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This paper presents a numerical technique called a weakly singular, symmetric Galerkin
boundary element method (SGBEM) that can be used to analyze cracks in three-dimensional,
generally anisotropic, linear piezoelectric infinite and finite media under various types of
electrical boundary conditions including impermeable, permeable, semi-permeable and
Landis-type conditions. One of advantage features of the present technique is that the
governing equations are in symmetric forms, which are obtained by using two sets of
boundary integral equations: the first one is the integral equation for the generalized
displacement (i.e. displacement and electric potential) and the other one is the integral
equation for the generalized traction (i.e. traction and surface electric charge). Since such pair

of integral equations contain only weakly singular kernels of ((1/r), the standard C°-

interpolation functions can be employed to approximate the solutions by using the Galerkin
scheme. Another positive feature is the use of special crack tip elements along the local
region of the crack front to accurately model the near tip field. As a result, the stress and
electric intensity factors can therefore be obtained accurately by using relatively coarse
meshes. The weakly singular SGBEM is validated through various numerical experiments for
both infinite and finite boundary value problems under several types of electrical boundary
conditions. It was found that obtained results for a penny-shaped crack are in excellent
agreement with the exact solutions. Subsequently, more complex problems are treated to
demonstrate the versatility of the current technique to model cracks and bodies of various
geometries under various loading conditions. Finally, the influence of electrical boundary
conditions on the stress intensity factors and the electric intensity factor for piezoelectric

infinite and finite media is thoroughly investigated.
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CHAPTER |

INTRODUCTION
1.1 General

It is well known that piezoelectric materials exhibit coupling effect between
mechanical and electric fields. As the results, they produce electric field when
deformed under mechanical loadings and undergo deformation when subjected to an
electrical field. For this reason, piezoelectric materials have been widely used in
various engineering and industrial applications such as sensors (e.g. sonar), actuators
(e.g. ultrasonic cleaner, ultraprecision positioner, ink jet print head) and signal
transmitters (e.g. cellular phone, remote car opener) (Denda and Mansukh, 2005).
However, the main disadvantage is that piezoelectric materials are in general brittle
and susceptible to fracture either during manufacturing process or during applications.
Presence of fractures in such materials can produce stress concentration, reduce the
global strength, induce fatigue and damage, and finally lead to ultimate failure and
reduction of lifespan and performance of the components. This therefore necessitates
extensive investigations to gain an insight into fracture behavior of piezoelectric
materials.

Due to complex electro-mechanical coupling and anisotropic nature of the
piezoelectric material, responses of a piezoelectric body under various mechanical
and electric loading conditions are consequently very sophisticated and generally
inaccessible. Furthermore, the situation becomes more intricate when discontinuities
such as dislocations and flaws are additionally present within the body. To construct a
physically sound but sufficiently simple mathematical model to mimic such physical
problems to the level of complexity involved, various assumptions and simplifications
must be integrated. For the past two decades, a simplified mathematical model based
upon a linear constitutive law has increasingly gained popularity and extensively been
employed by various investigators to model a variety of physical problems involving
piezoelectric materials. In addition to its simplicity, the linear piezoelectricity
assumption has found well-suited and sufficient for the response prediction of a wide
range of practical applications.



Within the context of linear piezoelectricity, analysis of a body containing no
crack has been well-established in comparison with that concerning cracked bodies.
This is due primarily to complexity of electric and elastic fields induced in the
neighborhood of the crack; in particular, the singularity of such fields exists along the
crack front. As a result, existing solutions of such boundary value problems are rather
limited. While various analytical techniques have been developed to study fractures in
linear piezoelectric media, the main objective to construct close-form or analytical
solutions is their key drawback and poses restrictions on their capability. Most of
existing works are limited only to cracks of simple geometries, under simple loading
conditions, and contained in an infinite medium (Park and Sun, 1995; Xu and
Rajapakse, 2001; Wang and Jiang, 2002; Wang and Mai, 2003; Chen and Lim, 2005;
Chiang and Weng, 2007). According to such limitations, numerical techniques have
recently become more attractive alternatives in the modeling due to their vast features
and potential capability to solve complex and large scale boundary value problems.

The boundary integral equation methods (BIEMs) have proven to be one of
the most efficient numerical techniques for analysis of fractures in linear
homogeneous media. One crucial advantage of these methods (over other domain-
based techniques) is that the key governing equations involve only integrals over the
boundary of a domain and the crack surface; this therefore reduces dimensions of the
problem by one. In terms of computational efficiency, the boundary integral equation
methods only require discretization of the boundary and the crack surface rather than
the entire domain; this significantly reduces preprocessing effort corresponding to the
mesh generation. While the framework of BIEMs for modeling of fractures in linear
elastic media has been well-established, a significantly less number of investigations
has been found within the context of piezoelectric materials and this motivates the

present study.

1.2 Literature Review

In this section, a brief overview of the background and existing works relevant
to the current study is provided. The key objective is to demonstrate the sequence of
historical development in this special area and, more importantly, to indicate the gap

of knowledge and originality of the current work. Results from extensive literature



survey are organized in two separate subsections regarding to their main focus. First,
works on development of boundary integral equation methods are intensively
explored and then various studies on influence of electric boundary conditions on

fracture behavior are discussed.

1.2.1 Boundary integral equation methods (BIEMSs)

It is well-known that the conventional boundary integral equation for the
generalized displacement (i.e. the elastic displacement and the electric potential) is
efficient only for treatment of bodies containing no crack. This is due to the fact that
the integral equation for the generalized displacement, when applied to cracks, is
mathematically degenerate. Complete information of the generalized surface traction
(i.e. traction and surface electric charge) is lost as a consequence of geometrically
coincident crack surfaces. Nevertheless, such equation was still employed by Sanz et
al. (2005) along with the domain decomposition technique to model cracks in three-
dimensional piezoelectric media. The domain decomposition technique was utilized to
partition the domain into several parts along the crack surfaces to circumvent the
degenerate problem. Unfortunately, introduction of fictitious interfaces may generates
a vast number of extra unknowns and, more importantly, such partition is impractical
for multiple and nonplanar cracks (Davi and Milazzo, 2001; Groh and Kuna, 2005;
Wippler and Kuna, 2007).

An alternative to handle this mathematical degeneracy is to exploit a boundary
integral equation for the generalized traction to model cracks (Pan, 1999; Chen,
2003a; Chen, 2003b; Qin and Noda, 2004; Qin et al., 2007). Pan (1999) proposed a
single-domain-based boundary element method for analysis of cracks in two-
dimensional piezoelectric media. In his development, an extended strongly singular
displacement integral equation is applied to the outer boundary of the domain
(excluding the crack surface) while an extended hypersingular traction integral
equation is applied to the crack surface. Chen (2003a) derived a hypersingular
generalized surface traction boundary integral equation for cracks in three-
dimensional infinite media and, later, Chen (2003b) used such integral equation to
implement a hypersingular boundary element method to investigate cracks of various

configurations. Qin and Noda (2004) developed the Green’s functions and the



hypersingular generalized surface traction integral equation for cracks in three-
dimensional transversely isotropic piezoelectric infinite media. However, no
numerical implementation of the integral equation was presented in their work. Later,
Qin et al. (2007) utilized the integral equation from Qin and Noda (2004) to establish
a hypersingular boundary element method and used such technique to compute stress
and electric intensity factors for isolated cracks. While BIEMs mentioned above can
overcome the degeneracy problem induced by the presence of cracks, the generalized
surface traction boundary integral equation employed is still hypersingular. Presence
of hypersingular kernels in such integrals poses several difficulties including
interpretation of their values, numerical evaluation and the strong continuity
requirement on the boundary data (Martin and Rizzo, 1996; Chen, 2003b; Qin et al.,
2007).

To circumvent such key drawback, various regularization techniques have
been proposed to reduce the strength of singularity of kernels appearing in the
boundary integral equations before used in the numerical implementation. Many
forms of regularized boundary integral equations were derived within the context of
cracks in elastic media; for instance, the regularization from hypersingular to strongly
singular integral equations was carried out successfully by Bui (1977), Weaver (1977)
and Sladek and Sladek (1982), and the completely regularized integral equations

containing only weakly singular kernel of ©(1/r) were extensively investigated by

several researchers such as Gu and Yew (1988), Xu and Ortiz (1993), Li and Mear
(1998), and Rungamornrat and Mear (2008a). It can be emphasized that the latter type
of singularity-reduced integral equations are attractive and to be sought in the present
study since the presence of weakly singular kernels in all involved integrals renders
their values existing in an ordinary sense, requires much simpler numerical quadrature
and, in addition, alleviates the continuity requirement of boundary data for the
integrals to be valid. The last feature allows continuous interpolations to be employed
in the approximation of primary unknowns on the boundary. Such weakly singular
integral equations forms the basis for the development of a well known BIEM called a
weakly singular symmetric Galerkin boundary element method (SGBEM) for analysis
of cracks (Li et al., 1998; Frangi et al., 2002; Rungamornrat and Mear, 2008b).



While the regularized boundary integral equations and the weakly singular
SGBEM have been extensively investigated in the context of linear elastic media,
relatively few studies relevant to fracture modeling in piezoelectric media have been
found. Recently, Rungamornrat and Mear (2008c) established a weakly singular,
weak-form generalized surface traction integral equation for cracks in three-
dimensional, generally anisotropic, linear piezoelectric media and used such equation
to implement a weakly singular SGBEM to solve cracks of various geometries and
under different loading conditions. However, their development is still restricted to
isolated cracks in an infinite piezoelectric medium. Most recently, Solis et al. (2009)
established the generalized displacement and generalized surface traction integral
equations for treatment of cracks in linear piezoelectric finite domains. In their
formulation, the subtraction technique was employed to regularize both the boundary
integral equations and they claimed that the resulting integral equations are
completely regularized. However, from the careful mathematical consideration, both

integral equations still require the boundary data to be of the type C““ for the

integrals to be valid. This strong continuity requirement must be satisfied either by the
use of C' elements or by collocating the integral equations at interior points. Use of

C' elements in two dimensions is computationally inefficient while the significant
drawback of collocating in the interior is that the interpolation is discontinuous along
the element inter-boundary. In addition, their development was restricted only to a
specific class of piezoelectric materials called transversely isotropic piezoelectric
materials. On the basis of an extensive literature survey, work towards the
development of weakly singular SGBEM capable of modeling cracks in three-
dimensional, piezoelectric finite bodies has not been found and thus deserves a

rigorous investigation.

1.2.2 Influence of electrical boundary conditions

One of the most challenges in studying fracture mechanics of piezoelectric
media, besides to determine the electroelastic fields around the fracture front in
materials that exhibit fully mechanical and electrical coupling effect as well as strongly

anisotropic behavior, is to appropriately model electrical boundary conditions on the



crack surface. This issue not only increases the complication in analysis of crack in
piezoelectric materials but also become more interested to many researchers (Xu and
Rajapakse, 2001; Wang and Jiang, 2002; Wang and Jiang, 2004; Li and Lee, 2004;
Chiang and Weng, 2007).

According to various earlier studies (Motola and Banks-Sills, 2009; Chen and
Lim, 2005; Nam and Watanabe, 2008), several types of electrical boundary conditions
(e.g. electrically permeable boundary condition, electrically impermeable boundary
condition, electrically semi-permeable boundary condition, Landis-type boundary
condition proposed by Landis (2004), etc.) have been employed and discussed. Each
type of electrical boundary conditions has their own characteristics and is applicable
to and suitable for different situations due to the underlying assumptions and
simplifications (Parton, 1976; Deeg, 1980; Hao and Shen, 1994; Ou and Chen, 2003;
McMeeking, 2004; Landis, 2004). Consequently, the electro-mechanical behavior and
electroelastic field of a cracked piezoelectric material are completely different based
on the electrical boundary conditions adopted at the crack surfaces. Therefore, the
selection of electrical boundary conditions, which represent more realistic fracture
behavior of piezoelectric cracked media, is very important in this research area.
However, understanding of the fracture behavior of piezoelectric cracked bodies
under each type of electrical boundary conditions is a prerequisite.

The electrically permeable boundary condition was originally proposed by
Parton (1976). For this particular boundary condition, both the electric potential and
the electric induction normal to the crack surface are continuous across the crack
surface. This assumption implies that there is no jump of the electric potential across
the crack surfaces, or in the other word, there is no electric potential drop across the
crack surfaces. However, as discussed by Suo et al. (1992), the permeable assumption
cannot be represented a realistic crack. Because the medium inside the crack gap (e.g.
air) has the permittivity much lower than the piezoelectric solid and, as a result, the
crack occurs in the piezoelectric media may be considered as a low capacitance
medium and it should cause the electric potential drop across the crack surfaces. Such
discussion is in agreement with the work of Schneider et al. (2003), who performed the
experimental studies for investigating an indentation crack embedded in a poled PZT

ceramic and found that there is an electric potential drop across the upper and lower



crack faces. Nevertheless, in some cases, this boundary condition is an acceptable
model. As pointed out by Ou and Chen (2007), the permeable boundary condition was
a reasonable assumption when the crack opening is sufficiently small (i.e. sharp crack
or slit crack). Many investigators employed such electrical boundary condition to
investigate simple cracks in an infinite domain under remote mechanical and electric
loadings (Kogan et al., 1996; Chen and Lim, 2005). Similar results were also reported;
in particular, for a penny-shaped crack under applied remote uniform tensile stresses
and electric induction, the mode-1 stress intensity factor depends only on the
mechanical loading whereas the electric intensity factor is independent of the electric
loading but depends primarily on both the mechanical loading and material properties.
Another simple type of electrical boundary conditions called “electrically
impermeable boundary condition” was utilized by Deeg (1980). For this case, the
electric induction normal to the crack surface was assumed to identically vanish on
both sides of the crack surface, whereas the electric potential was unknown a priori.
However, Gao and Fan (1999) and Ou and Chen (2003) indicated that the
impermeable boundary conditions are not well-suited for modeling real cracks since
such conditions are physically unreasonable and can leads to a false prediction of the
singularity. In addition, several investigators pointed out that the modeling based on
the impermeable boundary conditions may lead to erroneous results and conclusions
(Dunn, 1994; Sosa and Khutoryansky, 1996; McMeeking, 1999; McMeeking, 2001).
Nevertheless, the impermeable boundary condition is still valid when the crack
opening is sufficiently large as indicated by Pak (1992) and McMeeking (2004). Due
to its simplicity, this assumption has widely been used in the modeling either by
analytical approaches or numerical techniques (Park and Sun, 1995; Chen et al., 2000;
Jiang and Sun, 2001; Sanz et al., 2005; Qin et al., 2007; Rungamornrat and Mear,
2008c; Solis et al., 2009). Extensive results obtained for a straight crack and a penny-
shape crack in two-dimensional and three-dimensional infinite media revealed the
same conclusion that under the remote uniform tensile stress and electric induction,
the mode-I stress intensity factor depends only on the magnitude of the applied
mechanical load (identical to the permeable case). However, the electric intensity
factor, for this particular type of electrical boundary condition, is independent of both



the material properties and the mechanical load but depends strongly on the
magnitude of the electric load (opposite to the permeable case).

Since the medium inside the opened crack has non-zero permittivity and the
above two conditions ignore the contribution of such medium, Hao and Shen (1994)
proposed a new type of electrical boundary conditions by incorporating the
permittivity of the medium within the crack opening. In this case, the normal
component of the electric induction at the crack surface depends on the jump of
mechanical displacement, the jump of electric potential, and the permittivity of the
medium inside the crack. This assumption is known as either Hao&Shen-type
boundary condition or electrically semi-permeable boundary condition. It is well
known that the impermeable and permeable conditions are two extreme cases of the
semi-permeable assumption. By assuming the dielectric constant within the crack
vanishes, the semi-permeable condition can be reduced directly to the impermeable
condition. While the permeable assumption is equivalent to assuming that the jump of
mechanical displacement disappears, this implies that the upper and lower crack
surfaces are always in contact or, equivalently, the crack is always closed.
Consequently, Ou and Chen (2003) pointed out that the permeable boundary
condition can only be used along with nonzero mechanical traction boundary
conditions on the crack surfaces. In addition, Ou and Chen (2003) also concluded that
the electrical boundary condition proposed by Hao and Shen (1994) is physically
sound since the interaction between the media present within the crack gap and the
crack surface is treated. Such electrical boundary condition has later gained
significant attentions and extensively been employed by several investigators to study
cracks in piezoelectric media (Xu and Rajapakse, 2001; Wang and Jiang, 2002; Wang
and Jiang, 2004; Li and Lee, 2004; Chiang and Weng, 2007). It was also reported that
under remote uniform tensile stress and electric induction, the mode-I stress intensity
factor of a penny-shaped crack depends only on the magnitude of the applied
mechanical load and such results are identical to those of both permeable and
impermeable boundary conditions. However, the electric intensity factor under the
semi-permeable boundary condition is different from that for permeable and

impermeable boundary conditions. The electric intensity factor of semi-permeable



cracks depends on four parameters such as mechanical loading, electric loading,
material properties and the dielectric constant of the medium inside the crack gap.

Since the permittivity of the medium inside the crack gap is considered, the
semi-permeable cracks seem to represent the more realistic crack and there is no need
another type of electrical boundary conditions. However, McMeeking (2004)
examined the energy release rate for a Griffith crack using the Hao&Shen-type
boundary condition along with the mechanical traction free boundary conditions. He
reported that the total energy release rate is not equivalent to the crack tip energy
release rate. To resolve such conflict, Landis (2004) proposed a modified Hao&Shen-
type boundary condition by adding extra traction on the crack surface. Such nonzero
mechanical traction resulted from the consideration of energetic consistency condition
and was directly related to the electric field in the crack gap. Besides the nonlinearity
posed by such boundary condition, Landis (2004) was able to prove that the total
energy release rate is equivalent to the crack tip energy release rate for a Griffith
crack model. Recently, Li et al. (2011) pointed out that the mode-I stress intensity
factor of a penny-shaped crack under Landis-type cracks depends on both the electric
loading and the mechanical loading. Such results were different from those associated
with the former three boundary conditions (i.e. permeable, impermeable and semi-
permeable boundary conditions) where the mode-1 stress intensity factor depends only
on the mechanical loading but is independent of the electric loading. Moreover, Li
and Chen (2008) and Li et al. (2011) also indicated that the non-zero mechanical
traction, which is unknown a priori, tend to pull the upper and lower crack surfaces
together. This finding is in agreement with the work of Motola and Banks-Sills
(2009).

Moreover, many useful results from various investigations of the influence of
different types of electrical boundary conditions can also be summarized as follows.
For two-dimensional boundary value problems, Xu and Rajapakse (2001) studied an
elliptical void of arbitrary orientations in infinite media and were able to retrieve a
straight crack as its special limiting case. Results from their study revealed that when
a crack is not parallel to the poling direction of a piezoelectric material and subjected
to a given remote uniaxial stress and varying remote electric field, the electric

intensity factors for permeable and semi-permeable cases are nearly identical. Wang



10

and Jiang (2002) found that for a given positive electric field, the electric intensity
factor for the semi-permeable case varies from that for the permeable condition to that
for the impermeable condition as the applied positive mechanical load increases.
Moreover, Wang and Jiang (2004) pointed out that under high tensile mechanical
loads and the poling direction is perpendicular to the crack surface, the electric
intensity factor for the semi-permeable and permeable cases are not identical. In
addition, for the applied positive electric field and the poling direction is
perpendicular to the crack surface, the impermeable and permeable conditions
constitute the upper and lower bound of the semi-permeable condition, respectively.
Conversely, if the sign of the applied electric field is reversed, the impermeable and
permeable conditions become lower and upper bounds of the semi-permeable
condition, respectively.

For three-dimensional boundary value problems, Li and Lee (2004)
investigated a penny-shaped crack in transversely isotropic piezoelectric infinite media
for various types of electrical boundary conditions. Results from their study agreed
with those by Wang and Jiang (2002) and Wang and Jiang (2004). Later, the same
problem was reexamined by Chiang and Weng (2007). They proposed a critical state
for (applied remote) both positive and negative electric inductions. The critical state
consists of the critical stress and the applied remote electric inductions. Under positive
remote electric induction, the critical state depends on material properties (the material
properties for the four type of PZT were also given by Chiang and Weng, 2007). In
addition, the critical stress is computed from applied remote positive electric induction
divided by material properties. Moreover, they reported that when remote tensile stress
is less than the critical stress, the electric intensity factor of the impermeable and
permeable are upper bound and lower bound of semi-permeable boundary condition,
respectively. On the other hand, when the remote tensile stress is greater than the
critical stress, the electric intensity factor of impermeable and permeable cases are
lower bound and upper bound of the semi-permeable case, respectively. Under
negative remote electric induction, the critical state is at the origin and independent of
the material properties.

As discussed above, most of previous studies have focused primarily on planar

cracks (i.e. a penny-shaped crack and a straight crack) embedded in piezoelectric
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media. A question arises as what is the fracture behavior of non-planar cracks or
curvilinear cracks in such materials. Recently, Rungamornrat and Mear (2008c)
successfully developed a weakly singular, symmetric Galerkin boundary element
method (SGBEM) for analyzing an arbitrary shaped crack, in a three-dimensional,
generally anisotropic, linear piezoelectric infinite media. They found that, in the case
of spherical cap crack, the mechanical loading can cause the mode-1 and mode-11 stress
intensity factors, including, the electric intensity factor and vice versa. These results
are in contrast with those found in the case of a planar crack embedded in an infinite
domain under impermeable boundary condition where the mechanical and electrical
loadings are uncoupled. However, the work of Rungamornrat and Mear (2008c) was
still restricted to cracks subjected to an electrically impermeable boundary condition.

Moreover, the investigation of three-dimensional, piezoelectric finite cracked
body conducted by Sanz et al. (2005) and Solis et al. (2009) revealed that the uniform
mechanical traction loading can cause the mode-1 stress intensity factor and the electric
intensity factor and vice versa. Again, these results are different from that found in the
case of a planar crack embedded in an unbounded domain under the impermeable
boundary condition. Again, the work of Sanz et al. (2005) and Solis et al. (2009) are
still limited only to impermeable cracks.

The limitation of the work of Rungamornrat and Mear (2008c), Sanz et al.
(2005) and Solis et al. (2009) motivates the current study to explore the fracture
behavior of piezoelectric infinite and finite cracked media under several types of
electrical boundary conditions (i.e. electrically permeable boundary condition,
electrically impermeable boundary condition, electrically semi-permeable boundary

condition and Landis-type boundary condition).

1.3 Research Objectives

1) Develop mathematical models and efficient computational techniques for
analysis of cracks in piezoelectric media
2) Investigate the influence of various electrical boundary conditions on the

intensity factors along the crack front



1.4 Scope

1)

2)

3)

12

The development is carried out within a context of three-dimensional
boundary value problems including both infinite and finite media.
Piezoelectric materials to be treated are homogeneous, linear and generally
anisotropic.

Four types of electrical boundary conditions, (i) electrically permeable, (ii)
electrically impermeable, (iii) electrically semi-permeable and (iv) Landis-

type boundary conditions, are investigated.

1.5 Research Significance

1)

2)

Accurate computational strategies such as the one developed in the current
study could be beneficial through their use in supporting careful
experimental studies and as a tool for analysis and simulation of fracture
phenomena of piezoelectric media.

Gain an insight into the behavior of cracks including fracture information

along the crack front under various electrical boundary conditions.

1.6 Research Methodology

1)

2)

A pair of completely regularized integral equations for the generalized
displacement and the generalized surface traction is established by using a
systematic regularization technique (i.e., an integration by parts via
Stokes’ theorem along with two special decompositions of involved
kernels), which was proposed by Rungamornrat and Mear (2008c).
Subsequently, this set of boundary integral equations is utilized to
formulate a set of governing equations to treat cracks in three-dimensional,
generally anisotropic, piezoelectric finite and infinite media.

A set of symmetric weak-form boundary integral equations, which is
developed in the previous step, along with certain numerical treatments
(e.g., discretization, numerical integration of double surface integrals and
evaluation of weakly singular kernels) leads to a system of linear algebraic

equations.



3)

4)
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The resulting system of linear algebraic equations is sufficient for solving
the unknown degrees of freedom (i.e. the generalized traction and
generalized displacement on the ordinary boundary of body, and the jump
of generalized displacement along the crack front) for the impermeable
and permeable cracks. However, such system of linear equations is not
sufficient to determine all unknowns for semi-permeable and Landis-type
cracks. As a result, additional equations associated with the electrical
boundary conditions on the crack surface are enforced by using the weight
residual technique. Finally, the system of linear equations and the resulting
non-linear additional conditions form a complete set of equations to solve
for all unknowns. Newton-Raphson method is utilized to obtain the
numerical solution of such non-linear equations.

Once the unknown data on the boundary are obtained for any types of
electrical boundary conditions, the stress intensity factors and the electric
intensity factor are computed from the nodal data along the crack front

using the special formula proposed by Rungamornrat and Mear (2008c).



CHAPTER 11

THEORETICAL CONSIDERATIONS

This chapter first presents a set of basic field equations governing a body
constituting a linear piezoelectric material. Standard boundary integral relations for
the generalized displacement and generalized stress are then obtained for cracks in a
piezoelectric medium. Such integral relations are employed along with a systematic
regularization procedure to derive a pair of completely regularized boundary integral
equations for the generalized displacement and generalized surface traction.
Subsequently, the symmetric formulation is established as a basis for the development
of a symmetric Galerkin boundary element method (SGBEM) and other involved
numerical techniques. Finally, the treatment of remote conditions using the principle

of superposition is discussed.

2.1 Basic Equations

In the absence of body forces and body electric charges, a set of field
equations governing a linear piezoelectric body, i.e. (i) conservation of forces and
electric charges, (i) strain-displacement and electric field-electric potential relations

and (iii) constitutive model for linear piezoelectricity, can be expressed as

oo, oD,
—+=0; —=0 2.1
OX, ox,
1
g; = E(Mi’j +u;,) E =-¢, (2.2)
0, = Eijkmgkm + emij¢,m; D, =ey, 8, =K, P, (2:3)
where o, ¢,, u,, D, and E, are components of the stress tensor, strain tensor,

i S

displacement vector, electric induction vector and electric field, respectively; ¢ is the

electric potential; £, are elastic constants; e

mij

are piezoelectric constants; and «,
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are dielectric permittivities. For brevity and convenience in the presentation of results

derived further, the field equations (2.1)-(2.3) can be compressed in a concise form as

oo,

i 2.4

: (2.4)
ou

0y = Eijn P £ (2.5)

m

where o, (i€{l,2,3} and Je{l1,2,3,4}) is termed as the “generalized stress”
defined such that o, are components of the stress tensor and o, = D, are components
of the electric induction vector; u, (K 6{1,2,3,4}) is termed as the “generalized
displacement” defined such that u, are components of the displacement vector and
u, =¢ is the electric potential; and £, (J,K €{1,2,3,4}) which is termed as the

“generalized moduli” is defined such that E,  represents the elastic constants,

ijkm

E

ij4m

=F

4. Tepresents the piezoelectric constant and -£,,,, =—FE, ,,; represents the
dielectric permittivities. Note that from now to what follows, lower case indices range
from 1 to 3 whereas upper case indices range from 1 to 4, and repeated indices are
taken to imply summation over the range of those indices. Further, the “generalized

surface traction” ¢, at any point on a sufficiently smooth surface is defined by
t, =o,n, where n, denotes an outward unit normal to the surface. Consistent with
above notations, ¢, =o,n, represents components of the traction whereas ¢, =o,,n,

represents the surface electric charge.

Besides the basic field equations presented above, the boundary conditions
(BCs) on the outer boundary and the crack surfaces, i.e. the mechanical and the
electrical conditions, are essential information that must properly be defined in the
analysis of cracks in piezoelectric media. Since such information, especially the
boundary conditions on the crack surfaces, has significant influence on both the
behavior and essential information present along the crack front. For this study, the
uncoupled mechanical-electrical BCs are considered at the outer boundary, while the

boundary conditions at the crack surfaces can be classified into two groups, one
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associated with uncoupled mechanical-electrical BCs (i.e. permeable and
impermeable assumptions) and the other corresponding to fully coupled mechanical-
electrical BCs (e.g. semi-permeable and Landis assumptions). Four types of cracks

focused in this study are summarized below.

(1) Impermeable cracks: ¢, , ¢, are prescribed whereas Au, are unknowns.

(2) Permeable cracks: ¢, ¢, are prescribed, Au, =0 whereas Au,, ¢, are unknowns.

1

.(3) Semi-permeable cracks: ¢, ¢, are prescribed, whereas Au,, , are unknowns and

satisfy ¢, Aun, = K Au, .

(4) Landis-type cracks: ¢ t

tangent > “tangent

are prescribed, whereas Au,, t

normal >

+
t, are

unknowns and satisfy ¢ Aun, =k Au,, o, =1/2)x (Au,)* [(Aun,)’ .

where ¢, and ¢, denote the generalized tractions on the upper and lower crack
surfaces, respectively, Au, denote the jump of the generalized displacement across
the crack surface, x, is the dielectric permittivity of the medium inside the crack; and

t: and t; denote the traction normal and tangent to the upper crack surface.

normal tangent

2.2 Standard Integral relations

Consider a linear, homogeneous, generally anisotropic piezoelectric finite
body, denoted by Q, containing a crack as shown schematically in Fig. 2.1. The

ordinary boundary of the body, denoted by S, can be decomposed into two surfaces:
a surface S, on which the generalized displacement is prescribed and a (compliment)
surface S, on which the generalized traction is prescribed. The crack surface consists
of the upper and the lower crack surfaces, denoted by S’ and S ; it is sufficient and
standard to characterize the crack geometry only by a single surface S.. For

convenience in the following development, a surface S=S5, 6 US, is defined as the

total boundary of the domain. In addition to the absence of body forces and body
electric charges, all involved boundaries including the crack surface are assumed to be
piecewise smooth; i.e. the outward unit normal is piecewise well-defined. In the

present study, the prescribed generalized traction is self equilibrated, i.e.,
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t'=—t =t,_where t" and t  are generalized tractions on the upper and lower crack

surfaces respectively, and t_ is a given function.

S, =S ,US,

Fig. 2.1. Schematic of a linear piezoelectric body containing a crack.

By generalizing a conventional Somigliana’s identity for linear elasticity to a

linear piezoelectric body containing a crack, it leads to
up(X) = f Uy €—x),(€)dS(8) - J Sy E=x)n,(E)v,(8)dS (&) (2.6)

where x is any interior point, U7} (€ —x) is the generalized displacement fundamental

solution, S, (§—x) is the corresponding generalized stress (sometimes called the
generalized stress fundamental solution), and
uJ (E,:)’ g € So

(&) = | 2.7
vE {u;(&)—u;@; ges @7

The relation is in fact the boundary integral relation of the generalized displacement at
any interior point X in terms of data on the entire boundary including the crack

surface. It is worth noting that the integral relation (2.6) merely involves a single

crack surface S’ due to the continuity of the fundamental solutions and geometric
coincidence of both crack surfaces S and S, and that the fundamental solutions

UP@E-x) and S/ (&-x) are singular only at &=x of order O(1/r) and O(1/+%)

where r :|§—x , respectively. The explicit expression of the fundamental solution

U7 (£-x), obtained by solving a system of partial differential equations via the
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Radon transform method (Bacon et al., 1978; Deans, 1983; Gel’fand et al., 1966;
Helganson, 1999), is given by

UrE-x)= 8;2 4) (z,z); ds(z) (2.8)

zr=0

where z is a unit vector, (z,z),, =z,E,,,z,, (z,z)" is the inverse of (z, z)and the
line integral is to be evaluated over a unit circle on the plane defined by z-r=0. The
explicit expression of the fundamental solution S}, (§—x) is somewhat lengthy and

while not presented here, it can be obtained by a direct substitution of (2.8) into (2.5).
Note, in addition, that the boundary integral relation (2.6) involves both the prescribed
and unknown data on the boundary and it can only be employed to determine the
generalized displacement at any interior point once all unknown quantities on the
boundary are solved.

Another boundary integral relation of equal importance to (2.6) is the
boundary integral relation for the generalized stress. This relation can readily be
obtained by directly substituting (2.6) into the constitutive relation (2.5). The final

result is given by

0, (¥) == [ S5 (= X0, (B)dS @) + [T G =%, (B)v, (©)dS (@) (2.9)
s, S

where the kernel =7 (§—x) is defined, in terms of the generalized stress fundamental

solution and the generalized moduli, by

8Si]; €-x)

fo E-x)= ElKPq afq

(2.10)

Note that the function X% (§—x) is singular only at &=x of order O(1//). Similar to

the integral relation for the generalized displacement, (2.9) can be used to determine
the generalized stress at any interior point if all data on the entire boundary are

known.
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Within the context of boundary integral equation methods, the boundary
integral relations (2.6) and (2.9) constitute a basis for the development of boundary
integral equations governing the primary unknowns on the boundary. It is important
to note that the boundary integral equations for the generalized displacement and the
generalized surface traction resulting directly from (2.6) and (2.9) via a limit process
are strongly singular and hypersingular, respectively. As discussed in many previous
investigations (Martin and Rizzo, 1996; Chen, 2003b; Qin ef al., 2007), treatment of
such integrals cannot be achieved through a standard procedure but it requires special
treatment not only on the numerical quadrature but also on the continuity requirement
of the boundary data. As one key objective of the current study, a set of singularity-
reduced, boundary integral equations well-suited for the numerical treatment are

sought.

2.3 Completely Regularized Integral Equations

To establish a pair of singularity-reduced boundary integral equations for the
generalized displacement and the generalized surface traction, a systematic
regularization technique analogous to that by Rungamornrat and Mear (2008a) is
employed. Since the previous work is restricted only to linear elasticity boundary
value problems, a proper generalization must be incorporated in order to treat linear
piezoelectricity. The crucial ingredients that aid such successful regularization are the

following two special decompositions proposed by Rungamornrat and Mear (2008c):

Sii(é—X)=Hi’}(§—X)+8ismm ) (2.11)
o0&,

SEE-X)=—E,,0(E—X)+g, ig iC’K(é';—x) (2.12)

iJ iJKI ism a fs Irt a é:r mJ .

where &,_ 1s a standard alternating symbol, 6(§—x) is a Dirac-delta distribution

wsm

centered at x, G, and C¥ are unknown singular functions to be determined, and

H! (£—x) is given, independent of the generalized elastic moduli, by
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S.(¢—x
HS(%—X)=—% (2.13)

with J,, denoting a generalized Kronecker delta symbol.

Existence of the decompositions (2.11) and (2.12) results from the fact that

€6 .9

S"(E—x)— H(§—x) is divergence free with respect to the index “;” and contains no
source and that X\ (E—x)+E,,,6(E—x) is divergence free with respect to both

€6 .9

indices “i” and

(1A
/

and contains no source (also see extensive discussion in the work
of Rungamornrat and Mear, 2008a). Another important feature of the decompositions

(2.11) and (2.12) is that both systems of differential equations admit an infinite

number of solutions for the functions G., and CZ due to the curl operators

£,00)/0&, and &,,0(-)/0¢, . In particular, if G, and C%, are given solutions, it can

wsm

readily be verified that G?, +oN? /0%, and CX

mJ mJ

+0OM7Y /o€, +0P' /o€, for arbitrary,
sufficiently smooth functions { NJ , M} , P} } are also valid solutions.
A particular solution of G/, and C, can be constructed by solving a system

of partial differential equations (2.11) and (2.12). A method of Radon transform
similar to that employed by Rungamornrat and Mear (2008a, 2008c¢) is applied and

the final solution are given explicitly in terms of a line integral by

1 ,
Gn’j,(g—x)=&z_2r(gamea,Dc) $ 2,2.(2,2),,ds(z) (2.14)
zr=0
‘ 1 s _
C*(E—x) = —n (A% cﬁ z,2,(z.z),, ds(z) (2.15)
zr=0

with material-dependent constants 4" given by

. 1
Arif];]{/ = 8Pam € pbt (EbKNdEaJMs - Z EaJKbEdNMs j » (2- 1 6)

And, again, the line integral is to be evaluated over a unit circle on the plane defined

by z-r=0. It is evident that both the functions G., and CJ are singular only at

& =x of order O(1/r).
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2.3.1 Weakly singular integral equation for generalized displacement

To obtain a weakly singular, weak-form generalized displacement integral
equation, it can be proceeded as follows. First, the special decomposition (2.11) is
substituted into the boundary integral relation (2.6) and then the result is integrated by
part via Stokes’ theorem. It leads to an alternative, singularity-reduced boundary

integral relation for the generalized displacement:

u,(x) = [ U7 &=t (©)dS @) + [ G, &= %)D,v, (E)dS ()

(2.17)
- [HE=0n @), ©)dsE)
N
where D, is a surface differential operator defined by
Dm = nigism i ¢ (218)
0g,

By taking limit x >y €S, of (2.17), we obtain a boundary integral equation for the

generalized displacement as

cup(y)= [U] E=y)t, ©)dS @) + [ Gl (E=y)D,v, (€)dS()
> N (2.19)
[ H] E-ym @), ©)dsE)

where c(y)=1/2 if the surface is sufficiently smooth at y (i.e. the unit normal n is
well-defined at y ) otherwise c(y) € (0,1) and u,(y) is the generalized displacement
boundary data. Upon multiplying (2.19) by a test function 7, and then integrating the
result over the ordinary boundary S , we obtain a weakly-singular, weak-form

boundary integral equation for the generalized displacement as
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1

> j (V) (Y)dS(y) = j 5 (y) j UJ (E—y), (©)dSE)dS(y)

+Irp(y>j " G- ¥)D,0,(DdS@dSY) - (2.20)

- j F W[ HY G- yn @), (©)dS @S (y)

where the constant ¢(y) simply reduces to 1/2 due to that the ordinary boundary of
the body is piecewise smooth; a set of points y where the unit normal n is not well-
defined is of measure zero. It is worth noting that the integral equation (2.20) contain

only weakly singular kernels {U?, G, H'n.} of O(1/r). Verification of the weakly

singular nature of the product H.n, can be found in the work of Xiao (1998).

2.3.2 Weakly singular integral equation for generalized surface traction

To obtain a weakly singular, weak-form boundary integral equation for the
generalized surface traction, it can be proceeded as follows. First, the special
decomposition (2.11) and (2.12) are substituted into the boundary integral relation
(2.9) and the result is then integrated by part via Stokes’ theorem. The final

singularity-reduced boundary integral relation for the generalized stress takes the form

o (X) = f G,y (E=x)D,v,(8)dS (&) + I Gy (8—x)1,(8)dS(E)

rLs S, (2.21)
j (&—x)t,(&)dS(E)

lrt ax

where the translational property of the kernels G/, and CZ%, ie.

mJ >
G (E—x)/0E =-0G, (E—x)/0x, and OCK (§—x)/0&E =-0CK (E—x)/0x,, has
been employed. Next, by forming the product n,(y)o,(x) where y €S and then

taking a limit X — y, a boundary integral equation for the generalized surface traction

1s obtained as
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P (¥) =D, [ ClS (E=Y)D,0,(©)dSE)+ D, [ G (- y)t, ()dS(E)
* * (2.22)
~ [ m W H; &=y, (©)dS @)

where p(y)=1/2 if the surface is sufficiently smooth at y otherwise p(y) e (0,1)
and ¢, (y) is given by

\ e (¥); yes,
£ (y) = ) 2.23
«(¥) {2% yes: (2.23)

Upon multiplying (2.22) by a test function

ue(y),yes,

! L (2.24)
Au, (y), yeS,

U (Y)={

integrating the result over the total boundary S, and then performing an integration
by parts via Stoke’s theorem, a weakly singular, weak-form integral equation for the

generalized surface traction is obtained as

—% [ B dS(y) = [ Do, ()] C1f &~ y)D, v, €)dS©)dS(y)
+[ Do) G G=yX, (©)dSE)dS(y) (2.25)
+ [0, [ Hi G=ym ()1, (B)dS @S (y)

Again, the fact that the total boundary of the domain is piecewise smooth has been

utilized to reduce the constant p(y) to 1/2. It can also be noted that the integral

equation (2.25) contains only weakly singular kernels { CX , G, H;n,} of O(1/r).
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2.4 Symmetric Formulation

A system of governing integral equations for the piezoelectric finite body
containing crack is obtained as follows: (i) applying the weakly singular, weak-form

integral equations for the generalized displacement (2.20) to the surface S, with
7,=0 on S ; (ii) applying the weakly singular, weak-form integral equation for the
generalized surface traction (2.25) to the surface S, with 0, =0 on S, U S, and,

finally applying the weakly singular, weak-form integral equation for the generalized

surface traction (2.25) to the crack surface S with 0, =0 on S, U S, . The resulting

set of governing integral equations is given by

A, (£.6)+8, (Eu)+ B, (§,Au)= R (i)
B, (t,8)+6, (&) +6, (& Au) = R, (i) (2.26)
B, (t.A0)+ 6, (Ad,u)+ 8, (Ad,Au)=F, (Ai)

where the bi-linear integral operators ADQ, Bpo and 6,, (with P, Q € {u, ¢, c}) are

defined by

Ay (X.Y) = [ X (0) [ US G- )Y, (2)dS@)dS(y) 2.27)

Brg (X.Y) = [ X (v) [ G, €=Y)D, Y, ©)AS@)dS(y)

(2.28)
- [ X0 [ HE @-yn,@)Y, (©)dS@)dS(y)

o (X,Y)= [ DX () [ Clf €-y)D, Y, ©)dS©)dS(y) (2.29)

and the linear integral operators R, R, and R, are defined, in terms of the prescribed

data on the boundary, by

R(t)=7 (tu,)-A,(t.t,)-B,(tu,) (2.30)
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R, (i) =-F(ii.t,)- B, (t,.0) -6, (iLu,) 2.31)
R, (i) =27 (At )~ B, (t,,A0) -6, (Ad,u,) (2.32)
with

7 (X.Y) =%j X,(9Y,()dS () (2.33)

P

It is evident that the governing integral equations (2.26) are in a symmetric form, i.e.

"4%! (X’Y) = 4:4 (Y’ X) and ngt (X’Y) = L6” (Y’X)

Even though the above formulation is originally developed for the
piezoelectric finite domain, such formulation can be employed to solve the isolated

crack embedded in a piezoelectric infinite domain by setting S, =0 and the final form

is given by

. (Al Au) = 27 (Ad,t, ) (2.34)

It should be emphasized that the equation (2.34) is applicable to an isolated crack
embedded in a piezoelectric infinite domain which is free of the electro-elastic
loading at infinity and such situation can be obtained by using the principle of

superposition, which will be discussed in the following section.

2.5 Treatment of Remote Conditions

Consider a crack of arbitrary shape embedded in a piezoelectric infinite
medium that is subjected to the remote mechanical and electrical loading as shown in
Fig. 2.2(a). This original problem can be decomposed into two sub-problems by using
the superposition method: (a) a homogenous piezoelectric infinite body containing no
crack and subjected to the prescribed remote electromechanical loading and (b) a
piezoelectric infinite body containing crack and subjected to an appropriate loading at

the crack surface as shown in Figs 2.2(b) and 2.2(c), respectively.
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(b) (©)

Fig. 2.2. Decomposition of a crack in an infinite domain subjected to the loading at
infinity: (a) original problem, (b) a piezoelectric infinite body containing no crack and
subjected to the remote loading, and (c) a piezoelectric infinite body containing crack

and subjected to the appropriate loading at the crack surface.

From the method of superposition, it leads to

t,=t7+t, (2.35)
Au, = Au7 + Au, (2.36)

where ¢, and Au, are the generalized traction and the jump of the generalized

displacement associated with the original problem (a); ¢; and Au) are the
generalized traction and the jump of the generalized displacement due to the remote
loading associated with the problem (b); and ¢, and Au, are the appropriate

generalized traction and the jump of the generalized displacement due to the

appropriate loading associated with the problem (c).

For the impermeable assumption, the mechanical traction 7, and surface
electric charge ¢, are prescribed. By substituting ¢, =¢] and ¢ =o,n, into the

equation (2.35), the generalized traction ¢, for the impermeable crack is obtained as

t,=t;-on, (2.37)
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For the permeable assumption, the mechanical tractions ¢, are prescribed
whereas the jump of the electric potential Au, are equal to zero. By substituting
t;=t; and 7 = o, 'n; into the equation (2.35) and substituting Au, =0 and Au, =0

into the equation (2.36), the mechanical traction t; and the jump of the electric

potential Au, for the permeable crack are obtained as

{=1~arn (2.38)

J [/
A =0 (2.39)

For the semi-permeable assumption, the mechanical traction ¢, are prescribed
whereas the jump of the generalized displacement Au, and the surface electric charge
1, are unknown a priori and satisfy the condition #,Au;n; =« Au,. By substituting
t,=t7, t7 =o;n, t; =D/n, and ¢, =x,Au,/Aun, into the equation (2.35), the

mechanical traction t:. and the jump of the electric potential Au, for this particular

case are given by

t,=t; —oyn, (2.40)

g

A, = (t: +Di°°n[)Aujnj

(2.41a)
K

c

For convenience in the further development, the alternative expression of equation

(2.41a) is given by
Tcrack + Too Aun.
Au, = 7 2 )aun, (2.41b)
K,

c

where T;™* =1, represents the surface electric charge and 7;° = D”n, represent the

applied remote surface electric charge.
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For the Landis-type assumption, the condition #,Aun, =k Au, is still the

same as that for the semi-permeable crack, whereas the normal component of the

stress o, satisfies the condition o,, =(1/2)x,(Au,/Au,n, ) and the tangential

shear o0

components of the stress o are prescribed. By substituting the conditions
t,Au.n; =k, Au, and #;=D/n, into the equation (2.35), the jump of the electric

potential (Au, ) for the Landis-type cracks are given by

(t: + D[wn[)Aujnj

K

C

Au, = (2.42)

shear 0

And by substituting ¢, =0,,n,+0 s; and (7 =o;/n, into the equation (2.35), it

leads to

shear o

o,,n+0 s, =o,n +t, (2.43)

And by substituting the condition o,, =(1/2)x,(Au, /Au,n,)’ into equation (2.43), it

yields

2
1 Au shear ,o © &
EKC(Au:z ] n,+oc""s =orn +1, (2.44)

By using the equation (2.42) along with (2.44), the relation between the mechanical

tractions o’n, + tj. , the surface electric charge ¢, + D”’n, and the shear components of

shear ,0

the mechanical tractions o s; are given by

* © (t: + Diwni)z shear,0
tj+0'l.jnl.:Tnj+O' S; (2.45a)

c

Again, for convenience in the further development, the alternative expression of

equation (2.45a) is given by
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( T4cmck LT )2

2K

c

n,+T7 (2.45b)

crack o
T 4T =

* . .
where T} crack =1, represents the mechanical tractions, 7" =o;n, represents the

applied remote mechanical tractions, 7" =t, represents the surface electric charge,

shear ,0 s

T,” = D n, represents the applied remote surface electric charge and Tjs”@‘” =0 i

represents the shear components of the mechanical tractions.



CHAPTER III

NUMERICAL IMPLEMENTATIONS

A set of symmetric weak-form boundary integral equations (2.26), established
in the previous chapter, constitutes a basis for the development of a weakly singular
symmetric Galerkin boundary element method (SGBEM). This chapter briefly
summarizes components essential for implementing such well-known numerical
technique, e.g. discretization, numerical integration of double surface integrals,
evaluation of weakly singular kernels, solver for boundary conditions, and

determination of stress and electric intensity factors.

3.1 Discretization

A standard Galerkin approximation scheme is used to discretize the governing
integral equations (2.26). Because such integral equations contain only weakly

singular kernels of order (O(1/r), standard C°-interpolations are employed to

approximate the solution and test functions on both the ordinary boundary
(S, =S, wS,) and the majority of the crack surface S. . The special C*-interpolations

are employed to approximate the jump of the generalized displacement on the local
region near the crack front. Those special crack tip elements, which were proposed by
Rungamornrat and Mear (2008c), have two attractive features: (i) the shaped function
of these elements can capture the higher order approximation of asymptotic field
(capture the first three terms) and (ii) the degrees of freedoms of nodes along the
fracture front are directly related to the stress and electric intensity factors. It should
be emphasized that the first feature allows relatively large crack-tip elements to be
used along the crack front and the second feature provides a direct means to determine
the mixed-mode stress intensity factors and the electric intensity factor without

carrying extrapolations.
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Another task that requires a special care is associated with the treatment of
surface-breaking cracks; for this particular case, the crack surface is not embedded
entirely within the domain but intersects its ordinary boundary as shown
schematically in Fig.3.1(a). In the discretization, shape functions defined on certain
elements on the ordinary boundary that contain the vertex (a point where the crack
front intersects the ordinary boundary) and are adjacent to the crack-tip element (e.g.
elements A and B shown in Fig.3.1(b)) must be modified to ensure the continuity
across the element inter-boundary and the ability to represent constant and linear
functions. Such modification can be achieved by employing special shape functions
analogous to those proposed by Li et al. (1998).

crack front
vertex

Pl b
-

vertex

\/

Fig. 3.1. (@) Schematic of a body containing a surface-breaking crack and (b)
schematic of mesh in a local region surrounding the vertex. Element A and B are

adjacent to the crack-tip elements.
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By using the symmetric system of governing integral equations (2.26), along
with the discretization via Galerkin approximation, leads to a system of linear

algebraic equations for a piezoelectric finite domain containing crack is given by

Auu But Buc TB Rl
th C: C. |l Us|=|R, (3.1)
BIC C;l; CCC AU R3

where A, B, and C,, (with P, Qe {u,t,c}) correspond to the integral operators

A{DQ, %’PQ and €PQ, and where the column vectors R,, R, and R, correspond to the
integral operators X, &, and &;.

And by using the formulation (2.25) along with the discretization via Galerkin
approximation, a system of linear algebraic equations for an isolated crack embedded

in an infinite domain is given by

CAU+LT=0 (3.2)

where matrices C corresponds to double surface integrals, which involves the kernel
C! that is weakly singular of order 1/r; matrix L corresponds to a single surface

integral; AU is a vector of nodal quantities associated with the jump of the

generalized displacement (i.e. the jump of mechanical displacement
[AU, AU, AU3]T and the jump of the electric potential AU,), and T is a vector of

nodal quantities of the generalized traction, respectively.

The system of linear algebraic equation (3.1), which is developed for
analyzing a cracked piezoelectric finite body, and the equation (3.2), which is
established to solve an isolated crack embedded in an unbounded domain, are
sufficient to solve all unknowns for the impermeable and permeable cracks. However,
the semi-permeable and Landis-type cracks require additional equations due to extra
unknowns present on the crack surface. For semi-permeable cracks, by applying the
weight residual technique along with the equation (2.41b),

Au, = (TS +T.7)Au,n, /x, , on the entire crack surface. The resulting weak-from is

given by
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J w6V Au®n o®ds; [T4crack<j> +T4w<j)]
j wVpdS: AUl = S¢ (3.3)

s K

c

where Au{® and Aul are, respectively, the jump of the electric potential and the
jump of the mechanical displacement associated with the node k, n_ is the outward
unit normal vector on the crack surface, y, is the basis function associated with the
node i, T* and T,”" are, respectively, the surface electric charge on the crack
surface and the applied remote surface electric charge associated with the node j,

¢" is the basis function of these quantities {T,**” T} associated with the node
j, and ™ is the basis function of these quantities {Auik) Aurff)} associated with

the node k. It should be noted that the shape functions of {Auik) Aur‘n")} are the

special C°-interpolation functions for the elements located near the crack front and are
the standard C°-interpolation functions for the regular elements located the rest of the
crack surface. The alternative expression of the equation (3.3) can be written into

matrix form as follows

AAU, = N(AU,,AU,,AU,)T, (3.4)

where [N], =(1/x,) [ y"¢Pau®n oMds;, [A], = [wPp®ds;, [AU,], =Auf
ss ¢

and [T,] =[T*@+T W] 1t is seen that the unknown vectors AU,,

[AU, AU, AU?,]T and T, are coupled together. More specially, the jump of the

electric potential AU, is related to the jump of mechanical displacement

[AU, AU, AU3]T and the surface electric charge T, via the equation (3.4). Finally,

the system of linear algebraic equation (3.1), which is developed for piezoelectric
finite domain, and equation (3.2), which is established for an unbounded domain,
along with the equation (3.4) is sufficiently to solve the unknown vectors by using the

Newton-Raphson iterative scheme.
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For Landis-type cracks, two additional equations are required; the first one is
the same as that one for the semi-permeable cracks and the final form is given as
shown in equation (3.4). And another one is obtained by applying the weight residual

technique along with the equation (2.45b), the final weak-form is given by

i o( j crack(j 2 +
_[‘//()[n S, ku)¢(n] n,ds;
J’ wOg0ds? [Tnf“"c“” +T20) —Tnfhea"”] _ 5 (3.5)
. 2K

Se ¢

where T**0 and T*U are, respectively, the mechanical tractions on the crack

surface and the applied remote mechanical tractions associated with the node j, w"

is the basis function associated with the node i, n_ is the outward unit normal vector

m

on the crack surface and ¢'” is the basis function of these quantities

{Toeek) et qereek() () 7eerD associated with node j. The equation (3.5)

m

can be also written in matrix form as

A 0 O|[T| [M(T)] |To
0 A 0| T, |=M,(T,) || T, (3.6)
0 0 A|T,| |M(T)| [T,™"

where [Mm]i :_J‘W(i) [Tf(%“) +T4crack(j)¢(j>]2 n,ds; [A]ij — I‘/’(i)¢(j)d5§’

¢ s Sc

[T.], =[T**P] and [T ] = [y Og0ds; [T, T ]. It is seen that the
5

c

unknown vectors [T, T, T3]T and T, are coupled together. More specially, the

mechanical tractions [T, T, T3]T are related to the surface electric charge T, via

the equation (3.6). Finally, the system of linear algebraic equation (3.1) (or (3.2)),
along with the equation (3.4) and (3.6), is sufficiently to solve the unknown vectors
by using the Newton-Raphson iterative scheme. And this will be discussed in the

section 3.4.
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3.2 Numerical Integration

As be evident from (2.26), the governing equations involve two groups of
integrals: single surface integrals and double surface integrals. The integrand of
integrals in the first group involves the test functions and prescribed data and is,
therefore, non-singular. Numerical evaluation of such integrals can efficiently and
accurately be performed by standard Gaussian quadrature. In contrast, integrals in the
second group consume more computational cost due to that they involves double
surface integration and their integrand contains kernels that may generate singularity
or rapid variation behavior within the surface of integration. In general, integrals in
this group can further be classified into three different types: regular integrals,
weakly-singular integrals and nearly singular integrals.

The regular double surface integral is associated with an integral over a pair of
elements (resulting from the discretization) that are relatively remote (in comparison
with their characteristic dimension such as the size of elements). For this particular
case, the integrand is non-singular and exhibits only mild variation across the surface
of integration. Hence, such regular integrals can accurately and efficiently be
integrated by standard Gaussian quadrature.

The weakly singular double surface integral arises when it involves a pair of

coincident elements. The integrand of this particular integral is therefore singular of

O(1/r). While in principle this weakly singular integral exists in an ordinary sense, its

numerical evaluation still requires special care. It has been pointed out by Xiao (1998)
that this type of integrals can no longer be integrated efficiently by standard Gaussian
quadrature; a substantially large number of integration points is required to achieve a
reasonable level of accuracy. To circumvent such situation, a triangular polar
transformation is first employed to remove 1/r singularity and then a special family of
logarithmic transformations is applied to further alleviate the rapid variation of the
integrand that may be generated by the former transformation. The resulting integrand
is well-behaved and can accurately be integrated by standard Gaussian quadrature
with a reasonable number of integration points (also see details form Hayami and
Brebbia, 1988; Li and Han, 1985; Xiao, 1998).
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The nearly singular double surface integral arises when elements in the pair
are not coincident but adjacent or relatively close in comparison with their
characteristic dimensions. The integrand of this integral is generally non-singular
(except along the adjacent edge of the two elements) but can exhibit rapid variation in
the zone that the source and field points are nearly coincident. It has also been found
by Xiao (1998) that the nearly singular integral of this type cannot efficiently be
integrated by standard Gaussian quadrature without modification. To overcome this
difficulty, the triangular polar transformation is first applied and the result is further
regularized by a series of logarithmic transformations in both radial and angular
directions (resulting from the triangular polar transformation). The resulting new
integrand possesses only mild variation and the corresponding integral can accurately
and efficiently be integrated by standard Gaussian quadrature (also see details from
Hayami, 1992; Hayami and Matsumoto, 1994; Xiao, 1998).

3.3 Evaluation of Kernels

Another essential component that must be incorporated in order to reduce the

computational cost of numerical evaluation of double surface integrals is the efficient
evaluation of the five weakly singular kernels {U}(y-x), G}, (y-x), C(y—x),
Ho (y—x)n(x), Hy(y—-x)n(y)} at every pair of points {x, y} arising from the
numerical integration. From the explicit expression (2.13) along with the standard
procedure for computing a unit normal vector, the last two kernels can directly and
efficiently be computed. In contrast, the first three kernels are given in terms of
closed-loop integrals by (2.8) and (2.14)-(2.15); as a result, a direct evaluation of such
integrals is obviously computationally expensive. To avoid such massive
computation, we adopt an interpolation technique to approximate values of those
kernels. In this technique, it requires evaluation of the closed-loop integrals only at
nodal points of the interpolation grid and values of kernels at arbitrary pair of points
{x, y} can readily be approximated by interpolants of the kernels constructed based
on piecewise polynomial basis functions on the interpolation grid. Accuracy of this
approximation can readily be enhanced by either increasing the number of nodal

points or increasing the highest degree of the polynomial basis functions. Extensive
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discussion of this interpolation technique can be found in the work of Rungamornrat
and Mear (2008b, 2008c).

3.4 Solver for Different Electrical Boundary Conditions

For impermeable cracks, the system of linear equations (3.1) and (3.2)
developed to treat the piezoelectric finite and infinite bodies, respectively, have the

same number of equations as the number of unknowns. As a result, the unknown
vector [T, U, AU]T , Which is sought for the finite domain problem, and AU, for

an unbounded domain case, can be obtained immediately by solving the system of
equations (3.1) and (3.2), respectively.
For permeable cracks, again the system of linear equations (3.1) and (3.2)

contain the same number of unknowns as the number of equations. Consequently, the

unknown vectors [T, U, AU, AU, AU,]" and T,, which are sought for the

finite domain problem, and [AU, AU, AUS]T and T,, which are sought for the

infinite domain problem, can be obtained immediately by solving the system of
equations (3.1) and (3.2), respectively.

For semi-permeable cracks, the systems of linear equations (3.1) or (3.2)
contain more unknowns than the number of equations. As a result, additional
equations are required and given by the equation (3.4). Once the system of equations
is sufficiently formulated, i.e. equation (3.1) or (3.2) along with the additional
equation (3.4), an iterative method called the Newton-Raphson scheme is employed to
solve for all unknowns. However, before presenting the procedure to solve the
resulting system of nonlinear equations, some variables need to be introduced into the
equation (3.1) and also some additional equations need to be defined to provide a
better understanding of the algorithm.

Consider first the system of linear equations (3.1) for cracks in piezoelectric
finite media.

Auu But Buc TB Rl
th C. C. || Uz |=|R,
Bl—c Cl: cc AU R3
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The right hand side vector R, is decomposed into [R§”°W" ST} where R{™" is a

vector of nodal quantities of the prescribed data (e.g. generalized traction and
generalized displacement) on the boundary whereas ST is a vector of nodal quantities
of the data on the crack surface in which S is a matrix associated with a single

surface integral and T is a vector of nodal quantities of the generalized traction at the
crack surface. By substituting R, = R;™"" + ST into the equation (3.1), it leads to

A, B

uu

B, [T, R, 0

ut uc
B, C, C.||Uy|=| R, [+| 0 (3.7)
B, C. C.|AU| |Ry™"| [ST

Or by using the index notation, equation (3.7) can be written as

K. T, =R; (3.8)

ij*j i

where T, e{T, U, AU} and Rie{R, R, R;™"+ST}. To rearrange the
equation (3.8) and then differentiate with respect to the unknown vectors (X ), this
leads to

*

. oT; _
Aip :Kij _J_ai (3.9
oX, 0X,

where A is the left-hand side coefficient matrix of the Newton-Raphson method and

X,e{T; U, AU, AU, AU, T,}.The residual vector is given by

*

B; = (-1)(K,T

i

R}) (3.10)

Once the gradient matrix A;, and the residual vector B; are obtained, the unknown
vector X at the (k+1) iteration can be updated by solving a system of linear

equations

A (XED - X1) = B (311)
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where k is the iteration number. As a final remark, the terms 8T;/8Xp and

GRT/OXP , Which are presented in equation (3.9), can be written in the matrix form as

o |10 0
L-101 0 (3.12)
X
P dAU
00 J
I OAU;, |
R 00 0
57i: 00 0 (3.13)
P T,
I " OAU], |

where AU, ={AU, AU, AU, T,}. Similarly, the terms oAU, /6AU;, and

oT, / 0AU’, can be written in the matrix form as

1 0 0 0
0 1 0 0
OAU,
1=l 0 0 1 0 (3.14)
dAU
P | AU, oAU, 0AU, 0AU,
| 0AU, AU, 0AU, 0T, |
0.0 0 0
0 000
Oy _ (3.15)
oAU, [0 0 0 0
00 0 1

The procedure of Newton-Raphson iteration to obtain the unknown vectors can be

summarized below (also see the flowchart in Fig.3.2).
(1) Initial guess X¥ =[T{ UY AUP AUP AUY Tjk)]T with

k =0 by using the results obtained from the impermeable cracks



)

(3)

(4)

(5)

(6)
(7)
(8)
(9)
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Obtain AU from equation (3.4)

(k) (k)
Compute L_and S, aT”‘* where AU, ={AU, AU, AU, T,}
oAU O0AU

m

P p
I (0 aT; @ AU
Obtain : and R, (Note that L = I and
X, ] oX,  0AU,
*(k) (k)
R _ S o, — for an unbounded domain problem)
oX, OAU |

aT @ R

Compute A¥ =K TRV,
p p

Compute B/" = (-1)(K, T -R'™)
Obtain X ¥ by solving the equation A (X {9 — X ) = B/®
Obtain AU from equation (3.4)

Obtain T,“*? and R

(10) Three criteria are employed to check the convergence of the numerical

solutions. The first one is the relative errors of

|AUE? AU AUEY —AUP AUE - AU [ AP AUuP AauP| . The second
one is the relative of |t{*-1{| /|| and the last one is the relative of

I

obtained when the all three criteria, which are defined above, are less than

N

R, where r" = KT -R™“?_ The convergent solution (T,“) is

U]

the specified tolerance (Tol). Otherwise, go to the next iteration by

updating k =k +1 and repeat step (2) to (10).
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Initial guess

T -
| X[ o Ao v v 1] with k=0

v

Obtain aul from equation (3.4)

v

oAU ® ()
Compute _and s, Ty
oAU,

0AU,
oT. *(k)
i and &
X oX

v

Compute A =K

v

Compute B™ = (-1)(K,T/® -R™)

!

Obtain x by solving

(k) (y (k+1) (K)y — g*k)
OXED X =8

v

Obtain au{® from equation (3.4)

v

Obtain 1, and R

A

Obtain

aTj*(k) . aRi*(k)
X,  oX

p

Jaul - au®| /|au® /

!

~ L
e

A HTikd) _ T:k)

o

e

R®

e e

L < Tol

where me ({1, 2,3}

Obtain 7

Fig. 3.2. Flowchart of solution procedures by Newton-Raphson method for the semi-
permeable cracks.
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For Landis-type cracks, the systems of linear equations (3.1) or (3.2) have the
number of equations less than the number of unknowns. Consequently, two additional
equations are required. The first one is given by equation (3.4), which is exactly the
same as that for semi-permeable cracks, and another one is given by equation (3.6).
The main difference between the Landis-type cracks and the semi-permeable cracks,
besides the equation (3.6) is added to the system of equations of the Landis-type

cracks, the term 0T, /aAU’; is different from the case of the semi-permeable cracks

and is given in the matrix form as

o]
T,
o o0 o0 &
m* = 8T4 (316)
OAU

" o,
T,
0 0 0 1

Once a set of all equations is formulated, the Newton-Raphson method is employed to
solve all unknown vectors and the procedure is presented below (also see Fig 3.3.for

the corresponding flowchart).
(1) Initial guess X¥ =T UY AUP AUP AU Tj“T with
k =0 by using the results obtained from the impermeable cracks
(2) Obtain AUY from equation (3.4) and obtain [T TV Tgfk’]T from

equation (3.6)

(k) (k)
- oT ! .
(3) Compute aAUJ* and S PR where AU, ={AU, AU, AU, T,}

im

P p
0 *(k) T oAU ™
(4) Obtain ‘ and R (Note that L _-——L_ and
oxX, X, oX,  0AU,
*(k) (k)
R Sim alhi - for an unbounded domain problem)
X, OAU |

aT @ R

5) Compute AW =K. —L
(5) pute A X, X

p
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(6) Compute B™ = (-1)(K, T'® —R"®)

]
(7) Obtain XY by solving the equation A (X ¥ —X (V) =B
(8) Obtain AU and [Tl(k”’ g P Té“”]T from equation (3.4) and
equation (3.6), respectively
(9) Obtain T,“*¥ and R

(10) Four criteria are employed to check the convergence of the numerical
solutions.  The  first one is the relative error of

|AUE? AU AUEY —AUY AUSP —AUP| /AP AUuP AauP| . The second
one is |t -1| /|t®| . The third one is |t{**-1| /|1| and the last

R*(O)

one is the relative of |/ _, Where =K *?-R®?  The
convergent solution (7,%* ) is obtained when the all four criteria are less

than the specified tolerance (7ol ). Otherwise, go to the next iteration by

updating k =k +1 and repeat step (2) to (10).

3.5 Calculation of Intensity Factors

Once the jump of the generalized displacement AU is obtained for any type of
crack assumptions, the stress intensity factors {K, K, K, } and the electric
intensity factor K, can be computed by using the formulation proposed by

Rungamornrat and Mear (2008c). This fracture parameter is useful for measuring the

amplitude of singularity of the stress and electric induction fields near the crack front.



4 . )
Initial guess
X% =[T¢ u® AUY AU AUL T T with k=0
L /

Obtain au® from equation (3.4)
Obtain [T T

1] from equation (3.6)

v

oAU

(k)
Compute °~ and s, T,

™ oAU;,

v

*(k)

. oT _*(k)
Obtain 25— and R
oX, X

p

N T (6)
Compute A® =K, LR
oX,  oX

= CO(K,T = R™)

]
Obtain x{“* by solving
A (k)(x(kvl) xék)) - Bi*(k)

v
Obtain au{* from equation (3.4)
Obtain [Tt T T;W]T from equation (3.6)

v

Obtain 1, and R

p

Compute g®

|t — AU

k=k+1
[ S W N
ren 1o / /

*

r

e

where me{1, 2, 3}

Obtain 1;¢

Fig. 3.3. Flowchart of solution procedures by Newton-Raphson method for the
Landis-type cracks.



CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

To demonstrate the accuracy and capabilities of the weakly-singular SGBEM,
extensive numerical experiments are performed on various boundary value problems
concerning both cracks in piezoelectric infinite and finite bodies under four types of
electrical boundary conditions on the crack surface (e.g. permeable, impermeable,
semi-permeable and Landis-type boundary conditions). First, a problem associated
with a penny-shaped crack in an infinite medium under various loading conditions is
treated. Since the analytical solution exists for this particular case, it provides a means
to verify both the formulation and numerical implementation and, in addition, to
demonstrate that the current technique can treat a special case of cracks in an infinite
body. Next, a problem concerning a penny-shaped crack embedded in a finite cube is
investigated. This problem is properly constructed such that it mimics exactly the
problem of a penny-shaped crack in an infinite domain and, as a result, possesses the
exact solution for comparison. This additional verification is crucial and confirms the
correctness of the implementation in the context of finite bodies. Once the technique
is validated through the extensive numerical experiments for both the infinite and
finite boundary value problems, more complex problems are chosen to demonstrate
the versatility of the current technique to model cracks and bodies of various
geometries and under different loading conditions. Finally, the influence of electrical
boundary conditions on the behavior of stress and electrical intensity factors is
thoroughly explored.

In the analysis, a series of meshes is adopted to explore the rate of
convergence of the numerical solutions and their dependency on the level of mesh
refinement. In particular, 9-node crack-tip elements are employed to discretize the
region near the crack front while the remaining of the boundary (i.e. the ordinary
boundary and the majority of the crack surface) is discretized by standard 6-node and
8-node elements. Two types of piezoelectric materials considered in the investigations
are assumed to be transversely isotropic with the generalized moduli to be the same as

that for PZT-4 and PZT-5H (see Table 4.1).



46

Table 4.1 Properties of two transversely isotropic piezoelectric materials, PZT-4
obtained from Li et al. (2011) and PZT-5H obtained from Rungamornrat and Mear

(2008¢). The axis of material symmetry is directed along the x3-axis direction.

PZT-4 PZT-5H

Elastic constants Ein 139 126
(x10°Pa) E 1o 778 55.0

E,s 743 53.0
By 113 117.0

Eisis 25.6 353

Piezoelectric constants P43 -6.98 -6.5
(C/m*) Evvs 13.8 23.3

E s 13.4 17.0

Dielectric permittivities = 6.0 15.1
(x107 C/(Vm)) LN 5.47 13.0

4.1 Numerical Verification

To ensure that the weakly singular SGBEM can be employed to solve the
piezoelectric fracture problem both infinite and finite bodies under several types of
electrical boundary conditions, two problems with existing analytical solutions are
considered first in order to examine the accuracy of the current technique. The first
one is associated with a penny-shaped crack embedded in a piezoelectric infinite
medium and the other corresponds to a penny-shaped crack embedded in a
piezoelectric finite body that mimics exactly the problem of an isolated crack in an

unbounded domain.
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4.1.1 Penny-shaped crack in infinite medium under tensile loading

Consider a penny-shaped crack of radius a embedded in a transversely
isotropic piezoelectric infinite medium with the poling axis directing in the X,
direction as shown schematically in Fig. 4.1(a). The axis of material symmetry is
assumed to be perpendicular to the crack surface and parallel to the poling direction.

The medium is subjected to the uniform tensile stress o, =5MPa and the constant

electric field E, =0.5 MV/m at infinity along the poling direction as indicated in Fig.

4.1(b). The material properties of PZT-4 are chosen in the analysis and three meshes
of the crack surface are adopted as depicted in Fig. 4.2; in particular, the coarsest
mesh contains only 8 elements with 4 crack-tip elements and the finest mesh contains

64 elements with only 16 crack-tip elements.

The analytical solution for the mode-I stress intensity factor (K;*) and the

electric intensity factor (K, ) were reported by Chen et al. (2000) for impermeable

cracks, Li and Lee (2004) for permeable and semi-permeable cracks, and Li et al.

(2011) for Landis-type cracks. The numerical results of {K,,K,, } normalized by the

analytical solutions for four different types of crack assumptions are reported in Table
4.2 and 4.3. It is evident from this set of results that numerical solutions are in
excellent agreement with the analytical solutions and exhibit only weak dependence
on the level of mesh refinement. Especially, the error is less than 0.6% for results

obtained from the coarse mesh and 0.1% for those obtained form the intermediate and

fine meshes. i T ? T o,
™ ™

X

e,

vviie

Fig. 4.1. (a) Schematic of a penny-shaped crack in a piezoelectric infinite medium and

(b) piezoelectric infinite medium subjected to uniform tensile stress o, and constant

electric field E; .
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2N
N

Mesh-1 Mesh-2 Mesh-3

Fig. 4.2. Three meshes adopted in analysis

Table 4.2 Normalized intensity factors {K,K,,} for a penny-shaped crack subjected

to remote uniform tensile stress o,=5MPa and uniform electric field

E, =0.5 MV/m for impermeable and permeable cracks.

Impermeable crack Permeable crack
Mesh
K, /K Ky /Ky K, /K Ky /Ky
1 0.9944 0.9946 0.9945 0.9945
2 1.0002 1.0004 1.0003 1.0003
3 1.0005 1.0006 1.0006 1.0006

Table 4.3 Normalized intensity factors {K,,K,,} for a penny-shaped crack subjected

to remote uniform tensile

stress

o, =5MPa

E, =0.5 MV/m for semi-permeable and Landis-type cracks.

and uniform electric field

Semi-permeable crack Landis-type crack
Mesh Kk, =8.85x107" C/(Vm) K, =8.85x107"* C/(Vm)
K, /K Ky /Ky K, /K Ky /Ky
1 0.9945 0.9945 0.9944 0.9945
2 1.0003 1.0003 1.0003 1.0003
3 1.0006 1.0006 1.0005 1.0006
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4.1.2 Penny-shaped crack in infinite medium under shear loading

Consider a penny-shaped crack with radius a embedded in a transversely
isotropic piezoelectric infinite medium as shown in Fig. 4.3(a). The penny-shaped
crack is assumed to lie within the X, — X, plane and its normal directs along the axis of
material symmetry and the poling direction. The crack is subjected to uniform shear
traction t =—t, =7, as indicated in Fig. 4.3(b). The material properties of PZT-4 are

used in the analysis and three meshes for the crack surface (coarse, intermediate and

fine meshes) are adopted as shown in Fig. 4.4.

(a) (b)

Fig. 4.3. (a) Schematic of a penny-shaped crack in a piezoelectric infinite medium and

(b) penny-shaped crack subjected to uniform shear traction t" =—t =7,

-
N

Fig. 4.4. Three meshes adopted in analysis

Numerical results obtained from the three meshes under four different
electrical boundary conditions (i.e. permeable, impermeable, semi-permeable and
Landis—type boundary conditions) along with the analytical solution of an

impermeable crack given by Chen and Shioya (2000) are reported in Fig. 4.5 and 4.6.
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Clearly, the computed intensity factors {K,K, } obtained from the three meshes for

four types of cracks exhibit only weak dependence on the level of mesh refinement
and this set of results is in good agreement with the analytical solution. Results
obtained from the coarsest mesh (i.e. mesh-1), which contains only four elements
along the crack front, are slightly different form the exact solution, whereas results
obtained form the mesh-2 and mesh-3 are nearly indistinguishable from the analytical
solution.

Once the convergence behavior of numerical solutions is confirmed, the
behavior of the penny-shaped crack subjected to shear loading under four types of
electrical boundary conditions is investigated via the numerical results obtained from
the finest mesh (i.e. mesh-3). As be evident in Fig. 4.7, the mode-II and mode-III
stress intensity factors for a penny-shaped crack under shear loading are identical for
all four types of crack assumptions. This finding is in agreement with the work of

Chen and Shioya (2000), who pointed out that K, and K,, for impermeable and

permeable cracks are identical, and this is also consistent with the discussion of Chen
and Lim (2005). This conclusion suggests that the electrical boundary conditions have

no effect on the stress intensify factors K, and K, for a penny-shaped crack under

surface shear loading as long as it introduces no crack opening.
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K |z
T4/ 0.00%
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050 F mesh-1
C mesh-2
1.00 E mesh-3
B Exact (Impermeable)
_1.50||||I||||I||||I||||I||||I||||
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0
(a)
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1.00
0.50
K
—,[—  0.00%
2z, ¥ a

-0.50

(b)

Fig. 4.5. Normalized stress intensity factors {

mesh-1
mesh-2
mesh-3

120

K,,K

>

Exact (Impermeable)

150 180

u  for a penny-shaped crack in a

piezoelectric infinite medium subjected to uniform shear traction for (a) impermeable

crack and (b) permeable crack. Note that the exact solution is obtained from Chen and

Shioya (2000) for impermeable crack.
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1.50
1.00
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K |z
—/— 0.00
2z, Va
-0.50 A mesh-1
O  mesh-2
* mesh-3
-1.00 —— Exact (Impermeable)
-1.50
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0
(a)
1.50
1.00
0.50
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—4[/— 0.004
2z, a

-0.50 A mesh-1
O  mesh-2
®  mesh-3
-1.00

Exact (Impermeable)
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(b)

Fig. 4.6. Normalized stress intensity factors {K,K,} for a penny-shaped crack in a

piezoelectric infinite medium subjected to uniform shear traction for (a) semi-
permeable crack and (b) Landis-type crack. Note that the exact solution is obtained

from Chen and Shioya (2000) for impermeable crack.
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Fig. 4.7. Normalized stress intensity factors {K K, }, which is obtained from the

mesh-3, for a penny-shaped crack in a piezoelectric infinite medium subjected to
uniform shear traction for four types of crack assumptions. Note that the exact

solution is obtained from Chen and Shioya (2000) for impermeable crack.
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4.1.3 Penny-shaped crack in cube under tensile loading

For two previous numerical experiments, problems of a penny-shaped crack in
a piezoelectric infinite medium subjected to both tension and shear loading under four
types of crack assumptions were validated. Here, in this example, a problem of a
penny-shaped crack in a finite body is examined. While the exact solution of a crack
in a piezoelectric finite medium has not been available in the literature, this situation
can be simulated by truncating the problem of an isolated crack in an infinite domain
whose exact stress and electric induction fields are known.

Consider a penny-shaped crack of radius a embedded in a transversely
isotropic piezoelectric infinite medium as shown schematically in Fig. 4.8(a). The
crack surface is oriented such that it is perpendicular to the axis of material symmetry.

The mixed loading condition between the uniform normal traction o, and uniform
surface electric charge d, with the ratio (o,/E,;;;)/(d,/E,,,;) = 0.20 is investigated.
The analytical solutions for the generalized stress within the domain for impermeable
and semi-permeable cracks, denoted by o', were reported by Chen et al. (2000) and

Li and Lee (2004), respectively. To construct an equivalent finite domain problem, a
cube of material of dimensions 2w x 2w x 2w with a/w=0.5 is chosen such that it
contains the crack at its center as shown in Fig. 4.9. On the outer boundary of this

cube, the generalized traction obtained from the exact generalized stress, i.e.

t7 =on, where n, denotes an outward unit normal to the boundary, is applied

throughout. The material properties of PZT-5H are chosen in the analysis and three
meshes are adopted as shown in Fig. 4.10; the first mesh (mesh-1) which is very
coarse consists of only eight elements for the crack surface and 16 elements for each
side of the cube whereas the intermediate and fine meshes (mesh-2 and mesh-3)
consists of 16 and 36 elements for the crack surface and 36 and 64 elements for each

side of the cube, respectively.
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(a) (b)
Fig. 4.8. (a) Schematic of a penny-shaped crack in a piezoelectric infinite medium and

(b) penny-shaped crack subjected to uniform normal traction t; =—t; =o, and

uniform surface electric charge t; =—t, =d_

— = —-- X

2w

2w

Fig. 4.9. Cube containing a penny-shaped crack subjected to prescribed traction data
obtained from the exact generalized stress of a problem of a penny shaped crack in an

unbounded domain
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@ mesh-1
@ mesh-2
% mesh-3

Side of cube  Crack

Fig. 4.10. Three meshes adopted in the analysis. Note that the discretization of a

typical side of the cube is shown along with that for the crack.

For this particular loading condition, only the mode-I stress intensity factor

(K, ) and the electric intensity factor (K, ) exist and they are constant along the crack
front. Normalized K, and K, computed from the three meshes, under impermeable

and semi-permeable boundary conditions, are reported in Table 4.4. As be evident
from this set of results, numerical solutions are very accurate and exhibit only slight
dependence on the discretization. In particular, the error is less than 0.7% for results
obtained from the mesh-1 and 0.1% for those obtained from the mesh-2 and mesh-3.
It is worth noting that the achievement of such highly accurate intensity factors while
using only relatively coarse meshes for the crack surface is due to the use of special
crack-tip elements in the discretization along with the direct means to extract the
intensity factors in terms of the crack-front nodal data. Note in addition that the need
to employ several elements on each side of the cube is primarily dictated by the need
to accurately capture the complex distribution of the exact generalized surface

traction.
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Table 4.4 Normalized intensity factors {K,, K, } for finite domain-based simulation

of a penny-shaped crack in an unbounded domain subjected to uniform normal

traction o, and uniform surface electric charge d, for impermeable and semi-

permeable cracks.

Impermeable crack Semi-permeable crack
Mesh
K, /K" Ky /Ky K, /K" Ky /Ky
1 0.9933 0.9934 0.9933 0.9933
2 0.9995 0.9994 0.9995 0.9995
3 1.0002 1.0002 1.0002 1.0002

4.1.4 Penny-shaped crack in cube under uniform shear traction

Consider a penny-shaped crack of radius a embedded in a transversely
isotropic piezoelectric infinite medium as shown schematically in Fig. 4.11(a). The

axis of material symmetry is assumed to direct along the X, -axis and is perpendicular
to the crack surface. The crack is subjected to uniform shear traction z, as shown in

Fig. 4.11(b) and the corresponding exact generalized stress field o;; was proposed by

Chen and Shioya (2000) for impermeable cracks. To construct an equivalent finite
domain problem, a cube of dimensions 2w x 2w x 2W containing the crack at its

center with a/w=0.5 as shown in Fig. 4.12 is taken in the analysis. The exact

generalized traction t5 acting to the boundary of the cube is computed by using the

relation t;* =o;n, where n, is outward unit normal vector to the boundary. The

material properties of PZT-5H are employed in the analysis and three meshes are

adopted as shown in Fig. 4.13.
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Fig. 4.11. (a) Schematic of a penny-shaped crack in a piezoelectric infinite medium

and (b) penny-shaped crack subjected to uniform shear traction t” =—t =7,

2w

2w

Fig. 4.12. Cube containing penny-shaped crack subjected to prescribed traction data
obtained from the exact generalized stress of a problem of a penny-shaped crack in an

unbounded domain



59

@ mesh-1

mesh-2

mesh-3

*
o

Side of cube  Crack

Fig. 4.13. Three meshes adopted in the analysis. Note that the discretization of a

typical side of the cube is shown along with that for the crack.

For this particular loading condition, it is different from the previous example
presented in subsection 4.1.3, the uniform shear traction acting on the crack surface
leads to non-zero mode-Il and mode-III stress intensity factors {K,,K } and, in
addition, they are functions of position along the crack front (see Chen and Shioya,
2000). The normalized mode-II and mode-III stress intensity factors obtained from the
three meshes for impermeable and semi-permeable cracks are reported in Fig. 4.14(a)
and 4.14(b) along with the exact solution of the impermeable crack. Once again, this
set of numerical results is in good agreement with the exact solution and exhibits only
mild dependence on the mesh refinement. Results obtained from the mesh-1 differ

slightly from the exact solution while those obtained from the mesh-2 and mesh-3 are

nearly identical to the exact solution.
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Fig. 4.14. Normalized stress intensity factors {K,K,} for the finite domain-based

simulation of a penny-shaped crack in an unbounded domain subjected to uniform
shear traction for (a) impermeable crack and (b) semi-permeable crack. Note that the

exact solution is obtained from an isolated penny-shaped crack subjected to uniform

shear traction under an impermeable assumption.
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4.1.5 Cube containing penny-shaped crack under normal traction and surface

electric charge

As be evident in previous numerical experiments, the problem concerning an
isolated crack in an unbounded domain with existing analytical solutions for four
types of crack assumptions (i.e. permeable, impermeable, semi-permeable and
Landis-type cracks) were examined, while the problem associated with the finite
domain containing a crack under impermeable and semi-permeable boundary
conditions were validated by mimicking exactly the isolated crack problem whose
exact generalized stress field are available (Chen et al., 2000; Chen and Shioya, 2000;
Li and Lee, 2004). A question arises as how to validate the finite domain problem
containing crack under other types of crack assumptions (e.g. Landis-type cracks)
when there is no analytical or benchmark solution for comparison. Here, the validated
impermeable scheme is proposed to generate the benchmark solutions to verify results
of other types of crack models (e.g. permeable, semi-permeable and Landis-type

cracks) and this strategy is clearly explained below.
4.1.5.1 Permeable cracks solved by impermeable scheme

For permeable cracks, the generalized traction (T;) and the generalized

displacement (U;) on the boundary of the body, along with the surface electric

charge T, and the jump of the mechanical displacement [AU, AU, AU3]T on the
crack surface are obtained by solving the system of linear equations (3.1). Such vector
[AU, AU, AU,]" along with the jump of the electric potential AU, , which is known
a priori and equal to zero, are used to calculate the intensity factors of the permeable
crack. While the solved vector T, along with the known mechanical traction
[T T, T, ]T are then used as the input data in the impermeable scheme to generate

the benchmark solutions.
For the impermeable scheme, when the generalized traction T is known
(along with the prescribed data on the outer boundary), the jump of the generalized

displacement (AU ) can be obtained by solving the system of linear equations (3.1)
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and the vector AU is used to calculate the intensity factors of the permeable crack.
Finally, the relative error of the stress and electric intensity factors comparing

between those obtained using the permeable condition and those obtained by the

impermeable  scheme,  defined by K Permea /| Pemea (moen 115100 and

K mee /K e (mpe) 11100 can be evaluated.

4.1.5.2 Semi-permeable cracks solved by impermeable scheme

For semi-permeable cracks, the unknown vectors

[TB U, AU, AU, AU, TJ are obtained by solving the system of linear
equations (3.1) along with the additional equation (3.4) by using the Newton-Raphson

method. The vector [AU1 AU, AU3]T along with the jump of the electric potential

AU, , which is originally unknown and it can be obtained after solving the equations

(3.1) along with (3.4), are used to calculate the intensity factors of the semi-permeable

crack. Next, the solved vector T, along with the known mechanical traction

[T, T, T.] is used as the input data for the impermeable scheme.

Once the generalized traction T is prescribed (along with the prescribed data
on the outer boundary, the jump of the generalized displacement (AU) can be
computed by the impermeable scheme and the intensity factors can finally be
obtained. The relative error between the semi-permeable solutions and those obtained

by the impermeable scheme for the stress and electric intensity factors, defined by

K™ /Ko™ ™0 —1]x100  and  |Ky™ /K% ™ —1/x100 can subsequently be

ref

computed.

4.1.5.3 Landis-type cracks solved by impermeable scheme
For Landis-type cracks, the unknown vectors
[TB U, AU, AU, AU, T4] are obtained by solving the system of linear

equations (3.1) along with the two additional equations (3.4) and (3.6) using the

Newton-Raphson method. The vector [AU, AU, AU, along with the jump of the
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electric potential AU, (obtained after solving equations (3.1) along with (3.4) and
(3.6)) are used to calculate the intensity factors of Landis-type cracks. While the
vector T, along with the mechanical traction [T, T, T, ]T (obtained after solving the

equation (3.1) along with (3.4) and (3.6)) is used as the input data for the impermeable
scheme.

Once, the jump of generalized traction (T ) is prescribed (along with the
prescribed data on the outer boundary), the jump of the generalized displacement AU
can be obtained by the impermeable scheme and the vector AU are then used to
compute the intensity factors. Finally, the relative error between the Landis-type

solutions and those obtained by the impermeable scheme for the stress and electric

intensity factors, defined by R Hendis /K andis dmpen 715100

ref

and |K "4 / K 20ds 0meen 1100, is computed.

To confirm that the weakly singular SGBEM can be employed to solve cracks
in a piezoelectric finite body under several types of crack assumptions although there
is no analytical or reference solution for comparison, solutions of any finite domain
problem containing crack can be verified by the impermeable scheme as described
above.

Consider a cube containing a penny-shaped crack at its center and subjected to
the uniform loadings at the top and bottom surfaces, while the remaining boundary
including the crack is free of traction and surface electric charge as shown
schematically in Fig. 4.15. The cube is made of a transversely isotropic, piezoelectric
material named PZT-5H and the dimension of the cube is defined by 2w x 2w x 2w
with a/w=0.5 where a is the radius of the crack. Three loading cases, (i) the purely

uniform normal traction (o, =1.0), (ii) the purely uniform surface electric charge
(d,=1.0) and (iii) the coupled uniform normal traction (o, =1.0) and uniform
surface electric charge (d, =1.0) with the loading ratio (o, / E,;;; )/(d, / E;;,; ) = 0.20,
are investigated, and three meshes adopted in the analysis are shown in Fig. 4.16.

The relative error, in percentage, defined by ‘K/ K {mpen) —I‘XIOO for three

ref

types of crack assumptions (i.e. permeable, semi-permeable and Landis-type cracks)
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are reported in Tables 4.5 to 4.7 where K™ is the computed intensity factor using
the impermeable scheme and the finest mesh (i.e. mesh-3). It is found that the
intensity factors obtained from the three meshes are in good agreement and they
exhibit only mild dependence on the mesh refinement. More specially, the relative
error for the coarsest mesh (i.e. mesh-1), which contains only one element for each
side of the cube and eight elements for the entire crack surface, is less than 1.95%
whereas the relative error obtained from the mesh-2 is less than 0.25%. This
additional verification is crucial and confirms the correctness of the implementation in
the context of finite cracked bodies under various types of electrical boundary
conditions. Finally, it should be mentioned that, in these numerical experiments, the

intensity factors K, and K, for the purely uniform surface electric charge

(o,=0.0,d, =1.0) under permeable and semi-permeable conditions vanish.

|
|

C‘%t::‘_; -—— X

2w

2w

Fig. 4.15. Schematic of cube containing penny-shaped crack and subjected to uniform

mechanical and electrical loadings at the top and bottom surfaces

Crack

Cube wall

Fig. 4.16. Three meshes adopted in the analysis
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Table 4.5 The relative error, in percentage, for a cube containing penny-shaped

permeable crack and subjected to two loading cases.

o,=1.0,d,=0.0 o,=1.0,d,=1.0
MeSh Permea Permea Perme: a Permea
fﬂ;ﬁ—lxloo Ky 1|x100 K ~=1[x100 Ko™ k100
K K e K e K
1 1.9265 1.9265 1.9277 1.9277
2 0.2020 0.2020 0.2018 0.2018
3 0.0000 0.0000 0.0000 0.0000

Table 4.6 The relative error, in percentage, for a cube containing penny-shaped semi-

permeable crack and subjected to two loading cases.

0. =10, d, =00 0. =10, d,=1.0
Mesh %_1 X100 KE?E'SVTP ——1[x100 %—1 x100 Ki%::m)flxloo
1 1.9256 1.9214 1.9300 1.9236
2 0.2020 0.2022 0.2018 0.2012
3 0.0000 0.0000 0.0000 0.0000

Table 4.7 The relative error, in percentage, for a cube containing penny-shaped

Landis-type crack and subjected to three loading cases.

o, =1.0, d, =0.0 o, =00, d, =1.0 o, =1.0, d,=1.0
Mesh ‘ K ILandls B ‘ KILvandis B ‘ K ILandis B ‘ K I]_vundh B ‘ KILandis B ‘ K ILvandis B
S I S B TS B B S B T B B S
x100 x100 x100 x100 x100 x100
1 1.9250 1.9209 1.9316 1.9336 1.9341 1.9277
2 0.2020 0.2023 0.2081 0.2087 0.2022 0.2016
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




66
4.2 More Complex Boundary value Problems

Once the weakly singular SGBEM is validated through various numerical
experiments to ensure that this technique is capable of modeling both infinite and
finite piezoelectric cracked bodies under various types of electrical boundary
conditions, more complex boundary value problems are chosen to demonstrate the
versatility of the current technique to model cracks and bodies of various geometries

and under different loading conditions.
4.2.1 Spherical cap crack in infinite medium under tensile loading

Consider a spherical cap crack embedded in a transversely isotropic
piezoelectric infinite medium, which is made of PZT-4, as shown in Fig. 4.17. The

geometry of the crack surface is defined by
X, =asinycos B, X, =asinysinf, X; =acosy 4.1)

where a is the radius of the spherical crack, S €[0,27] and y<[0,0] with &
denoting half subtended angle of the surface. The axis of material symmetry and the
poling direction are along the X, axis. Three meshes of a spherical cap crack as
shown in Fig. 4.18 are employed in this investigation. The coarsest mesh consists of
16 elements whereas the intermediate and finest meshes consist of 48 elements and
120 elements, respectively. The piezoelectric medium is subjected to remote uniaxial

tension o, =5 MPa and uniform electric field E; =0.5 MV/m in the X, direction

and the half subtended angle of the crack surface is chosen to be 6 =45°.
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X

X

Fig. 4.17. Schematic of a spherical cap crack in a piezoelectric infinite medium

Mesh-1 Mesh-2 Mesh-3

(16 elements) (48 elements) (120 elements)

Fig. 4.18. Three meshes of a spherical cap crack adopted in the analysis

Numerical results for nonzero intensity factors, normalized by the result obtained
from the mesh-3, are reported in Tables 4.8 and 4.9. It is found that the numerical
results obtained from the three meshes are in good agreement; especially, the
discrepancy of results obtained from the coarsest and intermediate meshes and those
from the mesh-3 is less than 1.05% and 0.28%, respectively. It should be noted that
the coarsest mesh consists of only eight elements for a region near the crack front and

eight elements for the rest of the crack surface.



68

Table 4.8 Normalized intensity factors {K,, K,, K} for a spherical cap crack

subjected to remote uniform tensile stress o, =5 MPa and uniform electric field

E, =0.5 MV/m for impermeable and permeable cracks

Impermeable crack

Permeable crack

Mesh
K, /K | KK | K KKK | KKK, K
1 1.0103 0.9974 0.9989 1.0025 0.9973 0.9991
2 1.0026 0.9996 0.9998 1.0007 0.9996 0.9999
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.9 Normalized intensity factors {K,, K,, K} for a spherical cap crack

subjected to remote uniform tensile stress o, =5 MPa and uniform electric field

E, =0.5 MV/m for semi-permeable and Landis-type cracks

Semi-permeable crack

Landis-type crack

Mesh K, =8.85x10™"* C/(Vm) K, =8.85x107"* C/(Vm)
K /K | K ZKE | KK | KK | KK | K, K
1 1.0026 0.9975 0.9976 1.0026 0.9984 0.9959
2 1.0007 0.9996 0.9991 1.0005 0.9998 0.9984
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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4.2.2 Inclined elliptical crack in infinite medium under tensile loading

Consider an elliptical crack embedded in a transversely isotropic piezoelectric
infinite medium as shown in Fig. 4.19. The axis of material symmetry and the poling

direction of the piezoelectric medium are along the X;-axis. The crack plane is
oriented such that the angle S between the major axis and the X -axis is equal to

45° . The major and minor axes of the crack are denoted by 2a and 2b, respectively.
The aspect ratio of the inclined elliptical crack is chosen to be a/b=2 and the

medium is subjected to the uniform tensile stress o, =5MPa and the constant electric
field E, =0.5 MV/m at infinity along the poling direction. The material properties of

PZT-4 are chosen in the analysis and three meshes of the crack surface are adopted as

depicted in Fig. 4.20.

Computed stress intensity factors {K,, K, K,, } and electric intensity factor

{K,V} for impermeable, permeable, semi-permeable and Landis-type cracks are

reported in Fig. 4.21 to 4.24, respectively. It is found that, for all four types of
electrical boundary conditions, numerical results obtained from the mesh-1 is slightly
different from those obtained from the mesh-3 whereas results obtained from the
mesh-2 is nearly indistinguishable from the mesh-3.

Once convergence of the numerical results is investigated, the influence of the

electrical boundary conditions upon the stress intensity factors {K,, K, K, } and the
electric intensity factor {K,V} are explored using results from mesh-3 as shown in

Fig. 425 and 4.26. It can be inferred from Fig. 4.25 that K, of impermeable,
permeable and semi-permeable cracks are nearly identical and are greater than those
of the Landis-type crack. In addition, the mode-II stress intensity factor (K, ) of the
impermeable and permeable cracks provides the bounds for both semi-permeable and
Landis-type case and results of the semi-permeable and Landis-type cracks are nearly
identical.

For mode-III stress intensity factor, K, of the permeable and impermeable

cracks are, respectively, the upper and lower bounds of that of the semi-permeable



70

and Landis-type cracks, and results of the semi-permeable and Landis-type cracks are
nearly identical. For the electric intensity factor, Fig. 4.26 indicates that K, of the
impermeable and permeable cracks are the upper and lower bounds of that of the
semi-permeable and Landis-type cracks, while results of the semi-permeable crack is

greater than those of the Landis-type crack.

Fig 4.19. Schematic of inclined elliptical crack in piezoelectric infinite medium

-
N
Mesh-1 Mesh-2 Mesh-3

Fig. 4.20. Three meshes adopted in the analysis of elliptical crack in piezoelectric

infinite medium
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Fig. 4.21. Normalized intensity factors for an inclined elliptical crack in an

unbounded domain subjected to uniform tensile stress o, =5MPa and constant
electric field E, =0.5 MV/m for impermeable crack: (a) stress intensity factors

{K,, K,, K, } and (b) electric intensity factor {K,, }.
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Fig. 4.22. Normalized intensity factors for an inclined elliptical crack in an

unbounded domain subjected to uniform tensile stress o, =5MPa and constant
electric field E; =0.5 MV/m for permeable crack: (a) stress intensity factors

{K,, K,, K, } and (b) electric intensity factor {K,, }.
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Fig. 4.23. Normalized intensity factors for an inclined elliptical crack in an

unbounded domain subjected to uniform tensile stress o, =5MPa and constant
electric field E, =0.5 MV/m for semi-permeable crack: (a) stress intensity factors

{K,, K,, K, } and (b) electric intensity factor {K,, }.
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Fig. 4.24. Normalized intensity factors for an inclined elliptical crack in an

unbounded domain subjected to uniform tensile stress o, =5MPa and constant
electric field E; =0.5 MV/m for Landis-type crack: (a) stress intensity factors

{K,, K,, K, } and (b) electric intensity factor {K,, }.
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Fig. 4.25. Normalized stress intensity factors {K,, K, K, } obtained from the mesh-

3 for an inclined elliptical crack in an unbounded domain subjected to uniform tensile

stress o, =5MPa and constant electric field E; =0.5 MV/m for four types of cracks.
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Fig. 4.26. Normalized electric intensity factor K, obtained from the mesh-3 for an

inclined elliptical crack in an unbounded domain subjected to uniform tensile stress

o, =5MPa and constant electric field E, =0.5 MV/m for four types of cracks.
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4.2.3 Penny-shaped crack in solid cylinder

Consider a solid cylinder of radius R and length 2L containing a penny-
shaped crack of radius a as shown in Fig. 4.27(a). The cylinder is made of PZT-5H
with the axis of material symmetry directing along the axis of the cylinder (X, -axis).
The uniform normal traction o, and uniform surface electric charge d, are applied to
its top and bottom surfaces with the loading ratio (o,/E,;;;)/(d,/E,,;) = 0.20

whereas the remaining boundary including the crack surface is free of traction and
surface electric charge. The problem geometry is defined as a/R=0.5 and L/R=4,
and three meshes adopted in the analysis shown in Fig. 4.27(b).

X3
GO
- &gﬁiﬁ : e /= @
L \\‘_/’ M~
~— 11 |
o S o U S S R R 13
‘/ X] N—1 N L/ 1T
R ~—l ~__ | -
L >
S 2N S ~ q
o, Mesh-1 Mesh-2 Mesh-3

Fig. 4.27. (a) A penny-shaped crack embedded in a solid cylinder subjected to

uniform normal traction o, and uniform surface electric charge d, and (b) three

meshes adopted in the analysis
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Since the analytical solution or the reference numerical solution for this

particular problem is not available in the literature, the mode-I stress intensity factors

(K®) and the electric intensity factors (K| ) obtained from the mesh-3 for four

different types of crack assumptions (given in Table 4.10) are used as the benchmark
solutions. The normalized intensity factors obtained from all three meshes are then
reported in Table 4.11 and 4.12 in order to investigate the convergence behavior of
the numerical solutions. It is found that results obtained from the mesh-1 and the
mesh-2, when compared to the reference solution obtained from the mesh-3, lead to

the relative discrepancy less than 0.80% and 0.25%, respectively.

Table 4.10 The reference stress intensity factors (K® ) and electric intensity factor

( K,r\‘jf ) obtained from the mesh-3 for four different types of cracks.

Type of cracks K™ / Jrao, K / \/Edo
Impermeable crack 0.6860 0.6740
Permeable crack 0.6861 0.1915
Semi-permeable crack 0.6861 0.2148
Landis-type crack 0.6674 0.2092

Table 4.11 Normalized intensity factors for solid cylinder containing penny-shaped

crack subjected to uniform normal traction o, and uniform surface electric charge d,

for impermeable and permeable cracks

Impermeable crack Permeable crack
Mesh
KI /I<Iref KIV/KIr\(jf KI /I<Iref KIV/KIr\(;f
1 0.9921 0.9926 0.9921 0.9921
2 0.9979 0.9979 0.9979 0.9979
3 1.0000 1.0000 1.0000 1.0000
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Table 4.12 Normalized intensity factors for solid cylinder containing penny-shaped

crack subjected to uniform normal traction o, and uniform surface electric charge d,

for semi-permeable and Landis-type cracks

Semi-permeable crack Landis-type crack
Mesh Kk, =8.85x107" C/(Vm) K, =8.85x107"* C/(Vm)
K, /K Ky /K K, /K Ky /K
1 0.9921 0.9921 0.9921 0.9921
2 0.9979 0.9979 0.9979 0.9979
3 1.0000 1.0000 1.0000 1.0000

4.2.4 Circumferential crack in solid cylinder

Consider next a solid cylinder of radius R and length L that contains a
circumferential crack of depth d at its half-length as shown schematically in Fig.
4.28. The cylinder is made of a transversely isotropic, piezoelectric material named
PZT-5H with the axis of material symmetry directing along the axis of the cylinder

(X, -axis). The cylinder is subjected to uniform normal traction o, and uniform
surface electric charge d; at its top and bottom surfaces whereas the remaining

boundary including the crack surface is free of traction and surface electric charge,
and only the impermeable boundary condition at the crack surface is treated.

As be evident from the symmetry of geometry and boundary conditions, only
the mode-I stress intensity factor and the electric intensity factor are non-zero and
they are constant along the crack front. In the analysis, three meshes shown in Fig.
4.29 are adopted for L/R=4 and R/d =2, and the computed intensity factors are
reported in Table 4.13 for the loading ratio (o,/E,;;;)/(d,/E;;,;) = 0.20. Results

obtained from all three meshes are normalized by the (converged) reference solution
obtained from the mesh-3. As be apparent from presented results, the intensity factors
computed from the three meshes are in very good agreement and the maximum
discrepancy between results from the coarse mesh and fine mesh is less than 1%. It is

crucial to emphasize that while the mesh-1 is extremely coarse with only four crack-
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tip elements being employed along the crack front, it yields results that are almost

indistinguishable from the converged solution.
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Fig. 4.28. Schematic of solid cylinder containing circumferential crack under uniform

normal traction and uniform surface electric charge
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Fig. 4.29. Three meshes adopted in the analysis
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Table 4.13 Normalized intensity factors for solid cylinder containing circumferential

crack under impermeable boundary condition. The computed intensity factors are

normalized by solutions from mesh-3 where K/ =1.9430yzdo, and

Ki' =1.9197Vzdd, .

Mesh Ku/K(ef KIV/KIr\if
1 0.9914 0.9909
2 0.9966 0.9961
3 1.0000 1.0000

4.2.5 Edge cracked bar

Consider next a rectangular bar, which is made of PZT-5H, containing a
through-the-thickness edge crack as shown in Fig. 4.30; the chosen body and crack
configuration in this example are the same as that considered by Rungamornrat and

Mear (2008b). The bar is subjected to the uniform normal traction o, and uniform
surface electric charge d, at its top and bottom surfaces whereas the rest of the

boundary including the crack surface is free of the generalized traction. In the

analysis, we take w/t=0.75, h/t=0.875, a/t=0.5 and the loading ratio

(o,/Eys3)/(d, /sy ) = 0.20 and the crack surface is electrically impermeable. Three

meshes similar to those used by Rungamornrat and Mear (2008b) are adopted as
shown in Fig. 4.31.

The computed mode-I stress intensity factor (K, ) and electric intensity factor
(K, ) are reported, as a function of arc length s (measured from the center of the

crack front), in Figs. 4.32 and 4.33, respectively. It is evident that numerical results
obtained from the three meshes are in good agreement except in the local region near
the surface-breaking points where results exhibit slight dependence on the level of
refinement. In particular, the coarsest mesh (i.e. mesh-1) utilizes only three elements
along the crack front but it can still capture the intensity factors in the central region
of the crack front of comparable quality to that obtained from the finest mesh (i.e.

mesh-3). The weak dependence on mesh refinement has been observed in all
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experiments performed. This attractive feature results primarily from the use of
Fig. 4.30. Edge cracked rectangular bar subjected to uniform normal traction o, and

uniform surface electric charge d; at its top and bottom surfaces

special crack-tip elements along the crack front.

Boundary mesh

Crack mesh

mesh-3

mesh-2

mesh-1

Fig. 4.31. Three meshes adopted for analysis of edge cracked rectangular bar where

crack mesh is shown below the boundary mesh
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Fig. 4.32. Normalized intensity factors for edge cracked rectangular bar subjected to
uniform normal traction and uniform surface electric charge (a) mode-I stress

intensity factor and (b) mode-IV electric intensity factor.
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4.3 Influence of electrical boundary conditions on intensity factors

As be known, there are several types of electrical boundary conditions adopted
at the crack surfaces, i.e., permeable, impermeable, semi-permeable and Landis-type
cracks. A question arises as which one is physically reasonable and more realistic.
Because of this, it motivates the present study to explore the influence of electrical
boundary conditions on the intensity factors of the cracked piezoelectric medium.
Numerical experiments of isolated planar and nonplanar cracks in an unbounded

domain and the piezoelectric finite cracked bodies are investigated.

4.3.1 Penny-shaped crack in unbounded domain

Consider a penny-shaped crack of radius a embedded in a piezoelectric
infinite medium that is made of PZT-4 similar to the previous problem in subsection

4.1.1. The medium is subjected to the remote uniform tensile stress o,, which is
varied from 0 to 100 MPa, and the fixed electric field E, equal to 0.5 MV/m. The

finest mesh (i.e. mesh-3) shown in Fig.4.2 is used in the analysis. Numerical results
for the mode-I stress intensity factor and the electric intensity factor are properly
normalized and reported in Fig. 4.33 and Fig. 4.34 along with the analytical solution
(Chen et al. 2000; Li and Lee 2004; Li et al. 2011).

It is evident again that numerical results are nearly identical to the analytical
solutions for all four types of crack assumptions. Moreover, it can be concluded from

Fig. 4.33 that the mode-I stress intensity factors ( K, ) for permeable, impermeable and

semi-permeable cases are identical for the entire range of o, and such results are in

agreement with the work of Li and Lee (2004) and Chiang and Weng (2007) that
conclude that the mode-I stress intensity factors of those three types of cracks depend
only on the mechanical loading but are independent of the electric loading. In
addition, it can be inferred from Fig. 4.33 that results obtained for the Landis-type
crack is less than those obtained from the other three crack models when the
mechanical stress is small. However, when the mechanical stress increases, the mode-
I stress intensity factor obtained from the Landis-type assumption and all other three

crack models are nearly identical.
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In contrast with K,, the electric intensity factor (K, ) exhibits strong

dependence on the electrical boundary conditions. Fig. 4.34 indicates that the electric
intensity factor for both impermeable and permeable cases serve, respectively, as the
upper and lower bounds of results for semi-permeable and Landis-type cases except

for very small o, where K, for the Landis-type crack is slightly lower than that for
the permeable case. Moreover, K, for semi-permeable and Landis-type cracks are
nearly indistinguishable for almost the entire range of o,; slight difference is

observed for small value of o, .

4
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Fig. 4.33. Normalized K, for a penny-shaped crack in a piezoelectric infinite medium
subjected to remote uniform tensile stress o, and constant electric field E; under

four types of crack assumptions
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Fig. 4.34. Normalized K, for a penny-shaped crack in a piezoelectric infinite

medium subjected to remote uniform tensile stress o, and constant electric field E,

under four types of crack assumptions
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4.3.2 Elliptical crack in an unbound domain

Consider an elliptical crack embedded in a transversely isotropic piezoelectric
infinite medium as shown schematically in Fig. 4.35 where a and b represent the
major and minor semi-axes of the ellipse, respectively. The medium is assumed to be

PZT-4 and the crack surface is assumed to lie within the X —X, plane and

perpendicular to the axis of material symmetry and poling direction. A convergence
study of numerical solutions is performed first by using a series of meshes for the
crack surface as shown in Fig. 4.36; in particular, the number of elements for mesh-1,
mesh-2 and mesh-3 are 8, 24 and 64 elements, respectively. The aspect ratio of the
elliptical crack is chosen to be a/b=2 and the unbounded piezoelectric medium is

loaded by the uniform remote tensile stress o, =5 MPa and uniform remote electric
field E, =0.5 MV/m along the polar direction. Normalized intensity factors K, and
K,, for four types of crack assumptions computed from the three meshes are

reported, as a function of position along the crack front, in Figs. 4.37-4.40. It is found
that numerical results obtained from all three meshes are in good agreement. More
specifically, numerical results obtained from the mesh-1 and the mesh-3 are slightly
different while results obtained from the intermediate and finest mesh are almost
indistinguishable for all four types of crack assumptions. Moreover, it can be inferred
from Fig. 4.41(a) that the mode-I stress intensity factor of impermeable, permeable
and semi-permeable cracks are nearly identical and greater than that of the Landis-
type crack for the entire crack front.

In contrast with the mode-I stress intensity factor, the electric intensity factors
under four types of electrical boundary conditions are completely different. Fig.
4.41(b) indicates that the electric intensity factors of impermeable and permeable
cracks are, respectively, the upper and lower bounds of results of semi-permeable and
Landis-type cracks. In addition, the electric intensity factor of the semi-permeable

crack is greater than that of the Landis-type crack.



Fig. 4.35. Schematic of an elliptical crack in a piezoelectric infinite medium
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N
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Fig. 4.36. A series of mesh adopted in the analysis of an elliptical crack in a

piezoelectric infinite medium



89

1.40

1.20
1.00

0.80
K, |7

20, Vb o0

0.40
020
0.00
o
(a)

20

15

LIRS R B B N B B N N (N SN N |\ 7 B N D N B |
>

K \ El 111 \/E 10 h 1
mesn-
2E3343G° b O mesh-2
*  mesh-3
5 exact
[ | T T T T T T T T O T T O T Y T
0 15 30 45 60 75 90
0
(b)

Fig. 4.37. (a) Normalized mode-I stress intensity factor and (b) electric intensity
factor for elliptical crack with aspect ratio a/b =2 in a piezoelectric infinite medium

subjected to uniform remote tensile stress o, =5MPa and constant electric field

E, =0.5 MV/m for impermeable crack.
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Fig. 4.38. (a) Normalized mode-I stress intensity factor and (b) electric intensity
factor for elliptical crack with aspect ratio a/b =2 in a piezoelectric infinite medium

subjected to uniform remote tensile stress o, =5MPa and constant electric field

E, =0.5 MV/m for permeable crack.
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Fig. 4.39. (a) Normalized mode-I stress intensity factor and (b) electric intensity
factor for elliptical crack with aspect ratio a/b =2 in a piezoelectric infinite medium

subjected to uniform remote tensile stress o, =5MPa and constant electric field

E, =0.5 MV/m for semi-permeable crack.
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Fig. 4.40. (a) Normalized mode-I stress intensity factor and (b) electric intensity
factor for elliptical crack with aspect ratio a/b =2 in a piezoelectric infinite medium

subjected to uniform remote tensile stress o, =5MPa and constant electric field

E, =0.5 MV/m for Landis-type crack.
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Fig. 4.41. (a) Normalized mode-I stress intensity factor and (b) electric intensity
factor for elliptical crack with aspect ratio a/b =2 in a piezoelectric infinite medium

subjected to uniform remote tensile stress o, =5MPa and constant electric field

E, =0.5 MV/m for four types of cracks.
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Furthermore, in order to study the influence of the aspect ratio a/b upon the

stress and electric intensity factors under four different types of crack assumptions,

three values of a/b, ie. a/ be{l, 2, 3}, are considered. Moreover, the applied

uniform remote tensile stress is varied from 0 to 100 MPa whereas the electric field is
fixed at 0.5 MV/m. Numerical solutions obtained from the mesh-3 are reported in
Figs. 4.42-4.44. It can be inferred from Figs. 4.42(a) and 4.42(b) that increasing the

aspect ratio a/b tends to reduce both the mode-I stress intensity factor and electric
intensity factor at & =0° for all four types of crack assumptions. However, at 6 = 45°
and #=90°, K, and K,, increase as the a/b ratio increases as shown in Figs. 4.43
and 4.44, respectively. Moreover, it is also found that the maximum K, and K,
occur at € =90° while the minimum K, and K,, occur at #=0" for a/be{2,3}.

For the influence of electrical boundary conditions upon the intensity factors at

0e {00, 45°, 900} when the aspect ratio a/b is varied, it is found that the distribution

of K, and K,, of an elliptical cracks (a/b =2, 3) are similar to the distribution of
K, and K, for the penny-shaped crack (a/b=1). More specifically, K, of the

permeable, impermeable and semi-permeable cracks are nearly identical for the entire

range of the applied mechanical stress while K, of the Landis-type crack is less than

of the other three crack models when the applied remote mechanical stress is
relatively small. However, when the applied uniform remote mechanical stress

increases, K, of the Landis-type crack and the other three crack models are nearly
identical. In contrast with K, the electric intensity factors (K, ) of the impermeable
crack is the upper bound for the entire range of mechanical stress. While K, of the

permeable crack is the lower bound when the applied mechanical stress is relatively

height. However, K,, of the Landis-type crack becomes the lower bound in stead of
the permeable case when the applied mechanical stress is very small and K,, of the

semi-permeable and Landis-type cracks are nearly identical when the mechanical

stress becomes larger.
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Fig. 4.42. Normalized intensity factors at 8 =0° for an elliptical crack in an infinite

medium under four types of crack assumptions (a) stress intensity factor K, and (b)

electric intensity factor K,
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Fig. 4.43. Normalized intensity factors at € =45° for an elliptical crack in an infinite

medium under four types of crack assumptions (a) stress intensity factor K, and (b)

electric intensity factor K|,
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Fig. 4.44. Normalized intensity factors at & =90° for an elliptical crack in an infinite
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electric intensity factor K|,
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4.3.3 Spherical cap crack in unbounded domain

Consider a spherical cap crack embedded in a transversely isotropic
piezoelectric infinite medium. The crack geometry and the material properties of
piezoelectric medium are the same as those considered in the example 4.2.1.

However, the main differences from the previous case are that (i) the half subtended

angle of the surface (0) is varied as e {15°,30°, 45°, 60°} and (ii) the applied

uniaxial remote stress is varied from 0 to 100 MPa. The applied electric field E; is

fixed at 0.5 MV/m which is the same as that for the previous example. Numerical

results of intensity factors K,, K, and K, computed from the mesh-3 (see Fig.

4.18) are reported in Figs. 4.45-4.50, respectively. It is found that increasing the half
subtended angle of the surface tends to increase the magnitude of the mode-II stress
intensity factor, but tends to reduce the magnitude of the mode-I stress and electric

intensity factors, for all crack models. In addition, the rate of decrease of K, is more
rapid than that of K, and this can be discussed below.

Figure 4.45(a) shows that when the half subtended angle of the surface is
small (8 =15"), the distribution of K, is similar to that of K, for a penny-shaped
crack; more specifically, K, of permeable, impermeable and semi-permeable cracks
are nearly identical whereas K, of the Landis-type crack is less than those of the
other three cracks.

Figure 4.45(b) shows that, when € =30°,K, of permeable, impermeable and

semi-permeable cracks are clearly separated. More specifically, it is found that when

the applied remote mechanical stress is small, K, of the semi-permeable and the
permeable cracks are nearly identical and serve as the upper bound whereas K, of the
Landis-type crack is the lower bound, and K, of the impermeable crack lies between

the upper and lower bounds.
However, when the applied uniform tensile stress increases, the stress intensity

factor K, of permeable and Landis-type cracks are, respectively, the upper and lower

bounds of both the semi-permeable and the impermeable cracks, whereas the stress
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intensity factor K, of the semi-permeable crack is always higher than that of the
impermeable crack. It is interesting to note that, while the stress intensity factors K,

of impermeable, permeable and semi-permeable cracks for the penny-shaped cracks
considered in this study are identical and are independent of the electric loading,
results for a spherical crack are not identical. This means that the curvature of crack
surface has significant influence on the mode-I stress intensity factor for those three
crack models. Moreover, it can be inferred from Figure 4.45(b) that, at zero

mechanical stress, K, of the impermeable crack does not vanish, but it becomes

negative.

Figure 4.46(a) shows that, when @=45°, K, of the permeable crack is the
upper bound, whereas K, of the impermeable and Landis-type cracks are nearly

identical and results for both crack models serve as the lower bound. Moreover, it is
found that the mode-I stress intensity factor of the semi-permeable crack varies from
the upper bound (permeable solution) to the lower bound (impermeable and Landis-
type solutions) as the applied remote stress increases. However, it should be noted

that, when the applied mechanical stress is small, the stress intensity factor K, of the
Landis-type crack is less than that of the impermeable crack, whereas K, of the

permeable and semi-permeable cracks are nearly identical. As already discussed
above, as the half subtended angle () increases, the impermeable solution shifts
down and the discrepancy between the upper and lower bound solution increases. In
addition, one can clearly see the transition of the semi-permeable solution from the
upper to the lower bounds.

Finally, Figure 4.46(b) shows that, when 8 =60°, the impermeable solution
becomes the lower bound in stead of that of the Landis-type crack, whereas the
permeable solution is still the upper bound. Moreover, it is observed that the stress

intensity factor K, of the semi-permeable crack is higher than that of the Landis-type
crack. One can also see that K, of the semi-permeable and Landis-type cracks varies

from the permeable solution, which is the upper bound, to the impermeable solution,

which is the lower bound, as the applied mechanical stress increases.
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For the effect of a non-planar crack upon the stress intensity factor K, can be
inferred from Figs. 4.47 to 4.48. It is found that increasing the half subtended angle of
the surface tends to increase the magnitude of the mode-II stress intensity factor.

Moreover, it is obviously seen that the stress intensity factor K, under all four types

of electrical boundary conditions are nearly identical for all angle €. Similarly, the

effect of a non-planar crack upon the intensity factor K,, can be inferred from Figs.
4.49 to 4.50. It is found that when the half subtended angle of the crack surface is
relatively small (6=15°,30°), K,, of the impermeable and permeable cracks are,

respectively, the upper and lower bounds of both the semi-permeable and Landis-type

solutions except for very small mechanical stress o, where K,, of the Landis-type

crack is slightly lower than that of the permeable crack. However, when the applied

mechanical stress increases, it is found that K, of the semi-permeable and Landis-

type cracks are nearly identical and they approach the impermeable solution.
However, when the half subtended angle becomes larger, discrepancy of the
impermeable solution and the semi-permeable and Landis-types solutions increases
and this implies that results of the semi-permeable and Landis-type cracks tend to
approach results of the permeable crack, which is the lower bound, in stead of the

impermeable solution, which is the upper bound.
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Fig. 4.45. Normalized stress intensity factors K, for a spherical cap crack in an

infinite medium for four types of crack assumptions: (a) € =15° and (b) € =30°
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Fig. 4.46. Normalized stress intensity factors K, for a spherical cap crack in an

infinite medium for four types of crack assumptions: (a) & =45° and (b) € = 60°
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Fig. 4.47. Normalized stress intensity factors K, for a spherical cap crack in an

infinite medium for four types of crack assumptions: (a) € =15° and (b) 6 =30°
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Fig. 4.48. Normalized stress intensity factors K, for a spherical cap crack in an

infinite medium for four types of crack assumptions: (a) & =45° and (b) € = 60°
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Fig. 4.49. Normalized electric intensity factors K,, for a spherical cap crack in an

infinite medium for four types of crack assumptions: (a) € =15° and (b) € =30°
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Fig. 4.50. Normalized electric intensity factors K,, for a spherical cap crack in an

infinite medium for four types of crack assumptions: (a) & =45° and (b) € = 60°
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4.3.4 Elliptical crack in a cube

As a final example, consider a finite cube containing an elliptical crack and

subjected to uniform normal traction o, and uniform surface electric charge d, at the

top and bottom surfaces as shown schematically in Fig. 4.51(a). The width of the cube
is denoted by 2w and the major and minor semi-axes of the elliptical crack are
denoted by a and b, respectively. The crack is located at the center of the cube and is
oriented as shown in Fig. 4.51(b). The cube is made of a transversely isotropic
piezoelectric material PZT-5H with its axis of material symmetry normal to the plane
of the crack. In the analysis, a/w=0.5 and a/b=2 are taken and three meshes are
adopted as indicated in Fig. 4.52.

The computed mode-I stress intensity factor and electric intensity factor
obtained from the three meshes, under four types of crack assumptions, are reported

in Figs. 4.53 to 4.56 for the loading ratio (o, /E,;;; )/(d, /E,yyy) = 0.20. It is found

that the numerical results obtained from all three meshes, for each type of crack
assumptions, are in good agreement. More specifically, results obtained from the
mesh-2 and mesh-3 are nearly indistinguishable. Even the coarsest mesh (i.e. mesh-1),
which utilizes only four elements along the crack front, accurately captures the
distribution of the stress and electric intensity factors.

Moreover, it can be inferred from Fig. 4.57(a) that the mode-I stress intensity
factors of the impermeable, permeable and semi-permeable cracks are nearly identical
and are greater than that of the Landis-type crack. In contrast with the mode-I stress
intensity factor, the electric intensity factor under four types of crack assumptions are
completely different. Fig. 4.57(b) indicates that the electric intensity factors of the
impermeable and permeable cracks are, respectively, the upper and lower bund
solutions of both the semi-permeable and Landis-type solutions, and results of the

Landis-type crack is less than that of semi-permeable crack.
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Fig. 4.51. (a) Schematic of cube containing elliptical crack and subjected to uniform
normal traction and surface electric charge at the top and bottom surfaces and (b) top

view indicating orientation of elliptical crack
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Fig. 4.53. Normalized intensity factor for elliptical crack in cube subjected to uniform

normal traction and uniform surface electric charge for impermeable crack where & is

an angle used to parameterize the crack front: X, =acosd and x, =bsiné; (a) stress

intensity factor K, and (b) electric intensity factor K, .
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Fig. 4.54. Normalized intensity factor for elliptical crack in cube subjected to uniform

normal traction and uniform surface electric charge for permeable crack where & is

an angle used to parameterize the crack front: X, =acosd and X, =bsiné; (a) stress

intensity factor K, and (b) electric intensity factor K, .
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Fig. 4.55. Normalized intensity factor for elliptical crack in cube subjected to uniform
normal traction and uniform surface electric charge for semi-permeable crack where

6 is an angle used to parameterize the crack front: x, =acosé and X, =bsiné; (a)

stress intensity factor K, and (b) electric intensity factor K,, .
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Fig. 4.56. Normalized intensity factor for elliptical crack in cube subjected to uniform

normal traction and uniform surface electric charge for Landis-type crack where 6 is

an angle used to parameterize the crack front: X, =acosd and X, =bsiné; (a) stress

intensity factor K, and (b) electric intensity factor K, .
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Fig. 4.57. Normalized intensity factor for elliptical crack in cube subjected to uniform
normal traction and uniform surface electric charge for four types of crack

assumptions where @ is an angle used to parameterize the crack front: X =acos®

and X, =bsin@; (a) stress intensity factor K, and (b) electric intensity factor K, .



CHAPTER V

CONCLUSIONS

A weakly singular SGBEM is developed for analysis of cracks in three-
dimensional, generally anisotropic, linear piezoelectric infinite and finite media under
four types of crack assumptions (i.e. permeable, impermeable, semi-permeable and
Landis-type cracks). The governing equation, which is in a symmetric form well-
suited to deal with the arbitrary crack geometries under various types of crack
assumptions, is based upon a pair of weak-form integral equations for the generalized

displacement and the generalized surface traction. Since both integral equations

contain only the weakly singular kernels of ©(1/r), the C°-interpolations can be

employed to approximate the solution and test functions on the entire boundary and
crack surface. For the region near the crack front, special crack-tip elements, which
were proposed by Rungamornrat and Mear (2008c), is used to approximate the jump
of the generalized displacement. These special crack-tip elements have two advantage
features: the first one is the corresponding shape functions can capture the first three
terms of asymptotic fields and the other is extra degrees of freedom introduced along
the crack front to directly capture to the strength of singularity. The former feature
enables relatively large crack-tip elements be used along the crack front whereas the
later provides a direct means to determine the mixed-mode stress intensity factors and
the electric intensity factor without carrying extrapolations.

Boundary value problems with existing analytical solution are examined first
in order to verify the current method. The first one is a penny-shaped crack embedded
in a piezoelectric infinite domain and the other is a piezoelectric finite body
containing a penny-shaped crack that mimics exactly the problem of an isolated crack
in an unbounded domain where the exact generalized stress field is available. Results
indicate that the computed stress and electric intensity factors are in excellent
agreement with the exact solution. Moreover, the solution verification technique using
the impermeable scheme is proposed for problems of cracks in a piezoelectric finite
body when the exact generalized stress field or the reference solution is not available

for comparison.
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Once the weakly singular SGBEM is validated through various numerical
experiments for both infinite and finite crack bodies under all four types of crack
assumptions, a set of more complex problems are considered to demonstrate the
capabilities and versatility of the current technique to model cracks and bodies of
various geometries and under different loading conditions. It was found that the
technique is robust and promising. In particular, it yields highly accurate numerical
solutions for the stress and electric intensity factors along the crack front with only
weak dependence on the level of mesh refinement. Finally, the influence of all four
types of crack assumptions upon the stress and electric intensity factors for
piezoelectric infinite and finite media is thoroughly explored.

For a planar crack embedded in an unbounded domain (either a penny-shaped
crack or an elliptical crack), the stress intensity factors K, of permeable,
impermeable and semi-permeable cracks are identical since they depend only on the

mechanical loading but are independent of the electric loading. In contrast with those

three crack models, K, of the Landis-type crack depends on the electric loading as

well as the mechanical loading. Numerical results also indicate that K, of the Landis-

type crack is less than of those of the other three crack models when the applied

remote mechanical stress is relatively small. However, when the applied remote
mechanical stress increases, K, for all crack assumptions are nearly identical.

Unlike the mode-1 stress intensity factor, the electric intensity factors K,, of
all four crack models are completely different. More specifically, the electric intensity
factor K,, of the impermeable crack is the upper bound (for the entire range of the
applied remote mechanical stress) whereas K, of the Landis-type crack is the lower
bound when the applied remote mechanical stress is nearly zero. However, when the
applied mechanical stress increases, the electric intensity factor K,, of the permeable
crack becomes the lower bound in stead of the Landis-type solution, whereas K,, of

the semi-permeable and Landis-type cracks are nearly identical and approach the
impermeable solution.
However, the behavior of a penny-shaped crack under the shear loading is

different from that under the tension loading. The mode-1l and mode-Ill stress
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intensity factors of a penny-shaped crack under the shear loading are identical for
permeable, impermeable, semi-permeable and Landis-type cracks. This implies that

the electrical boundary conditions on the crack surface have no influence on the stress
intensity factors K, and K, of a penny-shaped crack under the shear loading as
long as the crack surface is still closed.

Unlike the planar cracks, the stress intensity factors {K, , K, } and the electric

intensity factor K, are non-zero for a spherical cap crack embedded in an unbounded
domain under the tension loading. It is found that the mode-I stress intensity factors
for the penny-shaped crack and the spherical cap crack under tension loading are

different. While K, of the impermeable, permeable and semi-permeable cracks are

identical for both penny-shaped and elliptical cracks, the stress intensity factors K, of

those three crack models for the spherical cap crack are not identical and one can
clearly see when the half subtended angle of the surface (&) becomes larger. This
implies that the curvature of non-planar cracks renders the dependence of the electric
field on the mode-I stress intensity factor, while, as discussed in the case of planar
cracks, the electric field has no effect on K, of permeable, impermeable and semi-
permeable cracks but exhibits influence on results of the Landis-type crack.
Moreover, numerical results indicate that the more increase of the half subtended
angle of the surface of the spherical cap crack, the more downward shift of the K,
curve of the impermeable crack and the more increase of the gap between the upper
and lower bounds of the mode-I stress intensity factors. As a result, one can see the
transition between the upper and lower bounds of the stress intensity factor K, for all
four types of crack models.

For the mode-Il stress intensity factor of a spherical cap crack under the
tension loading, it is found that the more increase of the half subtended angle of the
surface, the more increase of the magnitude of the mode-II intensity factors for all
four types of crack assumptions (i.e. permeable, impermeable, semi-permeable and

Landis-type cracks). Moreover, it is obviously seen that K, for all four types of crack

models are nearly identical for all half subtended angle considered.
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For the electric intensity factor of a spherical cap crack under the tension
loading, it is found that its distribution is similar to those of a penny-shaped crack (or

an elliptical crack) when the half subtended angle of the surface of the spherical crack

is not large (6 =15°,30°). More specifically, the electric intensity factor K, of the

impermeable crack is always the upper bound for the entire range of the applied
mechanical stress whereas the Landis-type solution is a lower bound when the applied
mechanical stress is very small. However, when the applied mechanical stress
increases, the permeable solution becomes the lower bound in stead of the Landis-
type solution. In addition, results of the Landis-type crack are nearly identical to those
of the semi-permeable crack and both solutions approach the upper bound (i.e., the
impermeable solution). However, when the half subtended angle of the surface of a
spherical cap crack becomes larger, the gap between the impermeable solution and the

semi-permeable and Landis-type solutions increases and this implies that the electric
intensity factors K, of the semi-permeable and Landis-type cracks tend to approach
the results of the permeable crack in stead of the impermeable solution.

Finally, the investigation of all four types of crack models upon the stress
intensity factors and the electric intensity factor for piezoelectric finite bodies
containing a planar crack (i.e. an elliptical crack embedded in a finite cube) indicated

that the mode-I stress intensity factors of the permeable, impermeable and semi-
permeable cracks are nearly identical and are greater than K, of the Landis-type
crack. Moreover, it is found that the electric intensity factors K, of the impermeable

and permeable cracks are, respectively, the upper and lower bounds of those of the
semi-permeable and Landis-type cracks, and the electric intensity factor K,, of the

semi-permeable crack is greater than the Landis-type solution.
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