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CHAPTER I

INTRODUCTION

In 1971,W. G. Lister have investigated ternary rings and their structures. In fact,

W. G. Lister charaterized those additive subgroups of rings which are closed un-

der the triple product. T. K. Dutta and S. Kar introduced the notion of a ternary

semiring as a generalization of a ternary ring in 2003. In [2], T. K. Dutta and

S. Kar introduced the notions of left/right/lateral ideals of ternary semirings

and also characterized regular ternary semirings. In 2005, S. Kar introduced the

notion of quasi-ideals and bi-ideals in the ternary semiring. The ideal theory in

the ternary semiring Z−0 has been introduced and studied by S. Kar in [1]. In

2011, S. Kar studied the ideal theory in the ternary semiring Z−0 of non-positive

integers and obtained some results regarding the ideals of the ternary semiring

Z−0 . In his research, he studied the Tn-ideal in the ternary semirings Z−0 where

Tn = {t ∈ Z−0 | t ≤ n} ∪ {0} for n ∈ Z−0 and he had the following results

concerning Tn.

Theorem 1.1. ([1] S. Kar, 2011) Tn is an ideal in Z−0 such that

(i) T0 = T−1 = Z−0 ,

(ii) For n ≤ −1,m ≤ n if and only if Tm ⊆ Tn,

(iii) Tm ∪ Tn = Tp, where p = max{m,n},

(iv) Tm ∩ Tn = Tq, where q = min{m,n},

(v)
⋂
{Ti : i ∈ Z−0 } = {0}.

Theorem 1.2. ([1] S. Kar, 2011) Z−0 satisfies the ascending chain condition on Tn−

ideal.
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Let I be an ideal of a ternary semiring S. A subset B of I is called a basis for

I if every element of I can be written in the form
∑n

i=1 risibi, where ri, si ∈ S

and bi ∈ B. If the set B is finite, then B is called a finite basis for I .

S. Kar denoted the set S(a, b) = {t ∈ Z−0 | a ≤ t ≤ b} for a, b ∈ Z−0 and

a ≤ b. He derived a theorem and some lemmas which were essential for the

characterization of all ideals in the ternary semiring Z−0 . From those lemmas

he had some methods by which he can determine if an ideal in Z−0 contains a

Tn−ideal.

Theorem 1.3. ([1] S. Kar, 2011) If n < −1, then S(2n, n) is a finite basis for Tn.

Let I be an ideal in the ternary semiring Z−0 . If a ∈ I,m ∈ Z−0 , where m 6= 0,

and S(−(m − 1)a,−ma) ⊆ I, then there exists an n ∈ Z−0 such that Tn ⊆ I . If

there exists a ∈ I such that a+ (−1) ∈ I, then there exists an n such that Tn ⊆ I .

If a, b ∈ I and a, b are relatively prime, then there exists an n such that Tn ⊆ I .

Our main purpose of this thesis is to study the ideal theory in the ternary

semiring Z+
0 of non-negative integers and the ternary semiring Z−0 × Z−0 of or-

dered pairs of non-positive integers. We are going to give some ideals as exam-

ples and to prove some analogous results on such ideals. In Chapter 2, we give

some basic definitions and examples. In Chapter 3, we study the ideal theory in

the ternary semiring Z+
0 . In Chapter 4, we study the ideal theory in the ternary

semiring Z−0 × Z−0 . Moreover, we show that the ternary semirings Z+
0 and Z−0

are isomorphic as well as the ternary semirings Z+
0 × Z+

0 and Z−0 × Z−0 . We also

compare the ternary semiring Z to the ring Z.



CHAPTER II

PRELIMINARIES

In this chapter, we present a number of elementary concepts, notations and def-

initions on semigroups, semirings and ternary semirings which will be used for

this thesis.

Let R denote the set of real numbers, Q denote the set of rational numbers,

N denote the set of natural numbers (positive integers), Z denote the set of all

integers, Z+ denote the set of all positive integers, Z− denote the set of all nega-

tive integers, Z+
0 = Z+ ∪ {0} and Z−0 = Z− ∪ {0}.

Definition 2.1. ([16] M. Petrich, 1973) A semigroup is a system (S, ·) consisting of

a nonempty set S together with an associative binary operation

(a · b) · c = a · (b · c) for all a, b, c ∈ S.

In this thesis, we denote a · b by ab .

Definition 2.2. ([16] M. Petrich, 1973) Let S be a semigroup. An element e ∈ S

is a left (right) identity of S if ex = x (xe = x) for all x ∈ S. e ∈ S is an identity of

S if ex = x = xe for all x ∈ S.

Definition 2.3. ([16] M. Petrich, 1973) An element z of a semigroup S is called

a left (right) zero of S if zx = z (xz = z) for all x ∈ S, and z is a zero of S if

zx = z = xz for all x ∈ S.

If a semigroup S has an identity, then we denote it by 1. If a semigroup S

has a zero, then we denote it by 0.

Definition 2.4. ([16] M. Petrich, 1973) A semigroup S is called a commutative

semigroup if ab = ba for all a, b ∈ S.
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Definition 2.5. ([16] M. Petrich, 1973) A nonempty subset T of a semigroup S is

a subsemigroup of S if T is itself a semigroup with respect to the operation of S.

( Notice that a subset T of a semigroup S is a subsemigroup of S if and only if

T 6= ∅ and ab ∈ T for all a, b ∈ T . )

Example. (N ∪ {0}, ·) is a commutative semigroup with identity 1 and zero 0.

(N ∪ {0},+) is a commutative semigroup with identity 0 but has no zero.

Example. ([16] M. Petrich, 1973) Define operations ∗ and · on the closed interval [0, 1]

by x ∗ y = min{x, y} and x · y = max{x, y} for all x, y ∈ [0, 1]. Then ([0, 1], ∗) is

a commutative semigroup with identity 1 and zero 0, and ([0, 1], ·) is a commutative

semigroup with identity 0 and zero 1.

Example. Let Mn(R) be the set of all real n × n matrices where n ∈ N. Then Mn(R)

is a semigroup under usual matrix multiplication. If n > 1, then Mn(R) is a noncom-

mutative semigroup with identity In and zero 0.

Definition 2.6. ([14] J. S. Golan, 1999) (S,+, ·) is a semiring if the following con-

ditions are satisfied:

(i) (S,+) is a commutative semigroup,

(ii) (S, ·) is a semigroup,

(iii) ∀a, b, c ∈ S, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c .

A proper semiring is a semiring which is not a ring.

Let (S,+, ·) be a semiring.

(i) If (S, ·) has an identity e, we call e the identity of the semiring S.

(ii) If (S,+) has an identity, we call this element the zero of the semiring S.

(iii) If the semiring S has a zero and x+ y = 0, we denote y by −x and call it the

opposite element of x.

Note. If S is a semiring and a ∈ S we defines an element na ∈ S, n ∈ N by

na = a1 + a2 + a3 + · · ·+ an where a1 = a2 = a3 = · · · = an = a.

Then for all a, b ∈ S and m,n ∈ N,

(i) na+ma = (n+m)a,
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(ii) m(na) = (mn)a,

(iii) m(a+ b) = ma+mb.

If S has a zero and a, b have opposite elements, then

(i) −(a+ b) = (−a) + (−b),

(ii) −(−a) = a,

(iii) −(na) = n(−a), for all n ∈ N.

Example. 1. Each ring is a semiring.

2. (N,+, ·) and (N0,+, ·) are proper semirings.

3. If mN = {mn | n ∈ N},m ∈ N, then (mN,+, ·) is a proper semiring.

4. For c ∈ N, ({c, c+ 1, c+ 2, · · · },+, ·) is a proper semiring.

5. (Q+,+, ·), (Q+
0 ,+, ·), (R+,+, ·), (R+

0 ,+, ·) are proper semirings.

Definition 2.7. Let S be a semiring and A,B nonempty subsets of S. We define

the following subsets of S:

A+B = {a+ b | a ∈ A, b ∈ B},

A ·B = {a · b | a ∈ A, b ∈ B}.

Note. If A = {a}, one simply writes a+B and aB instead of {a}+B and {a} ·B,

respectively.

Example. Let (S, ·) be a semigroup and P (S) the power set of S. For all A,B ∈

P (S) r {∅}, A · B = {a · b | a ∈ A, b ∈ B} 6= ∅. Then (P (S) r {∅},∪, ·) is a

semiring.

Definition 2.8. ([1] S. Kar, 2011) A non-empty set S together with a binary

operation, called addition, and a ternary multiplication, denoted by juxtaposition,

is said to be a ternary semiring if S is an additive commutative semigroup satis-

fying the following conditions: for all a, b, c, d, e ∈ S

(i) (abc)de = a(bcd)e = ab(cde),

(ii) (a+ b)cd = acd+ bcd,

(iii) a(b+ c)d = abd+ acd,

(iv) ab(c+ d) = abc+ abd.
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We see that any semiring can be reduced to a ternary semiring. However,

a ternary semiring does not nessesarily reduce to a semiring by this example.

We consider Z−0 under usual addition and multiplication, we see that Z−0 is an

additive semigroup which is closed under the triple multiplication but is not

closed under the binary multiplication. Moreover, Z−0 is a ternary semiring but

is not a semiring under usual addition and multiplication.

Definition 2.9. Let S be a ternary semiring. If there exists an element e ∈ S such

that

eea = aee = eae = a

for all a ∈ S, then e is called an identity of the ternary semiring S.

Example. With the usual binary addition and ternary multiplication, 1 is the identity

of the ternary semiring Z+
0 and −1 is the identity of the ternary semiring Z−0 .

Definition 2.10. ([1] S. Kar, 2011) Let S be a ternary semiring. If there exists an

element 0 ∈ S such that

0 + x = x and 0xy = x0y = xy0 = 0 for all x, y ∈ S

then 0 is called the zero element or simply the zero of the ternary semiring S. In

this case we say that S is a ternary semiring with zero.

Example. With the usual binary addition and ternary multiplication, Z+
0 and Z−0 form

the ternary semirings with zero.

Definition 2.11. ([1] S. Kar, 2011) An additive subsemigroup T of a ternary

semiring S is called a ternary subsemiring of S if t1t2t3 ∈ T for all t1, t2, t3 ∈ T.

Definition 2.12. ([1] S. Kar, 2011) An additive subsemigroup I of a ternary

semiring S is called :

A left ideal of S if s1s2i ∈ I for all s1, s2 ∈ S and i ∈ I .

A right ideal of S if is1s2 ∈ I for all s1, s2 ∈ S and i ∈ I .
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A lateral ideal of S if s1is2 ∈ I for all s1, s2 ∈ S and i ∈ I .

If I is a left, a right and a lateral ideal of S, then I is called an ideal of S.

Note. ( [11] R. Chinram, 2010 ) It is obvious that every ideal of a ternary semiring

with zero contains a zero element.

Definition 2.13. ([1] S. Kar, 2011) An ideal I of a ternary semiring S is called a

k-ideal if

x+ y ∈ I;x ∈ S, y ∈ I imply that x ∈ I.

Note. Since an ideal I of a ternary semiring S is an additive commutative

semigroup, we get that y + x ∈ I;x ∈ S, y ∈ I imply that x ∈ I .

Example. ([11] R. Chinram, 2010) Consider the ternary semiring Z−0 under usual

binary addition and ternary multiplication, let I = {0,−3} ∪ {−5,−6,−7, · · · } . It is

easy to prove that I is an ideal of Z−0 but not a k-ideal of Z−0 because (−2) + (−3) =

(−5) ∈ I but −2 /∈ I .

Example. ([11] R. Chinram, 2010) Consider the ternary semiring Z−0 under usual

binary addition and ternary multiplication, let I = {−3k | k ∈ N ∪ {0}}. It is easy to

show that I is a k-deal of Z−0 .

Definition 2.14. ([1] S. Kar, 2011) Let I be an ideal of a ternary semiring S. A

subset B of I is called a basis for I if every element of I can be written in the

form
∑n

i=1 risibi, where ri, si ∈ S, bi ∈ B and n ∈ N.

If the set B is finite, then B is called a finite basis for I .

Definition 2.15. ([11] R. Chinram, 2010) Let S, T be ternary semirings. A map

ϕ : S → T is a homomorphism if

ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(abc) = ϕ(a)ϕ(b)ϕ(c)

for all a, b, c ∈ S.

A monomorphism is a homomorphism which is one-to-one.

An epimorphism is a homomorphism which is onto.
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An isomorphism is a homomorphism which is one-to-one and onto.

We said that a ternary semiring S and a ternary semiring T are isomorphic,

if there exists an isomorphism φ : S → T or there exists an isomorphism

ψ : T → S. In this case, we will use the notation S ∼= T .

Note. ([11] R. Chinram, 2010) Let ϕ : S → R be an epimorphism of ternary

semiring. If I is an ideal of S, then ϕ(I) is an ideal of R. If S and R be ternary

semirings with zero 0, then ϕ(0) = 0.

Definition 2.16. Given two partially ordered sets A and B, the lexicographical

order on the Cartesian product A×B is defined as

(a, b) ≤ (c, d) if and only if a < c or (a = c and b ≤ d),

(a, b) < (c, d) if and only if a < c or (a = c and b < d).

In this thesis, we define the additive and the ternary multiplicative operator on

the Cartesian product A×B as

follows

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d)(e, f) = (ace, bdf).

Example. With the binary addition and ternary multiplication, (1, 1) is the identity

of the ternary semiring Z+
0 × Z+

0 and (−1,−1) is the identity of the ternary semiring

Z−0 × Z−0 .

Example. With the binary addition and ternary multiplication, Z+
0 ×Z+

0 and Z−0 ×Z−0
form the ternary semirings with zero.

Definition 2.17. A partially ordered set P is said to satisfy the ascending chain

condition (ACC) if every ascending chain of elements eventually terminates. Equivalently,

given any sequence of elements of P

a1 ≤ a2 ≤ a3 ≤ · · ·
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there exists a positive integer n such that

an = an+1 = an+2 = · · ·

Similarly, P is said to satisfy the descending chain condition (DCC) if ev-

ery descending chain of elements eventually terminates, or equivalently if any

descending sequence

· · · ≥ a3 ≥ a2 ≥ a1

of elements of P eventually stabilizes.



CHAPTER III

IDEAL THEORY IN THE TERNARY SEMIRING Z+
0

In this chapter we study the ideal theory in the ternary semiring of non-negative

integers Z+
0 and classify them.

Let n ∈ Z+
0 and Tn = {t ∈ Z+

0 | t ≥ n} ∪ {0}. Then we have the following

results concerning Tn.

Theorem 3.1. Let n ∈ Z+
0 . Then Tn is an ideal in the ternary semiring Z+

0 such that

(i) T0 = T1 = Z+
0 ,

(ii) For n ≥ 1, n ≤ m if and only if Tm ⊆ Tn,

(iii) Tm ∪ Tn = Tp, where p = min{m,n},

(iv) Tm ∩ Tn = Tq, where q = max{m,n},

(v)
⋂
{Tn | n ∈ Z+

0 } = {0}.

Proof. First, we want to prove that Tn is an ideal of the ternary semiring Z+
0 . Let

a, b ∈ Tn. We divide the proof of an additive subsemigroup into four cases.

Case 1: If a = 0 and b = 0, then a+ b = 0 + 0 = 0 ∈ Tn.

Case 2: If a = 0 and b ≥ n, then a+ b ≥ 0 + n = n ∈ Tn.

Case 3: If a ≥ n and b = 0, then it is similar to the Case 2.

Case 4: If a ≥ n and b ≥ n, then a+ b ≥ 2n ≥ n ∈ Tn.

From any cases, we have that Tn is an additive subsemigroup of Z+
0 .

Next, we let x ∈ Tn and r, s ∈ Z+
0 where r 6= 0 and s 6= 0 (In case of r = 0 or

s = 0, we have that rsx = 0 ∈ Tn). If x = 0 then rsx = rs(0) = 0 ∈ Tn. If x ≥ n

then rsx ≥ rsn ≥ n ∈ Tn. Similarly, we have that rxs, xrs ∈ Tn. Consequently,

Tn is an ideal of Z+
0 .
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(i) By the definition of Tn, we have that

T0 = {t ∈ Z+
0 | t ≥ 0} ∪ {0} = Z+

0 ∪ {0} = Z+
0 ,

T1 = {t ∈ Z+
0 | t ≥ 1} ∪ {0} = Z+ ∪ {0} = Z+

0 .

Thus T0 = T1 = Z+
0 .

(ii) Let m,n ∈ Z+
0 be such that 1 ≤ n ≤ m. We know that

Tn = {0, n, n+ 1, n+ 2, n+ 3, · · · } and Tm = {0,m,m+ 1,m+ 2,m+ 3, · · · }.

Since n ≤ m, Tm ⊆ Tn. Conversely, suppose Tm ⊆ Tn, it is easy to see that

n ≤ m.

(iii) Let m,n, p ∈ Z+
0 such that p = min{m,n}. If m = n, then Tm ∪ Tn = Tp.

If m > n, from (ii) we get that Tm ⊆ Tn. Since p = min{m,n} = n, Tm ∪ Tn =

Tn = Tp. In case of n > m we can prove in the same way.

(iv) Let m,n, q ∈ Z+
0 such that q = max{m,n}. If m = n, then Tm ∩Tn = Tq. If

m > n, from (ii) we obtain Tm ⊆ Tn. Since q = max{m,n} = m, Tm ∩ Tn = Tm =

Tq. In case of n > m we can prove in the same way.

(v) By definition of Tn, we have that {0} ⊆
⋂
{Ti | i ∈ Z+

0 }. Next, suppose

that there exists x ∈
⋂
{Ti | i ∈ Z+

0 } be such that x 6= 0. By definition of Tn, it is

clear that x ∈ Tx. Since x ∈
⋂
{Ti | i ∈ Z+

0 }, x + 1 ∈ Z+
0 . We know that Tx+1 =

{t ∈ Z+
0 | t ≥ x + 1} ∪ {0}. Since x < x + 1, x /∈ Tx+1. It is a contradiction with

x ∈
⋂
{Ti | i ∈ Z+

0 }. Consequently, we obtain that
⋂
{Ti | i ∈ Z+

0 } = {0}.

For n ∈ Z+
0 , the notation Tn−ideal will be used to denote the ideal Tn.

Remark. Let n ∈ Z+
0 . If n 6= 0, 1, then Tn is not a k-ideal of the ternary semiring Z+

0 .

Theorem 3.2. Let n ∈ Z+
0 . Then Z+

0 satisfies the ascending chain condition on Tn-

ideals.

Proof. Let {Tni
| ni ∈ Z+

0 and i ∈ N} be an ascending chain of Tn−ideals in Z+
0 .

Then it is finite since by the Theorem 3.1 (ii), the decreasing sequence {ni} of
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positive integers is finite. Thus there exists j ∈ N such that Tni
= Tnj

for each

i ≥ j and hence Z+
0 satisfies the ascending chain condition on Tn−ideals.

For a, b ∈ Z+
0 and a ≤ b, the notation S(a, b) will be used to denote the set

{t ∈ Z+
0 | a ≤ t ≤ b}.

Note For a, b ∈ Z+
0 and a ≤ b, we have that S(a, b) ⊆ Ta.

Theorem 3.3. Let n ∈ Z+
0 . If n > 1, then S(n, 2n) is a finite basis for Tn.

Proof. Let x ∈ Tn. In case of x ∈ S(n, 2n) or x = cdn for some c, d ∈ Z+
0 , it is

easy to prove that the mentioned case is a basis for Tn. Suppose that x > 2n and

x 6= cdn for any c, d ∈ Z+
0 . Let k =max{ l ∈ Z+

0 | ln < x}. Then we have that

kn < x < (k + 1)n. However, this guarantees the existence of a positive integer

m < n such that kn+m = x and it follow that n+m ∈ S(n, 2n). Hence we have

that x = kn + m = (k − 1 + 1)n + m = ((k − 1) + 1)n + m = (k − 1)n + n + m

where n ∈ S(n, 2n) and n + m ∈ S(n, 2n). Therefore S(n, 2n) is a basis for Tn.

Since the set S(n, 2n) is finite, S(n, 2n) is a finite basis for Tn.

Now we study some lemmas and propositions which will be essential for

characterization of all ideals in the ternary semiring Z+
0 . From these lemmas

and proposition we have some methods by which we can determine if an ideal

of Z+
0 contains a Tn−ideal.

Lemma 3.4. Let I be an ideal of the ternary semiring Z+
0 . If a ∈ I,m ∈ Z+

0 , where

a 6= 0 and S(ma, (m+ 1)a) ⊆ I, then there exists an n ∈ Z+
0 such that Tn ⊆ I .

Proof. If a = 1, then 1 ∈ I . Hence I = Z+
0 . Therefore Tn ⊆ I for all n ∈ Z+

0 .

If a > 1, we claim that T(m+1)a ⊆ I . Let x ∈ T(m+1)a. If x = cda for some

c, d ∈ Z+
0 , then clearly x ∈ I . Next, suppose that x > (m + 1)a and x 6= cda for

c, d ∈ Z+
0 . Let k =max{ l ∈ Z+

0 | ln < x}. Then we have that ka < x < (k + 1)a.

Thus there exists a positive integer b < a such that ka + b = x We have that

ma + b ∈ S(ma, (m + 1)a) ⊆ I. Hence x = ka + b = ka − ma + ma + b =

(ka−ma) + (ma+ b) = (k−m)a+ (ma+ b) ∈ I . Consequently, T(m+1)a ⊆ I and

therefore the proof of the lemma follows.
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Proposition 3.5. Let I be an ideal of the ternary semiring Z+
0 . If there exists a ∈ I

such that a+ 1 ∈ I, then there exists an n ∈ Z+
0 such that Tn ⊆ I .

Proof. If I is a Tn-ideal, then the lemma is obvious. Suppose that I is not a Tn-

ideal and x is the smallest element in I such that x+ 1 ∈ I . Since I is an ideal, a

series of simple calculations shows that the following elements belong to I :

(i) x+ 1, x

(ii) 2x+ 2, 2x+ 1, 2x ;by (1)

(iii) 3x+ 3, 3x+ 2, 3x+ 1, 3x ;by (1), (2)
...

(x) (x)x+ x, · · · , (x)x+ 3, (x)x+ 2, (x)x+ 1, (x)x. ;by (i), (ii), (iii), · · · , (x-1)

The last row of elements is S((x)x, (x + 1)x) ⊆ I. Thus there exists an n ∈ Z+
0

such that Tn ⊆ I, by using Lemma 3.4.

Lemma 3.6. Let a, b ∈ Z+
0 where a, b 6= 0. If d is the greatest common divisor of a and

b, then there exist s, t ∈ Z+
0 such that sa = tb+ d or tb = sa+ d.

Proof. From elementary number theory, it is well known that d = s′a + t′b for

some integers s′ and t′. Since 1 ≤ d ≤ a and 1 ≤ d ≤ b, it follows that (s′ ≥

0 and t′ ≤ 0) or (s′ ≤ 0 and t′ ≥ 0). If s′ ≥ 0 and t′ ≤ 0, then

d = s′a+ t′b

s′a = −t′b+ d

sa = tb+ d

where s = s′ ≥ 0 and t = −t′ ≥ 0. On the other hand, if s′ ≤ 0 and t′ ≥ 0 then

d = s′a+ t′b

t′b = −s′a+ d

tb = sa+ d

where t = t′ ≥ 0 and s = −s′ ≥ 0. Hence the proof of the lemma follows.
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Proposition 3.7. Let I be an ideal of the ternary semiring Z+
0 , a ∈ I and b ∈ I . If a

and b are relatively prime, then there exists an n ∈ Z+
0 such that Tn ⊆ I .

Proof. Since a and b are relatively prime, 1 is the greatest common divisor of a

and b. From Lemma 3.6 guarantees the existence of s ∈ Z+
0 and t ∈ Z+

0 such that

sa = tb + 1 or tb = sa + 1. Since I is an ideal, it is clearly that sa ∈ I and tb ∈ I .

Consequently, sa + 1 ∈ I or tb + 1 ∈ I and the lemma follows from Lemma

3.5.



CHAPTER IV

IDEAL THEORY IN THE TERNARY SEMIRING Z−0 × Z−0

In this chapter, we study the ideal theory in the ternary semiring of ordered

pairs of non-positive integers Z−0 × Z−0 . We study about the ideal T(m,n) =

{(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) ≤ (m, 0)} ∪ {(0, t) | t ∈ Z−0 } and the ideal T ∗(m,n) =

{(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) = ((−1)k1m, (−1)k2n), k1, k2 ∈ Z−0 } and classify

them. Moreover, we show that the ternary semirings Z+
0 and Z−0 are isomorphic

as well as the ternary semirings Z+
0 ×Z+

0 and Z−0 ×Z−0 . We will also compare the

ternary semiring Z to the ring Z.

Given two partially ordered set A and B, the lexicographical order on the

Cartesian product A×B is defined as

(a, b) ≤ (c, d) if and only if a < c or (a = c and b ≤ d),

(a, b) < (c, d) if and only if a < c or (a = c and b < d).

In this research, we define the additive and the ternary multiplicative operator

as follow:

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d)(e, f) = (ace, bdf).

Proposition 4.1. Let (a, b), (c, d), (a′, b′), (c′, d′) ∈ Z−0 × Z−0 . If (a, b) ≤ (c, d) and

(a′, b′) ≤ (c′, d′), then (a, b) + (a′, b′) ≤ (c, d) + (c′, d′).

Proof. Suppose that (a, b) ≤ (c, d) and (a′, b′) ≤ (c′, d′). Since (a, b) ≤ (c, d), a < c

or (a = c and b ≤ d). Since (a′, b′) ≤ (c′, d′), a′ < c′ or (a′ = c′ and b′ ≤ d′).

We want to show that (a, b) + (a′, b′) ≤ (c, d) + (c′, d′). Since we known that
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(a, b) + (a′, b′) = (a+ a′, b+ b′) and (c, d) + (c′, d′) = (c+ c′, d+ d′), we can show

(a+a′, b+b′) ≤ (c+c′, d+d′) instead of (a, b)+(a′, b′) ≤ (c, d)+(c′, d′). We divide

its proof into four cases.

Case 1: If a < c and a′ < c′, then a+a′ < c+c′. Thus (a+a′, b+b′) ≤ (c+c′, d+d′).

Case 2: If a < c and (a′ = c′ and b′ ≤ d′), then a+a′ < c+c′. Thus (a+a′, b+b′) ≤

(c+ c′, d+ d′).

Case 3: If (a = c and b ≤ d) and a′ < c′, then it is similar to the Case 2.

Case 4: If (a = c and b ≤ d) and (a′ = c′ and b′ ≤ d′), then a + a′ = c + c′ and

b+ b′ ≤ d+ d′. Thus (a+ a′, b+ b′) ≤ (c+ c′, d+ d′).

From any cases, we can conclude that (a, b) + (a′, b′) ≤ (c, d) + (c′, d′), as desired.

In this chapter, we first study the ideal theory in the ternary semiring Z−0 ×

Z−0 . Let (m,n) ∈ Z−0 × Z−0 and T(m,n) = {(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) ≤ (m, 0)} ∪

{(0, t) | t ∈ Z−0 }. Then we have the following results concerning T(m,n).

Note. For (a, b), (c, d) ∈ Z−0 × Z−0 , if a = c then T(a,b) = T(c,d).

Theorem 4.2. Let (m,n) ∈ Z−0 × Z−0 . Then T(m,n) is an ideal in the ternary semiring

Z−0 × Z−0 such that

(i) T(0,m) = T(−1,n) = Z−0 × Z−0 for all m,n ∈ Z−0 ,

(ii) If (a, b) ≤ (m,n), then T(a,b) ⊆ T(m,n),

(iii) If (p, q) =max{(a, b), (m,n)}, then T(a,b) ∪ T(m,n) = T(p,q),

(iv) If (p, q) =min{(a, b), (m,n)}, then T(a,b) ∩ T(m,n) = T(p,q),

(v)
⋂
{T(i,j) | (i, j) ∈ Z−0 × Z−0 } = {(0, t) | t ∈ Z−0 }.

Proof. We first prove that T(m,n) is an ideal of the ternary semiring Z−0 × Z−0 .

Let (a1, a2), (b1, b2) ∈ T(m,n). Then we have that

(a1, a2) ≤ (m, 0) or (a1, a2) = (0, t) for some t ∈ Z−0

and

(b1, b2) ≤ (m, 0) or (b1, b2) = (0, t′) for some t ∈ Z−0 .
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We divide the proof of an additive subsemigroup into four cases.

Case 1: If (a1, a2) ≤ (m, 0) and (b1, b2) ≤ (m, 0), then

(a1, a2) + (b1, b2) ≤ (m, 0) + (m, 0) = (2m, 0) ≤ (m, 0).

Therefore (a1, a2) + (b1, b2) ∈ T(m,n).

Case 2: If (a1, a2) ≤ (m, 0) and (b1, b2) = (0, t′) for some t′ ∈ Z−0 , then

(a1, a2) + (b1, b2) ≤ (m, 0) + (0, t′) = (m, t′) ≤ (m, 0).

Hence (a1, a2) + (b1, b2) ∈ T(m,n).

Case 3: If (a1, a2) = (0, t) for some t ∈ Z−0 and (b1, b2) ≤ (m, 0), then

(a1, a2) + (b1, b2) ≤ (0, t) + (m, 0) = (m, t) ≤ (m, 0).

Thus (a1, a2) + (b1, b2) ∈ T(m,n).

Case 4: If (a1, a2) = (0, t) for some t ∈ Z−0 and (b1, b2) = (0, t′) for some t′ ∈ Z−0 ,

then

(a1, a2) + (b1, b2) = (0, t) + (0, t′) = (0, t+ t′).

Since t, t′ ∈ Z−0 , so t+ t′ ∈ Z−0 . Therefore (a1, a2) + (b1, b2) ∈ T(m,n).

By any cases, we obtain that T(m,n) is an additive subsemigroup of Z−0 × Z−0 .

Next, let (r1, r2), (s1, s2) ∈ Z−0 ×Z−0 . We want to show that (r1, r2)(s1, s2)(a1, a2) ∈

T(m,n). We divide its proof into three cases.

Case 1: If r1 = 0 or s1 = 0, then

(r1, r2)(s1, s2)(a1, a2) = (r1s1a1, r2s2a2) = (0, r2s2a2).

Since r2, s2, a2 ∈ Z−0 , r2s2a2 ∈ Z−0 . By definition of T(m,n), we have that

(r1, r2)(s1, s2)(a1, a2) ∈ T(m,n).
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Case 2: If r2 = 0 or s2 = 0, then

(r1, r2)(s1, s2)(a1, a2) = (r1s1a1, r2s2a2) = (r1s1a1, 0).

If r1s1a1 = 0, then (r1s1a1, 0) = (0, 0). If r1s1a1 6= 0, then

(r1s1a1, 0) ≤ (a1, 0) ≤ (m, 0).

Thus (r1, r2)(s1, s2)(a1, a2) ∈ T(m,n).

Case 3: r1, r2, s1, s2 6= 0. If (a1, a2) ≤ (m, 0), then

(r1, r2)(s1, s2)(a1, a2) ≤ (r1, r2)(s1, s2)(m, 0) = (r1s1m, 0) ≤ (m, 0).

If (a1, a2) = (0, t) for some t ∈ Z−0 , then

(r1, r2)(s1, s2)(a1, a2) = (r1, r2)(s1, s2)(0, t) = (0, r2s2t).

Since r2, s2, t ∈ Z−0 , r2s2t ∈ Z−0 . Therefore (r1, r2)(s1, s2)(a1, a2) ∈ T(m,n).

From Case 1, Case 2 and Case 3, we obtain (r1, r2)(s1, s2)(a1, a2) ∈ T(m,n) for all

(r1, r2), (s1, s2) ∈ Z−0 × Z−0 and (a1, a2) ∈ T(m,n). Similarly, (a1, a2)(r1, r2)(s1, s2) ∈

T(m,n) and (r1, r2)(a1, a2)(s1, s2) ∈ T(m,n).

Therefore we can conclude that T(m,n) is an ideal in Z−0 × Z−0 .

(i) We want to show that T(0,m) = T(−1,n) = Z−0 × Z−0 for all m,n ∈ Z−0 .

Let m,n ∈ Z−0 . We have that

T(0,m) = {(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) ≤ (0, 0)} ∪ {(0, t) | t ∈ Z−0 }

= Z−0 × Z−0 .

T(−1,n) = {(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) ≤ (−1, 0)} ∪ {(0, t) | t ∈ Z−0 }

= Z−0 × Z−0 .

Therefore T(0,m) = T(−1,n) = Z−0 × Z−0 for all m,n ∈ Z−0 , as desired.
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(ii) Let (a, b), (m,n) ∈ Z−0 × Z−0 be such that (a, b) ≤ (m,n). Suppose that

(t1, t2) ∈ T(a,b), then

(t1, t2) ≤ (a, 0) or (t1, t2) = (0, t) for some t ∈ Z−0 .

Case 1: (t1, t2) ≤ (a, 0). Since (a, b) ≤ (m,n), a < m or (a = m and b ≤ n).

If a < m, then

(t1, t2) ≤ (a, 0) < (m, 0).

If a = m and b ≤ n, then

(t1, t2) ≤ (a, 0) = (m, 0).

Therefore (t1, t2) ∈ T(m,n).

Case 2: (t1, t2) = (0, t) for some t ∈ Z−0 . By definition of T(m,n), it is clear that

(t1, t2) ∈ T(m,n).

From Case 1 and Case 2, we get that T(a,b) ⊆ T(m,n).

(iii) Let (p, q), (a, b), (m,n) ∈ Z−0 ×Z−0 be such that (p, q) =max{(a, b), (m,n)}.

If (a, b) ≥ (m,n), then (p, q) = (a, b). Since (a, b) ≥ (m,n), by (ii) we get that

T(m,n) ⊆ T(a,b). Therefore

T(a,b) ∪ T(m,n) = T(a,b) = T(p,q).

If (a, b) ≤ (m,n), then (p, q) = (m,n). Since (a, b) ≤ (m,n), by (ii) we have

T(a,b) ⊆ T(m,n). Hence

T(a,b) ∪ T(m,n) = T(m,n) = T(p,q).

Consequently T(a,b) ∪ T(m,n) = T(p,q) in the event of (p, q) =max{(a, b), (m,n)}.

(iv) Let (p, q), (a, b), (m,n) ∈ Z−0 ×Z−0 be such that (p, q) =min{(a, b), (m,n)}.

If (a, b) ≥ (m,n), then (p, q) = (m,n). Since (a, b) ≥ (m,n), by (ii) we have
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T(m,n) ⊆ T(a,b). Therefore

T(a,b) ∩ T(m,n) = T(m,n) = T(p,q).

If (a, b) ≤ (m,n), then (p, q) = (a, b). Since (a, b) ≤ (m,n), by (ii) we obtain that

T(a,b) ⊆ T(m,n). Hence

T(a,b) ∩ T(m,n) = T(a,b) = T(p,q).

Consequently T(a,b) ∩ T(m,n) = T(p,q) in the event of (p, q) =min{(a, b), (m,n)}.

(v) First, we want to show that
⋂
{T(i,j) | (i, j) ∈ Z−0 ×Z−0 } ⊆ {(0, t) | t ∈ Z−0 }.

Suppose that there exists (x, y) ∈
⋂
{T(i,j) | (i, j) ∈ Z−0 × Z−0 } r {(0, t) | t ∈ Z−0 }.

We have

T(x−1,y) = {(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) ≤ (x− 1, 0)} ∪ {(0, t) | t ∈ Z−0 }.

Since x > x− 1, it is clear that (x, y) > (x− 1, 0). Now, we have

(x, y) > (x− 1, 0) and (x, y) /∈ {(0, t) | t ∈ Z−0 }.

Hence (x, y) /∈ T(x−1,y), it is a contradiction with (x, y) ∈
⋂
{T(i,j) | (i, j) ∈ Z−0 ×

Z−0 }. Therefore
⋂
{T(i,j) | (i, j) ∈ Z−0 × Z−0 } ⊆ {(0, t) | t ∈ Z−0 }, as desired.

Conversely, by definition of T(m,n), it is clearly that

{(0, t) | t ∈ Z−0 } ⊆
⋂
{T(i,j) | (i, j) ∈ Z−0 × Z−0 }.

Consequently,
⋂
{T(i,j) | (i, j) ∈ Z−0 × Z−0 } = {(0, t) | t ∈ Z−0 } as desired.

Remark. If (m,n) 6= (0, t), (−1, t′) for all t, t′ ∈ Z−0 then T(m,n) is not a k-ideal of the

ternary semiring Z−0 × Z−0 .

For (a, b), (m,n) ∈ Z−0 × Z−0 and (a, b) ≤ (m,n), the notation S((a, b), (m,n))

will be used to denote the set {(t1, t2) ∈ Z−0 × Z−0 | (a, b) ≤ (t1, t2) ≤ (m,n)}.
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Note. For (a, b), (m,n) ∈ Z−0 ×Z−0 and (a, b) ≤ (m,n),we have that S((a, b), (m,n)) ⊆

T(m,n).

Theorem 4.3. Let (m,n) ∈ Z−0 × Z−0 and (m,n) ≤ (−2, 0), then S((2m, 2n), (m,n))

is a basis for T(m,n).

Proof. Let (t1, t2) ∈ T(m,n). If (t1, t2) ∈ S((2m, 2n), (m,n)) or (t1, t2) = (c1, c2)(d1, d2)(m,n)

for some (c1, c2), (d1, d2) ∈ Z−0 × Z−0 , it is easy to prove that the mentioned case

is a basis for T(m,n). Suppose that (t1, t2) /∈ S((2m, 2n), (m,n)) and (t1, t2) 6=

(c1, c2)(d1, d2)(m,n) for any (c1, c2), (d1, d2) ∈ Z−0 ×Z−0 . If (m,n) < (t1, t2) ≤ (m, 0),

then (t1, t2) = (m,x) for some x ∈ Z−0 . Hence, we can write

(t1, t2) = (m,x) = (−1, 0)(−1, 0)(m,n) + (0, x)(0,−1)(m− 1,−1).

If (t1, t2) = (0, t) for some t ∈ Z−0 , then we can write

(t1, t2) = (0, t) = (0, t)(0,−1)(m− 1,−1).

Consider (m− 1,−1), Since (m,n) ≤ (−2, 0), m ≤ −2. Therefore

2m < m− 1 < m,

so we get (2m, 2n) < (m−1,−1) < (m,n). Hence (m−1,−1) ∈ S((2m, 2n), (m,n)).

Next, suppose that (t1, t2) < (2m, 2n). Let k =min{ l ∈ Z−0 | −l(m,n) > (t1, t2)}.

Then we have that

−(k − 1)(m,n) < (t1, t2) < −(k)(m,n).

However, this guarantees the existence of an (x, y) ∈ Z−0 × Z−0 , (x, y) > (m,n)

such that

−(k)(m,n) + (x, y) = (t1, t2).
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Since (x, y) > (m,n),

(m,n) + (x, y) > (m,n) + (m,n).

Hence

(2m, 2n) = 2(m,n) = (m,n) + (m,n) < (m,n) + (x, y) < (m,n).

Therefore, we get (m,n) + (x, y) ∈ S((2m, 2n), (m,n)). Consider,

(t1, t2) = −(k)(m,n) + (x, y)

= −(k + 1)(m,n) + (m,n) + (x, y).

Since (m,n) ∈ S((2m, 2n), (m,n)) and (m,n) + (x + y) ∈ S((2m, 2n), (m,n)), it

follows that S((2m, 2n), (m,n)) is a basis for T(m,n).

Let (m,n) ∈ Z−0 ×Z−0 and T ∗(m,n) = {(t1, t2) ∈ Z−0 ×Z−0 | (t1, t2) = ((−1)k1m, (−1)k2n),

k1, k2 ∈ Z−0 }. Then we have the following results concerning T ∗(m,n).

Theorem 4.4. Let (m,n) ∈ Z−0 × Z−0 . Then T ∗(m,n) is an ideal of the ternary semiring

Z−0 × Z−0 such that

(i) T ∗(0,0) = {(0, 0)},

(ii) T ∗(−1,−1) = Z−0 × Z−0 .

Proof. First, we want to prove that T ∗(m,n) is an ideal of Z−0 × Z−0 .

Let (a1, a2), (b1, b2) ∈ T ∗(m,n). Then (a1, a2) = ((−1)k1m, (−1)k2n) for some

k1, k2 ∈ Z−0 and (b1, b2) = ((−1)k3m, (−1)k4n) for some k3, k4 ∈ Z−0 . Hence

(a1, a2) + (b1, b2) = ((−1)k1m, (−1)k2n) + ((−1)k3m, (−1)k4n)

= ((−1)k1m+ (−1)k3m, (−1)k2n+ (−1)k4n)

= ((−1)(k1 + k3)m, (−1)(k2 + k4)n).

Since k1 + k3, k2 + k4 ∈ Z−0 , (a1, a2) + (b1, b2) ∈ T ∗(m,n).
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Therefore T ∗(m,n) is an additive subsemigroup of Z−0 × Z−0 .

Next, let (r1, r2), (s1, s2) ∈ Z−0 × Z−0 . Consider

(r1, r2)(s1, s2)(a1, a2) = (r1s1, r2s2)(a1, a2)

= (r1s1, r2s2)((−1)k1m, (−1)k2n)

= (r1s1(−1)k1m, r2s2(−1)k2n)

= ((−1)(r1s1k1)m, (−1)(r2s2k2)n).

Since r1s1k1, r2s2k2 ∈ Z−0 , (r1, r2)(s1, s2)(a1, a2) ∈ T ∗(m,n). Similarly, we have that

(r1, r2)(a1, a2)(s1, s2) ∈ T ∗(m,n) and (a1, a2)(r1, r2)(s1, s2) ∈ T ∗(m,n).

Consequently, T ∗(m,n) is an ideal of Z−0 × Z−0 .

(i) T ∗(0,0) = {(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) = ((−1)k1(0), (−1)k2(0)), k1, k2 ∈

Z−0 } = {(0, 0)}.

(ii) T ∗(−1,−1) = {(t1, t2) ∈ Z−0 ×Z−0 | (t1, t2) = ((−1)k1(−1), (−1)k2(−1)), k1, k2 ∈

Z−0 } = {(t1, t2) ∈ Z−0 × Z−0 | (t1, t2) = (k1, k2), k1, k2 ∈ Z−0 } = Z−0 × Z−0 .

Theorem 4.5. Let a, b,m, n ∈ Z−0 where m,n 6= 0. Then m|a and n|b if and only if

T ∗(a,b) ⊆ T ∗(m,n).

Proof. Suppose that m|a and n|b. Then a = (−1)xm and b = (−1)yn for some

x, y ∈ Z−0 . We want to show that T ∗(a,b) ⊆ T ∗(m,n). Let (t1, t2) ∈ T ∗(a,b). Then

(t1, t2) = ((−1)k1a, (−1)k2b) for some k1, k2 ∈ Z−0 . Consider

(t1, t2) = ((−1)k1a, (−1)k2b)

= ((−1)k1(−1)xm, (−1)k2(−1)yn)

= ((−1)(−k1x)m, (−1)(−k2y)n).

Since −k1x,−k2y ∈ Z−0 , (t1, t2) ∈ T ∗(m,n). Therefore T ∗(a,b) ⊆ T ∗(m,n).

Conversely, suppose that T ∗(a,b) ⊆ T ∗(m,n). Since (a, b) ∈ T ∗(a,b) ⊆ T ∗(m,n), (a, b) =
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((−1)k1m, (−1)k2n) for some k1, k2 ∈ Z−0 . Therefore a = (−1)k1m and b =

(−1)k2n. Since m 6= 0, m|a. Since n 6= 0, n|b.

From Chapter II, a k-ideal is defined that an ideal I of a ternary semiring S

is called a k-ideal if x+ y ∈ I;x ∈ S, y ∈ I imply that x ∈ I.

Theorem 4.6. Let (m,n) ∈ Z−0 × Z−0 . Then T ∗(m,n) is a k-ideal of the ternary semiring

Z−0 × Z−0 .

Proof. Let (a, b) ∈ Z−0 ×Z−0 and (t1, t2) ∈ T ∗(m,n).Then (t1, t2) = ((−1)k1m, (−1)k2n)

for some k1, k2 ∈ Z−0 . Suppose that (a, b) + (t1, t2) ∈ T ∗(m,n) and (a, b) /∈ T ∗(m,n).

Since (a, b) /∈ T ∗(m,n), a 6= (−1)k3m for all k3 ∈ Z−0 or b 6= (−1)k4m for all k4 ∈ Z−0 .

Without loss of generality , we assume a 6= (−1)k3m for all k3 ∈ Z−0 . Since

(a, b)+(t1, t2) ∈ T ∗(m,n), (a, b)+(t1, t2) = ((−1)k5m, (−1)k6n) for some k5, k6 ∈ Z−0 .

Then we have

(a, b) + (t1, t2) = ((−1)k5m, (−1)k6n)

(a, b) + ((−1)k1m, (−1)k2n) = ((−1)k5m, (−1)k6n)

(a+ (−1)k1m, b+ (−1)k2n) = ((−1)k5m, (−1)k6n).

Thus we get a+ (−1)k1m = (−1)k5m and b+ (−1)k2n = (−1)k6n. If m = 0, then

(−1)k1m = 0 = (−1)k5m. Thus we have a = 0, so we can write a = (−1)(0)m.

This is a contradiction with a 6= (−1)k3m for all k3 ∈ Z−0 . Next, suppose that

m 6= 0. Since m|(−1)k5m, m|(−1)k1m and a + (−1)k1m = (−1)k5m, m|a. Since

a,m ∈ Z−0 and m|a, a = (−1)lm for some l ∈ Z−0 . This is a contradiction with

a 6= (−1)k3m for all k3 ∈ Z−0 . Therefore we can conclude that T ∗(m,n) is a k-

ideal.

Note. For (m,n) ∈ Z−0 × Z−0 . Now, we have that T ∗(m,n) is a k-ideal but T(m,n) is

not a k-ideal.

Theorem 4.7. Z−0 × Z−0 satisfies the ascending chain condition on T ∗(m,n)−ideals.



25

Proof. Let {T ∗(mi,ni)
| (mi, ni) ∈ Z−0 × Z−0 and i ∈ N} be an ascending chain of

T ∗(m,n)−ideals of Z−0 × Z−0 . Thus

T ∗(m1,n1) ⊆ T ∗(m2,n2) ⊆ T ∗(m3,n3) ⊆ · · ·

By Theorem 4.5, we have that

(m1, n1) ≤ (m2, n2) ≤ (m3, n3) ≤ · · · .

Since (mi, ni) ∈ Z−0 × Z−0 for all i ∈ N, the increasing sequence {(mi, ni)} of

ordered pairs of negative integers is finite. Thus there exists j ∈ N be such that

T ∗(mi,ni)
= T ∗(mj ,nj)

for each i ≥ j. Therefore Z−0 ×Z−0 satisfies the ascending chain

condition on T ∗(m,n)-ideals.

For (a, b), (m,n) ∈ Z−0 × Z−0 and (a, b) ≤ (m,n), the notation S((a, b), (m,n))

will be used to denote the set {(t1, t2) ∈ Z−0 × Z−0 | (a, b) ≤ (t1, t2) ≤ (m,n)}.

Theorem 4.8. Let (a, b), (m,n) ∈ Z−0 × Z−0 be such that (a, b) ≤ (m,n). Then

S((a, b), (m,n)) is a basis for T ∗(a,b) and T ∗(m,n).

Proof. Let (t1, t2) ∈ T ∗(a,b). Then (t1, t2) = ((−1)k1a, (−1)k2b) for some k1, k2 ∈ Z−0 .

Therefore we can write

(t1, t2) = (−1,−1)(k1, k2)(a, b).

Since (a, b) ∈ S((a, b), (m,n)), S((a, b), (m,n)) is a basis for T ∗(a,b).

Similarly, we have that S((a, b), (m,n)) is a basis for T ∗(m,n).

Theorem 4.9. Let a1, a2, b1, b2 ∈ Z−0 where a1, a2, b1, b2 6= 0. If −d1 is the greatest

common divisor of a1 and b1, −d2 is the greatest common divisor of a2 and b2, then

there exists s1, s2, t1, t2 ∈ Z−0 such that

(−1,−1)(s1, s2)(a1, a2) = (−1,−1)(t1, t2)(b1, b2) + (d1, d2) or

(−1,−1)(t1, t2)(b1, b2) = (−1,−1)(s1, s2)(a1, a2) + (d1, d2) or
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(−1,−1)(s1, t2)(a1, b2) = (−1,−1)(t1, s2)(b1, a2) + (d1, d2) or

(−1,−1)(t1, s2)(b1, a2) = (−1,−1)(s1, t2)(a1, b2) + (d1, d2).

Proof. Since −d1 is the greatest common divisor of a1 and b1, it is well known

that −d1 = s′1(−a1) + t′1(−b1) for some integers s′1 and t′1. Since 0 ≤ −d1 ≤

−a1, 0 ≤ −d1 ≤ −b1 and (−a1), (−b1) and (−d1) are all positive, it follows that

s′1 ≥ 0 and t′1 ≤ 0 or s′1 ≤ 0 and t′1 ≥ 0. If s′1 ≥ 0 and t′1 ≤ 0, then

−d1 = s′1(−a1) + t′1(−b1)

(−1)s′1(−a1) = (−1)t′1b1 + d1

(−1)(−s′1)a1 = (−1)t′1b1 + d1.

Thus (−1)s1a1 = (−1)t1b1 + d1 where s1 = −s′1 ≤ 0 and t1 = t′1 ≤ 0.

On the other hand, if s′1 ≤ 0 and t′1 ≥ 0, then

−d1 = s′1(−a1) + t′1(−b1)

(−1)t′1(−b1) = (−1)s′1a1 + d1

(−1)(−t′1)b1 = (−1)s′1a1 + d1.

Thus (−1)t1b1 = (−1)s1a1 + d1 where s1 = s′1 ≤ 0 and t1 = −t′1 ≤ 0.

Hence we have that (−1)s1a1 = (−1)t1b1 + d1 or (−1)t1b1 = (−1)s1a1 + d1.

Since −d2 is the greatest common divisor of a2 and b2, prove in the same

way, we get that (−1)s2a2 = (−1)t2b2 + d2 or (−1)t2b2 = (−1)s2a2 + d2.

Therefore, now we have

(−1)s1a1 = (−1)t1b1 + d1 or (−1)t1b1 = (−1)s1a1 + d1

and

(−1)s2a2 = (−1)t2b2 + d2 or (−1)t2b2 = (−1)s2a2 + d2.
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Hence

(−1)s1a1 = (−1)t1b1 + d1 and (−1)s2a2 = (−1)t2b2 + d2 (1)

or

(−1)t1b1 = (−1)s1a1 + d1 and (−1)t2b2 = (−1)s2a2 + d2 (2)

or

(−1)s1a1 = (−1)t1b1 + d1 and (−1)t2b2 = (−1)s2a2 + d2 (3)

or

(−1)t1b1 = (−1)s1a1 + d1 and (−1)s2a2 = (−1)t2b2 + d2. (4)

From (1), we have ((−1)s1a1, (−1)s2a2) = ((−1)t1b1 + d1, (−1)t2b2 + d2). Then

(−1,−1)(s1, s2)(a1, a2) = (−1,−1)(t1, t2)(b1, b2) + (d1, d2).

From (2), we have ((−1)t1b1, (−1)t2b2) = ((−1)s1a1 + d1, (−1)s2a2 + d2). Thus

(−1,−1)(t1, t2)(b1, b2) = (−1,−1)(s1, s2)(a1, a2) + (d1, d2).

From (3), we have ((−1)s1a1, (−1)t2b2) = ((−1)t1b1 + d1, (−1)s2a2 + d2). So

(−1,−1)(s1, t2)(a1, b2) = (−1,−1)(t1, s2)(b1, a2) + (d1, d2).

From (4),we have (−1,−1)(t1, s2)(b1, a2) = (−1,−1)(s1, t2)(a1, b2)+(d1, d2).Hence

(−1,−1)(t1, s2)(b1, a2) = (−1,−1)(s1, t2)(a1, b2) + (d1, d2).

Therefore the proof of the theorem follows.
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From Chapter II, the identity of the ternary semiring S is defined that if there

exists an element e ∈ S such that eea = aee = eae = a for all a ∈ S, then e is

called the identity of the ternary semiring S.

Remarks. (i) 1 is an identity of the ternary semiring Z+
0 .

(ii) −1 is an identity of the ternary semiring Z−0 .

(iii) 1 and −1 are identities of the ternary semiring Z.

(iv) (1, 1) is an identity of the ternary semiring Z+
0 × Z+

0 .

(v) (−1,−1) is an identity of the ternary semiring Z−0 × Z−0 .

(vi) (1, 1), (1,−1), (−1, 1) and (−1,−1) are identities of the ternary

semiring Z× Z.

(vii) The ternary semiring Zn has 2n identities.

Note. Let n ∈ N. If we define the additive and the ternary multiplicative opera-

tor on Zn or (Z× Z× Z× · · ·︸ ︷︷ ︸
n copies

), as follows

(a1, a2, a3, · · · , an) + (b1, b2, b3, · · · , bn) = (a1 + b1, a2 + b2, a3 + b3, · · · , an + bn)

and

(a1, a2, a3, · · · , an)(b1, b2, b3, · · · , bn)(c1, c2, c3, · · · , cn) = (a1b1c1, a2b2c2, a3b3c3, · · · , anbncn),

then it is easy to show that Zn is a ternary semiring.

From Chapter II, a homomorphism from a ternary semiring S to a ternary

semiring T is defined that a homomorphism from S to T is a map ϕ : S → T

which satisfies

ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(abc) = ϕ(a)ϕ(b)ϕ(c)

for all a, b, c ∈ S.
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A monomorphism is a homomorphism which is one-to-one.

An epimorphism is a homomorphism which is onto.

An isomorphism is a homomorphism which is one-to-one and onto.

We said that a ternary semiring S and a ternary semiring T are isomorphic, if

there exists an isomorphism φ : S → T or there exists an isomorphism

ψ : T → S. In this case, we will use the notation S ∼= T .

Remark. If a map ϕ : S → T is an isomorphism, eS is an identity of the ternary

semiring S, then ϕ(es) is an identity of the ternary semiring T .

Theorem 4.10. The ternary semirings Z+
0 and Z−0 are isomorphic.

Proof. Define a map ϕ : Z+
0 → Z−0 by ϕ(n) = −n for all n ∈ Z+

0 . Let a, b, c ∈ Z+
0 ,

consider

ϕ(a+ b) = −(a+ b) = (−a) + (−b) = ϕ(a) + ϕ(b) and

ϕ(abc) = −(abc) = (−a)(−b)(−c) = ϕ(a)ϕ(b)ϕ(c).

Hence ϕ is a homomorphism. By the definition of the map ϕ, it is easy to see

that ϕ is one-to-one onto mapping. Consequently, we can conclude that Z+
0
∼=

Z−0 .

Theorem 4.11. The ternary semirings Z+
0 × Z+

0 and Z−0 × Z−0 are isomorphic.

Proof. Define a map ϕ : Z+
0 × Z+

0 → Z−0 × Z−0 by

ϕ(x, y) = (−x,−y) for all x, y ∈ Z+
0 .

To show that ϕ is a homomorphism, let (x1, y1), (x2, y2) ∈ Z+
0 × Z+

0 . Consider,
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ϕ((x1, y1) + (x2, y2)) = ϕ(x1 + x2, y1 + y2)

= (−(x1 + x2),−(y1 + y2))

= ((−x1) + (−x2), (−y1) + (−y2))

= (−x1,−y1) + (−x2,−y2)

= ϕ(x1, y1) + ϕ(x2, y2).

Then ϕ is a homomorphism. By the definition of the map ϕ, it is easy to show

that ϕ is one-to-one and onto mapping. Consequently, we can conclude that

Z+
0 × Z+

0
∼= Z−0 × Z−0 .

Theorem 4.12. The ternary semirings Z+
0 and Z+

0 × Z+
0 are not isomorphic.

Proof. Suppose that Z+
0
∼= Z+

0 × Z+
0 . Then there exists a map ϕ : Z+

0 → Z+
0 × Z+

0

be such that ϕ is an one-to-one and onto homomorphism. Since ϕ is one-to-one

and onto, there exist x, y ∈ Z+
0 with x 6= y such that

ϕ(x) = (0, 1) and ϕ(y) = (1, 0)

Since ϕ is an isomorphism and we know that 1 is the only identity of the ternary

semiring Z+
0 and (1, 1) is the only identity of the ternary semiring Z+

0 × Z+
0 , we

have that ϕ(1) = (1, 1).
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Let n ∈ Z+
0 . Then

ϕ(n) = ϕ((n)(1))

= ϕ(1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n copies

)

= ϕ(1) + ϕ(1) + ϕ(1) + · · ·+ ϕ(1)︸ ︷︷ ︸
n copies

= nϕ(1)

= n(1, 1)

= (n, n)

Hence ϕ(n) = (n, n) for all n ∈ Z+
0 . There is no x, y ∈ Z+

0 satisfying ϕ(x) =

(0, 1) and ϕ(y) = (1, 0). Therefore Z+
0 and Z+

0 × Z+
0 are not isomorphic.

Theorem 4.13. The ternary semirings Z−0 and Z−0 × Z−0 are not isomorphic.

Proof. This proof is similar to the proof of the Theorem 4.12.

Note. If we prove in the same way, we get that Z+
0 and Z−0 × Z−0 are not

isomorphic, as well as Z−0 and Z+
0 × Z+

0 are not isomorphic.

A well-known result states that if ϕ : Z → Z is a ring isomorphism, then

ϕ(x) = x for all x ∈ Z. In the case of a ternary semiring isomorphism, we obtain

an additional solution of ϕ, which is ϕ(x) = −x.

Theorem 4.14. If a map φ : Z→ Z is a ternary semiring isomorphism, then φ(x) = x

or φ(x) = −x for all x ∈ Z.

Proof. Suppose that a map φ : Z → Z is a ternary semiring isomorphism.

Since 1 and −1 are identities of the ternary semiring Z, thus φ(1) and φ(−1)

are identities of the ternary semiring Z. Since 1 and −1 are the identities of the

ternary semiring Z and φ(1) is the identity of the ternary semiring Z, φ(1) = 1

or φ(1) = −1.
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Case 1: φ(1) = 1, let n ∈ Z+
0

φ(n) = φ((n)(1))

= φ(1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n copies

)

= φ(1) + φ(1) + φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
n copies

= nφ(1)

= n(1)

= n.

Thus φ(n) = n for all n ∈ Z+
0 .

Since φ is an isomorphism and φ(1) = 1, φ(−1) = −1.

Let m ∈ Z−. Then

φ(m) = φ((−m)(−1))

= φ((−1) + (−1) + (−1) + · · ·+ (−1)︸ ︷︷ ︸
-m copies

)

= φ(−1) + φ(−1) + φ(−1) + · · ·+ φ(−1)︸ ︷︷ ︸
-m copies

= (−m)φ(−1)

= (−m)(−1)

= m.

Then φ(m) = m for all m ∈ Z−.

Therefore, we obtain φ(x) = x for all x ∈ Z.
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Case 2: φ(1) = −1, let n ∈ Z+
0 . Then

φ(n) = φ((n)(1))

= φ(1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n copies

)

= φ(1) + φ(1) + φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
n copies

= nφ(1)

= n(−1)

= −n.

That is φ(n) = −n for all n ∈ Z+
0 .

Since φ is an isomorphism and φ(1) = 1, φ(−1) = 1.

Let m ∈ Z−0 . Then

φ(m) = φ((−m)(−1))

= φ((−1) + (−1) + (−1) + · · ·+ (−1)︸ ︷︷ ︸
-m copies

)

= φ(−1) + φ(−1) + φ(−1) + · · ·+ φ(−1)︸ ︷︷ ︸
-m copies

= (−m)φ(−1)

= (−m)(1)

= −m.

Hence φ(m) = −m for all m ∈ Z−0 .

Therefore,we have that φ(x) = −x for all x ∈ Z.

By any cases, we can conclude that φ(x) = x or φ(x) = −x for all x ∈ Z.

Remark. If S and T are ternary semirings with m and n identities, respectively, where

m 6= n, then S and T are not isomorphic.
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