Figure
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3.5(c) the NL rule R1y is “If petal length is small Then Setosa” with CF equals to 100.

Rl If (1.0 < petal length <1.9) Then  Setosa
R2:: If (0.1 < petal width <0.6) Then  Setosa
R3.: If (3.0 <petal length <5.1) and (1.0 < petal width < 1.8) Then Versicolor
R4 If (4.5 < petal length < 6.9) and (1.4 < petal width <2.5) Then  Virginica

lL\\W
Rlg  If (1.0 petal length<2.9) \Q\.\U D% Then Selosa CF, =100
R2,c If (0.1<petal width < owl-—__: 2 ../_’—-" Then  Setosa CF, =100
R3¢ If (3.0 < petal length<4. Versicolor CF,s =100
R4 If (5.2 <petal length < Virginica CF,, =100
RS If (1.9 < petal wi Virginica CF,, = 100
R6,y: If (5.0 < petal len, Virginica CF,,= 67
R7: If (3.0 < petal length &5. Virginica CF,,= 67
Rly: If (petal length is small) Setosa CF, =100
R2,;: If (petal widthis small)’ Setosa CF, = 100
R3,: If (petal length is medium) Then  Versicolor CF,, =100
R4,: If (petal lengthis very large) "" =" Then  Virginica CF,; =100
R5,: If (petal width is very large) -~ == "..-“- ;-’r‘ \ ;,, Then  Virginica CF,; = 100
R6y:  If (petal lengthiis IArgé) and (petal width > Virginica CF,, = 67
R74: If (petal length 2 = Virginica CF,, = 67

neural network.

difficulty to understand the relationship between the input features.

ﬁﬁ?‘ﬁn‘ﬁfwﬂ’wsﬁ"ﬁ fgrimis
Twm S Ny

If the rule is in the mathematical equations then the user will have

For the

comprehensible rules, the rule should not be in the form of mathematical equations. The

performance comparison for Iris data set problem of our approach and other rule

extraction techniques such as Fuzzy Neural Network using Particle Swarm Learning
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Algorithm [13], Evolving Fuzzy Neural Networks [14], Clustering Genetic Algorithm
Rules [19], C4.5 [21], Modified RX Algorithm [20], and Novelty Detector Modeling with

MLP [30] are shown in Table 3.7.

Table 3.7 Performance comparison for Iris data set.

Rule in the form
Rule Extraction Algo{‘\ ' / of Math Equations| Accuracy
RECF & RENL Algorithm ( 98.0%
REAP Algorithm (our apM? I_E 94.0%
/A% :
Rule Extraction from R 40.0%
Novelty Detector Modelling wit ‘;E39} 4 94.0%
Evolving Fuzzy Neural Net ]:.- ' '{, .: A4 95.3%
Fuzzy Neural Network usin S-Wamw 97.0%
Learning Algorithm [13] 2RI R
P e
C4.5[21] ,:.:;.—;_;;.'.} : 97.3%
FULL-RE [12] L b/ ; =\, 97.3%
'\\ i"
Clustering Genetic A: 97.0%
d K
Modified RX Algorithmle] 973 %

AU INININYINT
The REAP‘rule receives 94% ‘gccuracy Because the cnsp rule from REAP
s G T T T o v
intervals for x3 is [4.5, 5.1] and for x4 is [1.4, 1.8] as illustrated in the box area of Figure
3.6(a). The examples of the ambiguous input vector data points with 26 data points

(8 data points from Versicolor class and 18 data points from Virginica class) are shown

in Figure 3.6(b).
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{» iris setosa
# iris versicolor
1 iris virginica

PN D

Class

62 22 4 ; ctsicolor - - ‘ 1.5 virginica
65 28 ; aan | 15 virginica
6.7 3.0 1.7 virginica
59 32 1.8 virginica

Figure 3.6 Examples ol'mis data set. (a) The graph displaygﬂ'ague input vector intervals

on % andﬁl ﬂ ﬁwﬁﬁw Er;ei ﬁﬁls data points.
AR TR TR I NG

accuracy. The example of the natural language terms in Rules from Evolving Fuzzy
Neural Network is shown in Figure 3.7(a). He et al. [13] uses a particle swarm
optimization algorithm to extract rules from a fuzzy neural network which has a complex
network structure and receives the result at 97% accuracy using two groups of low and

high. The examples of incomprehensible rules in the form of mathematical equations is
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shown in Figure 3.7(b) clustering genetic algorithm rules [19] and Figure 3.7(c)

modified RX algorithm [20].

R1: If high2and low3 and low4 Then Setosa
R2: If high2and high3 and low4 Then Versicolor
R3: If high2and high3 and high4 Then Vii‘ginica

Rl: If (3.6<a;<4.2and 8585@&\! //\2 Setosa

R2: If (23<a;<3.5and G&.E‘ 52) Setosa
R3: If (329,545% 103:5) ﬁSetosa

R4: If (4.0<a;< 54 ; <113.0) N i

R5: If (a;=5.5and

where a; =0.2

A, is sepal

RI: If (A-398A,,z234 and(1121<'A £5.56A,<21.870r A;0.184,= 1.47) Then Setosa

om Evolving Fuzzy Neural

Figure 3.7 Examples O((—lbc
0 ified RX algorithm [20].

Network [13]. (b) Clustes

T ﬂﬁ"ﬂﬁﬁ%’%wm

The Wlsconsm breast cancer data set has 699, entities drawm from the classes
seien 48} botb L kg obo. Bl el £ ARt ver o
which each element has value between 1 and 10. The nine features are clump thickness
(x1), uniformity of cell size (xz), uniformity of cell shape (x3), marginal adhesion (x4),
single epithelial cell size (xs), bare nuclei (xg), bland chromatin (x7), normal nucleoli (xg),
and mitoses (x9). The missing value of bare nuclei (x¢) is set to 3 which is equal to the

average number.
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In the first step of rule extraction process, the neural network was trained by
SNNS software. The data set is divided into two sets: training set and test set. The
training set contained 350 randomly selected input vectors, and the test set contained 349
input vectors. The network structure has nine input units, nine hidden nodes, and one
output node (9:9:1). In the training process of the network structure, the data in the class

of Malignant is set to have the ou Q\X‘H to 1 while the data in the class of
Q
¢

Benign are set to 0. In REAP i the p tting for the maximum number

of accepted ambiguous acti ireshold value for the feature

extraction @ is 50%. In the 1 - thr hold value for the accepting the

Table 3.8 The experimen r data set
Malignant Class AP R RECE =] Algorithm | RENL Algorithm
5 NL terms =3
Overall
95%
Performance

SNNS has 96% classgﬁg.tion accuracy f&r,the training data sets. REAP algorithm,

RECEF algorithm, ﬂiulﬂ ara)xmrglmc@ thggcm\ﬁ94% accuracy, while
U
RENL algorithm with three NL terms 4chieves 95%Qccuracgon all%f the data set as

AW AN I ARTINE TR Y

shownin T
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Rl If clump thickness is {7,9,10} Then Malignant CFpa = 99.7
R2: If uniformity of cell size is {5,9,10} Then Malignant CF. = 99.7
R3¢ If uniformity of cell shape is {9,10} Then Malignant CFha= 100
R4 If marginal adhesion is {7,8,10} Then Malignant CFpa = 99.7
RS If single epithelial cell size is {9} Then Malignant CFma = 100
R6: If bare nuclei is {6,9} Then Malignant CFna= 100
R7.: If bland chromatin is {6,8,9,10} Then Malignant  CF,, = 99.7
R8¢ If normal nucleoli is {10} ' Then Malignant CFha= 100
R9: If mitoses is {4,6,8,9,10} ‘\;L X\ / //? Then Malignant  CFp, = 99.7
—_— e —
Rly: If clump thickness is gre Malignant  CF,,= 95
R2,: If uniformity of'€ Malignant  CF,= 97
R3,: If uniformity of ¢ Malignant  CF, = 100
R4, If marginal adhesio Malignant  CF,= 98
R5p: If single epith Malignant  CF,= 95
R6,: If bare nuclei is g Malignant CFpa= 90
R74: If bland chromatin is Malignant CFpa= 87
R8,: If normal nucleoli Malignant CFma= 97
ROy If mitoses is greater th or’ e Malignant CFpma = 100
Rly: If clump thic Malignant  CF,= 95
R2,:  Ifuniformity Lﬁe ize is greater thar Malignant ~ CFp,= 96
R3,: If uniformity of cell shape is large Malignant  CFp,, = 100
R4,: If marginal adhesgn%reater than or ual%edlum Then Malignant CFna= 98
RS, If sée ithe lcell ﬂ iun alignant  CFp,= 88
R6y;: If bar€ huclei is greater than or equal to medlum Then Malignant CFp,,= 94
chrom: CFma= 88
R Bt LTI N RR Bk oo 5
: If mitoses is greater than or equal to medium Then Malignant CFpma = 100

(©)

Figure 3.8 The Wisconsin breast cancer rules. (a) CF rules.

(b) NL rules with four NL terms. (c) NL rules with three NL terms.
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The CF rule has 9 rules for Malignant class as shown in Figure 3.8(a). The NL
rule provides the concept of how all of the input features x; to xo effect the result of the
rules to have a high risk of breast cancer (Malignant). Each rule is represented with the

input features x; to x9. The NL rule with four NL terms has 9 rules for Malignant class as

“large”, and “very large” Wh I\ - --17\" .‘\4 D ;e [5 6], [7 8], and [9 10]

respectively. The NL rule wi S NL te wor Malignant class as shown

l” 6.

“small”, “medium”, and

in Figure 3.8(c). There 2
“large” where the range \- ively. For example, in rule

R3,; of Figure 3.8(c), if large, then the patient has a high

risk to get the breast cancer'wi

ﬂuﬁl‘?'ﬂﬂﬂﬁ‘iﬂﬂ’m‘ﬁ
QW'TéNﬂiﬂJ UAIINYAY
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