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CHAPTER I 

INTRODUCTION 

Highway management system is typically used for estimating the budget and for 

making maintenance plans . Like all systems, the input of correct data is essential . 

Submitting incorrect raw data can create circumstances that would cause grave 

financial distress to local, regional, and national governments. 

When looking at the area of pavement distress, visual inspection by human 

inspectors is time consum ing, requires too many professional inspectors, and is 

financially restrictive. Moreover distress classifications and measurement are subjective. 

Two inspectors may give different results of distress information even if they are looking 

at the same thing . 

To solve these problems, an automatic crack monitoring system [1] is applied. 

This automatic system can be separated into two phases. In the first phase, the system 

co llects road surface images using a camera installed on a survey vehicle. In the 

second phase, an automatic processing of co llected images is performed to locate and 

measure distress. 

A major problem of this automatic system is the accuracy of distress information 

from automatic processing. This problem is caused by the quality of collected images. 

Most systems up until now use area scan cameras which were installed on survey 

vehic les. The area scan camera captures an image of a certain size and reso lution. The 

bigger the area covered, the more tendentious to have non-uniform illumination on an 

image. 

To improve the quality of images, a research [2] recommended the use of line 

scan cameras with artificial light to give uniform illumination and to remove shadow in 

the images. Because one strip or width of the pixel was captured with enough light, the 

captured images were of good quality with uniform light and the crack lines were 

obvious to be noticed . 

Even though, line scan seems to give better quality of road surface images, 

many old systems sti ll use area scan cameras. Also, the need for better crack detection 
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algorithm for area scan images can come from the need to re-extract crack information 

of archived images. For example, studying about how cracks grow as time passed by 

needs accurate crack information from archived images. Therefore, suitable crack 

detection algorithm for area scan images is sti ll necessary. 

1.1 Crack Detection Difficulties 

There are two major difficulties in crack detection process. The first difficulty is 

due to the surveying with an area scan camera in an open environment where light 

condition is a considerable problem . There is a lot of unavoidable shadow and shading 

(a) (b) 

(c) (d) 

Figure 1.1 Example Images with Illumination and Texture Problems 
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in the images. Figure 1.1 (a) shows unavoidable shadow from surrounding, e.g. tree 

branches. Figure 1.1 (b) shows shadow from the survey vehicle . Moreover, an area scan 

camera cannot give uniform illumination images, even if there is no shadow. The image 

with illumination problem is shown in Figure 1.1 (c) 

The second important difficu lty is due to the pavement texture. From the 

hypothesis, a c rack is a narrow strip of pixels whose intensity is perceptible darker than 

the surrounding backgrou nd . However, strong texture makes crack and background 

blend together, which is shown in Figure 1.1 (d) . It is easy for human to define crack area 

on strong texture images, but complicated for image processing . 

1.2 Objective 

The objective of this research is to develop an image processing algorithm 

based on Grid Cell Analysis technique for crack detection on asphaltic concrete road 

surface images. 

1.3 Scope of Work 

In this research, the focus is on image process ing algorithm for crack detection 

on asphaltic concrete road surface images. The scope of work is defined as follow. 

1. The result of the proposed algorithm is c rack information which consists of 

types of cracks and their bounded areas . 

2. Two types of cracks, linear cra cks and interconnected cracks are 

considered in this research. 

3. Cracks which are approximately three-pixel in strip width are considered . 

4. In c ra ck identification phase, a user has to define c rack charac teristics for 

each type of cracks. 

5. The accuracy of the proposed algorithm will be checked by expert 

inspectors. 

6. The proposed algorithm cannot handle images of roads which are covered 

with objects. 
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7. The proposed algorithm is not for use with underexposed or overexposed 

images. 

8. The proposed algorithm is for use with dry asphaltic concrete road surface 

images. 

1 .4 Workflow 

1. Study asphaltic concrete surface characteristics, includes crack 

characteristics and other type of distress characteristics. 

2. Study Grid Cell Analysis (GCA) [3J and other related works . 

3. Implement GCA [3J method to example surface images with crack and non-

crack area. 

4. Design enhanced grid ce ll analysis algorithm. 

5. Design noise removal algorithm . 

6. Implement the proposed algorithm to example surface images. 

7. Analysis the resu lt. 

8. Conc lusion and composing the thesis . 



CHAPTER II 

LITERATURE SURVEY AND THEORY STATEMENTS 

2.1 Literature Survey 

From the difficulties in crack detection process, many researches were done to 

solve these problems. For example, an inspection system with image processing 

algorithm for detecting cracks in a tunnel [4] was proposed. This algorithm applied 

Sobel and Laplacian operators to find crack edges . It applied a graph search method 

to find crack line from two pOints in an image. However, this system was semi-automatic, 

which needs the starting point and the ending point of each crack indicated by user. In 

addition, thi s system was app lied to the indoor structure, e.g. a road tunnel wall, or a 

subway tunnel wall. The characteristics of these walls were different from the 

characteristics of asphalt surface. 

Another example of cra ck detection technique is morphological operation. There 

is a research applying thi s technique to high-grade highway pavement images [5]. The 

algorithm with enhancement step used median filter algorithm with multi - structure 

elements. Then crack edges were extracted by closing operation and the crack edges 

were thinned by erosion operation in order to get the length and width of cracks. 

Compared with other methods that use edge detection algorithm, the algorithm used 

less processing time. However, it was only applied to high - grade highway pavement 

images. 

Artificial Intel ligence is another method for finding crack areas. In 2004, there 

was a proposed method [6] using artificial living system to remove noise, oil stains, and 

dark spots. A study, by Tomikawa, was based on the basics of appropriate template 

matching controlled by a genetic algorithm [7]. And there was a research report [8] 

using a neural network to identify cracks by analyzing images extracted from video 

sequences. Artifi cial Intelligence techniques give good results. However, those 

techniques need a large training data set which takes a lot of time to constru ct and the 

training time is very long. 
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In 2006, a wavelet-based image processing method was also applied in 

automation for crack detection on pavement surface image [9]. The idea of using 

wavelet-based was to define the most adapted mother wavelet function for various 

pavement textures. In the same year, Huang and Xu [3] presented an image processing 

algorithm for inspection of pavement cracking based on grid cell analysis (GCA). Their 

research consisted of three main steps. The first step was ca lled grid cell analysis. In 

this step, the pixels that were chosen as crack cel ls were regarded as a cra ck seed. The 

second step verified a crack seed by using the contrast of a crack seed to its neighbors. 

The last step was crack cluster connection . This step connected individual seeds into 

seed clusters for crack identification in a later step . Nevertheless, this algorithm is 

suitable for images from line scan cameras with uniform artificial light. In addition, this 

so lution needs preset thresholds that are not suitable for non-uniform illumination 

images. 

2.2 Morphological Image Processing in Grayscale Image 

The word morphology commonly denotes a branch of biology that deals with the 

form and structure of animals and plants. In the context of image processing [10, 11] it 

is the name of a spec ific methodology designed for the analysis of the geometrical 

structure in an image. The morphology techniques are useful in the representation and 

description of region shape. Moreover, these techniques are helpful in pre- or post­

processing. 

Morphologica l image processing is a set of techniques for digital image 

processing based on mathematical morphology. The language of mathematical 

morphology is set theory. Mathematica l morphology examines the geometrical structure 

of an image by probing it with small patterns, cal led 'structuring elements', of various 

sizes and shapes. Since these techniques rely only on the relative ordering of pixel 

values, not on their numerical values, they are especially suited to the processing of 

binary images and grayscale images whose light transfer function is not known. 

In grayscale images, digital image functions are shown in the form of f(x,y) 

and b(x,y), where f(x,y) is an input image and b(x,y) is a structuring element. 
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2.2.1 Dilation and Erosion Operations 

Dilation and erosion operations are fundamental to morphological processing . 

Many morphological algorithms are based on these two primitive operations . These 

basic operations produce contrasting results when applied to either grayscale or binary 

images. Dilation and erosion have a different effect on an image. Erosion shrinks image 

objects while dilation expands them. The specific actions of each operation are covered 

in the following sections. 

(1) Dilation Operation in Grayscale Image 

Grayscale di lation of input image f by structuring element b , denote D(f, b) , 

is defined as 

D(f,b )(s,/) = max {f(s - x, 1 - y) + b(x, y) I (s - x), (I - y) E Df ; ex, y) E Db} 

Where Df and Db are the domain of f and b, respectively. Dilation generally 

increases the sizes of objects, filling in holes and broken areas, and connecting areas 

that are separated by spaces smaller than the size of the structuring element. With 

grayscale images, dilation increases the brightness of objects by taking the 

neighborhood maximum when passing the structuring element over the image. The 

di lation images with 3x3 rectangle shape structuring element are shown in Figure 2.1. 

Original Di lation Original Dilation 

(a) Binary Image (b) Grayscale Image 

Figure 2.1 Examples of Dilation Operation [10] 
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Original Erosion Original Erosion 

(a) Binary Image (b) Grayscale Image 

Figure 2.2 Examples of Erosion Operation [10] 

(2) Erosion Operation in Grayscale Image 

Grayscale erosion of input image / by structuring element b , denote E(/, b) , 

is defined as 

E(/, b )(s,t) = min {/(s + x, t + y) - b(x, y) I (s + x), (I + y) E DJ ; (x, y) E Db} 

Where DJ and Db are the domain of / and b, respectively . Erosion generally 

decreases the sizes of objects and removes smal l objects by subtracting objects with a 

radius smaller than the structuring element. With graysca le images, erosion reduces the 

brightness and size of bright objects on a dark background by taking the neighborhood 

minimum when passing the structuring element over the image. The examples of erosion 

with 3x3 rectangle shape structuring element were shown in Figure 2.2 . 

2.2.2 Opening and Closing Operations 

Erosion and dilation can be used in a variety of ways, in parallel and series, to 

give other transformations. Two very important transformations are opening and c losing . 

Opening generally smoothes a contour in an image, breaks narrow isthmuses and 

eliminates thin protrusion . Closing tends to narrow smooth sections of contours, blend 

narrow breaks and long thin gulfs, eliminate small holes, and fill gaps in con tours. 

The Opening of input image / by structuring element b, denote O(/,b) , is 

defined as 
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O(j,b) = D(E(j,b),b) 

It can say that the opening j by b is the erosion of j by b , followed by a dilation of 

the result by b . 

Similarly, the closing of input image j by structuring element b, denote 

C(j,b) , is defined as 

C(j,b) = E(D(j,b),b) 

Thus, the closing j by b is the dilation of j by b , flowed by a erosion of the result by 

b. The examples of opening and c losing operations are shown in Figure 2.3. 

Original Opening Closing 

(a) Binary Image 

Original Opening Closing 

(b) Grayscale Image 

Figure 2.3 Examples of Opening and Closing Operation [10] 
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2.3 Grid Cell Analysis (GCA) 

Grid Cell Analysis (GCA) [3] is a technique for crack segmentation. Instead of 

looking for crack line in whole image, GCA looks for a crack characteristic in a small part 

of image which is a "grid cell". 

In this technique, a pavement image was divided into grid cells of 8x8 pixels and 

each grid cell was c lassified as crack or non-crack cell using the grayscale information 

of the border pixels as shown in Figure 2.4. 

The first column in Figure 2.4 shows the original image, the second column 

shows the en larged grid cells and the last column shows the border brightness profiles 

where two strips represent one side of the grid cell . 

A crack ce ll is identified by comparing its features from crack information to 

preset thresholds. Crack information includes the length, the width, and the contrast of a 

dark object. It also includes mean brightness, minimum brightness, and the presence of 

a dark strip within the cell, which is the val ley in the border brightness profile. When a 

ce ll does not contain a crack, its border profile shows no apparent valley as shown in 

Figure 2.4(a). In Figure 2.4(c), the border profile shows two sharp valleys, indicating the 

crossing pOints of a crack on the border. Figure 2.4(b) shows only one significant valley 

in the border grayscale, the cell may have edge crack. The result of grid cell analysis is 

a seed point which is the darkest spot in the cell. 

Figure 2.4 Grid Cell Attribute in Pavement Image 
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Nevertheless, this algorithm is suitab le for images from line scan camera with 

uniform artificial light. In addition, this solution needs preset thresholds that are not 

suitable for non-uniform illumination images. 

2.4 Hill Climbing Algorithm 

The simplest way to implement heuristic search is through a procedure called 

hill c limbing [12]. In hill c limbing strategy, the basic idea is to always head towards a 

state which is better than the current one. This strategy might be used as an eager but 

blind mountain climber who goes uphill along the steepest possible path until he can go 

no farther up. Because it keeps no history, the algorithm cannot recover form failures of 

its strategy. Hill c limbing can be described as a pseudo-code in Figure 2.5 . 

1. Start with current-state = initial-state . 

2. Until current-state = goal-state OR there is no change in current­

state do: 

2.1 Get the children of the current-state and use the evaluation 

function to assign a score to each child . 

2.2 If one of the children has a better score than the current-state 

then set the new current-state to be the child with the best 

score. 

Figure 2.5 Hill Climbing Pseudo-code 

A major problem of hill c limbing strategy is their tendency to become stuck at 

local maxima. If they sea rch state that has a better evolution than any of its chi ldren, the 

algorithm stops. If this state is not a goal, but just a loca l maximum, the algorithm may 

fail to find the best solution . Because "better" need not be "best" in an absolute sense. 

The algorithm is unable to distingui sh between local and global maxima. 
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2.5 Law of Gravities 

Gravitation [13] is a natural phenomenon where all objects with mass attract 

each other with a force of gravitationa l attraction. Gravitation is responsible for keeping 

the Earth and the other planets in their orbits. It is also the reason for the very existence 

of the Earth, the Sun, and all objects in the universe. 

Modern physics describes gravitation using the general theory of relativity, but 

the much simpler Newton's law of universal gravitation provides an excellent 

approximation in most cases. 

The Newton's theory of universa l gravitation states that: 

"Each particle of matter attracts every other particle with a force which is 

directly proportional to the product of their masses and inversely 

proportional to the square of the distance between them." 

The standard formula for gravity is: 

mm 
Gravitational force = G-1_

2
_2 

d 

Where G is the gravitationa l constant, m l and m2 are the masses of the two 

objects and d is the distance between the centers of gravity of the two masses. 

From the standard formula, consider the gravitational force between object A 

and object B. The force exerted on object A by object B is equal and opposite of the 

force on object B by object A. If the mass of object A was doubled, the force on object B 

wou ld double. Likewise, if the mass of object B was doubled, the force on object A 

wou ld double. Finally , if object A was twice as far away from object B, the force on 

object A wou ld be a factor four smaller. 



CHAPTER III 

RESEARCH METHODOLOGI ES 

In thi s chapter, the process of crack detection is described. The approach can 

be viewed as four phases . The first phase is the pre-processing phase which is for 

improving original images. The second phase is the crack segmentation which extracts 

crack objects from the original images. The next phase is the noise removal phase 

which is used for increasing the accuracy of the crack identification algorithm . The last 

phase is the crack identification phase which is used for classifying crack type. After this 

phase, the output distress data can then be used in highway management system. The 

flow chart of thi s approach is shown in Figure 3. 1. 

Begin 

Image Data 

Pre-processing 

Crack Segmentation 

Noise Removal 

Crack Identification 

Pavement Distress Data 

End 

Figure 3.1 Proposed Approach Flow Chart 
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3.1 Grid Cell Size 

This research was intended to use the highway pavement image dataset already 

on hand as the test dataset. The resolution of a pixel was 1.8 millimeters and most 

crack body of five millimeters showed up on most c rack images. Choosing a grid cell 

size was important for grid ce ll analysis. Bigger or sma ller grid ce ll size may not show 

enough information of the crack. Figure 3.2 shows grid ce lls of the same crack area in 

an image. The grid cells are shown in three different sizes with corresponding border 

brightness profil es . With sma ll grid ce ll, as shown in Figure 3.2(a), there is no noticeable 

valley in the profile . Figure 3.2(c) shows the cell whose size is too big . It gives many 

va lleys, thus the cross ing pOints of a crack on the border are indistinct. The proper 

profile should have two c lear-shape va lleys as shown in Figure 3.2(b). 

The grid ce ll size is also related to the c rack width or the width of the dark strip . 

The proper grid cell size should give distinct c rack in an image. For the dataset on 

hand, the grid ce ll size shou ld be approximately three times the crack width which is 

nine pixels in width and height. In this research, a grid ce ll size of 9x9 was used. 

(a) (b) (c) 

Figure 3.2 Difference Grid Cell Size with its Border Brightness Profile 

3.2 Pre-processing Phase 

Generally , the asphaltic conc rete road su rface images from a survey camera 

may contain faded and disconnected cracks including many black and wh ite spots. 

Figure 3.3 is an example of this situation which perplexes the algorithm when 

encountering the dark strip objects. In order to en hance the cracks, i.e. to make them 

unbroken and to remove noise, morphological operations in gray-scale images are 
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Figure 3.3 Original Image 

applied to improve the original image. This technique connects the dark pixels together, 

and removes isolated dark spots . 

To improve the original images according to the above methods, two steps of 

morphological techniques are applied. First, opening technique is applied to the original 

image. This technique helps connec t pieces of crack line together. Moreover, this 

technique makes a c rack line become darker and be simpler to be noticed by the 

algorithm. 

The second step of the pre-process ing phase is c losing technique. Although the 

opening tec hnique gives an obvious c rack line , black noise spots are also darker. 

Closing techniq ue is used to remove the sma ll dark spots which are sma ller than 

structu re element. 

(a) (b) 

Figure 3.4 Pre-process ing Phase 
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For example, when apply the opening technique is applied to the original image 

in Figure 3.3, the darker crack line , which is shown in Figure 3.4(a), becomes clearly 

visible. However, black noise spots also get darker. Figure 3.4(b) shows the final state of 

pre-processing phase which performs the clos ing technique on the Figure 3.4(a) . The 

spots which are darkened from the first phase are disappeared. As a result, only crack 

line can be perceived easily with less noise. 

The structure element in morphing is in a square shape with the size of one-third 

of the grid ce ll width. Since grid cell size is related to crack size, the structure element of 

this size can remove dark spots which are smaller than the structure element and can 

also emphasize the crack. 

3.3 Crack Segmentation Phase 

Enter 

Choose a grid cell with 
'Grid Cell Analysis Chain' 

Crack Cell Verification 

Mark it as a crack cell 

Crack Objects 

Exit 

No 

No 

Yes 

Figure 3.5 Crack Segmentation Flow Chart 
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The crack segmentation phase is based on using GCA to classify a crack cell, 

but the proposed algorithm has been enhanced for assuring the possible crack cell. 

Additiona lly, this approach uses heuristic decision on classifying crack cell instead of 

us ing preset thresholds for the purpose of dealing with illumination problem. 

This phase can be separated into two parts. The first part is the grid cell analysis 

chain which handles shadow problems. And the other part is the crack ce ll verification 

which guarantees the crack ce lls. The crack segmentation flow chart is shown in Figure 

3.5. 

3.3.1 Grid Cell Analysis Chain 

From the GCA, a pavement image is divided into grid cells which are classified 

as crack or non-crack cells. In contrast to GCA method which needs preset thresholds, 

this approach uses the border brightness profile with hil l climbing technique to find the 

valleys in order to cope with the non-uniform illumination problem. 

Figure 3.6 Grid Cell Attribute above Edge of Shadow Area 

In many cases, when images contain a shadow, a profile with one significant 

val ley may not always be a crack ce ll. As shown in Figure 3.6, a grid cell covering the 

edge of shadow area gives the profi le that looks like the edge crack in Figure 2.4(b). To 

avoid this problem, instead of using two cases of profiles to indicate a crack cell, the 

profile, which might be the crack cel l, must show only two considerable valleys, 

otherwise it is likely to be a non-crack cell. 

However, the above method would eliminate the cells that have edge crack. As 

a result, double checking on images is necessarily applied. After divided into grid cell s, 

the origina l image is divided again in overlapping area as given in Figure 3.7. This 

method can extract the crack area and keep away from the edge of shadow. 
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(a) (b) 

Figure 3.7 Grid Cell Attributes with Overlapping Area 

Figure 3.7 shows an overlapping area over different surfaces. Figure 3.7(a) is an 

image over a crack area while Figure 3.7(b) is an image over a shadow area . Both 

profiles in the left side of Figure 3.7 look quite similar with one significant valley, which 

means they are non-crack cells. Consequently, crack area in Figure 3.7(a) is ignored . 

After shifting the cell, the right profile in Figure 3.7 (a) shows two significant valleys while 

the right profile in Figure 3.7(b) shows only one. That is, the crack area in Figure 3.7(a) is 

extracted, whereas the shadow area is not. 

3.3.2 Crack Cell Verification 

Strong texture is another problem that reduces the accuracy of crack detection 

algorithm. Figure 3.8 shows a non-crack cell which has a profile similar to a crack 

profile. 
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Figure 3.8 Grid Cell Attribute with Strong Texture 
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From the basic concept. a border profile whic h shows two sharp valleys 

indicates that there are two crossing paints of a crack on the border, but it does not 

guarantee that a crack is in the cell as shown in Figure 3.9(a). To ensure that a c ra ck is 

in the cell, it must be further examined. If there are dark pixe ls arranging in a line 

between two valleys, the cell is verified as a crack cell. 

To verify the crack cell , all distances between each dark pixel to the imaginary 

line between two crossing points of a crack on the border of a grid ce ll must be within 

the crack size. Figure 3.9 shows arrangements of dark pixels and the imaginary line. The 

dark pixe ls in Figure 3.9(a) are not adjacent to the imaginary line whereas the dark pixel 

arrangement in Figure 3.9(b) c losely resembles the line. 

The distance d between dark point p(x,y) and the imaginary line, point 

q(x"y,) and point q(X2'Y2 ) ' is shown below. 

Where 
m2x, -my, +my+x x = --'---'---'-_"":""--

C m + 1 

yO' = mxO' - mx, + y, 

m = Y2 - y, 
x2 -x, 

, 

. __ I_(~· \ .J-, 

, I 

I 
(a) (b) 

Figure 3.9 Grid Cell Attributes with Crack Arrangement 
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3.4 Noise Removal Phase 

Even though the proposed method in segmentation phase can so lve non­

uniform illumination and strong texture problem, there is still some noise in the result 

from segmentat ion phase. This noise is a problem for classifying crack type . Unl ike 

white noise or salt and pepper noise, this type of noise cannot use filter to remove it. The 

noise is a sma ll object and looks like sma ll piece of c rack, thus crack and non-crack 

objects are blended together. As a resul t, it is difficult to identify the crack area. 

Figure 3.10 shows the resulting images from the segmentation phase with noise 

objects. The noise came from dark spots on the original image as shown in Figure 

3. 10(a). Other types of pavement distress may also give noise. For example, Figure 

3.10(b) shows an original image with patching which gives the resulting image too much 

noise. 

(a) 

(b) 

Original Result 

Figure 3. 10 Examples of Noise in Resulting Images of Segmentation Phase 
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3.4 .1 Crack Appearance 

From segmentation processed images, an object is mostly justified to be a crack 

if it has a large area (pixel counts), but this is not always true. For example, large objects 

(a), (e), and (g) in Figure 3.11 (a) are parts of crack lines, but many small objects in 

Figure 3.11 (a) are also parts of crack lines too. 

) i (d) .. -I - (f) • 
(e) "- \ 
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(b) ? • .. 
(c) , , 

(a) (b) 

Figure 3.11 Enlarged Elements 

In contrast to Figure 3.11 (a), Figure 3.11 (b) shows noise objects on non-crack 

area . However, these objects look like small objects in Figure 3.11 (a), e.g. object (b), 

(c), and (h). The distinction between the small objects in Figure 3.11 (a) and Figure 

3.11 (b) is the dispersal of the objects themse lves. Small objects in Figure 3.11 (a) are 

close to huge objects, while the objects in Figure 3.11 (b) spread over the whole region. 

From this distinction, the technique for telling the difference between crack and non­

crack objects was proposed with a supposition that a crack object is an object which 

has large area or stays close to a large object. 

3.4 .2 Gravitation Feature 

Like force of gravitational attraction which attracts all objects together, a c rack 

object is considered as part of a crack line or not by its area and the distance between it 

and other neighboring objects. For the purpose of noise removal, gravitation feature is 
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applied to calculate gravitational force between each pair of objects. If the force is 

strong enough, it indicates that the object is close to a large object and is considered a 

crack. 

If object A has pixel area aa and object B has pixel area ab , then the magnitude 

of gravitational force feature f on object A is directed toward object B is shown below, 

where r is the shortest distance between the tips of object A and B. 

Since the gravitational force is directly proportional to the pixel area of both 

interacting objects, more large objects will attract each other with a greater gravitational 

force . In contrast to the area, the force is inversely proportional to the shortest distance 

between the tips of the two objects. Farther distance will result in weaker gravitational 

forces. 

Figure 3.12 Crack Gravitation 

Due to the fact that most crack objects are narrow and almost aligned, the 

center of gravitation is then applied to the tips of the objects, as shown in Figure 3. 12, in 

order to increase gravitational force to the surrounding objects. With this concept, the 
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gravitational force abruptly changes with the distance, thus, make it easier to perceive 

an object as a crack. 

In order to classify crack, the area and the gravitational force are considered. 

Large area objects or strong gravitational forces are signs of crack objects. Otherwise, 

the objects are indicated as noise. In other words, weak gravitational forces show a 

characteristic of disorder arrangement of small objects. 

Read Crack Objects from Crack Segmentation Phase 

For each object A in Crack Objects 

End For 

For each object B in Crack Objects 

Calculate Gravitation Feature between Object A and Object B 

Store Gravitation Feature in Gravitation Feature Array. 

End For 

If there is at least one peak in the Gravitation Feature Array 

Set Object A as Crack Object 

Else 

Set Object A as Noise 

Figure 3.13 Noise Removal Pseudo Code 

The pseudo code of distinguishing crack objects from noise objects is shown in 

Figure 3.13. The input of this phase is crack objects from crack segmentation phase. 

Gravitation features of each pair of crack objects are calculated. For each object, if 

there is at least only one peak in the set of gravitation features, the object is considered 

as a crack object. Otherwise, it is considered as a noise. 

3.5 Crack Identification Phase 

Crack objects from crack segmentation and noise removal phase are spread 

over the area. To classify the crack, geometric characteristics are used. In this research, 
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(a) Linear Crack (b) Interconnected Crack 

Figure 3. 14 Examples of Crack Distress 

two types of crack are considered. The first one is linear crack as shown in Figure 

3.14(a) and the other one is interconnected crack as shown in Figure 3.14(a). 

3.5.1 Merging Method 

The results from noise removal phase are crack objects shown in Figure 3.15. A 

crack line can be performed by a group of cracks which lay next to one another. When 

looking at each object, it cannot give crack distress information which is crack type, its 

bounding area and its position. As a result, merging those objects into one is 

importance for crack identification. 

To merge the objects together, convex hulls technique is applied to each object 

to fine the smallest convex polygon containing all the points of the object. The points 
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(a) Original Image (b) Result Image 

Figure 3.15 Result from Noise Removal Phase 
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from convex hull technique represent the object in term of geometric shape . The next 

step is computing the rectangle with minimum circumference rectangle, as shown in 

Figure 3.16(a), which conta ins all the points of each object. This rectangle gives object 

information, i.e. its length, its width, and its rotational angle. 

Due to the fact that most c rack objects are c lose and almost arrange in a line, 

the objects which probably assemble a crack line have some area that lay on other 

objects. For this reason, the rectang les of each object are expanding their height in 

order to raise the possibility of overlapping area. 

After expanding the heights, each rectangle is filled, as shown in Figure 3.16(b), 

and convex hulls technique is then applied to fine the rectangle with minimum 

circumference rectangle again. Figure 3.16(c) shows the result of merging method. The 

result object gives enough crack distress information to identify crack. 

(a) (b) (c) 

Figure 3.16 Merging Method 
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3.5.2 Geometric Characteristics 

The results from merging method are objects with geometric characteristics 

which are the center point, the height, the width, and the rotational angle. It also 

includes the area and the ci rcumference of the object. These characteristics are used to 

identify crack type. For example, if an object is narrow, that is two parallel sides of the 

rectangle are extremely longer than the others, the object is justified as a linear crack. 

Otherwise, it is an interconnected crack. 

However, crack identification is ambiguous to justify even if professional 

inspectors do it themselves . For the most precise result, the user has to define the crack 

characteristics, e.g. crack size, and c ra ck area. 



CHAPTER IV 

EXPERIMENTS AND EXPERIMENTAL RESULTS 

4.1 Data Resource / Data Collection 

The images used in this research were from road survey database [14]. The 

survey of road pavement distress was done in the north part of Thailand by Department 

of Highway, Ministry of Transport, and CERT, Chulalongkorn University. The system 

used in the survey was installed in a van, as shown in Figure 4.1. The survey vehicle 

contained computers and survey equipment, such as laser profilometer, a GPS receiver, 

a gyroscope, asset view cameras and pavement view cameras . 

Figure 4.1 Survey Vehicle [14] 

Figure 4.2 Pavement View Cameras [14] 
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With the intention to find crack distress, pavement images were used as the 

input for this research . The images were captured from area scan cameras installed at 

the back of the vehicle with an approximate coverage area of 2.40 x 1.75 square meters 

for each camera . The pavement images were captured with a resolution of 1024 x 960 

pixels 8 bits gray-level and compressed with MJPG format. With these configurations, an 

image had a ground resolution of about 1.8 mm/pixel. 

Though a camera covered 1.86 meters in width, a highway lane width is about 

3.5 - 4 meters . In order to capture a full width of a lane, two area scan cameras were 

installed at the back of the survey vehicle, as shown in Figure 4.2. Both cameras 

captured pavement images using the same GPS position while the vehic le was moving . 

Then image processing was applied to correct camera distortion and to stitch the two 

images together. A stitched pavement image covered 4 x 1.75 square meters which 

sometime covered pavement shoulder. 

Using two cameras instead of one to capture images gave better images in 

terms of ground resolution, however, it has some problems. For instance, images form 

both cameras might have different light intensity, as shown in Figure 4.3, and thus 

stitching the two images together might not give a good blend of the two images. 

Stitching images by blending technique seems to give a good-looking result to human 

vision but some crack information may be lost. In this research, the input images from 

both cameras were processed separate ly to keep the highest level of crack lines' detail 

and to avoid the problem of difficult exposure. 

However, there were some areas in the image, as shown in Figure 4.2, that were 

not completely separated. In order to eliminate the overlapped area, instead of 

blending, the input images from both cameras needed to be cropped. 

Figure 4.3 Exposure Problem 
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4.2 CU Crack Finder 

CU Crack Finder is software developed by faculties and students at 

Chulalongkorn University. It was designed to handle the data sets of unique data 

structure, from the survey vehicle . The data sets consisted of several data, for example, 

pavement frame information, asset view frame information, GPS information and 

instrument sections. All data were linked by timestamp. CU Crack Finder estimated the 

relations between all data . 

CU Crack Finder process cou ld be separated into two parts, manual distressed 

rating and automatic distressed rating . Both parts were developed for the same 

purposes, i.e. estimating crack bounded areas and locating crack positions . However, 

the methods were different but in different methods. 

In manual distress rating, pavement images were carefully monitored by 

professional inspectors. Because this part was designed according to inspectors' 

requirements, the user interface of this part was easy to use, so crack bounded area 

was approximately estimated . The user interface consisted of asset view images from 

three cameras (installed on the front roof top of the survey vehicle), GPS information and 

pavement view images (which were assembled as a continued road image). The 

interface is shown in Figure 4.4. 

!!_!!"-_.I 1.-
( ............ 
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Figure 4.4 Manual Distress Rating Part of CU Crack Finder Program 
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Unlike manual distress rating part, the user interface in automatic rating part 

cons isted of start and stop buttons. The input images were sent to the algorithm 

automatically, and the output was stored in the data base. The user interface is shown 

in Figure 4.5. 

- - -

AutomaticRateForm ® 

~ ____ S_t_ar_t ____ ~l ~[ _____ S_t_op ____ ~ 

Image 10 : 4000/17394 
I mage Analysis: 1230 images 
Image Left : 13394 images 
Time Used : 00 Hour 14 Minute 35 Second 
Time Left : 02 Hour 36 Minute 38 Second 

Figure 4.5 Automatic Distress Rating Part of CU Crack Finder Program 

4.3 Crack Segmentation Experiment 

Crack segmentation phase was improved from Huang and Xu's approach [3]. 

The original approach had been applied to the pavement images from line scan 

cameras with artificial light to improve their quality. The images from line scan cameras 

were brighter, had lower distortion, and had more contrast between cracks and 

background. In contrast to the original method, this research had been developed to 

cope with pavement images from area scan cameras which might contain non-uniform 

illumination and shadow problems 

In order to eva luate the effectiveness, the proposed crack segmentation phase 

was compared to the Huang and Xu, original, approach . In this experiment, both 

approaches were applied to the pavement images from area scan camera. 

Two steps from the original approach, grid cell analysis and crack seed 

verification, were reconstructed and applied to the pavement images so as to extract 

crack area. The approach started with choosing the pixels which were regarded as a 
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crack seed by using grid ce ll analysis in the first step. Then the crack seed was verified 

by using the contrast of a c ra ck seed to their neighbors in the later step. 

Similarity, two steps of the proposed c rack segmentation phase, grid cell 

analysis chain and c rack cell verification, were applied to the pavement images. The 

proposed approach enhanced grid cell analysis by decreasing the conditions that 

indicate the existence of crack, increasing areas of search and checking dark pixels 

arranging in the grid cell . 

The sample pavement images in the experiment possessed different pavement 

textures and different light conditions. Some images had different brightness and some 

had low contrast. Both algorithms were applied with the constant parameters to those 

images. The resu lts were shown in the following section . 

Experimental Results 

By applying original grid ce ll analysis approach [3] to sam ple images, the result 

images are shown in Figure 4.6(a) . There was much noise appearing in the result 

images from strong texture and shadow problems. After applying the first technique, 

grid cell analysis cha in , to the sample images, the noise from the shadow disappeared 

whi le the noise from strong texture were still in the result images as shown in Figure 4.6 

(b). Finally, both techniques were applied to the sa mple images. From the result images 

shown in Figure 4.6 (c), this approach could extract most cracks from the sample 

images and also gave resu lt with less noise. 

Compared to the original algorithm, the proposed approach, using enhanced 

features, is less sens itive to light condition . Figure 4.7(a) shows the result images 

implemented with thi s approach. Figure 4.7(b) shows the result images implemented 

with the original algorithm. Both algorithms were applied to the same set of images with 

the sa me parameters, i.e. threshold va lues for original algorithm and window size for the 

proposed algorithm, for every single image. The results got from the proposed algorithm 

were satisfac tory , while another gives best result only in the first image of Figure 4. 7(b1). 
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(a) GCA without Approached Techniques 

(b) Applied Grid Cell Analysis Chain 

(c) Applied Grid Cell Analysis Chain and Crack Cell Verification 

Figure 4.6 Examples of Result Images 
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(1 ) (2) (3) 

(4) (5) (6) 

(a) Proposed Approach 

(1 ) (2) (3) 

(4) (5) (6) 

(b) Original Approach 

Figure 4.7 Experimental Result Images 

Compared with Original Algorithm with Same Variable Values 
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4.4 Noise Removal Experiment 

The main distinguishing feature of crack objects from noise was the gravitation 

force feature which imitated the idea of natural phenomenon. This experiment was done 

in order to be evidence for the abi lity of the feature. The idea was implemented to the 

result images from crack segmentation phase. 

The output images from crack segmentation phase were binary images. Crack 

objects, along with noise objects, were presented as white elements while the 

background was black. Object characteristics were extracted using convex hull 

technique [11]. The area and two tip positions of the objects were considered. 

Gravitation force feature of each pair of objects were calculated and investigated, (as 

shown in the pseudo code in Figure 3.13). 

Experimental Results 

To demonstrate the capabi lity of this feature, the concept was applied to an 

example image to show the fea ture value. Figure 4.8 shows an example of noisy image. 

Considering object (0) in Figure 4.8, it is on a crack line with an area of 301 pixels. The 

other significant object information is shown in Table 4.1 with their feature values 

arranged in descending order. 

The object (1) is on the same crack line as the considered object (0). Moreover, 

the object (1) is the closest object to the object (0) . Unlike object (1), the object (2) is 

smaller and farther than the object (1). As a result, object (1) gives a feature value of 

1,207.54 which is the highest va lue of the gravitational force towards object (0) while the 

object (2) gives 147.63 which is much smaller va lue . 

Looking at object (3) in the Figure 4.8, it is the biggest object but very far away 

from the considered object (0) . Consequently, it gives 16.85 which is a small amount of 

feature value or the gravitational force feature value. 

Figure 4.9 shows the object where the considered object (0) is noise object with 

an area of 61 pixels. Significant object information is shown in Table 4.2. Since the 

considered object (0) is small, the biggest object gives small feature value, 4.46, 

compared to feature va lue of the object (1), 1,207.54, in Figure 4.8. 
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Figure 4.8 Considered Object (0) on a Crack Line 

Table 4.1 Object Information for Figure 4.8 

Interacting Area Distance Gravitational Force 

Object Number (pixel) (pixel) (Feature Value) 

(1 ) 682.00 13.04 1,207.54 

(2) 489.00 31.58 147.63 

(3) 1.444.00 160.59 16.85 

(4) 277 .50 87 .86 10.82 

(5) 469.50 160.00 5.52 

(6) 12.50 27 .89 4.84 

(7) 40.00 52.09 4.44 

(8) 1,191 .00 436.15 1.88 

(9) 1,277.00 479 .76 1.67 

(10) 136.00 168.24 1.45 

(11 ) 786.50 457.56 1.13 

(12) 63.00 130.98 1.11 

(13) 163.00 212.05 1.09 

(14) 77.50 149.60 1.04 
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Figure 4.9 Considered Noise Object (0) 

Table 4.2 Object Information for Figure 4.9 

Interacting Area Distance Gravitational Force 

Object Number (pixel) (pixel) (Feature Value) 

(1 ) 1,444.00 141.17 4.46 

(2) 32.50 37.01 1.46 

(3) 16.00 30.87 1.03 

(4) 24.50 39.56 0.96 

(5) 277.50 134.54 0.94 

(6) 489.00 221.37 0.61 

(7) 166.00 131 .03 0.59 



37 

! \ 
I', 

( ) : ~) 1\ , ) 
i " \ ' 

I ' ~ ,ll / , 

\' , 

'1 \' I I , 
I 

i . , \ , 
" 

, 

I 
) 

~\ 
i' i 
I,' I , 

d i \ I \ 
) 

, i \ :;, )\ 'r}, r I 

) I ~ 
I 

\ , ! , 

n \ 

~ <1\ ' . 
, , ) 1 I I 

\I 
I ' \- "'"\ 

!'\. \ 

~ , I 
, ; \ 

1 " I , \I , . \- "-\ 

~ I)' I, ! ., ' 
I( \ 

\ i, (' ( 
, J 1 

, I, 
~ \--' ~ I ' 

: ( \ 

\ i ( 
I ) , 

:,' ~ . ) 
, .' 

'. ~ . ~ 

:-' I " , 
• \.". J :< *. • L I. 

I . 

j 
.'. /,..... ... .. 

. . ~ 
'. 

. . . ~ .' 

. : "/ 
(a) (b) (c) 

Figure 4.10 Noise Removal Result Images 

Due to a high range of the feature value, the feature value then has the ability to 

distinguish an object as a noise or a crack, This feature was applied to the example 

images in Figure 4.10. Figure 4.10 column (a) shows the original pavement surface with 

the crack lines, Figure 4.10 column (b) shows the result image with many noise objects 

from crack detection algorithm , After applying this feature to remove noise, the clear 

crack lines appear, The results are shown in Figure 4,10 column (c) . 
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4.5 Measuring Accuracy 

The proposed algorithm was applied to images from different roads with, 

different pavement textures, and different illumination conditions. The experiment can be 

viewed as two parts, the experiment with controlled input images and the experiment 

with real situation input images. 

Experiment with controlled input images was done in order to measure the 

proposed approach accuracy under the research scope. The input images were 

manually selected to meet the research constraints. Then the selected input images 

were processed by the proposed algorithm. Finally, the output images, containing 

highlighted pixels, were carefully monitored and checked for the correctness of crack 

areas and positions by inspectors . 

For the purpose of usability, the experiment with the real situation input images 

was done by embedding the algorithm in 'CU Crack Finder' program. The program 

handled the pavement input images in chrono logical order of the moving survey vehicle. 

The input images were fed into the algorithm, and then the output were stored in terms 

of bounded areas and types of c rack. The bounded areas and types of crack were 

compared with the bounded areas and types of crack rated by human vision. 

However, the reason that latter experiment was done was to test the algorithm 

with a large dataset of survey data where the input images could not be contro lled. The 

input images included wet pavement roads, unpaved areas, or pavement shou lder 

covered with objects. During the survey, it was difficult to decide when to continue the 

survey after the rain. When the road surface of the earlier part of the road became dry, 

the later part may not be dry, or may be partially dry. This situation could cause the input 

images to be of mixed characteristi cs. It was impractical to wait until the wet surfaces 

were dry, came back to the same position to capture the dry pavement images. It was 

also difficult to avoid capturing the pavement images with unpaved shou lder. 

Moreover, since the system could not perfectly taken all images with correct 

exposure, some images cou ld be overexposed, underexposure, or contained lots of 

noise. For the above reasons, the latter experiment could give only partial useful 

accuracy but not all. 
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The accuracy of the experiments was measured in terms of fa lse positive and 

false negative. False positive was wrong result from the algorithm on clean input images. 

Fa lse negative occur when the algorithm fai l to detect cracks on distress input images. 

4.5.1 Measuring Accuracy with Controlled Input Images 

In order to measure the accuracy, the proposed approach was applied to 3,991 

images taken from different environment including strong texture and shadow. In this 

experiment, input images were chosen according to the scope of this research to 

measure the ability of the algorithm. The images were of dry asphaltic concrete road 

surface and did not include images of roads which were covered with objects, 

underexposed or overexposed. 

The input images also contained other types of distress, e.g. raveling and poor 

patching area which gave strong texture images. Furthermore, the input images 

possessed poor illumination conditions which gave low contrast. Examples of the input 

images are shown in Figure 4.11. 

Input images were classified by human inspectors into two categories, i.e. crack 

images and non-crack images. The experiment used grid cell size of 9x9 to find crack 

size of 5 mm. In order to classify the crack type, criteria used are shown below. 

1. Crack area must be greater than 100 pixels or 3.24 square centimeters 

2. If bounded area of a crack is more than 100 pixels or 18 centimeters in 

width and height, the crack will be judged as interconnected crack. 

3. If bounded area of a crack is more than 100 pixels or 18 centimeters in width 

or height, the crack will be judged as linear crack. 

4. Otherwise, a crack will be judged to be noise. 

The resu lts of the proposed algorithm with controlled input images are shown in 

Table 4.3. The approach gave an average of 3.07% false positive and 9.17% false 

negative. 



Figure 4.11 Examples of Input Images for Measuring Accuracy 

Table 4.3 Results of Measuring the Proposed Approach Accuracy 

with Controlled Input Images 

Total Correct Incorrect 

Non-Crack Distress 2,901 2,812 89 

Images 96.93% 3.07% 

Crack Distress 1,090 990 100 

Images 90.83% 9.17% 
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4.5.2 Measuring Accuracy with Mixed-characteristic Images from Real 

Survey 
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In this measurement, the proposed approach had been embedded as automatic 

distressed rating part in 'CU Crack Fi nder' prog ram so as to measure the accuracy. The 

image files from real highway survey were decompressed and processed by the 

proposed algorithm. The output from this part was compared to the output from manual 

distressed rating part performing by inspectors. 

The test data images were col lected from three different routes in Loei province 

in June 2007. There were 75,926 pavement image frames. Each frame consisted of two 

pavement images which were stitched into one image. The images could be 

categorized into two types, clean pavement and distressed pavement. The distress can 

be classified as linear crack, interconnected crack, patching, pothole and raveling. The 

examples of input images are shown in Figure 4.12 and the total numbers of each 

distress type are shown in Table 4.4. 

(a) Clean Pavement (b) Clean Pavement with Oil Sports 

(c) Linear Crack (d) Interconnected Crack 

(e) Raveling 

Figure 4.12 Examples of Input Pavement Images 
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Table 4.4 The Total Numbers of Each Distress Type 

Number of Frames with Distress 
Distance 

Image Interconnected Linear 
(km.) Patching Pothole Raveling 

Frames Crack Crack 

Route 1 41,365 72.39 3,832 1,774 1,271 792 4,155 

Route 2 21,153 37.02 936 112 1,077 594 3,000 

Route 3 13,408 23.46 407 939 390 309 874 

Sum 75,926 132.87 5,175 2,825 2,738 1,695 8,029 

Because this research focused on crack distress only, other distress, such as 

patching, pothole and raveling were summed up as other types of distress . However, an 

image might contain more than one type of distress. For example, crack distress may 

appear near/or in the same area as raveling . Figure 4.13 shows such example. In Figure 

4.13(a), raveling distress is scattered over the image, but there is a crack line on the top 

left of the image, which does not appear on the raveling area. In this case, the inspector 

marked the crack as linear crack, and marks the raveling area as raveling area. Unlike 

Figure 4.13(a), there is a crack line on raveling area in Figure 4.13(b). In this case, the 

Original Image Distress Rated by Human Vision 

(a) 

(b) 

Figure 4.13 Examples of Two Type of Distress in an Image 
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inspector chose the most severe distress, which was raveling distress. Therefore the 

cra ck line was not labeled. The total numbers of distressed image frames that cons ist of 

more than two types of distress in different area are shown in Table 4.5 and Figure 4.14 . 

Table 4.5 The Total Number of Distressed Image Frames 

Distress Types Appearing Total Number of Image Frames 

in an Image Route 1 Route 2 Route 3 

Crack Distress Only (Unidentified Type) 5,488 1,031 1,302 

Crack Distress with Other Types of Distress 1,220 372 202 

Interconnected Crack and Linear Crack 118 17 44 

Interconnected Crack and Other Types of Distress 1,053 360 87 

Linear Crack and Other Types of Distress 202 17 131 

Interconnected Crack, Linear Crack and 
35 5 16 

Other Types of Distress 

Interconnected Crack 
Linear Crack 

2,825 Images 

10,668 

Other Types of Distress 

12,462 Images 

Figure 4.14 Vann Diagram of Distress Image Fram es 

Sum 

7,821 

1,794 

179 

1,500 

350 

56 

In manual distress rating part, the area of distress appearing in pavement view 

images were bounded by non-rotate rectangles or lines depending on the type of 

distress. In automatic distressed rating part, crack distress was located, c lassified and 
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measured by crack detection algorithm using image processing techniques. The results 

from the automatic part were the bounded area represented by rectangles which were 

rotated to fit the minimum crack area. The examples of rating are shown in Figure 4.15. 

(a) Manual Rating (b) Automatic Rating 

Linear Crack 

(c) Manual Rating (d) Automatic Rating 

Interconnected Crack 

Figure 4.15 Manual and Automatic Distress Rating 

Because of some different criteria used by human rating and automatic rating, it 

is difficult to compare the area of crack to conclude for accuracy. Rating by human 

vision was subjective, estimated, and might not fit with the real crack whereas rating by 

algorithm attempted to fit the real crack and excludeed unwanted areas. In order to 

check the correctness, the locations of cracks in an image were estimated and 

compared. 

This experiment also used grid cell size of 9x9 to find crack size of about 5 mm 

similar to the controlled input case in section 4.5.1. The results are shown in Table 4.6. 

The approach gave an average of 6.20% false positive and 46.99% false negative, 
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where 38.20% in 46.99% were from images of pavement conditions outside the 

research scope. 

Table 4.6 Results of Measuring the Proposed Approach Accuracy 

with Mixed-Characteristic Input Images 

Total Correct Incorrect 

Non-Crack Distress 143,852 134,929 8,923 

Images 93.80% 6.20% 

Crack Distress 8,000 4,241 3759* 

Images 53.01% 46.99%* 

Remarks: 3056 images (38.20%) were of wet pavement and/or images not in the I 

scope of this research 

4.5.3 False Positive 

False positive is the wrong resu lt from the algorithm on clean input images. 

Crack area should not be found when applying the algorithm on clean input images. The 

cracks which were detected on these images was cal led false positive. The causes of 

false positive are show in the following sections. 

4.5.3.1 Oil Stains 

False positive might be caused by several reasons. Oil spots on pavement road 

were an example. The round shape oil spot was easy to distinguish from crack lines, 

whereas the oil stains of line shape also had same characteristics as crack lines. 

Consequently, the proposed approach could handle the oil spots in round shape, but 

give the false positive on images with oil stains of line shape, as shown in Figure 4.16. 

Figure 4.16 False Positive on the Images with Oil Lines 
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4.5.3.2 Objects on Road Pavement 

In the survey, the roads were not always clean. Some areas were covered with 

dirt or soil which came from factories located nearby or fell from trucks. Because the 

contrast and shape were the main considered fa ctors to define crack characteristics, 

these dirt or soil could form texture similar to crack lines and might cause false positive . 

The examples of thi s kind of false positives are shown in Figure 4.17(a). The Figure 

4.17(a) shows an image of pavement covered with white dust forming shapes like crack 

lines. This situation occurred when a wheel tire ran over white dust and created tire track 

on the pavement surface. The tire tread portion that did not pick up the dust might 

cause a crack-like line . Consequently, the algorithm evaluated this line as a crack line . 

Because road shoulders might appear in the input images, objects that were not 

part of the road, e.g. grass, hay or tree branches could show up in the images. Figure 

4.17(b) shows an image with hay on the shoulder area which was judged to be crack 

area . 

(a) (b) 

Figure 4.17 False Positive on the images with objects 

4.5.3.3 Strong Texture and Illumination Problems 

The proposed algorithm was designed to cope with illumination and strong 

texture problems. The algorithm tended to give a good result with non-uniform 

illumination image but it still gave false positive area in some strong texture images. 

Figure 4.18 shows example images of this case. 



Figure 4.18 False Positive on the Images with 

Strong Texture and Illumination Problems 

4.5.3.4 Wet and Noisy Images 
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Because of long distance of the survey, it was difficult to se lect the input images 

according to the research scope. Wet su rfaces were one of the uncontrolled factors , as 

shown in Figure 4.19, which might give false positive. However, not only wet surfaces, 

noisy images also gave the fal se positive error. Figure 4.20 shows an example of noisy 

image with false positive error. 

Figure 4.19 False Positive on the Wet Pavement Images 

Figure 4. 20 False Posi tive on Noisy Image 
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4.5.3 .5 Other Types of Distress 

Another uncontrolled factor was the crack distress that might be mixed with 

other types of distress. In this case, the human rater picked the most severe one or a 

better representative one to represent part of the pavement that was needed to be 

repaired. The examples of this case are shown in Figure 4.21. There were 

interconnected crack beside the patching area in Figure 4.21 (a). In this case, the 

inspector marked the distress as patching area and ignored the crack area . On the 

other hand, the algorithm did not have any knowledge about patching. It did not reallize 

that patching and crack were together. Consequently, the crack was found and marked 

by the algorithm. 

Similarly, Figure 4.21 (b) shows a crack on an area that was judged by the rater 

to be a raveling area. After applying the algorithm to the image, the crack line was 

marked. The correctness was measured by comparing crack positions that were 

defined by human vision to those defined by the algorithm. Such situation caused false 

positive error even if the algorithm cou ld indicate the cracks. 

(a) (b) 

Figure 4.21 False Positive on Crack and Other Types of Distresses 

In some cases, false positive occurred when there were other types of distress 

or patching in the input images. Examples of these cases are shown in Figure 4.22. 

These patching or raveling areas had different characteristics from clean pavement. The 

algorithm, sometime, found them as crack areas which were judged as false positive 

error. The majority of these false positive cases was raveling distress as shown in Table 

4.7 and Figure 4.23. 



Figure 4.22 False Positive on Distressed Images. 

Table 4.7 Total Number of Distressed Images with False Positive Error 

Distress Type 

Pothole 

Patching 

Raveling 

[J 67% 

Crack Distressed Images Judged by the Algorithm 

Images 

1,084 

1,897 

5,862 

Percentage 

12.26% 

21.45% 

66.29% 

I!I Pothole 

D Patching 

[J Raveling 

Figure 4.23 Total Number of Distressed Image with False Positive Error 

4.5.4 False Negative 
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In contrast to false positive, false negative is the measure of the fault that occurs 

when the algorithm cannot detect crack which appears on an input image. The causes 

of the false negative are described in the following sections. 
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4 .5.4 .1 Causes of False Negative in the Controlled Input Images 

Investigating into the 9.17% fa lse negatives in the controlled input images, most 

cases were found in the crack identification phase. Because only some parts of the 

crack lines could be extracted, sma ll pieces of crack object cou ld not be merged. From 

this reason, the c ra ck characteristics can not be derived, so the crack area was not 

found . Exam ple images of this problem are shown in Figure 4.24. 

Figure 4.24 False Negative on Controlled Input Images 

4 .5.4 .2 Cause of False Negative in the Mixed-Characteristic Input Images 

From the investigation, the causes of false negatives occurred came from the 

following factors. 

1. Human fault. 

2. Larger c rack size (compared to grid ce ll size) . 

3. Thin crack . 

4. Noise in the input images. 

5. Low contrast of the input images. 

1) Human Fault 

Practica lly, manual distressed rating may not be 100% reliable. 'CU Crack 

Finder' helps inspector to speed up the marking of distressed areas by integrating 

pavement images into one image. The inspector marked distressed areas on the 
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merged images without knowledge about separated images. Because of enormous 

amount of data being rated, sometime the rater marked distressed areas more than 

rea lity wh ich might cause false negatives. 

Figure 4.25 shows an example of linear crack rating . The upper image did not 

contain any cracks while the lower image contained a crack line. The rater sometime 

estimated the length of crack line incorrectly by dragging the pointing device too far 

causing the length of the crack to occupy two images as shown in Figure 4.25(c) . The 

algorithm found only crack lines on the lower image as shown in Figure 4.25(b) . 

Therefore, the comparison gave false negative error on the upper images. 

In some interconnected crack distressed images, as shown in Figure 4.26, the 

rater also estimated distressed area which over occupies two images. Figure 4.26(a) 

(a) (b) 

Figure 4.25 Linear Crack Rating 

(a) Original Images 

(b) Rating by Algorithm 

(c) 

(c) Rating by Human Inspector 



(a) (b) 

Figure 4.26 Interconnected Crack Rating 

(a) Original Images 

(b) Rating by Algorithm 

(c) Rating by Human Inspector 
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(c) 

shows the original images with interconnected crack on the upper image. Figure 4.26(b) 

shows the images with crack bounded area by the algorithm. Only interconnected area 

on the upper image was found. Figure 4.26(c) shows the images with c ra ck bounded 

area by human vision. The bounded area of interconnected c rack occupied both 

images which gave fal se negative error on the lower image. 

In order to show severa l pavement frames on the screen, the pavement images 

were resized. The rater might not c learly judge the images, so the rater might make a 

mistake. For example, Figure 4.27 shows examples of sealed cracks images which 

inspector rated as linear crack. In this case, the algorithm did not find the c rack. 

Consequently, the com parison gave fal se negative. 
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(a) Original Images 

(b) Human Vision Rating 

Figure 4.27 Rating with Wrong Type of Distress 

2) Larger Crack Size (Compared to Grid Cell Size) 

Because the pavement might not be absolutely dry during the survey, the crack 

distress might absorb water on the surface, causing thick lines along the crack. These 

thick lines were one of the inevitable consequences. Since the proposed algorithm was 

effective in detecting cracks within a range of crack width, the cracks with water 

absorbed tended to give a look-alike thick crack lines. As a result, such cracks could 

not be detected. Examples of larger crack size are shown in Figure 4.28 . 

(a) Original Images (b) Rating by Human Vision 

Figure 4.28 Examples of Larger Crack Size 
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3) Thin Crack 

In the rating process, the inspector marked crack distress areas if they are 

visible on the images without considering the c rack sizes . In many cases, some cracks 

appear on the images as one-pixel crack width. The inspector could recognize them 

and mark the area of c rack distress. However, the algorithm could detect only cracks 

around five millimeters of width which appeared on the image about three-pixel width . 

Therefore, the one-pixel crack was ignored by the algorithm, causing the false negative 

error. 

(a) Original Images (b) Rating by Human Vision 

Figure 4.29 Examples of Smaller Size of Cracks 

4) Noise in the Input Images 

Since the sun light during the survey was not uniform through out the day, it 

sometime became darker because of shadow from c loud, trees, or buildings. This 

situation might cause noisy images, as shown in Figu re 4.30 . The image with a lot of 

noise might not be a problem with human vision but it could cause false negative error 

to the algorithm. 
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(a) Original Images (b) Rating by Human Vision 

Figure 4.30 Noisy Input Images 

5) Low Contrast Input Images 

The proposed algorithm was developed based on the assumption that a crack 

line is a narrow strip of pixels whose intensity is perceptible darker than the surrounding 

background. Most crack characteristics depend on contrast of crack and the 

background. In the low contrast images, crack lines are difficult to be noticed. 

Therefore, it was hard to define low contrast cracks by the algorithm. The examples of 

low contrast images are shown in Figure 4.31. 

(a) Original Images (b) Rating by Human Vision 

Figure 4.31 Low Contrast Images 



4.5.4 .3 Investigating of False Negative on the Mixed-Characteristic Input 

Images 
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False negatives in the mixed-characteristic input images were investigated so as 

to find the causes. Due to the vast amount of survey images, the input images were 

sampled every 100 meters for the investigation . The samples showed that 80 .31 % of 

false negatives were caused by wet and low contrast images which were not in the 

research scope. After excluding these out-of-research-scope crack images, the fal se 

negative is about 14.822% as shown in the Table 4.8. 

Table 4.8 Mixed-characteristic Input Images after Ignoring out of Scope Input Images 

Total Crack Distress Excluding Out-of-

Input Images Scope Crack Images 

Total 8,000 100.00% 4,944 100.00% 

Correct 4,241 53.01% 4,241 85.78% 

False Negative 3,759 46.99% 703 14.22% 

In Scope 703 8.79% 

Out of Scope 3,056 38.20% 

False negative images were investigated and can be c lassi fied as c lassi fication 

fault and crack detection fault. The total number of false negative images is shown in 

Table 4.9. 

Table 4.9 Causes of False Negative in Mixed-Characteristic Input Images 

False Negative Images 

Classification Fault 238 4.81% 

Crack Detection Fault 465 9.41% 

Sum 703 14.22% 
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Crack type classification fault was one of the false negative causes. Although 

crack identification phase needed knowledge from a professional inspector, crack 

identification by human rater team was subjective . Because of the different knowledge 

background, wrong c lassification might occur in some situations. The example images 

of classification fault are show in Figure 4.32. 

Figure 4.32 Examples of Classification Fault 

Another false negative cause was crack detection fault where crack line was not 

detected. Causes of crack detection fault with total number of images are shown in 

Table 4.10. The explanations for the caused were already described in prior sections. 

Table 4.10 Causes of Crack Detection Fault 

Total Images 

Gradient crack 257 5.20% 

Thin crack 154 3.11% 

Crack cells found but too scatter and 54 1.09% 

cannot be grouped as cracks 

Sum 465 9.41% 



CHAPTER V 

CONCLUSIONS AND RECOMM ENDATIONS 

This chapter draws conclusions of the research and also includes comments 

and recommendations of the algorithm for real situations. 

5.1 Conclusions 

This research was to develop an algorithm to detect crack in asphaltic concrete 

road surface images using enhance grid ce ll analysis. The algorithm was tested with 

pavement images in 8-bit gray-level MJPG format with ground resolution of 

approximate ly 1.8 mm/pixe l. With intention to find 5 mil limeters cracks which appears in 

an image as crack lines with 3 pixe ls strip width, grid cell size used in this research 

crack was 9x9 pixels . The image processing ran on an Intel Centrino Duo 2.16 GHz 

computer with 1 GB RAM . The conc lusions of the research are as follows. 

1. The algorithm was divided into four phases. The first phase, called the pre­

processing phase, helped enhance the original images. The second phase was the 

crack segmentation phase which extracted crack objects from the output of the first 

phase. Next, the noise remova l phase was used to reduce noise from the second phase. 

Fina lly, the crack identification phase was used for classifying crack types. 

2. The pre-processing phase used morphological techniques to improve the 

input images. Opening and c losing techniques were applied in order to make the crack 

lines become darker and eliminate dark spots. 

3. The second phase, the crack segmentation phase, consisted of two parts. 

The first part was the grid cell analysis chain part which solves shadow and shading 

problems. This part reduced the number of conditions to indicate crack cell in order to 

reduce noise. It also increased the analyzing areas on an image by processing the 

image in an overlapping way. The second part was the crack cell verification phase 
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which used the assumption that all the crack cells should have crack pixel arrangement 

closed to the imaginary line. This feature significantly improved the accuracy in 

extracting crack lines on a pavement image with non-uniform illumination and strong 

texture . 

4. The third phase was the noise removal phase . This phase introduced an 

image process ing feature for noise removal in images from the second phase. Unlike 

other types of noise, noise of this kind was unique in terms of size and dispersal. The 

feature was based on the theory of universal gravitation. This feature was applied to 

objects for keeping crack objects separated from noise. After applying the feature to the 

noisy images, the crack lines were easier to be noticed. 

5. The last phase of the proposed algorithm was the crack identification phase. 

In this phase, the crack objects from the third phase were grouped together using 

convex hull technique. Crack characteristics could be extracted and used to classify 

crack types. However, this phase needed knowledge from profeSSional inspectors to 

define crack characteristics. 

6. The accuracy of the proposed algorithm was measured by applying the 

algorithm to the input images which were manually selected according to the research 

scope. The measurement results with 3.07% false positive and 9.17% false negative. 

Images with oil stra ins are the main cause of false positive. False negative is caused by 

segmentation phase that can extract crack cell but too scatter to be grouped as crack. 

7. In order to test the capability of the proposed method in real situation, the 

proposed approach was applied to pavement images from the survey in open 

environment. With the test dataset of 4944 frames of dry pavement containing cracks, 

false negative of 14.86% was achieved. With the data set of 70,000 frames, false 

positive of 6.2% was achieved. Images with oil strains, object, and other type of distress 

are the cause of false positive. False negative is caused by gradient cracks, 

c lassification fault and segmentation fault as described in previous section. 
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5.2 Contributions 

This research can be applied to an automatic crack detection system in order to 

find crack size (t;Jounded area) and its position within images with the performance of 

about 0.7 second processing time per frame when used with a computer as described 

earlier. Highway management system or systems that use similar result can benefit from 

reliable crack detection of this research. Automatic or semi-automatic crack detection 

can be used. In semi-automatic rating, a rater can skip non-crack pavement images 

and pay attention to the portion of the dataset containing cracks. Distress rating time 

can then be reduced, and reliable result within a range of accuracy can be achieved. 

5.3 Limitations 

This research was developed under constraints of most asphaltic concrete 

highway pavement cond itions but might not be suitable for all cases. The limitations of 

this research are as follows. 

1. The algorithm was proposed to detect crack lines which appear in the 

images as darker strip pixels. Other crack lines appearance, e.g. white crack lines, 

crack lines with lighter intensity than the background, gradient crack lines, crack lines 

with low contrast to the neighbouring background, may not be detected. 

2. Since the proposed algorithm needs good contrast between crack lines and 

background, wet pavement image must not be used 

3. The proposed algorithm was developed to detect most cracks on the 

highway pavement image dataset already on hand where a pixel represents about 1.8 

millimeters of actual length and most crack line width was about five millimeters or three 

pixels. The algorithm gave good result when using a grid cell size of 9x9. Other 

configu ration may not give the accuracy within the range of this research result. 
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4. In addition, crack characteristics were defined that crack area must be more 

than 100 pixels or 3.24 square centimetres, or 100 pixels or 18 centimetres in width 

or/and height. Otherwise, the objects detected would be judged as noise. Real use of 

thi s algorithm should fo llow these constraints. 

5.4 Comments and Recommendations 

When applying the proposed algorithm to the rea l survey data, several issues 

should be considered. Also , improvement may be possible to cope with cu rrent 

limitations and to give better accuracy. These issues are desc ribed below. 

1. In order to get the quality of the result as described in this research, survey 

should be done in sunny days. The pavement must be dry and the pavement shou ld be 

c leared of hay, grass, or other objects that may cover the pavement. 

2. In a si tuation where a route is not in the condi tions mentioned above, the 

survey data should be viewed randomly by human to judge the quality of the input 

images. If the pavement images are mostly within the algorithm constra ints, they sha ll be 

processed by the algorithm in order to find c rack areas. Otherwise, the crack distress 

should be judged by human vision. 

3. Changing grid ce ll size may help improve c rack detec tion algorithm. Since 

c rack lines that can be detec ted by the proposed algorithm depend on the grid cel l 

size, a certain size of grid cell is good to detect only one size of c ra ck width. As a result, 

using various sizes of grid ce ll may help to broaden the scope of c rack detection. 
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Appendix A 

Experimental Results 

This section shows the experimental resu lts of applying the proposed algorithm 

to mixed-characteristic input images from real highway survey. The experiment used 

grid cel l size of 9x9 to find crack size of 5 mm. In order to class ify the crack type, criteria 

used are shown below. 

1. Crack area must be greater than 100 pixels or 3.24 square centimeters 

2. If bounded area of a crack is more than 100 pixels or 18 centimeters in 

width and height, the crack will be judged as interconnected crack. 

3. If bounded area of a crack is more than 100 pixels or 18 centimeters in width 

or height, the crack wi ll be judged as linear crack. 

4. Otherwise, a crack will be judged to be noise. 

The experiment was separated into two parts according to input images types. 

In the first part, the experiment measured accuracy of crack detection on clean input 

images. The measurement was shown in false positive. In the other part, the experiment 

measured accuracy of crack detection on crack input images. The measurement was 

shown in false negative. 



Table A.1 False Posi tive in Mixed-Characteristic Input Images 

Clean Images 

Route Type Image Crack Found Crack Not Found 
Total 

(False Positive) (Correct) 

Route 1 Crack Distress 35,877 2,374 6.62% 33,503 93.38% 

Interconnected Crack 37,533 2,264 6.03% 35,269 93.97% 

Linear Crack 39,591 2,978 7.52% 36,613 92.48% 

Route 2 Crack Distress 20,122 1,547 7.69% 18,575 92 .31 % 

Interconnected Crack 20,217 1,522 7.53% 18,695 92.47% 

Linear Crack 21,041 1,703 8.09% 19,338 91.91% 

Route 3 Crack Distress 12, 106 208 1.72% 11 ,898 98.28% 

Interconnected Crack 13,001 191 1.47% 12,810 98.53% 

Linear Crack 12,469 265 2.13% 12,204 97.87% 

Sum Crack Distress 68,105 4,129 6.06% 63 ,976 93.94% 

Interconnected Crack 70,751 3,977 5.62% 66,774 94.38% 

Linear Crack 73,101 4,946 6.77% 68,155 93.23% 
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Figure A.1 False Positive in Mixed-Characteristic Input Images 

user
Typewritten Text
66



67 

Table A.2 False Negative in Mixed-Characteristic Input Images 

Clean Images 

Route Type Image Crack Found Crack Not Found 
Total 

(False Positive) (Correct) 

Route 1 Crack Distress 5488 3157 57 .53% 2331 42.47% 

Interconnected Crack 3832 1596 41.65% 2236 58.35% 

Linear Crack 1774 1203 67.81% 571 32.19% 

Route 2 Crack Distress 1031 946 91 .76% 85 8.24% 

Interconnected Crack 936 661 70.62% 275 29.38% 

Linear Crack 112 77 68 .75% 35 31 .25% 

Route 3 Crack Distress 1302 848 65.13% 454 34.87% 

Interconnected Crack 407 170 41 .77% 237 58.23% 

Linear Crack 939 534 56.87% 405 43.13% 

Sum Crack Distress 7821 4951 63.30% 2870 36.70% 

Interconnected Crack 5175 2427 46.90% 2748 53.10% 

Linear Crack 2825 1814 64.21% 1011 35.79% 
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Figure A.2 False Negative in Mixed-Characteristic Input Images 



Table A.3 Investigation of False Negative in Mixed-Characteristic Input Images 

Excluding out-of-scope Images 

Route Interconnected Crack Linear Crack Human Fault 

Route 1 145 60 16 

Route 2 57 33 7 

Route 3 229 280 78 

Sum 431 373 101 

Table A.4 Investigation of False Negative in Mixed-Characteristic Input Images 

Excluding out-of-scope Images and Human Fault 

Classification Gradient Crack Cell Found 

Route Crack Type Thin Crack but Cannot be 

Fault Crack Grouped as Crack 

Route 1 Interconnected 90 40 8 7 

Linear 8 10 24 2 

Route 2 Interconnected 13 16 20 7 

Linear 3 19 4 1 

Route 3 Interconnected 114 45 45 25 

Linear 10 127 53 12 

Sum 238 257 154 54 
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Publication 

"Crack Detection on Asphalt Surface Image Using Enhanced Grid Cell Analysis" 

was presented in 4th IEEE International Symposium on Electronic Design, Test & 

Applications (DELTA 2008). The symposium was held at Hong Kong University of 

Science and Technology, Hong Kong, on January 23-25, 2008. This paper was 

published in the proceeding of DELTA 2008, pages 49-54. 
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Abstract 

This paper presents image processing 
techniques based on grid cell analysis for crack 
detection on non-uniform illumination and strong 
texture images. The techniques are Grid Cell 
Analysis Chain and Cracked Cell Verification. Grid 
Cell Analysis Chain helps eliminatefalse detection of 
shadow border on an image as being a cracked line. 
Cracked Cell Verification helps eliminate false 
detec tion when a grid cell has some image noise or 
strong texture but does not really contain part of a 
cracked line. Good accuracy in finding cracked 
lines on a pavement image with non-uniform 
illumination and strong texture can be achieved with 
13% and 21% of false positive and false negative 
respectively. 

1. Introduction 

Highway management system is typically used 
for estimating the budget and for making 
maintenance plans. Like all systems, the input of 
correct data is essential. Submitting incorrect raw 
data can envisage circumstances that wou ld cause 
grave financial distress to local , regional , and 
national governments. 

When looking at the area of pavement distress, 
visual inspection by human inspectors is time 
consuming, requires too many professional 
inspectors, and is financially restrictive. Moreover, 
distress classification and measurement are 
subject ive. Two inspectors may give different results 
of distress information even if they are looking at the 
same thing. 

To so lve these problems, automatic crack 
monitoring systems were applied. An automatic 
system [I] can be separated into two phases. In the 
first phase, the system co llected road surface images 
using a camera insta lled on a survey vehicle. In the 
second phase, an automatic processing of co llected 

images was performed to locate and measure 
distress. 

A major problem of the automatic system is the 
accuracy of distress information from automatic 
image processing phase. This problem is caused by 
the quality of co llected images. Most systems up 
until now use area scan cameras which were installed 
on survey vehic les. The area scan camera captures an 
image of a certain size and resolution . The bigger 
the area covered , the more tendencies to have non­
uniform illumination on an image. 

To improve the quality of images, a research [2] 
recommended the use of line scan cameras with 
art ificial light to give uniform illumination and to 
remove shadow in the images. Because one strip or 
width of the pixel was captured with enough light, 
the captured images were of good quality with 
uniform light and the cracked lines were obvious to 
be noticed. 

Even though, line scan seems to give better 
quality of road surface images, many old systems 
stil l use area scan cameras. Also, the need for better 
crack detection algorithm for area scan images can 
come from the need to re-extract cracking 
information of archived images. For examp le, 
studying about how cracks grow as time passed by 
needs accurate cracking information from archived 
images. Therefore, suitable crack detection algorithm 
for area scan images is still necessary. 

Many crack detection techniques have been 
proposed . For example, an inspection system with 
image processing algorithm for detecting cracks in a 
tunnel [3] applied Sobel and Laplacian operators to 
find crack edges. It also applied a graph search 
method to find a cracked line using two points in an 
image. However, this system was semi-automatic, 
which needs the starting point and the ending point 
of each crack indicated by user. In addition, this 
system was applied to the indoor structure, e.g. a 
road tunne l wal l, or a subway tunnel wall. The 
characteristics of these wal ls were different from the 
characteristics of an asphalt surface. 

Artificia l Intelligence is another techn ique used 
to find cracked area. For instance, a method using 
artificial living system [4] was proposed to remove 
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Figure I. Example Images with 

Illumination and Texture Problems 

noise, oil stains, and dark spots. A study by 
Tomikawa, was based on the basics of appropriate 
template matching controlled by a genetic algorithm 
[5]. Neural network was used to identify cracks by 
analyzing images extracted from video sequences 
[6] . Most artificial Intelligence techniques give good 
results. However, those techniques need a large 
training data set which takes a lot of time to 
construct and the training time is very long. 

In 2006, a wavelet-based image processing 
method was also applied in automation for crack 
detection on pavement surface image [7] . The idea of 
using wavelet-based was to define the most adapted 
mother wavelet function for various pavement 
textures . In the same year, Huang and Xu [8] 
presented an image processing algorithm for 
inspection of pavement cracking. Their research 
consisted of three main steps. The first step was 
called grid cell analysis (GCA). In this step, the 
pixels that were chosen as cracked cells were 
regarded as a crack seed . The second step verified a 
crack seed by using the contrast of the crack seed to 
its neighbours . The last step was crack cluster 
connection. This step connected individual seeds into 
seed clusters for crack identification in a later phase. 
Nevertheless, this algorithm is suitable for images 
from 
line scan camera with uniform artificial light. In 
addition, this solution needs preset thresholds that 
are not suitable for non-uniform illumination images. 

This paper proposed an algorithm for crack 
detection on asphalt surface images. The method is 
based on a grid cell analysis which divides an image 
into grid cells and extracts cracking information from 
each cell. This method has strong effect on non-
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uniform illumination images and strong texture 
images 

2. Crack Detection Difficulties 

There are two major difficulties in a crack 
detection process. The first difficulty is due to a 
survey with an area scan camera in an open 
environment where the light condition is a 
considerable problem. There is a lot of unavoidable 
shadow and shading in the images. Figure I (a) shows 
unavoidable shadow from surrounding, e.g. tree 
branches. Figure I (b) shows shadow from the 
survey vehicle. Moreover, an area scan camera 
cannot give uniform illumination images, even if 
there is no shadow. The image with illumination 
problem is shown in Figure I (c) 

The second important difficulty is due to the 
pavement texture . From the hypothesis, a crack is a 
narrow strip of pixels whose intensity is perceptible 
darker than the surrounding background . However, 
strong texture makes cracks and background blend 
together, which is shown in Figure I (d). Gradient 
crack, a cracked line with low contrast to the 
neighbouring background, is another example. It is 
easy for human to define gradient cracked area, but 
difficult for image processing. 

3. Grid Cell Analysis (GCA) 

In GCA presented by Huang and Xu [8], a 
pavement image was divided into grid cells of 8x8 
pixels and each grid cell was classified as a cracked 
or a non-cracked cell using the grayscale information 
of the border pixels as shown in Figure 2. 

The first column in Figure 2 shows the original 

Figure 2. Grid Cell Attributes in 
Pavement Image 



image, the second column shows the enlarged grid 
ce ll s and the last co lumn shows the border brightness 
profiles where two strips represent one side of the 
grid ce ll. 

A cracked ce ll is identified by comparing its 
features from cracking information to preset 
thresholds. Cracking information includes the length, 
the width, and the contrast of a dark object. It also 
includes mean brightness, minimum brightness, and 
the presence of a dark strip within the ce ll , which is 
the valley in the border brightness profile. When a 
ce ll does not contain a crack, its border profile shows 
no apparent va lleys as shown in Figure 2(a). In 
Figure 2(c), the border profile shows two sharp 
va lleys, indicating the crossing points of a crack on 
the border. Figure 2(b) shows on ly one significant 
valley in the border graysca le, so the ce ll may have 
an edge crack. The result of the grid ce ll ana lysis is a 
seed point which is the darkest spot in the cell. 

4. System Configuration 
4.1. Hardware 

The survey system used in this paper consisted 
of an area scan camera with a resolution of 1024 x 
960 pixels. The camera covered approximate ly 1.86 
x 1.75 square meters with a ground resolution of 1.8 
mm/pixel. The image processing ran on an Intel 
Centrino Duo 2.16 GHz computer with I GB RAM . 

4.2. Grid Cell Size 

Grid cell size se lection is important for grid ce ll 
analysis. It strongly depends on crack size in terms 
of pixel width. Bigger or smaller grid ce ll size may 
not show enough information of cracking. Figure 3 
shows grid cells above the same cracked area in an 
image. The grid ce ll s are shown in three different 
sizes with their corresponding border brightness 
profiles. When the grid ce ll is too small , as shown in 
Figure 3(a), there is no noticeable va lley in the 
profile. Figure 3(c) shows the ce ll whose size is too 

(a) (b) (c) 

Figure 3. Difference Grid Cell Size 
with its Border Brightness Profile 
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big. It gives many valleys, thus the crossing points of 
a crack on the border are indistinct. The proper 
profile should have two clear-shape valleys as shown 
in Figure 3(b). 

The grid cell size is also re lated to the crack 
width or the width of the dark strip. The proper grid 
cell size shou ld be approximately tr iple of crack 
width. For example, five-millimetre crack appears in 
an image from this system as 3 dark pixels in strip 
width. So the grid ce ll size should be 9 pixels in 
width and height. In this paper, a grid cell size of 9x9 
was used. 

5. The Proposed Approach 

The proposed approach can be separated into 
three phases. The first phase is the pre-process ing 
phase for improving the original image. The second 
phase, ca lled the Grid Cell Analysis Chain, handles 
shadow problems. The last phase is the Cracked Ce ll 
Verification, which guarantees the cracked cells. The 
algorithm of this approach is shown in Figure 4. 

5.1. Pre-processing Phase 

Generally, the asphalt surface images from a 
survey camera have faded and disconnected cracks, 
and too many dark and white spots. This situation 
perplexes the algorithm to find the dark strip objects. 
In order to enhance the cracks, i.e . to put them 
together and to remove noise , morphological 
operations in grayscale images are app lied to 
improve the original image. This technique connects 
the dark pixels together, and removes isolated dark 
spots. 

Enter 

Get an Image 

Pre-Processing 

Choose a Grid Cell with Grid Cell Analysis Olain 

YES 
Crack Cell Verification 

YES 

Draw Result Image 

EX! 

Figure 4. Enhanced Grid Ce ll Analysis 
Flow Chart 



Figure 5. Grid Cell Attribute above 
Edge of Shadow Area 

5.2. Grid Cell Analysis Chain 

From GCA, the pavement image is divided into 
grid cel ls which are classified as cracked or non­
cracked cells. In contrast to GCA which needs preset 
thresholds, Grid Ce ll Analysis Chain uses the border 
brightness profiles with hill climbing technique to 
find the valleys in order to handle the non-uniform 
illumination images. 

In many cases, a profile with one significant 
va lley is not always a cracked ce ll when 
implementing with shadow and shading images. As 
shown in Figure 5, the grid cell covering the edge of 
a shadow area gives a profile that looks like an edge 
cracked ce ll in Figure 2(b). To avoid this problem, 
instead of using two cases of profiles to indicate a 
crack ce ll , the profile which might be the crack cell 
must shows only two considerab le valleys, otherwise 
it is likely to be non-crack cell. 

However, the above method would eliminate the 
ce ll s that have edge crack. Double checking on 
images is necessarily applied . After divided into grid 
ce ll s, the original image is divided again in 
overlapping area as given in Figure 6. This method 
can extract the cracked area and keep it away from 
the edge of shadow. 

Figure 6 shows an overlapping area over 
different surfaces. Figure 6(a) is an image over a 
cracked area while Figure 6(b) is an image over a 
shadow area. Both profiles in the left side of Figure 6 
look quite similar with one significant valley, which 
means they are non-crack ce ll s. Consequent ly, 
cracked area in Figure 6(a) is ignored . After shifting 
the cell, the right profile in Figure 6(a) shows two 
significant valleys whi le the right profile in Figure 
6(b) shows only one. That is, the cracked area in 
Figure 6(a) is extracted, whereas the shadow area is 
not. 

5.3. Cracked Cell Verification 

Strong texture is another problem that reduces 
the accuracy. Figure 7 shows a non-cracked cell with 
a profile which is similar to a cracked profile. 

From the basic concept, a border profile which 
shows two sharp va lleys indicates that there are two 
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Figure 6. Grid Cell Attributes with 
Overlapping Grid Cells 

crossing points of a crack on the border, but it does 
not guarantee that a cracked line is in the cell. To 
ensure the cracked cell, it would be verified. If there 
are dark pixels arranging in a line between two 
valleys, the cell is verified as a cracked cell. 

The distance d between dark point p(x,y) 
and the imaginary-line between point q(x" Y,) and 
point q(x

2
, Y

2
) is shown below. 

d = ~(X_XJ2 +(y- yJ2 

Where 

m2XI -my I +my+x 
X = 

c m+l 

Yc = mxc -mxl + YI 

m = Y2 - YI 
x2 -XI 

To verify the cracked cell, all distances 
between each dark pixel to the imaginary-line must 
be within the crack size. Figure 8 shows 
arrangements of dark pixels and the imaginary-line. 
The dark pixels in Figure 8(a) are not adjacent to the 
imaginary-line whereas the dark pixels arrangement 
in Figure 8(b) closely resemble to the line. 
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Figure 7. Grid Cell Attribute with 
Strong Texture 
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(b) Cracked area 

Figure 8. Grid Cell Attributes with 
Crack Arrangement 

6. Experimental Results 

Applying former GCA to sample images, the 
result images are shown in Figure 4.6(a). There are 
too many noises appearing in the result images from 
strong texture and shadow problems. After applying 
the first technique, Grid Cell Analysis Chain, to the 
sample images, the noises from the shadow are 
disappeared wh ile the noises form strong texture are 
sti ll in the result images as shown in Figure 4.6(b). 
Fina ll y, both techniques are applied to the samp le 
images. From the result images shown in Figure 
4.6(c), this approach can extract cracks from the 
sample images and result in less noise. 

Compared to another algorithm, the approach in 
this paper is more insensible to light condition. 
Figure 10 co lumn (a) shows the result images 
implemented with this approach, and column (b) 
shows the result images implemented with the Huang 
and Xu algorithm [8] . The sample images have 
different brightness and some have low contrast. 
Both algorithms were applied with the same 
parameter to those images. The results which applied 
by the proposed algorithm were satisfactory, while 
the other gives the best result in the first image of 
Figure 10. In the other images, it gives unsatisfied 
results. 

Moreover, the proposed approach has been 
applied to 3,676 asphalt road images from different 
environment with strong texture and shadow 
environment in order to measure the accuracy. The 
input images also contain other types of distress, i.e. 
ravelling surface and poor patching area which give 
too-strong-texture images. Furthermore, the input 
images include poor illumination conditions which 
give low contrast images. Input images are classified 
into two categories by human inspectors , cracked 
and non-cracked images. This experiment used grid 
ce ll size of 9x9 to find crack size of 5 mm. The 

74 

T able 1: Testing Result on Asphalt Road Images 
Total True False 

Non-Cracked 2,037 292 

Images 
2,329 

87% 13% 
Cracked 1,061 286 
Images 

1,347 
79% 21% 

results are shown in table I . This approach gives 
13% of false positive, 21 % of false negative in the 
summary results . 

7. Conclusion 

This paper introduces image processing 
techniques for crack detection in asphalt surface 
images. This paper is based on Grid Cell Analysis 
(GCA) technique to classify cracked cells. The 
approach consists of three phases. The first phase is 
the pre-processing phase which improves original 
images. The second phase is the Grid Cell Analysis 
Chain which solves shadow and shading problems. 
This phase decreases the number of conditions for 
indicating cracked ce ll in order to reduce noise. It 

(c) Applied Grid Cell Analysis Chain 
and Cracked Cell Verification 

Figure 9. Examples of Result Images 



also increases the working areas on the image by 
dividing the image in overlapping area. The third 
phase is the Cracked Cell Verification which uses the 
assumption that all the cracked ce lls should have 
crack pixel arrangement closed to the imaginary-line. 

The measurement results were satisfactory 
with 13% and 21 % of false positive and false 
negative respectively. Thus, several images, in the 
case of which the system shows no distress, can be 
skipped. Human inspectors can focus only on 
images with distress results . Therefore, this 
algorithm helps reduce human work in a survey, and 
gives more accurate and reliable data to highway 
management system. 

(a) Proposed Approach (b) Previous 
Approach 

Figure 10. Experimental Result Images 
Compared with Previous Algorithm 

with Same Variable Values 
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