CHAPTER 11

ANALYSIS OF PLANAR STEEL TRUSS STRUCTURES

In the current specifications of structural steel design (e.g. AISC-ASD,
LRFD, PD), a whole structure would be analyzed prior to the determination of the
member cross-sections. Because of the fact that some of the input data are not known
in advance, some parameters, such as the member cross-section, have to be assumed.
It is therefore necessary to che ok i , strength and the stability of the whole
structure after the analysis proces . This n,- . does not give an accurate indication
of the factor against fail ---“_;__ Se it do€s#A0L gonsider the interaction of strength

and stability between the ral system ¥€mbers at the same time (Figure
2.1). The individual membef sirtneth| e - t concerned with the system
compatibility. There is. @ /// A ibility between the isolated
member and the meniber a€ ne f..o' elfra s a result, there is no explicit
guarantee that all N@Mbej »J’ 'e‘,j‘ le ieir design loads under the
geometrical configuratigafinpose
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behaviors. The stresses and displacements are determined by elastic analysis, while

the strength and stability are determined separately by inelastic analysis. This is
perhaps the most serious limitation. Not until recently, there has been an increasing
awareness of the need for practical analysis/design methods that can account for the
compatibility between the member and the system. With the rapid increase in the
power of desktop computers and user-friendly software in recent years, the
development of an alternative method to the direct design of structural systems has
become more attractive and realistic (Figure 2.2).
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Figure 2.3 General analysis types for framed structures (Chan 2001).



The linear elastic analysis is the most essential and the simplest method. The
bifurcation analysis is quite simple, by assuming a sudden interception of a secondary
equilibrium path to the primary path and the solution is obtained by solving the
characteristic equation

K, +AK;|=0 .1
where K, s the linear stiffness matrix;

A is the load factor; and
K;  is the geometric stiffness matrix.
In this eigenvalue analysis, the pre-buckling deformation, initial imperfection

and material yielding are ignored. apalysis yields an upper bound solution, which
is generally not sufficiently ac '

) . 1995; Peng et al. 1998). However,
its solution is simple and éan-be easi in the vibration analysis software.
Uik E ctor (Kirby 1988).

lders only, the material yielding and the
\ eflection. This method can only be

plastic hinges, ignoring
4 .\ a . sarity, otherwise additional

used for frames

The plastic zo tospread across the section and
along the element. erous researchers including
Vogel (1985), Chan (1 essence of the method can be

stated in the incremental eq@ilibritiéy éq as follows:

£ = Au (2.2)

. where K is the etasto-plastic'stif matrix for material yielding;

AA mthem arloadtactor; m

AF and %u are the incremerggl external force and displacement
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The abeye incremental stiffness equation differs from the second-order elastic
approach in the use of the elasto-pldstic stiffness@matrix instead M@ linear stiffness

matri lﬁl‘.@ ﬁnﬂx!ﬁciﬂfﬁ%}% ] Els{a}ﬁn lement yielded
stiffnessy It Captures the incremental load-versus-deflection response considering the

second-order geometrical distortion, and traces the spread of plasticity.

The quasi-plastic zone method (Deierlein 1997) is a compromise between the
plastic zone and the elastic plastic hinge methods. In this method, the fully plastic
cross-section is calibrated to the plastic zone solution. A simplified residual stress
pattern is used and the spread of plasticity is considered by the flexibility coefficients.
This method is restricted to two-dimensional problems.

In the plastic hinge method (White and Chen 1993), yielding is concentrated at
a small zone modeled by a flexible spring (zero length plastic hinges, no spread of
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yielding through the cross-section, or along the length). When no yielding occurs, the
spring stiffness is infinitely large and, when the plastic moment capacity is reached,
the spring stiffness drops to zero. This process can be formulated as an inclusion of a
flexible spring stiffness in the incremental equilibrium equation:

(K, +K;+K,-K;., [A1AF ] = Au (2.3)

spring
where K, . is the spring stiffness representing the plastic hinges.
Note that when the spring stiffness is infinite, it has no influence on the

stiffness computation. When the spring stiffness vanishes due to material yielding, it
indicates a smaller or a diminishing stiffness at the associated degree of freedom

which, in some case, refers to a plasti pse mechanism.
It can also be noted that the line

material yielding so that J

t stiffness by itself does not consider
he second-order elastic analysis.

Yielding is considered ™ plast o-hinges which are modeled by spring
well

elements K, . Som¢ < cn 1986; King et al. 1992; Chen
and Chan 1994) ha \\5\ itacing the equilibrium path of the
structure and found the Jbe i Poc Q}‘\*‘ entwvith the plastic zone method
in most, but not all, prob en the _ k
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member, the concentrai€d plas inge-meth \! ot truly reflect the behavior of
the member. Nevert if bed - suggested \ the accuracy of the method is
sufficient for practical p \\
The refined pla thethodhés bee proposed (Liew ef al. 1993) as a

step up from the elastic-pl@stic del {oF dimensions, with the use rotational
springs to model the connect xibility. This method considers inelasticity
. . > Ea . .

indirectly by forces rather thaa sfdins. modulus E, is used to describe the

effect of the residual-Stresses -
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The practica ; od (Kim er al. 1996) has been
proposed to refine tlymodel by calibrating with the<AISC\LRFD empirical code
equations. In this me:thp%a separate mqgification of the tangent modulus E, is

imposed to _cﬁim i}ﬁﬂmﬁﬂﬁﬁiﬂm RC tangent modulus

model is used %.I al e rési sses to be idéred séparately.
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s i@tions. With the

advanﬂnamg&apanm ﬁﬁ mmzjzlﬁﬁrnger attractive

to engiriéers. However, they still play an important role in the development of the
stability theory as well as its application to practical structural analysis problems.

IL.1. Practical advanced analysis of planar steel trusses

Among the various types of non-linear analyses, the plastic hinge method
appears to have sufficient accuracy for practical purposes. The improvements
proposed by Liew et al. (1993) and Kim et al. (1996) have made the method even
more atractive for general applications. The practical refined plastic hinge method
incorporates an explicit imperfection modeling, an equivalent notional load modeling,
and a reduced tangent modulus modeling. These are the background for a more



specified range of structures, the planar trusses, which is implemented in this
research. The chosen method can predict the strength of the truss system in addition to
the strength of the individual members. Furthermore, the capacity check after the
usual analysis step can be neglected and both the material and geometrical
nonlinearities can be included in the analysis process.

I1.1.1 The virtual work equation

Let us consider a truss element as shown in Figure 2.4. The behavior of the
truss is generally nonlinear. However, the approach employed in most cases, due to its
simplicity, is the linearization of theypreblem. In particular, all the pieces of curves
can be considered as the pieceshof stiaight
Lagrangian formulation, the eurve of st nts can be considered sufficiently
small within each incremental. ste e ar analysis. By this manner, the
virtual work equation foisthe-truss an b en as (Kim et al. 2001):

(2.4)
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In the field of elasticity, the relation between the axial stress S,.and the axial
strain e, is linear; stated by the Hooke’s law S, =Ee_, where E denotes the
modulus of elasticity. Similariy, the incremental constitutive law can be expressed as:

S, =Ee_ (2.5)

where S, is the axial stress increment;

Iy —
b X=X
o—

é. is the axial strain increment; and
E, is the tangent modulus accounting for gradual yielding due to
residual stresses.
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By applying the relation in equation (2.5) to (2.4), we obtain:
IE,en5endV+Irn5qudV+ 'R="R (2.6)
¥

14

11.1.3 The derivation of displacements

Suppose the length of a truss element in Figure 2.4 is denoted as L, the
displacements of the element at a specified distance x are:

X X

u=u » +u, 7 2.7
(2.8)
where u istheshorizontal disp
’ : bl
UV, f the element;
Up,Vp : = f the element.
w7 ,
As referred to 4 1 ( h onlinear parts of the axial
strain can be determified 1 ents:
- - 2.9)
7
1(ou) - ZE AV?
ﬂ,a:E[(a r NG +— (2.10)
where Au
Av

I1.1.4 The matrix-form exiression
-9
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In the local coordinates, the transverse shear forces 'F,, and 'F,, are equal to

zero while the axial forces 'F,, and 'F, are equal in magnitude but opposite in

direction. The upper-left superscripts denote the equilibrium status at a specified step.
At the step-by-step equilibrium status, the forces vectors are:



lF;A 2FxA
, 0
e IO and  f={ (2.12)
- F;A - F;A
0 0

It is also noted that the initial axial force 'F. can be computed as the
integration of 7 over the cross-sectional area A4 :

'F, = |r,dA (2.13)
Assume that only the ) Applied on the two ends of the truss
element. The self weight i a-distri daeddeithat can be replaced by statically

equivalent nodal loads: ore, W EPresent cach part of equation (2.6) in
matrix form as follow.

(2.14)
J'rné'r]xde ’ | l o du'K u (2.15)
| N\ (2.16)
where K, and K, he dticfastic etric local stiffness matrices,
respectively: '
K @.17)
Aug” ﬂﬂ%%ﬂ N9
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' K, - 1 | (2.18)
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The governing equation for the planar truss element in its local coordinates
can be written as:

(K, +K,)ou+'f=>f (2.19)



Or equivalently,
(K, +K, )ou=">2f-'f = Af (2.20)

where the term 'f represents the initial force acting on the element at the equilibrium
status 'C, the term *f represents the total force acting on the element at the

equilibrium status *C, and the term Af on the left-hand side of the above equation
denotes the incremental force between the two configurations.

I1.2. LRFD specifications

11.2.1 Loads and load combination \

TietufCeand its elements must be determined

The required strength: [ the st n
from the appropriate critj al“eombination €EMClosed loads. The most critical effect

may occur when one orsmeresoads are notn The following load combinations
and the corresponding load*fitiorshall be in g_s;. ted(Chapter A):

1.4D

1.2D

1.2 Dg
1.2D 43}
12D+ O H

09D (2.21)
where D deflotg jfad dud (0 the weight of the structural
ele a C_pel t'€atures on the structure;
L denotes 1 dueto occupancy and movable equipment;
L i -

r

W . \is the wind load "
s 1

E 5 the
m the rainwater/ice load.

For th ml eight of the truss) and
the conventio lﬁl oad E 1on of these two kinds

of loads is propised as follows

ama\mm‘m&a@mmaﬁs -

is the static point load factor. The default value is 1. 6 and
F is the combined factored load.

There are many ways in which the loads can be applied to the structures. For
the sake of simplicity, the proportional loading is employed herein. That is, the self
weight and the static point loads are applled simultaneously. This scheme does not
account for the cases in which the truss is subjected to sequential loading (e.g., the
dead load first and the live load after), unloadmg, etc. The adopted loading scheme is,
however, justified for the practical design since the development of the LRFD
interaction equations was also based on strength curves subjected to simultaneous
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loading and the current LRFD elastic analysis uses the proportional loading rather
than the sequential loading (Kim et al. 2001).

In practice, the process can be incrementally achieved by scaling down the
combined factored loads by a number between 20 to 50. The lower bound is generally
applied to highly redundant structures. The upper bound is recommended for nearly
statically determinate structures, due to their higher tendency to sudden collapse.

11.2.2 Tension members

section (Chapter D).
For yielding in thesgi

For fracture { o A

(2.24)

A

g A
F, um yieldstress (MPa); and
F ist tenile strength (MPa).

These two values agé: of axial forces. For the sake of
simplicity, only the ¢ tension members. However,
with some technic'-’_ ditications, ¥sis method could cover both
yielding and fractu !i‘f _ -
| i
11.2.3 Compression mem‘bers

=y

o
width/t}ﬁ?&iﬁ%ﬂéa %%}(wﬁ’w%};f}ﬂpﬁsﬁon members whose

ess than A, from Section B5.1 is ¢ 2. (Chapter E):
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or 4, <1.5
F, =(0.658* )F, (2.26)
For 4, >1.5
0.877
E, =( Y JF} (2.27)

’ F
where A = L Ey is the slenderness parameter;
r

E is the modulus of elasticity;



L is the lateral unbraced length of the member; and
r is the governing radius of gyration about the axis of buckling.

The equal single angles are very popular in the design of trusses, especially
light trusses. This shape is investigated in the current study. Unfortunately, this is the
kind of non-compact section in which the yield stress is unable to spread over the
entire area of the compression member before buckling. In practice, it is often used in
such a manner that rather large eccentricities of load applications are present. Three
types of buckling are possible for this section: flexural buckling, local buckling of thin
angle legs, and flexural torsional buckling. However, only the flexural buckling is

considered in the current study. Ad ore cases of buckling means adding more
& ificantly affect the mainstream of the

constraints to the problem, whi )-
7Z.

approach.

I1.3. The tangent mod

11.3.1 LRFD tangent HM /

The column e ted based on the inelastic

stiffness reduction pro wén=ime the\, ['R manual for the calculation of
inelastic column streagth. { the tangent modulus E, to the elastic modulus

E_ 1 (2.28)
E P, >0.39P,
where P, = 4, F, dild Bi=AF, are the g:),, e yield load, respectively.

i 1"‘

Since this Eo d (Ecolumn strength formula, it
implicitly includes the‘effects of residual stresses and“initial out-of-straightness in
modeling the member effegtive stiffness.

wsracoGUBANYNITNYING
WSk a0 b bk thamts

1.0 forP,<0.5P,

t

E a1 frpsose
Pl P y

¥

(2.29)

The CRC tangent modulus concept is used to account for gradual yielding
(due to residual stresses) along the length of axially loaded members between plastic
hinges. The main difference between equations (2.28) and (2.29) is that the latter
consider only the residual stress effects in modeling the column effective stiffness,
whereas the former is based on LRFD column strength equations that account for the
effects of both geometrical imperfections and residual stresses (Chen 1995).
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11.3.3 Reduced CRC tangent modulus

To describe geometrical imperfections, three models have been proposed in
the literature: explicit imperfection modeling, equivalent notional load procedure, and
the reduced tangent stiffness method (Chen and Kim 1997). Since the first two
approaches require explicit input of the imperfection, the concept of ‘reduced tangent
modulus’ is proposed as a practical tool. Based on the CRC tangent modulus, a
reduction of the tangent modulus E, is done to account for the degradation of

stiffness due to geoimetrical imperfection (Kim 1996):

E

L

(2.30)

where & is the reduction fagi ctyused as

_ 0.8 .
Figure 2.5 iilustfatcgithe s %\?Q:\T Odulus from the three models.

N :
The current study en '\" nodulus to present the nonlinear
behavior of the material
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Figure 2.5 The tangent modulus in various models.



18

I1.4. The algorithm
I1.4.1 Input parameters
The problem consists of 21 parameters as described below
* The geometry data block includes the number of nodes, the nodal coordinates

vector, the number of nodes per element, the number of elements, the nodal
connectivity vector, the total system degrees of freedom, the number of

degrees of freedom per ele the element’s length vector.
e The boundary conditi ,I the vector of constrained degrees

of freedom, and t i s by default). This scheme allows

e The material d Al Symodulus, the minimum yield
stress, and the spegific \\

e The load block At N Xternal point loads, the default
value for the g €19 ea 102 &

\ \ It value for the live loads.

¢ The constrainé ds (\ore parameter: the maximum
allowable displagé ' \ ic analysis, the constraint of
maximum allowablg sedHowever, in the nonlinear elastic-plastic
analysis, the load rafios’ f"“?‘ at €ach step are considered instead.

¢ The section data blecK inchides th ailable cross-sectional areas, the
number of jistarticles, and the corre: sponding-soverning radii of gyration. The
last parametefi vatiable, for ease of use when

calculating the m

11.4.2 Outputs

AU ANINTNEINT

e The loddl coefficients for yi Iding/buckling of the first e&jnent and prior to

T TETa Y

i kli
o % dal
. ¢ history of load — deflection including the stresses after each step of load
increment, the displacements after each step of load increment and the load
coefficients after each successful step.

11.4.3 Termination criteria

There are two options to terminate the process. First, the analysis is terminated
when the maximum displacement exceeds the limit. A default value is —— in which
L is the span of the truss. The displacement limit can be adjusted manually if required.
This option is suitable for the optimization process whereas the analysis is repeated



many times. The second termination criterion is when the last member of the truss
yields or buckles. At this stage, the truss is deemed to collapse and the entire behavior
of the truss can be captured, which is one of the advantages of this approach
compared with the linear elastic analysis.

11.4.4 The main flowchart
The global database, which consists of 21 parameters (see I1.5.1), is registered

and then input from a specified data file. The advantage here is that many problems
can be stored in separate files that do,not impact each other or the main program.

The list of available ¢r
data file. The list can be a

design purposes. /

All input data arg
complexity of the progra
the data must be orgapi#ed

at any sub-level of the cod€. S
The point loads odlin'the data file are not the design loads. The
*“ ombines different sources of loads

(]
program calculates thgfweip of 'te gt 4 cor
proportionally by refering’ tofthie ‘d&ad 1o: \ helive load coefficients. The total

is set as an independent part in the
to another to best fit the various

TE—
iniquiesstyle for ease of use. Due to the

anstormed tr q 1
,//l v/Si :\‘\Q&& ™ part of the optimization process,

e utilized by any sub-routine

load is divided into a veéfy shall amoantitdbe pplied upon the truss at each step of
the analysis. By default, tk totak foad is: ed'into 25 increments which the load
ratio increment of 0.04. This Vaiue € parameters which must be initially
specified.

[ofjthe truss is changed. Some
checking must be p 15545 still able to sustain another
increasing amount of Joad. In alls the ghecking criteria, the program
will redo the analysis by decreasing the load ratio increment by half the value in the

previous step. The tabl€ Below,_s i ibilities.of the truss passing or
failing the ch. ilg ria, % ﬁw ﬁ ijp

Tablg.l The possibilities of the truss passing or failirﬁme check

After each §té

Y WIANN I WFITTIVNE 1R E
Analysi Case 1 Case 2 Case 3
step Ah Check | Redo AL Check | Redo A Check | Redo
1 0.04 OK 0 0.04 OK 0 0.04 OK 0
k 0.04 Failed 0 0.04 Failed 0 0.04 Failed 0
k+1 0.02 Failed 1 0.02 OK 1 0.02 OK 1
k+2 0.01 Failed 2 0.02 Failed 1 0.02 Failed 1
k+3 0.005 Failed 3 0.01 Failed 2 0.01 OK 2
k+4 0.0025 0.005 Failed 3 0.01 Failed 2
k+5 0.0025 0.005 Failed 3
k+6 0.0025
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BEGIN 1. Declare the global database lr‘b{ 2. Input the truss problem —I

3. Assign a set of cross-sectional
‘— areas to all members of the truss

A 4
4. Convert input data from database 5. Get the appropriate yield and buckle limits ]

I
’——’ 6. Set environment and initial parameters —l

A 4
F 7. Combine the dead load and live loads H 8. Trial run of analysis 1

L 9. Get the tangent modulus vectcor"<J

Far AN \‘:“
j : 11 L1 \’h

| /RN

F

loadinc = loadinc / 2 ]

‘ 17. Accept the results loadratio = loadratio + Ioadinc]——
-4

F o 1
= 18. d , S d hi*orc@
i
Ra §I1J NYIQY
q f]’lgurﬂ rl‘he: nonlinear structural analysis flowchart

In case 1 of Table 2.1, the truss fails the checking criteria three consecutive
times from step (k+1) to step (k+3) and the load ratio increment at step (k+4) is iof
the initial value. At this step, if the truss passes the checking criteria, one more
analysis step would be tried and the final load ratio is 1+-=. On the other hand, if
the truss fails the checking criteria at step (k+4), the maxll?num redo number of 4
would be reached and the process would be terminated with the load ratio of A.
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In case 2, the truss passes the checking criteria at step (k+1). At step (k+2) the
truss is analyzed using a load ratio increment of 0.02. However, since the truss fails
the checking criteria, the analysis is repeated at step (k+3), this time with a smaller
load ratjo increment of 0.01. For this case, whether the final load ratio is 1+>=+-2=
or A+— would depend upon the result in the last step. > 16

“ase 3 illustrates the scenario in which the truss passes the checking criteria at
step (k+3) and thus the load ratio would be A+=+Z+ 2 or 2+24+2 depending
upon the result in the last step. Further, if the t2russ in 1c6ase 3 pas%es ‘t1he checking
criteria at stepl(k+5), %epeildm

—+—+— or A1+—+—%—=dépkulli upon the result in the last step.
4 8 16 2| ‘ZZ;
In summary, the 164d ratio i mwed in half every time the truss

fails the checking critegi e maxiniuim of re-analysis steps of 3. The

program is able to obtaim#fhe v'/ : T\i,;\ﬁ'%\?k' accuracy. In order to obtain a

.~\ '.\ ally decrease the load ratio

pon the final load ratio can either be

Each truss elf€mest i aradterige tifiness matrices, the inelastic
stiffness K, and the g | ; . atrices must be combined prior
to the global stiffness ma Q@ after w ich the boundary condition is applied.
Subsequently, the gove equations is Solved to find the displacement
increments. The geometrig pape_of. th § 1S'then updated and the axial stress

For the curfclit pfogram tion Dcheckin: Bisfused to validate the updated
displacement and sf eSS Tesults. Deheck [ fhember whether the limit is
reached and records the beffails if necessary. Dchecking

: 1 : : !ﬂ S : .
also scans all the me J ers to check whethier the failuréleriteria are reached in which

case the truss would col!?pse.

=3 L
w5 e wfpipofisidnadsy ) I WE V1T
For the‘?:urrent study, the €angent modutus is derived fding the following

Pr°°"ﬂ°W’1Mﬂ‘iflJlllfWﬂﬂEﬂﬁ

1 Y. | —
or 4 =L[;\/;]—L(/10) (231)

It is noted that 4, depends on the geometrical and material parameters, this
value is considered unchanged during the analysis.
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Step 2: Based upon whether the value of the slenderness ratio is less than or

equal to 1.5 or greater, the ratio of the critical load in equations (2.26) and (2.27) to
the yield load in equation (2.23) is computed as

2
P AF, F 0.658 for 2, <1.5
P AR F 00877 (2.32)
A, B PE for >1.5

€

Step 3: The %— ratio is used to compute % as follows

\

%:4 e = (2.33)

For tension odel is employed instead.

(2.34)

where o, is the axial strg8s of the fer er consideration (o, >0);and

¢,F, is the maximum allowgble

i §ae

In order to identif
compression, to ap DlyAa
analysis is a trial 07k

member is in tension and
nimoduius, the first run of the
i€ proper value of E, can be

applied in the subseq i t 3
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