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CHAPTER I

INTRODUCTION

1.1 Polynomials with nonnegative real coefficients

Polynomials with nonnegative real coefficients have been subject to a good deal
of investigations for a long time, see e.g., [2], [3], [4], [5]. In this chapter, we collect
propositions and theorems about polynomials with nonnegative real coefficients. In

order to state relevant known results, we need some notation and terminology. Denote

by
H::{f(x):icixieR[x]: neNU{0}, ¢, >0, ¢; >0 (ogign—m},
Q:—{f(a:)—icixieR[x]: n€NU{0}, ¢, >0, ¢ <0 (ogz’gn—n},
R [2] :{f(x):icia:iER[x]: neNU{0}, ¢ >0 (OSign)}.
For r > 0, let
Q(r) := {f(w)=gcixi€ﬂ%[x]: n e NU{0}, (z—7)f(z) GQ},
Q" (r) = {f(w)ziz:;ciwiew [z]: ne NU{O}, (z —r)f(z) EQ}-

We say that f(z) € (x —r)Q(r) if r is a zero of f(z) and f(x)/(x —r) € Q(r).



In 1992, Roitman and Rubinstein [7] gave the following properties of polynomials
in @, IT and Q(r).

Proposition 1.1. ([7, p. 151]) Let v > 0 and f(z) = > ¢z’ € Rlz] ~ {0}. Then

1) f(z) € Q(r) <= 0<co, ¢; <rciyq forall i€{0,1,2,...,n—1},

ie, f(2) €Q(r) <= 0<c¢y<rci <r’e; <. .. <1
2) f(x) € Q(1) <= the sequence (¢;) is nonnegative and nondecreasing;
3) if 0<a<b, then Q(a) € Q(b);
4) we have Q(r) C II;

5)if f(x) € Q and ¢; #0 for somei € {0,1,2,...,n— 1}, then f(x) has a unique

positive zero;

6) we have

U(I—T)Q(T)Z{f(:v)EQ: ¢i 0 forsome i € {0,1,2,...,n—1}};

r>0

7) if f(z) €11, then f(a*) € II for all k € N; and

if f(x) € Q, then f(a*) € Q for all k € N.

Proof. 1) We have
(x =) f(#) = ™™ + (coo1 —rea)a”™ + -+ + (co — re))w —reo. (L)

Assume that f(z) € Q(r). Then (x —r)f(z) € @, and from (1.1), we have 0 < ¢
and ¢; < rc¢;qq foralli e {0,1,2,...,n—1}.
Conversely, assume that 0 < ¢y and ¢; < r¢;qq for alli € {0,1,2,...,n — 1}. Then

—rcg < 0 and ¢; —reip; <0 foralli € {0,1,2,...,n—1}. It remains to show that



¢y, is positive. We observe that

0<cy<rey <ricy<...<r"le,_4 <r,.

Since f # 0, we get 0 < ¢,,. Hence f(z) € Q(r).

2) We have immediately from part 1) that

fz)eQ(l) <= 0<c<ec <...<c.

Thus, f(x) € Q(1) if and only if the sequence (¢;) is nonnegative and nondecreasing.

3) Let 0 <a <band f(z)=>", ¢z’ € Q(a). By part 1),

0<co<ac <a’cy<...<a" e, <ac,.

Since 0 < a < b, it follows that

0<co<bcy <bcy<...<b" e, 1 <be,.

That is Q(a) C Q(b).
To verify that Q(a) # Q(b), consider g(z) = z* + (a + b)x/2 + ba. Observe that
B-a) , bb-a

(x —b)g(x) = 2° — S r — ba.

Since 0 < a < b,

<0 and —b%a <0,



ie., (r—0b)g(z) € Q and so g(x) € Q(b). But g(z) ¢ Q(a), because 0 < a < b and

(x —a)g(zx) =2° + @xz + MJE —ba® ¢ Q.

4) If f(z) =37 cix’ € Q(r), then (z —r) f(x) € Q. From (1.1), we have ¢, > 0
and

0<cy<re <rie < < r" e, 1 <rlec,.

Since r > 0, we have ¢; > 0 for all i € {0,1,2,...,n}. Then f(x) € IL.

Next, we consider h(z) = 22 + 1 € II. Since r > 0, we have
(x—r)h(z)=(x—r)(@2*+1) =2 —ra’+2 -7 &Q,

ie., Q(r) #IL
5) Suppose that f(z) =Y " ¢z’ € Q and ¢; # 0 for some ¢ € {0,1,2,...,n — 1}.

Let m =min{i € {0,1,2,...,n =1} : ¢ # 0}. From

1 1
f(x) =cpa™ + cn1z™ ' 4+ -+ e cp™

n—m—1 =t

= ™ (Cnxnfm + Cph1T R Cm4+1T —+ Cm) ,

let h(z) = cpz™ ™+ 2™ " 4o+ e+ 6 € R[], Then f(z) = 2™h(x) and

all zeros of h(x) are zeros of f(x). Since f(z) € @), we have
¢, >0 and ¢; <0 forallie {0,1,2,...,n—1} (1.2)

and so h(0) = ¢, < 0. Since the polynomial h(z) is a continuous function and ¢,, > 0,



we have

lim h(z) = lim 2" ™ |c, + —— + =2 4. 4 o > 0.

T—00 T—00 T x2 xn—m—1 rn—m

Then h(x) has a positive zero and so f(x). By Descartes’ rule of sign, any real
polynomial cannot have more positive zeros (counting multiplicity) than there are
sign changes in its coefficients, and by (1.2), we get f(x) has a unique positive zero.

6) Let

A= {Zciz‘ieQ: ¢ #0 forsomeiE{O,l,Q,...,n—l}}.
i=0

Suppose that f(z) = Y0 ¢z’ € A. Then f(z) € Q and ¢; # 0 for some i €

{0,1,2,...,n — 1} . From part 5), there exists a positive number ¢ such that f(¢) = 0.

Let
g(z) = me(—@t = Zaixi € R[z].

By direct calculation, we have

Gp—1 = tCpy Op—2 = Cp—1 +1Cp, Qp_3 = Cp—2 + t(cn—l + tcn)7 SRR

a; = i1 +t(cipo+ - +t(cp1 +tey)...) forall ie{0,1,2,...,n—2}.

Since f(x) € @, we have ¢, > 0 and ¢; < 0 for all : € {0,1,2,...,n — 1}. It follows

that ag = ¢g(0) = ¢o/(—t) > 0. Thus, for all i € {0,1,2,...,n — 2}

a; = Cit1 +Ht(cipo+ -+ t(cao1 +tey) . o) <tlcpa+ -+ t(cnor +ten) . ..) = tag.

From part 1), we have g(z) € Q(¢), i.e., f(x) € (z —t)Q(1).



Conversely, let

p(z) = Z bjr! € U(a: —r)Q(r).

r>0

There exists a positive number k > 0 such that p(z) € (z — k)Q(k). Thus p(k) =0

and p(z)/(x — k) € Q(k), and so

That is, b, > 0 and b; < 0 for all j € {0,1,2,...,m — 1}. Assume that b; = 0 for
all j € {0,1,2,...,m —1}. Then p(x) = b,,z™, which is a contradiction, because
p(k) =0 and k # 0. Then there exists some j € {0,1,2,...,m — 1} such that b; # 0,
ie., p(x) € A.

7) Let f(z) = > ¢zt € IL. Then¢, > 0and ¢; > Oforalli € {0,1,2,...,n —1}.

It is easy to see that for any k£ € N,

F(2®) = cpz™ + " fo, ox TR 4R b € T1

Similarly, if f(z) € Q, then f(z*) € Q for any k € N. O

Theorem 1.2. (/7, Lemma 1]) Let f(x) be a polynomial in Q such that f(0) # 0

and f(z) = f(azk) with k > 1 mazimal. Assume that s is a positive zero of f(x).
1) For any zero w of f(x), we have s > |w|.

2) If wis a zero of f(x) with |w| = s, then w is a simple zero and w/s is a k™ root

of unity (that is, w* = s*).

3) If f(s) = f(se) = 0, where e? = 1 with d > 1 minimal, then f(x) has no zeros

of the form ty where 0 <t < s and ¥* = 1.



Theorem 1.3. ([7, Lemma 2]) Let 11,7, ..., 15 be positive real numbers and fi(x) €

Q(rg) for all k € {1,2,3,...,s}. Then

k=1

Theorem 1.4. ([7, Lemma 3]) If z is a complex number which is not real positive,

then z is a zero of a polynomial in Q(r) for any r > |z|.

Theorem 1.5. ([7, Lemma 4]) Any polynomial f(x) of positive degree with no positive

zeros divides a polynomial in Q(r) for any positive number r > max{|w| : f(w) = 0}.

Part 1) of Proposition 1.1 is closely related to the classical Enstrom-Kakeya the-
orem ([8, Theorem 1.1]). It is an effective criterion to test whether a real polynomial

has all its zeros in the unit disk.

Theorem 1.6. (Enestrom-Kakeya Theorem) If f(x) € QT (1), then f(x) has all its

zeros in the closed unit disk {z € C: |z| < 1}.

Example 1.7. Let f(z) = 42 + 32 + 2z. From Proposition 1.1 part 1), f(z) €
Q" (1). All zeros of f(x) are 0, (—3 —14v/23) /8 and (=3 + iv/23) /8 belonging to the
closed unit disk {z € C:|z| < 1}.

Anderson, Saff and Varga [1] extended Enestrom-Kakeya Theorem to a polynomial

in Q(r) by proving the following result.

Theorem 1.8. ([1, Theorem 1]) Let f(z) = > iz’ € RT[z] N R. If

. C; C;
(8% = min = Imnax
R C TR C R

then f(x) € Q1 (B[f]) and all the zeros of f(x) are contained in the annulus

{zeC: alf] <[z < B}



Example 1.9. Let f(z) = 2%+ 2* + 2° + 22 + z + 1. We have o[f] = 1 = §[f] and

all zeros of f(z) are

1+vV3i —14+vV3i 1—-v3i —1—+/3i

-1,
2 2 2 2

1.2 Objectives

In the next chapter, Chapter II, we answer the following questions:
1. For f(z) € R[z], find the smallest positive real number r such that f(z) € Q(r);
2. For positive real numbers r, 79, . .., rs and fi(z) € Q(ry) forall k € {1,2,3,...,s},

find conditions such that

[ @) eQr)

for some positive real number r < ry + 1o + - - + 1.

3. For positive real numbers ry, ra, fi(x) € Q(r1) and fo(x) € Q(r2), find a
positive real number r such that fi(z) + fo(z) € Q(r).

4. For 21,29, ..., 2, € CX\RT, find > 0 and a polynomial f(z) € Q(r) such that
21, 22, . .., 2 are zeros of f(z).

In Chapter III, we give conditions such that product of two polynomials is not in
Q(r) for any positive real number r. We investigate the lower and upper Enestrom-
Kakeya quotients and their connection with reciprocal polynomials in Chapter IV.
Finally, we give a connection between linear recursions and polynomials in Q(r) in

Chapter V.



CHAPTER 11

BASIC PROPERTIES

2.1 The smallest positive real number r

Given a polynomial in some Q(7), by Proposition 1.1 part 3), this polynomial also
belongs to Q(s) for all s > r, a natural question is to find the least possible value of

r. We answer it in the next proposition.
Proposition 2.1. Let r > 0 and assume f(x) => " ez’ € Q(r).

1) If¢; =0 for somei € {0,1,2,...,n— 1}, thenc; =0 forall j € {0,1,2,...,i}.

2) If
C;
<Ci ch%zx_ol (Cm) ’ 2
then M[f] > 0.

3) If M[f] >0, then the smallest r > 0 such that f(x) € Q(r) is M[f].
4) If M[f] =0, then f(z) € Q(u) for all u > 0.
5) We have M[af] = M[f] for all a > 0.

Proof. By Proposition 1.1 part 4), we have f(z) € II. Then

¢, >0 and ¢; >0 forall i€{0,1,2,...,n—1}. (2.2)
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1) From f(x) € Q(r) and Proposition 1.1 part 1), we get

0<cy<rep <rlcy<...<r"le,_4 <1,

It is easy to see that if ¢; = 0 for some ¢ € {0,1,2,...,n — 1}, then ¢; = 0 for all

j€{0,1,2,...,i.

2) Let M[f] = Jdnax (
ci417£0

3) Suppose that M|[f] > 0. By (2.1) and (2.2), we get ¢y > 0 and ¢; < M|[f]cit1

G > From (2.2), we have M[f] > 0.

Ci+1

for all i € {0,1,2,...,n —1}. From Proposition 1.1 part 1), f(z) € Q(M[f]). Since

f(z) € Q(r) and Proposition 1.1 part 1),

w>mx<q)—Mm

ci+170

Then the smallest » > 0 such that f(z) € Q(r) is M[f].
4) Suppose that M[f] = 0. By (2.1) and part 1), we get 0 =co=c¢1 = ... = ¢p_1.

Then f(z) = c¢,2". From (2.2), we have ¢, > 0 and
(z —u)f(z) = (x — u)c,2™ = ™™ — uc, 2™ € Q for all u > 0.

Then f(x) € Q(u) for all u > 0.
5) Let a > 0. Since f(x) € Q(r) and af(z) = Y i ,acz’, we get af(z) € Q(r).

From (2.1), we have

ac; . C; .
M[af] = Ogr?glx_l (GCHl) = Ogrznglx_l (Ci+1> = M[f]

aCz‘Jrl?éO C'L+17éo



From Theorem 1.8 and Proposition 2.1, we have the following corollary:

Corollary 2.2. Let r > 0 and f(x) € Rx].

1) If f(x) € R [z] \ R, then B[f] = MI[f].

11

2) If f(z) € Q(r), then all zeros of f(x) lie in the close circle with radius M|f].

Proposition 2.3. Let a1, as, as, ... ,a, be positive real numbers. Then

M [ﬁ T+ a;) Zaz
i=1

Proof. Since (z — a;)(z + a;) = 2> —a} € @, we have z + a; € Q(a;) for all i €

{1,2,3,...,m}. By Theorem 1.3, we have

By Proposition 2.1 part 3), we get

Since

=1

and (2.1), we have

Then

ﬁ (x+a;) =z™+ (iaZ) gineEpoy
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Example 2.4. Let f(z) = (22 + 4)(42 + 1)(42 + 3). Then

flz) =32(x +2)(z+ 1/4)(x + 3/4).

By Proposition 2.3, we get

e

M (x+2)(m+i)(x+g) =2+

By Proposition 2.1 part 5), we have M[f] = 3.

2.2 Product of polynomials in Q(r)

The result in Theorem 1.3 tells us that multiplying a polynomial in Q(ry) by
a polynomial in Q(ry) generally resulting in a polynomial in Q(r; + 72). Another
natural question is to ask in which situation the resulting polynomial remains in the

old class. This question is treated in the next proposition.
Proposition 2.5. Let r > 0 and assume f(z) =Y, ,cix’ € Q(r).

1) For w >0, we have x +w € Q(w) and

(x+w)f(x) € Q(r) <= cho1 < (r —w)cy.

2) For w < 0, we have (z + w) f(z) ¢ Q(r).

Proof. 1) Let w > 0. Then z +w € Q(w). Since f(z) € Q(r), by Proposition 1.1

part 1), we have

0< Co, C; < rCit1 for all 7 € {O, 1,2, e, — 1} (23)
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Consider

(x—=r)(z+w)f(z) = (x—r)(z+w) chx’

= ot 4 (cpoy — ren Fwen) 2" 4 (Culg — Ten1 Fw(c,1 — 1ey))a"

+ o4 (cg —res Fw(er — rep))a? + (—reg +wlcy — rey))x — wrey. (2.4)

Since r > 0, w > 0 and (2.3), we have —wrcy < 0, —rcy + w(cy — rep) < 0 and
¢; — rciy1 + w(ciyr — rege) < 0 forall i € {0,1,2,...,n—2}. Then (2.4) and

Proposition 1.1 part 1) show that
(x—w)f(x) € Q(r) <= ch_1 —rey + we, <0 <= cp1 < (1 —w)cy.

2) Suppose that w < 0. Let (z —r)f(z) = 3 a;a’. Since f(z) € Q(r), we get
an1 > 0 and a; < 0 for all i € {0,1,2,...,n}. Assume that (z + w)f(x) € Q(r).

Then

n+1
(z —r)(z +w)f(z) = (z +w) Z ;7" = A8+ (@, + wap )"
=0

+ (an—1 +way)z" + - - + (ap + war)x + wag € Q.

We have way < 0 and a;,_; + wa; < 0 for all ¢+ € {1,2,3,...,n+1}. From w < 0,
we get ag > 0. Since 0 < ag < —waq, we get a; > 0. Since 0 < a1 < —waq, we get
as > 0. Similarly, we have a; > 0 for all ¢ € {0,1,2,...,n}. Since 0 < a; < 0 for
all i € {0,1,2,...,n}, we have a; = 0 for all : € {0,1,2,...,n} and (x — r)f(x) =

12" Hence r > 0 is a zero of a, 12", which is a contradiction. O

Example 2.6. Let r =4, w =2 and f(z) = 2%+ 22 + 8. By Proposition 2.1 part 2)

and part 3), we get M[f] =4 and f(z) € Q(4). Since ¢ =2 < (4—2)(1) = (r—w)co,
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by Proposition 2.5 part 1), we have

(v +2)f(x) = 2° + 42® + 122 + 16 € Q(4).

Theorem 2.7. Let r > 0, w > 0, m € N and f(z) = Y i ¢z’ € Q(r). Then

(x +w)™ € Q(mw) and

(x+w)"f(z) € Q(r) & ch_1 < (r — mw)cy,. (2.5)

Proof. From w > 0, we have z +w € Q(w). By Theorem 1.3, we have (z + w)™ €
Q(mw). Next, we prove (2.5) by induction on m. The case m = 1 is done by using

Proposition 2.5 part 1). Assume that (2.5) is true for m. We claim that

(z+w)" " f(2) € Q(r) & cn1 < (r— (m+ Dw)cy,.

Let (z + w)™" f(z) € Q(r). Since

(33‘ —|—w)m+1f(a:) — CnmernJrl 4 (Cnfl 4 (m C 1)wcn)xm+n S Comerl c Q(T),

by Proposition 1.1 part 1), we get ¢,_1 + (m + 1)we, < rc,. Then

Cn1 < (r—(m+ Dw)cy,.

Conversely, suppose that ¢,y < (r—(m+1)w)c,. Then ¢,_1 < (r—mw)e,. Since

(2.5) is true for m, we have (x +w)"f(z) € Q(r). Let F(z) = (x + w)™ f(x). Then

F(z) = @™ + (cp1 + mwe,)a™ " oo cou™ € Q(r).
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Since ¢,—1 < (r — (m + 1)w)c,, we have
Cn—1 + mwe, < (r—w)ey,.
From Proposition 2.5 part 1), we have (z +w)F(x) € Q(r), i.e.,
(z +w)™ f(z) € Q(r).

[
Example 2.8. Let w =7, m =5 and f(z) = 22* + 102 + 4002% + 37z + 15. From
Proposition 2.1 part 2) and part 3), we have M[f] =40 and f(z) € Q(40). Since
cs =10 < (40 — (5)(7))(2) = (M[f] — mw)es,

by Proposition 2.7, we have

(z+7)°f(x) = 20” + 80a° + 17302" + 257972° + 2556202° + 15443192*

+ 51043302° + 72184352 + 8019342 + 252105 € Q(40).

Theorem 2.9. Let 1y, r9 be positive real numbers and let fi(x) = Zj:o c;x? € Q(ry)
and fo(x) = Son  dyz® € Q(ra). If ¢y < (r1 — o)y, then fi(x)f2(z) € Q(r).
Proof. Since fi(z) € Q(r1) C II and fo(z) € Q(r2) C I, by Proposition 1.1 part 1),

we have

0<c¢j 0<ecy, ¢; <rcjq forall j€{0,1,2,...,J -1}, (2.6)

0< dk, 0< dK, di, < T2dk+1 for all k£ € {0,1,2,...,K—1}. (27)



Suppose that ¢;_1 < (11 — r2)cy. From (2.7), we have

dy,
r9 2> max .
0<k<K—1 \ djy1
di+17#0

Then for all k € {0,1,..., K — 1} with dy1 # 0, we have

di;

it

cj1 < (r —re)ey < (r1 — )Cs.

By Proposition 2.1 part 1) and (2.7), we have

CJdk -+ CJfldk+1 S Tlc]korl for all £ € {O, 1,2, ey K — 1} .

If J]> K, then J =K + T for some T'€ NU {0}. We have

J+K

fi@) folw) = Y aia’
i=0
where

ap = deo + Ck,1d1 = Cldkfl + Codk, (0 < k < K),

A+t = Crtdo + Cxr—1dy + -+ + cepidi—1 + ¢dg, (0 <t <T),

16

(2.8)

Ag+T+k = Cikardr + Crar_1dpr1 + -+ crapr1drg 1 + erardyg, (0 <k < K).

Since ¢y > 0 and dy > 0, we have ag = cydyp > 0. From (2.6), we have for all

ke{0,1,2,.. . K—1}

ap = deo—FCk,ldl—'—‘ . '+Cldk71+00dk S T1(0k+1d0+0kd1+' . '+Cldk+00dk+1) = Tr1Qg4+1
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and for all t € {0,1,2,..., T — 1}
A+t = CrtdotCrii—1di+ - Fcdx < ri(cxprmdotcrpdi+ - Fc1di) = TGk 4141

From (2.6) and (2.8), we have for all k € {0,1,2,..., K — 1}

a7k = [Cr4rde + Cxyr—1dpa] + [cxpr—2dite + - - + crypdig—1 + cryrdi]
<1 [exsrdis] +r1leksr—1diss + - + erppedi—1 + cripp1di]

=T OK+T+k+1-

Then 0 < ag and a; < rja;4q for all ¢ € {0,1,2,...,J + K — 1}. By Proposition 1.1

part 1), we have f1(z)fz(z) € Q(r1).

If J]< K, then K =J + S for some S € N. We have

J+K

fi@)fole) = 3 b’
i=0
where

bj = Codj + Cldj—l + -+ Cj—ldl + deo, (0 S ] S J),
biys = Codyps + C1dyps—1 + -+ cjrdsyr +cyds, (0<5<S),

brysss = Cidyrs + ciprdyys—1 + -+ cjidsyjpr + cpdsyy, (0S5 < J).

Since ¢y > 0 and dy > 0, we have by = cydy > 0. From (2.6), we have for all

je{0,1,2,...,J -1}

bj = Codj +C1dj71 +-- '+Cj,1d1 +de0 < 7’1(60(1j+1 +Cldj +-- '+de1 +Cj+1d0) = lej+1
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and from (2.7) and 0 < 5 < rq, we have for all s € {0,1,2,...,5 — 1}

byys = codyis +crdyis—1+ -+ cgds <ro(codyisi1 + rdyis + -+ + cydsiq)

<ri(codysst1 + crdyps + -+ cydsyr) = ribyrsia.

From (2.6) and (2.8), we have for all k € {0,1,2,..., K — 1}

brrsss = [cjdyys + cjpdyrs—1 + - -+ cj_adsyjro] + [cr—1dsyjp1 + crdsyy]
<71 lejpidyrs + Cipodyrs_1+ -+ cyoidsyjvo) + 11 [cydstjia]

=r1bis1jt1-

Then 0 < by and b; < 71b;1q for all i € {0,1,2,...,J + K — 1}. By Proposition 1.1

part 1), we have f1(z)f2(z) € Q(r1). O

Example 2.10. Let fi(z) =423 + 22 + 8z and fo(x) = 62* + 323 + 322 + 22 + 1. By

Proposition 2.1 part 3), we have M|[f,] = 8 and M|f,] = 1. Since

ca=1<(8—-1)(4) = (M[fs] = M[fo])cs,

by Theorem 2.9, we get

f1(2) f2(x) = 2427 + 182° + 632° + 352 + 302° + 1722 + 8z € Q(M[f1]).

Remark 2.11. The converse of Theorem 2.9 is not true. For example, let fi(x) =

22% +42? + 2 + 5 and fo(x) = 2* + x + 4. Then M[f1] =5 and M|[f,] = 4. Since

fi(@) fo(x) = 22° + 62" + 132° + 222° + 9z + 20,
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we have M|[fi fo] = 3. By Proposition 1.1 part 3), we get fi(x)f2(x) € Q(M]f1]). But
Cy = 4> (5 — 4)2 = (M[fl] — M[fz]) C3.
Corollary 2.12. Keeping the notation of Theorem 2.9, if

MU = %22 M{f) and M{f) = S,

then

M{fifo] = M[f1] = Ci_; + dgKl-

Proof. Since

M{fi) = =25+ M)

we have ¢y = (M[f1] — M|[fs]) ¢;. By Theorem 2.9, we get fi(z)fa(x) € Q (M[f1]).

Then M|[fifs] < M[f1]. Since

dp_
f1($>f2<$>:CJdK:C‘H-K—I—(CJ,ldK—l-CJdKil) xJ+K—1+,_._|_COd0 and M[fz] _ CIZ( 1’
K
we have
_1d dp— _ dw_ B
M[f1f2] > Cj—10dKg + CcyjdK—1 :CJ 1 n PEIAT] cy 1+M[f2]:]\/[[f1].
cydr Cy dg s
Then

M[fifa] = M[fi] = Ci_;l + dg};l'
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Example 2.13. Let fi(z) = 323 + 32% + 9z and fy(z) = 22 + 423 + 622 + Tz + 2.

By Proposition 2.1, we have M|[f;] = 3 and M|fs] = 2. Since

3

MIf]=3=5+2="2 4 M[f] and M[fﬂ:Q:%—d?’
3

3 T dy

by Corollary 2.12, we get

M][fifo] = M[62" + 182° + 482° + 752" + 812® + 692° + 18z] = M[f,] = 3.

Theorem 2.14. Let ry,79,73,...,1s be positive real numbers and assume
Ji
Fio@) = cwpa™ € Q(ry)
=0

for all k € {1,2,3,...,s}. If

can-1 < (ri— ) Te)ean),
k=2
then
[T #e(2) € Q).
k=1
Proof. We prove by induction on s. The case s = 1 is obvious. The case s = 2 is
done by Theorem 2.9. Assume the assertion is true for k € {1,2,3,...,s}. Let
s+1

can-1) < (r — Zrk)c(l,Jl)-
k=2

From 0 < reyy and 0 < ¢y, y,), we have
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Thus,
F(z) =[] fule) = Coa’ + Cyaa’™" + -+ Co € Q(r)
k=1

where J = J1 + Jo + - + Js, C5 = c1,0)C2,0) " Cls,gs)s Co = €(1,00)C(2,00) * * * C(s,J0)

and
Cro1 = c,5—1)C2,05) ** * C(s,Js) T C(1L, 1) C2,Ta—1) " * Cs,0s) T+ CIC@,Tn) " * Cs,Ts—1)-

We claim that C;_1 < (r; —rs11)Cy. Since

Ik
fi(@) = epa™ € Qry)
=0
for all k € {2,3,4,...,s} and
s+1
ca,n-1) < (r1 — Zrk)c(l,h)a
k=2
we have
can-1) S (11 =To =73 — o =Ty = Tsp1)C1,0)
C(2,J2—1 C(3,J3—1 C(s,Js—1
can-1 < (1 — YA INYIaS - Ts41)C(1,01)
6(27J2) 0(37J5) C(S’JS)

Cyo1 < (r1—re41)Cy.

By Theorem 2.9, we get F(z) for1(x) € Q(r1), i.e, [[11] fu(x) € Q(r1). O
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2.3 Sum of polynomials in Q(r)

Theorem 1.3 treats the product of polynomials in Q(r). We next consider the

sum of polynomials in Q(r).

Proposition 2.15. Let 0 < o < 11, f(z) = Y. a2’ € Q(r1) and g(x) =

S bt € Q(rs).
1) If n =m, then f(z)+ g(z) € Q(r1).
2) If n > m, then f(z)+ g(z) € Q(r1) if and only if am + by < F1amsr.
3) If n < m, then f(z)+ glz) € Q(r1) if and only if an + by < r1bpysr.

Proof. Since f(z) € Q(r1) and g(z) € Q(r2) and Proposition 1.1 part 1), we have

0 <ag, a; <ria;yq forall i€ {0,1,2,...,n—1}, (2.9)

0 < bo, bj ST’ij+1 for all jE {0,1,2,...,771— ]_} (210)

1) Suppose that n = m. Then

f(@) + g(z) = (an + bp)x" + (ap—1+ bp1)x" " + -+ + (a1 + b1)z + (ag + bo).

Since 0 < ry <7y and (2.10), we have b; < r1b;; foralli € {0,1,2,...,n —1}. From
(2.9), we get 0 < ag + by and a; + b; < r(a;11 + biq) for alli € {0,1,2,...,n—1}.
From Proposition 1.1 part 1), we have f(x) 4 g(x) € Q(r1).

2) Suppose that n > m. Then

f(@) + g(2) = ana" + an12™ "+ -+ a1 2™+ (A + by 2™

+ (amet1 + bm1)2™ 4+ (a1 + bi)x + (ag + bo).
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Since 0 < r5 < 7y and (2.10), we have b; < rb;4; forall j € {0,1,2,...,m — 1} . From
(2.9), we have 0 < ap+by and a;+b; < ri(a;41+b4q1) forall j € {0,1,2,...,m — 1}.
By Proposition 1.1 part 1) and (2.9), we have f(x) 4+ g(x) € Q(rq) if and only if
G + by < T

3) Suppose that n < m. Then

f(@) 4 9(@) = bpa™ + b1 @™+ by 2™ 4 (@ + by)2"

+ (an_1 + byo1)z™ "+ oo+ (a1 + b1)z + (ag + bo).

Since 0 < 79 < 71 and (2.10), we have b; < b4 foralli € {0,1,2,...,n—1}. From
(29), we have 0 S ag + bo and a; + bl S Tl(ai+1 -+ bi+1) forall ¢ € {0, 1, 2, e — 1}
By Proposition 1.1 part 1) and (2.10), we have f(z) + g(x) € Q(r1) if and only if

an+bn S len+1. O

Example 2.16. Let f(z) = 2* + 2z + 6 and g(z) = 22> + 4z + 3. From Proposition

2.1 part 3), we have f(x) € Q(3) and g(z) € Q(2). By Proposition 2.15 part 1),

f(z)+g(z) =32 + 62 +9 € Q(3).

Example 2.17. Let f(z) = 42% + 22% + 8z + 12 and g(v) = 5z* + 8z + 24. From

Proposition 2.1 part 3), we have f(z) € Q(4) and g(z) € Q(3). Since

ag+by =2+5<(4)(4) = (11)(as),

by Proposition 2.15 part 2), we have

f(x) + g(x) = 42® + 72* + 162 + 36 € Q(4).
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Example 2.18. Let f(z) = 22? + 8z + 7 and g(z) = 32 + 422 + 8z + 10. From

Proposition 2.1 part 3), we have f(z) € Q(4) and g(z) € Q(2). Since

az +by =244 < (4)(3) = (11)(b3),

by Proposition 2.15 part 3), we have

f(x) + g(x) = 32° + 627 + 162 + 17 € Q(4).

Corollary 2.19. Keeping the notation of Proposition 2.15. Let

o ; a; N : b;
m[f] := Ogrz%lgl—l <ai+1) and mlg| := ogﬁ%ﬁl_l (b_+1> )

a;+1#0 bj+1#0 I

1) 1n=m and MIf) = Mlg) = mlg], then M[f + g) = M]f).

2) Ifn>m, M|[f] = M|g] = mlg] and a,,+b,, < a1 M[f], then M[f+g] = M|[f].

3) Ifn <m, M[f] = M|g] = m[f] and a,+b, < boy1 M[f], then M[f +g] = M|f].
Proof. 1) By Proposition 2.15 part 1) and Proposition 2.1 part 3), we have M[f+g] <
M]|f] = mlg]. Then

bl+1M[f+g] é bz for all 7 € {0,1,2,..‘,71— 1}
Since
(@js1 + b)) M[f +g] > (a; + b;) for all i € {0,1,2,...,n—1},

we have

a1 M[f+g]>a; forall i €{0,1,2,...,n—1}.
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By Proposition 2.1 part 3), we get M[f + g] > M[f]. Hence M[f + g] = M|f].

2) Since n > m, we have

f(@) + g(z) = ana™ + an12™ '+ -+ a1 2™+ (A + by )™

+ (At b)) 2™ 4 - (ag + b))z + (ag + bo). (2.11)

By Proposition 2.15 part 2) and Proposition 2.1 part 3), we have M|[f +g] < M[f] =
m[g]. Then

bl+1M[f—|—g]§bZ for alliE{O,l,Q,...,m—l}.

Since

(@iv1 + b)) M[f +g] > (a; + b;) for all i € {0,1,2,...,m — 1},

we have

aiaM[f+g] >a; forall i € {0,1,2,...,m—1}. (2.12)

Since a1 M|[f + g] = am + by, and by, > 0, we have

A1 M[f + g] > am. (2.13)

By Proposition 2.1 part 3) and (2.11), we get

aiaM[f+g]>a; forallie {m+1,m+2m+3,...,n—1}. (2.14)

By Proposition 2.1 part 3) and (2.12) —(2.14), we have M[f + g] > M]f]. Hence

M]If + g] = M[f]. The proof of part 3) is similar to part 2). O



26
Example 2.20. Let f(x) = 7z° 4+ 42% + 62 + 12 and g(z) = 2> + 2 + 4. Then
MIf] = M[g] =ml|g] =2 and ay + by =5 < 14 = a3 M|[f]. By Corollary 2.19, we get

M][f + g] = M[72® + 52* + 8z + 16] = 2 = M[f].

Corollary 2.21. Let 0 < 7y < ry_y < ... < r. If fe(z) € Q(r) have the same

degree for all k € {1,2,3,...,s}, then

S fil) € Q).

Example 2.22. Let fi(z) = 2% + 42® + 112 + 7, fo(z) = 2® + 32% + 22 + 1 and
f3(x) = 223 + 32% + 62 + 2. By Proposition 2.1 part 3), we have fi(z) € Q(4),

fa(z) € Q(3) and f3(z) € Q(2). By Corollary 2.21, we have

fi(@) + folx) + fa(x) = 42® + 102% + 192 + 10 € Q(4).

2.4 Zeros of a polynomial in Q(r)

Our next result provides equivalent conditions for polynomials with real coefficients

to have zeros which are not real and positive.

Theorem 2.23. Let z1, 29, . . ., 2. be complex numbers. Then the following statements

are equivalent:
1) all elements 2y, 29, ..., 21, are in C N R

2) there exists p(x) € Q(r) for any r > |z1| + -+ + |zx|, such that

p(z1) = plz2) = - = p(z) = 0;
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3) there exists g(x) € I1 such that g(z1) = g(22) = -+ = g(zx) = 0;

4) there exists q(x) € Q and w € RT ~{z,..., 2z} such that
g(w) = q(z21) = q(z2) = --- = q(z) = 0.

Proof. (1) = (2). If r = |z + |22 + -+ + |2x| + €, € > 0, then by Theorem 1.4,
there exists pj(x) € Q(|z;| + €¢/k) such that p;(z;) =0 for all j € {1,2,3,...,k}. Let
p(z) = Hlepj(:v). Clearly, p(z1) = p(29) = -+ = p(2zx) = 0. From Theorem 1.3, we
know that

p(z) € Q=] + [za + - - + || + €) = Q(r).

(2) = (3) Suppose that p(z) € Q(r) for any r > |z1| + - - - + |2x|, such that
p(z1) = plz2) = -+ = pla) =

From Proposition 1.1 part 4), we have Q(r) C II. Then p(x) € II.

(3) = (4). Assume that there exists

9(x) = g™ + gmo18™ - gro g €11

such that g(z1) = g(22) = -+ = g(zx) = 0. Since g(z) € II, we have g, > 0 and
g > 0 forall t € {0,1,2,...,m — 1} and so none of z, 29,...,2; can be real and
positive. If all the elements 21, 2o, . . ., 2, are equal to 0, choosing ¢(z) = 2% — z € Q,

we see that (iv) holds with w = 1. If z; # 0 for some j € {1,2,3,...,k}, choose

() = (gmx™)?* = (Gm12™ " + Gno2™ 2+ -+ g1+ g0)? € Q.
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Since g(x) is a factor of ¢(x), we have ¢(z1) = q(22) = -+ = q(z) = 0. From z; # 0
and Proposition 1.1 part 5), we know that ¢(x) has a unique positive zero, say w,
which must then be distinct from all zq, 2o, ..., 2, as desired.

(4) = (1) follows directly from Proposition 1.1 part 5). O
Example 2.24. Let z; = =2, 20 = —1, 23 = (_1_1_@'\/5)/2, Then |21| +|z|+|2s| = 4.
Taking
p(z) = (z+2)(@? + o+ 1) (@ + a2 4o +1) = 2%+ 42® + 72t 4 92° + 82 + 5z +2 € 11,

we see that p(z1) = p(z2) = p(z3) = 0. Since

(x — 4)p(x) = (v — 4) (2% + 4a® + 72" + 92° + 82 + 51 + 2)

=27 —92° —192% — 2823 — 2722 — 182z — 8 € Q,

we have p(z) € Q(4). From Proposition 1.1 part 3), p(z) € Q(r) for all r > 4. This

agrees with Theorem 2.23 parts ii) and iii). To verify Theorem 2.23 part iv), take

q(x) = (x6)2 — (4x5 + 72t + 923 + 822 + 5z + 2)2 = 712 _ 16210 — 564

— 1212® = 1902" — 2332° — 2302° — 1822 — 1162° — 572” — 20z — 4.
Clearly, ¢(x) € @, and by direct computation we find g(w) = q(z1) = q(22) = q(z3) =
0, where w ~ 5.59114.

A simple necessary condition for a real polynomial to belong to Q(r) is given in

the next lemma, which will be used in the next chapter.
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Lemma 2.25. Let r > 0. If

F(x) = Fpa™ + Fpoa™ ' 4 4 Foa® + Flo + Fy € Q(r),

then F(1) — F,, < r(F(1) — Fp).

Proof. Since F(z) € Q(r) and Proposition 1.1 part 1), we have 0 < Fjy and F; < rFj

for all s € {0,1,2,...,m — 1}. Thus,

FO)—Fp,=F+F+ - +F, 1 <r(Fh+--+F,) =r(FQ1) - F).

O

Example 2.26. Let F(z) = 3x* + 223 + 42? + 52 + 1. From Proposition 2.1 part 3),

we have F(z) € Q(2). By Lemma 2.25, we get

F(1) = Fu = 12 < (2)(14) = 1(F(1) - Fy).



CHAPTER II1

PRODUCT OF TWO POLYNOMIALS

Given f(x),d(z) € R[x] ~ R. This chapter is devoted to the problem of finding
conditions ensuring that f(z)d(z) € Q(r). The next theorem is a simple application

of Lemma 2.25.

Theorem 3.1. Let r > 0 and let

f(@) = ot + @™+ e+ ¢ € R[z] N R,

d(z) = dpa™ + dpr @™+ -+ diz + dy € R[z] N R.

If f(D)A(1)(1 —1) > cpdy, — reody, then f(x)d(z) ¢ Q(r).

Proof. Assume that f(z)d(z) € Q(r). From Lemma 2.25, we know that
F)d(1) = endyy < 7(f(1)d(1) = codo),

e, f(1)d(1)(1 —r) < cpdy — repdy, contradicting the hypothesis f(1)d(1)(1 —r) >

Cndy, — rcodp. O

Example 3.2. Let r = 1/2, f(z) = 22° +42? + v + 1 and d(z) = 2* + 2z + 1. Then

PO =) =) (1 3) > @0 - (5) O = ad: - rad

By Theorem 3.1, we have f(x)d(x) = 22° 4+ 8z* + 1123 + T2* + 3z + 1 ¢ Q(1/2).
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Example 3.3. Let r =1, f(z) = 2>+ 2+ 1 and d(z) = 2® + 1. Then

FMAM)(1 =r) = B)(1) (1 =1) =0 = (1)(1) = ()(1)(1) = cads — reodo.

By Proposition 2.1 part 3), we have f(z)d(z) = 2%+ 2t + 2> + 22 + 2+ 1 € Q(1).

Remark 3.4. The converse of Theorem 3.1 is not true. For example, let r = 3,

f(z) = 2?4+ 2x and d(x) = = + 3. By Proposition 2.1 part 3), we have

f(x)d(z) = 2° + 52° + 62 ¢ Q(3).

But f(1)d(1)(1 —r)=(3)(4)(1 —3) < (1)(1) — (3)(0)(3) = cady — rcodp.

Corollary 3.5. Keeping the notation of Theorem 3.1, if ¢, > 0, ¢o > 0 and

fL) —cn 27 f(1),

then f(x)d(z) ¢ Q(r) for all d(z) € RT[z] \ R.

Proof. Assume that there exists a polynomial d(z) € R*[z] \ R such that f(z)d(z) €
Q(r). Then we have d(1) > d,, > 0 and dy > 0. Since f(1) — ¢, > rf(1), we get

f(1)(1 —r) > ¢,. From d(1) > 0, we have

fd(1)(1 —7r) > c,d(1).

From d(1) > d,, and ¢, > 0, we get ¢,d(1) > ¢,d,,. Then

fd()(1 —r) > cpdm,
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Since rcody > 0, we have

f(d(1)(1 —r) > epd,, — reody,

contradicting Theorem 3.1. [

Example 3.6. Let r = 12, f(x) = 22> — 3z + 27 and d(z) = z + 5. Then

F(1) — e = 24 < (12)(26) = rf(1).

By Proposition 2.1 part 3), we have f(z)d(z) = 223 + T2* + 12z + 135 € Q(12).

3.1 Brunotte exponents

Conditions ensuring that a product of two real polynomials does not belong to

Q(r) can also be derived using the following lemma of Brunotte, [3, Lemma 2].

Lemma 3.7. ([3, Lemma 2]) Let s > 0. If d(x) € R[z| is a monic polynomial having
no nonnegative roots, then there exists an h € N bounded by an effectively computable
constant such that (z + s)"d(x) has only positive coefficients. (We call the parameter

h = hs 4 the Brunotte exponent of d(z) with respect to s.)

Proposition 3.8. Let r > 0 and s > 0,

f@)=a"+co12" '+ +az + o € R[] \R,

d(x) =z™ + dpr2™ 4+ -+ dix+dy € Rlz] < R.

Assume that d(x) has no nonnegative real roots with h = hgg4 being its Brunotte
exponent of d(x) with respect to s. If ¢ >0, f(1) =1 >rf(1) and c,—1+dp—1—7+

hs <0, then f(x)d(x) ¢ Q(r).
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Proof. Since (x —r)f(x)d(z) = 2™ + (c,o1 +dppq — 7)™ T 4+ - -+ (—1codp), the
hypothesis ¢, 1 + d,,_1 — 7 + hs < 0 and Theorem 2.7 show that (z + s)" f(x)d(x) €
Q(r). Since (x + s)"d(z) € R*[z], the hypothesis f(1) — 1 > rf(1) and Corollary 3.5

imply that f(x)d(z) ¢ Q(r). O

3.2 Enestrom-Kakeya like conditions

In this section, we derive some Enestrom-Kakeya like conditions which are neces-

sarily for a product of two polynomials not to be in Q(r).

Theorem 3.9. Let r >0 and f(z) = > ez’ € RY[x]. If
¢; >rcipy forall i€{0,1,2,...,n—1}, (3.1)

then f(x)d(z) & Q(r) for all d(z) € Rlz] \ {0}.
Proof. Let

d(z) = Zdjxﬂ' e Rz] ~ {0}.

If f(z)d(z) € Q(r), then Proposition 1.1 part 1) gives

0 S Codo (32)
Codo < T(Cldo + Cod1> (33)
Cldo + Codl S T(ngo -+ Cldl + Con) (34)

Cm_1d0 + Cm_2d1 + -+ Codm_1 S T(Cmdo + Cm_1d1 + -t C()dm) (35)

Cmdo + Cm,1d1 4+ + C(]dm S ’I”(CerldO + Cmd1 + 4 Cldm), (36)

where we adopt the convention that ¢; = 0 for all ¢ > n, and d; = 0 for all j > m.
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From ¢g > 0 and (3.2), we get dy > 0. From (3.3) and (3.1), we have

(co —rey)dy < repdy and dy > 0.

From (3.4) and (3.1), we get

(¢r —reg)dy + (co — rer)dy < regds,

which together with previous results yield ds > 0. Continuing in the same manner

up to (3.5), we get d3 > 0,dy > 0,...,d,, > 0. Thus,

(cm - Tcm+1)d0 + (Cm—l - Tcm)dl =5 (Cl 2\ TCQ)dm—l + (CO - Tcl>dm Z 0. (37)

Since ¢; > regqq for all 4 € {0,1,2,...,n — 1}, the left hand expression in (3.7) can
be 0 only when dy = dy = -++ = d,,, = 0, i.e., d(z) = 0, which is not possible. Thus,
the strict inequality holds in (3.7), which contradicts (3.6). O

Example 3.10. Let » = 3 and f(z) = 2® + 62>+ 192 + 60. Then the condition (3.1)

is true. Choose d(z) = 2% + 2z + 3. By Theorem 3.9, we have

f(z)d(x) = 2° + 82" + 382° + 1162 + 177z + 180 ¢ Q(3).



CHAPTER IV

ENESTROM-KAKEYA QUOTIENTS

In this chapter, we investigate the lower and upper Enestrom-Kakeya quotients
and their connection with the reciprocal polynomials.
Definition 4.1. Let f(z) = >"" ¢z’ € RY[z] be a non-constant polynomial. We

define its lower and upper Enestrom-Kakeya quotients, respectively, by

. G Cn—2 Cp—1
alf] ::mln{—,—,..., \ }
C1 C2 Ch—1 Cp
and
Ch C1 Cnh—2 Cp—1
Bf] ::max{—,—,..., L. }
C1 Co Ch—1 Cp

Proposition 4.2. Let f(z) € RT[x] be a non-constant polynomial.
1) The upper Enestrom-Kakeya quotient B[f] is the smallest r > 0 such that f(x) €
Q™ (r).
2) The lower Enestrom-Kakeya quotient has the property that if p(x) € QT (r) with
0 <r <alf], then f(x)1p(x) over Rx].

Proof. 1) The first part is obtained directly by Proposition 2.1 part 3) and Corollary

2.2 part 1). Next, we prove part 2). Let p(z) € @ (r) with 0 < r < a[f]. By

Definition 4.1, we have

r< for all i € {0,1,2,...,n—1}.

Ci+1
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Since f(z) € RT[z], we have ¢; > re¢;yq for all ¢ € {0,1,2,...,n—1}. Assume
that f(x) | p(z) over R[z]. There exists some polynomial d(x) € R[z] such that

p(z) = f(x)d(z) € QT (r). Then d(x) # 0, contradicting with Theorem 3.9. O

Polynomials having positive real coefficients with equal upper and lower Enestrom-
Kakeya quotients are of very special form which are intimately connected to Enestrom-

Kakeya theorem as analyzed by Hurwitz, [1].

Proposition 4.3. Let f(z) = > 1", ¢;x' € R [z] be a non-constant polynomial. Then
the lower and upper Enestrom-Kakeya quotients of f(x) are equal, i.e., a[f] = B[f]
if and only if f(x) is of the form f(x) = ¢, (x™ +tz" ' + 22" 2 + - + "Lz + ")

for some positive real number t.

Proof. Suppose that «[f] = 8[f]. Then

Co o &1 o a Cp—3 o Cp—2 N Cp—1
—JI 2 T - - ?
&1 Co Cn—2 Cn—1 Cn
and so
2 2 3 n—1 n
o Cn— Cn—2 . Cpn—1 Cpn—1 Cn—1
Cp—2 = y Cp—3 = - 2 N n—2" Co = n_1"
Cn == G cn cn
and so

f(x) = cpa" + Cn—1$n71 + Cn—2$n72 + Cn,gxnf?’ +--4cxr+c €RT [x] <R

=, (ZL‘n—|—tl‘n_1—|—t21’n_2+"'+tn_1$+tn)

where t = ¢,_1/¢, > 0. The converse is trivial. O

The upper and lower Enestrom-Kakeya quotients are inverse of each other for a

special class of polynomials known as self-reciprocal polynomials.
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Definition 4.4. Let f(z) = c,2™ + ¢, 12" ' + -+ 4+ 17 + ¢o be a polynomial with

deg(f) = n. The reciprocal polynomial of f(x) is defined as
f*(l’) - xnf<1/x) =Cp+ Cp1T+ 0+ Clxn_1 + coa”,

and we say that f(z) is self-reciprocal if f(z) = f*(x).

Proposition 4.5. If f(x) € R*[z] is a non-constant polynomial, then B[f*] = 1/a[f],
and f*(z) € QT(1/a[f]). Moreover, if f(x) is self-reciprocal, then B[f] = 1/a[f] and
flz) € QT(1/alf]).

Proof. Writing f(x) = ¢, 2™ + ¢, 12" ' + -+ - + 1@ + ¢o € RT[2] \ R, we have
f () =a"f(1/x) = cp + cp1z+ -+ 12" + coa”

and so

C1 Co Cn—1 Cn,

ﬁ[f*]:max{ LB

) )
Co C1 Ch—2 Cp—1

b= 1/l

From Proposition 4.2 part 1), we have f*(z) € QT(B[f*]) = QT (1/a[f]). If f(x) is

self-reciprocal, then clearly §[f] = 1/a[f] and f(z) € QT (1/alf]). O
Proposition 4.6. If f(z) € R [x] is a non-constant self-reciprocal polynomial, then
1) off] <1, and
2) a[f] =1 if and only if B[f] = 1.

Proof. 1) If a[f] > 1, then 1/a[f] < 1 < a[f]. Since f is self-reciprocal, by Proposi-
tion 4.5, we get f(x) € Q1 (1/a[f]), which contradicts Proposition 4.2 part 2).

2) follows readily from Proposition 4.5. [
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Remark 4.7. From Proposition 4.3 and Proposition 4.6 part 2), a nonconstant self-
reciprocal polynomial f(z) with equal lower and upper Enestrom-Kakeya quotients
is of the from

f@)=c, (@"+2" " +2" 2+ -+ +1).



CHAPTER V

CONNECTION WITH LINEAR RECURSIONS

In this chapter, we give a connection between linear recursions and polynomials
in Q(r).
Definition 5.1. Let k be a positive integer. We say that the sequence (uy,)n>0 C C

satisfies a linear recursion of order £ if there exist complex numbers by, ..., b, # 0

such that

Uptk = blun+k41 + bgun+k42 Rl bkun (TL > O)

By Theorem A.7 [6], we have the following theorem:

Theorem 5.2. Let (u,)n>0 be a sequence of complex numbers. The following two

assertions are equivalent:

1) (un)n>o satisfies a linear recursion of order k, i.e., there exist complex numbers

bi,ba,...,by # 0 such that

Untk = D1Upig—1 + botlpip—o + -+ + byu, (n>0).

2) the power series Y - u,x" has positive radius of convergence and there ea-
ists a polynomial f(z) of degree k such that the product f(z)Y " u,x™ is a

polynomial of degree < k with complex coefficients.

In 1992, Roitman and Rubinstein characterized linear recursions which imply a

linear recursion with nonnegative coefficients.
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Theorem 5.3. [7, Theorem 5]) Let ay,aq, ..., ax be given complex numbers, and let
P(z) = 2% — aya*t — -« —ai. Then the conditions (A), (B) and (C) below are
equivalent:

(A) Any infinite sequence (uy),~, of complex numbers which satisfies the recursion

Uptk = Q1 Unp—1 + QlUpip—2 + -+ apu, (n > 0),

for n > 0 satisfies also a linear recursion with nonnegative coefficients.
(B) The polynomial P(x) divides a polynomial in Q.

(C) In Case the polynomial P(x) has a positive zero s, then all conditions 1)—4)
below are satisfied:
1) s > |w| for any zero w of P(x);
2) if |w| = s for some zero w of P(x), then w/s is a zero of unity;
3) all zero of P(x) with absolute value s are simple;
4) if P(s) = P(se) =0, where ¥ = 1 with k > 1 minimal, then P(z) has no

zeros of the form ty where 0 <t < s and v* = 1.

Next, we show that polynomials in Q(r) are related to sequences satisfying certain

linear recursions.

Definition 5.4. Let » > 0 and (“n)nzo be a sequence in C. We say that a sequence

(Un),>o belongs to the set CQ™(r) if it satisfies a linear recursion of the form

Unit = —Qt1Unit—1 — G—2Unit—2 — -+ — QU (1 >0), (5.1)
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for some fixed ¢t € N, where its characteristic polynomial
ga) ="+ g1z 4+ qr + g

is in Q1 (r).

Theorem 5.5. Let k € N, r > 0, and p(z) = 2F — pya*t — .. — pp € Clz]. Then

the following assertions (A) and (B) are equivalent.

(A) Any infinite sequence (“n>n20 of complex numbers which satisfies the recursion
Unyk = Prllnsk-1+ PoUnik—2 + - +ppun (0 >0), (5.2)

belongs to the set CQ™(r).
(B) The polynomial p(x) divides a polynomial in Q*(r).

Proof. We have

* 1 —
p*(x) = ap (E) =1—px—- — pp1a™ " — pa* € Cla].

(A) = (B). Consider a power series 1/p*(z). Write 1/p*(x) = > 7 u,z". We have
that p*(z) > ", u,@™ = 1 which is a constant polynomial. By Theorem 5.2, we have
the power series 1/p*(x) satisfies a linear recursion (5.2). From (A), the power series
1/p*(x) satisfies also a linear recursion with coefficients in CQ™(r). There exists
some t € N and positive real number ¢, qo, . . ., ¢; such that the power series 1/p*(x)

satisfies also a linear recursion

Un4t = —qt—1Un+t—1 — qt—2Untt—2 — *** — JoUnp (n > 0)7
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and its characteristic polynomial is

Q(m) = :L‘t + qtflxtfl + [N + QLT + qO c Q+(7">

We have

Thus,

so p(x)|q().
(B) = (A). Let g(z) = qa* + ¢34+ - + quz + o € QT (r) be divisible by
p(z). We can assume that ¢, = 1. Then there is a polynomial g(z) of degree s such

that p(x)g(z) = q(z). Thus,

por ) = (1) wa (1) = (1) =0

where k + s = t. Assume that an infinite sequence (u,,) of complex numbers satisfies
the recursion (5.2). Thus, p*(x) ), 5o usz"™ is a polynomial of degree < k. Conse-

quently,

@) Y " = g @) () 3w

n>0 n>0
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is a polynomial of degree < k + s. By Theorem 5.2, we have

Un+t = —Gt—1Un+t—1 — Gt—2Un4t—2 — *** — qolUn

for all n > 0, showing that the sequence (u, )¢ satisfies a recursion of the form (5.1).

Since ¢(x) € QT (r) and Definition 5.4, we have (u,),>0 € CQ™(r). O
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