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CHAPTER |

INTRODUCTION

The problem of fluid flow through various shapes of obstacles is
interesting in many applications. Especially, the determination of fluid velocity field has
been investigated by many approaches, for example the flow around multiple aligned
cylinders [1, 2] and the flow past arrays of spheres [3]. When the fluid flows around solid
objects, the characteristic of fluid flows is indicated by Reynolds number. There are two
types of fluid flow, laminar and turbulent [4]. Laminar flow occurs when the fluid stream
around the object is smooth, while turbulent flow occurs when the fluid stream breaks up
and causes little whirlwind currents next to the object which occurs at high Reynolds
number. In between, fluid flow is in the transition range. In this research, the velocity
profiles for laminar flow through randomly distributed spheres are considered. This type
of fluid flow occurs for valugs of Reynolds number Re = pv ja/n <1, where p, Vv, 7,
and a are the fluid density, entrance velocity, viscosity, and the sphere radius,
respectively. For Re > 1, the fluid flow which is incompressible and irrotational is called
potential flow which is an ideal fluid. The potential flow is described by Laplace’s
equation, Vz(p =0, where @ is the velocity potential. At steady state, the laminar flow
velocity field is described by the Navier-Stokes equation which is Poisson’s
nonhomogeneous equation. This equation can be explored by using Green'’s function

techniques to obtain the velocity field describing laminar flow around random spheres.

Several models have been developed to describe the system of fluid
flow pass individual type of obstacles [3, 5, 6, 7, 8]. The simplest and most successful
model to determine velocity -profiles ~of laminar flow through randomly distributed
spheres is the free-surface model due to Happel [9]. The model consists of two
concentric spheres; the inner sphere represents one of the spheres in the assemblage
and the outer sphere is a fluid envelope. The surface of the outer sphere is assumed to
be frictionless; its size is fixed by sphere volume packing fraction or density of the
spheres in the system. In this research, we used an effective medium treatment (EMT).

In the EMT, the system of fluid and spheres is replaced by a composite sphere -- a



representative sphere of radius a enclosed by a fluid shell of radius b -- embedded in
an effective medium of different viscosity. The velocity fields in the fluid shell and in the
effective medium as a function of sphere volume packing fraction (y° =a3/b %) or
density of the spheres in liquid are determined by using Green’s theorem and proper

boundary conditions.

This thesis begins with a review of Green’s function for Poisson’s
equation as given in the second chapter. The determination of the formal solution to
Poisson’s equation with Dirichlet boundary conditions and Green’s function in a

spherical shell are reported.

In Chapter 3, we discuss the Happel model and demonstrate the
derivation of the laminar velocity field of fluid flow around random particles moving in the
fluid at rest. Then the transformation of this velocity field to the reference coordinate

system fixed on a representative particle is performed.

In Chapter 4, the derivation of fluid flow fields by using effective medium
treatment (EMT) with Green’s function technique reviewed in Chapter 2, and proper
boundary conditions is discussed in detail. Two regions are considered: outside the
shell (in the effective medium) and in the shell regions. We consider for the cases of low
packing fraction (y3<0.1) and 73>O.1 separately. Then our results are compared with

Happel flow fields for varying various packing fractions.

In Chapter 5, the flow fields obtained-in this research as presented in the
previous chapter are applied to describe the trajectories of magnetic particles carried
by the fluid of laminar flow type. Finally, the capture radii are investigated for varying ¥

and presented in comparison with the results based on Happel flow fields.

The last chapter is devoted to the conclusion and discussion of the
velocity flow fields obtained in this research and its applications. There, the comparison
of velocity profiles and capture radius (r,) with the results based on Happel's theory

are discussed.



CHAPTER I

GREEN’S FUNCTION FOR POISSON’S EQUATION

Our research concerns the solution to Poisson’s equation in any region of
a spherical shell with Dirichlet boundary conditions. Poisson’s equation is a special case
of Helmholtz equation which is amenable to the method of Green’s function technique.
In this chapter, the development of the formal solution to Poisson’s equation with
Dirichlet boundary conditions is reviewed with the construction of Green’s function in a

spherical shell of radii @ and b .
2.1 Formal Solution to Poisson’s Equation

In this section the used of Green’s theorem to construct the formal
solution for Dirichlet boundary value problems is presented. First we discuss the general

solution of Helmholtz equation and next the Poisson’s equation in electrostatics.
2.1.1 Green’s Identities and Methods

We now consider the general solution of the three-dimensional scalar

Helmholtz partial differential equation [10]

VEi(r) + fo(r) =f (F) (2.1)
subject to the generalized homogeneous boundary conditions

op(ry)

P =0. (2.2)

a,0(r,) +a,

Here T, is on surface S with: N ~an outward directed unit vector, and ‘@, and «, are
constants. The Green’s function G(r,r’) of Equation (2.1) must satisfy the partial

differential equation
VG (r,r) + BG(r,r)=06(Ff -1 (2.3)

subject to the generalized homogeneous boundary condition [10]



oG (r,,r")
on

a,G(F,,F) +a, =0. (2.4)

To accomplish this we need two identities from vector calculus that are

usually referred to as Green'’s first and second identities.

Consider a volume V enclosing the surfaces S;, S,, S;, ..., S, as
shown in Figure 2.1. By introducing appropriate cuts, the volume V is bounded by a
regular surface S that consists of surfaces S,-S ,, the surfaces along the cuts, and
the spherical surface S, of infinite radius which encloses all the smaller surfaces. A unit

vector N normal to S is directed outwards the volume V' , as shown in Figure 2.1.

Figure 2.1 Surfaces and appropriate cuts used in Green’s theorem [10].



Let us introduce within V' two scalar functions ¢ and w which their first
and second derivatives are continuous within V. and on the surface S . To the vector

¢§l// we apply the divergence theorem

§Ads = [V.Adv ,
thus {(W w).ds = Wv w).fida = j V.V p)dv . (2.5)
When expanded, the integrand of the volume integral can be written as

V() =V.(Vy) + VoV iy =gV y + VoV . (2.6)
Thus Equation (2.5) can be expressed as

PV y)ds = @V p)dv + [ (VoY p)dv 2.7)

which is referred to as Green'’s first identity. Since

y)n =22 (2.8)
on

where the derivative 81///8n is taken in the direction of positive normal, equation (2.7)

can also be written as

0 .
f(o" s = [(@Vip)dv + [ (V49 y)dv
on
=[ (Vv + VgV p)dv. (2.9)
which-is analternative form.of Green’s first identity.

If we repeat the procedure but apply the divergence theorem of Equation
(2.5) to the vector YV¢, then we can write, respectively, Green’s first identity of

Equation (2.7) and its alternative form of Equation (2.9) as

fva)ds = [WVig)dv + [(Vy.Vev (2.10

and



0 o
§(w£)ds = [V Pav + [(VyVg)av . (2.11)
Subtracting Equation (2.10) from Equation (2.7) we can write

VY - wVe)ds = [y - yVih)dy 2.12)

which is referred to as Green’s second identity. Its alternative form

J# 2L -y Shyds — [ (@7 y — V" gy 2.13)
n on

is obtained by subtracting Equation (2.11) from Equation (2.9).

With Green’s first and second identities, we now develop the formulation
of the generalized Green’s function method for the partial differential equation (2.1)

whose Green’s function G (1, r ) satisfies Equation (2.3).

Let us multiply Equation (2.1) by G(r,r') and Equation (2.3) by ¢(r).

Doing this leads to
GVip + p2¢G =1G (2.14a)
and oV’G + BP9G = po(F —1). (2.14b)

Subtracting Equation (2.14a) from Equation (2.14b) and integrating over the volume V ,

we can write
j p5(F - F)dv — j fGdv = j (pV?G. - GV?p)dv (2.15a)
or
p(r =1r') =p(r)
= [£(OG(F.F)av + [[p(F)VEG (F,F) ~G(F.F)V2p()hv . (2.150)

Applying Green’s second identity (2.12) reduces Equation (2.15b) to



o(F") :jf (F)G (F,F")dv +§[(p(r‘)ve (F,F") =G (F,F)Ve()].ds. (2.16)

Since r' is an arbitrary point within V. and r is a dummy variable. By

!

—
the mathematical symmetry property G(r,r )=G(r ,r), we can also write Equation

(2.16) as
o(r) = If (rG(r,r)dv’+ j[gp(r")?’G (r,F") =G(r,r)V'e(r].ds’, (2.17)
where V' indicates differentiation with respect to the prime coordinates.

Equation (2.17) is a generalized formula for the solution of a three-
dimensional scalar Helmholtz equation. It can be simplified depending on the boundary

conditions of ¢ and G, and their derivatives on S .

If the nonhomogeneous partial differential equation (2.1) satisfies the

nonhomogeneous Dirichlet boundary condition

o(r,) =9 (r,). (2.18a)

where r, is on S, then we can still construct a Green's function that satisfies the

boundary condition
G(r,,r')=0, (2.18b)
where r, ison S .

For these boundary conditions on ¢ and G the second term in the

surface integral of Equation (2.17) vanishes, so that Equation (2.17) reduces to
o(F) = [ (F)G(F,F)dv '+ §o(F)V'G(F, ,F)ds", (2.19)

@ is scalar function which along with its first and second derivatives are continuous
within V' and on the surface S . In the next section we will considered this formal

solution in a specific case for electrostatics.



2.1.2 Green’s Theorem for Electrostatics

This section we review the construction of formal solution to Dirichlet

boundary value problems for Poisson’s equation in electrostatics.

For the special case of Helmholtz equation (2.1), Poisson’s equation for

the electrostatics potential @ takes the form

vig - £ (2.20)

€y
where p(r) is the charge density found within volume V' . The contributions of charges
that might be found outside the volume of interest are represented by the boundary
conditions, either the potential or its normal derivatives on the bounding surface. It is
useful to define the Green'’s function G (r,r ') to be the potential at I produced by a

unit point charge at r ' satisfying the partial differential equation (2.3) as the solution to
VG (r,r') = -4zo(r —r) (2.21)

subject to appropriate boundary conditions to be specified later. Next we apply Green’s
second identity (2.13) by choosing ¢ to be the electrostatic potential ® and ' to be

the Green’s function G (r,r "), so that

[eE)vic(r.F) -G Fvier) b’
' 2.22
—ﬂ@( )ae(r ) G(“)a‘D(r)]ds (2.22)
on'’

Using Poisson’s equation (2.20) and the definition of the:Green’s function in Equation

(2.21), this becomes

—4;4(@( VS(F —F') =G (F, *')p( )j

drg,

- (2.23)
_§(q>( )6G(r .r) G(F,F’)—aq;r(]r,)jds’

Thus, a formal solution to Poisson’s equation is [11]



_ 1
CD(r)=47[€
0

Lo iy PP gen G )
+4ﬁj§(G(r,r) o D(r') o }13 . (2.24)

If there were no boundary surfaces, the first term would represent the familiar
electrostatic potential produced by a specified charge distribution. The second term
then represents the contribution made by external charges that determine the conditions

on the boundary surfaces.

For Dirichlet boundary conditions specifying @ on S , it is required that

Green'’s function vanishes on S so that [11]

aG(r r)d

O(F) = # [ p(F)6 (F, Fiydv - §®(") (2.25)

This equation is a formal solution to Poisson’s equation with Dirichlet boundary
conditions. The Green’s function G (r,r') in this equation will be determined in the next

section.
2.2 Green’s Function in a Spherical Shell

We seek to construct a Green’s function for Poisson’s equation that
vanishes on the concentric spherical surfaces of radii @ and b . A Green'’s function for

a Dirichlet potential-problem satisfies the equation
VG(r,r)=-4z5(f —r'). (2.26)

The Laplacian in spherical coordinates, (r, &, @) , has the form

2
V2 zizi(ﬁi%% i(ﬂ ) 1 ¢ (2.27a)
reor or r°sin@\ 00 S|n¢98¢

and



10

1
r<sind
(2.27b)Using Equations (2.27a) and (2.27b) into equation (2.26) which takes the form

1 a( zae) 1 o (. oG 1 0°G
——r + —| sind + —
r2or or ) r?sing| o6 00 ) sing o¢?

S )60 - 0)5(p - 4). (2.28
r<siné

S(F —F') =

or—r"o@-0Y(¢—-9").

2

We define the operator

2
L® = _Li sing s im0 | (2.29)
sin@ 60 060 ) sin® 0 o¢p°

The eigenfunctions of L2 subject to the boundary conditions that these eigenfunctions
are finte at §=0 and &=z are the spherical harmonics Y,,(€,¢4). The
corresponding eigenvalues are | (I +1) where | =0, 1, 2, ... etc. and m is an integer

whose values are from =1 to | [12],
LY, (6,¢4) =1(1 +1)Y, (6,9). (2.30)

From the above condition, Equation (2.28) can be written as

1 0( ,0G6) L’ Ar
— | = |-56=- o(r —r)o(@ - 004 - ¢). 2.31

We expand G(r,r") interms of these eigenfunctions;

0 1’

G(F,F') :z zg|m'(F’F’)Y|m'(9’ ¢) (2.32)

1'=0 m'==I"

By substituting Equation (2.32) into Equation (2.31) and using Equation (2.30) one

obtains
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e |1 d ([ ,dg,. (1 +1)
ZZ{Td_r[r dr j_ ) g|m}/|m'(6,¢)

r

___ 47 S0(r =r)5(0-0)5(p - ¢). (2.33)
r sinéd

Multiplying both sides of Equation (2.33) by r?, "(8,#)sin@ and integrating over @

from 0 to 7 and over ¢ from 0 to 27 , one obtains

d_(r 2 Mj —1(l +1)g,, = —4x5(r —r')Y, (6,4). (2.34)
dr dr

In obtaining Equation (2.34), we have used the orthogonality property of the spherical

harmonics,
T 27
[ [Vin (00 4" (6, #)sin IS = 5,6,y (235)
6=0 ¢=0

Let

O (r 1) =G (r,r)Y,; (0,4 (2.36)

Equation (2.34) becomes

d ( 2 4G, j—l(l +1)G, =—4no(r —r'). (2.37)
dr dr

Multiply both sides of Equation (2.37) by 1/r i

FirlrEe e i 0
r?dr\ d r ré

which is the same as [11]

1d° (6, (rry)- D

G,(r, ):—f—f5(r—r'). (2.38)

The radial Green’s function, G, (r,r’), satisfying the homogeneous radial equation for

r #r'. Thus its general solution can be written as
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(Ar' +Br 0 for  r<r’,
G,(rr)= 13
\AT! +BF for  r>r’.

The coefficients A, B, A", B' are functions of r’ to be determined by the boundary
conditions, the requirement implied by o(r —r') in Equation (2.38), and the symmetry
of G, (r,r’) inr and r’. Suppose that the boundary surfaces are concentric spherical
surfaces at r =a and r =b . The vanishing of G(r,r") for r on the surfaces implies

the vanishing of G, (r,r’) forr =a and r =b . Consequently G, (r,r") becomes

21+1
(A(r'—allj for r<r'
r+

G,(r,r") = { (2.39)

|1 r! /
kB (r”l —szj for r>r .

The symmetry in r_and r' requires that the coefficients A(r") and B(r') be such that

G, (r,r’) can be written

, a2|+l 1 r->|
Gl(r,r):C(rJ - Pl j(rul _b2|+1]’ (2.40)

< >

where r_(r_ ) is the smaller (larger).of r and r'’. To determine the constant C we must
consider the effect of the delta function in Equation (2.38). If we multiply both sides of
Equation (2.38) by r ‘and integrate over the interval from r =r"=& tor =r' + ¢,

where ¢ is very small, we obtain

d , d N
{d—r(rGI (r,r ))}HE —{d—r(rGI (r,r ))} =——. (2.41)

r'-¢

Thus there is a discontinuity in slope at r =r ', as indicated in Figure 2.2.
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G,(r,r')y—s-

Figure 2.2 Discontinuity in slope of the radial Green’s function [11].

Forr=r'+¢andr, =r,r_=r".Hence

SR S v
{E[rGl (F;r )]}Hs _C[r L Jl:dr (r| b2t Jlr,

Similarly forr =r' — &,

{f—r[fG' (rr ')]}“ = rc—ll +1+ |(%jm Ml - (%'TT .

Substituting these derivatives into Equation (2.41), we find

C = Az (2.42)

SN
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Combination of Equations (2.42), (2.40), (2.36), and (2.32) yields the expansion of

Green’s function for a spherical shell bounded by r =a and r =b [11]:

Sy =ary 3 TN 09 (ri ‘aT:lJ(r.lu _br;'A], (2.43)

"2l +1){1—(‘;‘] } ' ’

where r_(r_ ) is the smaller (larger) of r and r’, (a <r <b).

For the “exterior” problem with a spherical boundary at r =b , we

merely let b — o0 and @ — b , then the Green'’s function (2.43) becomes

. 2 rj_lbzm*,,
G(r,r)— ”;m:_l (2| +l) b(rr,j Im(0!¢)Ylm(9’¢)’ (244)

where r_(r_ ) is the smaller (larger) of r and r", r 2Db .



CHAPTER 1lI

LAMINAR FLOW VELOCITY FIELD

As mentioned in the first chapter, the simplest and successful model to
determine velocity profiles for laminar flow through randomly distributed spheres is the
free surface model due to Happel [9]. This cell model consists of a concentric spheres,
which corresponds to EMT model as mentioned in Chapter 1. It is, therefore, useful to
attest EMT results with Happel velocity field. In this chapter, the derivation of Happel

flow field of particles moving in the rest fluid is reviewed.
3.1 Happel Flow Field

The motion of particles relative to a fluid is often of interest in the two
cases where either the particles move and there is no average motion of the fluid or
alternatively the particles remain more or less stationary and fluid passes around them.
In this section, we consider particles that are spheres of average radius a moving
through stationary fluid. In Happel model, the system of fluid and spheres is replaced by
a composite sphere. Each composite sphere consists of a representative sphere of
radius @ enclosed by a fluid shell of radius b . The fluid shell radius b was chosen
such that )/3 = as/b *is the volume packing fraction or the volume density of spheres

in the fluid.
At steady state, the fluid is described by the Navier-Stokes equation
nV& =Vp (3.1)
and the continuity equation foran incompressible fluid is
Vv =0, (3.2)

where 17,V ,and p are the viscosity of fluid, the fluid velocity inside the spherical shell,

and the pressure, respectively.
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The internal sphere moves in a positive direction along the z-axis with a constant

velocity V , inside the fluid shell with the outer free surface and thus

v, =0, v, =0, vV, =V, at r=a (3.3)

1ov ov v
Pro =10 — e -0 J
r o6 or r
1, is the viscosity of a suspension and p, is the stress component in & direction. The
condition of no tangential stress component on the surface of the outer sphere
corresponds to the vanishing of the stress tensor component p,,. The conditionv, =0

at r =b corresponds to no flow across the boundary of the fluid envelope. Because of

. . . ov,
the symmetry v, =0 in the entire spherical shell a <r <b . At r =b, Y =0 and

so the vanishing of p,, corresponds to

Ny Vo _g (3.5)
or r

A general solution of the laminar flow equations is given by Lamb [13]. It is as follows

n+3 r’vp, —r P, . (36)
2(n+1)(2n+ 3) (n—1)(2n +3)

V=) Vx(fy,)+ Vo, +
n =—o0

p=1.p, (3.7)

where y,, @, ,and p, are Legendre polynomials of order n.

An appropriate form of V' satisfying the present boundary value problem
is obtained by setting y, =0 and retaining Legendre polynomials,p, and ®, of

orders -2 and 1,
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= - 1 ,- 1 _ 1,2 _
vV =V0, +VO, +gr Vp, —Erpl +Er Vp_, +2rp,. (3.8)

Using the explicit form of Legendre polynomials, we write

(Dl = Az (398)
p, =Bz (3.9b)
D, = C—i (3.9¢)
r
Dz
= (3.9d)

Substituting Equations (3.9a), (3.9b), (3.9¢) and (3.9d) into Equation (3.8), we obtain

2 — 2
vV =VAz +?C—Z PR L - PR & +2r‘D—Z
5 10 2 3

rd re r

+—k +—T. (3.10)

Let r =rf , Equation (3.10) can be put in the form

- 10  2r2 r?

3.11
r 5 2r ( )

~ C r’B D\ 3Cz Bzr 3Dz 2Dz).
A + k +| - + r.

A~ 1 o <« ~
Because I = —(XI +yj +zk ) we get
r

_ C. r’B D\~ 3Cz Bz Dz ) ~ =~ _~
V ={A+—~ +— k| = = —— [(XI"+ Y] +1zK).. 3.12
( r’ 5 ZrJ ( r’. 10 2r3j( 4 ) 812

Using the boundary condition (3.3), we obtain

3C Ba®’ D

_ = _ 3.13
a® 10 2a (3.13)

2
and A+£+aB+R=VO. (3.14)
al 5 2a




In spherical coordinates, Equation (3.11) can be written as

3

2
V = A+£+r B +3 (cos@f—siné@)Jr
r 5 2r

_3Crc039_Br2cosH_3Drc036’+2Drc056’f
r 10 2r? r?
2 2
= A+£+r B +R_£_Br +R cos &F —
ré 5 2r r® 10 2r
2
A+S  TB LD e
r 5 2r

re 5 2r

2 2
v‘:(A—éJrrlg3 +2j0039f—(A+£+r B +stin09.

From Equations (3.4) and (3.5), we have

2
A_2€ b B+%)_

b® 10
2
and A+£—b8+2:0.
b3 5 b

From Equations (3.13), (3.14), (3.16), and (3.17), we obtain

= (3 +2y°),
(2 -3y +3y° —2y°)°

B 10}/5V0
a’(2-3y+3y°~2y°%)"

_ av,
22 -3y +3y° = 24°%)/

_ a(3+275)vo
(2-3y+3y° -2y%)°

where y =a/b .

18

(3.15)

(3.16)

(3.17)

(3.18a)

(3.18b)

(3.18c)

(3.18d)



19

Substituting Equations (3.18a)-(3.18d) into Equation (3.15), we get the factors of v, and

2C +rZB D) B2, v, +y5v0raz +v0(3+275)
M r>m M r.M

a

+y -y
TE 2r p T T

a a

ZvO[l _B+2°) 3y e 7 ]

and

2 2\/ 5
A+£+rB+R Flrs U\ 1 _]/Sraz_w+3_y+}/6 ,
ré "5 _gP M 4r} ar 2

a
where r, =r/a,and M =2 — 3y + 3y° — 2y° . Therefore the fluid velocity is obtained

v‘:asvolp(ra,y) cos & —q(r,,y)sin 49@?J, (3.19)

where p(r,,y) and q(r,,») are functions of r, and y given as

1 3427 3 5
p(ra,7)=[2r3—( 2r7)+77+76—77er (3.20a)
3+2y%) 3
q(ra#):[— i —75r§—%+77+7"’) (3.200)
and 4. )= 2

S

2.3y 43y° ~2)°

The fluid velocity field which has been solved is for the case of the particles moving in

the fluid at rest.

In the case that fluid flows through the randomly distributed spherical
particles at rest, the above velocity flow field has to be transformed into a frame of
reference or coordinate system which is fixed on the representative sphere. Let the fluid
entrance velocity at far away from the spheres be VokA . Therefore the fluid velocity

around the sphere is
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Vi ==V +V,, (3.21)

where V, is the fluid velocity in the reference frame in which the particle is at rest, and
VvV is the fluid velocity obtained from Equation (3.19). Substituting Equation (3.19) into

Equation (3.21), we obtain
Vi =V, [(— a,p(r,,y)+1)cos & — (—a q(r,,y) +1)sin 09J. (3.22)

Substituting Equation (3.20) into Equation (3.22), we obtain the components v, and Vv ,

as

vV, IVO(—aSp(ra,]/)+1)C059

5 5
=V : s : 13—(3+27/)+1+3—7/—7/—ra2 cos @
2-3y+3y> -2y \2r, 2r 2 2

a

and

v, =v,(-a,q(r,,7) +1)sing

5 5
:v{ 3 ( L —(3+27)+1+gy5—%ra2ﬂsin6.

2 -3y +3y° — 25| 4r’ 4r

a

So the fluid velocity is obtained as

Ve =AV,[P(r,,7)cos & —Q(r,,7)sino], (3.23)
where
1 (3+ 275) 3 5 75 2
P(r,,y) = - +1+—py> ——r, 3.24
(r.,7) 2 or, > 5 (3.24)
1 (3+2y°) 35 1,
Fa2 7)) =- - +1+—py> = =1, 3.25
Q(ry.7) o ar >V 5 (3.25)
and AS c

T 23y +43° -2,°



CHAPTER IV

LAMINAR FLOW VELOCITY FIELD FROM A GREEN’'S FUNCTION

This chapter begins with an introduction of the effective medium
treatment (EMT), the method used in this research. Then the determination of the
velocity field for laminar flow through randomly distributed spheres is considered in next

sections. As explained in Chapter 1, this type of fluid flow occurs for a Reynolds number

_ Mo
n
viscosity and the sphere radius, respectively. The fluid velocity (in laminar flow) is

Re <1, where p, V,, 7 and a are the fluid density, entrance velocity,

described by the Navier-Stokes equation which is in the form of Poisson’s equation. We,
therefore, use Green’s theorem to solve Navier-Stokes equation in this chapter and the
comparison of EMT velocity profiles with Happel flow velocity fields is performed in the

final section.
4 1 Effective Medium Treatment

In determining the velocity field, the effective medium treatment (EMT) is
employed. In the EMT, the system of fluid and spheres is replaced by a composite
sphere -- a representative sphere of radius a enclosed by a fluid shell of radius b --
embedded in an effective medium of different viscosity. The composite sphere consists
of the collector sphere enclosed by a fluid shell with viscosity 77 (medium 1) embedded
in an effective medium of viscosity #* (medium 2)to be assigned. The ratio of the small
sphere and the large sphere volume (a3/b 3) is set to be equal to the sphere volume
packing fraction ()/3) or the density of spheres in the liquid. The velocity fields in the
fluid shell and in the effective-medium are determined by using Green’s theorem and
proper boundary conditions. We assume that the fluid enters the system of random
spheres with a uniform velocity v, along the polar (symmetry) axis of a spherical
coordinate system. As shown in Figure 3.1, the representative sphere enclosed by a
fluid shell is in the effective medium and the entering fluid has uniform entrance velocity

V.



Figure 4.1 A representative sphere in the effective medium.

22
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4.2 Laminar Flow Velocity Field from a Green’s Function

At steady state, the laminar flow is described by the Navier-Stokes

equation

var = VP (4.1)
n

and by the continuity equation Vv = —6p/6t . For an incompressible fluid with steady

flow

Vv =0, (4.2)

where p is the pressure, pis fluid density and 7 the fluid viscosity. If the divergence of

Equation (4.1) is taken, we get
nvVi(W)=0=Vp, (4.3)

showing that the pressure satisfies Laplace’s equation and the general solution in polar

coordinates (r,#) is
p(r) = Z‘O:[AI r' +B,r ""Y1P, (cos 8), (4.4)
1=0

where P, (cos ) is the Legendre Polynomial of order | . With the help of Equation (4.4),
the right hand side of Equation (4.1) can be determined in terms of unknown constants
A, and B,. The form of Equation (4.1) is that of Poisson’s equation. For the Dirichlet

boundary condition,
G(r,r)=0 for r'onS§S ,

where S is the boundary surface of the volume V . Referring to the solution of Poisson’s

equation, Equation (2.25), thus the velocity field v in Equation (4.1) can be written as

v‘(r‘)=—4ijl—vlpn(r—’)6(r‘,r")d e §v( )‘9(3(r LV (4.5)

\
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where G (r,r') is the Green’s function for a spherical shell bounded by r =a and

r =b as shown in Equation (2.43):

6(r,r) -4y, 3 el Nn 00 (ri —az.':J(r.l+1 —bril], (49

= i, a 21+1 r N
(2|+1){1-(b] }

where r_(r.) is the smaller (larger)of r and r',(a <r <b).

In determining v, we impose the following boundary conditions [14]:

1) Far away from the composite sphere, the velocity field (V' =v,) is

uniform and equal to V , (the entrance velocity). Thus,
V, =V, fit Jr s-oos (4.7)
2) In the far region, the pressure is constant and equalto p _, i.e.,
p=p, at=F=-6= (4.8)

3) In the fluid shell region, V.=V, and at the surface of the

representative sphere, the fluid velocity is zero, i.e.,
v, =0 at r=a. (4.9)

4) At the fluid interface, the tangential and normal components of the
stress tensor and, all velocity- components are continuous.- These are the no-slip

boundary conditions. Specifically, they are

1v, .\ oV 4, _Vi_ — 1ovy, N Ny Vo . (4.10)
00 or rl_ r o6 or L P
ov. | ov
I, P R R 7 411
{ p o G| { P, + 27" L (4.11)

and v, =v, =V (b,6) at r=b. (4.12)
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Finally, it is necessary to write V (b, @), the boundary condition equation
(4.12), in a specific form in order that the surface term of V. in Equation (4.5) can be
integrated. Generally, the angular dependence of vV (b, #) can be expressed as series
in Legendre Polynomials. However, in order to minimize the mathematical complexity of

our problem, a simple assumption for v (b, @) will be made.

5) The angular dependence of the normal and the tangential
components of v (b,#) were cos & and siné, respectively. This form incorporates
both the isolated sphere result, for the limiting case a/b =l/)/ — o0, and the Happel

flow field results at the outer shell boundary. Thus it is assumed that [14]

v (b,8)=v,(a, cos & +a, sinbh), (4.13)
where a, and a, are dimensionless constants to be determined.

4.2.1 Velocity Field outside the Shell

We first determine the velocity field in the effective medium v, (r) . For
exterior problem outside the sphere of radius b , in Equation (4.6) we set b — o0 and
a — b, then Green'’s function in the effective medium is

1 r.

o I 1 b2 1+1 ) ’ ,
Gz(r’r )—47[%(2' -l-l) r>|+1 _H(Fj Im (0!¢)Ylm (0’¢) (414)

From Equation. (4.4) with the boundary condition (4.8), the pressure in the effective
medium is [14]
C, Cjc0s6'

p,(r =p. Tt

(4.15)

where | 22 terms are neglected and €, and c, are constants. The gradient of

pressure is found to be

~ o, c 2c,cos6")., 1( c,sinf"),,
sz(l’ ) :(— rroz - 1["3 )r +F[_1|’TJ6 . (4.16)
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In Equation (4.14) at the boundary r' =b ,set r_ =r’ and r_ =r and then we have

oG, | _ oG, |
on’ |r':b or' r'=b
b 1-1
=4z Y (6,4, (6,9) ey (4.17)
Im

whileatr’—>o,weletr_=r,r_=r'then

0G,| oG,
anl B ar! r'—w
b2|+1 1 I 1
(2, T2 ¢)( N 1}‘ X |

The velocity field in the effective medium is determined by substituting Equations (4.16),

(4.17) and (4.18) into the right hand side of Equation (4.5).

L [ Co | 2 Cos‘gj C—sm@'é’}?z(ﬂf')d >

rr2 r13 r

(r)—a

_:—ﬁ J.Vd(b,gr) _47[2er; (9’1 )Ylm (0 ¢) b|;11|

1 b2I+l ( 1)(| +1) ’
_Eri Vo {(2| ZYIm (0", ¢'W 1 (6, ¢)[ oy 1) 2 }d (4.19)

where G, (r,F") is the Green’s function in-Equation(4.14) andv (b, 8") from Equation

(4.13).-Finally, we have
V, (M) =V, X +v, ¥ +V,,7 (4.20)

where

2 3 2
VZX:CO*{l—(gj });—+v (a1+a)b 2C {1—(%) ]%
n' r




D (al - 2a2) +
r

27

c b\ |y b?® c b\ |zy
, 0* l—(—j T+v0(a1 +a2)r—5yz +27;* [1—(?j r—3

z b( , r?
—+v,(a, +a,)—|z* - —
r O(l Z)rs( 3j

1 c, 1_(
6rn r

j ](322 —r2)+vo(1—%j.

We now use the continuity equation (4.2) to find the constants ¢, and €, in the

pressure p, (), Equation (4.15). Taking divergence of Equation (4.20), we have

_ 2
Vv, () = C"* +Z—3£%+vob . Vb (a, —2a2)j
rp”  r°\3gy
=0.
Then we get o =F |
3 1
and C, :—577 bvo(l —g(a1 —2a2)j.

Substituting ¢, and ¢, into Equation (4.15) and replacing @, +a, by C , a, —2a, by

D , the pressure can be written as

(4.21)

Recall Equation (4.20)-and change to-spherical coordinates. The velocity

field in the effective medium is found to be

V,(F) =V, [P*(r,,»)cos & +Q"(r,,y)sindd], (4.22)
where r,=r/a, y=a/b
. 3 1 2C 1 1
P (r,,7)=1- +——+-——+D - (4.23)
M,y 2ryy” 3y 2r,y  6rly



Q*(ra17/):_1+

3 1 C 1 1
+ + -D
ar,y  Arly®  3rlyd
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+ . (4.24)
4r,y 12ra3;/3)

We will determine the constants C , D and find v, in closed form after we known v, .

4.2.2 Velocity Field in the Shell Region

For the fluid shell region enclosed by concentric spheres of radii @ and

b, the Green’s function is in Equation (4.6). Using Equation (4.4) and the boundary

condition (4.11), the pressure within the fluid shell, Equation (4.4), is [14]

_, Ar' Ba ,
p,(r)=p, +77v0[—a?+r7jcost9 ,

where A and B are constants. The gradient of equation (4.25) is

~ _ 2B " A B A
V’pl(r'):nvo(ﬁz— '?jcos O'r’—nvo(—2+—iJsm6’H'.
a r a® r

Atthe boundary r'=a ,set r_=r', r_ =r,we have

<

oG(r,r')y _ oG(r,r)
on' or'

— 4ry Y (O PN (0:9) [rl i I,r,.+l+(,+1)ﬂ]

- a 2141 1 b 2+ pe2
21 +1) l—(bj

andatr'=b,set r_=r,r, =r"then

oG(r,r'). oG(r,r")
on' or'

:472.2 Y|:1 (9',¢l)Y|m ((9, ¢) (rl _a2|+l j[_ (l +1) Irrl_lJ.

< o1 +1f1 - a 2041 plH r 12 _b2|+1
b

(4.25)

(4.26)

(4.27)

(4.28)
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Substitute Equations (4.6), (4.26), (4.27) and (4.28) into Equation (4.5) and integrate. We

find that
V,(F) =v,[P(r,,7)cos & +Q(r,,y)sin6d], (4.29)
where
A0\ | 5c L[, 1
P(r,,7) =———+|BT, + — 7|1, ——
s 37{ rﬂ

— ATZ—B rede )| (4.29a)
@-7

Q(ry.7) =‘1— BT, +%7/2£ra2 _ial:l

5(1_75) R ra
L _2[1_3]] (4290
-9 3 r,
b 3
leé raz(y2—1)73+(1_7/)—(1_7/) , (4.29¢)
6 & re
3 -2
T2=%{—ra2(1—7)+(1_3/ ) L7 )] (4.290)

The constants A and B are relatedto C and D by the equations

A-9%" y y
1042 =) {A}:[C} 50
(1—72/) ~2a-7) B D

2y

which arise from the continuity equation ?.\/—l (r) =0. The relations determining the
constants A and B are obtained from the no-slip boundary conditions (4.10) and

(4.11). We find that
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_—2 + 3y —73 (-3 +57/2 —27/5)
67°(1—7) 6(1-7°) A
1+y+y° 7(9-107% +°) ||IB
3t 31-7°)
5
67—_1_,_25 _—r 9 35
31-7°) 31-y) 2|C|_ |2
+ . - , (4.31)
M_45 =2y _9o|b 36
| 31-7°) 31-p) 2 2

where ¢ = 77*/77 is the relative effective viscosity.

Happel theory successfully explained the pressure drop through a
suspension of spheres. The pressure drop per unit length of the distributed spheres is

the drag force per unit cell volume. The drag force on a sphere in a fluid is [14]

fo =—47V(r’p.,), (4.32)

where p_, is the termnv ,aB COS %2 of the fluid pressure within the fluid shell given

by Equation (4.25). Thus

fy =—4znv ,aBz . (4.33)

In the dilute limit, the drag obeys Stokes’s law,

foo = 677aV,7 . (4.34)
The ratio between pressure drop through a single isolated sphere and through each

sphere.in-an assemblage of spheres is

Ao _foo __ 3 (4.35)
Ap  f, 2B '

Using the values of the reported pressure drop ratio given by Happel, B is determined
from the above equation. Then the other parameters, A, C , D and & are determined

from Equations (4.30) and (4.31) as functions of (7/32 volume packing fraction).
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By using Mathematica program [15] (see Appendix A) to solve Equations

(4.30) and (4.31), we get the constants as follows;

107°N
A= 1N, g (4.368)
(-1+7)°A+7)(2+y+2y°)N,
5
S G0 (4.36b)
2 -3y +3y°> -2y
__ r@-rHB+2y°) y@-7°N, (4.360)
202 -3y +37° =27°) (L+1)°@A+ )2 +y+2y*)N,
- > 1-7°)N
_ 2 7)(35+27 )6 /) 357( AR : (4.360)
2 -3y +3y> -2y FL+)°A+9)(2+y+2y°)N,
S5 36 —30y° +18y°> —20y" — 45" —2\/§(—3+37/—27/5 +27°)N (4.366)
2(9-30y° + 250" +12%° — 20" + 49"°) ’ '
where

N =(18+36y +147% —8y° —57* +2y° +9y° +6y7 +3y*)¥?  (4.37a)
N, =217 +307° +245° +127% + y* (21— 24/3N) + 47°(3 + +/3N)
+9(6 +/3N) + 97(12 + +/3N) +37°(30 + v/3N)

+372(33 + V3N) + 7° (=21 + 4+/3N) (4.37Db)

N, =33y% +36° + 245" +127° +9(8 + 3N ) + 9y(16 + 3N)
+ 7318 % 44/3N) 4 #%(30 +4+/3N) + #%(8L + 443N (4.37¢)

The numerical values of the above constants for various packing fractions (7/3) are
shown in Table 4.1 in agreement with the previous reported results [14]. These confirm
the closed form solutions in Equations (4.22) and (4.29) obtained in this research. Figure
4.2 shows the variation of the relative effective viscosity as a function of y. Inserting
these results into Equations (4.22) and (4.29) yields the velocity profile in the effective

medium and the shell region respectively. As can be seen that the velocity field
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equations are so complicated, thus we determine the approximate closed form solutions

for two ranges of y; low packing fraction 7/3< 0.1 or y<0.45 and the other range

7>0.45,

7 A B c D 5
0.001 | -0.0051 1,766 -0.0361 2.922 4.556
0.01 10,0649 0515 0.0877 2.809 4.986
0.05 0.4912 3311 01677 2,619 6.396
0.10 1.386 4,666 10.2204 2.478 8.296
0.20 -4.934 -8.460 -0.2837 2.278 13.71
0.30 -12.87 -15.20 -0.3222 2.126 23.28
0.40 30,73 28.37 -0.3472 1.999 41.76
0.50 -73.45 -56.86 -0.3633 1.889 81.24
0.60 188:2 1277 L0,:3730 1792 178.3

Table 4.1 The numerical values of relative viscosity (6 =7"/n) and constants in

Equations (4.30) and (4.31) for various packing fraction (}/3).
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Figure 4.2 The effective viscosity as a function of ¥ (¥ - packing fraction).

4.3 Closed Form of Velocity Fields

In the previous section, the closed form of the velocity fields in the
effective medium and in the shell region are shown in Equations (4.22) and (4.29),
respectively. Now we consider these velocity fields for 73<O.1 (dilute packing fraction)

and 7/3>O.1 separately-in-order to reduce the complication.
4.3.1 For Low Packing Fraction

In the range of dilute packing fraction condition (73<O.1), we neglect
insignificant " terms for N> 2. Thus, the approximate velocity field in the shell region,

Equation (4.29), becomes
Vv, (F) =V [P.(r,,»)cos & +Q,(r,,y)sin6d], (4.38)

where
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2 Scpzfrz Lo L fap, Pl L
Pl(ra,y)—g{BT3+§C}/ (ra rfﬂ (1_7/){AT4 3(1 rﬂ (4.39a)

} 1 {AT_B@_AH (4 390)
(1_7/) 3 ra

Q.(r.,7) =%|:BT3 +§C72(ra2 _isJ

r

T3 = %(_razyg + r-a7l - ra73) <4390>
T4=%+4fa—7)+f*+u*a—y*ﬂ (4.39d)

and the velocity field in the effective medium is still Equation (4.22), that is

V,, (F) =V [P (ry,7)cos &F +Q, (r,,y)sin 001, (4.40)
where
P (r,7)=1- : + i i 353 +D 1 _ i 5 (4.41a)
2r.y 2ty 3r, y 2r.y er.y

Qi (ry,7)=-1+ 227 £3+ 23—D L, 133. (4.41b)
4ry  A4rly®  3rly 4r,y 1211y

The constants in the above equations obtained from the continuity

equation and no-slip boundary conditions, Equations (4.30) and (4.31) can be reduced

to
1 7
2
rngojil
_21_
2,7 L-7
and
3y-2  y(y*-3) L., v &8 35
A+y) 3 Bl |_8_,5 =27 _d|D] | 35|
3,2 4 3 31-y) 2 2



35

Equations (4.42) and (4.43) are solved for the constants A, B ,C ,D and ¢ in terms of

¥ . The results are

3
A = L\/g_l) (4.443)
3y -2)
__ 3 (4.44b)
3y -2)
C = 37/(7—_2@ (4.44¢)
10(3y —2)
D - 3(1+\/§)7/—6 (4.449)
3y =2)
and o= M (4.44¢)
3-10y

Substitute the above constants into Equations (4.38) and (4.40) to obtain

the velocity fields for low packing fraction in the shell region and in the effective medium

as
_ L) _
= E + 13 —3(\/6 D7t cos &F
o oy 2r, 2r, 10
v, (r) = 2 ; ) \/_ i (4.45)
— 9y < "
1o 3 B 1 _3( 6 -1)y°r, sin 09
4r,  4r} 5
and
1—3(*/5‘2) _3(8—3\/33) -2 I
o N 4r, 20y°r, 2
Vo (M) = ﬁ (4.46)
— 9oy - — "
B 1_3(\/5 2) 38 3v/6) 3y Sin 6D
8r, 407/2ra3 2

The above two equations are approximate velocity fields in closed form for low packing

fraction.
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4.3.2 For Higher Packing Fraction

For 7/3>O.1, the constants A, B, C and D are determined by fitting
curve to the value of the constants shown in Table 4.2 which are obtained from Equation
(4.36). By minimizing the square error to obtain the best-fitting curve [16], the Equation
of each constant in the form of polynomial function of degree m is obtained (see
Appendix B). The higher order of polynomial terms used, the better fitting obtained,
however it is complicated in the velocity flow field results. Thus we will choose the

appropriate value.

/4 A B C D
0.46 -1.3263 -4.5881 -0.2181 2.4843
0.48 -1.6356 -4.9854 -0.2290 2.4530
0.50 -2.0156 -5.4444 -0.2398 2.4211
0.52 -2.4837 -5.9785 -0.2505 2.3885
0.54 -3.0631 -6.6042 -0.2610 2.3553
0.56 -3.7836 -7.3433 -0.2713 2.3214
0.58 -4.6850 -8.2235 -0.2813 2.2869
0.60 -5.8204 -9.2818 -0.2911 2.2518
0.62 -7.2619 -10.567 -0.3005 2.2162

Table 4.2 The numerical values of the constants from Equations (4.36a)-(4.36d) for

varying y .
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/4 A B C D
0.64 -9.1089 -12.146 -0.3096 2.1800
0.66 -11.500 -14.108 -0.3182 2.1434
0.68 -14.634 -16.583 -0.3265 2.1062
0.70 -18.796 -19.751 -0.3342 2.0687
0.72 -24.414 -23.878 -0.3415 2.0308
0.74 -32.138 -29.362 -0.3482 1.9926
0.76 -42.986 -36.817 -0.3543 1.9542
0.78 -58.614 -47.225 -0.3598 1.9155
0.80 -81.813 el -0.3647 1.8767
0.82 -117.53 -84.637 -0.3689 1.8379
0.84 -175.05 -119.74 -0.3725 1.7991

Table 4.2 (continue) The numerical values of the constants from Equations (4.36a)-

(4.36d) for various y .

The curves that fit with numerical values of the constants A, B, C and

D in Table 4.2 are shown in Figures 4.3, 4.4, 4.5 and 4.6.
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0.9

Figure 4.3 The fitted curve of parameter A (solid line) superimposed on the numerical

values of A (points).

0.9

Figure 4.4 The fitted curve of parameter B (solid line) superimposed on the numerical

values of B (points).
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-0.375

Figure 4.5 The fitted curve of parameter C (solid line) superimposed on the numerical

values of C (points).
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Figure 4.6 The fitted curve of parameter D (solid line) superimposed on the numerical

values of D (points).
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By curve fitting, the constant parameters are

A =[1.68 — (14.3)y + (48.0)y*> —(80.2)y°

+(66.6)y" —(22.0)y°]x10* (4.47a)

B =[0.955 —(8.10)y + (27.3)y° — (45.6)y°

+(38.0)7* —(12.6)°] x10* (4.47b)
C =-0.0208 —(0.149)y —(0.955)#* + (0.755)y° (4.47¢)
D =2.89 — (0.0614)y — (2.17)7* + (0.826) 5. (4.47d)

Thus, for higher volume packing fractions (7/3>O.1), the velocity fields in
the shell region and in the effective medium are Equations (4.29) and (4.22)

respectively. That is
vV, (F) =V [P, (r,,7)cos & +Q,(r,,7)sin o], (4.48)

where

o
P,(ra.7) 2#5 BT, + 5/ (raz —%J
51-77)| 3

1 D 1
A T LAT6 - 3(1 a _J:I (4.49a)

_ 1 5Cy? 2 4 A,
Qz(rav7)_5(1_y5)[BT5+ 3 (ra I’S]:|

- {ATa—B(l—iH (4.49b)
1-7) 3 I,

-I-S:E raz(]/z_l)ya_i_(l_?/)_(l_?/) (4.49¢)
6 r, re

a
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.3 2
Tezl_r;(l—y)+(1 27)+(1 r)| (4.49d)
6 y A
and
V,, (F) =V, [P, (r,,7)cos & +Q,(r,,y)sin6d], (4.50)
where
. 3 Il 2C 1 1
P, (r,,y)=1- s - ) -— | (4.51a)
2ryy2r7yY 3y 2r,y  6r)y

Q,(r,,»)=-1+ 3 + 13+ ES—D : + 133 (4.51b)
Ar,y Ary 3.y Ar,y  12r]y

with the constants given by Equations (4.47a)-(4.47d).
4.4 Comparing Velocity Profiles

Using the velocity fields in previous sections, the velocity profiles or the
streamlines of fluid flow can be determined. The streamlines or the trajectories of free
particles carried by the fluid can be obtained by integration of the fluid velocity field
(' =dr/dt). The comparison of Happel and EMT velocity profiles in the fluid shell is
presented in this section. Happel flow fields are obtained from Equation (3.23) and the
EMT velocity fields in approximate closed form solutions for low packing fraction
(7 °<0.1) and-higher packing; fraction (y *>0:1) are-V;;, and-V,,, given by Equations
(4.45) and (4.48), respectively. The velocity profiles for some packing fraction in the
shell-region are shown «in. Figures 4.7- 4.12.-While, Figures 4.13- 4.18 shown the
comparison of the velocity profiles given by Equation (4.29), which is the EMT closed

form velocity fields. The results indicate insignificant difference of the two models.
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Figure 4.7 Comparison of EMT velocity profiles (dash lines) with Happel flow profile

(solid lines) for low packing fraction at }/32 0.001, and v,,= 6.65 s,
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Figure 4.8 Comparison of EMT velocity profiles (dash lines) with Happel flow profile

(solid lines) for low packing fraction at » *= 0.008, and V,y,= 6.65 s
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Figure 4.9 Comparison of EMT velocity profiles (dash lines) with Happel flow profile

(solid lines) for low packing fraction at ;/3= 0.027,and v, =6.65s .
Oa
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Figure 4.10 Comparison of EMT velocity profiles (dash lines) with Happel flow profile

(solid lines) for low packing fraction at }/32 0.064, and v,,= 6.65 s,
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Figure 4.11 Comparison of EMT velocity profiles (dash lines) with Happel flow profile

(solid lines) for higher packing fraction at  °= 0.216, and v,,= 6.65 s .
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Figure 4.12 Comparison of EMT velocity profiles (dash lines) with Happel flow profile
(solid lines) for higher packing fraction at ;/3: 0.343, and v,, = 6.65 s’
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Figure 4.13 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with
Happel flow profile (solid lines) at ¥ °= 0.001, and v,,= 6.65s .
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Figure 4.14 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with
Happel flow profile (solid lines) at ;/3: 0.008, and v,,= 6.65 s’
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Figure 4.15 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with
Happel flow profile (solid lines) at ;/3: 0.027, and v,,= 6.65 s’
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Figure 4.16 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with

Happel flow profile (solid lines) at 73= 0.064, and v,,= 6.65 s’
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Figure 4.17 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with
Happel flow profile (solid lines) at 73: 0.216, and v,,= 6.65 s’
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Figure 4.18 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with
Happel flow profile (solid lines) at 7 °= 0.343, and v,,= 6.65s .



CHAPTER V

CAPTURE OF MAGNETIC PARTICLES IN LAMINAR FLOW

The fluid velocity fields in closed form are obtained in Chapter 4 both in
the effective medium and the fluid shell regions. Now we apply these results to
determine the trajectories of magnetic microscopic particles suspended in the fluid flow
through randomly distributed magnetic spheres (collectors) in the presence of a uniform
external magnetic field (I—T0 ). The magnetization of particles and collectors occurs and
thus the magnetic particles are attracted to the collectors by magnetic force (fﬂm ) which
is the dominant force. This process is called the capture of magnetic particles. The
critical capture distance is defined as capture radius (r,). There are two type of
magnetic field (I—TO) and fluid flow (V/,) direction alignment considered here;
longitudinal mode for I—TO and V, parallel and transverse mode for I-TO and Vv,
perpendicular. The longitudinal mode is symmetric around the polar axis but the
transverse mode is not. For the transverse mode, the trajectories of particles on
(I—T0 V,) plane is considered. Remember that for low packing fraction ()/3<O.1), the
fluid velocity fields V', and V,, in Equations (4.45) and (4.46) are used, butitis v, and

V,, in Equations (4.48) and (4.50) for higher packing fraction (7/3>O.1). Finally, the

capture radius as a function of y is obtained.
5.1 Equation of Motion

We consider the capture of paramagnetic and diamagnetic particles by
the randomly distributed spheres in a uniform external magnetic field. Particles of
microscopic size (> 1um) <in a fluid described by laminar flow undergo capture
process by interception. For particles less than 200 um in diameter, the inertia and
gravitational forces are insignificant. The dominant forces acting upon the individual
particle are the viscous drag force (fAD) and the magnetic force (fAm ), depending on
the situation of the spheres, whose elements have high magnetic permeability, in a

uniform field I-TO . The viscous drag force is assumed to obey Stokes’s law,



fo =—6znr, (v -vy), (5.1)
where V is the particle velocity, v, the fluid velocity, 7 the viscosity, and r, the
particle radius. For a small particle with specific susceptibility X, immersed in a fluid of
susceptibility y; and subjected to a magnetic field H , the magnetic force is

_ 2 _
f = (?ﬂ]rpsluo (¥p =% )VH 2 (5.2)

The particle is said to be paramagnetic if y, > y; and diamagnetic if y, < y; .

Using the velocity field v; and the magnetic field H given by Moyer
and coworkers [17], the drag force and the magnetic force can be determined. The

equation of motion for microscopic particles is
=0 (5.3)

and this can be solved for the particle velocity (v =dr/dt) which is subsequently
integrated to obtain the particle trajectories as a function of the sphere volume packing

fraction.

The - equations of motion for microscopic particles in spherical
coordinates with the polar axis along the applied magnetic field I-TO are obtained from

equation (5.3) as

d
drta =V, P (r ) c0s 6, (6.42)
3_t0 =V, I,Q(ry,y)sing,, (5.4b)

for r, >1/y, since in this model H is uniform for r >b , and
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d

drta =V, P(r,,»)cos @, —v : r.*[1+3cos20 +K.r,°(5+3cos20)]/2, (55a)
do o . . s r> .

E:voﬁral Q(r,,y)sind, —v .r.”11+K, 5 sin20, (5.5b)

for 1<r, <1/y. Above v,, =vV,/a, P",Q",P and Q are respectively given by
Equations (4.23), (4.24), (4.292a), (4.29b), 8, =6 or 6’—7[/2 for interception in
longitudinal (H, //V,) or transverse (H,LlV,) design, respectively, v, =v _ A®
with

_ 2 oK Hozrp2

g = magnetic velocity,

ma

3na

where we defined X=Xy = Xt A=(2+ u)/[2 +7° +0(1-7%)],
v = u, [ p; (relative permeability of collector and fluid) and K, = (v -1)/(v +2).

5.2 Mathematica Program for Particle Trajectories

Equations (5.4a), (5.4b), (5.5a) and (5.5b) can be solved by using
Mathematica program [15] (see Appendix C) to obtain particle trajectories as a function
of y. Inspection of the particle trajectories yields the critical capture trajectory or

capture distance called capture radius r, as shown in Figure 5.1.

We determine the capture radius as a function of ¥ in both longitudinal
fields (H, //V7,)< and ‘transverse fields | (H,1V,) for both paramagnetic and
diamagnetic particles with characteristic constants magnetic velocity = 571.5 s, fluid
entrance’ velocity = 6.65 |s™ and K, ='0.58 which are taken from the work of

Friedlaender et al. for the single collector model [18].

By integration of Equations (5.4a), (5.4b), (5.5a) and (5.5b), we obtain
the trajectories of particles. The figures below illustrate some particle trajectories and a

capture radius (r,) .
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Figure 5.1 Capture radius r, and particle trajectories of paramagnetic particles for a
longitudinal mode (H, //V,) with »°= 0.001, v,,= 665 s, v, = 57216 s and K=
0.58.
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Figure 5.2 Capture radius r, and particle trajectories of paramagnetic particles for a

transverse mode (H,LV,) with 7°=0.001, v,,=6:65s ", v, =572.16s " and K= 0.58.
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Figure 5.3 Capture radius r, and particle trajectories of diamagnetic particles for a
longitudinal mode (H, //V,) with »°= 0.001, v,,= 6.65s", v, = -572.16 s and K=
0.58.
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Figure 5.4 Capture radius r, and particle trajectories of diamagnetic particles for a
transverse mode (H,LV ) with-%°= 0.001, v,,=6.65s", v, = -572.16 s and K=
0.58.
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Figure 5.5 Capture radius r, and particle trajectories of paramagnetic particles for a
longitudinal mode (H, //V,) with »°= 0.125, v,,= 6.65 s, v, = 664.34 s and K=
0.58.
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Figure 5.6 Capture radius r, and particle trajectories of paramagnetic particles for a

transverse mode (H,1Vy) with 7= 0.125, v,,=6.65s , v, = 664.34 s and K_= 0.58.

The pattern of particle’s trajectory of diamagnetic particle in transverse
mode is similar to that of paramagnetic particle in longitudinal mode; the particle moves
toward the front of collector sphere. Note that the pattern of diamagnetic particle
trajectory in longitudinal mode similar to that of the paramagnetic particle in transverse

mode; the collection of magnetic particles occurs beside the collector sphere.
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5.3 Capture Radius

The randomly distributed spheres in a nonmagnetic canister is one type
of magnetic filter. The magnetic filter has been used to remove weakly magnetic
particles from fluid systems. Capture radius describes the capture boundary which
indicates the filtration efficiency. High capture radius means the extensive capture

distance.

By solving Equations (5.4a), (5.4b), (5.5a) and (5.5b) with the use of the
EMT velocity fields in the approximate closed form from this research, the critical
capture distances or capture radii are obtained. The capture radii are show in Table 5.1

for various y .
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Capture Radius (r,)
Y paramagnetic diamagnetic
(Ho /1) (HoLv,) (Ho 1V5) (HoLv)
0.10 3.39 4.78 3.41 2.74
0.20 3.19 4.67 3.88 2.64
0.30 2.58 3.00 3.00 2.26
0.40 1.74 1.96 1.96 1.41
0.50 1.48 1.65 1.65 1.18
0.60 1.16 1.29 1.29 0.88
0.70 0.93 1.01 1.01 0.65
0.80 0.75 0.80 0.80 0.47

Table 5.1 Capture radii of magnetic particles for varying » taken from the EMT velocity
field in closed form. Characteristic constants are v, =571.5 s"v,, =6.65 s" and
K, =0.58. I-TO IV, and I-TOJ_V_0 denote longitudinal and transverse mode design,

respectively.

The comparisons of the capture radius from our results with the results
taken from the previous publication based on the Happel flow fields are shown in

Figures (5.5) and (5.6).
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Figure 5.7 Capture radius-for paramagnetic particles as a function of y based on
Happel and EMT flow fields in closed form. Characteristic constants arev ., =571.5 s

"V, =6.65 s and K, =0.58.

long/Happel and trans/Happel denote longitudinal (I—T0 IV y) and transverse (I—TOJ_VAO)
mode design, respectively, with Happel flow fields, while long/EMT and trans/EMT
denote longitudinal (I—T0 IV y) and transverse (I—TOJ_VAO) mode design, respectively, with

EMT flow fields in closed form.
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Figure 5.8 Capture radius for diamagnetic particles-as a function of y based on Happel
and EMT flow fields in closed form. Characteristic constants are v =-571.5 s,

V,, =6.65 s and K, =0.58.
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The general features of the variation of r, with y in this research and
Happel flow fields are very similar. We find the maximum value of r, at y= 0.2 in
transverse design for paramagnetic particles and in longitudinal design for diamagnetic
particles. For ¥ >0.3, the effect of neighboring spheres is always to diminish r_, since
r. is confined to the fluid shell which, itself, shrinks with increasing y . For all cases we

studied, the EMT results for r, at y >0.4 are lower than the corresponding Happel

model results reported previously.



CHAPTER VI

CONCLUSION AND DISCUSSION

Laminar flow occurs when the fluid stream around the solid object is
smooth. This type of fluid flow occurs at low Reynolds number, Re = pv,a/n<1,
where p,V,, 17, and a are the fluid density, entrance velocity, viscosity, and sphere
radius, respectively. The determination of the velocity flow fields in closed form for the
laminar flow passing randomly-distributed spheres is an objective of this research.
These velocity fields are then used to predict the capture radii of microscopic magnetic
particles carried by laminar flow in high gradient magnetic field (HGMF). The HGMF
occurs when random paramagnetic or ferromagnetic spheres of diameter ~100 um are

placed in an external uniform magnetic field.

In this research, the method used to model the system of fluid passing
an assemblage of random spheres is called an effective medium treatment (EMT). In the
EMT, the system of fluid and distributed spheres are replaced by a concentric sphere; a
representative solid sphere enclosed by a fluid shell, embedded in an effective medium
as described in detail in Section 4.1. The velocity flow fields in the effective medium
(v,) and the fluid shell (v;) were determined by using Green’s theorem as shown in
Chapter 4. The results are Equations (4.22) and (4.29), respectively, with the constants
in the expression of fluid velocity given by Equations (4.36a)-(4.36d). These equations
are so complicated and -impractical to apply «in. further research. Therefore, the
approximate solutions for dilute sphere packing 73<O.1 are -evaluated to reduce its
complication by omitting some insignificant terms. The velocity fields in closed form, v,
and VA1I , are obtained as shown in Equations (4.46)-and (4.45). For. the other range of
packing fraction, the curve fitting was used to represent the constants A, B, C and
D whose numerical values are shown in Table 4.2. The velocity fields for this case are
V,, and V,, as shown in Equations (4.50) and (4.48) with the curve fitting results of

these constants given by Equations (4.47a)-(4.47d).
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The most successful model to determine laminar velocity profiles in an
assemblage of random spheres is the free surface model due to Happel. In Happel
theory, the cell model was used similar to a concentric composite sphere in the EMT
model. However, the outside surface of each cell in the free surface model was
assumed to be frictionless and prohibit fluid interchange between the cells. To ensure
the accuracy of our results, the comparison of the streamlines obtained in this research
with those of Happel flow fields, Equation (3.23), which successfully predicted the

pressure drop experimental data, was shown in Figures 4.7-4.18.

The streamlines that begin at some point on the outer surface of the fluid
shell will end on the outer surface at the same point too. At low packing fraction
(7/3<O.1), the streamlines of EMT flow fields are quite similar to the Happel flow fields.
The streamlines of EMT for this case, tend to leave the inner sphere compared with
Happel's results, especially for the region near the solid sphere. For higher packing
fraction (}/3>O.1), the streamlines of EMT flow fields are closer to the inner sphere than

those of Happel for all positions in the fluid shell.

Furthermore, the EMT velocity fields obtained in this research was
applied to study the capture of magnetic particles carried by the laminar flow in high
gradient magnetic fields. The trajectories of magnetic particles are determined by using
Mathematica program and shown in Figures 5.1-5.6. The capture radii (r, ) as a function
of ¥ were compared with the previous results based on Happel's theory [9] as shown in
Figures 5.7 and 5.8 for paramagnetic particles and diamagnetic particles, respectively.
The general features of the variation of r, with y forthe EMT and Happel flow fields are

very similar. We find the maximum.value of r, at y=0.2 for both in the transverse

c
design for paramagnetic particles and in the longitudinal design for diamagnetic
particles. For other cases, . is maximum at y approaching to zero and decreases for
increasing y . For all cases we studied, the EMT results for r, at y >0.4 are lower than
the corresponding Happel model results. This is because the calculation of r, by

Happel model assumed the flow field outside the fluid shell to be uniform (/) , which

allows magnetic particles to arrive at the outer shell surface with a greater velocity in the
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radial inward captured direction. This resulted in a larger value of r, than those
obtained from this study. Comparison of the EMT radial velocity at the outer fluid shell
calculated from Equation (4.22) with the previously used [9] VO cosf shows that the
EMT radial velocity is smaller, especially for higher packing fractions, and the difference

in r, increases with increasing y as seen in Figures 5.7 and 5.8.

In conclusion, Happel flow fields is less complicated and most accepted,
with over hundreds of citation in current research papers [19]. For the EMT velocity
fields in this research, with the less physical assumption the more complicated results
are obtained. Thus, if the mathematical complication of the equation is not a problem, it
is an alternative for application in some research problems, such as in the theory of
magnetic filtration based on the EMT magnetic field, which the knowledge of the velocity
fields outside the fluid shell is required and not given in Happel's theory. It is of interest
that the EMT streamlines agree with Happel's theory, which gives good results for
predicting pressure drop of experimental data. Therefore, EMT velocity fields may also

be useful in the development of the application employed in fluid mechanics problems.
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Appendix A

Solution for the constants A, B, C, D and &

This appendix shows the determination of the constants in Equations

(4.30}) and (4.31).

= Set Ml to be a square matrix inequation (4.30) .

-(1-v) 7(1 v) (1 7)
ML= {{- - b

oy TR UG 2 asa)
(L ), (g

& The matrix multiplication of ML and colummn matrix of the constantsAand B
setequal tomatrix M2, Thus,
M2 is a colum matrix of the constants CandD (see equation (4.30)) .

M2 = ML.{{A}, {B}}

2
H; v (1) - (110%1_)_'}’ {-28(1-y) 3(;;; ) 1

s Matrix M3 is the first term in the left hand side of equation (4.31) . It is

the matrixmultiplication of square matrix and matrix of constants Aand
B.

3y-2-v> ¥ (5¥*-2v°-3) l1+y+¥® ¥ (3-10%° +v°)
= - AL 4Ry, (B
{{672 (1- x) 6(1- 75) bed- 3y2 3(1-v) }}q({ b AR
{ A (- 2+3y y) +By( 3+5Y ~27f)} {A(l-+7{—l~‘(2) +B}/(9w].0yL+y5)}}
{ 6(l-v)y2 6 (1-v9) ! 342 3(1-v3)

' Matrix M4 is the second term in the left hand side of equation (4.31) . It
is the matrixmiltiplication of square matrix and matrix of constants C
andD,

6¥°-1 -4(2+375) -2y 8
= {3505 * 2% LR IR VI ALY At
3(1-¥5) 3(1 'a’) 3(1 ¥2) 3(L-%) 2
A(L-¥%)

A (1-¥?)

({, v (1-7) - 2y



[{,-2B1- yq4.%<;;;5»}f-éifgyyw.§}
(; BY (1) - A(110?2(5) } [3_?116:55) ]}
{[; By(lﬁv%“vAﬁz;g% ;{_%;é;igi ‘45j+
oo A i -2

® Set matrices M3 plus Mé equal to M5,
which is the left hand side of equation (4.31) .

M5 = M3+ ME
A(-2+3v-¥3) Y (<3457 -2y%) All-v% ) ¥ o
{{ S S Rl PR N N Sy SR . - _ T
6 (1-v) v? 61 -%5) { 2v2 iU 3qLl-yy 2
1 s A(l-¥y) ) <l+6y° )
’ B 1~ P EEE == 5 .
g BY YT e A salgE T )}
A(l+y+¥y%) By (9-10%*+y%) (1 s A(1-y") )
L | Bl - Y4 & 1
{ 352 7T TR ALY S A\ TR e
[ 4(2+3y7 Yoo A(l-y5 ) ¢ 2y 5
. —ZL L 48 +{-2B (1~ 2ok L\ -
V3 (1ovh J Y 5 N -T 2)“

e Substitute the constant Binto matrixMs and set to be M6, The constant B
cbtained from Happel ' s zesults [91.

-(3+ 2%
Mo=M5/. {B-
/-4 ” 2. 3y +3y5- 275}

{{ A (- 2+3):7>f) Y= 3+5y —_Zy) (3+2y) .
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| 22 2 - 3y+3y5 276)\ 3(1 ¥) 2)
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t
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The matrix M6 is a left hand side of equation (4.31) , which isa colum matrix. Now,

we have two equations cbtained from equality of two colum matrices in
equation (4.31) ;
upper elavent and lower
elewent.
= Set. Q1 to be the upper element of matrixMs.

A(-2+3y-¥7) ¥ (-3+5¥7-27) (3+2¥9)

Q1= o +
6(1-y)y2  6(L-¥5) (2-3y+3y5-2%6
{A(l Y ) . 2(1-v) (3+27 ) ) {_3 p 6}+
2y2 2. 37+375 246 3{l-yy 2
[ B(l-¥%) ¥ (1-¥%) (3+2%%) }{-1+6~r5 25)

- - - +
1042 2(2 3T+3~r5 275) 3(1-%5

B(-2+3y-¥?) v (-3+5¥%-29% (3+2y7)

6(1-¥)¥2  6(1-v5(2-3%+3v5-2%9

(A(i-yH  2(1-v) 3+2¥°)) (¥ &)

{

L 292 tal 37+3¥5 26 \737(1 ¥y 2) "
B R I A S R S TN s CL SR
! 102 2(2-3%+3¥5-2%v6 ) 13(1-v5 )

& Set the upper element of the left hand side colum matrix equal to the upper
elemant on the right hand side inequation (4.31) and solve for the constant
A. The answer represent the constant® as a fimctionof v and 6.

Solve[{QL == } (2]

/ At 3+57f2 2}/)(34—21’)
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| 6(1-¥5 (2-3y+3y5-2y0)

5 (. y. & 2y 3,25 | ua,f
2(1 ) 3+27)( Erey 2) 35 ¥ {l-vy") (3+ 7{)\3{1_{3)
el L Te L e _
2- 3y+3y5 2y6 2 2(2-3y+3y3-2¢9
{ d 0 04 15 ey L o))
~2+3y y (L-v ) ( 3¢1-v 2} =) (3(1—}’5) v 5) 1}
6 {1-y)y2 2y2 10y2 !

» Set Q2 to be the lower element of matrix M6.
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® Substitute the constant A cbtained in the previousresult,
o the lower element of matrix M6 (Q2) and set to be Q3.
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] Sétthe Jower elament of the left hand side colum matrix equal to the lower
element on right hand side in equation (4.31) and solve for 6. This give two
solutions of §. By investigate with previcus research [14],

the results indicate that the first solution is a justifiably answer. Thus,

we use first answer as shown in equation (4.36e) .

-35
Solve[{03== - "}, (4}]
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m Let 04 equal to the constant A as a functionof y and §.
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s Substitute § into the constanta (Q4d),
dbtain the solution ¢f & as a functionof v,
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2 This is the sclution of the constant A as shown inequation (4.36a) .
Q5 = Simplify{%]
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e Let Rl is the upper elemant of matrix M2 which is the constant C in equation
(4.30) . Substitute Aand B into K1 to cbtain the solution of the constant C
as a function of y as shown ineguation (4.36c) .
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E Let R2 is the lower element of matrix M2 which is the constant D in equation
(4.30) . Substitute & and B into R2 to cbtain the sclution of the constant D
as a function of ¥ . The constant D shown in eguation (4.364d) .
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Appendix B

Curve Fitling of the Constants
The curve fitting presented here are polynomial fits of the constants 4, B,
C and D for varying y from 0.46 to 0.84. The numerical values of these constants shown

in Table 4.2 are obtained from Eguations {4.36a)-(4.36d).

® This gives a table of the data points (v, &) .

QL= {{0.46, -1.3263133488145251"}, {0.48, -1.63564613858556327},
{0.50, -2.015556331471041"}, {0.52, ~2.4837245898989857 3,
{0.54, ~3.0630653844891573"}, {0.56, ~3.7835749238236422"},
{0.58, -4.6849498718953556"}, {0.60, -5.820353499371482"} ,
{0.62, -7.261920081185831 "}, {0.64, -9.108943593532711"},
{0.66, -11.500299711248235"}, (0.68, ~14.633702603549237 "} ,
{0.70, -18.796286303069426"}, (0.72, -24.414505318300037 3,
{0.74, -32.1380941791982057} , (0.76, -42.9863580337327"},
{0.78, -58.6135381645868%96";, {0.80, -81.8132B617701911"},
{0.82, -117.53221794015806}, {0.84, -175.04606133285031"};
{{0.46, ~1.32631y, (0.48, -1.63565}, (0.5, -2.01556}, {0.52, -2.48372;,
(0.54, -3.06307;, {0.56, -3.78357), {0.58, -4.68495), (0.6, -5.82035},
{0.62, -7.261923, {0.64, -9.10894}, {0.66, -11.5003}, {0.68, -14.6337},
{0.7, -18.7963}, (0.72, -24.4145), (0.74, -32,1381}, {0.76, -42.9864},
{0.78, -58.6135), {0.8, -81.8133), (0.82, -117.532}, {0.84, -175.046}}

® This gives adegree 5 polyncmial £it to the above data.This answer shown in
equation (4.47a).

FAl = Fit[Q1, {1, x, 2“2, %, 5, xs}, x]

16832.1- 142559, x + 479630. x° - 801664. x°+ 666117, X' - 220400. x°

s Hore is a plot of the data points (v, 8) .

@&l = ListPlot[Ql, PlotRange— {{0.4, 6.9}, {-180, 0111

e R e
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= Graphics «
B Here is a plot of the fit of the data points (y, &) .

GAZ = Plot[FRl, {x, 0.46, 0.84}, PlotRange > {{0.4, 0.9}, {-180, 03}}]

| o T o 0.7 0.8 0.9

~175

« Graphics =

= Here is the fit superimposed on the original data (v, 3) ,
shown in figure 4. 3.

GA3 = Show[GAl, GA2, RAxesLabelo {Uy'l, "AMN}]
A

S Ay v
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~75 : \
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- Graphics =



86

® This gives a table of thadata points (v, B} .

Q2 = {{0.46, -4.5881226500347906"}, {0.48, -4.985392899078987 "},

(0.
{0.
.58,
(0.
(0.
(0.
(0.
(0.
(0.

{0

50,
54,

62,
66,
70,
74,
18,
82,

-5.444444444444444°}, {0.52, -5.978467046098359"},
-6.6042273746592635"}, (0.56, -7.343259599495289"} ,
-8.223531975702157 "}, {0.60, -9.281814759036148"},
-10.567099769522867"}, {0.64, -12.145627613412298"},
-14.108425250196015"}, {0.68, -16.582856559144684"} ,
-19,75075779103809" ¥, {0.72, ~23.877698721929946"},
-29,361671799838554°}, {0.76, -36.817002997211"},
-47.224924774741446°}, (0.80, -62.21677559912864"},
-84 6370148909241}, {0.84, -115.73945527912402"}}

{{0.46, -4.58812}, {0.48, -4.98539}, (0.5, —5.44444}, {0.52, -5.97847),
(0.54, -6.60423), {0.56, -7.34326}, {0.58, -8.22353}, (0.6, -9.28181},
{0.62, -10.5671), {0.64, -12.1456}, {0.66, -14.1084), {0.68, -16.5829},
(0.7, -19.7508}, {0.72, ~23.8777}, (0.74, -28.3617}, {0.76, -36.817),
[0.78, -47.2249}, {0.8, -62.2168}, {0.82, -84.637, {0.84, -119.739})

® This gives a degree 5 polynamial fit to the data points (y, B) . This answer
shown ineguation (4.47 b) .

FBL = Fit[Q2, {1, x, ©, 5, 1, xs} , %]

9554 .46~ 80995.3 x + 272728, x° - 456328, x>+ 379657. x* _ 125839. x°

= Here isaplotof thedatapoints (v, B) .

@Bl = ListPlot[Q2, PlotRange - ({0.4, 0.9}, {-120, 0}}]

~120 -

»
e

0750 + v 0.6 0.7 0.8 0.9

- Graphics =



8 Hereis a plotof the fit of the data points (v, B) .

GB2 = Plot{FBl, (x, 0.46, 0.84}, PlotRange - {{0.4, 0.9}, {-120, 0}}]

0s—~0.6_ 07 0.8 0.9

: T
=20 |
|
—40 |
A
60 | \\
! y
-80 |
\
| \
=100 \\
: \
~120 | '
- Graphics -

s Here is the fit superimposed on the original data (y, B},
shown in figure 4.4,

GB3 = SI'IGW[@]., @2, Bxeslabel » Iy, "B“}]

e . j j : Y
! B g e 0.7 0.8 0.9

—

-80 | )

100 | \

120 ! ;

- Graphics -

= This gives a table of the data points (v, C) .

Q3= ({0.46, -0.21808111189680723"} , {0.48, -0.2289950890462358"}
{0.50, -0.23980525488830473"}, ({0.52, -0.2504772390479748"},
(0.54, ~0.26097566896858315"}, {0.56, -0.27126427251730933 1,
(0.58, -0.2813060057604948"} , {0.60, -0.29106320838484234"} ,
{0.62, -0.3004977890526046"}, {0.64, ~0.3095714426702407"} ,-
{0.66, -0.3182459010970571 3, {0.68, -0.3264832181998787"},
(0.70, -0.33424608935097666°), {0.72, -0.3414982044531438"},
{0.74, -0.3482046323503418"}, {0.76, -0.35433223304949735"} ,
{0.78, -0.3598500925581387"}, {0.80, ~0.3647299733786671"},
(0.82, -0.3689467718520625"}, {0.84, -0.3724789717146013"}}
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{{0.46, -0.218081}, {0.48, ~0.228995}, {0.5, -0.239805}, {0.52, -0.250477},
{0.54, -0.260976}, {0.56, -0.271264}, {0.58, -0.281306}, {0.6, -0.291063},
{0.62, -0.300498}, {0.604, -0.3C9571}, {0.66, -0.318246}, {0.68, -0.326483),
{0.7, -0.334246}, {0.72, -0.341498}, {0.74, -0.348205}, {0.76, -0.354332},
{0.78, -0.35985}, {0.8, -0.36473}, {0.82, -0.368%9471, {0.84, -0.372479)}

= This gives a degree 3 polynomial £it to the data points (v, C) . This answer
shown inequation (4.47c) .

FC1= Fit[Q3, {1, x, <, xa}, x]

0.0207887 - 0.149388 x - 0.954971 x° + 0.755306 x°
s Here is a plot of the data points (v, C) .

&C1 = ListPlot[Q3, PlotRange— {{0.4, 6.9}, {-0.4, -0.2}}]
0.2

-0.225

~0.25 }

-0.275 |+
0.3

-0.305 -

0.35 |

-0.375 :

- Graphics «

s Here is a plot of the fit of the data points (v, C) .

GC2 = Plot[FCL, {x, 0.46, 0.84}, PlotRange » {{0.4, 0.9}, {-0.4, -0.2}}]
-0.2, .
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« Graphics -
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u Here is the fit superimposed on the original data (y, O,
shown in figure 4.5.

GC3 = Show [GCL, GC2, Axeslabel . {"y", "C"}]
c
0.2

-0.225 .
-0.25 ¢
-0.275 |

-0.3
-0.325
-0.35 =
-0.375 | . =

05 06 07 08 08

- Graphics =

e This gives a table of the datapeoints (y, D) .

Q4 = {{0.46, 2.4843183575482837 ), (0.48, 2.453052390529454"},
(0.50, 2.421109947237882"} , {0.52, 2.3885046570355484 "},
{0.54, 2.3552521504407764"}, {0.56, 2.321370380412124"} ,
{0.58, 2.2868799169772105"}, {0.60, 2.2518042522320485 '},
(0.62, 2.216170111863918"}, (0.64, 2.1800077683490997 "},
(0.66, 2.1433513498526393"}, {0.68, 2.1062391376302063 "},
{0.70, 2.0687138434342582"}, {0.72, 2.0308228571074505"},
{0.74, 1.992618453274277 "}, (0.76, 1.9541579449086015"} ,
{0.78, 1.9155037706658007"}, {0.80, 1.876723502364836"],
{0.82, 1.8378897590106575"}, {0.84, 1.7990800144393333"}}
({0.46, 2.48432}, {0.48, 2.45305}, (0.5, 2.42111}, (0.52, 2. 3885},
(0.54, 2.35525}, {0.56, 2.32137}, {0.58, 2.28688}, (0.6, 2.2518},
(0.62, 2.21617}, {0.64, 2.18001}, {0.66, 2.14335}, {0.68, 2.10624},
(0.7, 2.06871}, {0.72, 2.03082), {0.74, 1.99262}, 70.76, 1.95416},
{0.78, 1.9155}, 10.8, 1.87672}, {0.82, 1.83789}, (0.84, 1.79908))

& This gives a degree 3 polynomial fit to the data points (v, D) . This answer
shown inecuation (4.47d) .

FD1 = Fit[Q4, {1, x, ¥, X}, x]

2.89074- 0.0613565 % - 2.16837 x° + 0.826108 x°
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= Here is a plot of the data points (v, D) .

Gl = ListPlot[Q4, PlotRange-» {{0.4, 0.9}, {1.7, 2.5}}]
2.5,
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N W

: 0.5 0.6 07 - 0.8 0.9
1.9 -

1.8 !
1.7

- Graphics -

= Here is a plot of the £fitof thedata points (v, D) .

G2 = Plot[FD1, {x, 0.46, 0.84}, PlotRange - {{0.4, 0.9}, {1.7, 2.5})]

2
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2

|
1.9]
1.8 ]
171
- Graphics =

= Hare is the £fit superimposed on the oxiginal data (y, D),
shown in figure 4.6.

GD3 = Show[GD1, GD2, AxesLabel » {"y™, "DV} ]
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- Graphics «



Appendix C

Particie Trajectories by Mathematica Program

The differential equations (5.4a), (5.4b), (5.5a) and (5.5h) have no
explicit closed form solution. Thus, we find the numerical solutions in terms ol
InterpolatingFunction objects. The procedure below gives the solution for the trajocioinm
of paramagnetic and diamagnetic particles in longitudinal and transverse mode dosingn

at y =0.1.

.SetE:F inequation (5.5a) and -Zi inequation (5.5b) tobedl andd2,

respectively. This cbtained from the velocity field in the fluid shell.

2v 3 1 3(V6-1) v (xitn)?
di= - T T - [ Cosieit]] -
2-3y 2r(t] 2 (x[t])3 10
v
- 114+ 3Cos{28[t 5+ 3Cos[20(t
2 vty (LY 3CosI2EI8 < K (5 3Cesi2etE) )
3 1 3{V 6 -1) ¥ (x[t])?
T s Z_Y e - . - ( )T (=1 ginfg{t}] -
(2-3y) £[t] 4x[t] 4 (r[t3 5
w K .
o f1+ - - _lsin[26[t
rzth( ' 2<r[t1)3) v
1 3 —— =~ TR
ZVCOé[@{t]W}»(lJr 2rrey3 'é-r[tLF 10 ( 1+\/6) yor(t] )
2-3r
53Cos[ 20181 ) K "
(1+3VCOSF7276‘[T:]}.+'( ",,?-Tit}éj“ s)v
2rit}d
1. 3. 314 — P— e T
(2-3vy) rit] rlch

dr,
m Set d;‘ inequation (5.4 a) and :‘z inequation (5.4 b) tobed3 andd4,

respectively. This cbtained fram the velocity field in the effective medium.

3(vV6-2) 3(8-3vV6
a. 2Vl 3l ) 2BV 3Y) ot
2-3y 4rit] 20y2 (x[EH3 2
3(v6-2) 3(8-3vVs6
.. 2V 3 ), 3(8-3V6) 3y sin[e[t] )
(2-3y) r[t] 8rit] 40y2 (x[ty3 2
( 3(8-3/6)  3(-2+/6)
L A i et B i
2VCos[oft]] ‘\1 2 T w2y T ey }‘

2-3%



{ B o
2vI1- 3% 3(8 3\/6) 3 26 I Sin{e[t]]

‘K 2 40yEngd T 8rig

2 43)/)"}:7(‘(:] st

e Substitute the parameters for paramagnetic particle in longitudinal moda.

S wll=dl/. {V--6.65, ¥ » 0.1, v' » 572.16, K, - 0.58}
wil=d2/. {V> -6.65, ¥ » 0.1, v* » 572.16, K, - 0.58)
w2=d3/. {V=+-6.65,y~+0.1}
wl2=dd /. (V- -6.65, ¥ - 0.1}

286.08 (1+3Cos[2e{t]] . 0-5.@<.5*..3.Cos_£2,6[t1m,)

- SR
rityéd
{ i S : 2
7.82353Cos[o[t]] |1+ - -0.000434847 r[t]":
Vo2rityd  Z2rin )
7.82353 (1, S L. 3 0.000869694 rm?) Sin{elt]]
_4rH:J 4rit] r F == "
rit]

572.16 (1+ ﬁf}% ) Sin[2e[t]]

TTrregs
f i 3(-2++/6) )
_7.82353Cos[ort]] 0.85. 117206 31 24
\ rit]3 4rfE]
f 3{-2/6) )
/ 4.88648 VY X
7.82353;\0.85+ S8 - \arm.J ) Sinfeft]]

[t



Gt

= This find solution for r (t) ande (t) as InterpolatingFunction dbjects. Fory = 0.1,

the fluid shell radius is10a (seta= 1) . Thus,
using the velocity field in the effective mediumorul2, wl2 forr> 10,
and the velocity field in the fluid shell oruil,
wll for r < 10. The conditions specify for captured magnetic particle.
nll =

NDSolve|

286.08 {1+ 3Cos[26(t]] + 0.5 (. 3Cm2ort1) )
{x[t] = If[r[t} <10, - — . Tty

x[t]4
3

27[t]3  2x[t]
9.772962 3(-2+V6) )]

7.823529 Cos[o[t]] (1+ - 0.000435 r[t]z},

-7.823529 Cos[o[t] ] ga.ss_

)3 4y
7.823529 (1_ i3~ 4 = 0-000870 r[t]z) sinje[t]]
6'1t] = If[r[t] <10, - F g ﬂ;m -

572.16 (1+ :{;93 ) sin[2e[t]]
e Yy -

r[E]3

3.('?‘“( 6)

7.923529 {0.35», Foogy T
Brit]

i | sinjaren)

], (0] = 12.469647,

el
6[0] == 0.275325}, {r, e}, {t, 0, 2.2425} ]

{{r - InterpolatingFunction[{{0., 2.2425}1, <>,
6 - InterpolatingFunction{{{0., 2.2425}}, <>1}}

8 This plots the solution cbtained.

nl2 = ParametricPlot|Bvaluate[ (x[t] Sin[o[t]], x[t] Cos[8[t]]1} /. nil],
{t, 0, 2.24244}, PlotRange - {{0, 5}, {0, 123}
12, ‘

]

10 l
i |

§| «
i

6! |
4" !
1 /
2 o //
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- Graphics -



» This find the solution for the trajectory of magnetic particle which don'
t move towaxrd the solid sphere.

ni3d=
NDSclve [

286.08 {1+ 3Cos[20(t]] + *FH3e2oitiD )

i3
' == - [ ]
{r [£] If[r[t] < 10, .y

3
(1+ - -

2x(t]13 2zx[t]
9.772962 3(—2+«16))]

7.823529 Cos[o[t] ] - 0.000435 r[t]z),

-7.823529Coslolt] ] €0.85 -

rit}3 | 4r[y
7.823529 (1_ 1.3 —0.000870]:[‘(:]2) Sin{o|t]]
4r[t]3 4rft]
e'[t] = If[x[t] < 10, - ST R =)

572.16 (1+ :{:}g ) Sin[2e[t}]

rit]3 '

7.823529 (0.35,, aeseasy _ 3(-2V6)

r{t;3 arpt) ) Sin[e[t]]

& 4 1: x(0] = 12.472368,
x[t] -
e[0] = 0.276087}, {x, &}, {t, O, 3.5}]
{fr - InterpolatingFunction{{{0., 3.5}}, <>].
6 - InterpclatingFunction[{{0., 3.51}, <>1}])

z This plot the solution obtained.

nil4 = ParametricPlot[Evaluate[{x[t] Sin[e[t]], rit] Cos{6[t]]} /. nl3],
{tr Or 3-5]r PlOtRange—) {{01 S}r {—5: 12}}}

101 |
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- Graphics -



8 This show the sclid sphere radiusa, seta=1.

nl0 = Show[Graphics[Circle[{0, 0}, 11, AspectRatio » Automatic) )

- Graphics -
s Thi s show the cuter surface of the fluidshell xradius b, b= 10.

n20 = Show [Graphics| {Dashing[{0.05, 0.05}], Circle[ (0, O}, 101},
AspectRatio— Autamatic] ]

- Graphics =

u This show the trajectories of paremagnetic particlies in longitudinal moda
as shown in figure 5.1. Dash ling is the cuter surfacs of the fluid shell,

£ig0l = Show[nl2, nl4, ni0, n20, PlotRange -» ({0, 5}, (-3, 12}},
AspectRatio- Autamatic)

12 ‘
10 L

g f

6 :

| !

4 /
2,
- \\
423
-2 ;

/

- Graphics



a Substitute the parameters for paramagnetic particle in transverse mode.

w2l=dl/. {V--6.65, y - 0.1, v* > 572.16313, K, - 0.58)
w2l=d2/. {V- -6.65, v » 0.1, v* » 572.16313, K, » 0.58}
w22=d3/. {V-»-6.65, vy =+ 0.1}
w22=dd/. (V- -6.65, v - 0.1}

286.082 {1+3Cos[20[t]] + 0.58 (S+3Cos 2oit) ) )

. rie?
rie]d

/ 1 3 22
7.82353Cos[@{t]] 1+ - — -7 -0.000434847 r{t]”)
U 2rg3 2r[t )

T S B 23 '

7.823;3 (1”5;_[t;3 ity 0.({008§9§94;[t? )Sm[em

e

572.163 (1 + 52’%2]93 ) Sin[2e[t]]

ritys
{ .7 3(=2+v86))
_7.82353Cos{o[t]] 0.850 — 1208 (<2% _ )
\ rit]? 4 2
[ od gt
7.82353 §\O.85+ 85058 ?(g-zr-{-\ﬁf} ) sin(6lt]]
T e N e

& This find the solution for captured paticle of paramagnetic particle in
transverse mods.

- n2l=

NDSolve [

286.081565 1+ 3Cos[26[€]§ + %0 Crm et )
"[E] = IE[x[E]) < 10, - - T

[r1t] [x[%] < » g

1 3

7.823529 {1+ - -
2z[t}3 2rx(t]

- 0.000435 r[t}z) Sin[e[t]],

9.772962" 3(-2:6)

-7.823529 Eo.asu }sin[e{tn].

rit}3 7 4riy
7.823529 Cos[o[t] ] (1- mlt]3 < “?:t] wc.cmoa'.m:g-t;2’}
o' [t1= If[x[t] <10, | - oo Jet

572.16313 (1 + ,0[319'3 ) Sin[26[t]]

1

r[t]5

sgaeas _ 3{-2V 6)
7.823529Cos{e{t]] {0-35+ 3 T sry

A }],r[OJ = 12. 916981,
r[t]

e[0] == 1.949865}, {x, e}, {t, O, 2.654746}]
{{r- InterpolatingFuncticn{{{0., 2.65475}}, <>},
0 InterpolatingFunction({{Q0., 2.65475}}, <>|})
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® This plots the solution dbtained.

n22 = ParametricPlot[Evaluate[{x[t] Sin[6[t]], rit] Cos[B[t]]} /. n2i],
{t, 0, 2.654746} , PlotRange + {{-4, 12}, {-6, 0}}, RspectRatic - Automatic)
a2 'F* 2 4 6 8 10 1
A
Lo-3
ey

.
s

-6

- Graphics =

B This find the solution for the trajectory of paramagnetic particle in
transverse mode. The conditions specify for the particle whichdon ' t move
toward the solid sphera.

n23 =
NDSolve|

286.081565 (1 +3Cos[20[t]] + 058 (53008 201111) |
{x'1t] = If{x[t] < 10, - Ry ) rlt]

r[t]4
1 3

7.823529 {1+ .0 - . -0.000435 tz}s' e(t}l,
82352 { Csocl B c1t)2} sinfe(t]]

9.772062 ~ 3(-2+V6)

-7.823529 go.as- } sinfe(t]]],

rit]2  4xiy]
7.823529Cos[6[t]] (1- i3 " gy 0-000870 x|t}
o' [t] = If[x[t] <10, - — ;‘["’;].. R

i3

572.16313 (1+ 0.29 ) Sin[261t]]
‘ e,

7

7.823529 Cos[e{t]] €0.35+ 4.8854331 _3(-2¥6) )
it} 8rit]
' -0 ¥ 1 ] =10] = 12.920685,

- - '_mr[t;]
8[0] = 1.850584} , {x, 6}, (&, 0, 3.5}]

{{r- InterpolatingFunction{{{0., 3.5}}, <>,
6 - InterpolatingFunction{ {{0., 3.5}}, <>}!} )

s This plots the sclution cbtained

n24 = ParametricPlot[Evaluate[{r[t] Sin{o{t]], r[t] Cos{o[t]]} /. n23)],
{t, 0, 3.5}, PlotRange - {{-4, 12}, {-6, 0}), AspectRatioc - Rutamatic)
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e This show the trajectories of paramagnetic particles in transverse mods
as shown in figure 5.2. Dash line is the cuter surface of the fluid shell.

£ig02 = Show[n22, n24, n10, n20, PlotRange - {{-4, 12}, {-6, 0}),
AspectRatio- Autamaticl
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s Substitute the paramsters for diamagnetic particle in longitudinal moda.

u3l=dl/
w3l=d2/
wi2=d3/
w3Z=dd/

7,82353Cos[o(t]]

7.82353 (

572.163

. (V- -6.65, v -+ 0.1, v »-572.16313, K - 0.58}

. {V- -6.65, vy 0.1, v > -572.16313, Ky 0.58)
. {V> -6.85, y - 0.1}
. {V¥->-6.65,y->0.1}
266.082 (1+ 3Cos(204€]] + HBIEIBAZAED,
o = Tt i
1
b, L 32 -0.000434847.r[t]2}
\ 2r[t)3  2rplt) J
.1 _ P 7 : -
L B T Y5/ )sln[emu *
r[t]
0.29 ;
\1g) 95 sipizeisy)
r[t]2
- ! 9.77296 3{-2+V6)]
_7.82353Cos[e[t]] 0.85- 10 . (-2:V6)
_ L rit}3 drlt]
{ ol 61 )
7.82353 0,85, 49088 _ 3 26} ) Sin[o[t])
I r(t]3 Brit] }

A

rit]



a This find the solution for the trajectory of diamagnetic particle in

longitudinal mode. The conditions specify for the particle whichdon' ¢
move toward the solid sphere.

n33=
NDSolve[
286.081565 (1+3Cos[26[t]] + 0-59‘5‘3;’:’15;2"1““ )
' [t] = If{x[t] < 10, . FH -
{x'[] [zit] —
1 3 )
7.823529005[6[t]1(1+ T . T _D.000435z[t) )
2x(t]3 2z[t)
9.772962 3(-2+V§6
_7.823520 Cos[e[t]] |0.85- & v - st 1.
rity3 4rit]
7.823529 (1-,.. AL AN -0.0008'70r{t]2) Sin{e[t)}
8'[t] = If[r[t] <10, - /A S : '
p rit]
572.16313 (1+ 2%} Sinj26[t]]
. il W
x[t]5 K
' agsetmr _ 3(-2V8) )| o
7.823529(0.85+ Seumy_ 302 Y sinjerty)

. y ], r[0] = 12 .477836,
rit]

(0] = 0.277639}, {r, &}, {t, 0, 3}]
{{r- Interpolatingfunction[{{0., 3.1}, <>,
g -» Interpolatingfunction[{{0., 3.3}, <>]}}

a This plots the solution cbtained.

n34 = ParametricPlot[Evaluate[{x[t] Sin[&[t]], r[t] Cos[8[t]]} /. n33],

{t, 0, 3}, FlotRange » {{0, 5}, {-4, 12}}]
12 ,

|
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- Graphics -




s This show the trajectories of diamagnetic particles in longd tudinal mode
as shown in figure 5. 3. Dash line is the outer surface of the fluid shell,

fig03 = Show[n32, n34, nl0, n2C, PlotRange » {{0, 3}, (-3, 12}},
AspectRatioc—+ Autamatic)

12

- Graphics -

e Substitute the parameters for diamagnetic particle in transverse mode.

uwdl=dl/. {V> -6.65, ¥y » 0.1, v » -572.16313, K. » 0.58)
wil=d2/. {V- ~6.65, y 0.1, v’ » -572.16313, K, » 0.58}
ud2=d3/. {V- -6.65, y - 0.1}

wi2=db/. (V- -6,65,y¢ » 0.1}

286.082 (1+3Cos(2e(t]] + #3 IS 2eIni

ritr3
e A
7.82353Cos{e{t]]{1+ S -0.000434847r[t]2}
L 2r[t13 2rnt J
7.82353 (1- w3 " any - 0-000869694 rit)?) sinfoft]]
A S s *

572.163 (1+ .0 | sin(ze(t]]

Tr{t)s
f 77296 3 {-2+V6} )
. -7.82353Cos[e[t]] 0.85- 3.772%% _,,,,(,,, *Ve) ;
\ rlt]3 4riel

[ 4.88648 3(*2'*\/ 6) 1 o
7.82353\0.85+ e Sr[t}--gsm‘l[@{t”
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u This find the solution for captured paticle of diamagnetic particle in
transverse mode,

ndl =
NDSolve]

3
{z'1%] == I€[x[t] <10, - - - N i rit] _

rit]4

286.081565 (1+3Cos[26(t]] + O S3%a20tn )

1 3 2\ o
7.823529§1+ _ - _ .. _0.000435r[t )Slnet ,
( * ares T 2ere) (t] Gl
9.772962 3(-2+§6)

-7.823529 {0.85- )sinteitl}],

s
7.823529C0s(e(t]] (1- , % 5= 2 -0.000870 t)")
©'[t] = If[r[t] <10, - - 77 rie]® 4oty e
rit]

73

572.16313 (1 + °t-29--- ) Sinf2e6(t}?
bl

7

a.885081 _ 3(-2V 6)
7.823529Cos[e(t]] (0-95" A O }

=y 3 ], r[O] ET] 12.308842,
r[€]
e[0] == 1.795281}, (x, 6}, (&, O, 2.7}]
{{r- InterpolatingFunction[{{0., 2.7}, <>,
& - InterpolatingFunction[{{0., 2.7}}, <>{})}

» This plots the solution cbtained.

nd2 = ParametricPlot|Evaluate[ {r{t] Sin[o[t]], x[t] Cos[8]t]]} /. ndl),
(%, 0, 2.6675}, PlotRanges {{=5; 12}, {75, U}
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= This find the solution for the trajectory of diamagnetic particle in
transverse mede. The conditions specify for the particle which don' ¢t move
toward the solid sphere.

né3 =
NDSolve]

286.081565 (1+3Cos([26(t]] + 058> 3%nfZntil) )
{z'0t] = LE[xt1 <20, o - e - _ r[t) )
rit]4

1
7.823529 (1+ 3 _0.000435 r[t}z) Sinfe(t]1,

9.772962 3 (-2:V6)

,,,,, iy }sin[e[t]]].

~7.823529§0.85- - - -
r[t]3 4xit]

7.823529 Cosio[t]] (1- 4r{1t13 - 4r3[r.1 “0-0()0370!“5‘?:]3‘;)

"[E] = IE[2[t] < 10, - ,
e'[t] [z18] < S

i

3

572.16313 (1+ °-t29 ) Sin[26it]]
r

¥

7.823529 Cos[o[£]] {0_35” somsazy _ 227 6) )
Tt} 8r[t]

5 | 07 = 12.311072,
rit]
e[0] == 1.796073}, (r, &}, (t, O, 4}]
{{r - InterpclatingFunction{{{0., 4.1}, <>].
& -» InterpolatingFunction[{{0., 4.}}, <311}

e This plots the sclution cbtained.
nd4 = ParametricPlot[Evaluate[{x[t] Sinf{6[t]], x(t] Cos[e[t]]} /. nd3],

{%, 0, 4}, PlotRange + {{-35, 12}, {-6, 0}}]
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s This show the trajectories of diamagnetic particles in transverse mode as
shown in figure 5. 4. Dash line is the cuter surface of the fluid shall,

f£ig04 = Show[nd2, n44, nl0, n20, PlotRange » {{-5, 12}, {-6, 0)},
AspectRatio- Rutamatic]
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