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This appendix contains some necessary digital communication theory. There are
four main topics describing about signals and linear system, baseband digital
transmission, digital transmission through bandlimited channels, and digital transmission

via carrier modulation.

Fourier Series

(1
In which A(¢) denotes the i Se ¥ on ] \ '\ em, x(¢) is the input signal, and
y(t) is the output signal. if't Nars - X exponential given by
|/
()
Then the output is i
‘ . .
o = tf .
AU IRENTHENT
Q =
N8
"El - 3)

In other words, the output is a complex exponential with the same frequency as
the input the (complex) amplitude of the output, however, is the (complex) amplitude of

the input amplified by
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J.h(‘r)e‘jz”"’dr

Note that the above quantity is a function of the impulse response of the LTI

system, h(f), and the frequency of the input signal, f,. Therefore, computing the

response of LTI systems to exponenti s quite easy. Consequently, it is natural in

linear system analysis to look fo 0dsOf ing signals as the sum of complex
exponentials. Fourier serigg an arier & hniques for expanding signals in

Fourier series i signals with period 7, when

the signal set {e’ 2alTo e expansion. With this basis,

any periodic signal x(¢)

“)

Where the x, 35/ cients of the signal x(¢) and are

H
given by 1!

uiingpingns
AT GAR TR AN b

integral i§ simplified. The frequency f, =1/ T, 1s called the fundamental frequency of the

periodic signal, and the frequency f, = nf, is called the x(¢) harmonic. In most cases

either & = 0or @ =-T, /2 is a good choice.
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This type of Fourier series is known as the exponential Fourier series and can be

applied to both real-valued and complex-valued signals x(¢) as long as they are periodic.
In general, the Fourier series coefficients {x, }are complex numbers even when x(f)is a

real-valued signal.

When x(¢) is a real-valued periodic signal, we have

(©)
From this it is o

(7
Thus the Fo ! , I- ed signal have Hermitian

hase is odd. In the other words,

their real part lﬁﬁm ﬁ}‘lgﬁ(ﬂ %gﬁdﬂ ’] ﬂ ‘j

Another orm of Fourier seri€s, known asgirigonometric Hgurier series, can be

S ARR SRR B8 0

symmetry. Therefore, eir magnitude is even and their p

a—jb

—_— 8
X, 2 (®)

a,+jb
-='l n 9
X =T )

With the use of Euler’s relation
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e ™' _cod o | Fsin| 27— 1
N 1o
We have
(11)
therefore,
(12)

AULINENINYINS
ARIAATAUNNINGIAY
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Periodic Signals and LTI Systems

When a periodic signal x(f) is passed through a linear time-invariant (LTI)
system, as shown in figure 1, the output signal y(¢) is also periodic, usually with the

same period as the input signal and therefore has a Fourier series expansion.

x(¢) and y(t) are expanded as

(13)
(14)
hen e red Bk o x) and 50) canbe
obtained by employing ffie convolutio
ﬂummmfm’m
RN TGPUBIINLAE

From the preceding relation we have
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Vo = x,.H(—"—] (16)

Where H(f) denotes the transfer function of the LTI system given as the Fourier

transform of its impulse response A(?) :

17)
Fourier Transforms
The Fourier tra e S (thi ] series to nonperiodic signals.
The Fourier transform gf af signal g{)bat satisfies \certain conditions, known as
Dirichlet’s conditions [25] s deno ‘:{.vf 3 T, equivalently, F [x(t)] and is defined
- el
___________ e e e (18)
The inverse Fourier lIanSf]lBOf X(f) is x( given by
(19)

ARATSETRATY 8

If x(¢) is a real signal, then X(f) satisfies the Hermitian symmetry, that is,
X(=f)=X"(f) (20)
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Sampling Theorem

The sampling theorem is one of the most important results in signal and system
analysis. It forms the basis for the relation between continuous-time signals and discrete-

time signals. The sampling theorem says that a bandlimited signal, a signal whose Fourier

transform vanishes for | f | >W for some W, can be completely described in terms of its

sample values taken at intervals
intervals 7, =1/2W , know as'the Nyquist interfals®r Nyquist rate), the signal x(t) can

be reconstructed from the

(21)
This result is based on th
(22)

Has a Fourier transfor#

f u%ﬂ%ﬁ'%wﬁ*m
ammniﬁmﬁﬁﬁwmaa

= —X(f) for | f|<W (24)

So passing it through a lowpass filter with a bandwidth of W and a gain of 7, in the

passband will reproduce the original signal.
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The discrete Fourier transform (DFT) of the discrete-time sequence x[n] is

defined by

Xx,(f)= ix[nk'jz’f"n (25)

n=—wo

(26)

which gives the relati/ r r tran \ of an analog signal and the

Numerical comp he -disere . o i -\- ansform is done by the fast

Fourier transform (FFT) algorithm, In sequence of length N of samples

of the signals x(t) taken at in almg ed \ e representation of the signal. The
Skt -

result is a sequence of length N e X, (f )in the frequency interval [0, £.],

where £, —l/T = »7 is sl A 0 5 samples are Af:fs/N
apart, the value of Af g sulting Fourier transform.

The FFT algorithm is computationally ¢ len@ of the input sequence, N, is
a power of 2. In many casésgif this length is mot a power of 2, it is made to be a power of

2 by tecmicueAbig) SRS T IS vt ety give

the DFT of the s“npled signal, in or%cr to get the Fourler transform of the analog signal

M L DR IF L F ARSI W

multiply i by 7, or, equivalently, de it by f, in order to obtain the Fourier transform

of the original analog signal.



82

Frequency-Doinain Analysis of LTI System

The output of an LTI system with impulse response h(t)when the input signal is

x(t) is given by convolution integral

(1) = x(e)* n(e) @7)

Applying the convolution theo \

(28)
Where
(29)
is the transfer function of t;1e yg can be written in the form
______________ (30)

the out;:i}tl,i S Shoﬁ'l ﬁréﬁmﬂ ﬂégw(ﬂﬁ pﬂﬁpw’a of the input and

s

AMIAATUAMINYAE
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Binary Signal Transmission

In binary communication system, binary data consisting of a sequence of 0’s and

I’s are transmitted by means of two signal waveforms, presumably so(t) and s, (t)

Suppose that the data rate is specified as R bits per second. Then each bit is mapped into

a corresponding signal waveform according to the rule

N
Where 7,=1/R is d asfthe bir i \\\

N

g icht fhe s is ans itted is assumed to corrupt the

me that the data bits 0 and 1

are equally probable. In th probablhty , and is mutually

statistically independent.

The channel thro

signal by the addition of néise/ideroted as hich is a sample function of a white

Gaussian process with po s/hertz. Such a channel is called an

additive white ;/ —-'-'”_;'-'-i';T--f-""“"-‘*-"-‘—-'"’E'-;l the received signal

waveform is given by. ,I

J

Al Ny

e klf the receiver is to d wﬁ'i] a ansmitted after
observa ﬁre 4}& ﬁlx i]rﬁrll 'l{;i r is designed to

minimize the probability of error. Such a receiver is called the optimum receiver.
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Optimum Receiver for the AWGN Channel

In nearly all basic digital communication theory, it is shown that the optimum
receiver for the AWGN channel consists of two building blocks. One is either a signal

correlator or a matched filter

Signal Correlator

The signal correlatom

é&d signal r(r) with the two

lustratedvin figure 2. that is, the signal

N

possible transmitted sig

correlator compute the t
(32)

In the interval 0 <7 < s atz =T, , and feeds the sampled

outputs to the detectos: s_.-_—, ‘

- Tutput data

Sample at 1=T,

Figure 2. Cross-correlation of the received signal r(t) with the two transmitted signals
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Matched Filter

The matched filter provides an alternative to the signal correlator for
demodulating the received signal 7(¢). A filter that is matched to the signal waveform s(t),

where 0 < < T, , has an impulse response

(33)
Consequently, th the output of the matched filter,
when the input wavefo lution integral
(34)
If we substitute iy
(33)
Y
And if we sa F e y(t) at ¢ = »» WE obtain
AU INYNINGING
q y(TJQ'=l ?J(Et =E (36)
¢, =

ARIAINTUURIINGAY

ere E is the energy of the signal s(t). Therefore, the matched filter output at

the sampling instant ¢ = 7, is identical to the output of the signal correlator.
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Detector

The detector observes the correlator or matched filter outputs ryand r,and decides
on whether the transmitted signal waveform is 5,(t) or 5,(¢), which correspond to the

transmission of either a 0 or 1, respective. The optimum detector is defined as the

detector that minimizes the probability of error.

Monte Carlo compWitcr_siflulati e UsSnally pcrformed in practice to estimate
the probability of errorof 2 difi tal cation systeri, especially in cases where the
analysis of the detecto ortnangefis diffioult to -S‘ 12 We demonstrate the method
for estimating the probafility o ’ 7 mmunication system described

above.

Uniform random
number generato 4

Output
data

Compare < ’]ﬂi

R8N 50}

Figure 3 Simulation model for binary communication system
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The Power Spectrum of a Digital PAM Signal

A digital PAM signal at the input to a communication channel is generally

represented as signals.

Vty= Y a,glt—nT) (37)
Where {a,} is thewsequence ané)rresponding to the information
symbols from the sourcesmg vaveform, 2@ is the reciprocal of the symbol
rate. T is also called th g lemen he sequence {a,} is selected
from one of the possibl€™
-1 (38)
Where d is a scale fagt % at doten :_ he Buclidean distance between any pair
of signal amplitudes (2d is the ,'f; can di c between any adjacent signal amplitude

levels).

Y

Since the r":i atio sgquence, the sequence {a,}of

iF |

amplitudes correspondmgt to the informatio ymbols from the source is also random.

Consequently,ﬁulzj %ﬂﬂ H;‘naﬁ}»wuﬂ’r] ﬂa‘ijndom process ¥(f). To

determine the sPéctral charactenstlcs of the random process V(t) we must evaluate the

"°Werﬂewflﬂﬁﬂifmﬂﬂﬂmﬂﬂﬂ

Flrst, we note that the mean value of V(t) is

()= iE(an (¢t - n7) (39)
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By selecting the signal amplitudes to be symmetric about zero, as given in (38),
and equally probable, we have E(a, ) = 0 and hence E [ ®)=0.

The autocorrelation function of ¥(¢) is

(40)

It is shown in many iextbooks that the autocorrelation
function is a periodic fun var .-a--‘.‘g_s_; iod 7. Random processes that
have a periodic mean valu ‘\_-\ nction are called periodically
stationary, or cyclostation can be eliminated by averaging
R, (t + r;t) over a sing

(41)

This average autocorrelat :- on c PAM signal can be givén by

(42)

A I \
- =
] I

|

RN~
AN FUARIINGAD

(43)

The power spectrum of V(t) is simply the Fourier transform of the average

autocorrelation function R, ()
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5,(6)= [ R () d
=S (U (44)

where S, (/ )is the power spectrum of amplitude sequence {a,} and G(f ) is the

Fourier transform of the pulse g(t). S

)is defined as

(45)

Characterization of Ba i “Bannel and Chanuel Distortion

Many comm one channels and some radio

channels, may be gen d linear filters. Consequently,

such channels are describ ‘ ‘: > ( (f ), which may be given by

(46)

Where A(f ¥4
response. Another char l teristic that 1s sometimes used

the envelop delay, or growp.delay, which is défined as

AUEINENINEINT

¢ 1.do(f)

amaqn{mm'mmaa

A channel is said to be nondistoring, or ideal, if, within the bandwidth W

a ‘ 6(f) is called the phase

f lace of the phase response is

(47)

occupied by the transmitted signal, A(f ) = constant and 0([) is a linear function of

frequency (or the envelope delay r(f ) = constant). On the other hand, if A(f ) and r( f )

are not constant within the bandwidth occupied by the transmitted signal, the channel
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distorts the signal. If A(f ) is not constant, the distortion is called amplitude distortion, if

7(f) is not constant, the distortion on the transmitted signal is called delay distortion.

As a result of the amplitude and delay distortion caused by the non-ideal channel
frequency response characteristic C(f ), a succession of pulses transmitted through the

channel at rates comparable to the bandwidth W are smeared to the point that they are no

longer distinguishable as well-defi 1 " f / ap the receiving terminal. Instead, they

overlap, so we have intersymbgl ; é
———

In digital co ity t \\x\ ortion  causes
i e

(1S
; \ el that characterizes ISI. For
simplicity, we assume that \\\

and PAM signal.
#idd \ gn
a e £ - n
The transmitted P al 1’" Ve

-l-é “"J 4

ar T

intersymbol

__ (48)
; — f’l

Where g(t) is th 1 basic pulse that 1s selected to co 18 ol the spectral characteristics

of the transmitt ﬁij ﬁ)ﬂ Ej ;T mformation symbols
selected from a te oin Tis the signal interval
(1/T is the symbol rate).

VRN umaﬂmaa

The signal s(f) is transmitted over a baseband channel, which may be

characterized by a frequency response C( F ) Consequently, the received signal can be

represented as
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r(t)= ganh(t —nT)+w(t) (49)

Where A(t)=g(t)*c(r), c(f) is the impulse response of the channel, * denotes
convolution, and w(t) represents the additive noise in the channel. To characterize ISI,

suppose that the received signal is passed through a receiving filter and then sampled at

(50)

.
Where x(¢) is th edal” poise

x(0)= 1y ) = g 3

w(t).Now, if y(t) is sampledfat gmes|

the receiving filter, i.e.,

the receiving filter to the noise

,.--5, WE have

esamﬂEugsj{E Z!léjeyp]rezec;was EJ’] ﬂi
amaﬁnimwﬂﬂmaa
Ve =%,| a, + Zaxkn+vk, k=0,1,... (52)

0 n=0
n#zk

The termx,is an arbitrary scale factor, which we set equal to unity for

convenience. Then
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1 @
Ve =@ +— ) a,x,_, +v, (53)
xo ,,=2

The term a, represents the desired information symbol at the k" sampling

instant, the term

(54)
Represents the ISI, and pling instant.
: \
Communication System i T Bang te 1 i els
In this section we/Co d hé transmitter and receiver filters that

are suitable for a baseband bandii; eros ISI condition. In this case we

assume that the channel is idcal )are constant within the channel
bandwidth . For siiplicity, we & at ALV =1 andz{ )= 0.
A v.-
b |

Signal Design for Zer 1SI

e AU DN IHEIANT i et

Nyquist about 70 years ago. He demafistrated that ag=necessary and safficient condition for

o WRGNTIR I N RTINETR Y

1, n=0
x(nT)= {0 - (55)
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Is that its Fourier transform X (f)satisfy

ix(f+ﬂ)=T (56)

In general, there are many signals thag ot e designed to have this property. One
of the most commonly used*signals in pga ised-cosine frequency response

X,.(1)={% & L3 n i (57)

Where « is called thes6H-6ff factol akes values in the range 0 <a <1,
and 1/T is the symk i-_;,;_;;;:;.::;:.;; / resnonce 3 .f, s illustrated in figure 4(a)
N A

| =0, X 1'} ) reduces to an ideal “brick

wall,” physicall I mﬁ i eg i jj:ﬁ"%: occupancy1/2T . The
frequency l/Zle:ﬁ h Ejm cﬁ , thé&lbandwidth occupied by
e R ATy

excess bandwidth 1s 50, and whena =1, the excess bandwidth is 100. The signal

for =0, a =%, and |

pulsex,, (f ) having the raised-cosine spectrum is

2l sinzz/T cos(zat /T )

58
&AIT 1—-4a*t* T (58)
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A ch(./ .)

1 0 o

Figure 4 Raised-cosine frequencyre: =SponS responding pulse shape. (a) Raised-

U

cosine frequency.#esponse. (b) Pulse shapes for raisedsebsine frequency response.
w_—u.‘

A

T 1

Figure 4(b) illust ates xrc (f) for a = 0 ,1. Since e rc(f ) satisfies (56), we note

that x,.(f)= 1ﬂ Hgnﬁa WH%? w E}’_]ﬂz‘j Consequently, at the

sampling instant¥s = kT, k#0, there‘ls no ISI from adjacent symlaJs when there is no

o QAR R F A HAAR B § B oo

is no lordger zero, and a channel equalizer is needed to minimize its effect on system

performance.

In an ideal channel, the transmitter and receiver filters are jointly designed for

zero ISI at the desired sampling instants¢ = nT'. Thus, if G, (f )is the frequency responses
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of the transmitter filter and G,(f) is the frequency response of the receiver filter, then

the product (cased of the two filters) G, (1) G,(f) is designed to yield zero ISI. For
example, if the product G, (f) G,(f) is selected as

G, (f)G:(f) = X..(f) (59)

where X, (f) the raised-cosine frequency fafphse characteristic, then the ISI is at the

Carrier-Amplitude M

In baseband digi SignakWayefors iaye the form

(63)
where 4, is the amp orms and g, (¢)is a pulse whose shape
determines the spectral cha smitted signal. The spectrum of the

baseband signals is% "’L-=._-T'_-—_—-—:-‘ idy band|f|< W, whereW is
the bandwidth of |GT( I ;& ca ', hat the signal amplitude takes

the discrete values

ﬂ‘lJEl’J‘VIEWIﬁWEI']ﬂ‘ﬁ

2‘m 1-M)d (64)

e I qmmumawmaa

s the Euc idean distance between two adjacent signal points.
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1GANI?

W 0 w7

Figure S Energy density spectrum of the transmitted signal g,(t)

dpass signal
o )cos 271 .t

.r f’ I‘\

Figure 6 Amplitude m \\ :rby the baseband PAM signal

\- yugh a baseband channel, the

are multiplied by a sinusoidal carrier

To transmit the

baseband signal waveforms A (t

of the formcos27f ¢, as she g,;gr r«"-‘ 56 is the carrier frequency (f. > W)
and corresponds ; center—treguency—in—the—passband. 0f the channel. Hence, the

transmitted signal wave !

Auingniweins @
" W‘i SEHETOR MR (R

2
2:(t)= \E O=sr=T (66)

0, otherwise
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The amplitude modulation carrier signal is usually called amplitude shift keying (ASK).
In this case the PAM signal is not bandlimited.

Amplitude modulation of the carrier cos2zf,¢ by the baseband signal waveforms
s,,(¢) shifts the spectrum of the baseband signal by an amount f, and, thus, places the

signal into the passband of the channel. Recall that the Fourier transform of the carrier

is[é’(f—fc)+ S(f+£.))/2. Since multipligation of two signals in the time domain

corresponds to the convolutiog, € 'spett, Lae'frequency domain, the spectrum of

o ——
(67)

Thus, the spectrum of the & \ {¢) is shifted in frequency by the

carrier frequency f. . The bafidpfss signal is@aidouble ideband suppressed-carrier (DSB-

SC) AM signal, as illustrated if figute7. _
i1 :‘L

ﬂ‘lJEl’J‘VIEWﬁWEI']ﬂ‘ﬁ

lu, (Nl

R /Wtuﬁmfa/vm\a

-f+W j+W

Figure 7 Spectra of (a) baseband and (b) amplitude modulated signals
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®

®

[}
|

>

»

v

Figure 8 Signal point constellation for PAM signal

We note that impressing the baseband signal s, (t) onto the amplitude of the

carrier signal cos2zf ¢t does not chan ¢ basic geometric representation of the digital

PAM signal waveforms. Tt ass P #6nal waveforms may be represented in

general as

(68)
where the signal wave
- (69)
. -:.'5
e
and =
2t (70)

b
.li "y
i i¥

denotes the s1gnal pomts that take the M values on the real line, as shown in figure 8.

The sigpal wa\;Ee!orm n) 1S normjzﬂoaurlnt’!n[r]g:,j;hat is,

amaﬂnﬁuumfmmaﬂ

fwle)ar=1 (71)

—0

Consequently,

[ gf.(t)c08227;f6tdt=% jgf,(t)dt+% [3(t)cos 4f tdt (72)
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But
“j 2 =
g2(t)cosdnf,t dt =0 (73)

Because the bandwidth w of g, (¢)is h smaller than the carrier frequency that is,

f. <<W .In such a case, g, (£):is

hence, the integral in (2.3 sis-Cots ﬁycle of the integrand. In view of
(2. 73), it follows that

(74)

Therefore, g, (t) must be ) and (2.74) are satisfied.

e
Demodulation of PAM Signal$ -

N
L

The demodiiatioi-ota-batds
"" |'~'

e Fnay be accomplished in one

of several ways by efing. For illustrative purpose we

i¥

. . i
consider a correlation type demodulator.

B UEANENIT NN
PR INRNAINGIAY oo

where n(t)is a bandpass noise process, which is represented as

n(t)=n_(t)cos 2f.t —n (t)sin 21 .« (2.76)
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And where 7_(f) and n,(t) are the quadrature components of the noise. By cross-

correlating the received signal r(t) with y/(t) given by (2.69), as shown in figure 2.9, we
obtain the output '

Ir‘(t)//(t)dt =A,+n=s,+n 77)

where n represents the addi at'the output of the correlator.

é

The noise compaomner € can be expressed as

(78)

Received S b
signalr) g% {“‘f Sampler ——> To detector

ﬁ%ﬂ@%ﬁ%ﬁ Py s
where Wwaq&ﬂaﬁrmﬂ“ﬁrﬂ %ﬁfqﬁ Bectral density of

the additiye noise. The Fourier transform of l// 1) is

¥()=506:(r - )6, (7 + 1.)] (79

And the power spectral density of the bandpass additive noise process is
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NO
s,.(f)={2> VL=V (80)

0, otherwise

By substitute (79) and (80) into (78) and evaluating the integral, we obtain ol=N,/2.

It is apparent form (77); st to the amplitude detector, that the
probability of error of theweptimiun s carrier modulate PAM signal is

(81)
where £, is the averagé engfgy
Carrier-Phase Modulation
In carrier phase modulation the information—that is transmitted over a

communication chanifel“is ier. Since the range of the

i
1d

carrier phase is 0 <6 :! 7, the carrier phases used to transmit digital information via
digital phase mo ulatlon aﬂe 1. Thus, for binary
phase modulati n ﬂﬁiﬂﬁ '1)?]\%9 = rad. For M -ary
phase modulation, M =2* em i i ﬁf its transmitted
o éiﬂn“%‘ JARTIVETHY

q

The general representation of a set of M carrier phase modulated signal

waveforms is
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u,(t)= AgT(t)cos(Zzy’ct + 27’”"] m=0,1,..M -1 (82)

where g,(t) is the transmitting filter pulse shape, which determines the spectral
characteristics of the transmitted signal and A is the signal amplitude. This type of

digital phase modulation is called phase shift keying (PSK). We note that PSK signals
have equal energy; that is,

(83)

(84)

(85)

Where E_denot o5 the cacrgy. per transmiticd syT . The term involving the
\ 4]

osiWhen f, >> W, where W is the

double frequency compt i e
i¥

i

bandwidth of g (¢).

m@uﬂﬂﬂﬂﬂ§WUﬂﬂﬁ

is a rectangular pulse, it is defined as

’Qﬁ?ﬁNﬂ‘iﬂJ BN Y

g- ()= = 0Lt (86)

In this case, the transmitted signal waveforms in the symbol interval 0 <7 < T'may

be expressed as (with 4 = \/E_ )
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u, (t)= (27y't+—], m=0,1,...M -1 (87)

Note that the transmitted signals given by (87) have a constant envelope, and the
carrier phase changes abruptly at the beginning of each signal interval. Figure 11

illustrates a four phase (M = 4) PSK signal waveform.

Figurgfl 0 Bxammiple of se PSK signal

)-as the sum of two angles, we

A d

By viewing tf

may express the way '9",'-

“)ﬁﬁi’ﬁw B e

)+ 5,0, ()

’Qﬁﬂaﬁﬂ‘imﬂﬁﬂﬂmﬁﬂ

Sme =E, cos(g@)
M

s,. =+E. sin(z—m—n) (89)
M

(88)
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And y,(f)andy, (¢)are orthogonal basis functions defined as

v,(6)= g7 (0)cos 21,1

¥, (t) =—&r (t)Si“ 27f & (90)
By appropriately normali De g, (t), we can normalize the energy
of these two basis functio wodulated signal may be viewed as
two quadrature carriers lepend on the transmitted phase in each
signal interval. Hence, dig 5.are represented geometrically as

on

Signal point constellations fi A2 4. an e Mlustrated in figure 12. We observe
that binary phase modulation is ide P‘JM PAM (binary antipodal signals).
The mapping, 9r ass Bis/into the M =2* possible

<4l
phases may be done inja numb
W

referted assignment is to use Gra
p ad gn y

encoding, in which adjace@tahases differ byﬁe binary digit, as illustrated in figure 12.

Consequently, ﬁ)ﬂSHIQI%ﬁWIﬁnw&ﬂ]sﬂ:%e with Gray encoding

when noise causég the erroneous selection of an adjacent phase to the transmitted phase.

MIAINTUNNINGAY
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Phase Demodulation a

The received bandp al from an AWGN channel may

be expressed as

i é_,.___.'—_;;h_.,_:;r_. _-_J' ,- )sm 2nf t 92)

Fl-

where n_(¢) and n (t) are the two quadrature components of the additive noise.

The rece‘f, signal may be correla

e TR T T e

r=s,+n

2mm 27mm
=|+E.cos——+n E sin—+n 93
(J, e NE sin" ) ©3)

EJ ’J Qn Elﬂj ﬂ%’, ) an (t) given by (90). The
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Where n_ and n_ are defined as

8

N | =

gr(t) (t)dt

8

i
2

"j O, (Ot ©4)

The quadrature noisene .:'_"_'__-7. ents“fulf)wafid 7 (1) are zero-mean Gaussian

—

random processes (N3 Arc COLICIalca As a consequence,

—
E(nc)=E(ns)=0andE A1 \;\.,\.E;‘_. n, is

95)

The optimum detegfor mal vector r onto each of the M

possible transmitted signal the vector corresponding to the

largest projection. Thus, we obtair & . f,._-u- ; metrics

Y] (96)

T i
ii e Ly

Because all signals haveiegal energy, an gguivalent detector metric for digital phase

modulation is tﬁoﬁuﬁjh’}% ﬂmeﬁ. w H '}eﬂfj (r.r,) as
q W'] a'ﬂﬂﬁmﬂéﬂﬂ']? NYNRY o

And select the signal from the set {s, } whose phase is closest to g, .
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The probability of error at the detector for phase modulation in an AWGN
channel may be found in any textbook relevant to digital communications. Since binary

phase modulation is identical to binary PAM, the probability of error is

P, =Q( ZJfJ (98)

where E, is the energy per bit. . ations may be viewed as two binary

phase modulation systeiisee al) carriers. Consequently, the

probability of a bit err@ Dinary phase modulation. For M > 4,

there is no simple cl@ ary’ phase modulation. A good

approximation for P,

99)

where k =log, M bitsk
1

The equivalent bitfeggor probability forM-ary phase modulation is also difficult to

Aeriveidie to ﬁ; u)%’ ’genﬁ H%ﬁg‘w H’])ﬂ;‘ﬁ into the coresponding

signal phases. @When a Gray cocéf, is used m the mappmg, two k-bit symbols

A TR IR
probableqe ors du€ to result in the erronedus selection of an adjacent phase to the

true phase, most k-bit symbol errors contain only a single bit error. Hence, the equivalent

bit-error probability for M-ary phase modulation is well approximated as

P, %Py (100)
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l nt
rt
4-PSK g’ e > 2-bit symbol

Detector

mapper - ? N
n.l

;:" L x ""\u mbol-error
—ﬂ%;i\\ ,
Figure 12 Block diagfamfo{ y. \'~ \\\,ﬁ Monte Carlo simulation.

We have described fethods for- tre ing'digital information by modulating
either the amplitude of the can 0’5“_?,} he carrier, or the combined amplitude
and phase. Digital infokr e transmi itted by'nibdulating the frequency of the
carrier. Y A

As we will obserye fom our treatmens below, digital transmission by frequency

modulation is ﬂn%@ﬂn%&ﬂs%wgﬂaﬂ.%els that lack the phase

stability that isuecessary to perforap carrier phase estimation. Ivontrast, the linear

B AR B Y R
require thie estimation of the carrier phase to perform phase coherent detection.
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Frequency-Shift Keying

The simplest form of frequency modulation is binary frequency shift keying
(FSK). In binary FSK we employ two different frequency, say, f,and f, = f, + Af , to
transmit a  binary information sequence. The choice of frequency
separation Af = f, — f,is considered later. Thus the two signal waveforms may be

expressed as

(101)
where E, is the signal energh ‘- Fasithe |\ n6f the bit interval.
More generally, SKETa ei d to ffansmit a block of k =log, M bits
per signal waveform. In this case, he M signal waveforms may be expressed as
u,(t)= 2;5 -!-f..},:\ :'4 0<t<T, (102)

where E, = kE, ﬂ ﬁﬁqwlﬂ E}e"l)ﬂ)ajmtewal and Af is the

frequency separfifion between successwe frequenmes that is, Af Son = [y for all

" meaﬁﬁmumwmaﬂ
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Demodulation and Detection of FSK Signals

Let us assume that the FSK signals are transmitted through an additive white
Gaussian noise channel. Furthermore, we assume that each signal is delayed in the
transmission through the channel. Consequently, the filtered received signal at the input

to the demodulator may be expressed as

) (103)

where ¢, denotes the 0 the transmission delay) and

n(t) represents the adda expressed as

(104)
The demodulationi a tion , signals may be accomplished by
L
one of two methods. One app !-« -,'- ate the M carrier phase shifts{¢, } and

73773 778

phases may be ignol ;"'f‘———_———f‘

perform phase cohergnt de analternative method, the carrier

|
In phase cohegt demodulatlon the recelved signal r(t) is correlated with each

o 0 BT AHRIWHUART o v

where ¢ %he carrier phase es‘;mates A block diagram 111Uratmg this type of

e QAR AT AUNNARINEA N B .- o

m=0, 1 ..M -1 (imperfect phase estimates), the frequency separation required for

signal orthogonality at the demodulator is Af =1/T, which is twice the minimum

separation for orthogonality when ¢ = ¢A
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The requirement of estimating M carrier phases makes coherent demodulation of
FSK signals extremely complex and impractical, especially when the number of signals is

large. Therefore, we shall not consider coherent detection of FSK signals.

] —"—

Sampleat +=T
cos (227,14 4,)
) E — Output
Received | pleat /=T s decision

signal

Received "
signal

AL
AMIAN TN

- Figure 14 Demodulation of M-ary signals for noncoherent detection

{Detector Output
/ decision

\‘ﬁhz:r(j‘ +(M -1)ary U

ey e

e

leat (=T

I8

Instead, we consider a method for demodulation and detection that does not
require knowledge of the carrier phases. The demodulation may be accomplished as
shown in figure 2.14. In this case, there are two correlators per signal waveform, or a

total of 2M correlators, in general. The received signal is correlated with the basis
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functions (quadrature carriers) N2/T cos(2nf.t + 2mnAfi) and

N2/T sin(2zf .t + 2mnAft), for m=0,1,...M —1. The 2M outputs of the correlators are

sampled at the end of the signal interval and are passed to the detector. Thus, if the mth

signal is transmitted, the 2M samples at the detector may be expressed as

cos2w(k —m)AT —1

[ sin 27(k — m)AfT
= ,/E
e SV | Tk — myAERR

sing,, |+n,

/ /Zﬂ'(k—’n)AfT ]
_— ")”Z;Tﬂ sing, |+n, (105)
m
Where n,, and n,, de/ 1 \\\ \ s in the sampled outputs.

ctor are

&ﬂ 9

(106)
Furthermoregwe observe that wi hen & = - the-siefial/ components in the samples
r,. and r,. will van A -'.'~ ase shift ¢,, provided that the
. lr|l

. .
tween successive frequencnes 1S¥Af =1/T . In such a case, the

ﬁ'mrﬁ EYISWYTNS
oVl agnsRlA T4 Y.

orthogonal

frequency separation ‘b

It can be shown that the 2M noise samples {r, } and {"ks} are zero mean,
mutually uncorrelated Gaussian random variables with equal variancec® = N, /2.

Consequently, the joint probability density function for r, and r,. conditioned on ¢, is
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1 e-[(r,,(—\/E—,cos & )z+(r,,u -JE, sing, )7]/20_1

f.r,,, (rmc’rmx I¢m)= 2 (108)
2no
And form # k, we have
iy e (109)
Given the 2M obsgrved iz @,% !, the optimum detector
' ——
selects the signal that co O imu theposterior probabilities that is
Pls, was : 32 Pl 1) =0, 1. M —1 (110)
Wherer is the 2M-dimen ) ' 7, . When the signals are

equally probable, the opti es the signal envelopes,

defined as

(111)
Y]
and selects the signal ;'f' esponding argest ¢ -y of the set {rm}. In this case

the optlmum detector is cgllﬂan envelope dgtec

i 4 mhwwwmﬂs%
ammmmmwmaa

and selects the signal corresponding to the largest, {rm} In this case, the optimum

detector is called a square law detector.
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