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CHAPTER I
INTRODUCTION

A functional equation is an equation including one or more unknown functions
with prescribed domain and range. Solving a functional equation means to find
all functions which satisfy it identically. Functional equations have substantially
grown to become an impertant branch of mathematics. Particularly during the
last two decades, with its special methods, there are numbers of interesting re-
sults and several applications. The most famous functional equation, namely the
additive Cauchy equation, often simply called the Cauchy equation defined as

follows:

flz+u) = f(=) + f(y). (1.1)

A function that satisfies the equation (1.1) will be call an additive function.

The classical quadratic functional equation is the equation of the form

flz+y)+ f(z —y) =2f(z) + 2f(y). (1.2)

Any solution of (1.2) will be refered as a quadratic function (See [1]). The

Pexider type of the equation (1.1) is the equation of the form

Hi{z +y) = f(z)+ f3(y).
Similarly, the Pexider type of (1.2) is the equation of the form
Hile +y) +fole = y) = 2f3(x) +2fu(y)- (4.3)

In 1999, Soon-Mo Jung [2] gave the general solutions of the equation (1.3). Specif-

ically, he proved the following theorem:



Theorem 1.1. Let X and Y be vector spaces over fields of characteristic different
from 2, respectively. The functions fi, fa, fs, fa : X — Y satisfy the functional
equation (1.3) for all z,y € X if and only if there erist a quadratic function
Q: X — Y, additive functions aj,az : X — Y, and constants c;,c3,¢3,¢4 € Y

such that
filz) = Q(z) + a1(z) + az(z) + 1,
falz) =Q(z) + a1(z) — az(x) + c3,
fa(z) = Q(z) + ay(z) + c3,
fi(z) = Q(z) + az(z) + ¢4

with

1+ e = 263 + 2¢4.

Motivated by Theorem 1.1, we consider the quadratic functional equations of

Pexider type of the form

gn-1 n Fi
Z fifz 04T;) =2""lzgjirﬂ (1.4)
i=1 =l i=1

where n € N —{1}-and-o="(=1)bi=ibg=10con=1 52 12 ... n In

particular, when n = 3 and n = 4, we have respectively the equations

hizy + x2 + 23) + fazy + 22 — T3) + falzy — 22 + 23) + fulz) — T2 — 234)

= 4g1(x1) + 4g2(x2) + 4gs(zs) (1.5)

and

Fi(@y + 2o Fxatag) F fole) +22 23 —2q) + fa(@'+ €2 — T3+ 24+
faloy + 22 — 23— 24) + fo(Z1) — T+ T3 + x4) + Sol2) — T34 23— 14)+
Jr(z1 — T2 — T3 + 34) + fa(z1 — 22 — T3 — T4)

= 8g1(z1) + 8ga2(w2) + 8gs(x3) + Bga(z4). (1.6)
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Note that the work of Soon-Mo Jung [2] in Theorem 1.1 implies the existence
of the general solutions of the equation (1.4) for the case n = 2. In this thesis,
we would like to extend his result by solving for the general solutions for the
equations (1.5) and (1.6) which are corresponding to the cases n = 3 and n = 4.

y )
AU INENINYINS
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CHAPTER II
SOLUTIONS OF 3-DIMENSIONAL QUADRATIC
FUNCTIONAL EQUATION OF PEXIDER TYPE

In this chapter, we consider the equation (1.4)

> DL oims) =21 Y gi(=)
ol I j=1

when n=3, i.e. the equation takes the form

fi(zy + 22 + z3) + falzy + 22 — 23) + fal(z) — 22 + 23) + fu(z) — 22 — 23)

=dfs(zy) +4fs(z2) +4fr(z3). (2.1)

(Here, we replace g, with f5, g; with fs, and gg with f7 for the ease of the notation
indexing in the proof.)

In order to solve for the general solutions, we first make some certain sub-
stitutions to find the relations between those f;'s. Afterward, the appropriate
arrangements allow us to apply the result of Soon-Mo Jung. By proving Theorem
2.1, the general solutions to the equation (2.1) will be guaranteed. This result

will in turn be crucial for solving the equation (1.4) in the case n = 4.

Theorem 2.1. Let X and Y be vector spaces over fields of characteristic different
from 2. The functions f;: X = Y(i = 1,...,7) satisfy the functional equation
(2.1) for all x1,x2,x3 € X if and only if there erist a quadratic function Q.: X —
Y, additive functionsa; : X = Y(i=1,...,4), and constantsc; € Y(i=1,...,7)
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such that

filz) = Q(z) + a1(z) + az(z) + as(z) + ay(z) + i,
falz) = Q(z) + a1(z) + aa(x) — as(z) — a4(z) + c2,
fs(z) = Q(z) + a1(z) — az(z) +as(z) — ai(zx) + e,
fa(z) = Q=) + a1(z) — az(x) — as(x) + ay(z) + c4, (2.2)
fs(z)=@Q(z) + ai(z) + ¢,
fol@) = Q(x) + as(2) + ¢,
fr(2) = Q(z) + as(z) + o
with
€1+ €2+ cg+ cq = 4cs + 4cg + 4cy. (2.3)
Proof. First, assume that f;’s are solutions of (2.1). Define ¢; = f;(0) for i =
1,...,7. By substituting z; = 5 = z3 = 0 in (2.1), we see that the ¢;'s satisfy
the relation (2.3). Fori = 1,...,7, let Fi(z) = fi(z) — ¢;. It is clear from (2.1)
and (2.3) that the F;'s satisfy the functional equation (2.1) with F;(0) = 0.
Denoted by Ff(z) = HEEALL and Fo(z) = HERE the even part and

the odd part of Fi(x), respectively. It is easy to see that the F’s and the F['s
also satisfy (2.1). Next, we consider (2.1) for the F?’s:

Ff(ml + T +273} o o F-f{::l Fxg'= 33}+F‘§{1‘1 — I3+ 1‘-'3) T Ff(l‘] — Iy — 1‘-3]

= 4F2(21) + 4F(w2) + 4F2(zs).  (24)
Put 3 =0 in (2.4) to obtain a quadratic equation of Pexider type,
(F? + F9) (@1 + 22) + (S + F2)(21 — a2) = 2(2F)(z1) + 22F¢)(za).  (2.5)

By Theorem 1.1 and F;’s are odd functions, there exist additive functions a,,a; :
X — Y such that

F-F'i‘F; = 2&1 +2ﬂg,F;+FT =2f]1 —ERE,F:=E.[.F§ = Q3. {25}



Then put x; = 0 in (2.4), we have
(FY + F)(z1 + 23) + (Ff + FY) (@1 — w3) = 2(2F5) (1) + 2(2F7)(z3).  (2.7)
Similarly, by Theorem 1.1, there exists an additive function ag : X — Y such that
F} + F3 = 2ay + 283, F; + F{ =2a; — 2a3, F7 = as. (2.8)
Analogously, putting @3 = — 2 in (2.4) gives
F(ay) + F2 (21 4215) +F2(8) ~ 22) + Film) = 4F3(:) +4FS (x2) + 4Ff (—z2).
Since F? = a;, F{ = as, and F7 = a3, we have
F2(x,) + F3(zy+ 233) + F5 (21 — 222) + F{(x1) = 4a1(z;) + daz(z2) + dag(—2z2).
Now, we rearrange the previous equation to the equation
F2(xy + 2z2) + F(z1 — 222) = day(2y) + daz(x2) — das(z2) — F7(x1) — F{(z1).
From this, we obtain the equation
F{(xy +232) + Fi(z) — 223) = (da; — Fy — F{)(=) + (4az — 4as)(z2).
Hence, we get the equation
Fy

P?{Il + 21-’2} =+ F;{Ii - 212] = 2(2a; — ? = %z}{x]] 4+ 2(az — Ea){?ﬁg],

Applying Theorem 1.1 again, there exists an additive function a4 : X — Y such
that

Fp F?
Fj =ay — a4 + az — a3, F§ = ay— a4 — az + as, 2a; ——21““ “54“ =a; — a4, (2.9)
From (2.6), (2.8), and (2.9), we have

Ff=ﬂ.1+ﬂ',2+l13+ﬂq,F2ﬂ=ﬂ]+ﬂ2—ﬂg—ﬂ4,F;=E1—Ez+ﬂ-3—ﬂ¢,

Fr=ﬂl_ﬂz—ﬂa+ﬂi,F;=ﬂ1,F§=n2,F§=a3,



Now, we consider (2.1) for the F's:

Ff{I] + 9 + 1‘-'3] + F-f(i'[ + Tg — I3}+F3¢(I1 — Tz + Ia} + F:[I1 = Ig}

= 4F¢ (1) + 4Fg(x2) + 4F7(z3). (2.10)
By letting x3 = 0 in (2.10), we obtain
(Fy + F5)(xy + x3) +(F5 + Fi )z — 32) = 2(2F5) (1) + 2(2FF)(x2).

Hence, by Theorem 1.1 again and since the F's are even and Ff(0) = 0, there
exists a quadratic function @ : X — Y such that

Fi #F5 =20, F; +Fi=2Q,2F5 =20Q,2F; = 2Q. (2.11)
Then let £ = 0 in (2.10), and using Theorem 1.1, we get
T+ F;=2Q, F; +F5'=2Q,2F; = 20Q. (2.12)
Analogously, by letting x; = 0 in (2.10), we have
FF+F5=2Q F +F =2Q. (2.13)
Thus, from (2.11), (2.12), (2.13), we get
Fi=Fj=F=F=F=F=F=-Q

Conversely, if there exist a quadratic function @ : X — Y, additive functions
a;: X — Y(i=1,...,4), and constants ¢; € Y (i = 1,...,7) which satisfy (2.2)
and (2.3), it is obvious that f;'s satisfy the functional equation (2.1). O



CHAPTER III
SOLUTIONS OF 4-DIMENSIONAL QUADRATIC
FUNCTIONAL EQUATION OF PEXIDER TYPE

In this chapter, we consider the equation (1.4)

EN_,I n =
Y A oz =221 D gi(z))
1=l J=1 J=1

when n=4, i.e. the equation takes the form

f|EI1 =+ T3 +.&3 +:I-‘,|:| + fi(;ljl +'To iy — :'.74) + fa[:I], 4 To — T3+ I4}+
falzy + 22 — 33 = 74) + fsl@) — 2o + Zg + 24) + fol31 — T2 + T3 — T4)+
f7{I1 — T — I3+ 3}4} -+ fg(:ﬁ —~ Ty =Fy= .T..q,]

= 8fg(z1) + 8f10(x2) + 8f11(zs) + Bfralzy).

(Here, we replace g; with fg, g2 with fig, g3 with f;, and g4 with fi2 for the ease

of the notation indexing in the proof.)

It is interesting that the case n = 4 poses much harder difficulties not seen in

the previous case. In particular, there are even part of f;’s, for some i, that do not

directly satisfy the quadratic equation. But the enough relations between them,

we are able to resolve the problem in Lemma 3.2. Again with the appropriate

substitutions, Lemma 3.2 and Theorem 2.1, we finally proved the Theorem 3.1

and therefore obtained the general solutions for the equation (1.4) in the case

=4



Theorem 3.1. Let X and Y be vector spaces over fields of characteristic different
from 2. The functions f; : X = Y(i=1,..., 12), satisfy the functional equation
(8.1) for all Ty, T2, x3, x4 € X if and only if there exist quadratic functions Q1,Q::
X — Y, additive functions a; : X — Y(i =1,...,8), and constants ¢; € Y(i =
1,...,12) such that

fi(z) = @i(x) + a1(x) + az(x) + as(z) + ay(z) + as(x) + as(z) + az(x) + ag(z) + €1,
fo(x) = Qa(x) + ay(z) +a2(a) + as(x) — ay(x) — ag(z) — ar(z) — as(z) + ez,
fa(z) = Qa(z) + ar(z)+ az(z) — as(x) + ay(z) — as(z) + as(x) — ar(zr) — ag(x) + c3,
fa(x) = Qi(z) + a1 (z) + as(x) = as(x) — ag(x) — as(z) + az(x) + as(z) + c4,
fs(z) = Qa(z) + ar(x) — aalz) + as(z) + as(x) — as(z) = az(z) + as(z) + e,
fo(z) = Qi(x) + ayfz) — az(x) + asz(z) — ag(x) — as(z) + as(z) + ar(z) — as(z) + ca,
fa(z) = @Qi(z) + a1 (x) — az(z) —as(zr) + as(z) — ap(x) + az(z) — as(z) +c7,

fa(z) = Qz{ﬂ + aylz) = az(z) —as(x) — as(z) + as(z) + as(x) — az(z) + as(z) + s,

fo(x) = —n: )+ “tﬂ +ax(x) + cs, (3.2)
fo(x) = —(x] - 2<m1 + ag(z) + cuo,

fulz) = @t )+ L) + asta) +on,

falw) = L)+ Q’tm} T au(2) + iz

with

1+ co+eczg+eqg+cos+cg+cr+og=8cg+ Beyo + 8eyy + Beya. (3.3)
Before proving Theorem 3.1, we need the following lemma:

Lemma 3.2. Let X and Y be vector spaces over fields of characteristic different
from 2. Let Q: X — Y be a quadratic function.. The even functions Fy and
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Fy: X =Y such that Fy(0) = 0= F5(0) and satisfy the equations

Fi(zy + 23+ 23+ 74) + Fa(z) + 22 + 23 — 24) + Falz) + 22 — 23 + 24)+
Fi(z1 4+ 23 — 33 — 34) + Fa(2y — 22+ T3+ 24) + Fi(x — 22+ 23 — 34)+
Fi(z) — 22 — 23 + 24) + Fo(z) — 20 — 25 — &4)

= 8Q(z1) + 8Q(%2) +8Q(z3) + 8Q(z4) (3.4)

and

Fi+ F>,=2Q (3.5)

for all zy, x5, 25,24 € X if and only if there exist quadratic functions Qy, Q2 :
X =Y such that F} = Q,, F3 = Q5 and @, + Q2 = 20Q).

Proof. First, suppose that Fy, F; satisfy the equations (3.4) and (3.5). Consider
the equation

Qz +v) + Qz — y) = 2Q(z) + 2Q(v)- (3.6)

If welet z =0 =y in (3.6), we get Q(0) = 0. And if we let £ = y in (3.6), we get
Q(2z) = 4Q(x). Putting 1 = T3 = 13 = T4 = 3 in (3.4) gives

Fi(2z) + 4Fy(z) = 32@(%).
Replacing F; by 2Q — F) in the previous equation, we have
Fi(22) - 4Fy(z) = 32Q(3) - 8Q(a). (3.7)
From (3.7) and the fact that Q(2z) = 4Q(z), we get
F\(2z) = 4F, (z). (3.8)
Now, putting 1 = &, T2 = y, 23 = S, 54 = T in (3.4) yields

Fi(2z + 2y) + 2F\(z — y) + 2F3(z + y)+ Fa(2z) + Fao(-2y)

= 8Q(2) +8Q() + 16Q(*Y). (39)
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Substituting F5 by 20 — Fj in (3.9), we have

Fi(2z + 2y) + 2Fi(z — y) + 4Q(z + y) — 2Fi(z + y) + 2Q(2z) — Fy(2z)+

2Q(~2y) — Fi(~2y) = 8Q(z) + 8Q(y) + 16Q(= +y

2

). (3.10)
Applying (3.8) and properties of @ to the equation (3.10), we obtain

4Fi(z+y) + 2F(z—y) + 4Q(z + y) — 2F(z + y) + 8Q(z) — 4Fy(z)+

8Q(y) — 4F1(y) = 8Q(z) +8Q(y) + 4Q(z + y).
From the previous equation, we get
OF (x4 y) + 2Fi(z — y) = AR\ (z) +4F (). (3.11)
Divide (3.11) by 2, we have
Bz +y) + Filz — y) = 2R (z) + 2Fi(y).

Thus F is a quadratic function. Since F; = 20— I, we have F; is also a quadratic
function. Therefore, there exist quadratic funetions @, @; such that F} = @, and
Fy = Qy.

Conversely, if there exist quadratic functions Q;,Q2 : X — Y such that F} =
O, F5 = Qs and Q; + Q2 = 20, it is not hard to see-that Q,'s satisfy the
equations (3.4) and (3.5), and F(0) = 0 = F3(0).

O

Now, we can prove Theorem 3.1 as follows:
Proof. First, assume that f;'s are solutions of (3.1). Define ¢; = f;(0) for i =
1,...,12. By substituting z; = zo = 3 = 74, = 0 in (3.1), we see that the ¢;'s

satisfy the relation (3.3). Fori = 1,... 12, let Fi(z) = fi(z) —c;- It is clear from
(3.1) and (3.3) that the F;'s satisfy the functional equation (3.1) with F,(0) = 0.
Again, denoted by F(x) and F(z) the even part and the odd part of F;(z),

respectively. It is easy to see that the F”’s and the F{'s also satisfy (3.1). Next,
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we consider (3.1) for the F’s:

Ff'{xl +Iz+$3+I4}+F;(Ij +I2+Ig"I4]+F;{I1+Iz—$3+ﬂhj+
Flzy + 32 — T3 — 24) + Flz1 — 2o+ 23+ 24) + Fg(T1 — 22 + 23 — T4)+
F7(xy — 22 — 23+ 14) + Fg(z — 13 — 23 —34)

= 8Fy(z1) + 8F,(xa) + BFY,(x3) + 8Fy5(x4). (3.12)
Put z4 = 0 in (3.12) to obtain a quadratic equation of Pexider type,
(FY + F3)(z1 + zg¥ T3} (F5 + F{ )z + 22 — x3) + (F5 + Fg)(z1 — 32 + z3)+
(F7 + Fg)(z1 — 22 = 73) = 4(2Fg) (z1) + 4(2Fp) (z2) + 4(2F7) ) (x5)

By Theorem 2.1 and since F's are odd functions, there exist additive functions

aq, ftp, ag, a5 : X — Y such that

F? + F3 = 2a1 + 2a; + 2a3 + a5, F5 + F; = 2a; + 2a; — 2a3 — as,
F;+F;=2a1 —2ﬂ2+233—ﬂ5,F?+F;=2ﬂ] -?.ﬂg - 2E3+ﬂ.5,

F§ = a), Fijp = a2, F}) = as. (3.13)
By putting z3 = 0 in (3.12) and applying Theorem 2.1 again , there exist additive
functions a4,as : X — Y such that

F;+F‘.r=2a:+2ﬂ2+2ﬂ4+2ﬂu, Fy = 2a; + 2a; - 2a4 — 2ag,

Fy + Fy
Fy + F7 = 2a) — 2a3 + 2a4 — 2ag, Fg + F§ = 2a, — 2a; — 2a4 + 2a;,

12 = Q4. (3.14)

Similarly, by letting z; = 0, there exists an additive function a; : X — Y such
that

F} — Fg = 2a3 + 2a3 + 2a4 + 2a;, F3 — F7 = 2a5+ 2a3 — 2a4 — 2ay,

F3 — Fg =283 — 2ay+ 2a4 = 2a3, F{ — FY = 2a3 — 2a3 — 204 + 2a3. (3.15)
From (3.14) and (3.15), we obtain

F? + Fg = 2a, +2a3+2ag+2a; and, Fy+ F§y = 2a;—2a3+ 2a¢—2a;. (3.16)
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Then putting x4 = —z; in (3.12), we get
FY(zy + x3) + F3(x) + 225 + 23) + F5(x1 — x3) + Fi(z1 + 232 — 23)+
Fg(xy — 2x9 + x3) + Fg(zy + 23) + B2 (2) — 225 — 23) + Fg(31 — 13)
= 8Fy(x,) + 8F p(x2) + 8F), (x3) + BEL(=72).
Next, we rearrange the previous equation to the equation
Fy(xy 4+2x0 + z3) + F{(x) + 225 — 33) + F(21 — 222 + 73)+
F(z, =2z, —23) = 8F§(xy) + 8Fp(x2) + 8Ff (z3)+
BFy(—me) — (FY + Fg)(zr+as) = (F§ + F§) (3 = x3).
By using (3.16), we get
F3(zy + 222 + 23) + F{ (21 + 222 — 23) + F5(21 — 222 +23) + F7 (21 — 222 — 13)
= 8Fy (1) + 8Ffp(xa) + 8FY, (z3) + 8F%(—x2) — (2a; + 2a3 + 2ag + 2a7)(x; + x3)—
(2a; — 2a3 + 2a¢ — 2a7)(2; — =a). (3.17)
Now, we can transform (3.17) to the equation
Fy(xy + 2z2 + x3) + F{ (21 + 282 — 13) + Fg(2) — 275 + 23) + Ff(2) — 225 — 33)
= 4(a; — ag)(x1) + 4laz — ay)(2z3) + 4(az — az)(z3).
(3.18)
By Theorem 2.1, there exists an additive function ag : X — ¥ such that
Fj=a;—ag+a;—ay+az—ar—ag, Fy = a; — ag + az — ay — ag + ar + ag,
Fg =ay—ag— @z +aq+as—ar;+ag, Ff =a, —ag — ag + ag — ag + a; — ag
(3.19)
From (3.13), (3.14), and (3.19), we obtain
FY = a) + as + a3 + a4 + a5 + ag + ay + ag, F5 = dy+ ap + ag — aq — ag —a; — ag,
Fj =a;+as —az + ay — a5 + 6 — a4z — ag, F{ = ay+ ag — a3 — ay — ag + a7 + ag,
FPl=a) —ax+az+ aqg — ag — ay + ag, F{ = a; — az + az — a4 — as + ag + ay — as,
F? =ay —ay—az+ay—ag+ay—ag, Fg =a; —ay — az — ay + as + ag — ar + ag,

F§ = a1, Ffy = ag, Fy = a5, F, = as.
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Now, we consider (3.1) for the F's:

Fy(xy + o + 23 + 24) + F(x) + 22 + 23 — 24) + F5 (21 + 22 — 23 + 24)+
Fi(zy 4+ 2o — a3 —x4) + F5(01 — @3+ @3 + x4) + Fg(x1 — 22+ T3 — 24)+
F3(z) — 23 — 13+ 74) + Fg(xy — 29 — 25 — 14)

= 8Fg(x1) + 8Ffy(2a) + BFY, (3) + 8Fyp(za)- (3.20)

Since the F's are even and F7(0) = 0, by letting 4 = 0 in (3.20) and using
Theorem 2.1, there exists a quadratic function @ : X — Y with

F{ + Ff =2QF{ 4 Ff = 20, F§ + F§ = 2Q, F; + Fy = 2Q,
2F§ = 2Q,2F}p = 2Q, 2F}, = 2Q. (3.21)

Put x3 = 0 in (3.20) and using Theorem 2.1 again, we get
Fi + F5 = 2Q.5 +iF; = 2Q, F5 + F3'= 2Q, F5 + Fg =20Q,2Ff, = 2Q. (3.22)
Similarly, letting z2 = 0 in (3.20) gives
Ff+F =2QF; + Fy =2Q.F§ + B3 = 2Q.F; + F{ =2Q.  (3.23)
Analogously, putting z; = 0 in (3.20) yields
FY + F5 =2Q, F; + F7 =2Q, F§ + F§ = 2Q, F{ + F§ = 2Q. (3.24)
From the equations (3.21), (3.22), (3.23), and (3.24), we obtain
i = ;= 1 P T = ;.
FiA4FF=2QF=0Q Fy=0Q,F;=Q,F,=0Q. (3.25)
From (3.20) and (3.25), we now can apply Lemma 3.2 to get
F{=F{=F=F=Q ad Fi=F=F=F=Q

where @,0)2: X — Y are quadratic functions such that Q; + Q. = 2¢.
Conversely, if there exist quadratic functions @,,Q2 : X — Y, additive func-

tionsa; : X — Y (i=1,...,8), and constants ¢; € Y(i = 1,...,12) which satisfy

(3.2) and (3.3), it is obvious that f;'s satisfy the functional equation (3.1). O
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