CHAPTER III

SIZING OPTIMIZATION OF PLANAR STEEL TRUSSES

Several sizing optimization techniques are available in the context of truss
design optimization. Most of the techniques are based on a common principle: to
repeat the analysis process many times. Thus, the optimization process is normally
time consuming, particularly if the nonlinearity effects are taken into account.

Most of the mathematical ‘an gegical methods for optimization rely upon
the assumption of continui 4\;\;;; A€ feSign variables and the objective function.
Under these assumption -i ctural"preBiCin is actually discrete in nature, the
resulting optimum valueswefsthe: continuonsdesion"variables must be converted to
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appropriate discrete vakug gmserviative approae to round to the larger values
and to check that thees®0g / ¥ & ‘&*& ied. Most of the continuous
optimization techniqlics aué .,A," gut-base \;s *ﬁ\w ministic. More recently, a number
of probabilistic approadhes#ug J
have been developed. Agpo ) ad

genetic algo As) and simulated annealing

‘antay of th nethods is their inherent ability
to accommodate disgite desipy va $ thaththe are free from limitations on
the search space, e.g. coufingitys difi :-f abili and animodality (Turkkan 2003).
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The current study adopts'ifie-

. )
trusses. The objective filnction mﬁ&:‘
same kind of steel, it is eduiyalent i
member self weight (volume)
the design specification, resu

to equivalent penalty)erms.

(7AS for sizing optimization of the planar steel

Uself weight of the truss members (for the
volume). The design variables — the
dance with the practical section table in
blem. The constraints are converted

IIL1. Genetic algorithms
i i

Compared to rtraditional search and optimization procedures, such as
calculus-based, s métati tegi _ , global and generally
more straightm'ﬁ ap ;ﬁ@aﬁn ﬂ:ﬁﬂiﬁm no prior knowledge
on the problemyjAs GAs require no derivative information or formal initial estimates
of the solution, and because they are stochastic in nature Magiire capable of
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Figure 3.1 illustrates the process in which a problem is solved by genetic
algorithm, e.g. encoding the solutions, defining an objective function, using the
genetic operators, etc., before performing the genetic search. During the search stage,
the process is looped by many generations, using the fitness function to evaluate the
possible optimum solution. At each generation, a new set of approximations is created
by the process of selecting individuals according to their level of fitness in the
problem domain and breeding them together using operators borrowed from natural
genetics. This process leads to the evolution of populations of individuals that are
better suited to their environment than the individuals that they were created from,
Just as in natural adaptation.
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are given better chances of

reproducing and trans t Of-thes .\1\ A\ | age to the next generation. A
new population is thedffcrafited By régombination ofithelparental enes. It is expected
pop ,‘ﬁ \ \ \ . g p
that some members of thifs g€w! popul ”.. on ¥ \ R quired the best characteristics
of both parents and, bgifig gette adapted 10 the envitonmental conditions, will provide

an improved solution to pfobleny. — \ B\
A

After replacing ofiigirial pog , the new group is submitted to the

same evaluation procedure, andiater generates its own offsprings. The process is
repeated many times, untj ) generation share the same genetic

heritage in which theie Ween/individuals.
N

The memb&s,c are often quite different from
their ancestors, possess/genetic information that corresponds to the best solution to the
optimization problem (I{p.ll&nd 1975).

, /.
1.1 Deﬁniﬂsu JINENINBING
11 . : :
The terms used in genetic @lgorithms aféborrow to rge extent from
natural ge ﬂﬁﬂﬁﬁ%ﬁ#ﬁ ﬂno ﬁﬁ 0 solutions alone but
on a mapping o solution ates the application of the génetic operators.

The set 6f all solutions in the problem space that can be represented by the genetic
algorithms is called the Phenotype. The phenotype is mapped into a genetic space,
known as the Genotype, where the genetic operators are carried out on the individuals.
The mapping of the Phenotype to the Genotype is called Genetic Coding. Each
individual in the genotype is called a Chromosome. A chromosome in turn is
composed of Genes or Alleles. A particular genetic characteristic is governed by the

value of the allele and its position in the chromosome. The allele's position in the
chromosome is designated as its Locus.

The Fitness of an individual is a measure of its ability to survive and
reproduce. The operator that allocates individuals of the present generation to the next
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generation based on their fitness is called Selection. The operator that randomly
combines two of the selected individuals is called Crossover and the operator that
randomly changes the structure of an individual is the Mutation operator.

11.1.2 GA basic parameters

The basic parameters of GAs include population size, probability and type of
crossover, and probability and type of mutation. By varying these parameters, the
convergence of the problem may be altered. Thus, to maintain the robustness of the
algorithm, it is important to assign appropriate values for these parameters (Pezeshk
and Camp 2003). Much attention been focused on finding the theoretical
relationship among these paramefe: fel (1981) has developed theoretical
models for optimal mutationz os with onvergence and convergence rates
\:ﬁ\ d Spears (1990) have presented

: mg roles of population size and
crossover in genetic alggi Cvetkovie and nbein (1994) have investigated

the optimal population size ?e ; 'h\?i d.truncation selection.

For a populg g7 o' = \;&\ f crossover P. of about 0.6
and a probability of atiénd " “less=than, n\o\\;‘. The initial population,
which might have B€en# - ' ' factory solution, can adapt itself

towards the optimizedffsollitipn. € s\.'k on tends to disorganize the
convergence of the prob fore uiation Tate, in conjunction with the
population size, is crucj e of GAs (Pezeshk and Camp
2003).

An essentiagléharacte; AS IS Ihe coding«Of the variables that describe
the nature of the pq slem. For a specific prol ends upon more than one
variable, the coding iﬂon g aﬂany single variable codings
as the number of the wdriables in the problem. The length of the coded representation
of a variable corresponds AQ its range and grecision. By decoding the individuals of
the initial ppﬁﬂéﬂeﬁ)lﬂ Iicﬂhaﬂ is determined and the
value of the abjecti notio spon i ividual is evaluated. This

applies to all bers of the population. There are many codin&}\ethods available,

e.g. bi , non-bi i . g Haj 2; and Reeves

1993)%2; m ﬁs t the fyariables to a binary
o |

string ofgspecific length.

According to Hajela (1992), an r-digit binary number representation of a
continuous variable allows for 2" distinct variations of that design variable to be
considered. If a design variable is required to a precision of &, then the number of
digits in the binary string may be estimated from the following relationship:

(X A )

— 3.1
l+¢

where X, and X; are the upper and lower bounds of a continuous variable A

2" >
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Hajela (1992) has suggested that although a higher degree of precision may be
obtained by increasing the string length, higher degree of schema disruption can be
expected. In addition, larger defined length schema clearly are disadvantageous in
dominating the population pool. For example, a real variable X in the range
0.0<X<5.0 can be coded as a 3-digit string: 000 < X< 111.

There are a total of 2° = 8 points (values) in this range. Of the 2" possible r-
digit binary strings, a unique string is assigned to each of the integer variables. In
this example, there are six integers between 0 and 5; therefore, there are 2° binary
strings. Hajela (1992) has recommended that two extra binary values be assigned to
the out-of-bound variables 6 and 7: [Q.4152, 3,4, 5, 6%, 7*] < [000, 001, 010, 011,
100, 101, 110*, 111*], whereasy* b
measure can then be applied fitnes
the out-of-bound integer va

Another appr c-fo-one. correspendence between the integer
variables and their binagufep .f' o

Septation, Decoding.from a binary number to a real
number can be perforfficd ué ,; g foll :L&%;\“\ Adeli and Cheng 1994):
4 B k%‘:‘n in )

Fa

;.‘ __|_ 3

ﬁ :\\ R (3.2)

g\
where C th rr }él €0 he \

Cpinand @, owerand .\‘;* bounds of C;
¥ i€ thgflegigth of tic Binany | ‘\'. and
B is te g 1eger value'ofithe binary string.
e \
{11.1.4 Selection S < 2y

. L5 T .
The selection operatof=is dntcuded ove the average quality of the
Population by givi L_‘.; S 0f Htness-a-higher probability to be copied
into the next generatigie Ty

The roulette “mel selection is the most basic smction method. For example,
let us consider the gelgftion (population? 10 individuals (chromosomes) with the

fitness values ﬁ)\‘ﬂl tﬁ*ﬂ'ﬂgﬁ | w ﬁl ’] ﬂ ‘j

Indiviﬁs Fitness ¢ o
/ ~ 1 '

2 | 01 u w ’] ’J

9 3 0.15 ' o]
4 0.13 o3
5 0.11 74
6 0.09 o6
7 0.07 -
8 0.06 ::’o
9 0.03 o
10 0.02

Total 1.00

Figure 3.2 The roulette wheel.
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Note that the sum of all fitness values is equal to 100%. These values will be
arranged on the roulette wheel; the greater its value, the larger its angle. Each time the
wheel runs, an individual is selected; the higher its fitness, the higher probability it
can be selected. In practice, all individuals are lined up one by one. Instead of the
wheel, a random number varying from zero to one will be generated to select the
individual.

The basic roulette wheel selection has a limitation in that for many deceptive
problems, it tends to converge to certain sub-optimal regions of the search space,
because it favors only above average chromosomes of a particular generation. Hence,

a below average chromosome, whic crossover or mutation could have given a
fitter chromosome is not selectedy and 'the' sélution converges prematurely to a sub-
optimal region. Hence, to mais ersity in the population, some other
selection schemes have beeftimplem proportional selection, fitness-scaling

selection, group selection,elemiezeshidand Catnp-20 03).

111.1.5 Crossover /

The crossover a ombincthe genetic data of the existing

population and the gene ] \\ s;\ 3 rriosomes is recombined on a
random basis to form S \ '€ are ‘many types of crossover, such
as one-point crossover (s Anulti-poifit ¢ 0850V¢ , uniform crossover, adapting

crossover, etc. (Pezes \\\

/6f jhas been“shown to be deficient in the
her crossover schemes, like a multi-
S, a uniform crossover tends to create
arch space. However, this usually
Min) very special cases like

ne-point and multi-point
Two individuapA and B:

i
Ay
PRAREAGUNNINY 1A

B’=[1|0|1|1]0|0|o|1|l]lo]0o]|]

The standard oné pgint
optimization of deceptive p oblem:
point crossover, are often perfoz
diversity and hence favors exp
tends to hinder comye [
massively multimogat-deimains—
crossover schemes. %=

Multi-point crossover (atk = 1, 4, 7, 10):

A=10]|0|1|1]|7]71]0]1
B’=|1[/7]0]1]0]0|1]|/]7/]0|1]0

——t
S
~

Figure 3.3 An example of crossover.
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One obvious way for the GA to self-adapt its use of different crossover
operators is to append two bits to the end of every individual in the population.
Suppose "00" refers to a one-point crossover, "01" to a two-point crossover, "10" to a
three-point crossover, and "11" to a uniform crossover. Then, the last two columns of
the population are used to sample the crossover operator space. If the uniform
crossover moves the search into the solution space with high fitness, then more 11°s
should appear in the last two columns as the GA evolves. If higher fitness solutions
are found using the two-point crossover, more 01’s should appear accordingly.
Because the approach is self-adaptive, crossover and mutation are allowed to
manipulate these extra two columns of bits (Pezeshk and Camp 2003).

II1.1.6 Recombination

Crossover in fact is bination for binary numbers. For
real numbers, the procgs There are many approaches
available in the literaturg.s scréte recombination, intermediate recombination,
line recombination, and e 2d frécombinationi(Pohlheim 1997).

Discrete recomabina@onf perférms ‘an ‘exchange of variable between the
individuals. It generates gbrg ‘the hypercube defined by the parents. It can be
used with any kindgfof L _or\ symbols). The schematic
representation of recombjgiz

‘ possible offspring

parents
X
Figure 3.4 Possiblefpesitions after disététe recombination (Pohlheim 1997)

Most ﬂﬂﬂo&ﬂﬂﬂgﬂ 1&1 Itlﬁagroaches based on the

same rule of off%ring production, that is

e AR AT LT YA Y. 62

=0 and 4> 0 for intermediate and extended intermediate recombination, respectively.
Line recombination is similar to intermediate recombination, except that only one
value of o for all variables is used. An optimum value of o might be equal to 0.25 as
shown in Figure 3.5

Intermediate recombination is capable of producing any point within a
hypercube slightly larger than that defined by the parents. Line recombination can
generate any point on the line defined by the parents. Extended line recombination
tests more often outside the area defined by the parents and in the direction of parent
1. The probability of small step sizes is greater than that of bigger steps.
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parent 1 parent 2

Ll aren of parents 13
possible area of offspring

-0.25 0 1 1.25

Figure 3.5 Area for variable value of offspring (Pohlheim 1997)

II1.1.7 Mutation

The mutation Operator s

idual (chrc allows new genetic patterns to be
created, thus improving Sionally, it protects some useful
genetic material loss. Du
of mutating one of t
typically around 0.001

convergence.

118" probability is kept very low,
butiat the same time not to hinder

When mutation i jed fo-a stri Sweeps down the string of bits, and
p / ifa ability test is passed. Mutation has
an associated probabili ite low. By definition, mutation

is a random walk thro

An example below (Figuses3.6) sh@ws two parent chromosomes of length 5
with randomly generated veis: used:fi e mutation probability check (0.002),
and the resulting mutated chroni&semes. It 18 ebserved that for the first chromosome,
the probability test is never pa:

Before
O]1]0]1]|10z53)|0.659]0.600]0.035|0725/0][1[0]1
1o 0| g Sl Ss o5  [1]1]1]0

| oL orTo Iri o
Y Figure 3.6 An example gmutation. 'Y

Q'Wa@ﬁlmgmsu%aﬂ rm&m&l in addition to

binary fhutation. The real-value mutation algorithm generates most points in the
hypercube defined by the variables of the individual and the range of the mutation.
The size of the mutation step is usually difficult to choose. The optimal step size
depends upon the problem and may even vary during the optimization process. Small
steps are often successful, but sometimes bigger steps are quicker. Figure 3.7
schematically illustrates the effect of mutation.

[e—
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O befors rmutation

variable 2
7 after mutation
variable 1 *
Figure 3.7 Effee i (Pohlheim 1997)
II1.1.8 Penalty function&/f ;

To evaluate « d or'f \ "\a_particular solution string, the
string's characters aré decadcd e S n'\ o sign variables. Using these design
variables, an analysisgi peffofrded an ob -\\?‘ nction is computed. If any
constraints are violated, d pefia ’f" 148 A }-s 10 the objective function, with the
value of the penalty geéfated tg onstraints are violated. The

‘?_ ' '-.\‘{ N

resulting penalized objgéti inction quantitatively, represents the extent of the
violation of the constrafnts providess atiyvely meaningful measurement of the
f f each solgfiofl & sVerdl pénalty function schemes have b
performance of each solifio . Several penal nction schemes have been
igh (P

proposed for structural d amp2003).

’ i - . o .
One of the simple --gi.;é;, -1. S a multiple linear segment function.
Consider a problem where the -r? placeime tress constraints are imposed. Each
of the structural me cked for st d each node is checked for

displacement violatith. Ifno - '----'-----:,_-___""--'-—--w---'; nalty term is imposed on
the objective functiem penalty term is defined as
(Pezeshk and Camp 2&3):

—5)
Fue RYHINGINT oo
I IRENIEIAANL A

P 1S a struc parameter or response (deflection, stress, etc.);
P is the maximum allowable value of each p;; and
k is the penalty rate.

U

Another type of the penalty terms is a nonlinear function which is defined as
(Pezeshk and Camp 2003):

®, =14k, (g, ~1)" (35)
where k; is the nonlinear penalty rate; » is the order of nonlinearity, and g; is similar
defined as:



31

P

] <1
1 szmw < e
el ) |
— e Ui o
Pmax,i Pmax,i

Typical penalty functions are shown in Figure 3.8.

Having obtained the penalty function factors, the fitness value of a particular
solution string is obtained by multiplying the objective function (structural weight) by
the corresponding penalty factors:

(3.7)

where F dobjective function);
n S*Whcre the constraints are checked;
w entire structure (objective

sents the total penalty.

-
|1" ‘ &

Figure 3.8 Typieal p Kad Camp 2003).

1|

I1L.2. Sizing ﬁﬁﬁ"? mﬁl‘?ﬂsﬂ na

Let us 8énsider an ideally-ejnned planar truss structure.éubjected to static

point load elf weli , , of f have the same
matenﬁdwty i w ay bg e gj::pa’gshk and Camp
2003): q
Minimize W= AL (3.8)
i=l
s'<s<s"
Subjectto  G={d'<d<d" 3.9
A'<Aa<4"

where i is the index of the truss member, varying from 1 to the total
number of members m.
L; is the length of member .
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A;= A(n) is the cross-sectional area of member i, with n
representing the reference number for a given section.

In the above equation, the vectors s, d, A contain the values of stresses,
displacements, and cross-sectional areas, respectively. The superscripts 1 and u refer
to the prescribed lower and upper bounds of each constraint.

11.2.1 Algorithm

The algorithm begins by creating a random initial population, or the first
generation. The population size i umber of solutions considered in each
generation. '

The next step is t ea & opulations, or generations. At
each step, the individua arren wthe source to create the next

generation.

forms the following steps:
scoring each membe ng its fitness value; scaling
the raw fitness scores t _ ‘ able range of values; selecting
parents based on thei lon, Opgrator); and producing children from the
parents (crossover oper | ced either by making random
changes to a single pa e vector entries of a pair of
parents (crossover).

To create a new.

Subsequently, the cifrents - placed with the children to form the
next generation. The algorithm ; wof the termination criteria is met. The
termination criteria are the nufiib o¢ cregated, the total computation
time, the number of edntinuous : generations v vithoutany-siguificant improvement, and
the running time with IATLAB® 2004).

The flowchart mF igure 3.9 demonstrates the mamalgorithm.

11.2.2. M/ITbﬁ(ﬁ ﬁﬁ-qn EI ﬂ ‘%’w EI f] r ‘j

MATLAB® is a high-performance language for technical computing that

integrates _computation, _visualj A Imi easy-to-use
enviro ﬁiﬁ%ﬁsﬁf %ﬁ:}a e ﬂg‘fl{ 'lg mathematical
notation. [T'His' is an“interactive ‘environment whose basic data element is an array that
does not require dimensioning. The greatest advantage of MATLARB is its capability
to solve many mathematical problems, particularly those with matrix and vector
formulations, similarly with the scalar in other programming languages. However,
MATLAB® is a translating language which is a huge drawback due to its slow speed

in computation.

[=

MATLARB features a family of application-specific solutions called toolboxes.
Toolboxes are comprehensive collections of MATLAB functions (M-files) that
extend the MATLAB environment to solve particular classes of problems. All the
toolbox functions are MATLAB M-files, made up of MATLAB statements that
implement specialized optimization algorithms. The Genetic Algorithm and Direct
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Search toolbox is a collection of functions that extend the capabilities of the
Optimization toolbox and the MATLAB numeric computing environment.

BEGIN 1. Declare the global database |

L 2. Input the truss problem j

v

L3. Randomly create initial populationjj

v

i=1 (pracess the first generation) i

- .,lfé/
P el
7] 2\

k) . .
> forall solutions in generation #i,
L}
. Sfitne \‘ tion

5. Calcu

Drtrarty e e

Figure 3.9 The main flowchart of the genetic algorithm

The current works extend the capabilities of the GAs toolbox by writing its
own M-files, to utilize the toolbox in the stage of GA optimization. By default, the

GA function in MATLAB finds the minimum value of the objective function for a
specified problem.
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II1.2.3. Penalized objective function

There are three types of constraints in this problem: the allowable stresses, the
allowable displacements, and the available cross-sectional areas.

The variety in the cross-sectional areas is accounted for by using an input list
of available sections. Because the selection is based upon this list, we can change the
number of sections, the order and thevalue of each section convenierntly.

For the displacement constraint, the'pélalty term is computed as follows:

(3.10)

3.11)

where IRI represents thg icgrce of freedom 7 and P denotes

the maximum allowab

For the constraints fipon*stres s i tine nalysis, the penalty term can be
computed similarly as for the gase of the ement constraints. However, tracing

the loading history in nonlinea

iewed a better way to determine the
penalty term for stress con :

\ Z

Let us denc ‘ first member of the truss
fails (yielding or bu@ing; max @5 theload ratio at 'which the truss reaches its
maximum deflection; A, as the load ratio at which the last member of the truss

flic u

fails, i.e. the tpugsgs aﬂ] ﬂlﬂ%)ﬂsgqﬂﬁad ratio varying from
ﬂ' to j’max- mcul
U

initial

. ) ¢ . .
conpia G YN D o] L LA i o

cross-seetional areas for the members which has a higher value of 4 means a better
solution. However, this also means that the truss is not an optimum design. The key
objective is to minimize the volume of the truss, with the lowest value of A slightly
greater than 1.0. The upper bound of A is thus set as A=5. On the other hand,
A <1.0 means the truss is overloaded. To increase the slope on this side, the penalty
function is setas 6, =5 at 1 =0.

Based upon the above discussion, 6, should be chosen such that its lowest
value is 1.0 (the optimum A ). The range 0.0 <1 <1.0 is avoided by using a parabolic
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function of @, as well as the range 1.0<A<3.0 but with a more gradual slope
(6, >3.0 as 1 >3.0).

The penalty function for stresses is computed as follow:
(4(4 -1 +1 i£0.0<4 <1.0

bl if1.0< 4, <30 (3.12)

3.0 if  3.0<A

(3.13)
Figure 3.10 graphigal

The penalized 8bje ar solution string is obtained by

multiplying the truss j ‘ Ity factors:

(3.14)
where F' is the fitneSs vaifle & ion); and ¥ is the volume of
the truss under considg#ti |

i

6.00 —
£ 6
> 1=
3 o
= 5.00 f =
H %
a

400 |

300

qm;

0.00

5 85
Load 1atio

Figure 3.10 The penalty function
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