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In 1975-1976, A. Ostrowski published a deep, general and extensive research
on multiplication and factorization of polynomials based principally on the general-
ized notions of highest and lowest terms of a polynomial, called general mappings, A,
of a polynomial into an extreme aggregate of its terms.

The first part of Ostrowski's works discusses all possible orderings, {1, in
the set of products of powers of independent variables under a very general set of
postulates, which contains the usual lexicographical principle as a special case. A
one-to-one correspondence between §2 and A is established and all realizations of pos-
tulates defining (1 are investigated using the ideas of weight functions and the baric
polyhedron of a polynomial.

The second part of Ostrowski's works contains applications of the results in
the first part to the problem of irreducibility of polynomials. In particular, the cases
of 2 and 3 term polynomials are completely determined, while that of 4 term polyno-
mials a complete discussion is only carried out for the case of the baric polygon being
a triangle.

In this thesis, we carry out a comprehensive study on the above-mentioned
works of Ostrowski by analyzing, clarifying, proving and supplying relevant examples
to all his results. In addition, the irreducibility of 4 term polynomials whose baric
polygon is a quadrangle is investigated and complete results for some large classes of
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CHAPTER 1

INTRODUCTION

The problem of factorizing a given polynomial is generally difficult and has been
a subject of a great deal of investigations. Yet, till now, there is no particular method
capable of identifying whether a given polynomial is reducible.

In 1975-1976, Ostrowski conducted a comprehensive study on multiplication and
factorization of polynomials, based on the generalized notion of ordering embracing
the Lexicographie Principle for polynomials. Ostrowski also applied his results to the
problem of irreducibility of polynomials. This work of Ostrowski is general, deep and
noteworthy.

This thesis represents an elaborate study of Ostrowski’s work by analyzing, clar-
ifying, proving and providing relevant examples to all above-mentioned results of
Ostrowski. In addition, complete determination of the irreducibility of some classes
of 4 term polynomials whose baric polygon is a quadrangle, which was not resolved
by Ostrowski, is given.

In Chapter II, we define of products of powers, their orderings and discuss all
possible orderings {2 of products of powers satisfying a simple set of postulates. Next
we introduce a weight [unction and establish an ordering in the set of products of
powers of independent variables by the Lexicographic Principle using a sequence
of weiéht functions. Then we use the concepts of the highest and lowest terms of
8 polynomial to define of a general mapping, A, of a polynomial into an extreme

aggregate of its terms. The classical definition of the highest terms is usually given



using the Lexicographic Principle. A one-to-one correspondence between all orderings
of the type €2 and all mappings of the type A is established. However, the same
aggregates of extreme terms can be obtained for infinitely many choices of weight
functions. In order to obtain a complete picture of all possibilities we introduce the
baric polyhedron of a polynomial, which is uniquely determined by this polynomial.

In Chapter III, we apply the concepts and methods developped in Chapter 1I to
the problem of irreducibility of polyno—mials. In the cases of 2 and 3 term polynomials,
the problem can be solved completely. For 4 term polynomials a complete discussion
is given only if the baric polygon is a triangle. If the baric polygon is a quadrangle,
after simplifying the problem, the irreducibility of certain classes are determined

completely.



CHAPTER I1
ORDERINGS AND EXTREME AGGREGATES OF

TERMS

2.1 Orderings of products of powers
Let m > 1 and z4,..., Z, be independent variables. The product of powers
(denoted by PP) of these variables is an expression of the [orm

R ey (2.1)

T

witha, € Z (€ {1,... ,m}). Such PP will be called rational, and a rational PP
with a, > 0 (1 € {1,...,m}) will be called integer. If @, =0 where s € {1,...,m},
we may write 23 .. .agr = 2tz et age. all o, (u e {1,...,m}) are

= 0, we may write z{* ... z%= = 1. The sum a; + - -+ + @, is called the dimension
of the PP. In the following, P, P, P», P, P, are arbitrary PP’s,

A regular ordering of PP’s is a set, 2, of binary relations between PP’s, denoted
by ~, > and < and satisfying the following postulates:
1. There exists the complete disjunction: either P; ~ Py or P, > By or P, < Py.
I A~ P, (P~ B> (P~ (P> B) & (P < ).
HL (P> BN (B2 P)) = (P> R, (PL~P)A (P> Ps)) = (P> P).
W. (P > By) = (BP, > PP}

From the definition, we derive a number of elementary properties, as follows :



A ((P1<P2)/\(P25PJ))=>(P1 <P3), ((Pl’VPQ)/\(Pg(Pg)) =>(P1<P3).
Proof. These follow easily from II and IIL. .
B. (= 1II') (PL~ P) A (Py~ P3)) = (P~ P3).

Proof. Suppose P, > P;. Since P; ~ B, it follows from III that P, > P, which is a

contradiction. Similarly, we can disprove P, < Ps. O
C. (-E IV’) (P1 ~ Pg) = (Papl N“PSPQ), (P1 < Pg) =t (PBPI < P3P2).

Proof. The last assertion follows from II and IV. To show the first assertion, assume
that P, ~ Py, If AP, > P3P or P3Py < P3P, then, multiply by 1/P;, we have

P, > P or P, < P, which is a contradiction. O

D. (((P1 > P)A(Py> POV (P~ P)A (P> Py)) v ((Py> Po)A(Py ~ P4))) =
(PP > PPy, (P~ Py) NP3 ~ Py)) = (PLPs ~ P Py).

Proof. These follow by repeated applicatiohs of IV and IV O

E.Forpe N, we have PP > PYor PP~ Py or P < PY,and PP < P;Por P[P~

PP or PI* > Py "

Proof. Let p € N. Since

Py > Pyor Py~ Py or P Py, (2.2)
by repeated applications of D, it follows that

P> PP or PP ~ P} or PP < P} (2.3)

Now, multiplying (2.2) by 1/P; P;, we have



1/P<1/Pyor1/Pi~1/Pyor 1/P < 1/P,.
By repeated applications of D, it follows again that
1/P? < 1/PF or 1/P} ~1/PF or 1/PF < 1/FP%, (2.4)

ie. PP < PyPor P[” ~ P;" or Py? > PP, 0

We could define the ordering directly for the field of integer PP’s. We have to

add to the postulates I - IV the postulate
(P3P1>P3P2):>(P1>Pg),

since the invariance with respect to division is no longer contained in IV, Then,
obviously, III" and IV’ are valid again,

Any rational PP (2.1) with partly negative @, can be writlen as P = P /P,
with integer PP’s,” P, and P,. For integer PP’s Py, P,, P, Py, define P /Py >
Ps/Py ot PI/Py ~ P3/P; or P/Py < Py/Py, according as PPy > PyPs ot PPy ~
PyP; or PPy < P,P;. This definition does not depend on the special choice of
P, Py, Py, Py. To see this, let Py, Py, P3, Py, Q1,Qs, (s, Q4 be integer PP’s such that
Pi/Py = /Qo and Py/Py = Q3/Q4. Then PiQy = PQ, and PyQy = P4Qs. By the

above definition and the postulates TV and IV, we have

Pl/P2 > P3/P4 or Pl/PQ ~ Pg/P4 or Pl/Pz < P3/P4
<=>P1P4>P2P30I‘P]P4N_P2P3OI'P1P4 <P2P3
& Q1QuPI Py > Q1QusPo Py or Q1QuPi Py ~ QW QuPaPs ot QiQuPiPy < Q1@QaPa P

& QP Py > Qs PPy or Q1QuP Py ~ Qo3 PPy or hQuPI Py < Qo3P Py



S Q1Qy > Qs 0r Q4 ~ Q2Qs o1 Q1Qy < Q20
S Q/Q2 > Q3/Q4 ot Ch/Q2 ~ Q3/Q4 or Gh/Q2 < Q3/Q4.

We see now easily that all postulates I - IV, III', IV’ remain valid in the field of
rational PP's. Thus once we have the ordering for the field of integer PP’s, we can
define the ordering for the field of rational PP’s.

We consider now the PP (2.1) with o, € @ (z € {1,...,m}). Such PP will be
called algebraic. The sct of these PP’s will be denoted by [x),. .., Zmy].

In order to deﬁn,e our relations for the algebraic PP’s,

£ & o L W] L
Pu=z' . eim, B .—:1:11...3:;1,

let M be the smallest common denominator of all «r, and g,. If P, and F, are rational
PP’s, we take M as 1. Then we define Py > P, or P, ~ P, or P < P, according as
PM » PMor PM ~ PM or PM < PM.

Let N € N be such that both P}¥ and P}’ are rational PP’s. Then N = pM for
some p € N. By E, it follows that P¥ > P¥ or PV ~ PF or P/ < P}, according
as PM > PM or P¥ ~ PM or PM < PM. Thus by the above definition, we have
that from any of the relations between P, and P, follows the corresponding relation
between P and Pj".

We see now easily that all postulates I - IV are satisfied for our ordering in the
field of algebraic PP’s. Moreover, for any p € Q, from any of the relations (2.2)
between algebraic PP’s, P, and P,, follow the corresponding relations in (2.3) and
(2.4).

From now on, we will consider generally the algebraic PP’s unless oth-

erwise specified. Further, all exponents which will occur in the following,



will be assumed to be rational numbers, unless otherwise specified.

Any ordering of algebraic PP’s satisfying the postulates I - IV will be called a
regular ordering.

Now, we will apply a multiplicative reversible transformation (m-r-transfor-
mation) with a,, € Q (,u, vell,..., m}) such that det[a,,] # 0:

@yl

ze =y (pe L., m}).

Then cach PP (2.1) becomes

.gl v
G

where 8, = aj,01 + -+ + @y € Q (v 3 {1,...,m}), which is an algebraic PP
from [y1,...,Ym]. For g € {1,...,m}, since z, = y;* ... yn™, logz, = a,logy; +

v+ G [Og Y, then

log a4 log 11
= law]
log 2., log ¥,
Let [b,.] := [au) ™. Then
log i log z;
= [yl
log ¥ log z,,

1

For p e {1,...,m}, logy, = buloga1 + --- + bumlog xm, 50 y, = :{:"1’“ ...zo which

is an algebraic PP from [zy,..., 2]

M
1 ]

Let Py := 28 ... 22 and P := 27" ... 20" be any algebraic PP’s from [z1, . . ., Tn)-



After applying the above m-r-transformation, we have

— 1101+t @) e 4,3 &1+ e — ﬂllﬁ1+"'+ﬂ al.gvn 0 + e Fen
P=y T YT » Pro= 4 iy P

Observe that any of the relations between P; and P, is invariant as P, and P, are
considered to be algebraic PP’s from [y1,...,%n]- Let M be the smallest com-
mon denominator of all ey, + <+ + @muey and a1,08; + - + agwfn. By E,

P]M > P or PM ~ PM or PM < PM . according as P, > P, or P, ~ Pyor P; < Ps.

2.2 Weight functions

A function W : [z1,...,2m] — R is called a weight function if for £, and P,

from {z;,...,aml,

WP Py) = WP+ W(R).

It follows that W (1} = 0 and for any PP P and a € Q, we have W(P*) = aW (P).

If we put w, := W(z,) (€ {1,....m}), we obtain

W ) = W) o+ W(zar)
=Wz + -+ anW(zm)

= Wiy + - Wy Oy (2.5)

This shows that we can define any weight function by (2.5) choosing wy, ..., wy, as
arbitrary real numhers." If w, € Q (u € {1,...,m}), W(P) is called a rational

weight function.

Example 2.2.1. 1) The weight function given by the dimension:

W = =Wy = L.



2) The weight function given by the degree in  :
w =1, wy = =1w, =0.

3) The weight function given by the classical weight in the theory of symmetric

functions:

U =d5 e =2, .00, Wy, =T

Proposition 2.2.2. If  is the maximal number of the w, in (2.5) which are linearly

independent with respect to @, then W () in (2.5} can be represented in the form

T

W(P) =Y wPw(p) (2.6)
p=1
where w(? (p € {1,...,1"}) are linearly independent real numbers chosen from

wy, ..., Wy, and WEH{P) (p € {1,...,7r}) are r rational weight functions which are
linearly independent as linear forms in ay, ..., o&;,. The number r will be called the

rank of the weight function W{P).

Proof. From the assumption, we have w!! ..., w') are linearly independent with
respect to Q and there are k;; € Q (i € {1,...,m—r}, j€{1,...,7}), not all zcro,

such that

W™ = kw4 kT

W™ = k1w + - by,
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It follows that

W(P) =wlaM ... Mgl
=wMaW + .+ we™ + (kpw® + - 4 kwMal Y
+---+ (k(m_r)lm(l) + o+ bnerrw)al™
= wW{a® + ka4 4 k(m—r)la(m))

+ e + w(r)(a{rJ +klra(r+1) + P + k(m_f)fa(m))"

where {a!V, ..., 2™} is the same set of {e,..., .} but ordered appropriately.

Define ]
WI(P) = oW + kel 4+ oo+ ke pa™,

(2.7)

W(T)(P) — &(T) + klr&(r+1) + .-+ k(mhr)ra(m)'

We see that W(P) (p € {1,...,7}} are rational weight functions and W(P) =
i:w(p)W[p)(P). Finally, we show that W@(P) (p € {1,...,7}) are lincarly in-
gzgl:)endent as linear forms in aq,...,@&,. Suppose there exist a;,...,a, € Q such
that a;WO(P) + -+ 4+ aq, W (P) = 0. Then a;aM + -+ + a0 + (ajkyy +- - +
arky )oY 4 (ko A+t Gk ey @™ = 0. As ay,..., ay, arc inde-

terminates, we get @y = --- = a, = 0. Thus W}(P) (,0 e {1,... ,r}) are linearly

independent as linear forms in «q, ..., Gn. O

From Proposition 2.2.2, for any PP P, if W{P) = 0, since w0 w') are
linearly independent with respect to Q and W (P) (p € {1,...,r}) are rational

weight functions, it follows that W@/ P) =0 (pc {1,...,7}).

Proposition 2.2.3. Let r be as in Proposition 2.2.2, Then there exist m — r PP’s,

PO ., Pt guch that for any PP P with W(P) =0, P = Pt | plm-rium-r
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where uy, ..., Um-r € Q and W(PM)) = ... = W(P™ ")) =,

Proof. For p € {1,...,r}, let z(#) be the independent variable corresponding to the
w'? as stated in Proposition 2.2.2.

Choose

PO = ki) | ) ki) e )

P(Tﬂ"’?’) e m(l)("k(m—-v)l) A w(r)(ﬁk[nr-r)r‘)m(rn'),

where k;; (z e{l,....m—r} 7€{l,..., ?‘}) are as in Proposition 2.2.2.
Let P := z§*...2% be a PP such that W(P) = 0. Then W¥P) = 0 (p ¢

{1,...,7}). By (2.7), we have

Ct’(l) = ,_.k”&(r-i-l) — k(m—r)la(m),

" = koY o R yal™

Thus

P g = g®e® | pmal

— x(l)(—klla(’“)—-"—k(m_r)la(m)) d m(r)(—kl,-a(" +'1)—''‘—’F(m-w-)rﬂ("‘))3;("4‘1)0'5("+1) ™ | I(m)ﬂ(m)

= (@R RN ) Eanm) | K one) ) jat™)

Let uy = a'™, .y = a™. Then P = pliu  plm=rim_

By {2.7), it follows that
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WO POy = O k) || ik 040y 2 g4 g — ),

W('r)(p(l)) = W (x(l)(*kn) o x(f){~k1r}${r+1}) = —ky + ky, = 0.

By {2.6), we have that W(PW) = Zw(“’)W(“’) (P = 0. Similarly, we have also
=1

that W(P®) =... = W(Pm=") = 0. 0
Proposition 2.2.4. Let W*{P) be a rational weight function which has the
property that for any PP £, il W(P) = 0, then W*(P) = 0. Then W*(P) is a
Q- linear combination of W& P), ., .., W P).

Proof. Let rand ky; (1€ {1,...,m=r}, j €{l,...,7}) be as in Proposition 2.2.2.
Put a; := W*(zW), ..., a, := W*(z") and by := —k WD) — - — kW (2) +
W), b o= =k WAHE W) = — ke W () + W (),

Note that a;, b, € Q (2 e{l,...,m—r}, g €{1,...,7}) since W*(P) is a rational

weight function. For P = z8* .. zom = gV zme™ by (2.7), we have

W*(P) = aBW* (") + .- 4 oW (z™) + a2+

+ -+ a™Wr(g™)

= (W(l}(p) —kpaY k(m_r)la[m))w*(a:(l))
4ot (W(f}(p) ke k(m_f)ra(m))l’l/*(q:(‘"))
+ ol (DY s im0y

= w* (:c“’J)W(U(P) + oo+ W YW (P)
+ (= kW (@W) — - = ke W () + W (D))ol
+ ot (= ke W @MY — = Ep e, W (™) + W () ol

=a WP+ + o, WOP) 4+ b 4+ b 0™
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From Proposition 2.2.3, W(P1) = ... = W(P™ ") = 0. It follows from Propo-
sition 2.2.2 that WW{(PW) = ... = WP =0 {p € {1,...,7}) and by the
hypothesis that W*(PM) = ... = W*(£™")} = 0. Then

0= W*(P(U) — W*(mﬁl)(—»‘m) - _w(r)(—klr)m(fﬂ)) =b,

0= W*(P(m—f)) - W*(I-(l)(—k(m—r)l) — x(‘")(—*(m—:-)r)m(m)) = b

Thus W*(P) = ey W (P) ++- - + a, W (P). 0

The rational weight function W*{P) which has the property that for any PP P,
il W({P) = 0, then W*(P) = 0 will be called belonging to W{P). From Proposition
2.2.4, it follows that the set of all rational weight functions belonging to W(P) is
identical with the set of all Q-linear combinations of WM (P),..., WUHP). Thus
the set of all rational weight functions belonging to W (P} is uniquely determined by
W(P).

Consider now an ordered sequence of weight functions

m

We(zd . 25m) = wi¥a, (c€{1,....k}). (2.8)

=1

Using the sequence (2.8), a regular ordering §2 of PP’s can he induced by the
Principle of Lexicographic Ordering, postulating that P, ~ Py if W (P) =
W (P,) (r: e {1,.. .,k}), and that P, > P, if there exists k; € {1,...,k} such that
WP = Wi(P) (k < ko) and W (P1) > Wy, (P2). Then P, < P, if there ex-
ists ko € {1,...,k} such that W, (P)) = W(P) {k < ko) and Wi, (P1) < Wi, (£%).
Properties I, 11, 11l follow immediately. To show property 1V, let Py, Py, P be ar-

bitrary PP’s. Assume that Py > FP,. Then there exists k&g € {1,...,k} such that
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We(P1) = Wi(P2) {(k < ko) and Wi (P) > Wi, (F2). Note that for x € {1,...,k},
W PsP1)~We( P By) = (Wi Po)+ W) — (Wa(Pa)+We(P2)) = W P)—W,( P).
It follows that W (PsP) — Wi(PsFP) = We(P) — WP} = 0 {(k < k), Le.
W (PaPy) = WP P) (k < ko), and Wi (PaP1) — Wi (PaPs) = Wi (P) — Wi, (P2) >
0,ie. Wi {PsP) > Wy, (PsF;). Thus P3P > PP

We see that the weight functions and the ordering defined above by means of
weight functions are invariant if we z%pply an m-r-transformation of coordinates.

For the case m = 1, by (2.5), we have that any weight function is of the form
Wi{z{") = wya; where w; € R. Assume that wy # 0. Then for any «;, 5 € Q,
Wz = W) © way = wif, © o = f. Thus any sequence of weight
functions Wi {P), ..., Wi(P) which induces a regular ordering of [#,] could be replaced
by the sequence W,,(P) where ky = min{sx € {1,...,k} | Wi (P) # 0} if there
exists £ € {1,...,k} such that W,(P) # 0. Let { be the regular ordering of [zi]
induced by the weight function W{z$') := wya; where wy € R. For w; = 0, we
have W{zT*) = 0. Then there is no ordering at all. We may assume that w;, # 0.
So 7t ~ 3:*131 o Wzl = W(J:’f‘) e war = wnf ©a =0 & o' = :c’lg‘. If
wy > 0, then zT* > 3:’?‘ o W(zt) > W(wfl) & wia; > wif € oy > G1, and dually,
1™ < 2P o oy < . Similarly, if w; < 0, then 22* > 2% & W(z®) > W)

B

wiay > w1 P € a; < fFi, and dually, 277 < 27" & a; > [;. Hence there are two

possible regular orderings of [z;].

Proposition 2.2.5. The sequence (2.8) of weight functions altlows the following
transformations which do not change the ordering {2.
A. Any weight function in (2.8) can be multiplied by any positive constant.

B. Any weight function W,/(P) in (2.8) ean be replaced with



We(P):=We(P)+ > e W(P),

w<n!

with arbitrary ¢, where each W} (P) is a rational weight function belonging to W, (P).
C. A weight function which is = 0 can be dropped from the sequence {2.8), if we do

not change the order of the remaining elements of (2.8).

Proof. A and C are clear. To show B, let P, P, be arbitrary PP'sand &’ € {1,...,k}.

Replace W (P) in (2.8) with W, (P). Then (2.8) becomes

WI(P)u--':Wm’——l(P)5WH’(P):'WE’+1(P)!'"!Wk(P)' (29)

If P, ~ P, with respect to (2.8), then W, (P) = W.(F) (.‘c € {1,...,k}), S0
W (PP ) = Wa(P) = We(P) = 0 (k € {1,...,k}). Since each W3(P) is be-
longing to W.{P), W*(PiP;') = 0 {k < &), yielding W2(P) = W(P,) (k < &').
Then Wyu(P1) = Wu(P) + Z cWeilP) = We(P,) + Z Wi (Pr) = Wo(R).
Thus P, ~ P, with respect tom(f?%). Next, if P, > Py with :gs;ect to (2.8), then there
exists kg € {1,...,k} such that W.(P) = W, (P) (s < ko) and Wi, (P1) > Wi, (F2),
50 W (PP ) = W (P)) — Wi(P,) = 0 (5 < kg). Since each W}(P) is belonging to
W.(P), W (PP =0 (k < ko), yielding Wi(P) = WX(P) (s < ko). If &' > ko,
it follows immediatély from Wi, (P) > Wy, (F2) that P; > Py with respect to {2.9).
If ¥ < kg, then Wu(P)) = W (FP) and ZCEW:(Pl) = Z c W7 (P,), implying
KK KK

We(P) = Wu{(PR,). This together with W, (P) > W, (P) show that P, > P,

with respect to (2.9). If &' = ko, then Wy (FP;) > We(F:) and ZCKW:(Pl) =
s’
Z ceWi{P,), implying W (P) > W (P). Thus P, > P, with respect to (2.9).

k<R

The proof is similar for P, < Ps. O
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Now we reduce the sequence (2.8) by using Proposition 2.2.5. By Proposition
2.2.5 C, we can assume that any weight function in (2.8) is # 0. By Proposition

2.2.2, we have ratiohal weight functions
w(p), ..., WP (2.10)

belonging to Wi (P) which are linearly independent as linear forms in o, . .., &, and

Wi(P) = ZwF)Wl(p)(P). If 7 < m, by Proposition 2.2.2, we have again ratio-
p=1
nal weight functions W, m(P) _. . W (P) belonging to Wa(P) which are linearly

independent as linear forms in a;, ..., &, and W(P) = 1PZQ11,15”)1/’[/2("")(P). Then add
=1

to the sequence (2.10), WSP(P), such that each time whfezn we add, rational weight

functions in the obtained sequence are still linearly independent as linear forms in

Qi,...,0n. Assume that we add s, rational weight functions to (2.10). If r{ + 59 < m,

then continue this process by considering W3{P), ..., Wi(P) until the number of ra-

tional weight functions in the obtained sequence is m or we have considered all cases.

Suppose that we obtain the sequence:
WP),. . WD (P), WP, ... . WP, .. WP, .., W (p).
Define

Wy(P) = Wi(P) = Tlei")Wf”(P),

WQ(P) — w[ﬂ'zl)Wz(Pn)(P) 4. (Pﬂaz)w(ﬂﬂaz)(}g),

Wi(P) := w}ﬂ;l)wx(ﬂn)(P) +n- (Pisi) P:qf)(P)
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We can write W5(P) in the form Wy(P) + icg")W]{p)(P) where ¢¥) ¢ R (p €
{1,...,m}). For ¥ € {3,...,1}, we can write ‘E’LJ(P) in the form

W (P) + Z W), where ) € R and each W(P) is a rational weight
function bgligilging to W.(P). By Proposition 2.2.5 B, the sequence (2.8) can be
replaced by

WA(P), Wa(P), . ., Wal(P). @.11)

The sequence (2.11) is called regular. Note that the sum of the ranks of all weight
functions in (2.11} is = r; + 83 + -+ + 5 < m. We will show that this sum is = m
if and only if the only PP which is ~ 1 is 1. First, assume that the sum of the

ranks of W, (P), Wa(P),..., Wi(P) is = m. Let P := a'...2%" be a PP such that

P~ 1. Then Wy(P) = We(1)=0 (k € {1,...,1}), 50 WP(P) = ... = W(P) =
WPI(P) = o = WED(P) = - = WPI(B) = o = W(P) = 0. This leads
to r1+82+- - -+8; = m linearly independent equations with 7n unknowns {ay, . . ., am),

since WR(P), ..., WPy, Wiy, W@, ... wird )y, wi )
are linearly independent as linear forms in @q,..., Q. Lhus €1 = --- = @, = 0, 80
P = 1. Conversely, suppose that the sum of the ranks of Wi(P), W,(P),..., Wi(P}is
< m. If we take W(P) = .. = WPy = WP = ... =W (P) = ... =
Wa(“’”)(P) == I«V{('OL”}(P) = (} and introduce the expression of P in the variables
T1ye..,Lay, then th{s leads to 7y + 89 + -+ - + 5; < M equations with m unknowns
(e, ...,04). Thus there is a nontrivial solution, so there exists a PP P # 1 such
that W(P)Y= 0= W,.(1) (s € {1,...,1}), ie. P~ L The sum of the ranks of all
weight functions in (2.11) is called the rank of the sequence (2.11). Note also that

for a regular sequence {2.11), I < m. The number ! is the length of (2.11).

Example 2.2.6. 1) For m = 3 and P := z{"z3?z5°,

define Wi(P):=1-a, +v2 ag+ 7 a3, Wo(P) = (1++/2) -y + 7y +0-az.
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Write W1 (P), Wy(P) in the form (2.6),

W(P) = wl”wm(P) + wPWE(P) + wPWP (P,

where wg =1, wi? =2, w® =, W(P) =y, W, 2)(P) =y W(S}( P) = as,
Wy(P) = w(”w(”(p) + wPWR(P),

where wi =1+ 2, v =7, WSHP) = ay, WP(P) = an.

By the above procedure, we can replace the sequence Wy {P), W2(P) by a regular
sequence

W1 (P) := Wi(P) = w WP (P) + wf)wP(P) wi WP (P).

Note that the rank of this sequence is = the rank of W {P) = 3, and the length of
this sequence is = 1.

2) For m = 4 and P =z 2032 25",

define Wi(P) =7 a1+ v2 -0 + (2v2 + 37) - as + (=2 + T7) - ay,

WolP) =vV3-on+7m-ag+1-az+ 2+ o

Write W1(P), W3(P) in the form (2.6),

Wi(P) = w" WV (P) + w? WP (P),

where wgl) =T, w£2) V2, Wl(l)( P)=a; + 303 + Tay, W}@) (P) = ag + 2a3 — aq,
Wa(P) = wiP W (P + wi? Wf) (P) + wP WP (P,

where w$? = V3, wi? =7, vl =1, W(P) = ay, W (P) = o + au,

W(P) = as + 204,

By the above procedure, we can replace the sequence W;(P), Wo(P) by a regular
sequence

Wi(P) == Wi(P) = w"W(P) + P W (P),

Wa(P) 1= w W (P) + wP WP (P).

Note that the rank of this sequence is = the rank of W;(P) + the rank of W,(P)

= 242 = 4, and the length of this sequence is = 2.
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2.3 Comparability of ordered PP’s

We say that P, is comparable with P {denoted by P; ¢ FP,) if there exist € = +1

and A,z € Q7 such that

PSP Pz B (2.12)

From this definition, we derive the following simple properties:
A. P c P (reflexivity). -
B. (P, ¢ P,) = (P ¢ Py) (symmetry).
C.(PLcP)= (P cF).
D.(PLcP)= (P['ch)
E. (PLcP)A(Py~1)= (P~ 1)
F.If (P, ¢ P,) and both Py, P; are = 1, then € in {2.12} can be chosen as 1.
G. (P ¢ P2) A(Py ¢ P3) = (P ¢ P;) (transitive).
H. For a € @~ {0}, P c P°.
L(A~P)=(Pch)
J(Pclye (P~1).

K. If Py% < P, < P& for all &« € Q%, then P, and P, are not comparable.

Proof. A - J are obvious. We will prove K. Suppose P, ¢ ;. Then there exist e = £1
and A, € QF such that P, S P, P2 Pp*. I e=1, we have P, > P§, whichis a

contradiction. If e = =1, we have P < Py * which is also a contradiction: O

Example 2.3.1. For m = 3 and P := 2{"25%z3*, define W(P) :=1-04+2-ap+3-ay.
We could define a regular ordering €2 by using W{P).

Let P, = zy22zd, P := adz,23. We will show that P, ¢ B but A = P,.

Note that W(P)=1-1+2-2+3-3=14 W(P)=1-3+2-1+3-1=8.

Since W{P) # W(F,), P, = P5. Choose e =p=1, A =2.



20

Then W (PP) = W(PE) = 2. W(Py) = 16, W(P*) = W(Py) = 8.
Since W(P) < W(P) and W(P) > W(FPs"), P, < P§* and P, > P;*, respectively.

Thus P, ¢ P;. This shows that the converse of property I is not true.

By properties A, B and G, we have that c is an equivalent relation. Then the set of
all PP’s is now decomposed into comparability classes, where all PP’s in the same
comparability class are comparable, but the PP’s from two different comparability
classes are not comparable. 5

In particular, thg comparability class containing 1 will be denoted by U.
By property J, U consists of all PP’'s which are equivalent to 1. If U/ contains only
1, it is called trivial. Otherwise, it is called nontrivial.

For the case m = 1, by property H, we have that every PP which is # 1 are
comparable. Then if I/ is nontrivial, there is only one comparability class and if U is

trivial, there are two comparability classes.

Lemma 2.3.2. Assume that C; and € are two different comparability classes which
are # U. Let P,y be two PP’s from €] which are both > 1 and P, ()2 be two
PP’s from Cy which are both > 1. Then if @, > @3, we have that for any § € @™,

P¢ > P,. Especially, P, > P,.

Proof. Since P, ¢ Q5 and both P, Qs are 2 1, by property F, P» < Q3 for some
X € Q. Since Q2" < Q}, P, < Q}. By property H, Q; ¢ @}, then Q) is in the
class Cy. Since @} ¢ P and both Q1, Py-are 2 1, by property F, @} < P} for some
¢ € Q. Since P, < Q) and Q} S P, B, < P!, If P, 2 P}, then it follows that

P ¢ P, which 1s a contradiction. Thus P < Pf. a

We will say that the class C; is higher than the class C3 (denoted by Cy > C3)

if for any PP P, from C) and PP P, from C5 such that P, > 1 and P, 2 1, we
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have P, > P,. Obviously, this relationship is transitive. Note that if there exists a
comparability class € # U, then C must contain a PP P which is = 1; by property

H, we can assumme that P > 1. Thus we have always C > .

Lemma 2.3.3. Assume that & > 1 and (4, Cy,...,Cy are & + 1 comparability
classes such that Cy < C; < - < Cg. Choose an arbitrary P, from each C, (h: €
0,1,...,k}). Let P*:= PPPJ .. PP, with B, € Q (k€ {0,1,...,k}). If By # 0,

we have P* € C; and P* > 1 or P* < 1 according as P* > 1 or PP* < 1.

Proof. Without loss of generality, we can assume that
1) P> 1 (k€ {0,1,...,k}) since we can replace P, by P!,
2) B > 0 since we can replace P* by P*1,
3) B« # 0 (x € {0,1,...,k}) since we can leaye out those C, for which g, = 0.
k
4
Let 5 := Zlﬁﬁl and € = éc— For x € {0,1,... k= 1}, since C; < Cy, Pe < P§.
k=0 ‘ 2‘6
And since P > 1, P, < 1. But 1 < P, s0 P.® < F,. Then P, < P, < P, If
By >0, BiP < PP < PP 1 B, < 0, P& < P« < P7%% . Thus Py « P« <«

P;lﬁ»:{_ Then P;Eiﬁnlpk—fiﬁll N Pk—ﬁlﬁk—ll = P{?ﬂp}ﬁl - -Pff? < P:lﬁulP;l_ﬂil o P;,ﬁk—ll,

_ P _ i e(g—
ie. PAOD o —— < P g0 PO o pr o pIOTOA T Note that
P
- _ B 30k :
(O — B+ 8 = e + 01 and {3~ Bx)+ Bk = -5 €. Since P, > 1 and €, 8, > Q,

it follows that Pf% > 1 and P[% < 1. Then P « pPti/? — plb=fiie
Pt oo pOBRITEe _ piii/imebr o pSBi2 Thyg proe Oy Finally, if P7* > 1, then
P#? 5 1. But P> PX? 50 PY>C 10 And if PR < 1, then PP/? < 1. But

Pt < PP 0 PP 1. 0

Proposition 2.3.4. Assume that k > 1 and Gy, Cy,...,Ck are & + 1 comparability
classes such that Cp < €y < -+« < Ci. If U is nontrivial, take Cy = U/ ; otherwise,
assume Cg > U. Choose an element Fy # 1 from each C, (x € {0,1,...,k}). Then

for any G, € @ (ﬁ: €{0,1,..., k}), not all zero, we have that the relation
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plph  ph= (2.13)

is impossible.

Praof. Without loss of generality, we can assume that 3 # 0. Otherwise, we can
lcave out Cx. Suppose that PR Pt P% — 1. Then P* = pylopr®  p .
By Lemma 2.3.3, it follows that P2 = By @ P P is an element of U or C,
for some x € {0,1,...,k — 1}. And by property H, we obtain that Pf" is an element

of Cy, which is a contradiction. : O

Note that the relation (2.13) is always possible for £ > m. To sce this, suppose
that P° P PP% = 1. Introducing the expressions of Py, Py, ..., P, in the variables
Z1,..., T leads to m equations with £ +1 > m unknowns. Then there is a nontrivial
solution 3, € Q (K, € {0,1,.. ‘,k}), not all zero, such that Pf" 1‘31 e Pf‘“ =11t
follows that the number & in Proposition 2.3.4 must he < m — 1. Thus we have
that the total number of the comparability classes is < m + 1, and cven < m if U is

nontrivial,

Theorem 2.3.5. Any regular ordering of algebraic PP’s can be obtained by the

lexicographic principle from a regular ordered sequence of weight functions.

Proof. First, we will prove in the special case that U is trivial and that, besides U,
there is only one comparability class C. Then all z,, (p: e{L,..., m}) arc comparable.
We can assume that ,, > 1 (,u € {1l . ,m}} since we can replace each x, with :c;l
hy an m-r-transformation. If m = 1, define W{P) := ;. Since z; > 1, it follows
that for any @ > 0, 2§ > 1 and z7® < 1. Then we have that for any a,3 € @,
> et slea->08a>8e W) > Wzl). Dually,
20 <2l & WEd) <« WEl). Andat ~ 2l 0 28 P vl a-f=0&a=

8 & W(z%) = W(z?). Thus W(P) satisfies the requirements of Theorem 2.3.5. So
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we can assume that m > 1. For x € {2,...,m}, we claim that there is no ¢ €
such that z§ ~ z,. To see this, suppose that there exists ¢ € (Q such that z7 ~ z,.
Then z,x77 ~ 1, so z.x7” is an element of U/. Since U is trivial, z,z;° = 1. This
contradicts the fact that z;, 2, are independent.

Since for k € {2,...,m}, 7, ¢ x;, there exist A, u € Q7 such that z} < z, < z¥.
Then 77" < 1. Since 1 > 1, it follows that A = < 0,80 A < u. Let 7, € R be
the least upper bound of the set {J_G Q| =] < g} For o € Q, if v, < o, then
z, < xf. We show that if ¢ < 7., then 2§ < z.. Put 4 '=~, — o > 0. Thus there
exists o' € Q such that v, — g < ¢ and 2f < z,. Since 5 = v, — & < Y, — g <o

and 1 > 1, 2§ < :r:‘f < xx. For « = 1, we set 9 := 1. It is convenient to establish

next the following result.

Lemma 2.3.6. Assume that U is trivial and that, besides U, there is only one
comparability class C. Moreover, assume that z, > 1 {n € {1,..., m}) and m > 1.

For k € {1,...,m}, let v, he the constant defined above and a, € @ be such that

™ ™m
Z |ag] > 0. For P :=ai* ... 22", put L(P) = Zﬂn%- Let u,v € Q be such that

K= n=1

1
u < L(P) <w. Then 2} < P < 7.

Proof of Lemma 2.3.6. If Z |ax| =0, then o, = 0 for allk € {2,...,m},s0 P =z
w=2

and L{P) = a;. From v < oq < v and z; > 1, it follows that 2% < z{* < z¥. So

we can assume that Zlanl > 00 Set A = Z|a,§|. Let € '€ Q be such that

w=2 r=1

L(P)y =
_("_)—u gy =1 and for k € {2,...,m}, let g, € @ be such that

A 1
Yo — € < O < Ve if e >0, 7 <oy <y teifa, <0, 0 =0if a = 0.

0 < e <

T
Put vy = Za”aﬁ. For k € {2,...,m}, we have a0, < axVx if a, # 0, and so
k=1
u < L(P). And L(P) —u, = Z O (Vn = k) — Z e(oe — V) < Z |cecle +
x>0 e <0 010 >0
Z | le = Ae < L(P) —u, s0o u < . For x € {2,...,m}, if a, > 0, then g, < v,

()
and so 27" < z,. Then x7*"* < %=, If a, < 0, then 7, < 0, and 80 z, < 7. Then
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28 < g2 Thus z}' = g @t Hemdm g% | z2m = P. Since u < uy and z1 > 1,
r¥ < z}'. Therefore 2} < P. To show that P < z¥, consider P! = 27" ...z,
Then we have L(P™!) = i(—&nh’,ﬁ = HZQ«N% = —L{P). Since L{(P) < v,
—v < —L(P) = L(P1). B;Ztile Hrst inequaliE;lsubstituting P by P71 and u by ~v,

we get 277 < P71, Therefore P < 3. 0l

We now show that ~,...,79y, are @Q-linearly independent. Suppose that there
exist 3, € Z (ﬁ: € {1,...,m}), not-all zero, such that iﬁ,ﬁn = 0. Let P* =
27 zPm Then L({P*) = 0. For any p € QF, since —pnzlL(P*) < p, by Lemma
2.3.6, it follows that z;¥ <« P* < zf. By property K, we have P* and ) arc not
comparable. Thus P* must belong to U/, Since U is trivial, P* =1. S0 8, =0 (r: €
{1,... ,m}), which is a contradiction.

Observe that if L(P) > 0, by choosing p € @, 0 < p < L(P), then by Lemma 2.3.6,
P > zf > 1. Similarly, if L(P) < 0, then P < 1. We prove that for any PP’s Py, Ps,

we have P > Py lfL(Pl) >L(P2), P (P;g if L(P]) <L(P2), P~ B ltL(Pl) =

L(P,). Let P, = z7'.. n Py = ﬁl J;ﬁm_ Then P1P2_1 — m?l_’ﬁll..mg{n—'ﬁm.
Note that L(P,) ~ L(P) = Zam Z By = Z(a,{ Be)ve = L(APY). Thus
K._l

L(P) > L(R) = L(A) - (Pz) >0 =>- LY >0= PP >1=> P >
Pg. And dually, L(P)) < L(P) = P < P,. Assume that L(P\} = L{#%). Then
Za,ﬁn = Zﬁﬂn. Since vy, - -« ¥ are - linearly independent, it follows that
(x,q, = B (h: E {l m}). Thus P, = P, so Py ~ P,. We see that the requirements
of Theorem 2.3.5 are satisfied if we define W(P) := L(P). Then Theorem 2.3.5 is
proved in the special case.

me‘r, we consider the general case. For m = 1, if U is trivial, this is a special
case which has been already proved above. Otherwise, if IV is nontrivial, then every

P = z7* belongs to U and there is no ordering at all. We can choose here W{P) := 0.
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We will prove the remaining case of Theorem 2.3.5 by induction. Assume that
Theorem 2.3.5 has already heen proved for all m' < m.

Let Cy < C] < --- < Cy be the ordered sequence of all comparability classes. If
U is nontrivial, take Cy = /. Otherwise, assume Cy > U. I[ s < 1, this is a special
casc which has been already proved. Then we assume that s > 1.

We will show that if P, P, belong to Cp, then PP, = 1 or P P, belongs to Cp.
This is clear if P, =1 or £, = 1. So we assume that Py £ 1 and P, £ 1. Let P be an
element of C; such that P > land p € @. Then PP > 1and PP < 1. I[ P, > 1,
from Cy < C1, P4 < PF, Sinee PP <1, PP < P. Sowe have PP < P, < PP If
Fi < 1, then Pl"l > 1. From Cy < C1, Pl'l < PP so P77 < P;. Since P < 1 < PP,
we also have P7? < P, < PP. Similarly, P < P, < PP. Thus P~% < PP, < P%,
Then for any a € QF, P™® = P2(/2) « p Py < P2(*/2) « P= By property K, P, P,
and P are not comparable, so P, P, does not belong to €. But P £ < P* [or any
« € QF, then P, P, helongs to a class < €. Thus if PP # 1, we have that P P,
belongs to Cy.

For P := z{" ...z, we introduce the set of linear forms
S(u) == aiug + - + Qpiy,

with indeterminates u1,. .., um. We will called P-and S{u) associated. Obviously,
the product ol two PF’s is associated to the sun of their associated linear forms.
Let T be the set of all linear forms associated with elements of Cy and L4, ..., L;

be the maximal number of linearly independent forms from 7" chosen in an arbitrary
) 3

way. Note that { < m. Then any lorm L € T can be written as L = ZPTLT where

=1

pr € Q.
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For r e {1,..., t}, denote the PP associated with L, by P.. For 3, € Z (7‘ €
{1,... ,t}) such that Piﬁ‘ . .P{g’ = 1, we have 31 L, + -+ + 5Ly = 0. This leads to ¢
linearly independent equations with ¢ unknowns {3,,...,3), since L,,..., L, are the
maximal number of linearly independent forms from 7. Thus §; = -+ = 5 = 0. Let
P be an element of Cy; and L its associated linear form. Since L = p1L1+--+pL; =0

Wherep_re@ (TE{1,...,t}),P:Piﬂl.._RPt.

By an m-r-transformation, we can transform P,.... 5 into z,,...,z,, Tespec-
tively. Then we can assume that Cy = [z,...,2] ~ {1}, if U is trivial and Gy =
[x1,...,2], if U is nontrivial. For P := .. . 2% we can write P = P'P where
P=a. .z €lny,...,m) and P = a0 . 2% € [Ti41,...,%m]. We see that

P’ =1or P is an element of Cp. We show that P = 1 or P belongs to the same
comparability class C > Cj as P. Suppose that P # 1. Then a, # 0 for some
e {t+1,...,m}, so P does not belong to Cp. Obviously, P does not belong to U,
if U is trivial. Thus P belongs to some comparability class C > Cp. If P/ = 1, then
P = P, so P belongs to C. If P’ is an element of Cy, by Lemma 2.3.3, P belongs to
C and it follows also that 2 > 1 or P « 1 according as P > 1 or P < 1. Note that for
any PP's Py, P, m — P,/P;. Then we have that P, > P or P, < P, according
as P, > Py or P, < P,. Let Q be the ordering of [z:41,. .., 2] given by Q and W{P')
the weight function which generates the ordering in {zy,..., 7} if U is trivial and
W{(P') := 0 if U is nontrivial. Observe that if {/ is trivial, the existence of W(P') has
been proved as the special case of Theorem 2.3.5. By the induction hypothesis, {2 can
be gencrated by a regular sequence of weight functions, W1(P), Wy(P),..., Wi(P).
Put We(P) := W.(P) (k€ {1,...,k}) and Wi 1 (P) := W(P).

We now claim that {2 is generated hy the sequence

Wi(P), ..., Wi (P). (2.14)
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Let P, P, be any PP’s,

Case 1. W (P) = Wu(P) (k € {1,...,k+ 1}). Then W () = We(P) (k€
{1,..., k}) and V_V(P]’) = W(ng). Thus P, ~ P, and B ~ B, so P, = PP~
PP =P

Case 2. W, (P) # W.(P,) for some « € {1,...,k+ 1}. Let ky := min{x €
{1,.. .,k + 1} | W.(P1) # Wo(Fa)}. Then WolP) = Wi(FP,) (k < ko).

Case 2.1. Wy, (P)) > Wi (B). I ko € {1,...,k}, then W (D)) = W (P) (k <
ko) and Wy, (P} > Wi (P). Thus P, > Py, so P, > P,. 1f ky = k+ 1, then
Wo(P) = WulP) (s € {1, k}) and Wii(P) > Wi (B), ie. We(P) =
Wi(Ps) (x € {1,...,k}) and WP > W(P). Thus P, ~ P, and P, > B, so
P=P'P>PP=75

Case 2.2. Wy, (F) < Wi, (F»). Similar arguments as in Case 2.1 show that
P, < P;.

Cases 1 and 2 prove the claim.

Note that the rational weight functions belonging to W ,(P) depend oniy on
y,...,0. But the rational weight functions belonging to W.(P) (x € {1,...,k})
depend on a4y, . - ., G, 80 they are independent of vy, . . ., @;. Thus (2.14) is regular,

and Theorem 2.3.3 is proved. O

2.4 Structure of sequences of weight functions

We assume now that the ordering Qin [2,,. .., z,| is generated by the sequence
of the rank r,

Wi{P),..., Wi(P). {2.13)

We assume that (2.15) is irreducible, i.e. none of W, (P) (x € {1,...,k}) is a linear

combination of the rational weight functions belonging to Wi{P),...,W,_{P).
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We claim that there exists a sequence of r rational weight functions
Ry(P),..., R.(P) (2.16)

and a sequence of positive integers 7y < ... < ry = r such that

Tr

Wo(P) =3 wDR.(P) (ne{l,... k}), (2.17)

T=1

where the set of linear forms (2.16) is linearly independent and each of the sets,
{wl ™Y, (w0 el (T wl™) are linearly indepen-
dent with respect to Q.

In order to prove the claim, we begin by writing W;(P) in the form (2.6) as in
Proposition 2.2.2, i.e. W (P Z wEﬂRT , where wll)? S W (rl) are linearly inde-
pendent real numhers. By Proposntion 2.2.2 and Proposition 2.2.4, Ry(P),..., R, (P)
form a basis of the set of all rational weight functions belonging to W;(P). Consider
the set of all rational weight functions belonging to W1 (P) or to W,(P) and construct
a basis for this set by adding new basis elements Lo Ry {P),..., R, (P). In this way,

we obtain additional basis elements R, +1(P),..., R,,(P). Since (2.15) is irreducible,

T2

it follows that r, > r,. Then we can write

Wa(P) =3 wi R, (P), (2.18)
where wg) € R (7 € {1,...,72}). We next show that w(rlﬂ) ... wl™ are linearly

independent. Suppose that they are not linearly independent. So we can eliminate
one of them in (2.18), obtaining the corresponding representation of W, (P) with at
most ry — r; — 1 additional basis elements. But, by our construction, r; is the rank

of the set of all rational weight functions belonging to W:(P) or to W(F). This is
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& contradiction. The proof for other {w§r2+l), e ,wém)}, ey {w}:"_ﬁl), W ")} is

gimilar.
If we assume that the sequence (2.15) is not only irreducible but even regular,

then, with ry := 0, (2.17) becomes

WaP) = 53 wlRAP) (we (L., k).

T=rx—1+1

Write R, (P) (T € {1,...,r}) in (2.16) as linear form in ai,...,cm, R (P) =

Z:cwoslu (re{l,....,r}) wherec,, € Q (1 €{1,...,v}, pe {L,...,m}). lfr <m,
p=1
since Ry (P), ..., R, (P} are linearly independent, we can introduce m — r linear forms

R.(P) = chalu (v € {r+1,...,m}) where ¢,, € Q (V e{r+1,...,m}, p €
p=1
{1,...,m}) such that detfc,,] # 0. If we now apply the m-r-transformation, z, :=

yi . ym® (e {1,...,m}), then PP{2.1) becomes z{*...z%" = y?' ... y% where
Z ety (v € {1,...,m}). We see that R.(P) (v € {1,...,m}) become

simple hnear forms in 8,..., 0, ie. RAP) =5, (u € {1,... ,m}). Assume that

we have applied the above transformation and the new variables are denoted again

by Z1,...+Z,. Then R.(P) = e, (T e {1,.. ?"}) Thus for the case that the

sequence (2.15} is irreducible, we have W( Zw(r)ar ke {1,. k}), and
=1

for the case that the sequence {2.15) is regular and indeed also irreducible, we have
Fr

W.(P) = Z wfj)aT (r;, € {1,.. .,k}), with ry := 0.

T=rp_1+1

Example 2.4.1. Let m =3 and P := 27 557245,

1) Define W(P):=1-a; +2- a2+ 3 as. Assume that the ordering Q in [z, 2, T3]
is genet;ated by the sequence W (P). It is clear that this sequence is regular.

Write W (P) in the form (2.6),

W(P) = v BV(P), where w!” =1, RY(P)=1-01+2 a;+3 - ay.
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Define Bo(P) :=0-a1+1-as+0- a3, B3(P):=0 -0 +0 a2+ 1-a3.

1 2
Note that det o 1 =1 # 0. Now, we apply the above m-r-transformation, let
00

—_ 2

Ty = yiyess = vis T2 0= Y8 = yive, %= yiyeys = yivs. So PP (2.1) becomes

oy )+ 2o +30g

21’ xst =y (W) (¥l s) ™ = i y3°ys®. If we denote y1, 42, ys again by

Ty, T2, £3, respectively, then by the above procedure, we have W{P) = a;.

2) Define Wi(P) :=1-a; +2-aa+3-as, Wo(P) i=1 -, +v2-as + 7 .
Assume that the ordering  in [z, 25 ,—3:3] is generated by the sequence W1 (P), Wh(P).
Write W1(P) in the form (2.6),

Wi(P) = wll)Rl(P) where w =1 Ri{P)=1-a+2 -5+ 3 a3

Then we can write W,(P) = w,,”Rl( P)+ (?)RQ(P) + w Ry(P),

where w(l} E’ wgﬁ) 1-— 5, wéS} =42 - —é—, Ry (P) = a3, R3(P) = ay.

We see that wéz),wéa) are linearly independent with respect to Q and R;(P), R:(P),
H3(P) are linearly independent as linear forms in a;, @, a;. Thus we can replace the
sequence W, (P), W,(F) by a regular sequence

W1(P) := Wi (P) = wiVRy{P),

WalP) == w’ Ry(P) + wi Rs(P).

Note that B;(P)=1-a1+2 - a2+ 3-as, Re(P)=1- a1 +0 - ax+0- a3, Rs(P) =

0-a; +1-a+ 0-as Now, we apply the above m-r-transformation, let z; =

Vusyd = nive, T2 = Yy = vPys, T3 = 1ysy) = yi. So PP (2.1) becomes

01+202+3‘13y01y§'2 If we denote Y1: Y2, 43 ag&in

o] e

ot 7572y = ()™ (Wlys) ™2 (W) = ¢

by z1,%a, Ty, respectively, then by the above procedure, we have W1 (P) = a;,

Wa(P) = wP oy + 0 ag
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Theorem 2.4.2. Let the ordering €} in [z, ..., Zm] be generated by an irreducible

sequence of weight functions of the length k& and the rank r:
W (P),...,Wi(P), (2.19)

and assume that s > 0 and U = Cy < €] < .-« < (s is the complete sequence of

comparability classes corresponding to €2. Then k = s and

Co={P|Wi(P)=0(k€{l,....k—0}), Wiioxs(P) #0} (0€{0,...,s}).
(2.20)

Proof. In order to prove Theorem 2.4.2, we introduce and discuss cerlain sets of
PP’s which are connected with the sequence (2.19). Define U, := {P | Wi(P) =
o= W(P) =0} (k € {1,...,k}), Us = [z1,.. ., %), U1 == @ and Dy :=
U1 — Ue (k8 € {1,...,k +1}). By the definition, D, = {P | Wi(P) = - =
We-1(P) =0, We(P) # 0} (v € {1,...,k}) and Dyyy = Uy. Since W (P!} =
—W.(P) (k€ {1,...,k}), it follows that for x € {1,...,k+ 1}, if P € D,, then also
PleD,.

We show that PP’s € the same D, (s € {1,...,k +1}) if and only if they are
comparable. Let 5 € {1,0..,k+ 1} and P,Q € D, If s =k +1, then D1 = Uy,
and so Wi(P) = - = Wi(P) = Wi(Q) = -+ = Wi{Q) = 0. Thus P ~ 1 and
Q ~1,s0 P, Q and 1 are cotnparable. It follows that Dy, = U, = U = . Hence
(2.20) holds for o = 0. If k < k + 1, without loss of generality, we can assuwe that
P > 1and Q > 1 since we can replace P, @ by P71, Q7, respectively. It follows that
Wi{P) == Wei(P)=Wi(Q) = =W, 1(Q) =0, Wi(P) >0, W(Q) > 0.
We will find A, p € Q% such that P* < @ < P*. If W (P) = W.(Q), choose
X = % 1= 2, then AWo(P) < We(Q) < uWa(P). So W(P) < Wa(Q) < Wi(P¥).
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Thus P* < Q < P#. If W (P) < W,(Q), then choosing A = 1 gives P* = P < Q.
Note that there exists u € Q% such that W, (Q)} < puW, (P) = W(P#), so Q < P~
If W, (P) > W.(Q), then choosing 1t = 1 gives @ < P = P*. Note that there exists
A € QF such that W,(P*) = AW,.(P) < W,(Q), so P* < Q. Thus P and Q are
comparable.

Now assume that 1 <« P € D, and 1 < ¢ € D, where 1 < A < x < k. We see that
Wi(P) = =W1(P) = Wi(Q) = --- = Wy_1(Q) = 0 and W,(P) = 0 < W,(Q).
Let § € QF. Since W (Q%) = dW,(Q) and W, (Q°) = =W, (Q) (x € {1,...,k}),
Wi(@Q%) = -+ = Wa (@) = Wi(Q7°) = - = W .1(Q7%) = 0, it follows that
Wi(Q™%) < 0 = W(P) and W,i(P) = 0 < Wi(Q?), so Q% < P < Q°. By property
K, P and @} are not comparable.

Thus each D, (rt e{l,..., k+1}) is identical with exactly one of the comparability

k+1

class C, (0 € {0,.. .,s}). Since [z1,.: ., Tm] = U D, it follows that for any o €
=1

{0,..., s}, there exists exactly one x € {1,...,k + 1} such that C;, = D,. Thus

k = a. From the last paragraph, we have that D, < Dy if 1 € A < k < k.
Then U = Dy < Dy < o< Dyo Thus € = Dy (fc € {0,...}15}). Hence
CK = {P | W](P) = - Wk—n(P) = 0;, Wku,{+](P) -_,é 0} (i‘i = {1,,}-’)}), and

Theorem 2.4.2 is proved. a

From Theorem 2.4.2, since the rank of (2.19) is r, U = (} is characterized by r
linear homogeneous equations between the exponents aq, . . ., @y. Then the dimension
of U is =m—r, More generally, if we let 79 := 0, r¢41 := m, thenfor & € {0,...,k+1},
the dimension of each Uy is8 = m — r,. Furthermore, for & € {1,...,k + 1}, the
dimens:ion of D is = (m —re_1) — (m —rx) =10 — re_1. Finally, for & € {0,..., k},

since (', = Dy _.41, the dimension of Oy IS = rx_xi1 — Thes.
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2.5 Extreme aggregates of terms

We consider now the set of all polynomials in z,,...,z, with coefficients from
an arbitrary field K Define an algebraic polynomial as the sum of the terms F :=
ZCVP where ¢, € K ~ {0} and F, are algebraic PP's. Then we will say that
any term ¢, P, and the corresponding PP, P, are contained in F' and write ¢, P, (—E
F, P, € F. If we write the polynomial F' in the form }_ c,P,, then P, are assumed
to be distinct PP’s. In particular, if'all PP’s in £ are rational (integer), we will call
I rational (integer). From now on, by polynomial we mean an algebraic
polynomial, unless otherwise specified.

Let A he a mapping of each polynomial F' upon a certain aggregate of its terms,
F. Assume that A has the following properties:

i. There is no PP, contained both in F and F — F.
ii. If F#0, then F# 0.
ili. For any polynomials F}, F5, we have F1F2 P E,.

Then F will be called an extreme aggregate of F.

We easily see that for any PP P and ¢ € K, cP = ¢P and for & monomial
polynomial ', F' = F.

A polynomial which is not a monomial, i.e. conteins at least two different PP’s,
will be called a proper polynomial.

In the following, P,P,,P,,P3 will denote general algebraic PP’s, unless
otherwise specified.

Using our mapping A we will now define an ordering {2 of PP’s induced by A
and pl;ove that € is a regular ordering.

If P, P, are PP’s, from the above postulates, it follows that either P, + P, =

PB+Por P+Py=PF or PP+ F = P, and this is a complete disjunction. If
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P+ P, = P, + P, we will say that P, and P, are equivalent (denoted by P, ~ P,
Py~ P). If P+ P, = P,, we will say that P, is higher than P, and P, is lower
than P, (denoted by P, > P, P, < P;). And similarly if P, + P; = P;.

The ordering 2 defined in this way satisfies obviously the postulates I and II of the

definition of a regular ordering. To prove that the postulate IV is satisfied, Assume

P, > P,. Then PiPs + PoPs = (P, + P)) P = P,Py. Thus P, Ps > P,P;. This is the
assertion of the postulate IV. We will prove that the postulate I1I is also satisfied

later.

Proposition 2.5.1. Assume that F contains the term ¢, P, + o P where P, # P,
Let G == (P + P)F. We see that the term P F; in G has exactly the coeflicient

¢1 + 2. Then
A.IfPIszandclPIEF,then@PzEF

Proof. Suppose that ;7 ¢ . From P, ~ P, wehave G = (P, + P5)F = (P +F,)F.
Then & contains PP, with a coefficient ¢;. But if B P, occurs in G, it must have

the same coeflicient ¢; + ¢a as in &. This is a contradiction. O
B.If P, > P,, then 3P ¢ F. Dually, if P, < £, then ¢, P, ¢ F.

Proof. Suppose that c,P, € . From P, > P, we have G = (P, + B)F = P, F.

Then G contains Py P, with a coefficient ¢; which is-again # ¢1 -+ cs. 0
C.If P € F and ;:gpz € F, then P, ~ P,.
Proof. If P, > P or P < P;, then by B, o ¢ ForeP ¢ F, respectively. 0
D. If 011‘91 e F but e; P ¢ F. then P > P,.

Proof. If P; ~ Py, this contradicts A. If P} < P, this contradicts B. 0
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Now we will prove that () satisfies the postulate 111 of the definition of a regular

ordering. Let F = (Pl + Pz)(P2 + Pg) = PP +PP+ P22 + BPh IftRh > 5

and P2 > P3., thenﬁ': (P1+P2)(P2+P3) :P]P2. Since P1P2 = Fbut P2P3 ¢ F,
by Proposition 2.5.1 D, it follows that P, P, > P,P;. Multiplying by 1/P;, we have

P, > Pj5 since the postulate IV is satisfied. If P, > F, and F, ~ F;, then F =

(Pl +P2)(P2 + PS) = PI(P2+P3) = P1P2+P1P3. It follows again that P1P2 = ngg,

so P > P3. Finally, if P, ~ P, and F; > £;, then F=(P+P)P+PR) =
(P, + P))P, = P P+ P2. Tt follows again that P, P; > PyPs, so P, > P,. Thus Il is
proved. Moreover, properties A - D in Section 2.1 remain valid because they follow
from the postulates I - IV. Hence {2 is a regular ordering of PP’s.

For ¢; # 0 and ¢; 5 0, we will say that ¢; P is higher than (>) or equivalent

to (~) or lower than (<) ¢, P, according as P, > Pyor o~ Pyor P, < P,.

Theorem 2.5.2. A mapping A as defined above corresponds to a regular ordering
Q of PP’ such that F is always the aggregate of all highest terms of F in the sense
of 2. Any regular ordering {2 can be induced by a mapping A which is uniquely

determined by 2.

Proof. Most assertions of Theorem 2.5.2 follow from what we did above. Now, we
have only to prove that any given {2 is induced by the mapping A obtained by defining
F as the aggregate of all highest terms of F'. Tt is clear that properties i and ii hold.
We have to prove that property iii also holds.

Denote the highest terms of F} by al . and all other terms by ¥,7). Similarly,

i

the highest terms of F, may be a{@Q} and all other terms ¥,T. Then we can write
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Fi=F+) yT with i =) a.Q,

Fy=F+) bT, with ;=) a3Q,
i)

A

where the sum over v and g can be empty, and

V(s k1,0), @~ Qs Q> T,

V(A A p); Q; T lei Qi{ > T:
Then we have
FiF,=FFR+ Y abQT!+% abQT,+> byTT,
Ky [ A v v, 4
RFy= Z 2,5 Q. QY-
Y

Note that F1F, # 0 since Fy # 0 and F # 0. By the postulates IV and IV’ of the

definition of a regular ordering, we have

VK, k1,4, A1), QRN ~ QL @5,

Vir k1, A AL v), Q@S > @ Ty, QA>T Q.Q > TT)

Thus F, F; = F\F,, so property iii is proved.
Finally, let 25 be the ordering induced by the mapping A obtained by defining
F as the aggregate of all highest terms of F' in the sense of Q. We will show that

Q0 = Q. For any PP’s P, Py, we have that
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Py~ P;in thesense of @ & P, + P, = P, + P, & P, ~ B in the sense of (14,
P >P; in the sense of Q& Py + P, = P, & P; > P, in the sense of

and dually, P, < P, in the sense of 2 & P, < F; in the sense of §,.

Therefore 2 = 1,. 0

Theorem 2.5.2 simply says that given an ordering {1, its induced mapping A is
uniquely determined and vice versa. .

The number of the weight funclions in a regular sequence, i.e. the length of this
sequence, defining a regular ordering ! depends only on €. If this number is 1, we
will call that the ordering ? and the mapping A induced by £ are monobaric.

For the case m = 1, from the begining of the proof of Theorem 2.3.5, we sce that
any ordering of [z;] is always monobaric.

Note that there are orderings which are not monobaric. Then it is important for
algebraic discussions to prove that it is qﬁite sufficient to consider only monobaric
orderings and mappings as long as we have to do with a fixed finite set of PP’s.

Let S be a finite set of different PP’s. A given ordering §2 induces the order
relation between the elements of S, which we can call the projection of 2 on §
(denoted by £2g). Let S* be the set of all polynomials formed with the PP’s [rom
the set S with arbitrary coefficients from a field K. Then 2 induces for each of the

polynomials from 5*; a mapping which will be denoted by Ag.

Theorem 2.5.3. Let 2 be a regular ordering, A the corresponding mapping of £2, S
a finite set of PP’s, 5*, {15 and Ag are defined above. Then there exists a monobaric
ordering {2’ such that if the corresponding mapping is denoted by A’, we have {25 = ¥

and AS = A’fg.
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Proof. By the postulates IV and IV’ of the definition of a regular ordering, it follows
that the relations P, > P, Py < P, P, ~ P2 can be written as P,/P, > 1, /P <
1, B /P, ~ 1. Then it suffices to consider the effect of £2 on those quotients of the PP’s
from S which are 2 1. Denote the sequence of these quotients by @, (v € {1,... ,N}).
Assume that the ordering ) corresponds a regular sequence of weight functions, of
the length d,

IVl(P):}V2(P)?"'qu(P)' (221)

Note that W.(Q,) = 0 (v € {1,...,d}, v € {1,...,N}). It suffices to show that,
if d > 1, the sequence (2.21) can be replaced with a sequence containing less than d
terms and corresponding to an ordering with the same effect on @, (v € {1,..., N}).

Reordering @, (v € {1,...,N}}, if necessary, we can assume that for Ny, Ny > 0,

Wi(@.) >0 (ve{l,...,M}), Wi(@Q,) =0 (v > Ny),

WQ(Q;;) >0 (b" = {Nl + 1, e ?Nl -+ Nz}), Wg(Qu) =0 (I/ > N]\ + Ng)

If Ny =0, we can obviously drop W1(P) and reduce d. If N} > 0, let W*(P) :=
Wi (P)+W,(P). Then W*(Q,) > 0 (v € {1,..., N;+N2}). Thus we can replace both
weight functions W, (P), Wo(P) by W*(P) and reduce again 4 by 1. Hence Theorem

2.5.3 is proved. O

For ¢ € K ~ {0}, we assign generally to ¢P the weight of P:
W(cP) = W(P).

A polynomial in which all terms have the same weight is called isobaric. We

assign to each isobaric polynomial F' the weight of any of its terms:
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W(F) .= W(P) (PeF)

If a polynomial F is not isobaric, then it can be decomposed into isobaric aggre-
gales of terms,

F=pot+er+- + @,

where each . (k € {0,...,k}) is isobaric end

Wige) > Wip) > - > W)

Then for a not isobaric polynomial F, we define W(F') as the maximum weight of all

of its terms:

W(F) = W(pa).

The above decormposition will be called simply the decomposition into isobaric
aggregates, where the single agpregates are always ordered according to decreasing
weights. Then the isobaric aggregate o will be called the leading aggregate of F.

It is clear that W{F) = W) > W({F — @p).

2.6 Convex bodies and polyhedrons

First, we recall some properties of convex bodies and polyhedrons, which will be
used later.

We usually denote a general point of the m-dimensional space R™ by A and its
coordinates by wy, ..., py-

A bounded and closed set of points, C, is called a convex body if it has the
convexity property, i.e. if A, A; are two arbitrary points of C, then all points of

the rectilinear segment (A, A;) also belong to C. The dimension of C, dinC, is
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defined to be the smallest integer d such that C lies in a linear d-dimensional manifold.
1If d = 0, then C consists only one point.

A direction 7 in R™ is defined hy m real numbers w;, ..., wy,,, not all zero,
with the condition that 1 remains the same if wy, ..., w,, are multiplied by the same
positive factor. If we multiply wy, ..., wm by —1, we oblain the opposite direction
to 1, —7.

m

For any point A € R™, denote L,(A) = Z w,a,. Note that for A", A” € R™, we
have L,(A" + A") = L,(A") + L,(A"). ‘R

An {m — 1)-dimensional plane normal to the direction 7 is the set of points A
satisflying an equation

Lo(A) = d, (2.22)

where d is an arbitrary real number. If we define d by d := max L,(A), then the
plane (2.22) is called the support plane of C in the direction 7 (denoted by E,).
It is uniquely determined by the direction 1} A convex body is uniquely determined
by the set of all its supporting plane.

Denote Cy, := E, N C. Then (), is again & convex body and if C;, & C, we have

dim C,, < dimC. The set €, will be called a linear boundary component of C.

Example 2.6.1. Put C:={{a,a;) e R* [0 <y €2y =1 € a3 < 3, a2 =201 -1}
Then C is a convex body in R% Let n := (—1,2) be a direction in R?. Then

for any {aq,0) € R?, Ly{an,a5) = —oq + 2a;. Note that ( maix Lo{on,a0) =
Ory,02) €

max {—a; +22¢; —1)}= max {3a¢;—2}=3-2—-2=14,
{ay,az)€ C{ ! ( ! )} (ay,o2)€ C{ ! }

Thus E, = {(a1,a2) € R? | —ay + 2a2 = 4} and C,, = {(2,3}}.
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n = (_152)

(Ds _1)

f dimC = d > 0, then the total boundary of C {from the m-dimensional
‘point of view’), dC, is UC,?.

If dimC,, = 0, then WC,? contains only one point and this point will be called a
snmmit of C,

A linear boundary component of C,, is also a linear boundary component of C.

Assume C is a d-dimensional convex body. If there exists only a finite number of
different linear boundary components of C, C is called a convex polyhedron. For
an m-dimensional convex polyhedron (; , there always exists a finite set of different
directions 5y, ...,ny such that §C = U C,, where each C, (V € {1,...,N}) has
the dimension m —~ 1 and different C,?:z(lu €{l,...,N }) have in common at most a
linear boundary component of a dimension < m — 1. These 7, (v € {1,..., N}) are
uniquely determined.

If we have a finite set of points Ay, ..., Ay, then the ‘smallest’ convex polyhedron
Wh}rliCh contains Aj,..., Ay is the set of all points representable in the form A =
Zt,Au where £1,...,ty > 0 and £; +--- +txy = 1. This polyhedron will be denoted
by (As, . Ax).

All summits of {(A;,..., Ay) belong to the set of the points {A;,..., Ax}.
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A convex polyhedron has a finite number of suinmits S, ..., Sy and can be always
form as (Sy,..., Sy}

Assume €' and C” are two convex bodies in R™. Then {A'+ A" | A’ € ¢/, A" ¢
C"} is also a convex body which is denoted by ' + C”.

If A = (a),...,a) e C', A" = (&f,...,al) € C" and 7 = (wy,..., wy) is
a direction in R™, then we have L,(4') —d < 0 and L,(A") — d" < 0, where
d = max, L,(A" and d" = nax L,(A"). Thus L(A"+ A") — (d'+d") = (L,(4) +
LAY —(d'+d") = (L (A)=d')+ (L,(A")~d") < 0. Note that the equality holds if
and only if 4’ € C} and A” € C}. For any direction 7, it follows that L,(A) = ' +d"

is a supporting plane for C' 4+ C” and
(C'+C")y = Cy + Cy. (2.23)

It is easy to see that if both €’ and C” are polyhedrons, then ¢’ + C” is also
& polyhedron. Becausc in this casé there are only a finite number of different ones
among the terms C7 + C} on the right of (2.23).

Consider in particular the case m = 2, of a two-dimensional plane. Then convex
polyhedrons hecome convex polygons. If in particular a convex polygon is a segment
{P, P3), then it has to be considered as consisting of two segments of equal length
but opposite directions, ﬁ J {151_P2

We provide now our convex two-dimensional polygons with the orientation, going
along the boundary in the positive sense with respect to the inside. By (2.23), it

follows that the oriented sides of the polygon C” + C' # can only have the directions
occurring in the sides of ¢’ and of C”. Then we obtain C' + C” by decomposing
C’ and C” into the single oriented sides and reordering these sides in the sense of

increasing angle with a fixed direction.
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Now, it follows that if a triangle T is the sum of two convex polygons 77, T3, none
of which reduces to a single point, then both 7 and 75 must also be triangles similar

to T'.

2.7 The baric polyhedron

A total view of all possible extreme aggregates in a given polynomial can be
obtained by using the baric polyhedrons which we are going to introduce now.

Assume F'is an algebraie polynomial in the form F = X": ¢, P, where ¢, € K
{0} (v € {1,...,n}) and P, (v € {1,...,n}) are distin;?lalgebraic PP’s of the
form (2.1). Any PP of the form (2.1) corresponds to a representative point, A,
of R™ with coordinates aq,.. ., o, We also define A to be the representative point
of cP with ¢ € K ~ {0}. Then in this way n terms of F' correspond to n different
points A;,...,A,. The polyhedron, Cr = (A4,,..., 4,), will be called the baric
polyhedron of the polynomial F. '

For a direction 7, if the linear boundary component {Cr}, contains the represen-

tative points of some terms ¢P of F, then we will say that these terms lie on (Cp),

and write this as ¢cP € (Cr)y,, P € (Cr)y.

Example 2.7.1. Form =2, let P, :=1, P '=x,, Py:=x129and F := P+ P+ P;.
Then the representative points of P, Pp, P are A; := (0,0), 4, := (1,0}, A3 = (1,1),
respectively, ‘Thus Cr = {(0,0),(1,0). (1,1)}." Let n:= (1,1} he a direction in R2.

Then for any (a1, az) € R?, L,{a;, @) = a1 +ay. We see that ( me}).xc Ly{an,an) =
ap,cz)E OF

max  a;+as = 2. Hence (Ep), = {{o1, ) | oy +02 = 2} and (Cp)y, = {(1,1)} =

(01,02)E Cg

{As}. So P; € (Cp),.
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Theorem 2.7.2. Let F be an algebraic polynomial. For any mapping A as de-
fined in Section 2.5, there exists a direction 5 such that F consists of all terms of F
lying on (Cr),.

For a given direction #, if 7™ is the sum of all terms of F' lying on (Cg),, then

there exists a monobaric mapping A for which F = F*. More generally :

Theorem 2.7.3. Consider a finite number of algebraic polynomials Fy,. .., Fy and
the corresponding baric polyhedrons Cp, =: C,, (V e{1,..., N}) Then any mapping
A corresponds to a direction # such that for v € {1,..., N}, F, consists of all terms
of F, lying on (C,)q.

Conversely, if we take an arbitrary direction 7 and for v € {1,..., N}, denote the
sum of all terms of F, lying on (G, ), by K, then there exists a monobarie mapping

A for which F, = Fy (v € {1,...,N}).

Proof of Theorem 2.7.3. Assumc a general mapping A as defined in Section 2.5. By
Theorem 2.5.3, the mapping F, — F, (v € {1,...,N}) can be also achieved by

& monobaric mapping and then we can assume A to be monobaric. Let W(P) :=
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Wy + - -+ + Wy be the corresponding weight function. Choose the direction 5 :=
(wi,...,Wm). Then W{P) = L,(A). Foreachv € {1,...,N},put g, := nax W(P).

1t follows that
W(P)=g,{(P€ F’u), W(P)<g, (PeF,— F’u) (V e{1,.. .,N}). (2.24)

We see that g, = nax L,(A) (v € {1,...,N}). Thus for v € {1,...,N}, each
plane L,(A} — g, = 0 represents a supporting plane in the direction 5 to C,. For
ved{l,....N}),let Pe F, and A € C, be the representative point of P. Since
PeF, &W(P) =g, o L(A) =g, Ac(C), s Pe(C), it folllows that F,
consists of all terms of F,, lying on {(C,),.

Conversely, assume 7 = (wy,..., %) i8 an arbitrary direction. For each v €
{1,...,N}, put g, == max L,(A). Then the supporting plane of C, in the direction
nis Ly(A) — g, = 0. Define W(P) := L,(A). We have

W(P)=g, (PeF}), W(P)<g, (PEF,~F) (ve{l,.. .,N}).

Comparing this with (2.24), we see that F,, = F* for the monobaric mapping A

defined by the weight function W(P). O
Theorem 2.7.4. If F" and G are two algebraie polynomials in 2y, ..., &, we have
Cre=Cp+Cq.

Proof. Let n be an arbitrary direction. Define the weight function W,(P) := L,(A4),
where A is the representative point of a PP, P. Put f, = max L,(A) and ¢, =
€ Cr

max L,{A). Then the supporting planes of Cr and Cg¢ in the direction 7 are L,(A) —
£ Lg
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Jfn = 0 and L,{A) — g, = 0, respectively. It follows that the supporting plane of
Cr + C¢ is Ly(A) — (f, + g,) = 0. Assume A is the monobaric mapping defined by

W,(P). By the proof of Theorem 2.7.3, for any PP's, P € F and Q € G, we have

=0 (PckF)
Wo(P) = £,
<0 (PeF - F),
=0 (QeG)

WalQ) — g 4
<0\ (QeG-aG).

\

Note that Wn(P;:;J) — (fat+ gq) = (WalPY+W(Q)) = (fr +97) = (Wo(P) — f) +

(W,(Q) — g5). Then

=0 (PeF,QeqG)
Wo(PQ) — (fy =+ 90) (2.25)
<0 (PeEF-Fyo(QeG-aG).

Now, let S be an arbitrary PP from FG. Then if S € FG, since FG = FG, §

can be written as PQ where P € F and @ € G. From (2.25), it follows that
Wa(S) —(fn+g,) =0 (5¢€ F@)

On the other hand, if 5 € F'G — FG, then S can be written as PQ, P F, Q € G,

where either P € F — F or Q € G — G. From (2.25), it follows that
Wo(S) — (fo+97) <0 (S€FG-FG).

Since the same relations must hold for the supporting plane of Cpe in the direction



47

77, we see that Crg and Cr+ Cg have the same supporting plane L,(A)—{f,+g,) =0

in every direction. Therefore Cpg = Cr + Cg. O

Among all extreme aggregates of terms contained in a polynomial ¥, we consider
in particular those aggregates which consist of one term only. Then they correspond
to the summits of C;F and will be called § terms of F'.

Let F be a polynomial and P* an S term of F. Assume that FF = GH where
G and H are polynomials. Considerall weight functions W (P} such that P* is the
highest term of F* with respect to W(P).

We will show that there is exactly one S term of G and one S term of H which
are the highest terms of G and H, respectively, with respect to these weight functions
W{P).

To see this, take one of the weight functions W{P) and the corresponding map-
ping A. Then we have P* = F = CH = GH. Thus both G and H are mono-
mials and there exists only one pair of terms of G and H such that their prod-
uct is exactly P*. Let Wi(P) and Wy(P) be weight functions such that P* is
the highest term of F with respect to both W;(P) and W3(P). Then there ex-
ist monomials Gy, G,, Hy, H, such that P* = G, H; = GyH, where Gy, G, are the
highest terms of G with respect to Wi(P) and Wa(P), respectively and Hy, H,
are the highest terms of H with respect to Wi(P) and Wy{P), respectively. Since
Wi(P*) = Wi(GyHy) = Wi(Go) + WilHy) < Wi(Gr) + Wi(Hy) = Wi(GiH,) =
Wi (P*), Wi(Ge) + Wa(Hy) = Wi(Gy) + Wi(Hy). Since Wy{(G,) < Wy(G,) and
Wi(Hz) < Wi(Hy), Wi(Ga) = Wi(Gy) and Wi(H,) = Wi(H;). Thus G, = G, and
H = E’z because Gy, Gy, H;, H, are monomials. Therefore G must be the same for
all of our W{P) and the same holds for H.

The corresponding result holds also for a product of more than two polynomials.



CHAPTER III

IRREDUCIBILITY

3.1 General observations on reducibility of polynomials

In this chapter, we assume that A is a field of characteristic 0.

Let F' be an algebraic polynomial given in the form F = ZC,,P,, where ¢, €
K ~ {0} and P, are distinet algebraic PP’s. We will say Lh&tuF is reducible if
we can write F = GH where G and H are proper polynomials. Then G and H
are called proper factors of F. And £ is called irreducible if F' is not reducible.
Although primarily one is interested in this connection in integer polynomials, it is
more convenient to operate with rational polynomials. Indeed, dealing with rational
polynomials we can use the m-r-transformations as defined in Section 2.1 of Chapter
11, with a,, € Z such that det|e,.| = +1 and this often considerably simplify the
discussion.

On the other hand, it can be seen that a reducibility problem for rational polyno-
mials is essentially equivalent to a reducibility problem for integer polynomials. To
see this, we will give the definition of a primitive polynomial.

An integer polynomial which is not divisible by any of the variables z;,.... 2,

will be called a primitive polynomial.

Proposition 3.1.1.
A. The product of two primitive polynomials is again primitive.

B. The product of a primitive polynomial with a PP, which is # 1, i8 not primitive.
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C. Any rational polynomial F' can be written as F' = PF* where P is a PP and
F™ ig a primitive polynomial. F™* is uniquely determined by F'. We will call F* the
primitive kernel of F.

D. If F = GH where F,G, H are proper polynomials, then F* = G*H* where the

primitive polynomials G* and H* are also proper.

Proof. A and B are obvious. To show C, let F be any rational polynomial.

Case 1. F' is an integer polynomial If F is primitive, choose P = 1 and F* = F.
Otherwise, let P be a PP such that F/P is primitive. Then we choose F* = F/P.
Case 2. F is not an integer polynomial, i.e. F' contains a rational P which is not
integer. Let P, be a rational PP such that F/P, is an integer polynomial. By Case
1, F/ P, = PyF* whére Py isa PP and ™ is a primitive polynomial. Then we choose
P=PP,.

To show that F™* is uniquely determined by F, let £, P be PP's and F}, Fy
primitive polynomials such that F' = PlFf‘ = PFy. I P, # P, then P,/P) # 1.
By B, we have that F} = (P./F2)Fy is not primitive, which is a contradiction. Thus
P =P, s0 F}' = F;.

Finally, to show D, assume that F' = P F*, G = P,G*, H = PyH* where P, B, B3
arc PP’s and F*, G*, H* are primitive kernels of F, G, H, respectively. By the unique-
ness of F*, we have that F* = G*H". Since G is proper and G = P,G*, G* is not a
constant. Since G* is primitive, G* is not a nonconstant monomial. Then G* is not

a monomial, i.e. G*'is proper. Similarly, If* is proper. O

By Proposition 3.1.1 D, we see that the kernel of a reducible rational polynomial
is reducible in the domain of integer polynomials.
In some cases it can be proved that a given rational polynomial F is irreducible

not only in the domain of rational polynomials but even in the domain of all algebraic
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polynomials, i.e. F cannot be represented as a product F = GH where G and H
are proper algebraic polynomials. On this level of investigation, it is reasonable Lo
consider also the irreducibility or reducibility of algebraic polynomials.

Assume that we have the decomposition of the algebraic polynomial F', F = GH
where (G and H are proper algebraic polynomials. Let D be the smallest com-
mon denominator of all exponents in F, G, H. Then we obtain the decomposition
of F(zP,...,zB) in two proper rational factors. However it is tnore convenient to
operate with algebraic polynomials as such.

In dealing with such problems we can use again the m-r-transformations as defined
in Section 2.1 of Chapter II, with a,, € Q such that det[a,,] # 0.

We will say that PP’s P, ..., I are algebraically independent over a field K
if there is no nonzero rational polynomial F'(y1, ..., %) with coefficients from K such
that F'(P,...,P) = 0. And we will say that PP's Py, ..., P, are algebraically

dependent over K if they are not algebraically independent over K.

Proposition 3.1.2. If PP's P, ..., P, are algebraically dependent, then there exist

s« € Z (k €{1,...,k}), not all zero, such that P;' P> .. P> = 1.

Proof. Since P, ..., Py are algebraically dependent, there exist oer (rc €{1,..., k})

and ¢, € K ~ {0} such that

el

OO of
E R e~Fi’a -1 Fo'rs7S
1o

If this relation is satisfied after introducing the expressions of each P ..., P in

the variables z1,..., Z,,, then there must exist at least two different expressions

’ ¥ 4 "
ter T &y Ay
P P PP
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which become identical when expressed in zy, ..., Z,,, so we can cancel one another.
Thus we have the relation

Pt P~
where o), — o)l € Z (r € {1,...,k}) and not all of them are zero. O

A polynomial F' will be called homogeneous if all PP’s in F have the same

dimension.

Proposition 3.1.3. Let k, D € N and ¢, € K ~ {0} (r/ e{1,.. .,k}).
If ;7P + ozl + -+ + oz = FG, where F and G are proper integer polynomials,
then F' and G must be homogeneous polynomials of the dimmensions which are smaller

than D and the derivatives £, , G, #0 (k€ {1,...,k}).

Proof. Observe that F' can be decomposed into F; + £3 + --- + F. where 7 > 1,
each F} (z € {1,...,7}) is a nonzero homogeneous polynomial of the dimension a;
and 0 < a; <ay < -+ < a,. Also, G can.be decomposed into Gy + Gy + -+ + G
where s > 1, each G; (_;i e{1,..., .3}) is a nonzerc homogeneous polynomial of the
dimension b; and 0 < by < by < -+ < b;. Note that F1Gy, .G, # 0 and F1G1, F,.G,
are of the dimensions ayby, a,b,, respectively, From c;zP +e2f + --- + cp2f = FG,
then a16; = a.bs. Thus r = s = 1, s0 F and G are homogeneous polynomials.
Denote the dimensions of F and G by a and b, respectively. Since F and G are
proper, a,b > 0. From ¢;2P + ezl + - + qzl = FG, then a + 5 = D. Thus
a,b < D. Suppose that there exists k € {1, ..., k} such that the derivative ¥, = 0.
It follows that G must contains an integer PP P which can be written as P = z2Q

where ¢} is an integer PP. So a > D, which is a eontradiction. Hence the derivative

Fpo #0 {x € {1,...,k}). Similarly, the derivative G, #0 (x € {1,...,k}). O



Lemma 3.1.4. The polynomial
P +zd 4+ +zp (k>3,D>1) (3.1)

is irreducible in the domain of integer polynomials.

Proof. First, we will assume ) > 3. Suppose that

2P +a2f 4. .-+ 2P = FG, (3.2)

where F' and (G are proper integer polynomials. By Proposition 3.1.3, ¥ and G
must be homogeneous polynomials. Denote the dimensions of ¥ and G by ¢ and b,
respectively. From the proof of Proposition 3.1.3, we have a,b < D. Differentiating
both sides of (3.2) with respect to zx, we obtain Dzf ™! = F,,G + G, F. Write
F,=xf, Gg = ;-:fg, where f and g are polynomials which are not divisible by zy.
By Proposition 3.1.3, we have that the derivatives F,,,G;, #0. Then0 < e <a—1 <
D~2and0 < 8 < b-1 < D—2. Without loss of generality, we can assume a < [ since
we can interchange F and G. Note that Dz ! = :e:ng-f—:t:ng = 1(fG+z, “gF).

Multiplying both sides by x; “,
Dzl 7%= fG 2l %R (3.3)

Sinceao < D=2, D—1—a > 1. Thus Dmf‘l““ is divisible by z,. If G is divisible by
zy, then xP + 2P + .-+ 2P = FG is also divisible by z, which is impossible. Thus G
is not divisible by 33,;, so f(7 is also not divisible by xy. It follows that 3 = a. Taking
r, = 0 in (3.3) and denoting the corresponding values of f, g, F, G by fo, g0, Fo, Go.

respectively, it follows that
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JoGo = —gofo. (3.4)

Note that both Fy and G have no noncenstant factors which arc monomials.

Otherwise zP + z2 + --- + 2, = FyG; would be divisible by the nonconstant
monomial, which is impossible. If Fy and Gy have a common proper factor, say H,
then z + zf + .- + zl_| = FyGy is divisible by H?. So zP + 22 + -+ + 2P | .

FyGo = H?I where [ is an integer polynomial. Differentiating both sides with respect

to z1,...,%x, We obtain -
DzP™' =2HH, I+ HI,,,
DxP~'=2oHH, I+ HI,,,
JECR S0HH ST HA N
It follows that DzP~1 D2l . ST have a proper factor A in commeon, which

is impossible since & > 3. Thus F; and Gy have no proper factors in common. By
(3.4), we have that fyGy is divisible by Fy and gy F} is divisible by Go. Let J be a
nonconstant irreducible factor of Fy. Then J is not a monomial, i.e. J is proper.
Thus J is not a fact,Or of Go. Since oGy is divisible by Fy, foGy is also divisible by
J. So fy must be divisible by J. Hence fj is divisible by 3. And we can prove in the
similar way that gy is divisible by Gg. But the dimensions of f; and gy are smaller
than the dimensions of Fy and (g, respectively. This is a contradiction, and Lemma
3.1.3 is proved in the case D > 3.

F01; the case D = 1, it is cbvious that =; + 29 + - -+ + zx is always irreducible in

the domain of integer polynomials.
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Finally, assume D = 2. Suppose that z3 + 22 + - .- + 22 = FG, where F and G
are proper integer p&)lynomials‘ By Proposition 3.1.3, F' and G must be homogenecus
polynomials of the dimensions 1 and the derivatives F, , G, # 0 (r: e {1,... ,k})
Then F = ayz; + - - + a2, G = bizy + -+ + by where a,, b, € K ~ {0} (r-a: e
{1,..., k}) Note that a1bq, azby # 0. So F'G contains the term (a;by + agby )z 22 but

T} + 22+ - -« + x2 does not contain such term. This is a contradiction. 0

Corollary 3.1.5. The polynomial
s+ ad 4tz +1 (k>2,D2>1) (3.5)

is irreducible in the domain of integer polynomials,

Proof. We claim that zi,...,Zr_1,Zx/@x) are algebraically independent. Supposc
not, then, by Proposition 3.1.2, there exist s, € Z (n € {1,...,k}), not all zero,
such that o' ... 2* 7 (zp/zks1)™ = 1. So we have z3*...z* 7 zp*z, % = 1. This
contradicts the fact that 21, ..., Zx41 are algebraically independent. Replacing zj in

{3.5) with xx/zx,1, we have
zf 4+ 2+ (we/ze)? + L (3.6)

It can be seen that if (3.6) is irreducible in the domain of integer polynomials,
then so is'(3.5). Next, claim that z1Tki1,...; Tk_1%k11, Tk, Toq1 are algebraically

independent. Suppose not, then, by Proposition 3.1.2, there exist s. € Z (r-a: €

{1,...;k+ 1}), not all zero, such that (z;zg ) ... (mk_lzrkﬂ)‘”k—l:ri":tziﬂ‘ =1. So
we have z3! .. .:r;*:n:ﬂz"'ﬂ’“"lﬂ"“ = 1. This contradicts the {fact that zy,...,Zy4; are

algebraically independent. Then multiplying (3.6) by =P, ,, we have
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(12x41)” + (Z2Tpr )7+ + T + 204 (3.7)

By Lemma 3.1.4, it follows that (3.7) is irreducible in the domain of integer polyno-

mials. Then so is (3.6), and Corollary 3.1.5 is proved. O

Corollary 3.1.6. The polynomials (3.1) and {3.5) are irreducible even in the domain

of algebraic polynomials.

Proof. Suppose that

L+ - +ap = FG, (3.8)

where F and (G are proper algebraic polynomials. Let M be the smallest common
denominator of all exponents in F and G. Replacing each z, (k € {1,...,k}) in (3.8)

with 2 (k€ {1,..., k}), we have
P+ oM g™ = Flo) )G 2.
Note that F(z}, ..., z}), Gz}, ..., z}) are proper rational polynomials. Write
Elz¥ . oGV, . 2¥) = PRG,,

where P is a rational PP and F1, G, are integer polynomials such that Fi G is not
divisible by @ for any integer PP @ # 1. Denote P :=7' ...z where o, € Z (k €
{1,...,k}). Let P = giex®at | gnexibasd gng py oo gPint0 ot | gt et Ob.

viously, P = P F;. Then we have
P2_1($10M + TZDM R o IEM) = PIFIGI-

Note that both P, P;! are integer PP’s. If P, # 1, then P; ' is not divisible by Py,
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S0 I’IDM + IéjM + e 4 :I?kDM must be divisible by P;, which i3 a contradiction. Thus
Py =1, Andif P;' # 1, then P, is not divisible by P;!, so F,(; must be divisible
by P; !, which is a éontradiction. Thus P;' =1, s0 P, = 1. Hence P = 1. It follows
that

$PM+$2DM+“'+‘T£A{ =F1G].

This contradicts Lemma 3.1.4. Therefore (3.1) is irreducible in the domain of algebraic
polynomials. That (3.5) is irreducible’in the domain of algebraic polynomials is proved

in the similar way. O

Corollary 3.1.7. Let n > 3 and Py, ..., F, be algebraic PP’s in z1,..., T, which

are algebraically independent. Then the polynomial

Z e/ Py —{crog=t . ¢, #W0) (3.9)
v=1

is irreducible even in the domain of algebraic polynomials.

Proof. First, we show that n < m. Suppose n > m. If we take P' Py .. . Pi» =1
and introduce the expressions of P, P, ..., P, in the variables x4, ..., T,,, then this
leads to m equations with n unknowns {sy, ..., s,). Thus there is a nontrivial solution
9« € Z (x € {1,...,n}), not all zero, such that P;*Fs?... P = 1. This contradicts
the assumption that P,.. ., P, are algebraically independent, and so n < m. By an
m-r-transformation, we can introduce m new variables ¥, such that gy, = P, (V €

{1,...,n}). Then (3.9} becomes
chyu- (3.10)
p=1

Introducing z, := ¢y, (v €q{1,... }n}), (3.10) becomes

nt+z+ o+ 2z (3.11)
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By Corollary 3.1.6, it follows that (3.11) is irreducible in the domain of algebraic

polynomials. Then so are (3.10) and (3.9). a
Corollary 3.1.7 can be generalized to

Theorem 3.1.8. If n + 1 algebraic PP’s are such that P,/ F,..., P,/ P, are alge-

braically independent, then the algebraic polynomial

> b (2ot ..ca# 0, n 2 2) (3.12)
v=0

is irreducible in the domain of all algebraic polynomials.

Proof Let Q, = 2 P,/B (v€ {1,...,n}). Then dividing the polynomial (3.12) by
Cy
co Py, we have

1%Q 4t Qn. (3.13)
Since Qy, ..., Q, are algebraically independent, we can again introduce n new
variables z, := Q, (v € {1,...,n}). Then (3.13) becomes

14214 -+ z,. (3.14)

By Corollary 3.1.6, it follows that {3.14) is irreducible in the domain of algebraic

polynomials. Then so are (3.13) and (3.12). a

3.2 A criterion for absolute irreducibility

Assume that a polynomial F with coefficients from a field K is a proper irreducible
polynomial with respect to K. Then it can happen that there exists an algebraic
extension of K, K*, such that F has a proper factor ¢{z,,...,T,) with coefficients

from K*. In this case, we say that F' becomes reducible in K*. But if there does
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not exist any algebraic extension of X in which F becomes reducible, F is called

absolutely irreducibie.

Example 3.2.1. 1) z? + 2% + 22 is an absolutely irreducible polynomial
(by Corollary 3.1.6).
2) 22 — 222 is irreducible with respect to Q but becomes reducible in Q{+/2).

We show that 27 — 223 is irreducible with respect to Q. suppose that T 272 =
FG, where F and G are proper integer polynomials with coefficients from Q. By
Proposition 3.1.3, F and G must he homogeneous polynomials of the dimensions 1 and
the derivatives Fy,, Fy,, Gz, Gy # 0. Then F = ay7q + @323, G = byzy + byzy where
a1, a2, b, by € QN {0}. Thus 2§ — 222 = FG = a;b;2? + (arba + azhi 2172 + agbszl.
Comparing the coefficients on both sides, we obtain a6y = 1, a1bs +agb; =0, axbs =

2 2a4 ao

1
—2. Soby = —, by = ——, and —— + — = 0. Multiplying by a;as, we have
] ag D) )

2
—2a3 + a3 = 0. It follows that (EE) = 2, which is impossible.

a :
Note that 22 — 222 = {z; — v/23)(z; + V/223). Hence x? — 222 is reducible in

QV2).

We will develop a criterion which allows us in many cascs to prove the absolute
irreducibility.

Assume that we have the decomposition of the integer polynomial F, F = GH
where G and H are proper integer polynomials. The factor polynomials G and H
can he multiplied with an arbitrary coefficient ¢ % 0 and %, respectively. Then in this
way the coeflicients of G and H shifted into a field K™ which is possibly too large.
We see that if the coefficients of G are denoted by @, s, ... and the coefficients
of If are denoted by 3, 5,..., then all products «, 3, lie in the ‘smallest’ field
over K, K{a,f,), in which the decomposition ' = GH can be obtained by using

suitable common factors. To see this, assume G = P, + -+ a.FP. and H =



59

Bl + -+ BeQs, where 1,3 2 1 and for v € {1,...,7}, p € {1,...,s}, P, Q,

are PP’s and o,,8, € K ~ {0}, Let ¢’ = 6,G = a151P + - + a5 P and
1 ;62 ﬁa
H = -—H=0;+=20Q,+---+22
) @1 ﬁ1Q2 5,

coefficients of G' and H' lie in K(w,[3,). In particular, all coefficients of G and H lie

Q@s. Then FF = GH = G'H’ and we see that all

in K(a,3,) if one of them is = 1. Therefore we can norm the polynomial F hy taking
the coefficient one of its S terms = 1. Then the correspondings $ term in G and H
have the coefficients 1. In this case we will say that F, G, H are normed. Observe
that if a polynomial, f(z), in one variahle «, is normed, then all of its coeflicients are
rational functions oé its roots.

Note that if there exists the field K* over K in which F becomes reducible, K*
need not to be finite or algebraic over K. However, it can be always replaced with a

finite algebraic extension of K. To prove this, assume the decomposition
F(a:l;. . ,.Tm) = G($1, 125 ,iEm)H(LEl, e ,IL’m)

where all coefficients of G and H lie in K* and F,(G, H are normed. Using the

. . 2 m—1 -
Kronecker’s substitution, 2, = z,23 = 2%, 23 = 2% ,..., 2, = 29 . Then we obtain
m—1 Tre—1 r—1
Flz,z ..., 29 y=Glaya?,...,2f YH{z,z% .. .,29 )

where if the integer g is chosen sufficiently large, then no terms in G and H are mixed
up and the sequence of the coefficients remains the same. So we have on both sides
polynomials in one variable z and the roots of these polynomials are the roots of the
left haﬁd polynomial which has coefficients in K. Thus these roots are algebraic with
respect to K. Since G and H are normed, their coeflicicnts are rational functions of

their roots which are also algebraic with respect to K. Hence F' becomes reducible
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in the field K* obtained from K by adjunction of all coefficients of G and H. We see

that the field K* is a finite algebraic extension of K.

Theorem 3.2.2. Consider m variables z,, ..., z,,, algebraically independent with
respect to A, and an integer polynomial F(zy,..., ) with coefficients from K and
irreducible with respect to K. Assume that F' has a proper integer factor ¢z, ..., :Em)

which is absolutely irreducible and assumed to be normed. Let K* be the field ob-
Lained from K by adjunction of all ceefficients of ¢ and let &k := [K*: K].

Then each § term of F is k-th power of the corresponding S term of .

In particular, if the greatest commeon divisor of the exponents of all S terms of F

is 1, then F' is absolutely irreducible.

Proof. Let n be the degree of 4 in z,,..., %, (i.e. the maximal dimension of all PP’s
occurring in ). Let n’ be the smallest degree of an absolutely irreducible integer
factor of F' and let ; be such factor which assumed to be normed, where if n’ = n,
we take ¢, := 3. Let K’ be the field obtained from K by adjunction of all coefficients
of ¢, and let k' ;= [K’: K|. Since the characteristic of K is 0, K’ can be written as
K{p1) where p; is a primitive element of K, of degree k' with respect to K.

Then each coefficients of ¢y can be written as an integer polynomials in g, so
we can write ¢; = @(p1, 21, ..., Tm) Where ¢ is an integer polynomial of its m + 1
variables with coefficients from K. Let po,..., p& be all conjugates of p; and let
Pr = Py X1 3 T (n € {1,...,&’}). It follows that each s (rs € {1,...,k’})
is also a factor of F' and must be absolutely irreducible, since otherwise F' would
have a proper factor of degree < n'. Moreover, all ¢, are distinct since otherwise the
number of conjugates of p; would be < k' — 1 and all coefficients of ; would lie in
an extension of K of degree < k'. Since ; is normed, o, ..., pp are also normed.

We claim that ¢/, cannot be independent of zi,...,%,, if & # A. Suppose that
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Yx/0x = a where k # X and a € K’. Then g, = apx. Since ¢, and ¢, are normed,

a = 1. Thus ¢, = @\, which is a contradiction. Hence F must be divisible by
k.’

k!
H Ox(Z1,...,Zm). Note that H @(Ygs T1,-. ., Tm) 18 & symmetric polynomial over
k=1 w=1

K[z1....,Zm] in &' variables, g1, ..., yw. Since py, ..., pr are all roots of the minimal
k’

polynomial of p; over K, it follows that Hc;’)(pmxl,...,:cm) € Klzy,...,zp), 16

k' T’l
H Ve(Z1,. .., Zm) € K[T1,...,Tm). And H (21, .., Tm) 18 also normed because
k=1 x=1
. »
¥1,...,r are normed. Since F is irreducible in K, F' = bH wxl(T1, .. -, Tm) where
=1

b € K. But v is a factor of F, then it must be divisible by ¢, for some x € {1,...,k'}.
Since 1 is absolutely irreducible, i = cp, where ¢ € K. Thus n’ = n, s0 ¥ = p,.
Then we obtain K’ = K* and k' = k.

Observe that if ¢ = 1 contains a term e(py )2 ... &% where ¢{p1) is a nonzero
polynomial in p; with coefficients from X, then each ¢, (k € {1,..., k}) contains
the term c{p. )z} ... 2% where ¢(p.) is the conjugate of c¢(p;). Then c(p.) # 0.

™

We see that different ¢, contain exactly the same PP and therefore have identical

baric polyhedrons: Cy = Cpy = ++= = C,,. li follows that if an S term P* of
F corresponds to the S term e{p)zf* ... z%" in 9, then the corresponding term in
k
o (kE{L,..., k})‘is o{pe)z® . .22~ and therefore P* = zko1 | ghom Hc(p")'
k=1

Finally, assume that the greatest common divisor of the exponents of all S terms
of Fis 1. Then £ = 1. Thus F = bp1(z1,-..,Zm), 50 F is absolutely irreducible.

Therefore Theorem 3.2.2 is proved. a

From Theorem 3.2.2, it follows that the degrees of all highest terms of F in any

of the possible lexicographic orderings are divisible by %.
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3.3 An analogue of Eisenstein-Schonemann theorem

Let J be the set of all integer polynomials in x,...,z, with coefficients from
a field K. We will consider a weight function W(F) such that W{z,) > 0 (v €
{1,...,m}) and the corresponding monoharic mapping. We will show that the addi-
tivity property of W(F') remains conserved for not necessarily isobaric polynomials.

Let F' and (G be polynomials from J which decomposed into isobaric aggregates:

F=py+pi+- + e,

G=t%o+ty+ -+

Since the leading aggregate of a product is the product of the leading aggregates of

factors, the leading aggregate of F'G is gy, and it follows that
W(FG) = W{poyo) = Wipo) + W(tg) = W(F) + W(G).

We are now going to prove a lemma which is an analogue to a certain degree of

the Eisenstein-Schonemann theorem in the theory of numbers.

Lemma 3.3.1. Let z be a variable which is independent of J.

Consider the polynomial

P
Z.= -+ waz”k + x2", (3.15)

=]

where n > pk > 2, ,x and ¢ (7r €{1,... }p}) are polynomials from J and @y # 0.

Assume that

W(p) > max{W(x), W), ..., W(¥p)}, (3.16)
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the polynomial ¢ has no multiple factors and ged(e, x,%1,...,%p) = L.

Suppose that Z is a product of two polynomials depending on z:

Z = FG, (3.17)
F=fot+thz" ++ [z, 0<uy < - <uy, 521, (3.18)
G=go+g2" + -+ g™, 0<u< - <o, t 21, (3.19)

where fo,g, € IN{0} (0 €{0,...,8}, T € {0,...,1}):
Then ged{yp, 41, ...,¥p) =1, all exponents u,, v, (¢ € {0,...,s}, 7€ {0,... ,t})

are divisible by k and therefore n is also divisible by k.

Proof. Let J, be the set of all integer polynomials in z with coefficients from J. By
(3.16), we can choose € > 0 such that W () > W(tx) +nre (r € {1,...,p}), W(p) >
Wi{x) + ne. In order to define a weight function in J, whose restriction on J is W,
it suffices to put W(z) := €. Then W{i,2™) = W () + 7kW(2) = W (i) + 7ke <
W () + pke < W(n) +ne < W(p) (x € {1,...,p}) and W(x2"} = W(x) +
nW(z) = W(x) + ne < W{y), so W(Z) = W{p) and W(Z — ¢) < W(p). From
(3.17) - {3.19), we can write Z = fygg + ¢z where ¢ € .J,, comparing this with
(3.15), it follows that foge =, so W{fo) + W(ge) = W{(fogo} = W{g). Note that
ged(fo, go) = 1 since ¢ = fogo has no multiple factors. Denote the leading aggregate
of ¢ by @ and the leading aggregates of f, and gy by f5 and go, respectively. Since
the leading aggregate of a product is the product of the leading aggregates of factors,
@ = JoGo. But @ is in (3.15), then @ is also the leading aggregate of Z. From (3.17),
it follows that fo and §; arc the leading aggregates of F and G, respectively. Thus

W(F)=W(fy) > W(F — fo) and W(G) = W{go} > W{F — go}. In particular,

W(fe) <Wifs) (c€{1,...,5}) and W{g.) <W(g) (re{l,...,t}). (3.20)
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We are going to prove that ged{y, ¥1,...,1%,) = 1. Suppose not, then there exists
an irreducible nonconstant polynomial w from J which is a common divisor of ¢ and
¥r (m € {1,...,p}). Then we have that FG = Z = x2" = f.g:2" (mod w). Let
Fyo=Hp" + ...+ Hy 2Vn, Gy := Kyz*° 4+ --- + K, 21 be polynomials from J,
such that F = F; (mod w) and G = Gy {mod w). If one of the expressions Fy, G;

consists of more than one term, then we have that
x2" = FG = HoKyz"" + . 4+ H, K, 2" (mod w) (3.21)

where U;, + Vi, > .Uy + V. Since Hy, Ky, H,,, K;, are not divisible by w, so are
HyKy and H, K, . Thus (3.21) is impossible. It follows that F' = f,2%* (mod w) and
G = g2 (mod w). Then fy = gy = 0 (mod w). Hence ¢ = fogo have the factor w?,
which is a contradiction.

In the following part of the proof, the notation o{ ™) means an integer polynomial
which is divisible by zV+!, .

Suppose that not all u, are divisible by k. Let u,, be the first u, in (3.18) which
is not divisible by k. So u,, = lk+a where o, € Z, 0 < a < k, { > 0. Then F can

be rewritten, ordered in ascending powers of z, as

h
F= E,}uz}\k + ,_Ysz—i-a 4 O(zuc‘i-a)j o= fo‘u :}é 01
A=0

;
where not all v, need be # 0. If G can be written as G = Eé,\z)‘k+o(z‘fk+°‘), then the
2=0
product Z = F'G must contain the term ygqz***, which cannot be cancelled. Since

tkta — ~goz¥e0 % xz". This is a contradiction. Thus

Ugy < Uy < Us + ¥ = N, Y02
there exists 1y € {0,...,t} such that v,, =rk+ 3 where 3, r € Z, 0 < 8 <k, r 20

and rk+ 3 < lk+ a. Then G can be rewritten, ordered in ascending powers of z, as



G=> 62 +5 P 4o §i=g, #£0.

=0

If rk + 8 < Ik + a, then we can interchange F' and G and arrive at a contradiction
as done above. Thus we have only to consider the case k+a =1k + 3. Sel=1r
and @ = 8. Then FG must contain the term (fod + gov)z*T®. Since Ik + o is not
divisible by & and < n, fo6 + goy = 0, 50 foGr, = —90f0s- Since ged{fo,90) = 1,

fo and go have no nontrivial common divisors in J. Thus 9% and Jo

Jo 0

must be

2]

polynomials from J, say f := f— and g := —‘f;ﬂ. Then f,, = fof and g, = gog, s0
0 0

W(fs) = W) + W(f) 2 W(fo) and W(g,,) = W(g,) + W(g) > W(go), which
contradicts (3.20). Finally, it follows that » is divisible by k since n = u,v;. Therefore

Lemma 3.3.1 is proved. 0

3.4 An application of Puiseux developments

For a € @, we will denote the greatest integer which is < a by [a].

Lemma 3.4.1. Let n,7m € N and put

ri=n [”H 1} ~1, (3.22)

Zhi= 2" A g+ (@),

where f(z, ) is an integer polynomial with numerical coefficients such that f(0, 0) 0
and for every PP, z*y*, which occurs in f, we have An + & < r.

Then Z* is absolutely irreducible in the domain of integer polynomials.

Proof. By (3.22), we obtain

'rgw—l:nm(l—kiwi) <nm(1—~—1—)<nm.

2 2m nm nm
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Then every PP, z*y*, which occurs in f, we have dn < An+ & < r < nm, so
A < m and k& < nm. Thus the degree of f in z is < m. We claim that Z* cannot
have a proper factor which is independent of z. Suppose that Z* = F(G where F
and G are proper integer polynomials and F is independent of z. Then G can be
written in the form G = g{y)z™ + (G; where the degree of G; in x is < m. Thus
Zz* = FG = F(g(y)a™ + G1) = Fg(y)z™ + FG,. Since F is independent of z, the
degree of FF(G; in x is < m. Corn[:maring the coefficients of z™ on both sides, we
have 1 = Fg{y), so F = 1, which is a contradiction, and the claim is verified. For
m = 1, it follows tl:lat if Z* is reducible, then Z* must have a proper factor which
is independent of z, contradicting the claim. So Z* is irreducible for m = 1. Now,
assume that m > 2.

Under our assumption, we see that the baric diagram of Z* is:

b4

nm

0 m a
Suppose that Z* = FG where F' and (G are proper integer polynomials. By the
above claim, we have that the degrees of ' and G with respect to z must be > 0.
Since the degree of Z* = FG in « is m, it follows that the degree of ¥ in & or the
degree of G in z must be < -T;-I- Let p be the degree of F' in z. We can assume

that p < ? by interchanging F and ¢ if necessary. By Theorem 2.7.4, we have
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Cze = Cpg = Cp + Cg. Since the baric polygon of Z* is a triangle, the baric
polygons of F' and (7 must also be triangles similar to the baric triangle of Z*.

Then the baric triangle of F is:
b4

pn

D L.
0 r a

So the degree of F' with respect to y is pn. Write F' = Za,\,cx)‘y". From the

A K
AB  AC K 0A

above diagram, we have that for any A,n, — < oD = oc and I;?: = oC Then
A
%+i gg+gc—l s0 £ < n{p — A). Rewriting F' as F' = wap y). For

/\_
A€ {0,1,...,p}, the degree of f,_x(y) is < nip— A).

The function z(y), defined by Z* = 0, has m Puiseux developments in decreasing
powers of ¥ in the neighbourhood of ¥ = oc. Since the Newton diagram of Z* is the
hypotenuse of its baric triangle, the first terms of these Puiseux developments are
obtained from

20 31 lizc=ey’ . =1

Then we have |z| ~ |y|*, with y — oo. For A € {0,1,...,p}, since the degree of
Foaly) is < nlp = A), fo-aly) = O(y*®P~M) (y — oc). Since every PP, z*y", which

occurs in f, we have M + & < r, it follows that flz,y) = O(y") (y — o0). Then

HHz.y) =O( 1

ynm y Iv—r

) (y — o0). From Z* = 0, we obtain
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$m=~*y“m(1+———f(if))x—y“m(1+0( ! )),so
y ynm-—r
1
:c:eyﬂ(l—{-O( nm_r)); " = —1.
¥

It follows that for A € {1,...,p},

1 1 1
A A _ A An AN
x =€ y ﬂ(l—l-O(ynm—r)) 3 y +E y O(yﬂ,m—r) =¢ y n+O(yﬂ-(m—A)—r),

and multiplying by f,—x{y), we have

2 foea(y) = € fon(y) + O(gn—(n—}_jt;) Fo-a(y)

_ php ()4 0(5—1——) ,

n{m—pi—r

where the relation corresponding to A = 0 is trivial.

1 -
It is easy to see that [%—1] + [Ezi—:l = m. Then

n(m—p)—mn(m—p)—n[m;l} +12n(m— [%] L, [m“DH:L

It follows that for A€ {0,1,..yp},

P oY) = PP for(y) + O G) . (3.23)

Note that the formula (3.23) holds for every of the m branches of z{y)}, assigning
to € the corresponding one of its m values. Therefore p of these branches satisfy the

equation

Fz(y),y) =0. {3.24)
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Taking in (3.23) one of the values of € for which (3.24) is satisfied. Summing (3.23)

for A € {0,1,...,p}, we obtain
? 1
0= F(z(u). 1) Zx Tow) = YY" foay) + o(a).
A=0

]
We see that Z ey f,-x(y) is a polynomial in y and O (i) — 0 {y — o). Then
A=0

14
Fle™ ) = Yy fpoaly) =0
A=}

Taking y = 0, we have F'(0,0) = 0. Since Z* = F'G, f(0,0) = Z*(0,0) = F(0,0)G(0,0)

= 0. This is a contradiction. Hence Lemma 3.4.1 is proved. O

Remark 3.4.2. The number » in Lemmsa 3.4.1 can be replaced by r* := '?%n_ — 1.
m+1ll m ot e
5 % sort=r.

Observe that if m is even, then [

Corollary 3.4.3. The absolute irreducibility of Z* in Lemma 3.4.1 holds under the
hypothesis of the lemma also in the domain of algebraic polynomials, if we replace r

with r* := ? — 1 in the case of odd m > 1.

Proof. Suppose that Z* = F'G where F and (G are proper algebraic polynomials.

Let M be the smallest common denominator of all exponents in F, G and w := 2M.
Then we can write Z*(z,y) = F(z'/¥, y¥/*)G(z"", y"/¥), where F(u,v) and G(u.v)
can be assumed to be integer polynomials. Replacing z'/* by £ and 4/ by 7, we

obtain

£ F g+ f(€, ") = 2760, 1) = F§n)GE ). (3.25)

If we replace m in Lemma 3.4.1 by wrm, since w is even, the corresponding r becomes
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[fnm=1thenn=m=1r=1. [I——E—IJ —1 = 0. It follows that f must

be a constant, so the conditions of Lemma 3.4.1 are satisfied. 1If nm > 1, by our
. . i)
new assumption, we have that for every PP, z*y*, in f, \sn 4+ k < r* = % -1

Note that the corresponding PP in f(£¥, n%) is £237** and wAin + wk < wr*. Since

wr* = W_E'E —w < w—zmm —1=p, win + wx < p. By Lemma 3.4.1, we have that
(3.25) is impossible. O

Corollary 3.4.4. If Z* is an algebraic polynomial of the form
% =% 4 yna + gO(iBUw, yI/m)'J

where o € Q%, n,w € N and ¢ is an integer polynomial in z*/* and y*/* such that
o
©(0,0) # 0 and every PP, z*y", which occurs in ¢, we have An + x < r* == %— -1,

then Z is absolutely irreducible in the domain of all algebraic polynomials.

Proof. Suppose that Z* = FG where F and G are proper algebraic polynomials. We

can choose w such that wa becomes an even integer and that the decomposition of

Z* becomes
Y9} F(ml/'w} yl/w)G(xl,’w’ ylg’w)1 (326)
where F' and G are integer polynomials in !/ and 4'/*. Replacing z/* and 3'/* in
(3.26) with £ and 7, respectively, we obtain
£ + 0"+ pl€,m) = FE,mGE ). (3.27)

If we replace m in Lemma 3.4.1 by wa, since wa is even, the corresponding r becomes
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Since for every PP, z*y", in (z/*,y'/*), we have An+x < r*, it follows that for

every PP, £2n™* in (£, 1), we have win +wk < wr* = ? —w < ? —-1=p

By Lemma 3.4.1, we have that the docomposition (3.27) is impossible. O

3.5 Irreducibility of polynomials with 2 or 3 terms

First, we consider a rational polynomial with two distinct terms
axPil . a5 fboil Lt ab # 0. (3.28)

Theorem 3.5.1. The polynomial (3.28) is absolutely irreducible in the domain of

rational polynomials if and only if ged{u, — vy, ..., Up — vp) = 1.

Proof. Let ¢ = g, oy = vy ~u, (€ {l,...,m}) and Z = 1+ ca{' ... 2%,
Then azy"* ... gk + bz . abr =az]' .. 2" Z, so we will prove that Z is absolutely
irreducible if and only if ged(a;,.. ., &n,) = 1.

(—) Suppose that ged(ay,...,am) = d where d € Z and d > 1. Then for x4 €
{1,...,m}, we have a, = df, with 3, € Z. Let P := zi' ...z Thus we have
Z =1+cPf = 1-(-c)P¢ ="1—(ec/?P)E = (1 —ec/*P)(1+ec/4P+- - -+ (ec/3P) 1)
where €4 = —1, s0 Z is reducible in the field K{c'/?, ¢).

(«—) Assume ged(aq, ... am) = 1. It is well known that it is possible to find

aw €Q (e {2,...,m}, ve{1,...,m}) such that

(a3} [

Qa1 ... Gy

det =1.

Gm1 o0 O
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If we now apply the m-r-transformation, y, =z ... 25", y, == :1:?“‘ T (,u €

{2,...,m}), then Z becomes 1+cy;. Suppose Z(z; ...%p) = F(z;...25)G(Z1 ... Tr)
where F' and (& are proper rational polynomials with coefficients in some algebraic
extension of K. Observe that z,, = y*" ...y (p €{1,... ,m}) where v, € Z (,u €
{1,...,m}, v € {1,...,m}). Introducing the expressions of F and G in the variables
Yl - - Y, WE CAN aésume that F{yi,...,¥m) and G{yi, ..., ym) are integer polynomi-
als. Since F' and G are proper, the c}egrees of F{y1, ..., ym) and G{y1,. .., ym) must
be > 1. Then the degree of 1 +eyy = Z(y1. .. ym) = Fly1 .. . ym)G(31 .. ym) 18 2 2,

which is a contradiction. Hence Z(x; ... x,,) is absolutely irreducible. O

Now, we consider a rational pelynomial with three distinct terms
aP, + 6P+ cP3,  abe 0. (3.29)

Theorem 3.5.2. The polynomial (3.29) is absolutely irreducible even in the domain
of algebraic polynomials, if Py/ Py, P3/ P, are algebraically independent.

If P;/P,, P;/ P, are not independent and Py, Pa, Py are algebraic PP’s, then (3.29)
is reducible in the éiomain of algebraic polynomials. If 7%/P, P;/P are not inde-
pendent and P, P, P3 are rational PP’s, then (3.29) is reducible in the domain of

rational polynomials.

Proof. The first part of Theorem 3.5.2 follows immediately from Theorem 3.1.8 for
n=2

We are now going to prove the remaining part of Theorem 3.5.2. Assume that
Pg/Pl; P3/ P, are not independent. Let o' := E? b= E, P :=P/P, P,:=PF/P
and Z :=1+a'P; + b'F;. Then obviously, a'd’ # 0, P|, P, are not independent and

aPy +bP, +cP; = aP Z. We will prove that if Py, %, Py are algebraic PP’s, then Z is
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reducible in the domain of algebraic polynomials, and if Py, P, Ps are rational PP’s,
then Z is reducible in the domain of rational polynomials. Put Fj := 2f' ... 2% and
Pi =z .. .zPr. Since P!, P} are not independent, by Proposition 3.1.2, there exist
u,v € Z, not all zero, such that P;” = P}*. If u = 0, we have v # 0 and P;" = 1. Thus
P} =1, so P, = P, which is a contradiction. Then u # 0. Similarly, since P, # Fj,
we have v # 0. We can assume that u > 0 since we can replace » by —u. Since
Py # P5, P{ # P;, 50 u # v. Note that a1 ., #io™ = P[" = B* = o{” .. .zifm.

Then we obtain
va, =uf, (pe{l,....m}, u,veZ~{0}, u>0, usv). (3.30)

Put v, = C:: B’u (pe{l...,m})and Q :=2". 2% So P{=Q* P,=@Q"
and Z =1+ a,’Q“ +¥Q".

First, assume that Py, P} are algebraic PP’s, not all rational, i.e. not all of the
a,, 3, are integers. Since u,v # 0 and u 76.1;, Z has at least two proper linear factors
in @) over some algebraic extension of K.

Now, assume that P{, P} are rational PP’s, i.e. a,,3, € Z (,u € {1,...,m}).
Let v := gaﬁ and v := EE:E(E;,—b) Thus v/,v' € Z~ {0}, « > 0, v/ #
, ged(w',v') = 1 and v'ey, = /i, (,u € {1,...,m}). It follows that u'|a, and
v'| B, (u, €{1,... ,m}), so u'{ged(as, . . oy ) and o' ged{(B1, .. . Oy ). Then
ged{ay, .y Q) =u'kand ged(Fy, . Gn) = v/l where k1 € Z and k> 0. Let A, :=

2u = b (pe{l,...,m}), M :=vged(ay,...,am)

B, =
ng(ali"'!a‘nL) g gcd(ﬁl?"‘1ﬁm)
and N := v'ged(B1, .-, On). Observe that ged(Ay, ..., Ap) = ged(By, ..., Bn) = 1.

,U!

MA, pMAm
B il

. ; ' , ‘
Since xj ver | guem = gWP | gube = gNBL | gNBn

z"rl .. T "o — )

MA, = NB, (pe{l,...,m}). Thus we have
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[V |’k = || ged{, . .., am) = M| =|M|ged(A;,..., An) = ged(M Ay, ..., MAL)

= ged(NBy,...,NBy,) = |N|ged(B),...,By) = |N| = N = «'ged(f,...,0n) =
w'v'l, so | = +k. It follows that ged{ay,...,an)f8, = ku'B, = kv'a, = e, =
+ged(By,. .., Bmia, (g € {1,... ,m}). Hence we can choose u and v in (3.30) as
ged{on, ..., @) and £ged(f, ..., By). respectively. Then v, € Z (u e{l,... }m}.),
so () is a rational PP. Thus the proper linear factors of Z in @ are rational polyno-

mials. Therefore Theorem 3.5.2 is proved. O

3.6 Polynomials with 4 terms. General discussion

If we consider now the general algebraic polynomial with four distinct PP’s,
aP, +bF + Py + dF,, abyd 30, {3.31)
we have to distinguish three cases according as among the quotients
P/ Py, P/ Pi, Py Py, (3.32)

there are 3,2 or 1 independents.

Proposition 3.6.1. If all quotients (3.32) are independent, then the polynomial

{3.31) is always absolutely irreducible in the domain of algebraic polynomials.
Proof. This follows from Theorem 3.1.8 with n = 3. 0

Proposition 3.6.2. If there is only one independent among the quotients (3.32),
the polynomial {3.31) is always reducible in the domain of algebraic polynomials, and
if all quotients {3.32) are rational PP's, (3.31) is reducible even in the domain of

rational polynomials.
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b d
Proof. Leta’ == —, b = =, 4 := P{ = P/P, P,:=P3/P,, P;:= P4/P, and

43

& 1=

Z = 1+a'P/+¥ P+~ P;. Then 0hv1ous]y, a't'y’ # 0, P, P4, P} are not independent,
and aP, +bP++vP;+dP; = aP,Z. We will prove that Z is reducible in the domain of

algebraic polynomials, and if all quotients (3.32} are rational PP’s, then Z is reducible

in the domain of rational polynomials. Put P/ := z® . g2~ P} := P,  zP=
and Pj = z'...z¥. Since P, P, are not independent, we can show as we did

in the proof of Theorem 3.5.2 that there exist e, f € Z ~ {0}, f > 0 such that
ea, = fB, (u € {1,...,m}). Similarly, since P}, Pj are not independent, there exist
g.h € Z~ {0}, h > 0 such that ga, = hy, (p € {1,...,m}). Then fgf, = egor, =
ehy, (1 € {1,...,m}). Dividing by efgh, we have Bu _ O _ (ne{1,...,m}).

eh fh fg
Let u := fh, v:=eh and w:= fg. Then u,v,w € Z ~ {0}, u > 0 and

cufl @~ Un ey 1, ). (3.33)
U v w
Note that u,v,w are distinct since Py, Py, P; are distinct. Put 4, := -C—:f = % =

'“‘ (v € {1,...,m}) 8od Q@ = s¥...&fr. So P{ = Q% P} = Q", P, = Q¥ and
Z =1+dQ*+v¥Q"+ Q. Writing Z = 0, since u,v,w # 0 and are all distinct,
we obtain an algebraic equation of a degree > 3, so Z has af least three proper linear
factors in ¢} over some algebraic extension of K.

Now, assume that P}, P, P} are rational PP’s, i.e. o, B v, € Z (p € {1,. .. ,m})
Since % = ﬁ“ (,u E {1,. m}), as we did in the proof of Theorem 3.5.2, we can
choose u and v in (3.33) as ged(ay, . . -, o) and £ ged (0, . . ., On), respectively. And
since (1 = e (,u € {1,...,m}), we can also choose w in (3.33} as £ ged(71, - . -, ¥m)-
Then &, € Z (,u € {1,...,m}), so (@ is a rational PP. Thus Z is reducible in the

domain of rational polynomials. Therefore Proposition 3.6.2 is proved. O
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From now on, we consider the case that there are exactly two independent ones
among the quotients {3.32).
The condition can be expressed in a simpler way, by introducing the representative
points of Py, Py, Py, ’P‘; in the corresponding m-dimensional space, . Let
P o= , P “.I] Vg Py =2 at, Py=aftl ot

r

and the corresponding representative points in £ be

Xl = (als"'!am)u X‘J . (ﬁl)"':ﬁﬂl)] X3 e — (’Yla"':’ym)} X4 = (5]1"'15?}1)1

respectively. We claim that X;, X3, X3, X are not collinear. Suppose not. Then we

have XlX; // XlX;, XIX; 1/ XlX;, and m // .?I_X—:. So there exist sy,89,83 € R
such that (01 —a1,.. ., B—m) = s1{yi =1, -, Ym—m), (i — a1, -, B — Q) =
52(61 — @1, vy 6 — ) and (9 — @0, Vi — Q) = 83(01 - @y, 0 = ) 1T
follows that B, —a, = 81{7,—~au), Bu—a, = s9(6—a,) and v,—a, = s3(8.—a,) (1 €
{1,...,m}). Since @, B 7.6, € Q (r € {1,...,m}), 51,52, 53 € Q. We have that
PP, = :I:’f'_m o iUfﬁnm_am — xil(?l—‘ll) - :L,Sl('fm_‘:tm) (m?l @ LTI Tem ) = {Pg/Pl)sl
Py Py = i afemen s g0 | glisen) _ (gher | glnomayn - (B Py,
Py Py = g0 | gamrom = gisiren) | geslmmen) gl gmeam)is o (P Py)e
Thus any two quotients in (3.32) are not independent, which contradicts our assump-
tion. Hence Xy, X5, X», X4 are not collinear. Then the corresponding baric diagram
is either a triangle or a quadrangle.

For the case that the corresponding baric diagram is a triangle, we choose the

notation so that X, X5, X3 are three summits of the triangle, and if the point Xj lies

on one of the sides, then the opposite summit is X;.
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In both cases the points X, X», X3 are not collinear.

b d
Let a’ := . b= g, A= o P :=PR/P, P,:=P/P, P,:= P/P and

Z:=1+dP+bP++P;. (3.34)

Obviously, a'b’y’ # 0, and aP, + P, + yP3 + dPy = aP; Z. This amounts to briilging
the point X; into the origin, and the corresponding term in aP), + bF; + 7Py + dF,
becomes 1. We can assume that P}, P, are independent. By an m-1-transformation, we
introduce y; := P| and 4, := P} as new variables. Since P}, P}, P; are not independent,
by Proposition 3.1.2, we have that P§ = P/®P}® = y®y? where o, € Q. Then
Z =1+ay + Yy + 7595

We now show that o, 3 > 0. If the baric polygon of Z is a triangle, this triangle

becomes now, in the a — b-plane:

b‘r

-

0 1 a

Note that the point (o, 3) lies either inside of this triangle or on the hypotenuse,
so o, 3 > 0. And if the baric polygon of Z is a quadrangle, since the inside of
a convex quadrangle goes by an affine transformation always into the inside of the

corresponding quadrangle, the situation is as in the diagram:
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h4

(o, 5)

0 1 a

We see in this case that also o, 8 > 0.

/
o 3

: v
Take 3] := a’y1 and ¢4 = b'yo. Then Z = 1+ y| + v + ey “vy” where ¢ := pravil

Let M be a common denominator of @ and 3, p := Ma and g .= M3. So p,q € Z.
3

We choose M such that p,g > 2. Then putting ¥, =: 2’ and ¥} = y'¥, we obtain

finally Z in the form
Z =1 +a™ 4 y™M orPyT (c#0, pgeLT). (3.35)

If the baric polygon of Z in (3.35) is a triangle, we must have p + g < M. Since
p,q¢ > 0, it follows that p,q < M. Suppose that Z is reducible in the domain of
integer polynomials. If we apply Lemma 3.3.1, replacing there z with 2’, n with M
and k with p, we obtain in the notations of Lemma 3.3.1 that ¢ = 1+3™, ¥, = cy?
and x = 1..Thus if we use the degree in 3 as weight, all conditions of Lemma 3.3.1

M M
are satisfied. It follows that — € Z*. Similarly, — € Z*. Also, we have that the
q

p
M M
factors of Z are polynomials in z’? and %", Since p,g # M, —,— > 2. Introduce
r = z’? and y := y'¢ as new variables. Let m := — and n := —. Then we have to
q

consider the reducible polynomials of the shape
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Z=14+z"+y"+cxy (c£0, m,n>2). (3.36)

3.7 Four term polynomials with a baric triangle

From now on, we assume that ¢ € R or C. Without loss of generality, we
can assume that in (3.36), m > n. Suppose that (3.36) is reducible in the domain of

integer polynomials. Then we have
T +y" Fery+ 1= Flz, )Gz, y), (3.37)

where F(z,y) and G(z,y) are proper integer polynomials. Replacing y with ™, we
obtain

™+ " +ezy™ + 1 = F(z,y™)G(z, ™). (3.38)

First, assume that n > 4, m > 5. If for f =cxy™, A =1, kK = m, we have

n+m§r:=n{m;l]—1? (3.39)

then it follows from Lemma 3.4.1 that (3.38) is impossible.

If m is even, then m = 2k for some k € Z. Since m > 6, k > 3. The condition
(3.39) becomes n +2k < nk —1,ie nlk—1) > 2k + 1. Since n > 4, it suffices to
prove that 4(k — 1) > 2k + 1, i.e. 2k > 5 and this is satisfied since k2 3. On the
other hand, if m is ;)dd, then m = 2k + 1 for some k € Z. Since m > 5, k > 2. The
condition {3.39) becomes n+2k +1 < n(k+1)— 1, ie nk > 2k+2. Sincen >4, it
suffices to prove that 4k > 2k + 2, i.e. 2k > 2 and this is satisfied since & > 3. Thus

(3.38) is impossible. Therefore Z in this case is irreducible.
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Now, we have to consider the remaining cases:
1.m>5 2<n<3,
2.m=4, 2<n <4,
3m=23 2<n<3

4 m=2 n=2

Lemma 3.7.1. The factors of Z in (3.37) cannot be independent of y. In particular,

if 2 <7 <3, then Z must have a linear factor in y.

Proof. Suppose that Z = F(z)G(z,y) where F(x) and G(z,y) are proper integer
polynomials. Then we have ™ 4+ ¢ +czy+1 = F(z)G(z,y), so the degree of G(z, y)
in y is n. Since n 2 2, we can write G(z,y) = Go(z, ¥)i* + G1(z)y + Go(z), where
Go{z,y), G1(z), Go{x) are integer polynomials and the degree of Go{z,y) in yisn—2.
So 2™ +y" + cxy + 1 = F(2)Galz, v)y* + F(z)Gi(z)y + F(2)Go(z). Comparing the
coefficients of ¥ on both sides, we have cz = F(x)Gi{x), which is impossible since

F(z) is proper. O

Moreover, we can similarly show that the factors of Z in (3.37) cannot be inde-

pendent of x.

Case 1. m> 5, 2<n <3.
By Lemma 3.7.1, Z has a linear {actor in y, then there exists a polynomial (z)

such that if we replace y with ¢(z) in Z, we have ¢" + 2™ +czp+1 =0, so

Pt =z —czp—1. (3.40)
Since m > 5, 2 < n < 3, the degree of © is > 2. Denote the highest term of ¢ by
ex? where € = —1. Then p > 2. From (3.40), since np > 2p > p + 1, it follows that

m
np =1m, sop = P If we denote the next term in ¢ by ax?, then the first two terms
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of ¢™ are €"z™ + ne" laz™~P+ Since the first term of —czy is —cezPt!, we have
(n-1l)p+g=p+1,so(n—2)p+q=1. If n=23, then p+q =1, which is impossible
since p > 2. Thus n =2, 80 ¢ =1 and m = 2p.

Writing ¢ as ¢ = ex? + ax + J, we have
©? = (ex? + azx + B)? = 2% + 2eax®T! 4 2e02P + 0?2 + 220z + 52 (3.41)

Since 2p = m > 5, p > 3, so all exponents on the right side of (3.41) are distinct.

Substituting ¢ = exf + a4+ [ into (3.40), we obtain

' = 2% —crp— 1= —z% — cea?*! — caz® — cfiz — 1. (3.42)
Compearing the coefficients of z° on the right sides of (3.41) and (3.42), we have
0% = 1,80 3 # (0. Thus * in (3.41) contains the term 2e82”, but {3.42) does not
contain such term. This is a contradiction. Therefore Z is irreducible.
Case 2. m=4, 2<n<4

First, assume that Z has no linear factors in y. By Lemma 3.7.1, we have m =
n = 4, then Z becomes

Z=x*+y ' +exy+1 (3.43)

and its decomposition into a product of two quadratic factors can be written as
Z=h+h+c)lk+k +e), (3.44)

where h, k are homogeneous quadratic polynomials, i, &; are homogeneous linear

. . 1
polynomials in z,y and ¢, ¢y are constants. It follows that cic; = 1, s0 ¢ = —.
]
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Moreover, we have hk = z* + y*. Note that

o)
o)) G-

= {z —iey)(z + iey)(z — ey){z + ey), (3.45')

where ¢ = e™/* We see that * + y* has no multiple factors, so h and & have no
common factors. Since Z does not have any cubic terms, the cubic terms on the right
in (3.44) are kyh+ hik = 0. Then ki must be divisible by k and #; must be divisible
by k. Since the dimensions of k; and /&, are smaller than the dimensions of k and A,

it follows that h; = k; = 0. The decomposition {3.44) becomes
1 1
Z=(h+c1)(k+c—) = hk+ (E—h+c1k) +1. (3.46)
1 1

Since in any decomposition kk = z* + y?, a fixed linear factor of z* + y* is
combined with one of the three other factors, from (3.45), we obtain three possible
decompositions of z* + y*:

(A) h = (z —iey)(z +iey) = 2° + 192, k= (z — ey)(z + ey) = 2% — iy,

(B) h = (z—iey) (@~ ey) = 2% —iv/2xy ~y? kb =(z+iey)(z T ey) = 22 +iv2zy — 7,

(C) h = (z—iey)(z+ey) = 22+ V2zy + 32, k = (z+iey)(z — ey) = 2 — V2zy + ¥°.
Now, we have to choose ¢,¢; and h, k such that (3.46) holds. Comparing the

quadratic terms of (3.43) and (3.46), we have

1
-C-—h + ak = cxy. (3.47)
1
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Comparing the coeflicients of 2 on both sides of {3.47}, we obtain in all three

2

L1 . . . .
cases the condition — +¢; =0, s0 ¢;° = —1, i.e. ¢ = +i. Comparing the coeflicients

5] i
of ¥* on hoth sides of (3.47), we obtain in Case (A), 2 icp = 0,80 ¢; — 1 =0,
Cq Ci
i.e. c12 = 1. Thus Case (A) is impossible. Similarly, we obtain in Cases (B) and {C)
1
-—+(‘1—0 i.e. — = —¢y.
1
Comparing the coefficients of zy on both sides of {3.47), we obtain in Case (B),

B\/_ +a\/_c:1 = ¢, 80
(o] ;
c= 2\/53'(:1.

We obtain in Case (C), — \/_ —V2¢; = ¢, s0

1

o= ‘—2\/561.

Substituting these values in (3.43) and (3.46), if ¢; = ¢, we have the decompositions

zt +yt — 220y +1 = (2? —iV2zy — o + D)(a® + iv2ry — y? — i) (Case (B)),

ot + oyt = 2V2izy + 1= @* + 2y + i +i){e® — V2zy +y’ — i) (Case (C)).
(3.48)

If ¢y = —1, we have the decompositions

zt 4y —}—2\/_$y+1"(3: —iV2zy — ¥ — Dz +z\/_1:y y* +1)  (Case (B)),

2t + oyt 2V2izy +1 = (2 + V2y + P — (@ — V2zy + ¥+ 1) (Case (C)).
(3.49)

We see that (3.49) is obtained by replacing ¢ with —¢ in (3.48), i.e. {3.49) is the

complex conjugate of (3.48).
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Now, we consider the possibility that Z has a linear factor in y in Case 2 (as well
as in Cases 3 and 4). By Lemma 3.7.1, this linear factor must contain both z and y,
so it can be written as y — H(z), where H(z) is an integer polynomial of degree > 1.

Replacing y with H(z) in (3.36), we obtain
™+ H(z)" + cxH(z)+ 1 =0. (3.50)
Case 2.1. m =4, n = 2. Then (3.36) becomes
Z =1+ z*+ 9%+ ey, (3.51)

and {3.50) becomes z* + H(x)* 4 cxH(z) +1 = 0. It follows that the degree of H(x)

is 2. Let H(z) := az? + Bz + . Then

0=3344—(a$2+ﬁ$+7)2+cx(a$2+ﬁm+7)+1

= (o 4+ Dzt + (208 + ca)z® + (8% + 20y + cB)z® + (287 +ey)z + ¥ + 1.

Comparing the coefficients on both sides, we obtain o + 1 = 2a8 + ca = 32 +
207+ ¢ =208v+cy =79 +1=0. Then a = +i, v = +i. From 2a8 + ca =0, we
have 28 + ¢ = 0, 80 ¢ = —2. Replacing ¢ = =205 in 3% + 20y + ¢ = 0, we obtain
B2 4+ 20y — 282 =0, so /7 = 2ay.

Case (a) o = =i. Then §? = —2, so 3 = ++/2i.
If 3= /2, then ¢ = —2v/2i and H{z) = iz? 4+ +/2iz + i. So we have that

y —iz% — v/2iz — i is a factor of Z in (3.51). Thus we obtain the decomposition
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4 y? — 22y + 1 = (y — ix? — V2iz — )y + ix? — V2iz +0)

= (2% + V2z +iy + 1)(a® — V2z — iy + 1). (3.52)

If 3 = —+/2i, then ¢ = 2v/2i and H(z) = iz® — /2iz + i. So we have that

y — ix? + +/2iz — i is a factor of Z in (3.51). Thus we obtain the decomposition

4+ + 2V 2y + 1 = (y —dz? + V2iz — ) (y +i2* + 2z +9)

= (2% = V2z +iy + 1)(z® + V2z — iy + 1) (3.53)

Case (b) a =1, y=—i. Then 2 =2, s0 8 = +/2.
If § = /2, then ¢ = —2+/2 and H(z) = iz’ + V2z — i. So we have that

y — ix? — v/2z + i is a factor of Z in (3.51). Thus we obtain the decomposition

:r4+y2—2\/§a:y+1z(y-z':.c2—\/§x+i)(y+z'm2—\/§:r—i)

= (a? = /2iz + iy — 1)(z® + V2iz — iy — 1). (3.54)

If # = —+/2, then ¢ = 2¢/2 and H(z) = iz> — 2z — i. So we have that

y —iz® 4+ 2z + 1 is a factor of Z in (3.51). Thus we obtain the decomposition

2t + 2 4+ 2422y + 1 = (y — iz + V22 + i) (y +iz® + V22 — 1)

= (&?+ V2ir 4 iy —1)(z* = ¥ 2iz — iy —1). (3.55)

Case (c) @= —i, y=14. Then @2 = 2, so 3 = £v2.
If 3 = /2, then ¢ = ~24/2 and H(z) = —iz? + v2z +i. So we have that
y+12% —+/2z — i is a factor of Z in (3.51). Thus we obtain the decomposition (3.54).

If 3 = —v/2, then ¢ = 2+/2 and H(z) = —iz® — v2z +i. So we have that
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y+iz?+ 2z ~ i is a factor of Z in (3.51). Thus we obtain the decompositicn (3.55).
Case (d) a =~y =—i, Then §°=~2,s0 8= £2i
If 8= /24, then ¢ = —2v/2i and H(z) = —iz® + v/2iz —i. So we have that
y+ix? — /2iz+1is a factor of Z in (3.51). Thus we obtain the decomposition (3.52).
If 3= —+/2i, then ¢ = 2v/2i and H(z) = —iz? — /2iz — i. So we have that
y+ix® + /2iz+1i is'a factor of Z in {3.51). Thus we obtain the decomposition (3.53).

Case 2.2. m =4, n = 3. Then {3.50) becomes
a* + H(z)’ + ccH(z) +1=0. (3.56)

It follows that the degree of A{z) is < 1. But the degree of H(z) is > 1, then the
degree of H(z) is 1, so the degree of H(x)*+czH{z)+1 is 3. Thus (3.56) is impossible.
Therefore Z in this case is irreducible.

Case 2.3. m =4, n = 4. Then (3.50) becomes
ot + H(z)* + coH{z) +1 = 0.

It follows that the (;legree of H{z) is < 1. But the degree of H(z) i3 > 1, then the
degree of H{r) is 1. Let H{z) := az + 4 where a # 0. Then —a (JT - (lry + g) =
y — axr — 3 is a factor of Z. Thus we can assume in this case that Z has a factor of
the form z — uy — v.

Case 3. m=3, 2<n<3.

Case 3.1. m =3, n = 2. Then (3.50) becomes

2+ H@) +cxH(z) +1=0. (3.57)
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It follows that the degree of H{z) is < 1. But the degree of H(z) is > 1, then the
degree of H(z) is 1, so the degree of H(z)*+cxH (z)+1is 2. Thus (3.57) is impossible.
Therefore Z in this case is irreducible.

Case 3.2. m =3, n =23, Then {3.50) becomes
22+ H(z)® + cxH{z)+1=0.

It follows that the degree of H(z) is < 1. But the degree of H(z) is > 1, then the
degree of H{z) is 1. Similar to Case 2.3, we can also assume in this case that Z has
a factor of the form z —uy —v.

Case 4. m = 2, n = 2. Then (3.36) becomes Z = 1 + z> + y? + czy. By Lemma
3.7.1, we have that any factor of Z must contain both r and y. Since the degrees of
Z in z and y are 2, it follows that the degrees of any factor of Z in z and y are 1.
Thus we can assume in this case that Z has a factor of the form z — vy — v.

We have now three remaining cases to consider in detail :

In any of these cases, we may assume that Z has a factor of the form z — uy — v.

Replacing z in (3.36) with uy — v, we obtain
{(uy + )™ = —y"* — cuy” — cvy — 1. (3.58)

Since v™ = -1, v # 0, so {uy + v)™ has m + 1 distinct terms. But the right side
of {3.58) has at most four terms, it follows that m < 3 and therefore there are no

linear factors in the case m =n = 4.
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Assume now m =n = 3. Then {3.58) becomes

Wyt + 3wty + 3uty + 0% = (uy +v)P = —cup? — vy - L.

Comparing the coefficients on both sides, we obtain

v = -1, 3vtu=—cu, 3uv?=—-cv, V4= -1
Then (—u)® = (—v)® = 1 and ¢ = —3uv. Let ¢ ;= uwv and ¢; ;= —u. So we have
&= (w)? =1, ¢® = (~u)¥ =1, e = —3¢. Note that —v = e €€’

[ €1 (3]

If these relations are satisfied, then we have a linear factor = + €,y + €€, where the
three values of c are —3, —3e™/3, —3e47/3_ For each value of ¢, taking for ¢, its three
possible values, we obtain in each case three distinct linear factors of Z and Z is their
product. The simplest of the three formulas is the following formula, classical in the

theory of the division of circle:

P+l -y =(z+y+ D +v*+1 -1 -y —zy)
= ($+y+ 1)($+ 627ri,’3y+ ed.?ri,/S)(z__,_ 64ﬂi,’3y+82ﬂ£/3)l (359)

2mif3

The other formulas are obtained from (3.59) by replacing there y with ¢*"*/“y and

edmifdy.

Finally, assume m = n = 2. Then (3.58) becomes

W’y + 2uvy + 0¥ = (uy +v)? = (=1 — cw)y® — coy - L.
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Comparing the coefficients on both sides, we obtain

u? = —1—cu, 2uw = —cv, v’ = —1.
Then ¢ = —2u, s0 u? = —1 4 2u?, and u? = 1.
Thus we have foru =1, ¢ = <2,

z2+y2+'1—2:cy=(z—y+é)(z—y—i),
and for u = -1, ¢ = 2,
2y + 1+ 2y =(c+y+i)z+y—i).

Summarizing, we have for m=n =4 or (m =4, n=2), Z in (3.36) is reducible

if and only if :
c=+2v/2, 422, (3.60)

for m =n =3, Z in (3.36) is reducible if and only if
c=—3¢, wheree®=1; (3.61)
and for m =n =2, Z in {3.36) is reducible if and only if

c=+2. (3.62)
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Recall that for m = n = 4, we obtain the decompositions

oyt - 2V 22y + 1 = (2% — iV 2xy — o + D) (2® +iV2zy — ¥ — 1),
zt + oyt — 2V2izy + 1 = (2% + V2xy + 2 + i) (2? - V2ay + 97 - 1),
2+t + 22y + 1= (27 — ivBay — o — i) (2? + Vozy — % + 1),
24 4yt + 2V iy + 1 = (2% + V2 + o = i) (2 — V32zy + ¥ + ).

We now confirm that each factor in the above decompositions is irreducible, i.e.
z? £ iv2zy — y? + i and 2% + /22y 4+ y? £ ¢ are irreducible. Introduce z = iVir
and 7 := v/iy as new variables. Since Z° — /227 + 72 + 1 is in the form (3.36) where
m=n =2 and ¢ = —/32, it follows that #° — /227 + #* + 1 is irreducible. Then
2% +iv2xy — y? +i = i(3* — /25§ + 7> + 1) is irreducible. The remaining factors are

proved irreducible similarly.

Returning to the general form of the polynomial Z in (3.34), we have completed
now the discussion of the case that P/ and P, in (3.34) are independent and Pj =
P{&Pg’g, a,3 >0, a+ 8 < 1, where the inequalities on & and [ signify that the baric
polyhedron of Z is a triangle.

We bave found that Z in (3.36) can be only reducible if

that 1s

1 1 . .
because &« = — and 7 = —. For tbe coefficients a',¥,~', we obtain the condition
n

!

v = ca’®b? = ca™/"H/", where the values of ¢ corresponding to the four cases
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of m,n are given by (3.60) - (3.62). If all these conditions are satisfied, then Z is
reducible in the don’1a1n of algebraic polynomials.

It we consider the irreducibility of Z in the domain of rational polynomials, we
have to add the condition that P;'/™ and P,'/™ are rational since & = (a'P/}*/™ and

y = (VP

3.8 Four term polynomials with a baric plane quadrangle

We consider now a general four term polynomial with a baric plane quadrangle. In
this case, we start with some reductions of the problem. Assume that one of the terms
is 1. Then it can be written as 1 + aP; + bP, + vPy, where P, and P correspond to
the two summits of the baric quadrangle adjacent to the summit at the origin. Since
Py, P, Ps are not independent, by Proposition 3.1.2, we have that P; = P2 PP where
a, 3 € Q. Introducing £ := o P, and 7 ;= bP; as new variables, so our polynomial can
be written as 14 £ + 7+ c£27°, where ¢ # 0. The following diagram shows the baric

quadrangle of 1 + £ + 7 + c£%97.
b4

(a, )

0 1 a
We see from the diagram that a, 3 > 0 and a+3 > 1. Let n be a common denominator

of @ and g3, p := na and ¢ := n3. So p,q € ZT. We choose n such that p,q > 2.
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Putting £ =: 2" and 1 =: y*, we obtain
Z=1+a2"+y"+cxPy? {(c#0, pgcZ*, p+qg>mn). (3.63)

We investigate the case that Z is reducible in the domain of algebraic polynomials.
We can choose n such that Z becomes reducible in the domain of rational and even
integer polynomials. In fact, we let n be a common denominator of e, 4 and all
exponents in the factors of Z. Then we can restrict ourselves to the consideration of
the reducibility of (3.63) in the domain of integer polynomials.

First, assumne that p = n or ¢ = n. Without loss of generality, assume p = n.
Then (3.63) becomes

Z=z"(1+e?) + (1+y").

1+ 4y A
—- 4 and choose n such that K is not a constant. Since =
1+ cy? 1+ cy?

" — R, it follows that all » roots of the equation, Z = 0, with respect to z have the

Let R =

form eR'/™ for a fixed choice of RY/" and an arbitrary n-th root of unity, €. Suppose
that the polynomial F*(«, ¢} is a factor of Z of degree m < n with respect to z. Let

F*o= Fm(y)mm + Fm—l(y)xm_l SE S0 Fl(y)w e F“(y) and

Fr R _ F F,
— 274 l(y):rml_,_.___,_ 1{y) + o{y)

Fou(y) Frn(y) Ful@). | Fuly)

(3.64)

Then F is also a factor of Z of degree m with respect to .- Thus all roots of the

equation, F = 0, with respect to z also have the form eRV™, so we can write

F=(x—R"™) .. (-, R/™), (3.65)

where €,...,¢, are n-th roots of unity. Comparing the coefficients of z° on the
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Foly) _

right sides of (3.64) and (3.65), we obtain = (=1)"¢; ... €, B™™, then R™" =
Fn(y)
(=12l 50 R™™ is a rational [unction in y. Put ¢ := ged{(r,n) and
€1 - emFr(y)

§ 1= g Since m < n, n ¥ g. Then s > 1. There exist a,b € Z such that
an — bm = g. It follows that RY/* = R#/» = Rlan-bm)/n — Ra-bmin _ pa(pminy—b

Since R and R™™ are rational functions in y, RY® is a rational function in y, and we

can write RY* = %y)) where f and g are relatively prime polynomials in y. Thus
gy

fs — —_ 1 + yn Ty 8 q 3 1

= R= so (14 y™)¢° = —{1+ ey?)f°. Suppose f is not a constant.

gs - 1 + qu !
Since s > 1, f* has the multiple factors which cannot occur in {1+ y")g®* as f and g
are relatively pritne and 14 y" has no nmitiple factors. Then f must be a constant.

&
Similarly, ¢ must be a constant, so B = = is a constant, which is a contradiction.

Hence Z does not have a factor of degree fn < nin z for p=n.

Assume now that Z has a factor of degree n in z, say F(z,y). Suppose Z =
F(z,y)G(z,y). Then 2" (1+cy®)+{(1+y") = F{z,y)G(z, y), so we can write F(z,y) =
F.(y)z™ + Foly) and G(z,y) := Gly). Thus (1 +cy?) + (1 + y*) = (Fn(y):r”‘ +
Fo(y)Gly) = Fa(y)G{y)z™ + Fo(y)G(y). Comparing the coefficients on both sides,
we obtain 1+ cy? = F,(y)G(y) and 1 + y* = Fy(y)Gly), so 1 + cy? and 1 + 4" have

common factors.

Write ¢ := e ™ with £ € €. Notethat 1 + ey =1+ e $™y? = 1 + (e‘f“’:/‘i‘y)q =

g—1 g—1 g—1
(e—-ffr'i.,/qy _ 6[25+1)n’i;’q) i (e—f'm:fq)q (y b a e(E+2n+l)7qu) L (y _ e(5+2~+1)m'/q)
n—1
and 1+y" = H (y—e@)‘“)”if”). Since 1+cy? and 1+ y® have common factors, there
A=0

exist K € {0,...,¢—1} and A € {0,...,n—1} such that elE+2e+limi/a = (Zr+imi/n W

2 1 2 1 2 | 22 +1
have that £+ ';+ i = @22+ Um (mod 27}, so r2nt =2t (mod 2).
n q 7
2 1 2h+1 2A+1
ThenE+;+ = ,: + 2r for some r € Z. Thus{z%g+2rq~—2n—l,

and ¢ = exp(l — (2A + 1)q/n)7i.
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From now on, assume that p # n and g # n.

We will show that if p < n and ¢ < n, then Z in (3.63) is always irreducible.
Suppose that Z is reducible. If we apply Lemma 3.3.1, replacing therc z with z and
k with p, we obtain in the notations of Lemma 3.3.1 that ¢ =1+ %", ¥4 = cy? and
¥ = 1. Thus if we use the degree in y as weight, all conditions of Lemma 3.3.1 arp
satisfied. It follows that n is divisible by p. And similarly, n is divisible by g. Then
E,E € Z*. Since p,q # n, E,E > 2. Sop,gq < E. Thus p + g < n, which is a
P q —— 2
contradiction.

From now on, we assume that p > n and ¢ # n since we can interchange r with
y. Observe that if ¢ < n, then the form (3.63) can be somewhat simplified. In this
case, we can apply Lemma 3.3.1, replacing there z with z and n with p, we obtain in
the notations of Lemma 3.3.1 that ¢ =1+ ¢*, 1) = 1 and x = cy?. Thus if we use
the degree in y as weight, all conditions of Lemma 3.3.1 are satisfied. It follows that

p is divisible by n. Then p = nr for some » € Z*. Since p # n, r > 1. By changing

the notations, we can reduce (3.63) to the form
Z=14+a+y"+eczPy® (c#0, 1<g<mn, p>1). {3.66)

Lemma 3.8.1. If Z in (3.66) is reducible, then the factors of Z cannot be independent

of z.

Proof. Suppose that Z = F(y)G(z,y) where F{y) and G(z,y) are proper integer
polynomials. Then we have 1+z +y™ 4 czPy? = F(y)G{z,y), so the degree of G{z,y)
in z is'p. Since p > 2, we can write G(z,y) = Ga{z,y)2? + G1(y)z + Goly), where
Gq(z, y), G1(y), Goly) are integer polynomials and the degree of Gy(z,y) in z is p— 2.

So 1+ z+y"+ cxPy? = F(y)Galz,y)z? + F(y)Gi(y)z + F(y)Goly). Comparing the
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coefficients of z on both sides, we have 1 = F(y)G1(y), which is impossible since F(y)

is proper. c

We will show that in the cases p = 2 and p = 3 (3.66) is always irreducible. First,

consider the case p = 2, then (3.66) becomes
Z =1+ z+ y* A4E55",
Suppose that Z is reducible. By Lemma 3.8.1, we have the decompaosition

14+ z4+y" + eyt = (F1 (y)a + Fo(y)) (G1 (y)x + Gﬁ(y))

=k (y)Gl(y)$2 i (F1(y)G0(y) Y Fo(y)Gl (y))m + FU(Q)GO(EJ);

where Fy(y),G1(y) # 0. Comparing the coefficients on both sides, we obtain

o = Fiy)Gi(w), (3.67)
1 = F(y)Goly) + Foly)Gr{y), (3.68)
1+y" = Fo(y)Go(y)- (3.69)

By (3.69), since Fy(y) and Go(y) have coefficients in aficld, we may assume that both
are monic. Write Fy(y) = y + 413071 + oo+ 99y + 7. If 7 '= 0, then y| Fo(y).
By (3.69), it follows that y| {1+ ¢™), which is impossible. . Thus vy # 0. And write
Goly) = y® + b1y + - + &1y + . Also, by (3.69), it follows thal dg # 0.
By (3.67), we can write Fi(y) = ay”* and Gi(y)} = Oy® where o, # 0, aff = ¢,

fi,91 2 0 and f; + g1 = ¢. Then (3.68) becomes

1 = ay" Goly) + By Foly). (3.70)
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If fi,41 > 0, then the right side of (3.70) is divisible by y, so 3| 1, which is impossible.
Thus fi =0 or ¢1 =‘D.

Case 1. fy = 0. Then ¢, = g, Fi(y) = a and Gi(y} = Gy?. Comparing the degrees
of (3.68), we have gy = fo + ¢. Comparing the degrees of (3.69), we have n = f; + g0,

son = fo+(fo+¢) =qg+2f Sincen > g, it follows that fo > 0. By {3.68), we have
1 = aGoly) + By*Foly).

Comparing the coeflicients of ¥ on both sides, we obtain 0 = o+ 3, so a = —3. Then
1 1 . 1
Goly) = = (1 - By" Foly)) = —(1 + ay’Foly)). Replacing Go(y) = —(1 + oy*Fuly))
1
in (3.69), we obtain 1 4 y+2/o — aFg(y)(]_ + ay? Fo(y)), so

o + ay'}'+2f0’= Fﬂ(y) AF ayq(Fo(y))Z

= (yP + vy '+ Y+ )

+ay? [y + (vmr + Vgm0

+ (V=2 F Vo=Vt T Vho=2)Y 00
+ (Yot Vp-n F Y22t ’Yn)yf”

+ ot (v i )y + (v + ey + %)

Comparing the coeflicients of y4+%/¢~! on both sides, we obtain 0 = a(vf,~1 + ¥-1)-
Since @ # 0, v/,—1 = 0. Comparing the coefficients of 22/~ on both sides, we
obtain 0= a(¥j -2+ Yfe-1Vfo—1 + Yjo—2). Since o # 0 and vz,—1 = 0, 75,2 = 0. Also,
by comparing the coefficients of ye+2/e=3 . y9+2fo—fo+l on both sides, we obtain
Yioes = = Yfo—si+1 = 0. Finally, Comparing the coefficients of y9+2fo-/o = yath
on both sides, we obtain 0 = a{vo + V171 + Vp-272 + - -+ + 7o) Since a # 0 and

Yfo-1 = --- =7 =0, 70 = 0. This is a contradiction.
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Case 2. ;1 = 0. Then f; = ¢, Fi(y) = ay? and G,(y) = 3. Comparing the degrees
of (3.68}, we have g+ gg = fo. Comparing the degrees of (3.69), we have n = [, -+ go,

son = (q+ go) + go = g+ 2go. Since n > ¢, it follows that gy > 0. By (3.68), we have

1 = ay?Galy) + BFoly).

Comparing the coefficients of /® on both sides, we obtain 0 = a+/, so0 3 = —a. Then

Foly) = }3(1 — o1 Go(y)) = %(1 1 ByiGo(y)). Replacing Fy(y) = é—(l T By Go(y))

in (3.69), we obtain 1 + y9*?% = %(1 + By Go(y)) Goly), so

B+ By = Goly) + By" (Galy))”
= (Y% + Ggpa L o+ 51y + o)
+ By + (Fgoer + Byt )y
+ (6go-2 + Bgo_10g9—1 + Ogoms )y %2
+ o (G0 + 8gy-101 + Ogy—28s + -+ + S )y*

oo+ (8380 + 6181 + boba2)y” + (160 + body )y + 531

Comparing the coefficients of 272%™ on both sides, we obtain 0 = (641 + 4-1)-
Since 8 # 0, dg,1 = 0. Comparing the coefficients of ¥#t%~2 on both sides, we
obtain 0 = §(6g,—2 + 04-10g9~1 + 9go—2). Since 3 # 0 and 84—y =0, §gooe = 0. Also,
by comparing the coefficients of yZt2¢0=8, . ydt290-90+1 on both sides, we obtain
dgo~3 = **+ = go_gnfﬂ = 0. Finally, Comparing the coefficients of 32909 = ya+
on both sides, we obtain 0 = F(Jy + 0g9-101 + gy—202 + - -+ + &). Since J # 0 and
Ogo—1 = +++ =01 =0, 85 = 0. This is a contradiction.

Hence for the case p = 2, (3.66) is irreducible.



Now, consider the case p = 3, then (3.66) becomes
4= 1+:t:+y”+cm3yq.
Suppose that Z is reducible. By Lemma 3.8.1, we have the decomposition

1+z+y" + 2’y = (F(y)z + Fw){Ga(y)2® + Gi(y)z + Goly))
= R ()Ga(y)z® + (F{)Gi(y) + o (y)Ga(y)) 2?

+ (F)Go(y) + Folw)G1(W))z + Fo(y)Goly),

where F{(y), G2(y) # 0. Comparing the coefficients on both sides, we obtain

cy? = Fi{y)Ga(y),
0 = Fi(y)G1(y) + Foly)Ga(v),
1= Fy{y)Goly) + Foly)Gi(y),

1+ 4" = Fy(y)Goly).
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(3.71)
(3.72)
(3.73)

(3.74)

By (3.74), since Fo(y) and Gg(y) have cocflicients in a field, we may assume that both

are monic. Write Fp(y) = 47 + v 1yt + - + 7y + . U vg = 0, then y| Fo(y).

By (3.74), it follows that y| {1 + y"), which is impossible. Thus v # 0. By (3.71),

we can write Fi(y) = oyt and Ga(y) = fy% where o, 8 # 0, o = ¢, f1,92 > 0 and

fi + g2 = q. Then (3.72) becomes

0= oy Gi{y) + By Foly).

(3.75)
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If f1 > g2 > 0, dividing (3.75) by ¥, we have
0 = ay/' "Gy (y) + BF(y).

Then y| Fo(y). By (3.74), it follows that y| (1 + ¥*), which is impossible.

If go > fi > 0, dividing (3.75) by y/t, we have
0= aGily) +By™ " Fo(y).

Then y| G1(y). By (3.73), it follows that y| (1 — F1(y)Go(y)). Since f, > 0, y| Fi(y).
Thus y| 1, which is impossible.

We have now three remaining cases to consider:

f1:92=%; hH=0; g=0.

Case 1. fi =g, = % Then F;(y) = ay¥? and G3(y) = 8y¥2. Denote the degrees of
Goly) and G1(y) by gq and g;, respectively. Comparing the degrees of (3.72), we have
g+gl = fo+ %, so g1 = fo- Comparing the degrees of (3.73), we have g +g90 = fot a1,

2 2

soqgo=fot+g— % =2fg— g Comparing the degrees of (3.74), we have n = fq + go,

son= fy+ (2_}’ — g) =3fo— g Since n > g, it follows that f, > g By (3.72), we

have 0 = ay?2G1(y) + By*? Fy(y). Then Gi{y) = —gFu(y). By (3.73), we have

5 (Rw))*

1 =ay??Gy(y) — =

oy o(¥) o

Comparing the coefficients of 32 on both sides, we obtain 0 = o — %, S0 o = g.
1 [7‘ 2 1 2 :

Then Goly) = oy (1 + E(Fo(y)) ) = ol (1 + a(Foly)) ) Replacing Go(y) =

! Fyly) (1+0‘(F0(?J))2);

(};y‘?fg

e (1+0:(F0(y))2) in (3.74), we obtain 1 +y*0-9/2 =
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S0

C!qu + ay&fo = Fy(y) (1 + a«(Fo(y))z) (3.76)

If y| Foly), by (3.74), it follows that y| (1 + 3™}, which is impossible. Then y} Fo(y).
By (3.76), it follows that y| (1 +a(F0(y))2). Note that 1+ a(Fa(y))’ = 1+ [y +
(Vo1 F o= DU ™ o (Yot Yt Whom1 T 1628072+ (Yoo 1 + 75022+
oY 4+ (o M+ Y)Y+ (v + yom )y + 3. Thus 14§ =0,

Then (3.76) becomes

ay?? + oy = (Yot v T+ Y+ W)a [y

+ (’on—l 4 ’on—l)ygfo_l b (74"0——2 5 Yio—17Tfe—1 + ’Yfg—?)yzfﬂ_?

oo o Y1Vt Yrem2r2e + o+ Y)Y
+ oo (% 1+ 0727 + (e + vom)y, so
Y 4yt = (yP fyp ! Tty Y) [y%
A+ (Ve F Ve )Y+ (o2 + Vo1 Vo1 + Y02y

+ oot (o Y+ Ym2da o 0

+ -+ (v Fam +0%)Y + (3 + vom)y].

Comparing the coefficients of 3*/°~1 on both sides, we obtain 0 = (vg—1 + Vjo-1) +
Y4o-1- Then 4, = 0. Comparing the coefficients of 372 on both sides, we obtain
0= (Vo2 t Vo171 + Vo 2)Ffo-1 (Vso- 1tV o~ 1)+ 7s0-2- Since yg-1 = 0, yo—2 = 0.
Also, by comparing the coefficients of y3/~3, ...,y ~%+! on both sides, we obtain
Yfous = " = Yfo_fos1 = 0. Finally, Comparing the coefficients of y*/=/ = 32/ on
hoth sides, we obtain 0 = (Yo+v— 1M1 +Y—2T2+ - +Y0)+F 7 (Vie—1 +¥o—1) +70-

Since yg—1 =+ =7 =0, ¥ = 0. This is a contradiction.
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Case 2. fy = 0. Then ¢» = q, Fi{y) = a and Ga(y) = By?. Denote the degrees
of Goly) and G1(y) by go and g, respectively. Comparing the degrees of {3.72),
we have g = fo + q. Comparing the degrees of (3.73), we have gy = fo + 171, s0
go = fo+ (fo+ q) = 2fs + q. Comparing the degrees of (3.74), we have n = fy + go,
son=fo+ (2fo+¢) = 3fs +g. Since n > g, it follows that fy > 0. By (3.72), we

have 0 = aGy(y) + By?Fo(y). Then Gi(y) = —quFg(y). By (3.73), we have

1 = aGoly) - qu (Folw))™.

Comparing the coefficients of % on both sides, we obtain 0 = a — g, S0 a = g
a Q

Then Go(y) = é(l + qu(Fg(y))2> = é(l + ayq(Fg(y))z). Replacing Go(y) =
(14 @yt (Fo(e))?) n (3.74), we obtain 1+ %04 = - Fy(y)(1+ @y (Ro(y))’). s0
a+ ayafnw = F, (y) + aquo(y) (Fo(y))2
= (" + Y1y + 1y ) + @+ vy
ot YA YO HT A (Vgmi Y p-1) Y
+ (Vjg2 T Yo=1po—-1 + Vpo—2)y o2

+ o+ (Yot Vo1 V022 + o+ MY

F o+ (o +mm + oyt + (e + o)y + ’Yg]

Comparing the coefficients of 3° on both sides, we obtain a = 4. Then
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ay®Pore = (" oy T )+ oy (" + ey

+o oy ) (B 4 (Yoo + Y-y
+ (Vio-2 + Vsom1 Vo1 + V2?07
+ "+ (0 F Va1 + Ypm27e o F Y0y

+o A (2% 7)Y (v + o)y + ) (3.77)

It follows that 9] (370 + vy - -+ 71y). Thusg < foand y,; =+ =y = 0.

Dividing (3.77) by g%, we have

ay?).fu — (yfo-q 4 ,on&lyfo—l~q ==\ %yq-q) A a(yfo + ,on_ly.fo—l

+ oy + 0 [V + (-1 + Y-yt

+ (Vo2 F Yho-1Vho-1 T mvz)y%'z

+oo ot (0 YoM T Yom2da t 0+ Y)Y

+o (et + )8+ (nve + )y + %)

Comparing the coefficients of ¥*°~! on both sides, we obtain 0 = a((vf—1+vp-1) +

3/o=2 on both sides, we

Ygo—1). Since a # 0, yzo_1 = 0. Comparing the coefficients of y
obtain 0 = a((Yje=2+tY -1V 01+ Vom2) F Yo~ (Vro=1FY fo—1)FY o2} - Since a # 0 and
Yio-1 = 0, 7,—2 = 0. Also, by comparing the coeflicients of 33f0-3 . y3fo—fot2 gn
both sides, we obtain yy,05 = -« =75 541 = 0. Finally, Comparing the coeflicients
of y#o=fo = 125 on both sides, we obtain 0 = a ({70 + V-1 M + Y—2¥o + - +70) +
s {1 F Y1) +’m). Since & # 0 and v,y =+ =% =0, 79 = 0. Thisis a

contradiction.
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Case 3. g = 0. Then f; = g, Fi(y) = ay? and Gy(y) = 3. By (3.72), we have
0 = ay'Gy(y) + BFo(y). Then Fy(y) = w%y"Gl(y). Thus y% Fo{y). By (3.74), it
follows that 47| (1 + %"}, which is impossible.

Hence for the case p = 3, (3.66) is irreducible.
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