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CHAPTER1I
INTRODUCTION

In 1971, W. G. Lister have investigated ternary rings and their structures. In fact,
W. G. Lister charaterized those additive subgroups of rings which are closed un-
der the triple product. T. K. Dutta and S. Kar introduced the notion of a ternary
semiring as a generalization of a ternary ring in 2003. In [2], T. K. Dutta and
S. Kar introduced the notions of left/right/lateral ideals of ternary semirings
and also characterized regular ternary semirings. In 2005, S. Kar introduced the
notion of quasi-ideals and bi-ideals in the ternary semiring. The ideal theory in
the ternary semiring Z, has been introduced and studied by S. Kar in [1]. In
2011, S. Kar studied the ideal theory in the ternary semiring Z, of non-positive
integers and obtained some results regarding the ideals of the ternary semiring
Zy . In his research, he studied the 7, -ideal in the ternary semirings Z; where
T, ={t € Zy | t < n}U{0} for n € Z; and he had the following results

concerning 7T,,.

Theorem 1.1. ([1] S. Kar, 2011) T,, is an ideal in Z; such that
1) To=T-1=12,,
(ii) Forn < —1,m < nifand only if T,,, C T,
(iil) 7., U T, =1T,, where p = max{m,n},
(iv) T,,NT, =T, where ¢ = min{m,n},
V) ({Ti:ieZy} ={0}.

Theorem 1.2. ([1] S. Kar, 2011) Z, satisfies the ascending chain condition on T,,—
ideal.



Let I be an ideal of a ternary semiring S. A subset B of [ is called a basis for
I if every element of I can be written in the form Z?:l r;S;b;, where r;,s;, € S
and b; € B. If the set B is finite, then B is called a finite basis for I.

S. Kar denoted the set S(a,b) = {t € Z; | a < t < b} for a,b € Z; and
a < b. He derived a theorem and some lemmas which were essential for the
characterization of all ideals in the ternary semiring Z,. From those lemmas
he had some methods by which he can determine if an ideal in Z; contains a

T, —ideal.
Theorem 1.3. ([1] S. Kar, 2011) If n < —1, then S(2n,n) is a finite basis for T,,.

Let I be an ideal in the ternary semiring Z, . If a € I,m € Z, , where m # 0,
and S(—(m — 1)a, —ma) C I, then there exists an n € Z, such that 7,, C I. If
there exists a € I such thata + (—1) € I, then there exists an n such that 7}, C I.
If a,b € I and a, b are relatively prime, then there exists an n such that 7, C I.

Our main purpose of this thesis is to study the ideal theory in the ternary
semiring Z; of non-negative integers and the ternary semiring Z, x Z, of or-
dered pairs of non-positive integers. We are going to give some ideals as exam-
ples and to prove some analogous results on such ideals. In Chapter 2, we give
some basic definitions and examples. In Chapter 3, we study the ideal theory in
the ternary semiring Z;. In Chapter 4, we study the ideal theory in the ternary
semiring Z, x Z,. Moreover, we show that the ternary semirings Z: and Z;
are isomorphic as well as the ternary semirings Z§ x Zj and Z; x Z,. We also

compare the ternary semiring 7Z to the ring Z.



CHAPTER II
PRELIMINARIES

In this chapter, we present a number of elementary concepts, notations and def-
initions on semigroups, semirings and ternary semirings which will be used for
this thesis.

Let R denote the set of real numbers, Q denote the set of rational numbers,
N denote the set of natural numbers (positive integers), Z denote the set of all
integers, Z* denote the set of all positive integers, Z~ denote the set of all nega-

tive integers, Zg = ZT U {0} and Z; = Z~ U {0}.

Definition 2.1. ([16] M. Petrich, 1973) A semigroup is a system (S, -) consisting of

a nonempty set S together with an associative binary operation

(@-b)-c=a-(b-c)foralla,b,ceS.

In this thesis, we denote a - bby ab .

Definition 2.2. ([16] M. Petrich, 1973) Let S be a semigroup. An element e € S
is a left (right) identity of S if ex = x (ve = z) for all z € S. e € S is an identity of

Sifer=x=zxeforallz € S.

Definition 2.3. ([16] M. Petrich, 1973) An element z of a semigroup S is called
a left (right) zero of S if zx = z (xz = z) for all z € S, and z is a zero of S if

zx=z=uxzforallz € S.

If a semigroup S has an identity, then we denote it by 1. If a semigroup S

has a zero, then we denote it by 0.

Definition 2.4. ([16] M. Petrich, 1973) A semigroup S is called a commutative

semigroup if ab = ba for all a,b € S.



Definition 2.5. ([16] M. Petrich, 1973) A nonempty subset 7" of a semigroup S is
a subsemigroup of S if T is itself a semigroup with respect to the operation of S.
( Notice that a subset 7" of a semigroup S is a subsemigroup of S if and only if

T+# Fand ab e T foralla,beT.)

Example. (NU {0}, -) is a commutative semigroup with identity 1 and zero 0.

(NU {0}, +) is a commutative semigroup with identity 0 but has no zero.

Example. ([16] M. Petrich, 1973) Define operations x and - on the closed interval [0, 1]
by v xy = min{z,y} and x - y = maz{x,y} for all x,y € [0,1]. Then ([0,1],*) is
a commutative semigroup with identity 1 and zero 0, and ([0, 1], -) is a commutative

semigroup with identity 0 and zero 1.

Example. Let M, (R) be the set of all real n x n matrices where n € N. Then M, (R)
is a semigroup under usual matrix multiplication. If n > 1, then M, (R) is a noncom-

mutative semigroup with identity I,, and zero 0.

Definition 2.6. ([14] J. S. Golan, 1999) (.S, +, ) is a semiring if the following con-
ditions are satisfied:

(i) (S,+) is a commutative semigroup,

(ii) (S,-) is a semigroup,

(iii) Ya,b,c€ S,a-(b+c¢)=a-b+a-cand (a+b)-c=a-c+b-c.

A proper semiring is a semiring which is not a ring.
Let (S, +, -) be a semiring.
(i) If (S,-) has an identity e, we call e the identity of the semiring S.
(i) If (S,+) has an identity, we call this element the zero of the semiring S.
(iii) If the semiring S has a zero and z +y = 0, we denote y by —z and call it the
opposite element of x.
Note. If S is a semiring and a € S we defines an element na € S,n € N by
na=a, +ay+az+---+a, wherea; =ay =as =---=a, = a.
Then for all a,b € S and m,n € N,

(i) na+ ma = (n+m)a,



(ii) m(na) = (mn)a,
(iii) m(a + b) = ma + mb.

If S has a zero and a, b have opposite elements, then
(i) —(a +b) = (=a) + (=b),
(i) —(=a) =q,

(iii)) —(na) = n(—a), foralln € N.

Example. 1. Each ring is a semiring.
2. (N, +,-) and (Ny, +, -) are proper semirings.
3. If mN = {mn | n € N},m € N, then (mN, +, -) is a proper semiring.
4. Force N,({c,c+1,¢+2,--- },+, ) is a proper semiring.
5. (QF,+,4), (QF,+, ), (R +,-), (R}, +, -) are proper semirings.

Definition 2.7. Let S be a semiring and A, B nonempty subsets of S. We define
the following subsets of S:

A+B={a+0blac Abe B},
A-B={a-blaecAbe B}

Note. If A = {a}, one simply writes a+ B and aB instead of {a} + B and {a} - B,

respectively.

Example. Let (S, ) be a semigroup and P(S) the power set of S. For all A;B €
PS)~{o},A-B={a-b|a€ Abe B} # @. Then (P(S) ~{2},U,:) isa

semiring.

Definition 2.8. ([1] S. Kar, 2011) A non-empty set S together with a binary
operation, called addition, and a ternary multiplication, denoted by juxtaposition,
is said to be a ternary semiring if S is an additive commutative semigroup satis-
tying the following conditions: for all a, b, c,d,e € S

(i) (abc)de = a(bed)e = ab(cde),

(ii) (a + b)ed = acd + bed,

(iii) a(b+ c¢)d = abd + acd,

(iv) ab(c+ d) = abc + abd.



We see that any semiring can be reduced to a ternary semiring. However,
a ternary semiring does not nessesarily reduce to a semiring by this example.
We consider Z, under usual addition and multiplication, we see that Z; is an
additive semigroup which is closed under the triple multiplication but is not
closed under the binary multiplication. Moreover, Z is a ternary semiring but

is not a semiring under usual addition and multiplication.

Definition 2.9. Let S be a ternary semiring. If there exists an element e € S such
that

€Eea = aee = eae = a
for all a € S, then e is called an identity of the ternary semiring S.

Example. With the usual binary addition and ternary multiplication, 1 is the identity

of the ternary semiring Z and —1 is the identity of the ternary semiring Z .

Definition 2.10. ([1] S. Kar, 2011) Let S be a ternary semiring. If there exists an

element 0 € S such that

O+x=xand Ozy =20y = 2y0 =0forallz,y € S

then 0 is called the zero element or simply the zero of the ternary semiring S. In

this case we say that S is a ternary semiring with zero.

Example. With the usual binary addition and ternary multiplication, Z§ and Z, form

the ternary semirings with zero.

Definition 2.11. ([1] S. Kar, 2011) An additive subsemigroup 7" of a ternary

semiring S is called a ternary subsemiring of S if t1tots € T for all t1, 5,15 € T.

Definition 2.12. ([1] S. Kar, 2011) An additive subsemigroup I of a ternary
semiring S is called :

A left ideal of S if s1s9i € I forall 51,5, € Sand i € I.

A right ideal of S if isyso € I forall 51,50 € Sand i € [.



A lateral ideal of S if syisy € I forall s;,s0, € Sand i € I.
If I is a left, a right and a lateral ideal of S, then I is called an ideal of S.

Note. ([11] R. Chinram, 2010 ) It is obvious that every ideal of a ternary semiring

with zero contains a zero element.

Definition 2.13. ([1] S. Kar, 2011) An ideal I of a ternary semiring S is called a
k-ideal if
r+yel;xeSyelimplythatx € I.

Note. Since an ideal / of a ternary semiring S is an additive commutative

semigroup, we get thaty +x € I;x € S,y € I imply thatz € I.

Example. ([11] R. Chinram, 2010) Consider the ternary semiring Z, under usual
binary addition and ternary multiplication, let I = {0, -3} U {—5,—6,—7,---} . Itis
easy to prove that I is an ideal of Z; but not a k-ideal of Z, because (—2) + (—3) =
(=5) e lbut—-2¢ 1.

Example. ([11] R. Chinram, 2010) Consider the ternary semiring Z, under usual
binary addition and ternary multiplication, let I = {—3k | k € NU {0}}. It is easy to
show that I is a k-deal of Z .

Definition 2.14. ([1] S. Kar, 2011) Let / be an ideal of a ternary semiring S. A
subset B of [ is called a basis for I if every element of I can be written in the
form Y  r;s;b;, wherer;,s; € S, b; € Bandn € N.

If the set B is finite, then B is called a finite basis for I.

Definition 2.15. ([11] R. Chinram, 2010) Let S, 7T be ternary semirings. A map

¢ : S — T is a homomorphism if

pla+b)=p(a)+ o) and p(abc) = p(a)p(b)p(c)

foralla,b,c € S.

A monomorphism is a homomorphism which is one-to-one.

An epimorphism is a homomorphism which is onto.



An isomorphism is a homomorphism which is one-to-one and onto.
We said that a ternary semiring S and a ternary semiring 7" are isomorphic,
if there exists an isomorphism ¢ : S — T or there exists an isomorphism

¥ T — S. In this case, we will use the notation S = T..

Note. ([11] R. Chinram, 2010) Let ¢ : S — R be an epimorphism of ternary
semiring. If I is an ideal of S, then (/) is an ideal of R. If S and R be ternary

semirings with zero 0, then ¢(0) = 0.

Definition 2.16. Given two partially ordered sets A and B, the lexicographical

order on the Cartesian product A x B is defined as
(a,b) < (¢,d) ifandonlyif a<e¢ or (a=candb<d),

(a,b) < (c,d) ifandonlyif a<c¢ or (a=candb<d).

In this thesis, we define the additive and the ternary multiplicative operator on
the Cartesian product A x B as

follows

(a,b) + (¢,d) = (a+¢,b+d) and (a,b)(c,d)(e, f) = (ace, bdf).

Example. With the binary addition and ternary multiplication, (1,1) is the identity
of the ternary semiring 7§ x Zg and (—1,—1) is the identity of the ternary semiring
Ly X Ly .

Example. With the binary addition and ternary multiplication, Z§ x Z§ and Zy x Zy

form the ternary semirings with zero.

Definition 2.17. A partially ordered set P is said to satisfy the ascending chain
condition (ACC) if every ascending chain of elements eventually terminates. Equivalently,
given any sequence of elements of P

ap <ay<az<---



there exists a positive integer n such that

Qp = Qp41 = Qpy2 =

Similarly, P is said to satisfy the descending chain condition (DCC) if ev-
ery descending chain of elements eventually terminates, or equivalently if any
descending sequence

e a3 2> ag > ag

of elements of P eventually stabilizes.



CHAPTER III
IDEAL THEORY IN THE TERNARY SEMIRING Z;

In this chapter we study the ideal theory in the ternary semiring of non-negative
integers Z¢ and classify them.
Letn € Z§ and T,, = {t € Z{ | t > n} U{0}. Then we have the following

results concerning 7;,.

Theorem 3.1. Let n € Zg. Then T,, is an ideal in the ternary semiring Z§ such that
(i) To =Ty = Zg,
(ii) Forn > 1,n < mifandonly if T,, C T,
(iii) 7,,, U T,, = T,,, where p = min{m,n},
(iv) T, N T,, = T,, where ¢ = max{m,n},
) AT, | n e 2} = {o},

Proof. First, we want to prove that 7,, is an ideal of the ternary semiring Z . Let
a,b € T,,. We divide the proof of an additive subsemigroup into four cases.
Casel: Ifa=0and b=0,thena+b=0+0=0¢€T,.
Case2:Ifa=0andb>n,thena+b>0+n=neT,.
Case 3: If a > n and b = 0, then it is similar to the Case 2.
Cased:Ifa>nand b>n,thena+b>2n>neT,.
From any cases, we have that T}, is an additive subsemigroup of Z .

Next, we let z € T, and r, s € Zj where r # 0 and s # 0 (In case of r = 0 or
s =0,wehave thatrsz =0€ T,). lf t =0thenrsx =rs(0) =0€ T,.Ifx >n
then rsz > rsn > n € T,,. Similarly, we have that rxs, xrs € T,,. Consequently,

T, is an ideal of Z .
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(i) By the definition of T},, we have that

To={teZ{|t>0}u{0} =ZIU{0} =7,

Ty={teZ{|t>1}U{0}=ZTU{0} =7Z.

Thus TO = T1 = Zar
(i) Let m, n € ZJ be such that 1 < n < m. We know that

T,.={0,n,n+1,n+2n+3,---}and T,, ={0,m,m+1,m+2,m+3,---}.

Since n < m, T,, € T,. Conversely, suppose T,, C T,, it is easy to see that
n <m.

(iii) Let m,n, p € Z{ such that p = min{m, n}. If m = n, then T,, U T,, = T,.
If m > n, from (ii) we get that 7,,, C 7,,. Since p = min{m,n} =n, T,, U T, =
T,, = T,. In case of n > m we can prove in the same way.

(iv) Let m, n, q € Z§ such that ¢ = max{m,n}. If m = n, thenT,,NT,, = T,. If
m > n, from (ii) we obtain 7,, C T,,. Since ¢ = max{m,n} =m, T,,NT, =T, =
T;. In case of n > m we can prove in the same way.

(v) By definition of T,,, we have that {0} € ({7} | i € Z¢}. Next, suppose
that there exists © € ({7} | ¢ € Z{} be such that = # 0. By definition of 7,,, it is
clear that z € T,,. Since z € ({T; | i € Z}, v + 1 € Z,. We know that T, =
{teZf|t>x+1}U{0}.Sincex < z+ 1,z ¢ T,,,. Itis a contradiction with
z € ({7 | i € Z§ }. Consequently, we obtain that ("{T; | i € Z¢ } = {0}. O

For n € Z{ , the notation T}, —ideal will be used to denote the ideal T,,.
Remark. Letn € ZJ. If n # 0,1, then T,, is not a k-ideal of the ternary semiring 7. .

Theorem 3.2. Let n € Z;. Then Z{ satisfies the ascending chain condition on T,,-

ideals.

Proof. Let {T,, | n; € Z§ andi € N} be an ascending chain of T;,—ideals in Z.

Then it is finite since by the Theorem 3.1 (ii), the decreasing sequence {n;} of
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positive integers is finite. Thus there exists j € N such that T, = T,,; for each

i > j and hence Z; satisfies the ascending chain condition on 7, —ideals. O

For a,b € Z& and a < b, the notation S(a, b) will be used to denote the set
{teZ|a<t<b}
Note For a,b € Z{ and a < b, we have that S(a, ) C T,,.

Theorem 3.3. Let n € Zg. If n > 1, then S(n,2n) is a finite basis for T,,.

Proof. Let z € T,. In case of z € S(n,2n) or z = cdn for some c,d € Z7, it is
easy to prove that the mentioned case is a basis for 7},. Suppose that z > 2n and
x # cdn for any ¢,d € Zg. Let k =max{[ € ZJ | In < z}. Then we have that
kn < x < (k + 1)n. However, this guarantees the existence of a positive integer
m < n such that kn +m = z and it follow that n +m € S(n, 2n). Hence we have
thatz =kn+m=(Gk—-1+1n+m=((k—1)+1)n+m=(k—-1n+n+m
where n € S(n,2n) and n + m € S(n,2n). Therefore S(n,2n) is a basis for T,,.

Since the set S(n, 2n) is finite, S(n, 2n) is a finite basis for 7,,. O]

Now we study some lemmas and propositions which will be essential for
characterization of all ideals in the ternary semiring Z;. From these lemmas
and proposition we have some methods by which we can determine if an ideal

of Z; contains a T),,—ideal.

Lemma 3.4. Let [ be an ideal of the ternary semiring Zg. If a € I,m € Z§, where
a # 0and S(ma,(m + 1)a) C I, then there exists an n € Zg such that T,, C I.

Proof. If a = 1, then 1 € I. Hence I = Z}. Therefore T,, C [ for all n € Z.
If a > 1, we claim that T{,,11), € I. Let x € T(;ni1)a- If 2 = cda for some
c,d € Zg, then clearly x € I. Next, suppose that z > (m + 1)a and = # cda for
c,d € Z§. Let k =max{l € ZJ | In < x}. Then we have that ka < = < (k + 1)a.
Thus there exists a positive integer b < a such that ka + b = = We have that
ma+b € S(ma,(m+ 1)a) C I. Hence x = ka+b = ka — ma +ma +b =
(ka —ma) + (ma+b) = (k —m)a + (ma+b) € I. Consequently, T;,11), € I and

therefore the proof of the lemma follows. O



13

Proposition 3.5. Let I be an ideal of the ternary semiring ZJ. If there exists a € I

such that a + 1 € I, then there exists an n € Z{ such that T,, C I.

Proof. If I is a T,,-ideal, then the lemma is obvious. Suppose that I is not a 7,,-
ideal and =z is the smallest element in [ such that x + 1 € I. Since [ is an ideal, a

series of simple calculations shows that the following elements belong to I:

i) x+1,x
(i) 2x+2,2x4+1,2x by (1)

(i) 3xr+3,3r+2,3x+1,3x by (1), (2)

x) (@x4+z,---,(v)z+3,(x)z+2,(x)r+ 1, (x)x. by (@), (), (i), -, (x-1)
The last row of elements is S((z)x, (x + 1)z) C I. Thus there exists an n € Z;

such that 7;, C I, by using Lemma 3.4. O

Lemma 3.6. Let a,b € Z§ where a,b # 0. If d is the greatest common divisor of a and
b, then there exist s,t € Z such that sa = tb+ d or tb = sa + d.

Proof. From elementary number theory, it is well known that d = s'a + t'b for
some integers s’ and ¢'. Since 1 < d < aand 1 < d < b, it follows that (s’ >

Oandt <0)or (s <Oand ¢ >0).If s > 0and ¢’ <0, then

d=sa+1tb
sa=—-t'b+d
sa=tb+d

where s = s’ > 0and t = —t' > 0. On the other hand, if s’ < 0and ¢’ > 0 then

d=sa+th
b= —sa+d
th = sa +d

wheret =t > 0 and s = —s’ > 0. Hence the proof of the lemma follows. O
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Proposition 3.7. Let I be an ideal of the ternary semiring Z§,a € I and b € I. If a

and b are relatively prime, then there exists an n € Z§ such that T,, C 1.

Proof. Since a and b are relatively prime, 1 is the greatest common divisor of a
and b. From Lemma 3.6 guarantees the existence of s € ZJ and ¢t € Z{ such that
sa =tb+ 1 or tb = sa + 1. Since [ is an ideal, it is clearly that sa € [ and tb € I.
Consequently, sa + 1 € I or tb+ 1 € I and the lemma follows from Lemma

3.5. ]



CHAPTER IV
IDEAL THEORY IN THE TERNARY SEMIRING Z, x Z,

In this chapter, we study the ideal theory in the ternary semiring of ordered
pairs of non-positive integers Z, x Z,. We study about the ideal T{,,,) =
{(t1.t2) € Zg X Zg | (t1,t2) < (m,0)} U{(0,7) | t € Zy } and the ideal T}, ) =
{(t17t2) € Za X ZO_ | (tl,tg) = ((—1)/{31771,(—1)]@271), /{31,1{32 S Za} and classify
them. Moreover, we show that the ternary semirings Z; and Z, are isomorphic

as well as the ternary semirings Z x Z; and Z; x Z, . We will also compare the

ternary semiring 7 to the ring Z.

Given two partially ordered set A and B, the lexicographical order on the

Cartesian product A x B is defined as
(a,b) < (c,d) ifandonlyif a<e¢ or (a=candb<d),

(a,b) < (c,d) ifandonlyif a<ec¢ or (a=candb<d).

In this research, we define the additive and the ternary multiplicative operator

as follow:
(a,b) + (¢,d) = (a+¢,b+d) and (a,b)(c,d)(e, f) = (ace, bdf).

Proposition 4.1. Let (a,b), (c,d), (¢',V),(d,d') € Zy x Zy. If (a,b) < (c,d) and
(a',b) < (c,d), then (a,b) + (a’, V) < (¢,d) + (¢, d').

Proof. Suppose that (a,b) < (¢,d) and (a’,V') < (¢, d’). Since (a,b) < (¢,d),a < c
or (a = cand b < d). Since (¢',V) < (¢,d'),d < dor (¢/ = and ¥V < d).

We want to show that (a,b) + (¢/,0') < (¢,d) + (¢, d’). Since we known that
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(a,b) + (a,b') = (a+d,b+V)and (c,d) + (¢,d) = (c+ ¢,d+ d'), we can show
(a+a,b+V) < (c+,d+d') instead of (a,b)+ (', V') < (¢,d)+ (¢, d"). We divide
its proof into four cases.

Casel:Ifa < cand o’ < ¢, thena+d < c+c. Thus (a+d,b+V) < (c+,d+d').
Case2:Ifa <cand (¢ =¢ and I/ < d'),thena+da’ < c+¢. Thus (a+d',b+V) <
(c+d,d+d).

Case 3: If (a =cand b < d) and o’ < ¢, then it is similar to the Case 2.

Case4: If (a=cand b < d)and (¢/ = and V) < d'), thena+d = c+ ¢ and
b+ <d+d.Thus (a+d,b+V) < (c+,d+d).

From any cases, we can conclude that (a,b) + (', V') < (¢,d) + (¢, d’), as desired.

]

In this chapter, we first study the ideal theory in the ternary semiring Z; x
Zy. Let (m,n) € Zy x Zy and T,y = {(t1,t2) € Zy X Zg | (t1,t2) < (m,0)} U

{(0,t) | t € Zg }. Then we have the following results concerning 7, ).

Note. For (a,b), (c,d) € Zy x Zg ,if a = cthen T(q ) = T{c,a)-

Theorem 4.2. Let (m,n) € Zy x Zy . Then Ty, 5,y is an ideal in the ternary semiring
Zy x Zg such that

(1) Twomy = T(—1n) = Zy X Zy forallm,n € Zg,

(ii) If (a,b) < (m,n), then Tiap) € Timn),

(iii) If (p,q) =max{(a,b), (m,n)}, then Tiap) U Timn) = Tip.g),

(iv) If (p,q) =min{(a,b), (m,n)}, then Tiqp) N Timn)y = Tip.q);

V) (W | (557) € Zg x Zg } = {(0,) [t € Zg }.
Proof. We first prove that 7{,, ,,) is an ideal of the ternary semiring Z; x Z; .

Let (ay, az), (b1, b2) € Timn). Then we have that
(ay,a2) < (m,0) or (ai,az)=(0,t) for somet € Z;

and

(bl, bg) < (m, 0) or (bl, bg) = (O,t/) for some t € Za
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We divide the proof of an additive subsemigroup into four cases.

Case 1: If (a1, a2) < (m,0) and (b1, bs) < (m,0), then
(a1, a2) + (b1, b2) < (m,0) + (m,0) = (2m,0) < (m,0).

Therefore (ai, as) + (b1, b2) € Timn)-
Case 2: If (a1, az) < (m,0) and (b1, b2) = (0,t') for some t' € Z , then

(a1, az) + (b1,b9) < (m,0) 4+ (0,t") = (m,t') < (m,0).

Hence (CLl, CLQ) + (bl, bg) € T(m,n)
Case 3: If (a1, a2) = (0,t) for some ¢ € Z, and (by,by) < (m,0), then

(a1, az2) + (by,be) < (0,t) + (m,0) = (m,t) < (m,0).

Thus (a1, az) + (b1,b02) € Timn).
Case 4: If (a1,a2) = (0,t) for some t € Z; and (b1, b2) = (0,t') for some t' € Zj,
then

(a1,a2) + (b1,02) = (0,¢) + (0,¢") = (0,t + t').

Since t,t' € Zy,so t +t' € Z;. Therefore (a1, as) + (b1, b2) € T ).
By any cases, we obtain that T, ) is an additive subsemigroup of Z; x Zj .

Next, let (r1,7r2), (51, 52) € Zy xXZ, . We want to show that (r1, r2)(s1, s2)(a1,a2) €
T(m,n)- We divide its proof into three cases.

Case 1: If ry =0 or s; =0, then
(7”177’2)(51, 32)(6117@2) = (7’151(11,7”252(12) = (077’252CL2)~

Since 19, 82, a2 € Zy , 25202 € Zy . By definition of T}, ), we have that

(Tla TQ)(817 82)(a1; a?) S T(m,n)
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Case 2: If ro = 0 or s, = 0, then

(7”177’2)(81, 32)((11,@2) = (7“131Cl1,7”282a2) = (Tlslala())-

If ris1a1 = 0, then (Tlslal, 0) = (O, 0) If ri81aq 7é 0, then

(ris1a1,0) < (aq,0) < (m,0).

Thus (Tl, 7”2)(81, 82)(0,1, CLQ) € T(m,n)
Case 3: 11,79, 81, 82 # 0. If (a1,a2) < (m,0), then

(r1,72)(s1, 82) (a1, az) < (r1,72)(81, $2)(m, 0) = (rysym,0) < (m,0).

If (a1, a9) = (0,t) for some t € Z; , then

(r1,72) (51, S2) (a1, az) = (r1,72)(s1,$2)(0,t) = (0, resat).

Since 7y, 59,1 € Zy , 259t € Zy . Therefore (ry,72)(51, 52) (a1, a2) € T n).-
From Case 1, Case 2 and Case 3, we obtain (71, 73)(s1, 52)(a1,a2) € T, for all
(11,72), (51, 52) € Zg x Zg and (ay, ag) € T ). Similarly, (aq, a2)(r1,72) (51, 52) €
Timpy and (11, r2) (a1, a2)(51, 52) € Timn)-

Therefore we can conclude that 7, ) is an ideal in Z; x Z .

(i) We want to show that T{g ) = T(—1,n) = Zy X Z forallm,n € Z; .
Let m,n € Z,. We have that

T(O,m) = {(tht?) € ZE X ZS | (tlth) S (070)} U {<O’t) | te ZE}
=2y X Zy.
Ticimy = {(t1,t2) € Zyg X Zy | (t1,t2) < (1,00} U{(0,¢) |t € Zy }

=Ly X Ly .

Therefore T(gm) = T(—1,n) = Zy X Zg for all m,n € Zg, as desired.



19

(ii) Let (a,b),(m,n) € Z; x Z; be such that (a,b) < (m,n). Suppose that
(tla t?) € T(a,b)7 then

(t1,t2) < (a,0) or (ty,t2) =(0,t) for somet € Zj .

Case 1: (t1,t2) < (a,0). Since (a,b) < (m,n),a < mor (a =mand b < n).
If @ < m, then

(tl,tg) S (CL, 0) < (m,O)

If a = mand b < n, then

(t1,t2) < (a,0) = (m,0).

Therefore (t1,t2) € Tim n).-
Case 2: (t1,t2) = (0,t) for some t € Z;. By definition of T, ), it is clear that
(t1,t2) € Timn)-

From Case 1 and Case 2, we get that T{,4) € T(nn)-

(iii) Let (p,q), (a,b), (m,n) € Zy X Z, be such that (p, ¢) =max{(a,b), (m,n)}.
If (a,b) > (m,n), then (p,q) = (a,b). Since (a,b) > (m,n), by (ii) we get that
Timmy € T(ap)- Therefore

Tiap) Y Tnn) = Tiap) = T(pg)-

If (a,b) < (m,n), then (p,q) = (m,n). Since (a,b) < (m,n), by (ii) we have

Tiap)y € Tim,n)- Hence

Tiapy Y Timm) = Timn) = Tip,g)-

Consequently T{4p) U T(mn) = T(pq) in the event of (p, ¢) =max{(a,b), (m,n)}.
(iv) Let (p,q), (a,b),(m,n) € Zy x Z; be such that (p, ¢) =min{(a,b), (m,n)}.
If (a,b) > (m,n), then (p, q) = (m,n). Since (a,b) > (m,n), by (ii) we have
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T(m,n) - T(a7b)- Therefore
Tiap) N Timm) = Timm)y = Tipg)-

If (a,b) < (m,n), then (p,q) = (a,b). Since (a,b) < (m,n), by (ii) we obtain that
T(a,b) - T(m’n). Hence
Tap) V) = Tiap) = Tipag)-

Consequently T{4p) N T(mn) = T(p,q) in the event of (p, ¢) =min{(a,b), (m,n)}.

(v) First, we want to show that ({7, ;) | (4,7) € Zy xZy } C{(0,t) |t € Zg }.
Suppose that there exists (z,y) € ({7 | (i-J) € Zg x Zy } ~{(0,%) | t € Zy }.
We have

Tiora = {(t,12) € Z5 x 75 | (t1,12) < (2 — 1,0 U{(0,8) | ¢ € Z5 ).
Since x > = — 1, itis clear that (z,y) > (x — 1,0). Now, we have

(x,y) > (x—1,0) and (z,y) ¢ {(0,%) |t € Zg }.

Hence (x,y) ¢ T(z—14), it is a contradiction with (x,y) € ({1, | (4,7) € Zy %
Zy }. Therefore ({1, | (4,7) € Zg x Zg} < {(0,t) | t € Zy}, as desired.
Conversely, by definition of T{, ), it is clearly that

{0.6) |t € Zg} € (Wi | (i) € Zg x Ly }.

Consequently, ({7 ;) | (i,)) € Zg x Zy } = {(0,t) | t € Z; } as desired. O

Remark. If (m,n) # (0,t),(=1,t) forall t,t' € Zy then T, ) is not a k-ideal of the

ternary semiring Z, X Z .

For (a,b), (m,n) € Zy x Zy and (a,b) < (m,n), the notation S((a,b), (m,n))
will be used to denote the set {(t1,%2) € Zy X Zy | (a,b) < (t1,t2) < (m,n)}.
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Note. For (a,b), (m,n) € Zy xZ, and (a,b) < (m,n), we have that S((a,b), (m,n)) C
T(m,n)

Theorem 4.3. Let (m,n) € Zy x Zy and (m,n) < (—2,0), then S((2m,2n), (m,n))

is a basis for T, ).

Proof. Let (t1,t2) € Timn)-If (t1,t2) € S((2m,2n), (m,n)) or (t1,t2) = (c1, c2)(d1, d2)(m, n)
for some (cy, ¢2), (di,d2) € Zy x Zyg, it is easy to prove that the mentioned case
is a basis for T, ). Suppose that (ti,t) ¢ S((2m,2n),(m,n)) and (t1,t2) #
(c1,¢2)(dy1, dy)(m,n) forany (c1, ¢2), (d1,d2) € Zy XZy . If (m,n) < (t1,t2) < (m,0),

then (1,t2) = (m, z) for some x € Z;. Hence, we can write

(tr,t2) = (m, @) = (—1,0)(=1,0)(m, n) + (0,2)(0, —1)(m — 1, —1).

If (t1,t2) = (0,t) for some t € Z; , then we can write

(t1,t2) = (0,¢) = (0,¢)(0, —1)(m — 1, —1).

Consider (m — 1, —1), Since (m,n) < (—=2,0), m < —2. Therefore

2m <m —1 < m,

sowe get (2m,2n) < (m—1,—1) < (m,n). Hence (m—1, —1) € S((2m, 2n), (m,n)).
Next, suppose that (¢;,t2) < (2m,2n). Let k =min{l € Z; | —l(m,n) > (t1,2)}.
Then we have that

—(k —1)(m,n) < (t1,t2) < —(k)(m,n).

However, this guarantees the existence of an (z,y) € Z; x Zg, (z,y) > (m,n)

such that
—(k)(m,n) + (z,y) = (t1,t2).
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Since (x,y) > (m,n),
(m,n) + (z,y) > (m,n) + (m,n).
Hence
(2m, 2n) = 2(m,n) = (m,n) + (m,n) < (m,n) + (z,y) < (m,n).
Therefore, we get (m,n) + (x,y) € S((2m, 2n), (m,n)). Consider,

(t1,t2) = —=(k)(m,n) + (z,9)

= —(k+1)(m,n) + (m,n) + (z,y).

Since (m,n) € S((2m,2n), (m,n)) and (m,n) + (x +y) € S((2m,2n), (m,n)), it
follows that S((2m, 2n), (m, n)) is a basis for 1{,, ). O

Let (m,n) € Za XZ(; and T(* ) = {(tl,tg) € Za XZE ‘ (tl,tz) = ((—1)k1m, (—1)k2n),

m,n

k1, ko € Zy }. Then we have the following results concerning 77, .

Theorem 4.4. Let (m,n) € Zy X Zy. Then Ty, .\ is an ideal of the ternary semiring
Zy x Ly such that

() Ty = {(0,0)},
(i) T}y = Zg % L.

Proof. First, we want to prove that T, is anideal of Z; x Z; .

Let (al, CZQ), (bl, bg) eTr Then (al, CLQ) = ((—1)k1m, (-1)]1'271) for some

(m,n)*

ki, ko € Zy and (b1, by) = ((—1)ksm, (—1)ksn) for some ks, ky € Z; . Hence

(a1,as) + (b, be) = ((—1)kym, (=1)kan) + ((—1)ksm, (—1)kyn)
(=D)kym + (=1)ksm, (=1)kan + (—1)ksn)

(=1) (k1 + kz)m, (=1)(ka + ka)n).

Since k1 + ks, ko + k4 € Za, (al, ag) + (bl, bg) efTy

(m,n)*
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Therefore T, ) is an additive subsemigroup of Z; x Zj .

Next, let (r1,72), (s1,52) € Zg X Z . Consider

(r151,7259) (a1, as)

= (1181, 7952)((—=1)kym, (—1)kon)
= (ris1(=1)kym, rose(—1)kon)
((=1)(ris1ka)m, (=1)(rasoka)n).

(r1,72) (51, 82) (a1, az) =

Since r181k1,m282ke € Zg , (11,72)(S1, S2) (a1, a2) € T(*;WL). Similarly, we have that
(7“1, 7’2)(&1, ag)(Sl, 82) S T(m n) and (al, a2)<7"1, 7”2)(81, SQ) € T(tn,n)

Consequently, 7{;,  is an ideal of Z; x Z .

@ Tpo = {(ti.t) € Zg x Zy | (t1.12) = (—1)k1(0), (—1)kx(0)), kr, bz €
Zy } ={(0,0)}.

(D) TF ) ) = {(t1,ta) € Zy xZg | (t1,ta) = (—1)k1(=1), (=1)ka(=1)), k1, ko €
Zyy =A{(t1,t2) € Zy X Zy | (t1,ta) = (K1, ko) ki, ke € Zy } =Zy X Zyg . O

Theorem 4.5. Let a,b,m,n € Z; where m,n # 0. Then m|a and n|b if and only if
Taan & Tomny

Proof. Suppose that m|a and n|b. Then a = (—1)zm and b = (—1)yn for some
x,y € Z;. We want to show that T{ ) C T, . Let (t1,¢2) € T(,,. Then

(t1,t2) = ((—1)k1a, (—1)kob) for some ki, ks € Z, . Consider

(t1,t2) = ((—1)k1a, (—1)k2b)
(=Dki(=D)azm, (=1)ka(=1)yn)
(=D (=kiz)m, (=1)(—kay)n).

Since —kyx, —kay € Zy , (t1,t2) € 10, Therefore Tin €T3

(m,n)*

Conversely, suppose that T, g T(’;n,n). Since (a,b) € T(, ) € 1, (a,b) =
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((=1)kym, (—1)kon) for some ki, ks € Z;. Therefore a« = (—1)kym and b =
(—1)kan. Since m # 0, m|a. Since n # 0, n|b. O

From Chapter II, a k-ideal is defined that an ideal I of a ternary semiring S

is called a k-ideal if z +y € I;x € S,y € I imply that x € I.

Theorem 4.6. Let (m,n) € Zy x Zy. ThenT(;, . is a k-ideal of the ternary semiring
Ly X Ly .

Proof. Let (a,b) € Zy xZy and (t1,t2) € T;

(m,n)

.Then (tl,tg) = ((—1)]{31m, (—]_)]CQTL)
for some ki, ko € Z. Suppose that (a,b) + (t1,t2) € T, and (a,b) & T, .
Since (a,b) ¢ 1(;,, .y, @ # (—1)kzm forall ks € Z; or b # (—1)ksm forall ky € Z; .
Without loss of generality , we assume a # (—1)ksm for all k3 € Z;. Since
(a,b) +(t1,t2) € T, )0 (@, 0) + (t1,12) = ((=1)ksm, (—1)ken) for some ks, ke € Z; .

Then we have

(a,b) + (t1,t2) = ((=1)ksm, (—1)ken)
(a,b) + ((—1)kym, (=1)kan) = ((—1)ksm, (—1)ken)
(a+ (=1)kym, b+ (=1)kon) = ((=1)ksm, (—1)ken).

Thus we get a + (—1)kym = (—1)ksm and b+ (—1)ken = (—1)ken. If m = 0, then
(—=1)kym = 0 = (—1)ksm. Thus we have a = 0, so we can write a = (—1)(0)m.
This is a contradiction with a # (—1)ksm for all k3 € Z,. Next, suppose that
m # 0. Since m/|(—1)ksm, m|(—1)kym and a + (—1)kym = (=1)ksm, m|a. Since
a,m € Z; and m|a, a = (—1)lm for some | € Z,. This is a contradiction with
a # (—1)ksm for all ks € Z,. Therefore we can conclude that 77, is a k-
ideal. O

Note. For (m,n) € Z; x Z,. Now, we have that T}

(m,n

) is a k-ideal but 7{, ,,) is

not a k-ideal.

Theorem 4.7. Z, x Z, satisfies the ascending chain condition on T}'

(m,n

)—ideals.
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Proof. Let {1, .., | (min;) € Zy x Zy andi € N} be an ascending chain of
17, m—ideals of Zy x Z; . Thus

(m,n

17, € Thnoma) € T,

(m1,n1) C Lnamg) &
By Theorem 4.5, we have that

(m1,n1) < (mg,ng) < (mz,ng) < ---

Since (m;,n;) € Zy x Z, for all i € N, the increasing sequence {(m;,n;)} of

ordered pairs of negative integers is finite. Thus there exists j € N be such that

TGnime) = Ty my) for each i > j. Therefore Z; x Z, satisfies the ascending chain
condition on 77, ,-ideals. O

For (a,b), (m,n) € Zy x Zy and (a,b) < (m,n), the notation S((a, b), (m,n))
will be used to denote the set {(t1,15) € Zy x Z; | (a,b) < (t1,t2) < (m,n)}.

Theorem 4.8. Let (a,b),(m,n) € Zy x Zgy be such that (a,b) < (m,n). Then
S((a,b), (m,n)) is a basis for T¢; , and T{; .

Proof. Let (t1,t2) € T(;, ;. Then (1, t2) = ((—=1)kia, (—1)k2b) for some ki, ky € Z .

Therefore we can write
(ti,ta) = (=1, =1)(k1, k2)(a, b).

Since (a,b) € S((a,b), (m,n)), S((a,b), (m,n)) is a basis for T, .
Similarly, we have that S((a,b), (m, n)) is a basis for T, . O

Theorem 4.9. Let ay,a9,b1,by € Z; where a1, a2,b1,bo # 0. If —d; is the greatest
common divisor of a; and by, —dy is the greatest common divisor of ay and by, then
there exists s1, so,t1,ts € Z such that

(=1, =1)(s1,82)(ar,as) = (=1, =1)(t1,t2)(b1, b)) + (dy,ds) or

(=1, =1)(t1,t2)(b1,b2) = (=1, —1)(s1, s2) (a1, az) + (dy,ds) or
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(_17 _1)(817 tQ)((Il, b2> - (_17 _1)(t1a 82)(b1a a2) + (d17 d2> or

(=1, =1)(t1, 82)(b1, a2) = (=1, =1)(81,2)(ar, ba) + (d1,d>).
Proof. Since —d, is the greatest common divisor of a; and by, it is well known
that —d; = s{(—ay) + t}(—b1) for some integers s} and t}. Since 0 < —d; <
—a1,0 < —dy < —by and (—a1), (—b1) and (—d;) are all positive, it follows that

si>0and ) <0ors) <0Oandt| >0.If s; > 0and t| <0, then

—dy = si(—ar) + 11 (—b1)
(=Dsi(—a1) = (=1)t1b1 + dy
(=D(=sy)ar = (=)tiby + du.

Thus (-1)81@1 = (—1>t1b1 -+ dl where S1 = —8,1 < 0 and tl = tll < 0.
On the other hand, if s} < 0and ¢} > 0, then

—dy = sy(—a1) + 11 (=b1)
(=Dti(=b1) = (=1)sta: + dy
(=D(=tpbr = (=1)star +di.

Thus (—1)t10y = (—1)s1a1 + d; where s; = s < 0and ¢t; = -t} <0.

Hence we have that (—1)sja; = (—1)t161 + dy or (—=1)t;61 = (—1)s1a1 + di.
Since —d, is the greatest common divisor of a; and by, prove in the same

way, we get that (—1)seas = (—1)taby + dy or (—1)t2by = (—1)s2a2 + ds.

Therefore, now we have

(—1)81@1 = (—1)tlbl + dl or ( )tlbl ( )51a1 + dl

and

(—1)820,2 = (—1)t2b2 + dg or ( )tgbg ( )52a2 + dQ
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Hence

(-1)81@1 = (—1)t1b1 + d1 and (-1)82@2 = (—]_>th2 + d2 (1)

or
(=Dt1by = (=1)s1a1 +dy  and  (—1)teby = (—1)seas + da (2)
or
(—1D)sjay = (=1)t1by +dy  and  (—1)taby = (—1)seas + da (3)
or

(—1)t1b1 = (-1)81&1 + d1 and (—1)82(12 = (—]_)tgbg + dQ. (4)

From (1), we have ((—1)sya1, (—1)ssas) = ((—1)t1b1 + d1, (—1)taby + ds). Then

(—17 —1)(81, SQ)(Gl, CLQ) = (—1, —1)<t1, tg)(bh bg) + (dl, dg)

From (2), we have ((—1)tlbl, (—1)t2b2) = ((-1)810,1 + dl, (_1)320/2 + dg) Thus

(—17 —1)(t1,t2)(b1, bg) = (—]_, —1)(81, 82)((11, ag) + (dl, dg)

From (3), we have ((-1)81&1, (—1)tgbg) = ((—l)tlbl + dl, (—1)820,2 + dg) So

(—17 —1)(51, tg)(ah bg) = (—17 —1)(t1, SQ)(bl, ag) + (dl, dg)

From (4), we have (—]_, —]_)(tl, SQ)(bl, CLQ) = (—]_, —1)(81, tg)(al, bg)—l—(dl, dg) Hence

(—17 —1)(t1, SQ)(bh ag) = (—17 —1)(81, tg)(dh bg) + (dl, dg)

Therefore the proof of the theorem follows. O
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From Chapter II, the identity of the ternary semiring S is defined that if there
exists an element e € S such that eea = aee = eae = a for all a € S, then e is

called the identity of the ternary semiring S.

Remarks. (i) 1is an identity of the ternary semiring Z .
(ii) —1is an identity of the ternary semiring Zj .
(iii) 1 and —1 are identities of the ternary semiring Z.
(iv) (1,1)is an identity of the ternary semiring Zg X Z .
(v) (—1,—1)is an identity of the ternary semiring Z, X Z .
(vi) (1,1),(1,-1),(—1,1) and (—1,—1) are identities of the ternary
semiring Z x 7.

(vii) The ternary semiring Z" has 2" identities.

Note. Let n € N. If we define the additive and the ternary multiplicative opera-

toron Z" or (Z x Z x Z x - - -), as follows

n copies

(alua’27a37”' 7an)+<b17b27b37"' 7bn) =i (a1+b17a2+b27a3+b37”' 7a’n+bn)

and

(ah A2, a3, - 7an)<b17 b27 b37 e an)(clu Co,C3," " 7cn) == (alblclu a2b2627 CL3b3C3, T Janbncn)7

then it is easy to show that Z" is a ternary semiring.

From Chapter II, a homomorphism from a ternary semiring S to a ternary
semiring 7" is defined that a homomorphism from StoT'isamap ¢ : S — T

which satisfies

pla+b) =p(a)+vb) and @(abc) = ¢(a)p(b)p(c)

foralla,b,c € S.
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A monomorphism is a homomorphism which is one-to-one.

An epimorphism is a homomorphism which is onto.

An isomorphism is a homomorphism which is one-to-one and onto.

We said that a ternary semiring S and a ternary semiring 7" are isomorphic, if
there exists an isomorphism ¢ : S — T or there exists an isomorphism

1 : T — S. In this case, we will use the notation S = T'.

Remark. If a map ¢ : S — T is an isomorphism, eg is an identity of the ternary

semiring S, then p(es) is an identity of the ternary semiring T
Theorem 4.10. The ternary semirings Zg and Zg are isomorphic.
Proof. Define a map ¢ : Z§ — Z, by ¢(n) = —nforalln € Z{. Let a,b,c € Z,

consider

pla+b) =—(a+b)=(=a) + (=b) = p(a) + p(b) and

p(abe) = —(abe) = (=a)(=b)(—c) = w(a)p(b)p(c).

Hence ¢ is a homomorphism. By the definition of the map ¢, it is easy to see
that ¢ is one-to-one onto mapping. Consequently, we can conclude that Z; =

Zy . O
Theorem 4.11. The ternary semirings Zg x Zg and Zg x Zg are isomorphic.

Proof. Define amap ¢ : Z§ x Z¢§ — Zg x Zy by

gp(x,y) - (_‘Ta _y) fOI' all z,y S ZS_

To show that ¢ is a homomorphism, let (1, y1), (x2,y2) € Zg x Z. Consider,
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e((r1,91) + (22, 92)) = (@1 + T2, Y1 + Y2)
(= (z1 4+ z2), = (Y1 + ¥2))

((=21) + (=22), (=y1) + (—12))

(=21, —y1) + (=22, —1p2)

= p(z1,1) + 90(%, Y2).

Then ¢ is a homomorphism. By the definition of the map ¢, it is easy to show
that ¢ is one-to-one and onto mapping. Consequently, we can conclude that

Tf X Z§ 2Ly x 7y . O
Theorem 4.12. The ternary semirings Z¢ and 7§ x Zg are not isomorphic.

Proof. Suppose that Z§ = Z} x Z;. Then there exists a map ¢ : Zg — Z¢ x Z§
be such that ¢ is an one-to-one and onto homomorphism. Since ¢ is one-to-one

and onto, there exist z,y € Z; with z # y such that

p(x) = (0,1) and (y) =(1,0)

Since  is an isomorphism and we know that 1 is the only identity of the ternary
semiring Z; and (1,1) is the only identity of the ternary semiring Z; x Z;, we

have that p(1) = (1, 1).
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Letn € ZJ. Then

p(n) = ¢((n)(1))
:<p(3+1+1v+~~~+;)

n copies
=e(1) + (1) +¢(1) +--- +o(1)
n copies
= ngp(1)
=n(1,1)
= (nan)

Hence ¢(n) = (n,n) for all n € Z;. There is no z,y € Z7 satisfying ¢(z) =
(0,1) and ¢(y) = (1,0). Therefore Zj and Z7 x Zg are not isomorphic. O

Theorem 4.13. The ternary semirings Z, and Z, X Z, are not isomorphic.
Proof. This proof is similar to the proof of the Theorem 4.12. N

Note. If we prove in the same way, we get that Z¢ and Z, x Z; are not

isomorphic, as well as Z; and Z; x Z are not isomorphic.

A well-known result states that if ¢ : Z — Z is a ring isomorphism, then
¢(x) = x for all z € Z. In the case of a ternary semiring isomorphism, we obtain

an additional solution of ¢, which is p(z) = —xz.

Theorem 4.14. If a map ¢ : Z — Z is a ternary semiring isomorphism, then ¢(z) = x

or p(z) = —x forall x € Z.

Proof. Suppose that a map ¢ : Z — Z is a ternary semiring isomorphism.
Since 1 and —1 are identities of the ternary semiring Z, thus ¢(1) and ¢(—1)
are identities of the ternary semiring Z. Since 1 and —1 are the identities of the

ternary semiring Z and ¢(1) is the identity of the ternary semiring Z, ¢(1) = 1
or ¢(1) = —1.



Case 1: ¢(1) = 1,letn € Z§

¢(n) = ¢((n)(1))
:¢(;+1+1V+---+;)

n copies
— (1) + 6(1) + $(1) + - + ¢(1)
n copies
= no(1)
=n(1)

Thus ¢(n) = n foralln € Z .
Since ¢ is an isomorphism and ¢(1) = 1, ¢(—1) = —1.
Let m € Z~. Then

-m copies

— 9=+ 0(=1) +9(=1)+ - + 6(-1)
-m copies

= (=m)o(=1)

= (=m)(=1)

Then ¢(m) = m forallm € Z~.

Therefore, we obtain ¢(z) = z for all z € Z.
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Case 2: ¢(1) = —1,letn € Z;. Then

¢(n) = ¢((n)(1))
:¢(;+1+1V+---+;)

n copies
= 6(1) + 6(1) + 6(1) + - + 6(1)
n copies
= ng(1)
=n(=1)

That is ¢(n) = —n for all n € Z; .
Since ¢ is an isomorphism and ¢(1) = 1, ¢(—1) = 1.
Let m € Z; . Then

-m copies

— 9=+ 0(=1) +9(=1)+ - + 6(-1)
-m copies

= (=m)o(=1)

= (=m)(1)

Hence ¢(m) = —m forallm € Zj .
Therefore,we have that ¢(z) = —z for all z € Z.

By any cases, we can conclude that ¢(z) =z or ¢(z) = —zforallz € Z. O

Remark. If S and T are ternary semirings with m and n identities, respectively, where

m # n, then S and T are not isomorphic.



REFERENCES

[1] Kar, S. : Ideal theory in the ternary semiring Z ; Bull. Malays. Math. Sci. Soc.
34 (2011), 69-77.

[2] Allen, Paul J. and Dale, Louis. : Ideal theory in the semiring Z; ; Publ.Math.
Debrecen, 22 (1975), 219-224.

[3] Dutta, T. K. and Kar, S. : On reqular ternary semirings ; Advances in Algebra,
Proceedings of the ICM Satellite Conference in Algebra and Related Topics,
World Scientific (2003), 343-355.

[4] Dutta, T. K. and Kar, S. : A note on regular ternary semirings; Kyungpook
Math. J. 46 (2006), 357-365.

[5] Dutta, T. K. and Kar, S. : On prime ideals and prime radical of ternary semirings;
Bull. Cal. Math. Soc. , Vol. 97, No. 5 (2005), 445-454.

[6] Dutta, T. K. and Kar, S. : On semiprime ideals and irreducible ideals of ternary
semirings ; Bull. Cal. Math. Soc. , Vol. 97, No. 5 (2005), 467-476.

[7] Dutta, T. K. and Kar, S. : On ternary semifields; Discussiones Mathematicae
- General Algebra and Applications, Vol. 24, No. 2 (2004), 185-198.

[8] Dutta, T. K. and Kar, S. : On the jacobson radical of a ternary semiring; South-
east Asian Bulletin of Mathematics, Vol. 28, No. 1 (2004), 1-13.

[9] Dutta, T. K. and Kar, S. : A note on the jacobson radicals of ternary semirings;
Southeast Asian Bulletin of Mathematics, Vol. 29, No. 2 (2005), 321-331.

[10] Dutta, T. K. and Kar, S. : Two types of jacobson radicals of ternary semirings;
Southeast Asian Bulletin of Mathematics, Vol. 29, No. 4 (2005), 677-687.

[11] Malee, S. and Chinram, R. : k-Fuzzy ideal of ternary semirings; International
Journal of Computational and Mathematical Sciences, (2010), 206-210.

[12] Hebisch, U. and Weinert, H.]. : Semirings - Algebraic Theory and Applications
in Computer Science ; World Scientific Publishing Co. Inc. ; River Edge; NJ;
1998.

[13] Kar, S. : On quasi-ideals and bi-ideals of ternary semirings; International Jour-
nal of Mathematics and Mathematical Sciences; Vol. 2005, Issue 18 (2005),
3015-3023.

[14] Golan, J. S. : Semirings and Their Applications; Kluwer Academic Publishers
: 1999.

[15] Lister, W.G. : Ternary Rings; Trans. Amer. Math. Soc. 154 (1971), 37-55.

[16] Petrich, M. : Introduction to Semigroups; Charles E. Merrill Publishing Co. ;
1973.



Name
Date of Birth
Place of Birth

Education

Scholarship

35

VITA

Miss Pattarawan Petchkhaew
15 September 1987
Songkhla, Thailand

B.Sc. (Mathematics)(First Class Honours),
Prince of Songkla University, 2009

Development and Promotion of Science and Technology Talents Project

(DPST)



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I  INTRODUCTION
	CHAPTER II  PRELIMINARIES
	CHAPTER III  IDEAL THEORY IN THE TERNARY SEMIRING Z+0
	CHAPTER IV  IDEAL THEORY IN THE TERNARY SEMIRING Z-0 x Z+0
	References
	Vita

