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CHAPTER I
VARIOUS TYPES OF CONVERGENCE

Let X be a non-empty set. By a funetion on X, we mean a real-valued function
on X. Let ® be an arbitrary class of funetions defined on X. Then we have the

following definitions.

Definition 1.1. A sequence of functions (f,,) in ® is said to converge uniformly
to a function f in ® (writfen-as f, — f) if for every € > 0, there exists a natural
number ng such thatm >ny implies |fu(z) — f(z)| < &, for all z € X. That is

fo = f=Ne 2 08m € NVn 2moVa € X, |fu(2) — f(z)] <e.

Definition 1.2. A sequence of functions (f,) in ® is said to converge equally to
a function f in ® (written as f, < f) if there exists a sequence (c,)nen of positive
reals converging to zero such that, for each & € X, there exists a natural number

n(z) satisfying |fu(z) — f(x)| < &, for each n > n(x). That is

fo S f <= 3e,) — 0V € X Inlz) € NVn > n(z),f.(z) — fz)| < &

Also, (f,) in ® is said to converge discretely to a function f in ® {written as
£ 5 f) if, for every = € X, there exists n(xz) € N such that f,(z) = f(z) for all
n > n(z). That is

fo B f =z € X 3n(r) eNVE > n(z), fula) = f(z).

Example 1.3. Let f,(z) = " for = € [0,1). Then the sequence (f,) converges
equally to the zero function on [0, 1).

Proof. Let z € [0,1) and (g,) = (%} Note that if a > 1, then there exists ny € N
such that a™ > n for all n > ng. Since 1 > 1, there exists n(z) € N such that
(1)" > n, for each n > n(z). Thus z" < 1, for each n > n(z). Hence |f,(z)| < &,
for each n > n(z). Therefore f, = 0 O



Example 1.4. Let

0 for z € (—oo,n — 1];
@) =qz-n+1 forze€[n—1,nl

1 for z € [n — 1, 00).
Then the sequence (f,,) converges discretely to the zero function on [0, 1).

Proof. Let z € R. Then there exists n(z) € N'such that n(z) -2 <z < n(z) - 1.
Since z € (—oo,n(z) — 1), we have fu(z) =0, for all n > n(z). Hence f,(z) =0,
for all n > n(z). Therefore fu <50 O

Definition 1.5. A sequence of functions (f,,) in ® is said to converge uniformly
equally to a function [ in ® (written as f, — f) if there exists a sequence
(£n)nen of positive reals conuerging to zero and a natural number ng such that the
cardinality of the set {n € N : |f.(z) - f[zjl > &,} is at most ng, for each z € X.
That is

fo 25 f <= 3(e,) — 0Fng € WYz € X, [{n € N : |f.(z) — f(2z)] 2 €n}| < no.

Example 1.6. Let 0 < 4 < 1 and f,(x) = 2" for z € [0,6]. Then the sequence
(fa) converges uniformly equally to the zero function on {0, 6].

Proof. For (g,) = (6" 4 1), we have
{n € N: |fa(z) = f(z)| = .} < no =1, for each = € [0, 4]
(Since f,(x) =" < 6" < 8"+ L, for'each n€ N and z € [0,4].) Hence f, = 0

with witnessing sequence (&, )nen. O

Example 1.7. Let f,.(z) be the characteristic function of the interval [n — 1,n],
n € M given by

1 for z € [n —1,n];
falz) =
0 forzén—1n].

Then the sequence ( f,,) converges uniformly equally to the zero function on R.



Proof. For (e,) = (%), we have |{n € N: |f,(z)| > 2}| <ng=1, foreach z € R.
Case : 1. Let z € [n — 1,n]. Then f,(z) = 1. Thus

fnenin@iz )| <1

Case: 2. Let z ¢ [n— 1,n]. Then f,(z) = 0. Hence |f,(z) — f(z)| = 0. Thus
|{n eN: |fulz)| = %}| = 0. From cases 1, 2, we have

[{n € N: |fu(z)]| Z &}l S Hp=1 for each = € R.
Hence f, == 0 with witnessing sequence (£, )uen- O

Example 1.8. Let f, i [0;1) — R be defined by fi(x) = z",n € N and f = 0.
Then the sequence (f,) does not converge uniformly equally to the zero function
on [0,1).

u.e,

Proof. Suppose on the contrary that f, — 0. Then there exists a sequence
(€n)nen of positive reals converging to zero and a natural number ng such that the
cardinality of the set {n € N : |f.(z) — f(z)| = &,} is at most n,. Since (g,) — 0,
there exists n; € N such that ¢, < % for all n > n;. Then (%}m € [0,1) and
(1)7¥5% > 1 > ¢, for ny'< 1 < 0y + 209 —1. Hence ‘fm{{g}ﬁ} > &, for

n, <m<ny+2ng — 1. Then
{n eN: f,..[(%]“ﬁﬁ}} > En}

which is a contradiction. O

>ny+2ng—1=mn; +1=2n > ny,

Definition 1.9. A sequence of functions (f,) in ® is said to converge uniformly
discretely to a function f in © (written as f, s f) if there exists a natural
number ng such that the cardinality of the set {ne N: |f,(x) — f(z)| > 0} is al
most ng, for each r € X. That is

o 25 f &30y € NVz € X |{n € N: |f{z) = f(z)| >0} < no.

Example 1.10. Let f, be the characteristic function of the interval [n — 1,n],
n € N given by

1 forz € [n — 1,n];
fn[I}=
0 forxzé[n—1n].



Then the sequence ( f,,) converges uniformly discretely to the zero function on R.

Proof. 1t is obvious that there exists ng such that
{neN:|fa(z)] >0}/ <np=1  foreachr €R.

Hence the sequence (f,) converges uniformly discretely to the zero function on
R. O

Example 1.11. Let 0 < 4 < 1 and f,(z) =" for z € [0,4]. Then the sequence
(fn) does not converge uniformly discretely to the zero function on [0, 4].

Proof. 1t is obvious that the get {n € N :4§" > 0} is unbounded. Hence the se-

quence ( f,,) does not converge uniformly discretely to the zero functionon [0,6]. O

Example 1.12. Let f : R = R be defined by f.(z) = L for n € N. Then the

sequence (f,,) does not converge uniformly discretely to the zero function on R,
Proof. 1t is obvious. O

Example 1.13. Let

0 for z € (—oo,n — 1];
fule)=<z-—n+1 forzein—1n};

1 for z € [n, 00).

Then the sequence ( f,,) does not converge uniformly discretely to the zero function

on R.

Proof. Suppose on the contrary that f, “% f. Then there exists a natural number
ng such that the cardinality of the set {n€ N: [f.(x) = f(z)] = 0} is at most
ng, for each z € X. Since fi(ng +1) = 1, fa(ng +1) = 1,..., fos(ma + 1) =
1, fag+1(ng + 1) = 1, we obtain [{n € N : |f.(ng + 1)| > 0}| = ng + 1, which is a

contradiction. O

For a sequence of functions in @, we will show implications any among various

kinds of convergence.



Theorem 1.14. Uniform convergence implies uniform equal convergence.

me Let fn A f* then “fn i .pr”m — 0. For {En] = {”f" - -f”m ¥ %} s u‘ we

have
{n € N : |fulz) — f(z)| 2 | fa — fll = €n}| < ng = 1,for each z € X.
Hence f, == f with witnessing sequence (£, )nen- O

Example 1.15. The converse of the above implication fails. Let f, be the char-

acteristic function of the interval [n —1,n},n € N and given by

1 for z € [n — 1,n);
0 forz ¢ [n—1,n].

fu{x) =

Then the sequence (fu) converges uniformly equally to the zero function on R but

not uniformly.

Proof. From Example 1.7, we have f, — f. Since || f, — f|l, = 1, we have that
| fa = fll.. does not converge to the zero function on R. Hence [|f, — f|,, does

not converge uniformly to the zero function in R. O
Theorem 1.16. Uniform equal convergence implies equal convergence.

Proof. Let f, == f. Then there exists a sequence (<, ).en of positive reals con-
verging to zero and 7y € N such that

|{ e 1fi(z) & f(z)lZer}| € no~ ¢ foreach z € X.
Hence for each z € X, we have

|fal2) = f(z)|'<'e, |for eachru> max {n €N: [fu(r) = flz)|.2Z &n}.
Therefore f, — f with witnessing sequence (£, )nen. O
Example 1.17. The converse of the above implication fails. Let f, : [0,1) = R

be defined by f,(x) = z",n € N. Then the sequence (f,) converges equally to the

zero function on [0, 1) but not uniformly equally.



Theorem 1.18. Uniform discrete convergence implies both discrete and uniform

equal convergence.

Proof. Suppose that f, = f. Then there exists ng € N such that
[{{n € N:|fu(z) — f(z)| >0} < ng for each z € X.

For (¢,) = (+) — 0, we have that |[{n € N: |f,(z) — f(z)| = €.}| < no, for each
r € X. Hence f, =5 f with witnessing sequence (g, )nen. Moreover, for each
z € X, we have |f,(z) — f(e)| = 0, for all n = max {n € N : |f,(z) — f(z)| > 0}.
Therefore f, & G O

Example 1.19. The converse of the above implication fails.
(1). Let

0 for x € (—oo,n — 1J;

fu(z) =z =n+1 forzen-1,nj;

1 for & € [n,00).
Then the sequence (f,) converges discretely to the zero function on R but not
uniformly discretely.
(2) Let 0 <4 < 1 and f,(z) = 2" for z € [0,8]. Then the sequence (f,) converges
uniformly equally to the zero function on [0, d], but not uniformly discretely.

We give an alternative definition of uniformly equal convergence in the following
theorem:

Theorem 1.20: Let f- f.: X — R, and n € N.. Then f,~—=-f if and only if there

exists an unbounded sequence (p,) ..y of positive integers such that

Pulfn"flﬂ"l

Proof. Suppose that f, == f. Then there exists a sequence (g,), . of positive

reals converging to zero and ny € N such that

H{n € N:|fa(z) = f(z)| = ea}| < 1o for each = € X.



Note that |[{n € N : p, | fu (z) — f ()| > /2a}| < no for each z € X, where (p,) =
([J#E_“]) is an unbounded sequence of positive integers and hence p,, |f,, — f| == 0.

Conversely, if p,, |fu — f| — 0, where (p,) is an unbounded sequence of posi-
tive integers, then there exists a sequence (),), .y of positive integers converging

to zero and n; € N such that
{n € N:p,|fo(2) = f(2)|= A} <y for each z € X.

Since p, > 1, for all n € N, we have that 0 < plﬂ < 1, for each n € N. Then

0 <A/, < A, for each n & N, Thus _(ﬁn,fpﬂ) —0. For (6,) = (ingpn) , we have
H{n € N : |fa(z) = f(z)| = 6.} < n, for each z € X.

Hence f, —= f with witnessing sequence (6,,) . O
We first observe the following Lemmas.

Lemma 1.21. Let f, : X = R for eachn'€ N. If f, “5 0, then f> 25 0.

Proof. If (An),en is a witnessing sequence for uniform equal convergence of (f,) to
zero, then (X}), .y is a witnessing sequence for uniform equal convergence of (f2)
to zero. O

Lemma 1.22. Let f, : X — R for each n € N. If f is bounded and f, 25 f, then
fof =

Proof. Let M > 0 be such that |f (z)| < M for each z € X. Since f, =% f, there

exists a sequence [:E,,}“E“ of positive reals converging to zero and ny € N such that
Hr'e N:|f,(z) = f(z)| 2'e;}| <no" ' foreach z € X.
Hence

H“EN:“fn'f}{m}—fz{x}f:_"ﬁ-'n'ﬁ’f}] < np for each z € X.

Thus f, - f £ 72,



Claim Let

A={neN:|(fu-f)(z) - f*(2)| 2 &n- M},
B={neN:|fu(z) - f(z)| Z ea}.

Then A C B, foreach x € X. Let z € X and m € B°. Then m € N and

|fn (z) — f ()] < &m. Since |f(z)| < M, then |f (z)||fm (z) — f(2)| < &m - M.
Hence |(fm - f) (z) — f? (z)| < &m + M. Thus m € A°. Hence A C B. il

Theorem 1.23. Let f,g : X — R be bounded functions and f_,g, : X — R for
each n € N be such that f; == f and g, — g. Then f, - g, = f - g.

Proof. Since f, — fandg, —— g, wehave f +g, — f+gand f,—g = f—g.

Now using Lemmas 1.21 and 1.22, we get

F LF il N s 2
f g = a9 4()', 9.)" ue, (f +9) 4(! )

Note : Since (f, +g,) — (f+9). (f,+4.) = (f+9) = 0. By Lemma 1.21,
we have

(fita)-(F+9) =0 (1.24)
Since (f, +g,) — (f + ), f + g bounded and Lemma 1.22, we have
(o +9.)(f +9) 25 (f +9)*. (1.25)

Consider (f, +g,)* = (f + g)*

=[(fy +0q) =(f # O #2(f, +9)f +9)=2(f +9)*.

From (1.24), (1.25) we have (f, 4+ g.)° — (f + ¢/> =5 0. Hence-(f, +g¢.)* <5
(f +9)%. Similarly (£, - 9.)" #5 (£ 2 9)°, O

Now, we study the properties of uniformly discrete convergence in the fol-

lowing result follows from definition:
(i) If fu =5 f, then |f,| =5 |f].

(ii) If fo 25 f, go 2% g and a, 8 € R, then af, + Bgn “% af + fg.



(iii) Let fo: X —R,n€N.If f, “% 0, then f2 2% 0.
(iv) Let fo: X — R,n € N. If f is bounded and f, “% f, then f, - f =5 f2.

(v) Let f,g: X — R be bounded functions and f,, g : X — R,n € N be such
thatf,,ﬂ‘rfmdg,.ﬂ'rg, thenf,,-y,,"—“"rf-y.

AONUUINBUINT )
ANRIN TN INENAY



CHAPTER II
LATTICES OF UNIFORM EQUAL AND UNIFORM
DISCRETE LIMITS

Definition 2.1. Let ® be a class of functions on X .

(a) @ is called a lattice if ® eontains all constants and f,g € ¢ implies max{f, g} €
® and min{f, g} € &

(b) @ is called a translation lattice if it is a lattice and [ € ®, ¢ € R implies
f4+ced.

(c) @ is called a congruence lattice if it is a translation lattice and f € ®
implies —f € ®.

(d) @ is called a weakly affine lattice if it is a congruence lattice and there is a
set C C (0, 00) such that C is not bounded and f € ®, c € C implies cf € ®.

(e) ® is called an affine lattice if it is a congruence lattice and f € ®, c € R
implies cf € ®.

(f) @ is called a subtractive lattice if it is a lattice and f,g € ® implies
f—ged.

(8) ® is called an ordinary class if it is a subtractive lattice, f,;g € ® implies
fog €@ and f €®, f(x)#0, for allx € X implies 1/f € &.

We denote by ®** the set of all functions on X which are uniformly equally
limits of sequences of functions in ®. Similarly ®“% denotes the set of all functions

on X which are uniformly discretely limits of sequences of functions in ®.
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Note 2.2. One can observe that if f € ®*, then for any sequence (A,)nen of
positive reals converging to zero, there exists a sequence of functions in ® which

converges uniformly equally to f with witnessing sequence (A, )nen-

Theorem 2.3. Let ® be a class of functions on X. If ® is a lattice, a translation

lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive

lattice, then so is ",

Proof. We will show that if & is a lattice, then so is ®"“. Suppose that ® is a
lattice.

Claim: If & contains constant functions, then ®** eontains constant functions.
Let f be a constant funetion in ®. Let f, (z) = f(r).z € X and n € N. Choose
() = (lfn) — 0, wehave [{n e N |f, (z) = f(@)|=02 e} =|2] =0 < 1,
for all z € X. Hence f € ®"% by definition. It follows that if f, — f, then
|ful =% |f] and if f, —f, g — g'and &, § € R, then af, + B9, 2% af + By.
Let f,g € ®*, then fi —= f,9, — g. Hence

fﬂ +Gn |fn‘“§n| H.e. f+y If-..q'
( 2 )"’ % M 2

Which implies that max {f, g} € ®**. Similarly min {f, g} € ®**. Thus ®““ is a

lattice.

It is easy to observe that if @ is a translation lattice, a congruence lattice, a

weakly affine lattice, an affine lattice or a subtractive lattice, then so is &%

Theorem 2.4. Let ® be an ordinary class of functions on X. Let f € &% be

bounded and such that f(x) #0 for each-x € X If 1/f is bounded on X, then
1/f € d*=,

Proof. Let A be such that f*(z) > A > 0 for each z € X. Since f € ®"* and
f is bounded, by Theorem 1.23, f? € ®"* and hence by Note 2.2, there exists
fan € ®,n € N and ng € N such that

< ng for each = € X.

{n €N: [fu(z) - fi(z)] 2 %}




12

Let g.(z) =max{f.(z),1}, 2 € X and n € N. Then g, € ® for each n € N. Note
that

{nEN - gnl(z) = fu(z) and |ga(z) — fA(z)| = %H‘Eﬂu
and

< n" + ng,

{n eN:guz)= E and |g.(z) — f*(z)| = }

where n* = [i] + 1.

Using the fact that

{n €N: |ga(2) - fi=)| = %}

= {n € Nt gu(z) = fo(z) and Ign[-'ﬂ} — f(z)| = %}

u{nEN:gniz)=%md |9a() = £*(z)| 2 nl}

we have

{neﬁ:|gn{rj fAz)| 2 I}I{n@+(n.;.+n}—n1 for each = € X.

Therefore
AR Y. Rt SO 7 | pie(z) - (=) . 1 1‘
(N o~ T 2 )| = [N S 2 5
< {{n € N: |g.(z) — f*(z)| = <my
for each z € X, Thus f72 € ®“* andso f: f*=1/f € ¢**. O

Theorem 2:5. If ® is a lattice, a translation lattice, a congruence lattice, a weakly
affine, an affine lattice or a subtractive lattice, then so is g+

We have the following result for a function class ® which is an ordinary class.

Theorem 2.6. Let & be an ordinary class of functions on X. Then f,g € ®“4
implies f - g € ®*4. Also, if f € ®“% is such that f(x) # 0 for each x € X and
1/f is bounded on X, then 1/f € &4,
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Proof. Let f,g € "%, Then there exist sequences (f,) and (g,) in ® such that
Fis b fy ga we g. It follows from the definition that f, - g, g [ -g. Let [ satisfy
the assumptions. Choose A such that f%(z) > A > 0 for each z € X. We first show
that f=* € ®“%. Since f € ®“*, then there exist sequences (f,) in ® such that
h b f. Since @ is an ordinary class, f? € ®,n € N. Let (g,),en be a sequence
of positive reals converging to zero and g, = max{f?,,}. Then g, € ®. Since
fo X5 f, there exists ng € N satisfying [{n € N: f,(z) # f(z)}| < np for each
x € X. Hence |[{n € N: g,(z) # max{f*(x).e4}}| < no for each z € X, which
implies
1 1

9u(@) L T J7(7).

{nEN: }}|5nu for each z € X. (2.7)

Since (£n)nen converges to zero, there exists n* € N satisfying £, < A for all

n = n*. Hence

‘ 1 131 \
{n eEN: max (2@, 3} # fz{I]}I <n for each r € X. (2.8)

Now using equations (2.7) and (2.8)

1 1
gn(z) 7 f"(ﬂr]}

Hence f~2 € ®"¢, consequently f- f~2 = f~1 € gud. -

{n!;-l—n' for each = € X.

{nEN:




CHAPTER III
a-UNIFORM EQUAL CONVERGENCE

Definition 3.1. Let X be a metric space and f,., f, n € M be real valued functions
defined on X. Then (f,) is & - convergent to f (written as f, = f ) if for
any r € X and for any sequence (x,) of points of X converging to z, (fu(z,))

converges to f(x).

The notion of a - convergence (known as continuous convergence) for sequences
of real valued functions on a metrie space turned out to be useful for characterizing
compactness in metri¢ spaces. It is known that if X is a metric space and f, f, :
X — R and n € N are such that f, = f (i.e. (f,) is @ - convergent to f), then f
is continuous. Also, if X is a compact metric space, then f, = f implies f, — f,
where u denotes uniform convergence.

In [2] Hola and Salat have obtained the following characterization of compact
metric spaces.

Theorem 3.2. A melric space (X, d) is compact if and only if for f,, f: X = R
fo = f implies f, = F.

Definition 3.3. Let (X,d) be a metric space and f,,f : X — R for any n € N.
Then (f,) contergés o - uniformly equally to f (writierias f, “— f ) if there
erists a sequence (£,)nen 0f positive reals converging to zero and an ng € N such
that

{n'e N: |fa(zn) — f()| Z &a}l <m0 for eachz € X and z, — 2.

a—u.e.

fo — [+ 3(e,) = 03Inp € NVz € X V(z,),

Tn = 2= [{n € N:|fu(z,) — f(z)] 2 ea}| < no
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Remark 3.4. It is clear from this definition that a - u.e. convergence implies both
a - convergence and w.e. convergence. However, the following examples show that
the converse of each of the above implications fails.

Example 3.5. Let f, be the characteristic function of the interval [n,n + ﬂ for
any n € N. Then f,, =5 0. For if (g,)nen is a sequence of positive reals converging
to zero then |[{n € N: f,(z) > £,}| £ 1, foreachz € R. Also f, = f. Forifz, € R
then there exists n* € N such that for all n > n* we have 3 < n and this implies
falzo) = 0, for all n > max{n*,ng(e)}. Therefore f,(z,) — f(zo) = 0. Hence
fa = f-
Now we can observe that if
1+ 5 if n<m;

Lo~ if n>m.
where m € N is fixed and =, < 1 for all n € N, then
H{n € N: |fala) — f(Zo)| = &n}| = m.
Hence (f,) does not converge a - uniformly equally to the zero function.

Example 3.6. Let (f,) be the piecewise linear function supported on [n. -1l,n+1+ ﬁ]
and give by

z+l—-n for z € [n =1, n);
Jalz) =41 for z €fn,n + 1J;
n+l+d-ig forz en+ tnd1+1]

Then we see that (f.) e-converges to the zero function but not a-uniformly equally.

In the above examples, in fact f, %4,0. Therefore u.d. - convergence need not
imply a - u.e. - convergence. Moreover, the following example shows that a - u.e.
- convergence also need not imply u.d. - convergence.

Example 3.7. Let f, : R — R be defined by f,(z) = 1 for any n € N on R. Then
u.d.
note that f, “—" f but f, /4 f.
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Remark 3.8. (i) Let (X, d) be a metric space and f,,f: X — R for any n € N
such that f, “==" f. Then f, = f and hence f is continuous even if f, are not.
Thus a - u.e. convergence implies that the limit function is continuous.

(ii) In general, uniform convergence need not imply a - uniform equal convergence.
For example if f is a discontinuous from X to R and f, = f, for all n € N, then
fa = f but since f is discontinuous, f, does not converge a - uniformly equally

to f. However, we have the following result.

Theorem 3.9. Let X be a metric space and f, + X — R for any n € N. If
the sequence (f,) converges uniformly to the zero funclion, then the sequence (f,)

converges a - uniformly equally to the zero function.

Proof. Since f, — 0, there exists a sequence (£,).en of positive reals converging
to zero and np € N such that |f,(#)| < &, for all n > ng and for each z € X.
This gives |[{n € N : | f,(z.)} 2 £4}| £ 0y for every converging sequence (z,) in X.

Hence f,, et O

In the opposite direction, we have the following result.

Theorem 3.10. Let (X,d) be a compact metric space and f,, f: X — R for any
n € N. Then f, “—" f implies f, — f.

a=u.e.

Proof. 1t follows from the fact that f, f implies f,, — f which again implies

fu — f, as X is a compact metric space. -

The following example shows that a - convergence need not imply uniform

equal convergence.

Example 3.11. Let f, : (0,1) — R be defined by f,,(z) = 2" for each n € N. Then
fo = f.Let 0.< § < Landa, € (0, 1) besuchthat z, — &.1fd <. <-1,then there
exists ng € N such that for all n = ng-we have r,, < ¥. But-then fu(z,) =z < J".
So fulz,) — 0 = f(&), since ¥* — 0. Hence f, = 0. However f, ‘;-’: f. For if
(En)nen is a sequence of positive reals converging to zero and 0 < £ < 1, then there

exists ng € N such that for all n > ny, &, < £. Consequently we have

{neN:z" Ze}N[ng,+o0) C{n€N:z" > g,} N [ng, +00).
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But the function n.(z) = [{n € N: 2" > €}|,z € (0,1) is unbounded and therefore
the function n(z) = |{n € N: z" > ¢,}|,z € (0,1) is unbounded. Hence f, # 0.

Note 3.12. (i) The previous example also shows that a-convergence need not
imply a-uniform equal convergence. In addition we have that the sequence (f,)
converges equally to 0 on (0, 1), since (0,1) = U2, [+,1— 1] and (f,) converges
uniformly to 0 on [i,l - -,:-] for every k > 2. So we have here a simple example
which distinguishes a-convergence from a-uniformly equally convergence, and at
the same time the equal convergence from uniformly equal convergence.

(ii) Examples in Remark 3.8 (ii) show that uniform equal convergence need not
imply a-convergence (since f being discontinuous, f, 72- f). Also the following

example shows the same.

Example 3.13. Let

= =

for ¢ € [[}*;1; -

falz) =10 for z€ (1,1);
1

for z=1.

for any n € N and f : [0,1] — [0, 1] be defined by

1 for z=1;
flz) =

0 otherwise.

It is easy to verify that f, — f'and hence f, — f but, f being discontinuous,

fipf

We now obtain a characterization of compact metric. spaces, using a-uniform

equal convergence.

Theorem 3.14. A metric space (X, d) is compact if and only if the a - convergence
of a sequence (f,) of real valued functions defined on X to the zero function implies

the a - uniform equal convergence of the sequence (f,) to the zero function.
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Proof. If X is compact metric space, then by Theorem 3.2, f,, = 0 implies f,, — 0
and hence by Theorem 3.9 f, “—=" 0. Conversely, suppose (X,d) is not com-
pact metric space. We first recall the construction of maps f; in Theorem 3.1
in [2]. Since X is not compact, there exists a sequence (z;) of distinct points of
X such that there exists no convergent subsequence of (zy). Since every point
of the set {r,,z2,...,ZTm,...} is an isolated point of the set {zy,z2,....Tm,...},
there exist 4, > 0,k = 1,2, ... such that 4, — 0 as k£ — oo and the closed balls
Bz, 6] = {z € X | d(z,zx) < &}, kb = 1,2,<._are pairwise disjoint. Then H =
U2, B [z, 8] is a closed set. Define a sequence f, of real valued functions on the set
{z1, T2, .o Ty, ...} by fi(®,) =0foranyn € Nand forp> 1, fp(zm) = (1-1/m)?!
if 1 <m < pand fi(wp);) = flz,) fory = 1,2, ... Define for p € N, f3(z) =0 if
r ¢ H and f;(z) = f(#;) A0, ~d(x,z;))/0;, if x € Blz, 6,)(j = 1,2,..). Then as
proved in [2], f; = 0. However, the fact that f;(z,) = (1 —1/p)*~" is decreasing
and converges to e”!, where e is Euler number, implies that (f;) does not converge
uniformly equally to the zero function, For if (£, ).en is a null sequence of positive
reals, then there exists ng € N such thaf, for all n > ng we have £, < e~'. Let

£ € (&ng,€7"). Then for all p € M,
{neN:fi(z) 2 el 2p-2
Also we have
{neNn=mng: filz,) 2e} C{neNn2ng: fi(z,) 2 en}.
Therefore for allp e M
[{n € N,n > ng : fi(z,) > ea}| Zp — 2 — nq.

u.e.
Hence f; +# 0. Now, since « - u.e. convergence implies u.e. convergence, we have
that the sequence ( f;} does not converges a - uniformly equally to the zero function.

O
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