Chapter IV

The Design and Development Procedure

The development of file utilities in this thesis employed the capabilities of
curses and UNIX shell command as prc ' ously explained for the following reasons.

1. All UNIX systems pre vide)ell utilities for manipulating files

Ty
and directories. e
2. This progra asdesigned to beportable to any UNIX like system.

3. The User ace program was design to be a terminal independent

program '

This design 1S

1. User-Inteffacg'moc (3

2. File Utilitiegfmg Jﬁ’;‘
a0

1. The Design of USer-Infesface

e

1.1 Menu Int -n. .» -

: : "‘ D § i

Thig, was ¢ >N enu choice by constructing

curses-based prograr ;_,-... .‘..".'.'_"-.'.»:;-.‘..;.}.._;.5:.:.._'_..... ‘ .h>" libraries as follows:
A\ e X

1. Dhfing scﬁn as windows.

& ad mput from a terminal screenfito a program.

3. Writesputput from a program to the terminal screen.

SR l@u mxﬁﬁ fGmacif i § WA a virtal screen area
Ty ok mmmﬁm@mmmmm

on the scfeen. The goals of this design are "ease-of-use" and standardization for all
menu screens. In other word, this design would like users to be familiar with all
screens which have the same concept.

37

In brief, this menu design was composed of three parts (see screen
illustration in Appendix A.)

1.1.1 Title topic shows the menu description.

1.1.2 Menu choice displays the operations choice for file(s) and
directory(ies). The highlight attribute is set when the cursor is moved to the specified
choice. Hence, it makes the choice stand out on the screen. When running this
program, users see the Main Menu first. After that, if users would like to go further,

they would see a different Sub-Menu s¢ Although, users work with a Sub-Menu
screen, they can quit from the p&n : ' tely and need not to go back to the
previous menu.)
113 .‘ctlons tom of the screen presents some
directions for using program: 9
1.2 Operati atéridee Sc e -.
ThisaWas gési 0_,. ait for
- user. The input from thigcrg assed to t

the shell command. Méregver;the k d warning messages on the
screen if the process failsg Cgny s ter the correct input the program
shows a prompt message tooufirm the : fs&o the operation.

" " 3

ctory names entered by the
gram module which invokes

1.3 Output Sci€en ==

iy Enkaid |
fI s

This was&sng d to ac [directory name and the file
name passed from the™calling function. After that th ‘program will invoke a shell
command according to thespassed valuescand report the output after the process

finishes. The sﬁeuﬁ}l% é}a“ ﬁ%ﬁaﬂﬁi @aﬂﬁje following example:

Creatmg and sometime removin le(s)

q RS) A 2

4. Transferring information from file(s) to file(s).

5. Finding or searching the target file or pathname for user.
6. Changing the permissions bit of the file.

7. Creating and editing the text file.
8
9

Viewing the text file.

Copying or deleting the file(s).
10. Compressing and uncompressing the file.
11. Canceling the program process.
12. Exiting to shell prompt (shell escape).
13. Monitoring disk used in the file system.

38

3. Program Procedure

This section describes the design process in the curses-based program
development. The following pseudocode, in conclusion, demonstrates a step-by-step
description of how a program was conducted and will show some of the functions used
in this development.

1. main() function

_/* initialize all
initialize

R

do {
lmm menu()
} whiledleep);

_ﬂuamamwmm

endwm()

9 RIHINTN IR NN Y

2. main_menu() function

This function displays the Main Menu screen and calls the following
functions; the "highlight()" function for standout the selected choice, the
"win_dir_menu()" function, and the "win_fle_menu" function to display Sub-Menu of
directory and file operation respectively.

pseudocode
/* Display Main Menu :called form main() */

main_menu()

{

/* item number in each screen */
int choice;

‘a shell escape;i/

ﬂumwﬂmw BIN3

case 5:

QW']MﬂTm‘IIW”JﬂEﬂﬁEI

default :
show warning message;

39

40

3. win_dir_menu() function
Because the "win_dir_menu()" function is similar to the
"win_fle_menu()" function, the following example will describe only "win_dir_menu()"
function to present the Sub-Menu procedure.

The "win_dir_menu()" function depicts the directory operation menu
which shows the menu choice before calling the Operation screen. According to the
menu choice, the user can use the arrow key or enter menu number to select the
desired choice. Then, the hlghhght w' ly to the selected choice. To accept a
choice, press ENTER to contin 7}

—

/* Display & Gitith D rec on
- called fig -/. :
win_dir_men
{
/* item nu
int choice

pseudocode

case 1:
¢ g /* Create new Directory*/

AUEY ?Tﬁ‘?“rﬁ“l"l‘fﬂﬂ‘ﬁ
ARIAN IR NN Y

win_rmdir_dmenu();,
break;

case 3:
/* Rename Directory */
win_renme_dmenu();
break;

case 4:
/* Search/Find Directory */
win_find_dmenu(),
break;

case 5:-
/* Change permission of File */
win_chmod_dmenu();

R j
AUt INENIneIng
ARIAINTAUNM TN

41

42

4. win_mkdir_dmenu() function

Like "win_dir_menu()", this function will be a representative
example of all functions which are called from a sub-menu function. The
"win_mkdir_dmenu()" will display an operation screen prompt for entering the target
directory and file name before all values are passed to shell program. If a called
function needs to display output on screen, this development performs a function to
create a new window for displaying output from the shell program.

pseudocode

{

if (no'inp
default disp
prompt fog s‘I S

s contained in working directory
ectory name;

DIy name;

AU Pie ke
AMRMIeRmada Y

if (failure)

show some suggestion message;
show "Successful" message ;
return to win_dir_menu(),

	Chapter IV. the Design and Development Procedure
	The Design of User-Interface Module
	The Design of File Utilities Module

