CHAPTER 1V

CASE STUDY - A TEN-BAR TRUSS PROBLEM

Let us consider a two-dimensional, cantilevered truss with the geometry,
supports and loading condition as shown in Figure 4.1. Each member of the truss is
designated with a number in the range of 1-10. Each node is also designated with a
number in the range of 1-6. '
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Pﬂure 4.1 ' ry of the tenmar truss.
The i ica is 100cm. The length
of the diagonal“the is ;Qa Mm r tﬁrt of the investigation,

all members argassigned with the same cross-sectional area, 4.6920m2, for nonlinear

analysis. In the second part, the §izing optimiZatio , the list%f available cross-
sectio ﬁﬂ ﬁﬁﬁlﬁwﬁ}{ﬂ@m}q algsing the equal
single angles'sectidn. As'previo oned in"Chaptef 2, the equal single angles
are very popular in the design of trusses, particularly light trusses. However, this is
the kind of non-compact section in which the yield stress is unable to spread over the
entire area of the compression member before buckling. Three types of buckling are

possible for this section; however, the current investigation deals only with flexural
buckling.

A typical variation of the ten-bar truss problem is the use of either discrete or
continuous cross-sectional areas. For the current problem, a set of 20 discrete values
are used for the possible cross-sectional areas for each member (1.427, 1.727, 2.336,
3.755, 3.492, 4.302, 3.892, 4.802, 5.644, 4.692, 5.802, 6.367, 7.527, 9.761, 8.127,
8.727, 12.69, 16.56, 9.327, and 10.55 cmz). The radii of gyration (cm) corresponding
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to the above list are 0.747, 0.908, 1.230, 1.200, 1.360, 1.360, 1.530, 1.520, 1.500,
1.850, 1.840, 1.990, 1.980, 1.940, 2.140, 2.300, 2.250, 2.220, 2.460, and 2.770 cm,
respectively.

The modulus of elasticity of 2,038,901.9 kg/cm? and the mass density of
7.849x10” kg/em® are used for steel. The minimum yield stress is 2531.0507 kg/cm?
and the maximum deflection of any node in both the vertical and horizontal directions

is 2.0cm (1% of the cantilever span or m).

W)oint loads with downward direction as
IV.1. Nonlinear analysis /
d :‘.—-’-ﬁ
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1V.1.1 Linear elastic aW N
The linearan S i \ e

The truss is subjected to tw
shown in the Figure 4.1. )

ing the load ratio increment

AL = 1.0 and the numbef offe A SiS a5 '&;\0 he program is executed only
one time, with the strucsire ¢ et o ] \\ ewgiven loads. The geometrical
nonlinearity is negleciéd. #he a nearity \ also disregarded by using a
constant modulus of elagficify fotsimulate the elastic analysis for the given
truss. T \

The absolute valiie &34 gf."The self-weight load factor is

e direction of the load is as shown in

d, with the same cross-sectional area of
s-sectional areas.

Figure 4.1. All the truss member
4.692cm’, the tenth entry in.the4

It can be se .q"f this case is constant with Amia
= Amax = 1. This means| that d otily once, and the truss passes
the checking criteri:mle displacement and stress outﬂs are summarized in Table
4.1. Figure 4.3 illustrates‘tlxdeformed shapipf the truss.
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Figure 4.2 The constant load ratio of the ten-bar truss in linear elastic analysis.
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Table 4.1 The displacement and axial stress results from the linear elastic analysis.

Linear Elastic Analysis
Dof. | Displacement Element Stress
No. (cm) No. (kg/cm?)
1 0.000 1 -3180.80
2 0.000 2 -928.18
3 0.000 3 620.49
4 0.000 4 623.59
S -0.156 5 3034.20
6 -0.382 6 548.67
7 0.149 7 -2099.30
8 - 2300.40
9 -882.22
10 — 1314.10
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Figure 4.3 Thesggaphical representation of the truss displacements
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1V.1.2 Nonlinea”analysis ¢ & W
o ") Ve husd ol gl ok T dechil 9 macriat and
geometrigal nonlinearities. The load ratio increment AA = 0.04 is used in the analysis.

The absolute value of the load remains the same as for the previous case at
2268 kgf. Again, the self-weight load factor is #, =1.2 and the live load factor is

¢, =1.6. All the members are assigned with the same cross-sectional area of
4.692cm’.

Figure 4.4 shows the load ratio history for the ten-bar truss. It is observed that
the first member fails at Api, = 1.24, and the truss reaches its maximum allowable
displacement at A = 2.9.
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The displacements and stresses from the nonlinear analysis is summarized in
Table 4.2 and the deformed shape of the truss is illustrated in figure 4.5. Comparing to
the linear elastic analysis, the axial stresses of all members are distributed more
evenly.

The behavior of the10-bar truss problem
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Figure 4.4 The load raii© his 7 | bagitruss in the nonlinear analysis.
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Table 4.2 The displ the nonlinear analysis.
; Stress
4 (cm) No. g/cm”)
1 0.000 rva 1 -1875.20
_ ! ™ 4322360
J 1945.04
q 4 0.000 4 948.67

5 0587 " 2296.50

qwfl@ 7 ?ﬂ Vltr T - 17.(())

9 8 20.809 8 2299.90
9 0767 9 1343.10
10 71997 10 1884.90
I 0283
12 1951
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1V.1.3 Ultimate analysis

For the present gseghaftuiss.. analyzed taking into account the material
and geometrical nonlines 1 all- the ing arameters and conditions as in the
previous case. Howeves thiS { ne a 1S1iS tepeated many times until all the
members of the truss fail. Fheffinaliload ratiodefore the truss collapses is taken as the
critical value.

Figure 4.6 shows the .f of the truss. The first member fails at
Amin = 1.24 (same as in the prey e truss collapses at Amax = Acritical =
7.06, or at the load| €qu ) ) | kgt _,, ere D stands for the self

€9 »

weight of the truss. | 7
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Figure 4.6 The load ratio history of the ten-bar truss in the ultimate analysis.
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Table 4.3 summarizes the displacement and stress results and Figure 4.7
illustrates the deformed shape of the truss.

Table 4.3 The displacement and axial stress results from the ultimate analysis.

Ultimate Analysis
Dof. Displacement Element Stress
No. (cm) No. (kg/cm?)
1 0.000 1 -1875.2
2 0.000 2 -1848.1
3 0.000 3 22842
4 0 4 22756
S 2296.5
6 f 2290.8
7 68 i -1617.1
8" 950~ |  — 2299.9
o -1589.4
1 A% 2282.7
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In order to capture the nonlinear behavior of the truss in more details, the load

ratio increment AA = 0.01 is used and the analysis is repeated. The results are shown
in Table 4.4 and Figures 4.8 — 4.9. It is seen that the nonlinear behavior of the truss

can be captured more precisely in this case.
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The behavior of the10-bar truss problem
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Figure 4.9 The graphweal represeiitanonof the truss displacements

Swith AL = 0.01.
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IV.2. Sizing optimizati . // : \\

S ifi which the parameters of the genetic algorithm can be
G N

"“t\a vary depending upon the specific
t s dyscleets the population size equal to
ifficiently high value to allow the

There are manyfvays if
adjusted. The optimtm get Jo @ pa
characteristics of each gfoblferd: Thcur
40 and the maximum nugdbef of genérat
process to converge to the bg possit

results with those of the previous

ijected o/ ik jum load of 2268 kgf using the self-

2 and the acior, of ¢, =1.6. The current
)04. This value is considered

the procedure.
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1V.2.1 Single-section Op‘;’mization

F- w
To en§relt eﬂl@iﬂﬂtﬂa@ . ﬁ]ﬂfﬁ]r@nbcrs of the truss are
assigned wit asin 1€ section that can be selected from the list of twenty possible
cross-sectional areas. ¢

7 ﬂﬂ]ﬁlﬁ,ﬂ@oﬁl&&m&ﬁ mﬂﬁl@‘}a‘l two points are

i
plotted for each generation. The point showing a lower value of objective function
represent the best solution and the point showing a higher value corresponds with the
mean of the objective function for all the solutions in that generation.

[y’
In order to compare 4
analyses, the truss is again s

weight load facto f

investigation emplQys=ti

sufficient to exami

The optimum cross-sectional area is found as 4.692 cm> (Figure 4.11), which
coincides with the section in the nonlinear analysis.
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1V.2.2 Eight-section optimization

In the previous case, all the truss members are assigned with the same cross-
sectional area. In the present case, in order to examine the advantage of the algorithm,
8 different sections are used to form the list of available sections for the sizing
optimization problem.

The cross-sectional areas of the 8 sections are 1.427, 1.727, 2.336, 3.755,
3.492, 4.302, 3.892 and 4.692 cm® with the corresponding radii of gyration of 0.747,
0.908, 1.230, 1.200, 1.360, 1.360, 1.500 and 1.850 cm, respectively.

for each generation. The poin OWIng 4 Jgvalue of objective function represent
the best solution and the point.show: , alue correspond with the mean of
? ration (due to the large number
of points, the set of the 0 b€ a'contiiuous line in the figure).

Penalized Objective Function

05
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It shoulddalso be noted that the penalty function 0,; in equation (3.12) is modified in

order to eliminate the case in which the initial load ratio is less than one by shifting
the peak of the parabolic curve from 1.0 to 1.1, and neglecting the upper bound.

——
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It is observed from Figure 4.13 that all the cross-sectional areas of the truss are less
than or equal to 4.692 cm?, the upper limit of the input sections. With this set of
sections, Amin = 1.08 (>1.0) and the total volume of the truss is 3842.1 cm’. This
volume is approximately 70% compared with the previous case.
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For the current ¢ [he20 diserate, valuesiare used as the possible cross-
sectional areas for th : R »2.336. 3.755, 3.492, 4.302, 3.892,
4.802, 5.644, 4.692, 5. S A27N8.727, 12.69, 16.56, 9.327, and
10.55 cm?). The optimijga Ei\ Figure 4.14.
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Figure 4.14 Convergence of the 20-section optimization problem.

The optimum cross-sectional areas for the truss members are illustrated in
Figure 4.15.
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Figure 4.15 The sectioi ined for tHe"20=section optimization problem.
With the set i : .1.08 and the total volume of the
truss is 4161.4 cm’. s stig compared with the eight-section

case.
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