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CHAPTER I

INTRODUCTION

1.1 Introduction

In reality, reservoir performance /prediction always deals with a lot of
uncertainties involving internal variables such as fluids and rock properties and the
heterogeneity of the reservoii,-and exter'nal variables such as oil price, operating cost,
and capital expenditure..Specifically, the internal variable, namely, heterogeneity is
one of the most impostant measures for geologists, geophysicists and reservoir
engineers to quantify in orderto generaté—dh acceptable reservoir model for predicting
the reservoir performance.The main poini‘of-this work 1s to assess uncertainties in the
simulation results when'the reservoir has a different degree of heterogeneity.

The variable that‘has highest level ;,of' heterogeneity is permeability. It is an
important parameter that affects flow and d_i-si)l@cement processes due to its variation.
Therefore, in reservoir analysis, the measuréé_o_’_f_ heterogeneity are almost exclusively
focused and applied to permeability data because permeability variations are typically
much larger than variations of other properties. Thus, changes in permeability can
easily dominate the influence of variations in other properties. The most common
method that has been used t9, measure suchgomplexity is Dykstra-Parsons coefficient.
Not only can it help.engineers t0 quantify and measure the heterogeneity but also help
them to understand the performance_ of the natural drive mechanism.

Before "performing the, reservoir ‘simulation, it Is necessary. to quantify the
distribution of permeability at the grid cells. Therefore, Geostatistical methods are
frequently used to do the task because they offer the advantages of linking statistical
methods with the position of variables in space and direction compared with other
methods which do not.

After generating realizations with different permeability distributions,
reservoir simulation is performed to study the effect of heterogeneity on reservoir

performance. In this study, we are interested in the effect of heterogeneity on oil



2
recovery based on natural depletion. The uncertainties associated with the results
obtained from this recovery schemes will be assessed.

1.2 Thesis Outline

The thesis report consists of six chapters and the outlines of each chapter are
listed below.

Chapter Il reviews literature that are involved with stochastic techniques by
mentioning the advantages, drawback and application of each algorithm such as
Kriging and Sequential Gaussian Simuration (SGS). In addition, it also mentions the
application of Dykstra-Parsons«coeificient (\Vpp).

Chapter 111 presents theories and "concepts related with this study.

Chapter 1V shows hew to prepéré and obtain the extra seven models and
compares statistical resulis of aII-modeI;s varied uncertainties in spatial continuity
models and random number seed of SGS.In addition, it mentions how to determine
Vpp Vvalue from permeability di-str-ibution}:,;-:t Finally, this chapter also examines the
simulation studies from the SGS teéhnique at‘dd;i.tﬁferent degrees of heterogeneity.

Chapter V' examines and compar_?fg;the simulation results in reservoir
performance based onispecific abandonment times at different degrees of Vpp.

Chapter VI prb;/ides conclusions of the study and recommendations for future

work.



CHAPTER Il

LITERATURE REVIEW

2.1 Literature Review

An accurate understanding of the /description of a reservoir is required to
improve production forecasis. Due to, the lack~of information between wells, a
geostatistical model is used-to generate equiprobabile lithofacies simulations between
wells. It has also been widelytsed in the petroleum Industry because it can integrate
geological, geophysicalyandspetrophysical data for building a more realistic reservoir
model. Considering the gomplex behaviojr:(.)f the spatial distributions of petrophysical
variables and the limited mnumber of ' samples used in estimation, a smooth
deterministic model, such as the one derived from Kriging, may not yield a realistic
level of heterogeneity. To represent stich heterogeneity, stochastic modeling based on
conditional simulation has been increasingly used in recent years, Journel (1990) and
Srivastava (1994). Using these techniques, a variable value at a location in space is
determined by first @btaining the probability distribution- at that location, and then
drawing a number™(i.e. simulated value) at random from this distribution. The
simulated values do not only reproduce statistical and-spatial patterns of the input
data, but also honor this data_at the sampling locations. Unlike Kriging, stochastic
modeling provides a range of equi-prabable realizations or:madels of reservoir, each
comprising more realistic levels of heterogeneity. Such multiple models provide
valuable linfermation to assess the uncertainty, and hence-are of considerable help in
reservoir’ management, Journel (1994). Therefore, the conditional simulation is
considered more appropriate for the simulation of the reservoir data.

Poquioma, P., and Mohan Kelkar (1994) presented the results for applying
geostatistical techniques (Ordinary Kriging and conditional simulation) to generate
distribution of permeability in order to improve the simulation of the fluid flow. The
comparison indicates that conditional simulation techniques can be effectively used to
represent the variability of the reservoir properties.
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Paul J. Hicks studied the ability of three-dimensional fluid flow simulations
using 3-D porosity distributions generated from unconditional sequential Gaussian
simulation (SGS) to match the result of fluid flow simulations using the experimental
3-D porosity distribution. He mentioned that the SGS technique has an advantage
over Krigging and other linear interpolation techniques because they maintain the
spatial variability of the property being simulated. Any number of possibilities for the
spatial distribution of permeability, or other unknown properties, can be generated as
opposed to Kriging which generates one estimation.

Al-Khalifa (2006) studied and estimated-nydrocarbon in-place using SGS with
different uncertainties of the inpui data such as core data, facies based and well logs.
There were two stochasticsporesity models built using the same input data, but one
model was based on a cenceptual model and the other was not. The results showed
that the use of conceptualdmadels has given higher oil and gas estimates. He pointed
out that the uniqueness of stoghastic modeling methods has the ability to create many
equi-probable realizations from the same geological data.

Kirk B. Hird investigated the effe_ct_f of areal permeability heterogeneities on
well performance and explained that stocf‘\_}a"stig: simulation techniques can generate
equally probable permeability realizationsr\l/v'hi;:h result in widely varying simulated
well performance under normal waterflood cdr-\ai-tions.

Baker, R.O., and Moore, R.G (1997) mentioned the heterogeneity is a key
factor in predicting waterflood or EOR recovery. It is not possible to make accurate
performance predictions for EOR or waterflood schemes without adequate reservoir
characterization.

Jerry Lucia, F., and Graham E. Fogg used conditional simulation to simulate
permeability- distribution-and-explainéd |that realization having 40w permeability has
low recovery and production efficiency.

Sahni, A., and Dehghani K (2005) focused a workflow for benchmarking
reservoir model heterogeneity from production logs and core data by varying the level
of heterogeneity using Dykstra Parsons coefficient (Vpp). Vpp determined from
production logs was used to estimate flow near the well and to calibrate a simulation
model while Vpp measured from core data was used to quantify permeability

heterogeneity trends. He also investigated the workflow how a history matched
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simulation model could be used to predict displacement performance at any given
heterogeneity level.

Jakobsen, S.R (1994) applied Dykstra Parsons coefficient to reduce the error
of relative permeability data obtained on heterogeneous cores. He demonstrated that
the results of displacement efficiency, wettability and reservoir performance can be
improved if relative permeability is correct. The Johnson-Bossler-Nauman (JBN)
technique is a conventional method that is only applicable to homogeneous core
material. As a result, flow behavior investigated by JBN method to derive relative
permeability curves is incorreet. The true eurve must be taken into account for the
impact of heterogeneities depending on Vpp. For example, the deviation of relative
permeability decreases withedecreasing Vpe.

Karn B., Jakarrin A- and Agjana L. (2005) determined sets of permeability data
with Vpp values of 0.1,.0.2/and 0.9. by using Vpp = 1-€°. When Vpp was first
selected, standard deViation/(SD) of its; model could be calculated and then
permeability of 100 wells was randomly‘—generated by the Monte Carlo simulation
where permeability distripution trends of e_icﬁdata set was assumed in increasing the
value from Northwest to Seutheast in Whi_,(:_:_-l"; 1t_)lf_]e well locations were also randomly
selected. They used SGS to generate mp]i_ip-_le maps for reducing uncertainty in
performance prediction. The results showed 't_h—ét the higher heterogeneity, the lower
oil recovery it will be./Moreover, they mentioned that If Ve value is greater than 0.5,
it should not be used to simulate as a homogeneous reservoir because it has a wider

range of standard deviation.which has more,effect on oil recovery factor.



CHAPTER 111

THEORIES AND CONCEPTS

Geostatistical techniques have been used extensively in the mining industry
since the early 1950’s. It was initially developed to evaluate the ore reserves in the
mining industry.

In the petroleum industry, this technitue Was-introduced in the 1970’s and has
been widely applied and develoeped to predict the reservoir properties because it can
generate multiple realizations” that ‘can account for the uncertainty and spatial
variability of the key rgservoir parameters such as poresity or permeability. Spatial
continuity or variation is" modeled”in geostatistics by the variogram. The relative
degree of continuity or spatial correlation between different directions is one of the
most important aspects of the spatial continuity. model. In this approach, the
unsampled values are implicitly assumed to be correlated with each other. To study
such a correlation, structural analysis. is fir;st,.used to quantify; the predictions at
unsampled locations are then made using Kriging technique or it can be simulated

using conditional simulations.
3.1 Structural Analysis

Structural amalysis, wariogram [or correlogram is used to measure and study
spatial variability or continuity of & particular variable and also, to quantify spatial
correlation of datayas, a/ function of distance and direction. It'can be applied to
determine cross-continuity of different variables at different locations. The variogram
is calculated from the data as the variance of difference between data separated a
certain distance apart. When the data is bigger in differenc, the variance is larger. The
most important factor in estimating the variogram is to use the information to estimate
variable values at unsampled locations. The first step in performing the spatial
analysis is to estimate the value of the variograms using the well data. These

variograms are usually mentioned as the conditioning or experimental variograms.
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Estimating the conditioning variograms in practice requires great care and caution due
to some problems such as lack of data pairs at certain lag distance, e.g., due to well
spacing, selective well location, and biased sampling. The variogram solution is

presented below

/0= o lex)-zb ] 1)

where  y(h) = variogram value at distanee'h
h = lag distanee
Z(xi) = valueof sample located at pointx;

Z(xi+h) = valué of ample located at point X+ h

N(h) = total'number of samplé pairs for the lag interval h

The variogram' isgan impertant input into stochastic modeling. Proper
variogram modeling is akey: factor to get arealistic reservoir characterization model.
It is a mathematical tool that quantifies spati'jal correlation and continuity of a variable.
Equation 3.1 defines that any function of two random variables located h distance
apart is independent -@f the location and is a functicn ef-only the distance and the
direction between the-two locations. In addition, it Is a plot of the average squared
difference in value between data points against their separation distance. It is
computed as half the average.squared difference between, the components of every
data pair. The_geostatistical ‘'model states that ‘nearby’ sample points have more
influence on the result of simulation than those=far apart; in faet; if the separation
between: two, sample points is heyond.the range of influence, they have no spatial
correlation. The variogram model that is normally used to study the spatial variability
can be classified into 2 categories which are models with a sill and without as
presented in Equations 3.2 to 3.5. Models with a sill, or transition models, are used
when the variogram reaches a constant value after a certain lag distance including the
spherical, exponential, Gaussian, and hole effect model. Usually, the sill is close to

the variance. And those without a sill include the power, nugget effect and linear
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models. Some of the variogram models that have commonly seen are sketched in
Figures 3.1 and 3.2.

(i) Spherical Model

where a =range
Co

E (3.4)
where @ >a

Vana i plot

@ﬂﬂ’ﬂ'ﬂﬂﬂi'ﬂﬂﬂﬂ‘i

‘Range

Exponential model

Spherical model

B

40
<«——— Gaussian model
v
L e ecmeeeop- TRREEEEEE
. I Nugget
00_ Ly
| —T—T— T T
0. 400, 800. 1200. 1600. 2000.

Distance

Figure 3.1 : VVariogram models with a sill



(iv) Powel Model
y(A)=C, +W -R* where W = slope at origin (3.5)

Variogram plot
mmmmmm

Figure 3.2 : Power variogram models
without a sill
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3.2 Kriging Concepts

The concept of Kriging assumes that the estimated value of the variable is
linearly related to the nearby samples by using the minimum variance unbiased
estimation technique to estimate the weights. That is to say, the estimated value is
unbiased and will result in minimum error variance. One of the disadvantages of
Kriging technique is that it can produee anly one reservoir model. Selecting only one
reservoir model could lead to errors in the prediction of the production and not allow
an assessment of uncertainty in prediction:"Normally, we would expect larger
uncertainty in areas that are farther away from the control data.

Typically, there_are several Kriging procedures to estimate the sampled
variable, for example, “Simple /Kriging” is the simplest one but it is not practical
because it requires a knowledoe of popu'lafion mean. In practice, the true global may
not be known without a prior assumr;tion, “Ordinary Kriging or Conventional
Kriging” is more flexible than simple Kriging and allows for variations in local
change. It is most widely.tused in the Kriging féchnique because it does not require the
knowledge of mean at unsampled Iocation_sf,'-*fl__C:o-Kriging” allows the estimation of
one variable based on the spatial infor,r;l—ation of other related variables. This
procedure is useful when there is one extens-ively sampled variable and one sparsely
sampled variable, and they are spatially related. And, “Universal Kriging” is used
when the sample data exhibits a trend ina particular direction.

As stated above, Ordinary Kriging is the algorithm that is most widely used to
define unsampled values. The derivation of the OK system and its solution will be

explained, and it'will be used in the conventional simulation subroutine.
3.2.1 Ordinary Kriging (OK) Algorithm

The objective is to find the estimate Z," at an unknown location from a
weighted sum of Z;’s at known locations. We will first come up with the solution as

shown below.

Z"(up) = Y AZ(u) + 4 (36)
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At unbiased condition requires that
E[2(u,)-2"(uy)]= 0 (37)

By substituting Eq. 3.6 into Eq. 3.7, we obtain

Ez(u0)]= 2o + Y AE[Z(0) (8
The assumption of OK is that E[Z(u,)]=E[Z(u, )]=m(u, ), where m(u,) is the local

mean within the search neighborhood, we can.eXpress Eq. 3.8 as
P = ZziJ (3.9)
=1

In practice, we do not knew the'value ofm(u, ), we can force 4, to be zero. Then,

zn;,ii —fl L4 (3.10)

As a result, the value at the uaknown location is estimated by

Z*(uo):zn:ﬁ,iZ(ui) (3.11)

In order to estimate the weights of th:"g_' neighboring values that have influence
with the unknown data, the miaimuin variance unbiased estimation (MVUE) is used
for the Kriging algorithm.

ol :Var[Z(uo)—Z*(uo)]:Var[z(uo)—zn:/liz(ui)} (3.12)

Expanding,
O'é = 7(uo'u0)+zz/1i/1j7(ui U )_ Zzﬁ“i}/(ui ’Uo) (3-13)
i=1 j=1 i=1
We must minimize the.error.variance with a constraint definedjin Eq. 3.10. To
do so, the Lagrange multiplier method is used. As a result, we define the function, F,

as

F=0? +(Zn:zi —1}
i=1

n n

= y(uy,u, )+ liijy(ui,uj)—Zan:/liy(ui,uo)+ ZU[Z/L —1] (3.14)

=}

i=1 j=1

i=1

where u is a Lagrange parameter
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Taking the derivatives to minimize the error variance, we will obtain

%:0=Zzn:/ljy(ui,uj)+2u—2y(ui,uo) fori=1..,n (3.15)
i i=t
and
oF :
—=0=341-1 3.16
a0 =02 A (3.16)

Rearranging Eq. 3.15, we can obtain iH as

(3.18)

By solving the matrix equation, we ¢z ' alues of 4, and u.

Once 4, is 1;5* alue of variable at u, Z"(up), is

reckoned with Eq. 3.11._The error variance is also estimated by using the equation
{ )

1y

O'é zfﬁ’uo)_gﬂviﬂl@uo)_u (3.19)

AULINININGINS
AN TUNN NN Y

s

below.
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3.3 Conditional Simulation

As discussed above, Kriging estimations are deterministic and cannot be used
to quantify uncertainty because it creates a smooth picture. Although, Kriging which
has a minimum error variance yields a unique realization, it does not reproduce spatial
fluctuations. That is, it will normally preserve the large-scale features of variabilities
and will eliminate the small features of variabilities. In addition, it produces
conditional bias in the sense that through 'smeothing, small values are overestimated
and large values are underestimated. Smoothed maps should not be used where spatial
patterns of values are important. As a result, 1t is.difficult and might not be adequate
enough to properly capiure dogal uncertainties and represent the real reservoir
heterogeneity. Therefore; we'need to ehoose the technique of conditional simulation
(CS) which can provide.a range of equi-|d"robabIe realizations to generate stochastic
random fields. |

Sequential Gaussian® Simulation (SGS) is the most popular algorithm to
generate multiple realizations with. the _help of a random number generator. In
addition, the unique point of /.$GS teChni‘Ql-J-e,-’_.iS that it samples a value and back
transforms the value into the original doméig after visiting every new unsampled
location. This leads to adequately capturing the spatial relationship without losing the
information in the class distribution. Therefore, in this thesis, SGS is used to generate
the realization of permeability data. In addition, the variogram structure (nugget and
range) are varied in order«to observe their.influence on the generated permeability
field.

As mentioned before, in order to proceed with the SGS technique, multivariate
Gaussian or normakseore transfaorm lis‘required as it will transforri the raw data into a
new doriain so that the data of each category in the Gaussian space can be easily
defined. The condition of the Gaussian transform is said that random function RF

Y (u) of any original data needs to be normal as written in Eq. 3.20
Prob{Y (u) < y}=G(y)vy (3.20)

where G(-) is the standard Gaussian distribution and Y(u) is assumed to be

standardized with a zero mean and unit variance.
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Let Z and Y be the two data sets and their cumulative distribution function
(cdf) are Fz(z) and Fvy(y). The transform Y = w(Z) identifies the cumulative

probabilities which correspond to the Z and Y p-quantiles:
Foly,)=F.(z,) = p.vpe[ol] (3.22)

We can express p-quantile of Fy(y), y, as,

Yo =R (F(z,) =Fi* 1’ pe[0]] (3.22)
where F,*(-) is a quartile function of tr |able RVY.

If Y is standard normal with cd! “"‘-=lg\' the transform G™(Fz(")) is the

normal score transform. Figure.3.3 s an e ‘*-., of transforming original data to

a normal score.
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Figure 3.3 : Transform of original data to a normal score
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3.3.1 Sequential Gaussian Simulation Procedure

Sequential Gaussian Simulation (SGS) is a procedure that uses the Kriging

mean variance to generate and solve a Gaussian field where unsampled locations are

sequentially visited in random order until all unsampled data are simulated or visited.

The SGS procedure will be explained in details below:

> wnp e

Transform the data set into a Gaussian distribution or standard normal data
Construct variogram analysis to fit with a proper model.

Select grid node at random. e

Perform Ordinary Keiging at the grid cell to estimate mean and variance of
normal distribution: '

Draw a simulated/data from N(u, 6°) and add the simulated data to the
data set. | ;

Select another grid node at random and repeat the procedure for Ordinary
Kriging until all grid nodes are V!,SI'[ed or simulated.

Back transform the simulated data tthhe original space, and the realization

map is created. P
Provide dlfferent random number sequences for random visited nodes and
repeat the Same procedure for additional realization maps.
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3.4 Dykstra-Parsons Coefficient

In order to investigate a degree of heterogeneity in a reservoir, Dykstra-Parson
coefficient is used. In the petroleum industry, Dykstra-Parsons coefficient, sometimes
called coefficient of permeability variation, or variance, Vpp, IS the most common
method used to measure the variation of permeability. Permeability typically has a log
normal distribution. The Dykstra-Parsons coefficient is defined as follows:
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VDP _ k0.50 B kO.lG (3.23)

kO.SO

where Koso is the median permeability and ko1 is the permeability one standard
deviation below koso on a log-probability plot. The variation of Vpp ranges from 0
(uniform) to 1 (infinitely heterogeneous). The lower values (0 to 0.5) represent cases
of low heterogeneity, while the higher values (0.7 to 1.0) reflect reservoirs with large
to extremely large levels of heterogeneity according to Larry W. Lake and Jerry L.
Jensen. Most reservoirs have the Vpp values.of0.5 to 0.9 according to Wilhite, G.
Paul (1986). 4
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Figure 3.5 1 Dykstra-Parsens;plot

The Dykstra-Parsons coefficient is determined from a set of permeability data
ordered in increasing value as shown in Figure 3.5. Dykstra and Parsons (1950) state
that the values to be used in the definition are taken from a “best-fit” line through the
data when they are plotted on a log-probability plot. If the points do not fall
approximately on a straight line, more weight is to be given to the central points than

the points at the extremities.



CHAPTER IV

Reservoir Model Construction

This chapter is divided into two sections which are a base model and a
reservoir model with a different degree: of heterogeneity. The base model section
explains how to prepare and formulate the base case and the next section shows how
to generate maps from the original data ane“assess uncertainties using Sequential
Gaussian Simulation Technigue (SGS) as well as.measuring the heterogeneity using

Dykstra-Parsons coefficient.
4.1 Base Model

This study investigated the effect of areal permeability heterogeneities on well
performance where thickness was assumed‘:’tc be constant and porosity was assumed
to be correlated with permeability. The pém‘@'ébility distribution of base case was
assumed with a known spatial correlation of lognormal. frequency distribution as
shown in Figures 4.1 {a)and-4:2(a)-109-welis-were-aisc-assumed to be drilled in the
base model where the-well locations were illustrated in-Figure 4.1 (b). The assigned
locations of 109 wells will help us obtain different maps with degrees of
heterogeneity as'explainedn detail:in the nextisection:

As shown in Figures 4.1 (a) and (b), the permeability data cover an area of
2500 x. 3400 square-meter. The distributions “of _reservoir rock properties were
generated for a rectangular ireservoir with dimensions of'136 x 100 X.1 blocks with a

block size equal to 25 x 25 x 7 m. in the X, y and z directions, respectively.
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Table 4.1 : Permeability and porosity of input data

Normal
X- - s score .
Well name | coordinate coor)c/iinate Permeability, transform Poroosny,
(m) (m.) md. of (%)
permeability

1 2500 2380 0.27 -2.605 0.15
2 1680 1930 0.39 -2.204 0.10
3 1244 120 0.47 -1.997 0.16
4 1680 730 0.53 -1.851 0.10
5 2416 2124 0.80 -1.736 0.17
6 1980 730 0.87 -1.640 0.12
7 1380 730 0.94 -1.558 0.12
8 180 1630 0-96 -1.485 0.12
9 3180 2230 1.04 -1.419 0.12
10 180 1930 20 -1.358 0.12
11 1680 1030 1.21 -1.303 0.12
12 1707 599 1.30 -1.251 0.18
13 1980 1030 1.34 -1.202 0.13
14 942 623 1.61 -1.156 0.15
15 2280 2230 2.10 -1.112 0.14
16 480 2230 2.56 -1.070 0.14
17 180 2230 475 -1.031 0.14
18 1080 130 4.05 -0.992 0.15
19 1606 1312 4.47 -0.955 0.20
20 3180 1930 v -0.920 0.15
21 2138 2411 4.68 -0.885 0.19
22 480 1630 ol 470 -0.851 0.15
23 1080 430 4.84 -0.819 0.15
24 2580 2230 il 4.90 -0.787 0.15
25 3301 1024 -~ 493 -0.756 0.19
26 1080 1330 ==5d0 -0.726 0.16
27 1384 881 8:42 -0.696 0.20
28 1380 1330 907 -0.667 0.17
29 2880 1930 9.08 +0.639 0.17
30 2880 2230 e mde) -0611 0.17
31 1080 1030 9.87 -0:583 0.17
32 2280 1930 10.01 -0.556 0.17
33 2280 430 10.13 -0.530 0.17
34 480 1930 10.21 -0.503 0.17
35 1380 430 10.28 -0.477 0.17
36 1080 730 10:33 0.:452 0.17
37 1664 1301 10.78 -0.427 0.24
38 1680 1630 11.40 -0.401 0.17
39 3180 1630 13.12 -0.377 0.18
40 1495 2138 14.65 50:352 0.14
41 180 1330 15,78 =0.328 0.18
42 2580 1630 18.13 =0.304 0.19
43 2580 130 18.52 -0.280 0.19
44 1380 1030 18.91 -0.256 0.19
45 780 1630 19.07 -0.232 0.19
46 2131 1909 21.25 -0.208 0.19
47 2031 1345 23.44 -0.185 0.22
48 2580 1930 23.78 -0.162 0.19
49 1980 2230 25.81 -0.138 0.19
50 1980 430 28.48 -0.115 0.20
51 1080 1630 30.43 -0.092 0.20
52 3262 1394 30.93 -0.069 0.20
53 1380 1630 31.00 -0.046 0.20
54 480 130 31.03 -0.023 0.20

20



Table 4.1 : Permeability and porosity of input data (continued)

Normal
. . - score :
Well name x-coordinate | y-coordinate | Permeability, transform Porosity,
(m.) (m.) md. of (%)
permeability

55 780 1330 31.05 0.000 0.20
56 2280 730 31.30 0.023 0.20
57 3008 2092 3171 0.046 0.23
58 2880 130 33.50 0.069 0.20
59 1380 130 33.94 0.092 0.20
60 2280 1330 34.27 0.115 0.20
61 180 130 36.73 0.138 0.20
62 2280 130 36.97 0.162 0.20
63 480 1330 38.31 0.185 0.20
64 3180 1330 38.42 0.208 0.20
65 1870 100+ 39.67 0.232 0.24
66 1980 1930 40.05 0.256 0.20
67 2580 430 40.44 0.280 0.20
68 1380 1930 40.86 0.304 0.20
69 780 430 40.92 0.328 0.20
70 1980 1930 41.05 0.352 0.20
71 2400 o474 41.08 0.377 0.23
72 1980 1630 42.70 0.401 0.20
73 2880 1050 45.67 0.427 0.21
74 1980 130" 51.%9 0.452 0.21
75 2086 e 9833 0.477 0.21
76 3180 1030 # 5415 0.503 0.21
77 2880 730 " 57.43 0.530 0.21
78 180 430 . 62.24 0.556 0.21
79 2757 1554 - 6471 0.583 0.21
80 1680 2430 - 69.85 0.611 0.22
81 2880 1330 1 nl7.44 0.639 0.22
82 1380 2230 WS L 0.667 0.22
83 1680 2230 81.01 0.696 0.22
84 2601 1041 83.29 10.726 0.21
85 2580 730 135.74 0.756 0.23
86 180 1030 180.02 0.787 0.24
87 480 430 186.16 0.819 0.24
88 100 940 194.10 0.851 0.27
89 780 730 194.52 0.885 0.24
90 780 1030 19629 0:920 0.24
91 1080 2230 19775 0.955 0.24
92 2580 1330 200.27 0.992 0.24
93 2880 1630 204.35 1.031 0.24
94 780 2230 208:13 1070 0.24
95 1462 178 208.78 1.112 0.23
96 780 1930 313.07 1.156 0.25
97 480 730 320.20 1.202 0.25
98 2280 1030 332.05 1.251 0.25
99 496 1053 339.40 1.303 0.24
100 3180 730 351.31 1.358 0.25
101 3180 430 403.28 1.419 0.26
102 1680 130 486.93 1.485 0.26
103 2161 2017 565.05 1.558 0.27
104 780 130 590.61 1.640 0.26
105 2880 430 602.47 1.736 0.27
106 1080 1930 625.15 1.851 0.27
107 180 730 630.27 1.997 0.27
108 2280 1630 702.73 2.204 0.27
109 632 369 720.00 2.605 0.27

21
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In reality, permeability distribution typically exhibits as a log-normal. In order

to quantify the statistical data, permeabilities of the original data were plotted into the

histogram as it shows a log-normal distribution in which the mean is 101.7402 md.

and standard deviation is 169.9434 md. Figure 4.2 illustrates permeability histogram
of the original data.
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Figure 4.2 : Permeability histograms of original data
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4.2 Reservoir Model with Different Degrees of Heterogeneity

As mentioned before, to study the effect of heterogeneity, it becomes difficult
to get the wide range of permeability which can represent all degrees of heterogeneity
in one field. As a result, seven extra models are generated to support the study.

Reducing the numbers of wells is performed manually so that the mean can be
controlled as close as possible to the base case. In this study, seven other models are
created where the wells of each model ave taken out gradually from their maximum
and minimum values until.their means are close 10.101.74. For example, when well 1
to well 12, lower tail, and well-108 andiwell 109, upper tail, were taken out from the
base model, model | would be.creaied and have the mean of 101.65. In this case, care
should be taken. That is«to say that if-we took out the maximum value of only well
109 instead of both well 208 and well 109';"the mean of the Model | would be 107.91
where then the new meanwalue Is beyont_j: the mean of the base case. As a result, the
comparison may be difficult when expléinip_g the performance of different cases.
Therefore, the same method is épplied to all the remaining models which can
represent different degrees of heterogeneit_y;;'-;fli_hat Is, after wells of each model had
been taken out from both lower tail and upp_gfr'_—_t_ailr to get their means close to the base
case mean, Model |, W, 111, 1V, \V/, VI and VI then only‘used wells 13 to 107, 24 to
105, 34 to 103, 44 to '101, 51 to 99, 58 to 97 and 64 o095, respectively as seen in
Table 4.2. After all other seven models were Created, the location maps of each model

is illustrated in Figure 4.8.
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After the new seven models were created, we would measure the degree of
heterogeneity. Theoretically, there are many methods to measure the degree of
heterogeneity. In this case, Dykstra-Parsons coefficient (Vpp) is used. In this study,
permeability distribution of each model was plotted into a log-normal probability
scale. To quantify the permeability values at the probability of 16% and 50%,
MINITAB program, a statistical software, is used. The uniqueness of this program is
to choose the exact value at a given pri ?)Ihty without any bias. Figure 4.4 shows the

example of 109-well permeablll yf om the base case and how to obtain
the Vpp value from the prob
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Table 4.2 : Statistical results of eight main models

Model Base Model Model Model Model
name case Model | Model 11 n v Model V VI VII
Used well 1 13 24 34 44 51 58 64
name to to to to to to to to
109 107 105 103 101 99 97 95
Number of | 449 95 82 70 58 49 40 32
well
Mean

(md.) 101.7402 | 101.6523 | 101.9997 | 101.280 | 101.8003 | 101.8182 | 102.5048 | 101.6620
Std. dev. 169.9434 | 155.0001 | 140.6738 | 122.2001 | 102.0488 | 91.1697 | 81.0508 | 67.1185

00\2} of | 16704 | 15248 | 1.3792 1! 12066 | 1.0024 | 08954 | 07907 | 0.6602
Skewness 226 2.16 2.10 190 145 131 115 0.66
Kurtosis 435 3.98 3.94 328 1.00 0.60 0.27 145
Maximum 720 63022 | 60247 | 56505 40328 | 339.4 320.2 208.78
qugftfl; 785352 | 827211357415 | 180.0185 | 186:1601 | 188.1451 | 190.1301 | 190.13
Median 31.05 D7 80495 || 4089 |. 44185 | 5335 | 59.835 67.31
q'j;‘;‘;ﬁ'é 8.9075 | 108425 4" 1801 3043 335 37.975 | 4065 41.89
Minimum 0.27 184 400 31021 1801 30.43 335 38.72
Vor 0.853 0.779 FFoWET 059 0551 052 0.482

As the number of wells and means of each model were deduced and
controlled, Model VI gave the maximum’.fr_:],ea,_n value of 102.51 md. while Model 111
give the minimum mean value of 101.28 mﬂq._,The means of the new seven models are
close to the base case mean ©F 101.74 ni_di-’iﬂ this regard the recovery factor in
reservoir simulation which we will later be p;_rfbrmed can be easily compared.

After all the models were created, the coefficients of variation (Vpp) could be
found in the ranges of 0.853 to 0.482 from the base case to model VII, respectively.
Table 4.2 shows that Vpp decreases as standard deviatiof-decreases.

As seen_in_Table 4.2, the upper, median and lower quartile values gradually
increase from the base/model to model V112 This could represent that their values rely
very much on the standard deviation. The lower the value of standard deviation, the
higher ithe lvalue at\given quartiles will be. The_coefficient jof wariation (CV) is a
normalized measure of dispersion of a probability distribution. It is defined as the
ratio of the standard deviation to the mean. Typically, distributions with CV less than
one are considered low-variance while those with CV greater than one are considered
high-variance because standard deviation alone normally has little interpretable

meaning unless the mean value is also reported.
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Again, at CV greater than one, the standard deviation tends to have a wider

range started from the Model IV upwards to the Base case. This could represent that
the large level of heterogeneity would start from the Vpp of 0.59 to 0.853 in this case.

Skewness is a measure of the asymmetry of the probability distribution of a

real-valued random variable. All models in our study provide the positive skewness in

which the mass of the distribution is concentrated on the left. In order words, this kind

of distributions is said to be right-skewed. Moreover, kurtosis is a measure of the

peakedness of the probability distribution of a real-valued random variable. In this

case, the higher kurtosis, the higher variance:
4.2.1 Sensitivity Analysis.ef \/ariogram

As illustrated In Figure/4.3; we generated seven more models at different
degrees of heterogeneity varying Vpp values from 0.853 to 0.482. Geostatistically,
there is not enough infarmation to represent reservoir uncertainty characteristic and its
effect on reservoir performance. Therefore,'sénsitivity analysis will be conducted in
order to assess uncertainty Of the model resefvoirs. We will first study the effect of
variogram in which it comprises of nugget and range and secondly investigate random
number seed by using.SGS. !

To find spatial:variability of its data as a function of distance and direction, in
this case, omni-directional variogram 1s applied as it includes both vertical and
horizontal directions. Taolerances with respgct to distance and direction are used and
given as a haftof lag/distance and £22.5 degree of directian, respectively.

Nugget ‘effects are chosen as the uncertainty in the values of 0.1 and 0.3.
Practicallyy nugget-alte-of zerosis very difficult'to obtain 'due toithe limited data for
capturing the spatial relationship in petroleum field. In this case, variogram does not
exhibit a clearly defined nugget and structure or shows too many fluctuations.
Theoretically, the nugget effect value should not be greater than 0.3. Otherwise, it
would be unacceptable data or statistical random value. Range is varied from 300 m.
to 900 m. depending on variogram characteristics. Theoretically, the range is to use
half the maximum possible distance within the region of interest. The reason is to

ensure that representative pairs are colleted on both sides of a given location. As
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referred to the location maps, 2,500 m. is the maximum distance between any two
sample points within the region of interest. As a result, the variogram estimation is
restricted to a maximum lag distance or range of 1,250 m. There are three ranges
fitted in variograms such as 300-600 m., 500-800 m., and 600-900 m. The different of
300 m.-range is given to be the uncertainty. The reason to come up with the value is
that we normally get an erratic variogram result, particularly, in petroleum field due to
the lack of a sample. Thus, range, in this case, is quite difficult to define and cannot
preserve the correct behavior. If the range is set too large, we might get an outside
sample of the local stationary region. On the other hand, if it is given too small, we
may not have enough data to represent a good estimation. Therefore, 300 m.-range is
given to be the range of the uncertainty as it can help us to cover and represent a
better result.

Before SGS has beenUsed, Gaussian transformation is required to transform
the cumulative distributionfunction to Gaussian variable in which its variability of the
data set is restricted to -8 to +3 @s seen in Il:_igure 4.2 (b). Theoretically, SGS algorithm
needs to be used in the Gaussian distributiq'{j © transform sample data into equivalent
data. The advantage of the Gaussian transfdlr__rﬁj_ﬁ that it is easier to define the raw data
into a normal score which has a mean of ;éfo énd a variance of one and can be also
reduced the effect of extreme data on variog}a—rh. Therefore, normal score transform
was defined. After performing SGS, we can backtransform/the data to original values
and will use SGS of the base case for generating multiple maps and sensitivity
analysis as explained in the.following details., The sensitivity analysis of normal score
variograms is iHustrated from Figures 4.5 t0'4.12.
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Table 4.3 : Comparison of eight-model normal score transform variogram data

. Lag Lags
Model Name Va¥og£am '(\#J T:eg Distance | Tolerance R?rr;g)es

yP J (m.) (m.) '
Base case Spherical 32 60 30 300, 600
Model | Spherical 35 70 35 600, 900
Model |1 Spherical 35 74 37 600, 900
Model 111 Gaussian 38 48 24 600, 900
Model IV Spherical 37 80 40 500, 800
Model V Spherical 34 58 29 300, 600
Model VI Spherical 40 50 25 600, 900
Model VII Spherical 30 58 28 300, 600

As explained earlier-conventional variogram. does not give a clear structural
model to describe its_spatial relationship in which it normally exhibits the most
fluctuation. Thus, a nommal score variogram is chosen for reducing that effect. Table
4.3 shows the comparison of eight-moqéi normal score transform variogram data
which are varied according tothe parameters'such as nugget effects and ranges.

There are two types of variogram’-_us_gd in this study such as spherical and
Gaussian variograms. Spherical variogram_;t;baracterizes all models except model I11
is fitted by the Gaussian variogram. All thg models are generated using the nugget
effects of 0.1 and 0.3. Base case, Model \/ and VI are fitted with the range of 300 to
600 m. Model 1V is fitted with the range of 500 to 800 m. Model I, II, Il and VI are
fitted with the range of 600 to 900 m., respectively. As expected, the variogram starts
with a zero value and-increases as the lag distance between the two values increase.
As a result, variance increases as lag distance increases. Lags tolerance is typically
given half the'lag distance to ensure that we can |capture additional lags for a better
estimate of the variogram. As seen from the normal score transform variogram plots,
the base case to model 1\ give a clearly interpretable structure but model V to model
VI1 still 'shows some fluctuation in the estimated values. This is because the lack of
the data and/or spatial continuity should have significant effect on the interpretation.
The relationship between number of lags and lag distance is shown in Figure 4.13.
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Figure 4.13 : Relationship between number of lags and lag distance

Figure 4.13 shows that the, possible.number of lags decrease as lag distance
increases. Theoretically, at given lag distance, the more lags we have, the more
accurate the estimate of the variogram.

4.2.2 Sensitivity Analysis of Realizations =~

In this study, we investigate only the effect of permeability on reservoir
performance. Although, there are many factors which can help us in understanding
more accurately such asporosity, water saturation etc., we assume that there are less
effect than permeability. As a result; this study will-be concerned with only parameter.

Geostatistically, multiple fine-scale stochastic realizations are generated by
changing the random number-seed in‘the'SGS: Moreover | the variggram parameters
which are range and nugget are varied. The realizations which give a different degree
of heterogeneity are used to quantify uncertainty in performance predictions. As
mentioned before, SGS has been widely used to assess spatial uncertainty in the
reservoir performance because it can create the different schemes of reservoir
characteristics in some global sense by giving the numbers of equiprobable images.
Comparing with the Kriging method, it provides a single numerical image which is

best in some local accuracy sense and does not represent the reality. In addition, it
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only relies on neighborhood data which gives a smooth picture. Once, we use the
Kriging model to study the effect on reservoir performance, it will not give us precise
information. As a result, SGS is used to access reservoir uncertainty. Figure 4.14
illustrates the flow sheet to obtain realizations with different degrees of heterogeneity.

Figures 4.15 to 4.40 show the result of 104 realizations generated by SGS.

Assumed permeability
distribution' map

v
Select 109 wells
v

Base case with 109 wells
and-k = 101.74 md.

¥
Jake out upper.tail and/or lower tail of
permeability data asiclose as 101.74 md. |~

Yes

More.\_qs(e_ll to be
subtracted

Obtain modél_;, Where More model
1=1107 -

Ar No

Calculate Vpp of each model [ Stop ]

v

Perform'structural analysis of each model
v

Vary nugget and‘range
v

Perform SGS with different random seeds

v
[ Obtain 104 realizations ]

v

Figure 4.14 : Flow sheet to obtain realizations with different
degrees of heterogeneity
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and ranges at the seed number of 6259246



X w6 30 ol 4. Ay, £
x
(a) Nugget = 0.1, Range = 500 m\\\',/y gget = 0.3, Range = 500 m.
2.0 plo SO I/ 2-D pla

h, 1 Oy b . .
X -(d) Nugget = 0.3, Range = 800 m.

nber of 9451304
; 2-D pic

(c) Nugget = 0.1, Range =600 m.  (d) Nugget = 0.3, Range = 600 m.
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As shown from Figures 4.15 to 4.40, to assess the uncertainties, random
number seed of 3 values are generated into SGS in which all simulated models use the
number of grids of 13,600 except the Base case and model I are given random number
seed of 4 values due to its wide range of standard deviation. As described earlier,
nugget effects of 0.10 and 0.30 and ranges of 300-600 m., 500-800 m. and 600-900 m.
are obtained to approach the spatial uncertainty. Thus, by varying all the parameters,

summarizes statistical parameters of all

m{/’

——

104 realizations are created. Table
\

realizations.
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Table 4.4 : SGS results of eight models by varying parameters

n = 101.74 md., and SD = 169.94)

Base case with 109 wells (Prior to simulation, Vipe = 0.85,3','

Seed no. 1299460 4211847 e 5209254 1062367

Model type Spherical Spherical - Spherical Spherical

Distance (m.) 300 300 600 600 300 300 600 [, 600 300 | 300 600 600 300 300 600 600

Nugget value (%) 10 30 10 30 10 30 10 | 30 10 30 10 30 10 30 10 30

Vor 0875 088 086 087 | 0.867.0872 . 0846 0856 | 0879 085 0862 0873 | 0876 0879 0855  0.864
Mean 99.243 10264 91671  97.07 | 107.64 441899641 & 10484 | 11496 11855 100.68 107.96 | 109.35 111.19 97.138 10209
Std.dev. 1758  180.94 159.02 1695 8 /16423 | 17393 | 186.46 194 16581 17957 | 18205 186.06 159.93 1714
Coef. of var 17714 17628 17346  1.7462 16482 116591 | 1.622 16364 1647 16633 | 1.6648 16734 16464 1.6788
Maximum 720 720 720 720 720 720 720 720 720 720 720 720 720 720
Upper quartile 7241 75553 69592 72927 7915 81041 | 14889 15311 80683 82283 | 81813 82653 79.183  79.092
Median 28309 26611 30.788  30.296 31403 ‘31163 | 31.035 31012 3102 31002 | 31.008 30992 31032 31.009
Lower quartile 46879 45515 4.9038 4.7786 100744 84897 | 48685 47295 4.9287 4.8808 | 4.8503 4.8279 50528 4.9457
Minimum 027 027 027 027 . 097 027 027 . 027 027 027 | 027 027 027 027

Model | with 95 wells (Rrior to'simulation, Vi, = 0.779, mean = 101.65 md., and SD = 155.00)

Seed no. 153567 & F deors AN 4773049 5237802

Model type Spherical B Shhericals - Spherical Spherical

Distance (m.) 600 600 900 900 600 quﬁ “| 1900 900 900 600 600 900 900

Nugget value (%) 10 30 10 30 10 / 0 ,10 10 30 10 30 10 30

Vor 0798 0804 0783 0794 | 0773 0.781 4.0i754 0797 0808 | 0786 0795 0768  0.782
Mean 10425 11345 95908 107.39 | 86.868 (92.976. 79.042 98.102 10642 | 97.441 10454 87.891 97.113
Std.dev. 158 17092 14523 16268 | 134.29 = 14524~ 47158 14837 16236 | 14681 157.08 13171 146.24
Coef. of var 15156 15067 15143 15148 | 15459 15621 1.5382 15124 15257 | 15067 15026 14986 15059
Maximum 63027 630.27 63027 63027 | 630.27 63027 63027 g 63027 63027 | 63027 63027 63027 63027
Upper quartile 12752 17638  81.88 133, 77,538 77.671 69.056 173, 89 11059 147.95 | 88587 13599 79.209 82.412
Median 33992 3423 33018 34216 | 82468 3353 32061 33.427 | 32031 32380/ 31684 33113 | 33907 34212 33856 34.216
Lower quartile 10.165 10.186 10.245  10.248| "10:282ri0:246 Qs w029 et O:5808 05 734" ‘?.8599 9.8439 | 1018 10206 10.256 10.277
Minimum 1.34 1.34 134 1340 S 134 1.34 134 134 | 134 134 J 134 1.34 134 134 1.34 1.34

12°]



Table 4.4 : SGS results of eight models by varying parameters (continued)

Model 11 with 82 wells (Prior to simulation, Vpp = 0.713;'519!1 =102.00 md., and SD = 140.67)

Seed no. 3782386 A57as33 6768113

Model type Spherical Sphericalfj Spherical

Distance (m.) 600 600 900 900 600 ¥ 600 900" | 900 600 600 900 900
Nugget value (%) 10 30 10 30 10 30 10 30 10 30 10 30
Vop 0.7 0.709 0.682%0°696 0,703 | 0.749 0.678 0.704 0.691 0.709 0.672 0.697
Mean 107.28 11481 97.839 10754 4" 92.09 ‘ 98.669 82445 92.071 | 94.692 105.26 87.257 99.944
Std.dev. 143.06  149.94 8 #1227 113481 10785 12529 | 123.05 137.84 11137 129.89
Coef. of var 1.3335 1.306 18266 11.3663 13081 1.3608 | 1.2995 1.3095 1.2764 1.2996
Maximum 602.47  602.47 602.47.. 60247 60247 60247 | 602.47 60247 60247 60247
Upper quartile 179.98  190.55 104.4 129.12 78.613 823 | 11981 18198 81.855 157.46
Median 404  40.841 38,893 3_9.605 38.612 88.72 | 39.927 40.401 39.838 40.352
Lower quartile 23471  23.617 .82 ‘18.4641 18.232 18872 18565 | 19.477 19524 21259  21.004
Minimum 4.9 4.9 4.9 _{9 i 19 _,a4.9 4.9 4.9 4.9 4.9 4.9 4.9

Model 111 with 70 wells (Prior to simulation, Vs = 0,656, mean = 101.28 md., and SD = 122.20)

Seed no. 218583 ¢ N B NN 7497676 2904965

Model type Gaussain ) - " “Gaussain Gaussain

Distance (m.) 600 600 900 9 600 600" |7 900 900 600 600 900 900
Nugget value (%) 10 30 10 10 10 30 10 30 10 30
Vop 0.654 0.659 0.624 ﬁ.639 410l663 063 0.656 0.651 0.654 0.62 0.635
Mean 102.29 114.74 88.73 1406.65 A 10099 1118 87.332  102.99 | 96.258 1049 83176  98.435
Std.dev. 117.01 126.86 100.14 117.dﬁ‘i- “120.73 296 25 11889 | 117.01 12577 100.06 116.46
Coef. of var 11439  1.1056 1.1286 1.0977 |"4.4954 11644 12051 1.1544 | 1.2156 1.1989 1.203 1.1831
Maximum 565.05 565.05 565.05 565.05-565.05 - 566.05 . 565.05 565.05 | 565.05 565.05 565.05 565.05
Upper quartile 185 194.5.-,.83.229 189.33 | 183.35 | 194.27 ?31.969 184.69 }-154.63 184.07 79.442 151.07
Median 41.061 45339 _40.889 43.124 | 40.884 41.074 40.7 41.065,.!r ,40.005 40.912 39811 40.92
Lower quartile 30.854  31.0287 "20:944-n34:044 S : ; - ?7.167 30.773  29.073  31.001
Minimum 10.21 10.21. J10.21 10.21 10.21 10.21 10.21 1021 | J10.21 10.21 10.21 10.21

Model 1V with 58 wells (Prior to simulation, Vpp = 0.590, mean = 101.80 md..and SD = 102.05)

Seed no. 6259246 9451304 2895849

Model type Spherical’ Spherical - Spherical

Distance (m.) 500 500 800 800 500 500 800 800 500 500 800 800
Nugget value (%) 10 30 10 30 10 30 10 30 10 30 10 30
Vop 0.586 0.594 0.562 0.579 0.587 0597 0.578 0.588 0572 0.584 0.562 0.578
Mean 94.188 | 96.646 85.63 ,90.673 | 10327 108.66 94306 102.43|| 95.214 100.21 89.951 96.891
Std.dev. 98.552 = 402.06  90.497 96.336 | 101.09 106.29 94.062 1014 | 96.333 100.83 91.782 97.611
Coef. of var 1.0463 1.056 1.0568 1.0625 | 0.9789 0.9782 0.9974 0.99 | 1.0118 1.0062 1.0204 1.0074
Maximum 403.24  403.24 403.24 403.24 | 40324 40324 403:24w 403.24 | 403.24 40324 403.24 403.24
Upper quartile 146/96 + 171.98% 81178, " 98.508+| 189.15" [194.33 « 162123} 1187.94 | 154.34 4 183.59 | 91567 179.42
Median 41,056 41.025" 40918  40.929 48.62 51.82 42.036' 44.947,| 42.065 |,43.372 | 41.069 42.068
Lower quartile 31153 31.051 " 31188 ©31.084 °| 33:7772" "33.785 32.567  33.472"33.568 "33.085 3277 32532
Minimum 18.91 18.91 18.91 18.91 18.91 18.91 18.91 18.91 18.91 18.91 18.91 18.91
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Table 4.4 : SGS results of eight models by varying parameters (continued)

Model V with 49 wells (Prior to simulation, Vpp = 0.551«g"@n =101.82 md., and SD = 91.17)

Seed no. 69069 7301294 5027296

Model type Spherical Sphericalfj Spherical

Distance (m.) 300 300 600 600 300 ¥ 300 600 600 300 300 600 600
Nugget value (%) 10 30 10 30 10 30 10 30 10 30 10 30
Vop 0.568 0.571 0.55 0559 0,554 | 0.559 0.532 0.544 0.562 0.566 0.539 0.55
Mean 108.72 11049 98.335 102 16 102.04 ‘ 104.23  91.601 96.55 | 107.69 10857 96.244  100.49
Std.dev. 98.631  100.18 92317 494365 83655 88.38 | 96.382 97.89 86.441 91.176
Coef. of var 0.9072  0.9067 09047 %0.9053 ' 0.9133.. 0.9154 0.895 0.9017 0.8981 0.9073
Maximum 339.4 339.4 389.4...4 3394 339.4 339.4 3394 339.4 339.4 339.4
Upper quartile 19435 194.77 189.15 192.69 143.69 18131 | 194.36 194.44 1814 18731
Median 5428 54971 52,494 5_2.675 44808  47.864 | 54.156 53416 51.065 51.823
Lower quartile 36.775 36.781 J 36.842 36.78 36.64 36.743 | 37521 36.934 37.201 36.925
Minimum 30.43 30.43 3043 '36 43 3043 30.43 30.43 30.43 30.43 30.43

Model VI with 40 wells ﬁr Wmulatlon Ve = h. 520, mean = 102.51 md., and SD = 81.05)

Seed no. 1042094 [ i AT 6160440 8275380

Model type Spherical = "'Spherlcal Spherical

Distance (m.) 600 600 900 P 600 600" |*7 900 900 600 600 900 900
Nugget value (%) 10 30 10 .10 30 10 30 10 30 10 30
Vop 0.524 0.531 0.506 65.519 4101508 0: 53&“.- - 0.493 0.507 0.499 0.515 0.489 0.507
Mean 98.019 102.02 91.746 f'97.01 A 402:32 104 794 97.805  101.82 | 99.798 107.36 97.524  105.09
Std.dev. 79.749  84.151 73.248 79.31%:1'i 178108~ 81.01~ 13296 78.031 | 75.465 80911 71.613 77.87
Coef. of var 0.8136 0.8249 0.7984 0.8178 | 0.7633 0.773% 07494 0.7663 | 0.7562 0.7536  0.7343 0.741
Maximum 320.2 320.2 320.2 3202132012 329.' = 8202 320.2 320.2 320.2 320.2 320.2
Upper quartile 187.24 192 -,,174.04" 18447 | 188.85 | 193.49 EZ.GES 188.1 }~185.14 19421 18255 192.86
Median 55.776  57.159 53195 55401 | 62.738 62.853 61.677 62.364Jr 62.335 64.739 62737 64.774
Lower quartile 38.601 39.149" "28:65739:242 2 s " = ‘?0 918 40.92 40989 40.972
Minimum 335 3354 j 335 335 3815 3815 3315} S oe . 335 335 335 335

Model VII with 31.welis (Prior to simulation, Vpp = 0.482, mean = 101.66 md., and SD = 67.12)

Seed no. 307057 5280856 8326199

Model type Spherical’ Spherical - Spherical

Distance (m.) 300 300 600 600 300 300 600 600 300 300 600 600
Nugget value (%) 10 30 10 30 10 30 10 30 10 30 10 30
Vop 0.483 0.484 0.478 0.48 0.485 0487 0.482 0.484 01476 0.479 0.468 0.474
Mean 101.65 | 101.47. 99.113 ,99.479 | 11335 11477 11477 111492 | 101.69 102.34 102.87 10291
Std.dev. 68.154 ~ 68.332 66.85 67.284 | 70.185 70.555 69.614  69.935 | 66.946 67.601 66.05 66.879
Coef. of var 0.6705 06734 0.6745 0.6764 | 0.6192 0.6148 0.6066 0.6085 | 0.6583 0.6605 0.6421  0.6499
Maximum 208.78  208.78 208.78 208.78 | 208.78 208.78 208:73w 208.78 | 208.78 208.78 208.78 208.78
Upper quartile 193126 1+ 193.62 1878, " 189.974 195.94" [196.19 # 19553 195.9 | 190.76 « 192.27 | 189.66  190.38
Median 64818 64.645 64018 63858 | 77632 77706 78.479  78.286 | 67.604 ', 67.431 70.04 68.994
Lower quartile 41066 41.061 © 41.068 4106 | 46:502° "46.527 50.033" 48.574 419 41476 45479 43174
Minimum 38.72 38.72 38.72 38.72 38.72 38.72 38.72 38.72 38.72 38.72 38.72 38.72
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As can be seen from Table 4.4, the results show that heterogeneity largely
depends upon standard deviation (SD). For example, the simulated base case values
give the highest Vpp in the range of 0.86 to 0.885 and SD in the range of 159 to 194.
While the simulated model VII values show the lowest Vpp in the range of 0.478 to
0.487 and SD in the range of 99 to 115. As a result, Vpp is mostly characterized by
standard deviation. In this study, we deal with a lot of uncertainties by varying
random number seed, range and nugget.. The comparison of these uncertainties will be
explained.

In order to get multiple realizations; random number seeds are used for the
study. It was found that the base case still give the highest Vpp and SD. On the
contrary, model VII gives.ihe lowest Vpp and SD. Comparing with the raw data of
each model, we observed that all simulated statistical data give wide range of
variation. At higher VppsStatistical’ results give a wide range of all parameters. In
other words, the higher variation it has, the more unecertainty will be identified.
Furthermore, from the simulated base caée data to simulated model VII data, it was
found that Vpp values deceased gradually frérﬁ'-0.885 to 0.478.

Normally, the size® for searchingjl___ 7n§grby data is relatively difficult to
determine. If it is too small, we may’ﬁi_)t;have sufficient samples within the
neighborhood to estimate a representative V-Ei-.'l—Jé. If it.is'too large, we might select
samples outside the local stationary region. To minimize the effect of outliers or
extreme data, varying ranges are used. As range 1s decreased, heterogeneity will be
increased. In addition, the continuity increases as the range increases. This is because
the proximity to the estimated location'and data redundancy becomes important.

The nugget effect indicates a total lack of information with respect to spatial
relationship - AS theynugget effect; is in¢reased; the teServoiritendsito have a higher

value of heterogeneity. Moreover, as the mean and CV increase, SD also increases.



CHAPTER V

RESERVOIR PERFORMANCE PREDICTION

This chapter begins with explanations for preparing data for reservoir
modeling, assumptions used in the reservoir simulation and then moves on to study
relationships of all results from performancespredictions such as Vpp and recovery
factor at the time of abandenment for both homogeneous and heterogeneity reservoirs.

5.1 Performance of Reservoir Having Different Levels of

Heterogeneity

In order to assessifeservoir performance at different degrees of heterogeneity,
reservoir simulation is conducted. ECLISPE-;lOO, a black-oil simulator, is used to
evaluate the performance with.the same.grid dimensions and block sizes as
geostatistics modeling in which-grid dimenis;i;dﬁé are 136 x 100 x 1 blocks and block
sizes are equal to 25 x 25 x 7 -m. i the X,y ahd z directions, respectively. After 104
realizations were created using SGS, all data needed to be-transferred into ECLISPE.
Typically, porosity is- one of the important parameters in reservoir modeling.
Therefore, as original porosity data from 109 wells were“obtained and shown in Table
4.1, we calculated unsampled poraosity.based on correlation between permeability and
porosity for the given'field- The correlation that we use'to determine porosity value
from simulated permeability value was shown in Eguation 4.1.

After porosity had heen caleulated, reserveir models were created. Figure 5.1

shows example of reservoir model with 32 producers.



59

Figure 5.1 - Reservoir model with*32 producers

As sketched in Figure 51, the locations of the 32 producers which were the
same as the number of wells and well_locations of Model VII were fixed to use with
all other reservoir models so' that the uneertainty in reservoir performance can be
easily defined. The reasonto select the same number of wells and well locations as in
model VII is that we cannot choose at other simulated locations where the
permeability is always ghanged by. SGS algorithm. As a result, selecting other
simulated locations may cause- erratic comparison in the recovery factor. Although
other models have more producers than the 32 wells, we assume that all other wells
are shut in so that the'comparison can be easily investigated.

In this study, hemogeneous permeability reservoir which has a mean of 101.74
md. is used to compare with the uncertainties of 104 realizations. Only the primary
drive mechanism is studied as the stage of production in which the maximum and
minimum production rates of all wells areicontralled at 250" stb/day and 5 stb/day,
respectively. The minimum reservoir pressure is set at 500 psia, and the pump is
assumed to ‘he used) with-this depletion! drive. All athervinput datatin the ECLISPE
programgare shown in Appendix B.

In this study, we compare the recovery factor at two conditions: (1) at the time
to abandonment of homogeneous reservoir and (2) at the time to abandonment of the
actual heterogeneous reservoirs.

In the first criteria, the comparison between recovery factor for different Vpp’s
based on time to abandonment of homogeneous reservoir was performed. To do so,

the homogeneous model is first simulated until all the wells are shut in so that the
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time to abandonment of homogeneous reservoir can be defined. In this case, all the
wells were shut in at the days of 5,160. This time will be used as the maximum
producing time of all other models so that the different degrees of heterogeneity
schemes can be compared. The schematic comparison of recovery efficiency for
different Vpp’s at this period is sketched in Figure 5.2.

In the second criteria, the comparison between recovery factor for different

Vpp’s is performed when all the wells.in each of the heterogeneity reservoir had been
shut in. Figure 5.3 shows the Hi en oil recovery factor and Vpp at

abandonment. Moreover, : d condition are shown in Table
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o A Reservoir ;
NUGGEL | ocoveryap | %O | pressue | (AR
Model name ((qugd the days of agzz(zj\ger%:;t (pggyitc}pe (psi) at
(m) 5,160 5160 abandonment
mean| SD |mean| SD |mean| SD |mean| SD
Base case 0.1 300(21.48| 0.24 |22.03| 0.10 | 578 | 18 509 1
0.3 300(21.34| 0.28,/21.98| 0.12 | 588 | 18 509 1
0.1 600(21.52| 0.16 22.0;2 0.07 | 573 | 13 509 1
0.3 600(21.37| 0.21 | 21.9740.10 | 585 | 15 509 0
Model | 0.1 60021.83| 0.13 | 22:20 0.07 | 556 8 508 1
0.3_60021.84 0.16_) 22.20.4+0:20"| 555 7 508 0
0.1 900121.85 0.11°] 22.20.[ 0.06 | 554 6 508 1
0.329007121:86,4#0.15|| 22:21|.0.09"|"554 I 508 1
Model 11 0.1_600 22474 0.141| 22.62 | 0.09}.528 7 507 0
073 600122461 0117 22,63 0111530 | 9 | 507 | 0
0.1#900 22 444 0.12 §22.60 | 0.08 | 529 6 507 1
0.3_996 22.44 £0.17 22:61 [, 0.41 |531 8 507 0
Model 111 O.%Z@O’_-ZZ.SG 0@4 22.69 0.03 | 524 2 507 0
0:3 600 22.68,0.06:|22.74 [ 0.04 | 524 2 507 0
0.1,000 2251 | 0.06 {22.66 | 0.04 | 527 3 508 1
0.837900122'62 | .0.07 22.74 | 0,05 | 524 3 507 0
Model IV o.1_§9b 22.78|70.03-[22861 002 | 518 | 1 | 506 | 1
0.3_50022.78 /0.05 | 22.86 | 0.04 | 519 | 1 | 506 | 1
0.1_800¢22.75} 6.03 22_.‘8;}‘:-‘.02 519 1 506 1
0.3 800|22:7510.04 | 22841003 | 519 | 1 |507 | 1
Model V. |0.1.300|22.83] 0.05 [22.90{0.04 | 517 | 1 | 507 | 1
10.3_300(22:82|0.04¢| 22.89 | 0.039,518,1. 1 | 507 | 1
10.1 600/22.79| 0.05 | 22.86| 0.04 | 547 |, 1 | 507 | 1
||0:3.600(22.78| 0.05 [22.86| 0.04 | 518"| 1 507 1
Model VI [0.1, 600|22.87| 0.06 |22.93| 0.05 [ 516 | 2 506 0
0.3 600|22.8710.06 122937 0.04 | 516 | 3 506 1
0.1 .900(22.86| 0.05 [22.92| 0.05 | 516 | 2 506 1
0.39004.22.86| 0.05 [ 22:92| 0.04 | 516 | 3 506 1
Model VII% |01 30012292 (/0.03/]22:98/0.03 | 515+ | ¢ 506 1
0:3.300722.91 |.0.03 |122:97 | 0.03.| 516! || 1 507 0
0.1.600(22.94| 0.05 {22.99| 0.05 | 515 | 1 507 0
0.3 600|22.91| 0.05 |22.97| 064 | 514 | 3 507 0
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Table 5.1 : Statistical results of oil recovery and reservoir pressure of different models
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In this study, we will quantify and mention only the effect of heterogeneity on
the recovery at the days of 5,160 and abandonment. As seen from Figures 5.2 and 5.3,
a high Vpp results in a slightly low recovery factor. That is to say that the reservoir
which has a low continuity will obstruct the fluid flow into the well more than the one
which has a high continuity. In other words, the fluid will take more time to flow into
the well than the one with higher continuity. For example, as shown in Figure 5.4, at
Vpp Of 0, the time to abandonment was 5,160 days or 14.1 years comparing with Vpp
of 0.879 spent 24,660 days or 67.6 years for.the time to abandonment. As a result, the
more heterogeneity the reservoir is, the more time will be spent to recover the fluid as
shown in Figure 5.5. For example, at the time to abandonment of the homogeneous
reservoir, Vpp = 0, of 5,160°days, oil recovery factor was 22.95% compared with the
time to abandonment of jihe extreme large heterogeneity reservoir, Vpp = 0.885, of
24,660 days oil recovery factor was 22.02%. The difference of 0.93% could also tell
that the higher heterogeneity the reservoir is, the more reduction and obstruction of
flow efficiency into the wellbore wall bé;_ However, the heterogeneity has a small
effect on ultimate recoveny but tremendou_si_,éfafect on time to abandonment. Table B1
gives the comparison of oil recovery at the_éiﬁg_rent degrees of heterogeneities. When
the range increases, Vpp decreases wihile thé ‘_re(-_:overy factor slightly increases. When
the nugget increases, Vpp Increases while the 'r_é—cbvery factor slightly decreases.

As we varled the random number of seeds (0 get different maps in
geostatistical modeling, statistical analysis is used to determine the variation of each
model. As shown in Table 5.1, we calculated the mean and SD of realizations at the
same nugget and range values so that uncertainties of each simulated model can be
compared. In this case, changing nugget had slightly more effect on the recovery

factor thanrange.
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Table 5.2 : Comparison of statistical results of oil recovery factor and Vpp of each

model.
. 0, i 0, i

Model VDF’tS”Or Vop of simulated models % O(;L)r/zcgfv g?;g the /Oa(g:nrggr?r\;irri/t at

MAME | simulation mean | max | min SD max min | SD | max | min | SD
Base case 0.853 0.869 | 0.885 | 0.846 | 0.011 | 21.831 | 21.066 | 0.218 | 22.167 | 21.867 | 0.092
Model | 0.779 0.789 | 0.819 | 0.754 | 0.018 | 22.024 | 21.658 | 0.122 | 22.306 | 22.073 | 0.075
Model 11 0.713 0.697 | 0.719 | 0.672 | 0.014 | 22.635 | 22.273 | 0.129 | 22.749 | 22.506 | 0.086
Model 111 0.656 0.647 | 0.675 | 0.620 | 0.017 | 22.680 | 22.452 | 0.068 | 22.776 | 22.615 | 0.050
Model IV 0.590 0.580 | 0.597 | 0.562 | 0.011 | 22.818 | 22.706 | 0.038 | 22.888 | 22.802 | 0.030
Model V 0.551 0.555 | 0.571 | 0.532 | 0.012 4 22.884 | 22.740 | 0.047 | 22.945|22.830 | 0.039
Model VI 0.520 0.510 | 0.531 | 0.489 | 0:0142 22.929 | 22.800 | 0.048 | 22.981 | 22.872 | 0.039
Model VII 0.482 0.480.{ 0.487 | 0.468 | 0.005+122.992 | 22.873 | 0.038 | 23.038 | 22.934 | 0.038

Generally, if Vpp is'less than 0.5, it should be simulated as a homogeneous
reservoir. This is because it'has a small variation which does not have much effect on
the recovery factor. la this study, the Iowgst Vpp value is 0.468 due to a lack of
information. We can illuStrate that at lower Vpp there is less effect on the recovery
factor. As seen in Table 5.2, at the Ionést’ average Vpp of 0.480, the standard
deviations of the recovery factors at 5160 days and abandonment have the lowest
value. Comparing with the highest average.*V.;';a of 0.869, the standard deviations of
the recovery factors-at 5,160 days and abéﬁddﬁment have the highest value. Again,
the model that has a-figh Vpp With give a stightly 1ow recovery factor because it is
more difficult for the fluid to flow into the well bore.

Figures 5.6, 5.7 and 5.8 compare the production profiles of the homogeneous
model and othér eight main maodels where‘each main model was the realization which
has the highest:VVpp as shown in Table B1 so that the comparison can be easily
defined- Far-example, the-base case whiech, has the smaximum Mpp-0f 0.885 is used
from the realization ‘with'seed number of 5209294, nugget effect 0f-0.3 and range of
300 m., and all other seven models are obtained with the same method. Figure 5.6
shows that the homogeneous model will produce at a constant rate for longer than
other models. It seems that the higher heterogeneity, the shorter duration of constant
flow rate will be. This is because with higher heterogeneity the fluid will be more
difficult to flow from the reservoir to the well bore than with the lower heterogeneity.
Figure 5.7 shows the relationship between reservoir pressure and time for different

models. It was found that the higher heterogeneity, the slower the pressure will drop
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and the longer the production time. Moreover, as the heterogeneity increases, the
reservoir pressure will drop faster because it requires more pressure loss to flow the
same amount of fluid into the well. When the gas-oil ratio starts to decline, the
reservoir pressure of the homogeneous model will drop faster than the reservoir
pressure of the heterogeneous models because the higher heterogeneity, the longer
time to produce the fluid. Thus, the reservoir still has pressure left in the system.
Figure 5.8 illustrates that the lower. heterogeneity, the higher the cumulative oil
production will be. Although the global permeability mean of all the models is
controlled as close as possible to the global permeability mean of the base case of
101.74 md., the global porosity.imean of eachi-model obtained from Equation 4.1 does
not have the same value due‘todognormal distribution of permeability. The higher the
heterogeneity, the lower global porosity.mean will be. For example, the homogenous
model which has the global permeability mean of 101.74 md. has the global porosity
mean of 0.2246 and the base c¢ase which has the global permeability mean of 101.74
has the global porositysmean of 0.1897. Therefore, the homogeneous model would
give the maximum cumulative oil perUéfion. On the other hand, the most
heterogeneous case would give the minimum cumulative oil production. As a result,
the higher the heterogeneity is, the fower the cumulative oil production and the longer
the time to produce fluid will be. !

As stated before, the global permeability means of all the models are quite the
same but all the models give the different global porosity mean due to the lognormal
permeability distributions Therefore, hydraocarbon pore volumes (HPV) for different
reservoir models shown in Figure 5.9 are also slightly different as they depend upon
the porosity. In‘this study, the higher heterogeneity is, the lower global porosity mean
and the Tower HRV - willibe.

As the number of producers is reduced from 32 wells to 15 wells which is
illustrated in Figure 5.10, oil production rate shown in Figures 5.11 and 5.12 will
constantly maintain longer than oil production rate with 32 producers and the effect
on reservoir pressure between the homogeneous and heterogeneous reservoirs which
is shown in Figure 5.13 is similar to the reservoir pressure with 32 producers as
explained before in Figure 5.7 except the time will be different. That is to say that the

reservoir pressure of all the models with 15 producers will spend a longer time to
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reach abandonment than that with 32 producers. In other words, the higher production
is, the faster reservoir pressure will be decreased as shown in Figure 5.14.

Figures 5.15, 5.16 and 5.17 illustrate the comparison of cumulative oil
production and time, and oil recovery and time. It was found that reducing the
producers from 32 wells to 15 wells would have a slight difference on both
cumulative oil production and oil recovery. That is, using 15 producers would
increase a little bit both the cumulative oil production and oil recovery. In other
words, with 32 producers at below the bubblepoint, gas which forms in pore space
helps maintain the reservoir pressure and Wwill.be produced more and faster than the
case with 15 producers. As a result, there is-not much free gas to support reservoir
pressure. For the same reservoir properties and conditions, the higher reservoir
pressure and free gas in pere space, the more oil will be produced. Once, much gas is
produced to surface at some gértain-time just before abandonment, gas would decline
suddenly. Then, well§ would be. shut in faster than usual. Therefore, using 32
producers will producedess oil than usiné—_ 15 producers. In addition, the higher free
gas in pore space at below the bubble poir_lf_; the higher and longer the pressure to lift
the fluid to the surface. Onee free gas is p_é___o-dg___ced quickly with more producers, the

pressure will decrease rapidly.
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Figure 5.11 : Relationship between field oil production rate and
time of 9 models with different values of Vpp using 15 producers
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Figure 5.13 : Relationship between reservoir pressure and time
of 9 models with different values of Vpp using 15 producers

71



2400
2200
2000 —|
1800 —
1600 —: <————— Homogeneous model with 15 producers
1400 3 Base case with 15 producers
£ 5
i 1200 —
& =
“ 1000 e
= : eou’ﬂproducers
800
800 — // \\\
o ﬂ/f& l\\\k\:\ i
o = 40000
Figure 5.14 \ /0ir pressure and time
L] R ogeneous model (top - red line)
ZE4T —
i Base case (bottom - brown line)

i) El’JVIEWliWEI']ﬂ‘i

AMNAINITUNR NS Y

SRR o 4 e o e e

TIME [ArS

Figure 5.15 : Relationship between cumulative oil production and
time of 9 models with different values of Vpp using 15 producers
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

To determine the level of heterogeneity in reservoir, we used a statistic
measure, namely, Dykstra-Parsons coefficient;"In reality, in reservoir evaluation we
always deal with uncertainties concernéd by amounts of data. The more information
we have, the less uncertainty and more accuracy the reservoir prediction will be. As
limited data in the petroleum industry are unavoidable due to cost of operations,
Geostatistical method can’be/Used to-create realization(s) with limited data by using
spatial relationships or variograms to deicribe how neighborhood values are related
according to distance and diregtion. The accuracy of finding the values at unsampled
locations depends on how goed the variog_rgm' model is. That is, minimize the impact
of outlier. In this study, spherical and G_a-lJ'-ss_'ian variogram models were used. In
addition, varying spatial continulity parame,t?e—r__sr_'such as relative nugget and range was
also used to assess uncertainty. Once, spatial relationship was defined, Sequential
Gaussian Simulation/was used to generate different maps while preserving the
original statistical data. Finally, reservoir simulation_was performed in order to
investigate the effect of different degreessof reservoir heterogeneities in recovery

factor and timeto abandonment.

The conclusions of the'study are summarized below:

17 Vpp mainly depends upon standard deviation (SD) of the data. That is, the
higher SD, the higher Vpp will be obtained. In this study, the simulated
maximum and minimum Vpp values are 0.885 and 0.480, respectively.

2. The maximum and minimum oil recoveries in this study are 22.95% and
21.86%. There is only a slight difference on the recovery factor as Vpp

varies.
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3. As the range increases the continuity increases causing the Vpp to decrease
and the recovery to increase slightly. Conversely, as the nugget increases,
the Vpp increases and the recovery decreases.

4. At a higher degree of heterogeneity, there is a wider range of variation or
more uncertainty on recovery factor than the lower one.

5. Reducing the number of producers slightly increases RF.

6. Considering with the time to abandonment, a reservoir with the highest
Vpp Will take the longest time torproduce oil and get the lowest RF.

However, there is only a slight decrease in recovery factor.

6.2 Recommendations

Recommendations for fuiure study;;arae as follows:

1. To obtain more‘acCurate results, permeability and porosity need to be
jointly investigated within t_ﬁ.e -'framework of Sequential Gaussian
Cosimulation (SGCQSIM) =

2. As some authors state that permeﬁbi[i_ty can be normal distribution and Vpp
algorithm.‘can be used for botH normal and  log-normal distributions,
uncertainty between these two distributions might be further studied.

3. As the depletion drive did not have much variation on RF, waterflooding
would have mere pronounced eeffect on variation of RF. As a result,

waterflooding needs to be investigated in the future.
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APPENDIX A

©) Nuggtu)%ange éloij E]’.Lugget- oﬁs Ran;r 600“:1
R a‘ﬁLﬂA‘iﬂJ AUAANEIRE,

base case varied nuggets and ranges using number of lags

of 32, lag distance of 60 m.
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Figure A2 : Omni-directional spherical variograms of the
model | varied nuggets and ranges using number of lags
of 35, lag distance of 70 m.
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model 11 varied nuggets and ranges using number of lags
of 35, lag distance of 74 m.
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Figure A4 : Omni-directional Gaussian variograms of the

model Il varied nuggets and ranges using number of lags
of 38, lag distance of 48 m.
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Figure A5 : Omni-directional spherical variograms of the
model 1V varied nuggets and ranges using number of lags

of 37, lag distance of 80 m.
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Figure A6 : Omni-directional spherical variograms of the
model V varied nuggets and ranges using number of lags
of 34, lag distance of 58 m.
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Figure A7 : Omni-directional spherical variograms of the

model V1 varied nuggets and ranges using number of lags
of 40, lag distance of 50 m.
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APPENDIX B

B1) Input parameters used in the ECLIPSE program

B1.1) Case Definition

General

- simulator Black Qil
- Simulation Start D
- Select Model

Reservoir

- Grid option

(0]

- Geometry option

Grid type

artesian

o Geo E;w_-ir:r=:?i')f entered
PVT m _ m
- OiI-Gas-Watﬁﬂeﬁﬁ qn EI ﬂ %“"w ﬂ\p‘ef.i)jljand Dissolved Gas
_ 4
B1.2) Grid

YRIANN I

Grid Ke\%Nord Section

- Geometry

(0]

O O O O

Grid Data Units

X Grid Block Sizes
Y Grid Block Sizes
Z Grid Block Sizes
Depth of Top Faces

RN

Feet
82
82
23
5300

188



B1.3) PVT

PVT Keyword Section

- Water PVT Properties

o

o
(0}
(0}

AR

Reference Pressure (Pref)
Water FVF at Pref
Water Compressibility

Water Viscosity at Pref\ ' ,

- Live Oil PVT Properf&.ﬁ

solve

.

3,200
1.0223
3.5E°
0.3

88

psia
rb/stb
Ipsi
cp

a—“\

Rs(Ms ia
0.0 FI2 ) W 1.7259
Fb X TR ‘\& 1.7666
i NN L 1309% 1.8074
5176 | WiV N 1.8481
12042 21255 . | 1.8889
44573~ X278 W\ 1.9296
17103 1 1120 1.9704
T 1.1174 2.0111
5oy 1.11 2.0518
9.5 1.11 2.0926
- 109 2.1333
P Asohrs oA 066 2.1741
e 22100 .1039 2.2148
3R 5 1,1012 2.2555
37347 1.09 £ 2.2963

1506.6 11575 15474
17395 1.1 15842, |

o~ g o] 972 A ol1odo mop oy ol S211

g\ ) 5& 1.'15I fv - 165?0“

h 8! 114 16947

2671.1 1.145 1.7316
2903.9 1.1425 1.7684
3136.8 1.14 1.8053
3369.7 1.1375 1.8421
3602.6 1.135 1.8789
38355 1.1325 1.9158
4068.4 1.13 1.9526
43013 1.1275 1.9895
4534.2 1.125 2.0263
4767.1 1.1225 2.0632
5000 1.12 21




Live Oil PVT Properties (Dissolved Gas) (continued)

Rs (Mscf/stb) Puub (psia) FVF (rb/stb) Viscosity (cp)
0.215 928 1.195 1.23
11423 1.1924 1.2679
1356.6 1.1897 1.3058
1570.9 1.1871 1.3437
1785.3 1.1845 1.3816
1999.6 1.1818 1.4195
2213.9 11792 1.4574
2428.2 1.1766 1.4953
26425 1.1739 15332
28568 | L[ L 11713 15711
3071.2 L1687 1.6089
32855 #41.4661 1.6468
3499.8 11634 1.6847
3714.1 1.1608 1.7226
39284 1.1582 1.7605
— 4142.7 | 1.1555 1.7984
i 574 | 1.1529 1.8363
ar JF Sl 1.1503 1.8742
'y 1.1476 1.9121
aFr 5000° 1.145 1.95
0.28 4 F 1osr "4 B 1.225 1.125
il FTaGe 1.2229 1.1579
& b jsT7 1.2208 1.1908
. F FrR AN v 1.2237
£ F B 20839575 1.2166 1.2566
A B P b, 41.2145 1.2895
F | = 2455 4—" i "1 2194 1.3224
'Y | 26512 - 4] ), 12103 1.3553
F| =860 ———1208 1.3882
P [71780426 - 2/ ieealdp 061 L4211
=3238.4 —="1.2039 1.4539
234341 [/ 12018 1.4868
73629.8 © 11997 15197
A 3825.6 1.1976 S 15526
:;, 4021.3 1.1955 =~ 1.5855
i 4217.1 1.1934 16184
iy 4412.8 1.1913 T 16513
o 4608.5 1.1892 . 1.6842
4804.3 1.1871 17171
5000 1.185 1.75
0.296 1341 1123 1.1094
1533.6 1.2279 1.1392
1726.2 1.2258 1.1689
1918.7 1.2237 1.1987
21113 1.2216 1.2285
230319 12195 1.2582
24965 12174 1.288
2689.1 1.2153 13178
2881.6 12132 1.3475
3074.2 12111 13773
3266.8 1.2089 1.4071
3459.4 1.2068 1.4369
3651.9 1.2047 1.4666
3844.5 1.2026 1.4964
4037.1 1.2005 15262
4229.7 1.1984 1.5559
4422.3 1.1963 15857
4614.8 1.1942 1.6155
4807.4 1.1921 1.6452
5000 1.19 1.675
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Dry Gas PVT Properties (No Vapourised Qil)

Pressure

FVF

(psia) | (rormsch) | V'sC (€P)
0 17382 | 0011
31126 | 001165
15103 | 0.0124
76836 | 0.01315
51037 | 00136
0.01365

0.01418

3875~/

4100

i
-

~/

4775

0 67556

¢ #5000 _

A UL

JVEY

Jran

- Fluid Gravities at Surface C%ndltlons

Rock Properties

0 Gas density

o Reference pressure
0 Rock compressibility

AWBI 30 NW?’]TEEIZ’EE d

0.06 b/t

2,500 psia
3.5E-6 /psi
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B1.4) SCAL
Saturation

- Water/Oil Saturation Functions

Sw Krw Kro P (psia)

0 0 0.9 10000
0.045455 0 09| 2557.3
0.090909 0 09| 65397
0.13636 0 09| 167.24
0.18182 0 09| 42.768
0.22727 0 09| 10.937
0.27273 0 09| 2.7969
0.31818 20 0.0 0.71526
0.35 0 0.9.|0.34262
0.36364 |-5.19E-05 | 0.85488 | 0.18291
0137333 |/6/60E-05 | 0.82279.| 0.15387
0:39667 |0,000711 | 0.74722 | 0:083986
0.40909| /0001611  0.7079|.0.046776
4 042 ] 0.6024) 0,67338 | 0:038421
0.44333 | 0.005689, 70.60136 |.0.020549
045455 | 0.008294 | 0,56769 | 0.011962
0.46667 | 0.011111 | 053128 | 0.009588
0.49 | .0.0192 |/.0.46328 | 0.005018
05 /,0.024038 | 0.43509 | 0.003059
0.51333 [ 0.030489 | 0.3975 | 0.002391
0.53667 | 0045511 | 0.33416 | 0.001223
| 0.54545 | 0.052776 |  0.3113 0000782
"~ 056| 0.0648| 0.27348 | 0:000596
0,53333 | 0.088889 | 0.21577 | 9:000297
0,59091 | 0.098442 | 0.19813 | . 0.0002
0.60667 | 0.11831 |, 0.16144 | 0.000148
0:6341 915364~ ®11107 7-20E=05
0.63686 | | 0.16497 |:0.098656 | 5.12E05
0.65333 | 0.19529 | 0.065564 | 3.69E-05
0,67667.| 024391, ,0,026627, |, 1,74E-05
0,68182)] .0.25629 | 0.020748 | [1;31E-05
0.7 0.3 | 2.60E-21 | 9.19E-06
0.72727 | 0.35477 | 2.36E-21 | 3.35E-06
0.77273 | 0.44605 | 1.97E-21 | 8.56E-07
0.81818 | 0.53733 | 1.57E-21 | 2.19E-07
0.86364 | 0.62861 | 1.18E-21 | 5.60E-08
0.90909 | 0.71989 | 7.87E-22 | 1.43E-08
0.95455 | 0.81117 | 3.94E-22 | 3.66E-09
1| 0.90245 0 | 9.36E-10
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- Gas/Oil Saturation Functions

Automatic shut-in instruction

Pe
Sq Krg Ko (psia)
0 0 0.9 0
0.05 0 0.73657 0
0.071429 | 0.000182 | 0.66892 0
0.092857 | 0.001458 | 0.60281 0
0.11429 | 0.00492 | 0.53834 0
0.13571 | 0.011662 | 0.4756 0
0.15714 | 0.022777 | 0.41473 0
0.17857. | 0.039359 | 0135585 0
0.2 0.0625 1..0.,29914 0
0.22143 10.093204 |-0:24482 0
0.24286"1.0.13284 | 0.19316 0
0.26429 . 0.18222 .| 0.14452 0
0.28571 4 024253 '| 0.099427 0
080714 J 031487 | 0.058693 0
0.32857 | 040033 * 0.023837 0
0.35 5y 0 0
0465 = P8\ 0
B1.5) Initialization f
Initialization Keyword Section ;- . Tl
-Initial pressure vs depth _ 7 T_
A Depth | Pressure | - .
v (fty | (psia) |~
5300 | 2252.57 .
- Initial Gas Saturation 0
- Initial Water.Saturation 0.37
- Initial R 0.5 Mscf/sth
B1.6) Schedule
Events-All
- Well specification
o Datum depth 5300 ft.
0 Preferred phase Oil
o Inflow equation STD
o

SHUT

92



o
(0}

Crossflow
Density Calculation

- Well Connection Data

o

O O 0O 0O 0o o o

Well

| Location

J Location

K Upper

K Lowerl
Open/ShuiFlag
Well Bore 1D
Direction

- Production WelliControl

O O O O

Well
Open/Shut Flag
Control

Oil Rate

BHP Target

- Production Well Economic Limit

o o o, 0 O O

Well

Minimum-OikRate
Maximum Water Cut
Workover Procedure
End-Run

Quantify For Economic Limit

Secondary Workover Procedure

- Print File Output Control

(0}
o
(0}

Restarts
FIP Reports
VFP Reports

93

YES
SEG

(Using 32 wells)

(Following Model V11 locations)
(Following Model VII locations)
1

1

Open

0.583 ft

(Using 32 wells)
Open

ORAT

250  stb/day
500 psia

(Using 32 wells)
5 stb/day
0.9 | sth/stb
None

No

Rate

None

Every Report
+ Balance Sheet
No VFP Table Output
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Table B1 : Comparison of oil recovery and reservoir pressure at different degrees of

heterogeneity

Number ) Nugget (%) % QOil Time to % QOil Reservoir_ Reservoir_
Model _of Seed no Variogram and v recovery at abandon- recovery at | pressure (psi) | pressure (psi)

name |original ’ type range (m.) bP the days of ment (day) abandon- | at the days of at
wells 5,160 ment 5,160 abandonment

Homogeneous at k = 101.74 md 0 22.954 5160 22.954 510 510

0.1.300 | 0.879 21.376 24660 22.048 588 509

5209254 0.3.300 | 0.885 21.288 27210 22.019 594 511

0.1.600 | 0.862 }1.407 20310 22.037 585 509

0.3.600 | 0.873 47214809 23340 22.016 592 510

0.1.300 | 0.875 21282] . 22620 21.946 592 509

1209460 0.3.300 | 0.880 21.066/ 25320 21.867 607 509

0.1:600. | 0.860 21.436 18720 21.974 578 508

Base | .o Spherical 0.3_600 0.870°! 21.181 22830 21.890 598 509

case 0:4-300 .| 0.867 21.831 11430 22.167 552 509

4211847 0.3¢80041.0.872 21.729 12090 22.138 564 510

ﬁ—ﬁﬁoo 0:346 | 21.76 11190 22.110 554 508

’ 18 600 4[/0:856 21.675 11970 22.088 563 509

I70.14800" | 0.876 21.424 13800 21.969 578 508

1062367 / '3 300/ [/0.879 N2L2Rp 14340 21.902 586 509

0.1460g" f-0.8557 1% 48 214475 14010 21.959 574 510

f 08 600 4| 0.864 = " 21.314 15060 21.898 585 509

‘/ /Kl___soo 0el3- |t 21,948 10740 22.268 548 507

896078 0.37600" .} 0.781 \} #h2a01 9540 22.303 546 508

900 “| 0.754 ¥21.949 10500 22.259 547 507

/ 3900 | 0766 |10 22024 9510 22.306 545 508

0.14600 [. 0.798 “ . 21,919 13740 22.243 550 507

153567 A 0.37600+ ¥ 0:804 ’ v ) 12480 22.257 552 508

0 900 [, 0,783 1 4 21.927 13410 22.245 550 507

! 0.3 900.4440:794- [+ ¥ 4421924 11880 22.257 552 508

model 1 95 Spherical |28 =600 10613 ==21,76 13470 22181 562 508

4773049 0.3600"|-0.819 1764 13260 22.179 562 508

0.1_900"—}-0.797 ——21.784 13230 22.185 560 508

0.3.900. 4+0.808 v ) 21 77 12750 22.179 561 509

0.1 600 ~[~0.786 1721682 14460] . 22.108 562 508

523780 Al 0.3.600 | 0.795 21.658 13590f_ | 22.073 560 508

N 01900 10,768 21.722 1419(2; 422123 559 508

L") 0.3 900 | 0.782 21.697 13050 | 22.003 559 508

= 0.1 600 | 0.703 22.342 10770 22543 535 507

4574483 0.3 600 | 0.719 22.291 11370 22520 540 508

iyl 0.1.900 | 0.678 22.319 10800  22.524 536 507

0.3.900 | 0.704 22.273 11490 22506 540 508

0.1 600 | 0.700 22,616 7980 22726 522 507

) 0.3.600 . 0,709 22,635 8070 22.749 523 507

model 11| 82 | 8782388 | SphBrical ™" Tong Y 0lese 22,561 8160|" | 22681| 524 507

0.3.1900 || 0.696 22.603 8190 22123 524 508

0.1.600 | 0.691 22.45 9810 22.602 527 507

6768113 0.3.600 | 0:709 22.461 9750 22616 527 507

0.1 900 | '0.672 22.426 9840 22581 527 507

0.3.900. 1| 0.697 22451 9690 221607 528 507

0.1.600, /[.0.654 22582 9180 22702 523 507

218583 0.37600" | “0.659 22.674 8760 22772 522 508

0.1.900 | 0.624 22558 8970 22.681 524 507

0.3 900 | 0.639 22.68 8490 22.776 522 508

0.1.600 | 0.663 22522 9330 22.661 526 507

model . 0.3 600 | 0.675 22.56 9090 22.699 526 507

1 70| 7497676 Gaussian | 77500 | 0630 22.452 9840| 22615 530 508

0.3.900 | 0.656 22.539 9180 22.685 527 507

0.1.600 | 0.651 22585 8310 22.709 524 507

2004965 0.3_600 | 0.654 22.647 8070 22.763 523 507

0.1.900 | 0.620 22532 8550 22,671 526 507

0.3.900 | 0.635 22.635 8070 22.755 524 507
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Table B1 : Comparison of oil recovery and reservoir pressure at different degrees of
heterogeneity (continued)

Number % Oil . % Oil Reservoir Reservoir

Model of Seed no Variogram Nquﬁé(%) v, recovery at agg:g;g_ recovery at | pressure (psi) | pressure (psi)
name | original ’ type range (m) bP the days of | (day) abandon- | at the day of at

wells 9 . 5,160 . ment 5,160 abandonment
Homogeneous at k = 101.74 md 0 22.954 5160 22.954 510 510
0.586 22.754 7590 22.837 518 506
0.594 22.727 7830 22.820 520 506
6259246 0.562 22.721 7770 22.807 519 506
0.579 . 22706 7950 22.802 520 506
0.587 7}?(783 8610 22.870 518 506
model ) 0.597 22793 8640 22.878 518 506
Y, 58 | 9451304 Spherical 0573 9733 8880 22.827 519 506
0.588 226107 8820 22.852 519 506
0.57 22.818 7320 22.884 517 507
0.584 | 22.817 7440 22.888 518 507
2895849 - 0,562 22.783 7560 22.855 518 507
0.578 | 22.791 7650 22.867 519 508
i 0554 22.823 7260 22.888 516 507
0.559 ﬁ 22.809 7200 22.880 517 507
7301294 / 0532 | 22.773 7470 22.840 517 507
0.544 |4 4+ 22768 7710 22.842 518 507
0.568 = = 22.794 8370 22.875 518 506
model Obdlfu 2278 8830 22.869 519 506
v 49 | 69069 | Sppgeal | 0.561 22747 8550|  22830| 518 506
0,969\ ™' 2214 9090 22.833 519 506
0562:1 74 22834 7290 22.945 516 507
. 0.566 “, 22,865 7530 22.933 517 507
5027296 e Oh 3o | s 18 7500 22911 517 507
;"I 0,550 4 22384 7770 22.913 518 507
J40.524-[ 1 ¥J22.806 7620 22876 518 506
120531 7890 22.880 519 506
1042004 "A1a0506" | < Hs 7680 22.872 518 506
0"—-0.519 | ——22.800 7980 22.875 519 506
2. 4+0.508 :i.f!gz,gz_g;‘ 7200 22.981 515 506
model ) “1-0.516 227902 7530 | 22.962 516 507
v 40 | 6160440 | "Spgerical 0.493 22.906 7260 | 22.960 515 507
b —— 0.507 22.885 75004 22,947 516 507
. 0.499 22.883 6930 | | 22929 514 506
8275380 = 0.515 22.9 6960 | 22947 514 506
0.489 22.883 6900 22.929 514 506
Ly 0.507 22.895 6960 22.942 514 506
0.483 22.898 7650 22.954 515 506
307057 0.484 22.884 8070 22.945 516 507
0.478 22.89 7740 22.945 515 506
0.480 22.813 8100 22,934 511 507
0,485 22,957 6630 23,005 514 506
model ) 0.487 22.95 6840 23.000 515 507
VI 81| 5280856 | Spherical 0482 22.992 6870 23.038 514 507
0.484 22.968 6570 23.016 514 507
0.476 22.919 7020 22.975 516 507
0.479 22.899 7170 22.959 516 507
$32630 0.468 22.933 7020 22.989 516 507
0.474 22.903 7140 22.964 516 507
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