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CHAPTER 1
INTRODUCTION

1.1 Special relativity

This chapter is about branch of theory of relativity. It

is necessary for us to lea nethis relativi Qtudy general relativity. The
reason is that SpeciaM ' lesc ..L imple equations so that we
can visualize real-life situati o-equatio “~ ilean and Lorentz transfor-

mations. Later on we ity to general relativity. In this
chapter, we will discus ¢ tegﬁ(} Hecla .\n.\\ ity such as transformations,

N

connections between sp | relativity.

1.1.1 Background _

Special bhuy.g—————; 11 ,5' Einstein in his journal
about electrodynamies. About 300 years ago, alﬂe%tated that all motions with

constant velocity were fehlve and that tHeir absolute static status could not be

s MBS
iﬁ LRI MY N AL

all observers estimate the velocity of light to be about the same no matter what

motion they are in as long as they have constant velocity [1-5].
Newton believed that objects had dimension, and mass. These can be ob-
served in daily life. However, Einstein stated that it was not so since dimension,

and mass were related depending on their velocity. More precisely, he said that if



they moved as fast as the velocity of light, then the new and original time, length
and mass would be different to observers. In this chapter, we will discuss concepts
of time dilation, length contraction, and mass increasing.

Indeed, since we can never move as fast as the velocity of light, we therefore

see that time, dimension and mass remain as they are [1-5]. Special relativity is

just the special case of general relaivity Aised in the situation for any observer
that does not move with acceleration. when they move with constant
velocity. On the othe ed for describing accelerated

motions, and objects

1.1.2 Frames.

In order to study thg have to specify their location at

\

each instant. However, tofide -:r- bhe= ; cétion, we have to compare it
with a reference point. We ca eference point to be the origin point

in any coordinate gys ify time ¢ of the object at a

]

given location [1—- " m
‘ay

ﬂ‘UEI’J EJVI?WEI’]ﬂi
@EJ

Figure 1.1: Example of two reference frames S and S moving with velocity v [4].



1.1.3 Inertial frame

The law of inertia states that

1. If an object is stationary, it will remain static unless there is an external

forces applied upon it.

, it will remain in such a motion

unless an external foreeis appli uﬁw also [1]).

Assuming that t : b satisfies these two conditions, we call it

inertial frame. The aff e Ay t e \ frame. Hence, any frame
moving with constan{ss ;s . ' : 1 \\
A frame that ig 1 celorated is called a non-inertial frame.

Inertial frames are impq ‘ 1YS] es such as Newtonian movement,

1.1.4 Postulates-ef-special-relativity—=-
V. )
1. In every inertiaﬂrame, the law of physics alweﬁ remains the same.

2 The spded qﬂﬁ‘ D SARIIA PRI AT} G the same i

inertial flgmes which do not §epend on th&observers’ Vel(&gty or the velocity

ARAIREFTUUNNING1A Y

1.1.5 Concepts of special relativity

1. Time dilation: Time interval for a given event depends on the velocity of
observers in a reference frame. For example, consider the problem of twin

paradox. When the first twin went up into space with speed near the speed



of light and came back to earth, we would find that the second twin older

than the first one.

2. Simultaneity of events: Two exact same events which happen in different
frames under the same period of time may appear to be different for a given

observer.

3. Length (Lorentz) contrac 10%&&01’1 (e.g. length) of the object
3 -—d—_
——

which is measured by omne observer may appear to be different for another

observer. For exe of ‘1" dox, a ladder moving at the

speed of light wyill “Shorter then t original one.

4. Combination of e b. ' .\

The % ‘ .;\.o speeds cannot always be
combined directly. WA

5. Inertia and momentuir: when vjeet’s speed is close to the speed of

. . . A o )
light, its mass Wll be gieate: 5} DT

6. Equivalence e ergy can be transformed

D1
o

¥

into each othem For example, gravitational mce of apple falling can be

g wering
2 AR AN at

Newton’s laws are applicable to objects moving in all inertial frames. This

inertial frame is the coordinates’ axis or the reference frame with zero acceleration.
Other reference frames with constant relative velocity are also inertial frames. For
example, all experiments conducted on constant-velocity vehicle yield the same

outcome as those conducted on zero-velocity or static vehicle [1-3, 5].



1.2.1 Galilean transformations

Galilean transformations deal with the reference frames moving with constant-
velocity and the rest reference frames. This type of transformation applies only to
non-relativistic situations. Moreover, the length with the observer in the measur-

able reference frame with constant-velegity is equal to the length with the observer

ﬂUEJ’J NUNTNYINT
Flgurgq wﬂ T8 Wltﬁs V Qé w ﬁﬁwﬁg«i ﬁ(ﬁe frame S’ or

’ ayq

When the reference frame (¢, x, y, z) of the observer noting the frame (', 2', ¢/, 2’)



moving with its velocity v, we derive

r= 1"+ vt (1.1)

So the differences of dime '-i-;u.-, :

!

Thus, velocities associated swithaall

U : U (1.11)

< AUEINININYINT
iy = Uy — Uy, (1.12)

QRINNTUFRINGIAY

Uy = U, (1.14)
And their accelerations are

Uy = (g, (1.15)

ay= ay, (1.16)

A= a,. (1.17)



Similarly, from 2nd law of Newton, we obtain

d22’ d?x
d2 / d2
Fy/zmdt2 = dt2 = F,, (1.19)
2z d?z
Hence, the basic laws o hy 1S 5 laws of motion, conservation laws

of momentum and energy W > inyari 0 systems in different frames.

\\ o -o qations are the same in both
\\\\\\ constant velocity. Galilean

transformations is only appl 8 TROwie with velocity far less than

That means the laws

systems although they

the velocity of light (v e

For all objects movingwi e wvelocity of light, it is necessary

to use Einstein’s relativityito d ns [1-3, 5].

1.2.2 Lorentz

Lorentz transfoﬁa 0

Y]
.admf Galilean transformations

when the object moves gnear the speed 0

e e ﬂug@wgms w RIS e e, e can o

tain the coordmates in another reference frame=by using Lorentz transformations

ot p Bl VN bid bl kil VIR B

In Galilean transformations

r=1a' + ot (1.21)
y=1, (1.22)
2=2, (1.23)

=t (1.24)



The first postulate of special relativity states that “for any inertial frames,
the laws or equations of physics are invariant.” Thus, we can derive the following

equations

z= ' + ot (1.25)
(1.26)
(1.27)
(1.28)

(1.29)

If we put 2’ from (1.

(1.30)

(1.31)

The second postulate of special re 'y implies that “the speed of light in

vacuum is equal iyv e} epend on the observer’s
e -

velocity or the W Sipdstulate allows the frame

. 7,7, 2) and the frane (¢, 2',7/, 2
t d the f I t', o

AULINYRINYINT

g
I'

0 have the same velocity of light. That is

—~

1.32)

- € d=d 7 v} (1.33)
_ 1—7
y(x—vt) = eyt+ ( o ) cx, (1.34)
1+
Using (1.32) and (1.36), we derive
ez
e 1. (1.36)



Thus we derive the parameter v called “Lorentz factor” which is
v =, (1.37)
And Lorentz transformations read

r= (1.38)

(1.39)
(1.40)

(1.41)

(See also [6-8])

Time dilation

The verification of ng “atomic clock” made from

Cesium-133 heated in con it run through the magnetic

atoms enabled to absorb his experiment was performed

by Britain’s «5—‘- ------------------- : ‘::I'r‘ magnetic atoms pass

through the microwave, they w crgy Wim frequency at 9,192,631,770

Hz. In 1971, Haefelle dnduKeating usedaHelium atomic clock in the jet and let

the plane fly %uﬂe’lm ﬂﬂ;hmsﬂﬂﬂiey compared it with
the atamig clo earth. tfﬁm ignored s LELTQT tﬁ’ nd that both
atomic (ﬁjﬁiﬁrﬁc eﬁﬁﬁnﬁfﬁgjni’l ] ﬂln slower than
the one on the earth which confirmed the prediction of the theory of relativity

1-5].

Calculation for proper time

For theory of relativity, the proper time can be calculated for each frame by

substituting the time change. That is



10

T'=ty —t), (1.42)

In order to calculate proper time T’ we will put 7" and v into the equation

(1.44)

(1.44)

So we derive T" fro

Length contracti

Figure 1.3: Iﬂgﬂ%{]ﬁtﬁtﬂ Hmwﬂﬂﬁ ﬁlomty to a very high

velocity.

rifes MR bk AMAANIFY. .. .

speed of light, its length is shorter and its mass increases which makes it heavier
and heavier. As a result, it will never be able to move at the speed of light.
Length contraction is also a consequence of the theory of relativity. When the
object moves with relativistic speed near the speed of light, its length is shorter
and its mass increases which makes it heavier and thus it cannot move at the

speed of light.
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To calculate the proper length, we use length contraction formulae together

with the Lorentz transformations. That is we substitute

L= To — X1, (145)

(1.46)

into

(1.47)

to obtain the length co

1.2.3 Minko

Minkowski’s diagra

To understand Mink: use the system S of graph presented

by H. Minkowski in 1908 sist of. (ct, z), where ct is time

coordinate and x is gs;

f 01l the vertical axis whereas

x on the horizontal EIS dline, " wh 1s the tr rI ectory in the spacetime is

Zfiiiiifélﬁimiﬂﬁfﬂﬂ AR Whefz[; T
A BABARIA UM INYIAY

Consider the body located at a point (2’,t') moving with a velocity v to the
right-hand side relative to the frame (xz,t), we derive 2/ = 0 iff z = vt as shown
in figure 1.4.

Consider two frames (z,t) and (2/,t'), we can see the spacetime diagram as

shown in figure 1.5.
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>~
2

mvlillllnlmmn.n-"X"t

Figure 1.4: The move & "‘ velocity v in the z-direction

relative to the frame

. rr'l
I
Figure 1.5: Graph, of cone-shapeylightcone, in first quadrant [5].

15 celybldd BN INEINT
ARASIATUNRATNUIRE os o

we will be dealing with general relativity which also constitute the concepts of

special relativity. This subject is about the theory of gravitation built upon
differential geometry established by Einstein. Equipped with knowledge about
general relativity, we will be able to understand the next chapter which is the
main part of this thesis.

General relativity is based on the principle of equivalence. That is, in the
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reference frame, freely falling object in gravitational field can be compared with
the inertial reference frame without gravitation or its acceleration is equal to the

result of gravitation [1-5].

1.4 Concepts and tools in general relativity

In this section, we pres ls and notations used in general

relativity from coordina; e calculation to stress-energy

—

tensor, geodesic equatio / nd ¢ ant derivatives, Christoffel’s

symbol, and Einstein’

Space

1. Euclidean space is th '. space which contains Euclidean or flat

plane altogether to grid forin with ion called Euclidean geometry.

2. Minkowski n‘-— < uf-L-I* ‘theory of relativity. This

J
space composes of 3 space dlmensmns and one time ¢t. For example, in

coGiB184G P URFHE R
PNNIUNRTINGINY

3. Manifold is essentially a mathematical space. It is a set of points which
can locally be mapped into R", where n is the dimension of the manifold.

For example, real line R is one dimensional manifold. Euclidean space R? is
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3-dimensional manifold. Minkowski space R**! is four dimensional manifold

10, 11].

Worldline

Worldline is the trajectory in spacetime which is a parametric curve depend-

about the point or location in
o —
of eyents [3, 4, 10].

worldline can be written as €=

the spacetime whether i

Light cone

¢ ewarldiine

ﬂuﬁl’JWWIiW 8In73

AR AN TINYIAY

Hence, the object’s worldline is the unique path that indicates the move-
ment of object in spacetime. From figure 1.6, we see an example of a 3D light
cone which tells us about the motion of an object in time. In general, spacetime

can be classified into three types as follows:

1. Light-like:consists of points or locations and that their velocity are equal
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to the light’s velocity and all of them are formed into cone-shape classified

into two parts, future and past.

2. Time-like:consists of points or locations and that their velocities are less
than the light’s velocity. All objects except light itself move in the time-like

region of spacetime.

i cone. There is no physical ob-
-—d.
> lighteone. There is an imaginary object

3. Space-like:describe
ject that can trave
that can travel i , \‘- ~ .‘\..'7 wias Tachyon which is a type

of theoretical '__‘ \\ he speed of light. The word
§ E . el }

“tachyon” was 1960s [4, 10, 12].

In the next part, we ols of general relativity.

Geodesic

In mathemati g6 7:_({ path between two points

in space, in metric fori. defined by a curve whose

tangent vector is still'parallel when it is transported@long this curve [10].

The Wordﬁeﬁﬂ.: %rﬁ W%W”Wﬂﬁs the science of mea-

suring the eartli’s size and shape In nav1gat10n geodesic 1s the shortest route
betwea twara Qa ﬂ 5 w %Jl%g;}q w %J ﬁ]lﬂtﬁ]}f great circle.
For exaﬁlple, geodesic in figure 1.15 is the arch between two vertexes. Worldline
of free particles without external forces is an example of geodesic i.e. particles
move freely along geodesic.

In special relativity, geodesic on Lorentz manifold can be classified into three

categories by norm of tangent vector, ds?, using metric (— + ++) as follows:

1. Time-like geodesic has a tangent vector whose norm is negative.
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2. Null-geodesic has a tangent vector whose norm is zero.

3. Space-like geodesic has a tangent vector whose norm is positive [10].

Tangent vector

point. For example

, 52 is ante Vo some manifold [13, 14].

1. Contravariant t such as velocity U* or accel-

eration a*.

2. Covariant tensor has only h as metric tensor g, .

3. Mixed tensor as i Such as Riemann curvature

|
tensor Ry, 5 [4]. J

Rag]fummﬂmwmm
g TN IN YT Y - o

such as M?Jf *gy has N Prank [4

1.4.3 Contraction

Contraction is the operation of both upper and lower indexes which are the

same symbol confute such as g,9"" = ¢” [4].
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1.4.4 Christoffel symbols

Christoffel symbols, established by Elwin Bruno Christoffel (1829-1900), are
numerical arrays such as matrix implying location and using the result of parallel

transportation in curved surface [4]. These Christoffel symbols tell us about the

pace which derives from a metric tensor.
w wdifferential geometry. For example,
riffen @ Christoffel symbols and first

partial differentiation. : 23 \ local specific coordinate in

coordinates of Levi-Civita’s continui

Christoffel symbols may be

Riemann curvature tens

manifold M, then tan €l dis c )=\ 1, B2, defined to be basis

of tangent space in M el symbols I'¥., which satisfies

3 We" aeryy \» N
Vie; = I'}ie, where VfLefi-Civita continuity on 4
Christoffel symbols I, i s of a .;7' ‘tensol

2]7

[13, 14]. Thus if we write

i , then we derive

and ,. Thus the equaBon ged to me‘new form
ﬂ ‘L!EH Bl (150
j )ﬁriﬂ, @j}nﬁ tion below for
ﬁndmghmsto el symbols in the form of metric tensors hat is

ikl

1 im <59mk Igme  Ogre

. 1 .
i, = - = —4"™(gm ik — Gkt 1.51
k= 59"\ G T ok aw) 59" (gmke + gmek = grem) - (1.51)

(See details in [13, 14]).
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1.4.5 Curvature
Definition

1. Curvature refers to any number of loosely related concepts in different areas

of geometry.

2. Curvature is the amou ometric object deviates from being

flat, or straight in is is defined in different ways
depending on V
3. The (signed) curva [ by its arc length is the rate

) =) f
AU TS WE Y
Lo BRI NN TN A Y

To introduce the definition of curvature, in this section we consider that

a(s) is a unit-speed curve, where s is the arc length. The tangential angle ¢
is measured counterclockwise from the x-axis to the unit tangent 7' = «(s), as
shown in figure 2.1.

The curvature x of curve « is the rate of change of direction at that point of

the tangent line with respect to arc length, that is,
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a(s .,

X
al angle
(1.52)
The absolute cur g - the point is the absolute value |k].
Since « has unit speed, T"- T'* | ating this equation yields
(1.53)

v t! |
The change of T' 3) is orthogonal to the tangential direction, so it must be

along the noxﬂlﬂ'ﬁq ﬂet‘ﬁﬁlﬁ WIEJJ]iﬂﬁ measure the turning

of T'(s) along {he direction of the unit normal N ( ) where T (SB( N(s) = 1. That

awwmn‘smum'mmaﬂ

,dT
T = =#N. (1.54a)

We can easily derive one of the curvature definitions (1.51) and (1.54a) from

the other. For instance, if we start (1.51) with (1.54a), then
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k=T'-N, (1.55)
— i—f N, (1.56)
~ lm Tls+ AAS)S_ )y, (1.57)

(1.58)
(1.59)
(1.60)

=1

o

TSR
3. Spatial flat with x = 0. ,
LT

-
-

The ;’-—‘m‘(‘ exes the curve as shown
i )

in figure 1.9 (see c"lN 5

Figure 1.9: Types of curvature affect a curve [15-17].
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1.4.7 Riemann curvature tensor

Before we learn about the Riemann curvature tensor, we shall consider the

parallel transportation of vector around closed curve in figure 1.10.

We need to know the — (0,t) = (s,t) =q as

follows:

Firstly, consider {0;0 ] stor V', then we derive
S - J

|
i
“

t+O 2) V2 o - (1.61)

Vol = ”Ip

|p VU |p ét

e o 1483 w ijnwgqomm the wo derive
ATIRNIHY

Similarly for the second route, consider point p = (0,0) — (s,0) — (s,t) = ¢,

- (1.62)

which is simply the permutation of o <+ 3. Let vector from parallel transportation

in the second route be V'? |(5,t) against V7* ](s,t). Then we derive
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V’P |(3at) - VP |(3»t) = - {aarg'y - aﬁrg'y + Fga g'y - Fgargy}
dz®| dzf
VT, —| —| st +.... 1.
b s |, (1.63)

So we will define Riemann curvature tensor to be

4 (1.64)

anti-symmetry and two-

2. Ropys + Rpsay + mutation sum or 1% Bianchi

identity).

Hence, Riemangi-curvature tensor is calenlated froni/Christoffel symbols ([13,

14]). Next, we will S

T AU ANENSNYns

1.4.87 Ricdi curvature tqnsor a W
Iﬂiﬂe&ﬁgﬁnﬂrﬁj Miurmlggnu,&lll;] alﬁjor scalar cur-

vature, named by Gregorio Ricci-Curbastro, means the amount which implies

: t@sor, called Ricci curvature

deviation of the particle’s volume from Euclidean space to Riemann manifold.
This method is a measurement of curvature or degree of geometry by Riemann
curvature tensor or Riemann metric, which is used in Euclidean space and Rie-
mann manifold [4, 13]. However, Ricci tensor is often used in pseudo-Riemannian

manifold which is Lorentz manifold.
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Ricci tensor

Ricci tensor is also a curvature in Riemann manifold defined by

Rpy=R(,, =10, , =10, +T0 1), =10, =207 +20%,[0,.  (1.65)

opv vo P po,v olv,pl

It is also a Riemann curvatu simple contractions over two indices

4, 13, 14].

Ricci scalar

(1.66)

Ricci scalar is important‘ tein’s tensor [4, 10, 13, 14].

7 4

4-vector =
'II |”1
l'l ‘ i¥ |

Define 4-vector in‘sgcetime or Mial‘%owski space with four coordinates as

FJ, UHIANENINBIND
PMNIMAMINENY

where 1 is the Greek letter meaning p = 0,1,2,3 and z = = (x,y,2)
is the coordinates in Cartesian. Generally, we will use the natural unit, that is
¢ = 1. Moreover, we can write this 4-vector in the linear algebraic form which is

Cartesian coordinates as shown below.
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x! x
x? Y

N

is that it consists of the spa e ) and time 2° = ct. That is

(1’0,5). This vector , : ocation called “event” which identifies

a particular space and_ti :
We define 4-vecto y 1S all ' 2% (1 to be a “contravariant

vector” and 4-vector a lower index p to be a

1 .2 .3

“covariant vector”. events, rf = (29, 21, 2%, 2?)

0 .1 .2 .3

and = = (29, x5, 23, 15 e derive this length

ds*= (d (1.69)
= y Y (f - x§)2 , (1.70)
= (dz )‘ + (dz')? + (dz Qj + (d?)?, (1.71)

ﬂ:ﬂ&’% NINYINT o)
ama%a”rf"ﬁ‘*iuumfmmaa e

= ndatda”, (1.74)

where ds is the length between two events, z# and x, = z¥ (dz* is a differential
value of 2#). Thus this value is the event in differential Manifold. Einstein ignored
the symbol Zi,uzoto write in equations. This is called Einstein’s summation

convention for convenience to calculate. Moreover, we have defined 7,, to be a
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metric tensor in the spacetime in this equation as shown below.

ds* = —dt* +da® +dy* +dz?, (1.75)
T
dt
dx
, (1.76)
dy
\ 4=
(1.77)
& & i 5 - moo 0
Then 7, = 0 be rewritten as 7, = or
040 M W 0 O

\ 0 40 »
N = sign (—, +, +, +) whig 1 satisfies x, = n,,2” [10]. The
scalar product of two vec {n-gel _ be written as z-y = 2y, = gua"y”
. Before we use this metric ten g ;= e have to understand the meaning

2 4
of ds*. 7

Tl

J] I

1.4.9 Differenlﬁl a.geometry o

T o TTTITIE 70 S
nian manifolds and calculations fdr curye wfaces [11, 18
ST A Y

ds?¢ =0 = lightlike (null) interval

< (0 = timelike interval
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r d.'.i'g <0

ds? =

Space-like
(x 2]

ds? o0

Lightgone

[ Light-Tike)

g (/4'.,

A momentum of an object 45 -the s¢ product between 4-velocity and the

object’s mass. We can define.1.0 he ai ject’s mass and U* = (u®, ul, u?, u?)
to be the 4-veloci efine 4-momentum to-he

(1.78)

ﬂuﬂaﬂ W%Wﬁﬁhﬁ -

= @"p".0"p%) (1.80)

i son oA 1 AINIUNAIINYIAY

So stress energy tensor T is the p'"-component of the momentum p* which
moves on the surface in the direction.

Before we define a perfect fluid, we need to know the definition of “perfect” .
There are three fundamental properties to consider, namely isotropic property, no
viscosity and no heat conduction. Isotropy means all directions are independent

of each other and they are equal. Hence, if there exists an independent component
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Energy
density Energy flux

"Tool Tm Toz Toz_

T =

Momentum

P then the value

1.4.11 Viscosi

he i ferface between particles. So no
viscosity means no such f i.8:"thefo o\ e component of the object are
perpendicular. Mathematical -, i = () 17,7 =1,2,3 and 7 # j. But there

is still the force ATE ] O] _a? object that are nonzero.

That is T% = P% ’

i

“ﬁwﬁwmwmm

Heat Conductlon is the energy that trangfers from a placg or an object of
igherpifbro 4 o S 'lz’)z%ﬂ Bk SXrfle encrsy, mat
is B = cp, so heat conduction means the flux of the component v of the energy
into the direction g. So no heat conduction means 7% = 0 for all j = 1,2, 3 and
T = 0 for all i = 1,2,3 which is the symmetry of tensor (7" = T"*) [20]. So

stress energy tensor is
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T = . (1.81)
0 0 P2 0

0 0 OP33/

Since spacetime has the propert opy, each coordinates are independent.

18

(1.82)

TR
1.4.13 Curvature and relati

LRI\ I

Einstein attem] gravitation which gen-

Y

eralized Minkowsk » ime-through the use of curva-
T Tl
|

I e know that the earth is flat “.J

ture tensor analysis. our visual sense since we

oty e gy oSS ey g

Since the edrth’s surface is a m‘?nifold, what we observe is therefore local which
mean ' . ‘ ‘ :
ARINATUNAINY1AY
1.4.14 Geodesics

Classification by norm

In general relativity, geodesic is a straight line (shortest path) on a spacetime
manifold. For example, worldline of free particle without external forces is a

geodesic. Such a particle can move freely along geodesic.
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In special relativity on Lorentz manifold, we can classify geodesics by norm as

follows:

1. Time-like geodesic has a negative norm of tangent vector.

2. Null-geodesic has a zero norm of tangent vector.

three definitions above as

in the hyperbolic plane are

1. Equidistant lines
2. Parallel geodesics
3. Geodesics V.;

Two lines in a plan‘ at do not integsect or meet are called parallel lines.

o i ETStet) El\ NINYINT
: @‘W‘T‘ﬁ ANTRIURIIN VY

2. parallel. they do not intersect in the plane, but do in the limit to infinity.

3. ultra parallel: they do not even intersect in the limit to infinity.



30

Intersecting line

Parallel lines

Figure
Three geodesics i

The three geodeic \1 d ultra parallel lines through

a with respect to [ in the allel lines appear to intersect

[ just off the image. This i§ an i ok ualization. It is not possible to
i

isometrically embed the hyper hree dimensions. In a real hyperbolic

b at infinity.

-

space the line will ge:

On the spheric l—" a ) .—%— parallel line. Line a is a

great circle, the equlvalence of a stralght line in the spherical plane. Line c is

equidistant tﬂru E‘Vﬂ ﬁn le ?W Bq ﬁrﬁel of latitude. Line b

is another geo&l&sm which 1nterse%;s a in two antlpodal pomts They share two

QAR T UV INY TN Y
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From definition of icst ngyds® = g :"x\ d:t”, the total length can be

(1.83)

(1.84)

f;! (1.85)
s

- .
AULINYNINYINT
maIdRINeaYy o

is a Lagrangian and

(1.86)

where

dx
= — 1.88
b=, (1.59)
as shown in [21].

Now, by using Hamilton’s principle, we can extremize the length to be ds =

§ [ L(z,2)do =0 [10]. Then we will use this in the next section.



1.5.2 Extremization of curve length

/(%)

WO points.

7 (0L

{m’iM% jﬁ}iima)

s@mmn‘imum'mmaﬂ
o[ [ () oo

Lagrange’s equation

Oor do 8:6

Using

32

(1.89)

(1.90)
(1.91)
(1.92)
(1.93)

(1.94)

(1.95)

(1.96)
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L= %%5 @i, (1.97)
then
(1.98)
where
(1.99)
but we have
(1.100)
we obtain
3Obadd’ ¥ (1.101)
Multiplyi o > |
U TNYNINYING
v ) - y
QRIQNGUUNTIREIRY oo
Rearqranging it
= —g" <g'ya,5 - %.%/&a) @il (1.103)

This resembles Newton’s laws. In terms of the Christoffel symbol, it reads

i = —T%, 87 i (1.104)
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which is a “Geodesic equation” [10, 13, 21].

1.5.3 Einstein’s field equations and Einstein tensor

Einstein’s equations or Einstein’s field equations are equations that govern the

relation between the curvature of s

etime and mass-energy. Einstein equations
are in the form

(1.105)
where G, is Einstei e gravitation through the
curvature, while stress of the energy or mass that
causes the gravitation

By considering Eins the following: The Einstein’s
equations describe how p |es7 ravitational fields around them
when they move. The use of the on is similar to the use of the sec-
ond law of Newtonias gravitation on here is also a similarity

with the Poisson eqio ' ﬁmbles the right-hand part

of this equation.

st we 3 SR DIV RIS T B AR s camion. e

tions in generg[m relativity are normally givengin terms of metric tensors. The
rationasw &alﬂemaimumalg‘dw ‘&lta &&en‘cs based on
physicalqgrounds.

In Newton’s gravitation, static mass creates a gravitational force. But in
special relativity, we know that static mass and energy are equivalent or similar.
So we aim that everything in general relativity, both energy and momentum,
create the curvature of spacetime. Similarly, the mass-density p is the result of

the gravitational potential energy ®. Thus we can use the right side of Poisson
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equation that should be kT*? | where k is a constant. The left side of the Poisson
equation is directly proportional to the potential energy. If we apply gradient V
to both sides, then we derive the derivative of metric. Again, if we apply gradient
V to both sides, then we derive the second order derivative of metric. We know

that Riemann tensor and the contraction of Ricci tensor and scalar consist of the

second-order metrics. Thus, t m become the left-hand side of the

Einstein’s equation. So ted as

(1.106)

But it is not completel | \ v c-of the fo ». OV u gs. Due to the law of energy
conservation, that is T’ 001 tensor but Raﬁ # 0. So
Einstein rearranged this e to the same side and defined
it to be a new tensor whic -:.'j.';. cotiditio - called Einstein’s tensor. Hence,

the equation becomes

(1.107)

If we compare the Einsie'&equation in a&wtonian system with a Poisson equa-

i in 13 %tm AR S o ecomes
awmmmumawmm s

where ¢ = 1, and G = 1 is a universal gravitational constant [21]. Einstein tensor
or trace-reversed Ricci tensor (defined by Gap), named by Albert Einstein, is a
tensor that identifies the curvature of a Riemannian manifold. This tensor derived

from Einstein’s equation and is used to find the curvature of space-time [21].
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1.5.4 Some analytical calculations in general relativity
Metric tensors and Christoffel’s symbols

As an example, let # be an opposite angle to latitude angle and ¢ be azimuthal

coordinate. Then the component of covariant metric tensor is

(1.109)
Christoffel’s symbol and
), (1.110)
and
(1.111)

From ¢"*q,, = I or 0¥ ot metric tensor, [ is an identit
o )

,giff"". an inverse of g,,. By

. -
, Whic're g%¢, g?%, "¢, g%, o>

.
. . o
matrix and 4 is 4

calculation, we deri\?gg“” =

oo G4 G

1/ sinf

THYID

-
ARININTR Iymv g8y
g g% 9o0 9oy 1 0 | (1113)
g#? g 9o6  Gpp 0 1 / sin 9 0 sin%4
=1(s (1.114)

To calculate Christoffel’s symbols, we can find it from its definition
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r 9 (G804 + Goou — Guv) - (1.115)

N | —

« =
pr =
There are 23 Christoffel’s symbols in this coordinate because this coordinate

has two index, 6 and . So Christoffel’s symbols are

_ Lo 0. Bab.o o) = (1.116)
(1.117)
(1.118)
0 cos b, (1.119)
(1.120)
(1.121)
To find the geodesic'equation: froni-
: (1.122)
& |
If we let the coordin e-in"the above equation, then
= r
we obtain I -~
1Ane
Pl 8L ‘VlEWI?W eI
‘II(E Tl 15,00 3 5.0 + FWQOQ +T0 0 = 0 (1.123)
ARIAINTUURIINYIAY
q
6 — sin 0 cos A = 0. (1.124)

Similarly, if we let the coordinate x® = ¢ and substitute in the above equation,

then we obtain

cosf .

inf

0o = 0. (1.125)
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To calculate Riemann curvature tensor Rj ,, there are 24 components because

this coordinate has two indices. Furthermore, we have a definition of Riemann

curvature tensor in terms of Christoffel’s symbols

(6% J— (6% (0%
Rﬁwf = Fﬁvu r

B,y + F?HFEV Fa Fgw

and cyclicity

which implies that

k

A contraction wit ;.

.,I
¥

AT MW
QW’] éNﬂ‘iflJ 3,]1’1’]’3 EJ ‘e’i EJ

Ropo, = w 0~ Looy T Fab’r

then we obtain

Roppp = (—cos® 0 +sin*6) + 0+ 0+ (cos® ) = sin* 0

(See details in [23])

(1.126)

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)

(1.132)
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Transformations | Galilean | Lorentzian

constant y 1 v = \/ﬁ

velocity Ve v<c

Table 1.1: Comparison between Galilean and Lorentzian transformations

1.6 Conclusion » '///—//4-

Einstein’s special re ‘ at-the laws of physics remain invariant

in all inertial frames , 0, fra ’ es thatimove at constant velocities.
Therefore, studying . quivalent to studying it in
another one despite e two frames.
Lorentzian and G e the inertial (rest) reference
frames into one anothe

Spacetime is not alw irved because of the existence of a
gravitational field due to thé Fescnce of in energy. One consequence is the

bending of light ra i’y—‘——” ASS :‘ij h as the sun. This effect

means that to an obsEver, the sta A app‘ear-mn the line of sight does not

imply that it is located‘pnmsely in the liné of Sﬁ We Wlll discuss more about

this in the ne@ﬂcu)ﬂ.’g VI EI V

) BTN ?ﬁ‘ﬁ‘?"f?ﬁ B i 1
bert Enqstem in called Einstein’s heor‘ of gravitation. It

generalizes special relativity and Newton’s law of universal gravitation into a uni-

fied theory of gravitation based on a spacetime concept. Special relativity, which
does not describe gravity, corresponds to a flat spacetime called Minkowski space.
Spacetime is a concept that already occurs in special relativity, a theory which does

not incorporate gravity. Especially, the curvature of Minkowski space is related to
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the four-momentum of matter and radiation. In this chapter, we have described
mathematical structures of general relativity. The basic equations of general rel-
ativity are the Einstein field equations or Einstein equations, a system of partial
differential equations. These constitute a system of nonlinear partial differential

equations which indicate the interaction between the geometry of spacetime and

of gravity by consideri ' raecelerations.

General relativit ] ,. 1n ',- ral cases so that it can be
considered in any r \\uo . In special relativity, we

only consider inerti 0 acceleration or deceleration

and a specific metric trlc Both special relativity
and general relativity appl clativis :' disitus 1\‘ o118, namely when objects travel
ries! that is, Newtonian and non-
Newtonian gra,vitt on ities are much less than the

“" rn general relativity, one

0
ﬂﬂﬂ?ﬂif%‘fwmﬂ‘ﬁ

’QW']Mﬂ‘ifUll MINYIRY

q;—'R#MP—FR#—’R—’Gw=S#TW

velocity of light based. ¢

should start from spmal relativity.

Figure 1.16: Algorithm for computing geometrical quantities in general relativity.

This figure 1.16 illustrates how to calculate geometrical quantities such as

Christoffel’s symbols, Riemann curvature tensors, Ricci tensors, Ricci scalars, and



Einstein’s tensors in general relativity.

AULINENINYINT
IR TN TN
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CHAPTER 11

TRANSFORMATION THEOREMS

o

ion
T ‘.\;\‘\
‘“.'2-"
h =2\
S

2.1 Introduct

Figure 2.1: The main forin of black Hol the large amount of gravita-

tional field [24]. &4 )

ae

i

We already know thatea, black hole is ayregion of space from which nothing, not

even Tight, caﬁququB’J Y Eh B & ATL Dous vack notes. ror

instance, ‘Whe,ther‘black holes really exist, or iffhey exist, whdt«could their shape
be. Soﬂemt’;lﬂﬁ@j )Mmsclgn t ﬂgilcaeﬂeir properties

such as if using perfect fluid spheres (Schwarzchild’s coordinates, Gaussian Polar

coordinates, etc.) to be the model of black holes, then we derive a few differential
equation to generate transformation between perfect fluid spheres in this thesis.
Before using perfect fluid spheres, we need to know their definition and examples,

then we can differentiate black holes and perfect fluid spheres.
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2.1.1 Definition of black holes

A black hole is a region of spacetime with an extremely strong force of gravi-
tation from which nothing, including light, can escape. Hence, we cannot see the
center of a black hole. There are areas around the center of a black hole called

“event horizon”. At the Schwarzchild’s radius, when an object comes into the

event horizon, it must accelerate its velogity” to more than the velocity of light to
escape from the event horizon: Howeyer, i e that an object can generate
a velocity more than

and by other scientists i

heen suggestions by Einstein
,,t

mdeed Einstein’s relativity

y size

does not prohibit that auffy pé ove with their velocity faster

than the velocity of ligl

2.1.2 Classificatio

We can classify black g_-,c;;e f., nt ways. In general, different types

of black holes var¥siguificantiy n sizes winch can Ilassiﬁed into 4 types as
S“permawﬁ W"W JNTNYING

Supermasswe black holes congist of one huadred billion felds of solar masses

ot 8 LGN Th 3G b Kb ES B monans

Milky Ways. It is believed that they are important in the occurrence of nucleus

follows:

of galaxies and may occur from the combination of many small back holes or

accumulation of stars and gases in space [25].
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Intermediate-mass black holes

Intermediate-mass black holes consist of several thousand folds of solar masses.
It is believed that they are the energetic sources of the high-density X-rays but
there is no evidence where these black holes come from. It is supposed that they

occur from collision of small-size

!? holes in the center of stars in groups of

whe creation of an extremely strong

gravitational field. These tw ifica >_merely ordinary occurences.

Other information su -size ma Hargest size mass black holes

can establish from coll o \\'\-. 1s not well known but it is

believed that this type \u than two hundred folds of

5lds of solar masses (from Tolman-—

solar masses [25].

Stellar-mass black holes

Oppenheimerf\/ol 'utron stars) to twenty

LY
g gle stars or combination

folds. These blackv o

of the dual neutron stars Wthh cannot be separated due to gravitational radiation.

Tnitially, thesﬁt%ﬂ(ﬁr’gr% ﬂdp&l Hﬁn“@ﬂlﬂa ﬂﬁjr masses or more but

they lose their Buter mass during x,he initial evolutlon For 1nstance the losing of
e QAT W A B
supernova can change a star into a neutron star or a black hole. In the last step
of the model in the theory of stars’ evolution, we still do not know the maximal
size of stars that could change into a black hole. If the center of a star is clear,

then it will become a white dwarf [25].
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Micro black holes

Micro black holes have a smaller size than stellar-mass black holes. Since
they have this size, they are highly dependant on quantum mechanics. No known
mechanics can explain the general occurrence of these black holes from stars’

evolution. But the assumption of ext

er galaxies shows that black holes have

@. By considering some theorem

about gravitation in qua “physic the@oles may occur from the high-
h om| th etween cosmic rays and at-

mosphere or a particle’sgaccel //r o theory of Hawking’s rays predicts that

been occurring since first p

energetic reaction w

these types of black holés wi iporate into a sht light during the radiation

of gamma rays [25].

2.1.3 Properties = black holes

Event horizon

Event horizot y-’—- ************** f entifies coordinates such

that anything cannomesca,pe e ¢y cuter into @is region. Thus, anything

|

unified toget u e en switho istinctive observable

ch ) TT?&TI 194 ‘“T’?W?f“] O I
radioacti

slow mcqlng

in this surfac.aannot Peseen }Hij oftér observer Besides, event horizon is

Outside of Event horizon, the gravitational field is established by the symmet-
rical spheres that have equal masses. This tells us that the idea of black holes
absorbing everything is incorrect because there are still chains of materials around
black holes, outside the photon sphere, not affecting the gravitation radioactivity:.

Then it makes the losing of energy from running around resembling the effect
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from electromagnet radioactivity [25].

Singularity

In theory of general relativity, within the center of black holes, there is a

singularity of spacetime. The black holes will be pressured until their volume

becomes zero. Thus, the blac ' it becomes infinity when their volume

Photon sphere

Photon sphere i s when photons move along
In nonspinning black holes,
their photon spheres have their zadits A% es of Schwarzchild’s radius.
Their orbits are not consteiht anything that comes into photon sphere will
grow across the ti ie 2 ugh it is fixe 0 gscape from black holes or

Event horizon [25]4 7. ')

Ergosphere

e S ANENINENT e
“ma“m TS N T e

Schwarzschlld radius

Schwarzschild radius is the boundary region of nonspinning black holes. Its
length is about 3 kilometres calculated from R, = 2GM/c*, where R, is Schwarzschild

radius, G is the universal gravitational constant and ¢ is the speed of light [25].
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Figuu€2.2¢ Lhis figure shows the.blaek hole [28].

Escape velocity
Escape velocity is the minimal speed that makes any object escape from black
holes calculated by ves. =R/2GAE/ R, = C,_,'"_‘é&{,ll_lere Vese 18 escape velocity [25].

2.2 Black helée sohitions

In this thesis, todearn about black holes, we fitst need to learn about Ein-
stein’s field equation. . T'his equation implies.that. singularities of black holes really
exist. Thus, before wé study in Einstein’s field ‘équation, we have to learn about
relativity dsy starting gfrem special relativityy tongeweral jrelativity and Einstein’s
field equiation.

Consider the spherical mass M with its Einstein equation G, = R, — % g =
0. In this spherical symmetric coordinate, when we get the solutions, they are
called “Schwarzschild solution” found by German physicist, Karl Schwarzschild
in 1916, which greatly surprised Eienstein because he did not think that anyone

could solve the Einstein equation in such a short period of time. From G,, = 0
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and contraction of Ricci tensor and metric tensor, that is 0 = ¢"'G,,, = ¢"" R, —
%g’“’gm,R = R—-2R. So R,, = 0.

The Schwarzschild’s solution in spherical coordinate is given by

(2.1)
where
(2.2)
dQ® is the metric on 2-
Before we study p ‘ o ce it with black hole, we need
to know about the de next section will explain

ﬂﬂﬁl’mﬂ‘mWEﬂﬂ‘i

Figure 2.3 ‘Two sphere coordinate

Qﬁﬁﬂﬂ\ﬂ‘im UNIINYAY

2.3 Flu1d Mechanics

Fluid mechanics is the branch of mechanics of liquid or gas which is static
or dynamic. The study of fluid mechanics and fluid dynamics is necessary for the
fundamental understanding of fluid mechanics. However, we need to know the

basic definition and the properties.
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2.4 Spherical symmetry

Spherically symmetry means “having the same symmetry as a sphere”. That
is a metric of 5% is dQ? = d6? + sin® §d¢?. Indeed, “sphere” or “2-sphere” means
S2. In the metric on a differentiable manifold, we can consider those metrics

that have such symmetries. We [’} se the characteristics of symmetries

ﬁ implify the equations of motion

of the metric. By spheric

ﬂummmmmm

AR FOURA TR G Bt

approx1mat10ns to construct a realistic model for a relativistic star in general rel-
ativity. Though they illustrate a real importance in astrophysics, they are full
of the general solutions of the perfect fluid in general relativity and have been
gradually developed for other solutions. The first Static Spherically Symmet-
ric Perfect Fluid solution, abbreviated to be SSSPF, with constant density was

found by Karl Schwarzschild in 1918. He discovered the two exact solutions in
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Einstein’s equation, the “exterior solution” and the “interior solution”. Especially,
Schwarzschild solutions are easily available in view of Einstein’s equations, which
are very complex. Schwarzschild solution means that anyone can explain most
general relativistic effects in the planetary system. The reason is that this state-

ment can be described by the grav1tat10nal field outside spherically symmetric

2

body like the planets and the

// uite spherical [26].
& confusion about the specific

ost of these examples that

For almost a hundre
perfect fluid spheres
seemed independent

Many algorithm ether with the field equa-
tions have been ex ial coordinate systems, or
making simple ansat ¢ components. The evolu-

tion over the last sever algorithmic techniques that

allow us to generate large classi uid spheres in a purely mechanical
way. Perfect fluid till provide a amazingly
mathematical and plys - R )

In this chapter, Will extend these algorithmicmeas, by proving several so-

lution genera ﬁa W%’ cEIpLTTTﬁ"hen we shall explore
the formal properties of these solution- generatm heorems and then will use these
N LG Tﬁl‘ﬂﬂﬁ’f"ﬂ“? RTRE

we will generate several previously unknown perfect fluid solutions by the original

perfect fluid spheres.

2.5.1 Static spherically symmetric perfect fluid

In metric theory of gravitation, especially in general relativity, static spheri-

cally symmetric perfect fluid, is the fluid with isotropic pressure and static sphere
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in the spacetime created by stress energy tensor.

These solutions are often used to construct the model of stars, especially im-
pact object such as White dwarf star or neutron stars. In general relativity, the
models of single stars consisting of fluid are the solutions of perfect fluid from

Einstein’s equation and in external area are flat vacuum solutions. Both areas

A
must be satisfied on the earth’ ’k&)caﬂy and pressure is zero [26].
2.5.2 Spheres7

Perfect fluid sphere ¢l for gencral re ativistic stars that collapse

to be black holes. i try ‘of pl ’w‘ s and mathematics, sphere can

be classified into vario depending mnsion. Sphere is a round

object in three-dimernsio h.asithe sha g Of a ball in three-dimensional
Euclidean space (or 2-sphe EHe shapéde a |le in two-dimensional Euclidean

space (or l-sphere). Sphere cr center and radial distance from center to
ek s completely symmetrical
L)

as“the earth. For example,

Tk
A
odel or a coordinate system for the earth or the sun, and

celestial Spheﬁlﬂrﬁﬁ;j%ﬁ?%’ Wﬂ‘q ﬁﬁ‘lar system.
RN IRRAIENA

0

around its center

terrestrial sphere is a

Figure 2.5: Terrestrial sphere is the model for the Earth and Sun with 1st meridian

at G and its constituents [29].
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_elestial
meridian

astronomy [29].

2.5.3 Fluid

In physics, fluid is'a at has t ‘Ccontinuum” property, being a

continuous material that Alows ear stress. The “continuum” is a collec-

tion of particles sq Hiun is that thé d ndividual particles cannot be

followed. Fluids a odi < "-'\"d include liquids, gases,

plasmas and, to somEextent, plastic solids. Fluid rﬂhanics can be divided into

. ‘a .
e TN BN INY NS
: ¢ o o/
“RARTASIUNRIINYIAEY
Pre?/iously, we already know the stress energy tensor 7}, of perfect fluid, that

18
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—~
Do
w

~

conduction which implies that

diagonal entries are not zero

[]

luid spheres

general relativity, both static

and non-static, are realistic r’!g'#:,r for al relativistic star [26, 30, 33-37].

In this thesis, we J"&i-mavnam---qav.v--n--m-imm------;._.-; corems that map perfect

fluid spheres into pﬁct V, wWe @d to know the definition of

the stress energy tenso?&, which is de@yd by

AUEINENINEINT

SV REXTPTIE e} a1 A
_ |0 00 : (2.5)

where p is the energy density, u, and u, are the four-velocity as measured by an
observer moving together with the fluid, and p,, p; are the radial pressure and the

transverse pressure, respectively.
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In the conditions of perfect fluid spheres, the word “perfect” means it has the
isotropic property, independent of all coordinates in the stress energy tensor and

equality, that is

(2.6)
The Einstein’s equation
(2.7)
and (2.6) give us
(2.8)

Note that Einstein’ \ S — \‘r\"-. re the version that are more

traditional in the older li orks for diagonal metrics, whereas

TN,

the hatted version , Gy =Gjp= G4, aciple be generalized to arbitrary

metrics. v'— :"

Over the last 90 rs, there are 3 rithn@ methods to solve this dif-

ferential equation, whidhdmave been expléréd, often by picking special coordinate

systems, or ﬁ%iuﬂpgallcﬂ MCﬁismeﬂe't] i ﬁe form of
o L5 a W
ARWIAMIRARVINHIQRY oo
q
where dQ2? = d6? + sin? #dp? is the metric of a two-sphere and for one or other of
the metric components [38-41]. (For recent overviews see [33-35].) The outcome
over the last several years has been the “algorithmic” techniques that allow one to
generate large classes of perfect fluid spheres in a purely mechanical way [42—-44].

In this thesis, we will present and extend these new algorithmic ideas, by proving

several solution-generating theorems of complex different levels. Then we shall
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demonstrate their properties of these solution-generating theorems and use these
transformation to group some of the previously known exact solutions. Moreover,
we will construct several new previously unknown perfect fluid solutions. Besides,
we use the mathematical programming, “maplet”, which is an easy and compact

way to construct the program of perfect fluid sphere, to find and classify the set

of all perfect fluid spheres ins of ¢ ing by hand.

2.6.2 Schwarzs

The gravitationa ly syn ¢ particle such as black hole

physical significance of state \ont ‘ & tousors or vectors and other quantities

g2

)

u ativity. The center of the

point of a local inertial coordinate system is the most common example that is

o oo INYNTHYING

U
¢ o v/
27 FRIREHI HNINBIRY
H , _ ™

Generally, there are several coordinates for us to apply with our object that
we want to measure. For example, Euclidean system is useful for a straight line or
graph. Cylindrical and spherical systems are useful for a cylindrical or circular-
shaped curve. Polar system is useful for the graph with constant radial distance

and angle.

In special relativity, the metric of perfect fluid sphere often appears in the
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form of

A(r)dr* + B (r)dQ? (2.10)

where d? = dr? + sin? §d¢?. There are still several coordinates for us to use.

2.7.1 Schwarzchild’

st ell@)rdma‘ce system for studying
perfect fluid spheres, ap ' 59 x (eXe coordlnates such as isotropic

This coordinate syste

coordinates is estimat metric is in the form of

(2.11)
For a perfect spheres't whits arameter in term of r?dQ?. This
coordinate system is the fol-for the 't in the gravitational field outside

a spherical, non-rotating mas , planet, or black hole). Tt is

good for estimatin ------------------------ & :’f,ll or the sun.
2.7.2 Isotropic egordinates g,

wn ol HELA DT AN
AT T VT o

ent froniithe radial coordinate of chwarschild’s coordinates. It is defined for light
cones to appear round which means that (except for the trivial case of a locally
flat space), the angular isotropic coordinates do not represent distances within the
nested spheres, nor does the radial coordinate represent radial distances. Con-
versely, angles in the constant time exist without distortion, that follows from the

name of their coordinates [26].
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This system is often used in static spherically symmetric spacetimes in gravi-
tational theories such as general relativity. Moreover, they can also be applied to
a model of a spherically pulsating fluid 2-sphere object. The metric of isotropic

coordinates is

them cannot be disto

2.7.3 Gaussi

A third alternative is t tes, which correctly represent

radial distances, but disgor S and angles. In all three pos-

sibilities, the nested geometri epresented by coordinate spheres, so

we can say that their roundn - s-is correctlyrepresented. The metric of Gaussian
y , #EP e,

polar coordinates is-

mdi = —((r)*dt? + dr* + R ( @dgﬂ (2.13)

e 146 5 wmq@w BIATNTe dstorton between

transverse dlstances and angles [30-32].

ARIANN I 1NN Y

2.7.4 Synge isothermal coordinates

This coordinates system was first introduced by Gauss Korn and Lichtenstein.
They have proved that these coordinates exist around any point on a two-dimensional

Riemannian manifold. The metric of Synge isothermal coordinates is

ds® = —C (r)72 {dt* — dr® + R (r)* dQ?} (2.14)
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(see also [30-32]).

2.7.5 General diagonal coordinates

This coordinate system can be represent in the metric in the form of

(2.15)

in specific cases. / . :

This coordinate syste i of i AN een Synge isothermal (tor-

toise) coordinates and 3¢ olar | dius) coordinates [30-32]. This

,:_'m:_—_z.“‘ dQQ} (216)

A8 {rydt

) )

2.7.7 Solution generating theorems

i Sl KA iJ YEADNE IR 14 e e
ammmt}mm’mmaa

whose parameters are {((r), B(r)}. Then, its ODE is

(2.17)

[r(rQ)'] B + [2r2¢" = 2(r¢) | B+ 2¢ = 0, (2.18)

which reduces the freedom to choose the two functions in equation (2.17) to one.

This equation (2.18) is a first-order non-homogeneous linear equation in B(r).
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Thus, once you have chosen a () this equation (2.18) can always be solved for
B(r). Solving for B(r) in terms of ((r) is the basis of [43, 44], (and is the basis
for 1st BVW theorem and integrating factor below) [26]. On the other hand, we

can also re-group this same equation as

' —2B+2]¢ =0, (2.19)

basis for 2nd BVW t o ‘ ent transformation theorem

\

below. Our objective ingthigfsecti 5, hoy matica,lly “deform” the ge-

ometry (2.17) while sti Ladhififing the'pe d spheres. We start with the

(2.20)
and assume that 1t represen %{6%# sphere. We need to show how to
“deform” this solutien,-fram J.cotrl Be (b Lo anothos - by applying our different

Veum 4

transformation theorBas 0

h@ the outcome still presents
a perfect fluid sphere. r.l?%result of this process will depend on one or more free

s ] 5 8 2H] BH R AT e i s

of perfect ﬂuld spheres of which the original starting point isgonly one member.

Additaam ’v:rl aaﬁzngtmollm i’;]w’ga%]yﬂ;l aeﬂms more than
q

once, iterating them in various ways.

Similarly, in general diagonal coordinates, the metric is

ar
B(r)

whose parameters are {((r), B(r), R(r)}. Then, its ODE is

ds? = —C(r)2dt? + + R (r)*dQ?, (2.21)
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[RUKYM?+[ﬂﬂ#%"—ZRHC—Q(Hfg]B+2§:0. (2.22)

This is the first-order non-homogeneous linear in B (r), and the second-order

homogeneous linear in ¢ (r). Also in exponential coordinates, the metric is

+2=0. (2.24)

In this thesis, we pre to derive the first theroem which is

the same as transformatio achnique of the following theorem

- -
e e

uses an integratin fector-techniquet ‘ 8), then we derive a new

=

Beta. This method iﬂwt 00 comy. dI"because imzonsists of only one factor.

Thus, it can easily be usedyto generate amew metric.

eoren lﬂ,‘lglﬂlg’mw RSN ——
ARSI Wywaa

/ %H@c (2.95)

then {C (r),Bo (r) + YK (r)} is still a perfect fluid sphere. That is a transforma-

tion
Ty :{¢(r),Bo(r)} = {C(r),Bo (r) + 7K (r)}, (2.26)
map a perfect fluid sphere to a perfect fluid sphere and this transformation is

tdempotent.
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Proof. We know that for the 1st order differential equation
M(z,y)dz + N(z,y)dy = 0, (2.27)

and we need to find an integrating factor p = p(v) for exact condition, that is

9 —g(,uv). (2.28)

Simplify and rearrange thi

(2.29)
We assume that @ ‘ = F = F (z), then
Rk S—-L— 2.30
and we derive u = exp Q" 4»: desi \w
Now, we can cha Pe -’:tff: ferential equation
(2.31)
to ‘
iF |
‘a Y+ P( (2.32)

. ﬂuﬂawﬂwswawnﬁ
awwmnﬁ”ﬁ‘dﬂiﬁﬁ?ﬁmaﬂ e

and 9
N(z,y) = 1. (2.34)
Therefore,
1 /OM ON
and

= p(z) = exp ( / F (z) dx) — exp ( / P (z) dx) . (2.36)
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Thus, we can solve this differential equation which we derive

v= i ([uwe@a). (2.37)

Finally, we compare this differential equation ¥’ + P(x)y = Q(z) with our

1st order ODE

—0, (2.38)
where
(2.39)
(2.40)
(2.41)
(2.42)
(recall that ¢ = ¢ (r)).
By calculating,‘ we define ‘55"";’:{. ,,,’I 2 qr ) and
B(r) 'v: 2 ‘ ]
; .’3( ‘{ﬂ e (/ 1;‘2{] ) ) (2.43)
ugdfimineng )

it VLGN §mm1 1ANYAY
i - o 2255
« ( / P U Tdr) dr) , (2.45)

K(r) = exp ( / —ZTQC”;(fg)C,/_ZCdr>. (2.46)

Hence, this transformation is Ty : {¢,B} — {{,Bo (r) + 7Ky (r)}.
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To prove this transformation is idempotent. We see that

T = TioTi={¢(r),Bo(r)} (2.47)
= {C(r),Bi(r)} ={¢(r),Bo (r) + 7K (r)} (2.48)

= {C(r), B2 (1)} ={C(r), By (r) + 7K (r)} (2.49)

{¢. Bo (1)1 B(r)} =T, (2.50)

* the notation “J 'w metrics, which are discov-

ered by Panit, they ar s, where

(2.51)

X mR2+2 J TR2)

ﬁﬁﬂﬁwm‘a‘wmm @s2

Note that B(r é ) of Wyman Hb (n ? is wrong. Ve can check that
{C(r si

RN NN T e

fluid spheres (Theorem 1-4)) in chapter 5. The correct B (r) of Wyman IIb (n=2)

is from ar — %



Name

Name
Einstein
Minkowski
static
Exterior
Schwarz- Kuch68 11
schild
Tolman V
Tolman V
(A=0)
.
M-W III Martin 2
Heint Ila
Heint Ila
(C=0) v S ——— T T
B-L =arbitrary B-L
|
‘ i¥ ]
K-O 111 {A+ Br2 1} —? - —C Martin 3
— g
Kuchl Ib ' If" ﬁlq Martin 1
J 110
Kottler ~yexp (Fiy (m,AR, 7)) vy J1r
anel ﬁi Z E l
|
yexp (Fy (A, B,r)) v J2"

Table 2.1: Examples of metrics implied by theorem 1.

64
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2.7.9 Additivity theorems in various coordinate systems
Schwarzschild coordinates

In Schwarzschild coordinates (also called curvature coordinates) [30-32, 43, 44],

the metric is most usefully rearranged in the form

+ r2dQ?, (2.53)

which is a functional o fune 'io@)}. Then, the ODE arising

from the isotropy conditi

— 0, (2.54)

which reduces the free . ons in equation (2.53) to one.

This equation (2.54) is a v. eneous equation in B(r). The
solution space is one-dim DE is inhomogeneous, this one-
dimensional solution space _gf-;é; 'e ed by any two distinct solutions
Bi(r) and Bao(r). %= —

‘V' \‘

However, in this s1 1se! ulm rearrange equation (2.54)

into the form:

ﬂuﬂ?mmw UL, e
1 ARABARTALUAIINEAR s 1

for 2nd BVW theorem in [26]. The solution space is two-dimensional, and since the
ODE is homogeneous, this two-dimensional solution space is uniquely determined

by any two distinct solutions ¢;(r) and (a(r).

Definition 2 (Solution space — Schwarzschild). Let Y(B) be the set of all solu-

tions to equation (2.55) for fized B(r).
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Theorem 3 (Summation — Schwarzschild). Let {¢i(r), B(r)}, {G(r), B(r)} rep-

resent perfect fluid spheres. Then for any arbitrary linear combination

((r) = e1Gu(r) + c2a(r), (2.56)

the pair {¢(r),B(r)} also represents a perfect fluid sphere. Furthermore since

ﬂ)element of Y(B) can be put in this

' -d
; (2.55) is a 2nd-order linear

Y (B) is a two-dimensional ve

form for suitable constants¥

The proof is imme

homogeneous ODE.

Theorem 4 (2nd BV )} represents a perfect fluid

sphere, then {C (r)Z (r “represents a perfect fluid sphere, where o, e

are arbitrary constants
(2.57)

That s, the map ¢ .:_.- insformation

E (b
Jakes perfect ﬁi%ﬁ?}%ﬁ%ﬂ%’ PR TR rore since T(B) is o

two-dimension® vector space, any‘element of TAB) can be putqz'y this form for an
o RAGNFTUHAPINE T AL

The proof is immediate from an application of reduction of order to the (as-

r)7Z (T)@S (r)}. (2.58)

sumed known) solution ((r) of the ODE (2.55). For one of these theorems chose
to apply, it depends on the amount of background information which one has.
If for instance, one has a table or list of perfect fluid spheres [33, 34] that al-
ready contain distinct perfect fluid spheres {(;(r), B(r)} and {((r),B(r)} then

summation is the easiest course. If after diligent searching one only finds a single
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solution {((r), B(r)}, then the 2nd BVW theorem is indicated — though it might
be difficult or impossible to perform the integration hiding inside the factor Z in
a simple closed form. If for some specified B(r) no previously known perfect fluid
spheres are found, then one has to resort to attempting to directly solve the ODE

(2.55). This may or may not be possible. In any of these cases once two distinct

solutions have been found, then the ‘ blution is automatic via the summa-
tion theorem — there is no point 1 )ply the summation theorem and
2nd BVW theorem i aem will yield the full solution

space.

Isotropic coordina

Isotropic coordinates of perfect fluid spheres. These

coordinates are used 1 ¢ literature [44]. In isotropic

L2402, (2.59)

The Einstein tensor ﬁmp o

‘4&83,2 /2 2 Q12
ﬂ ﬂ gl‘ ? % B/;W)El‘ B” (2.60)

-2 (2.61)

ARaN ﬂﬁW’%@%‘l%ﬂ@ d

/-2
+2BB"(* — 3B"(* + BB (2.62)
r
The ODE coming from the isotropy demand is either
¢\° B"-B/)r B"—B'r
2 ) == /. 2= — 2.63
( C L s (2.63)

or

, B ¢\
B —7—2<Z) B =0. (2.64)
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The ODE for ((r) can either be viewed as a first-order nonlinear ODE, or as a
pair of first-order linear ODEs. In counterpoint to the situation for Schwarzschild
coordinates, here it is the ODE for B(r) that is second-order linear homogeneous.

This the additivity theorem will now be a theorem for B(r).

Definition 5 (Solution space — i

Theorem 6 (Summat{o tropic). Lei 1(r)} and {¢(r),Ba(r)} rep-

resent perfect fluid s inear combination

, / \ (2.65)
the pair {¢(r),B(r)} > ,,» i rfe phere. Furthermore since T
s a two-dimensional ve€tor spa any. , me \ ‘ (' (B) can be put in this form

for suitable constants ¢; and .rf” et

The proof is imuie (2.64) is a 2nd-order linear

homogeneous ODE«

Theorem 7 (8th BVW Qeorem [26]). w {¢(r),B(r)} be a perfect fluid sphere

and te ﬂUEl’mEWI"JWH']f'i
2y ote | 3 (2.66)
~AmaniiiE sy .

perfect fluid sphere. That is, in isotropic coordinates, if

ds? = —((r)%dt* + {dr? + r2d0?} (2.67)

b
¢(r)*B(r)?

s a perfect fluid sphere then

ds? = —((r)*dt* + {dr? + r*dQ?} (2.68)

1
C(r)?B(r)*Z(r)?
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s also a perfect fluid sphere. That is, the mapping

Ts:{C(r),B(r)} = {C(r),B(r) Z(B (r))} (2.69)

maps perfect fluid spheres into perfect fluid spheres. Furthermore since Y(C) is a

two-dimensional vector space, any element of Y(() can be put in this form for an

arbitrary choice of B(r able constants o and €.

The proof is immediafte of reduction of order to the

(assumed known) soluiy l _ 4). Note that in comparing
Schwarzschild coordi o ‘the roles of ((r) and B(r)
have effectively cha 4 ‘ e ture of the ODESs one en-
counters depend no ] t ystem one adopts but also
on the choice of functi [ 7- spacetime metric. Analogously to the case
of Schwarzschild coordifftef, ei thesummation theorem or the 8th BVW the-
orem is enough to explore the-ei € two snsional solution space, now for B(r)
at fixed ((r) — theze is ; the-summation theorem and
8th BVW theorent it STl vield the full solution

e ID 2
G v UHIRYNTNYINT

I“Ga‘ﬁiﬁ“ﬁﬁﬂﬁa‘?iw‘ﬁﬁﬁﬁﬁﬁﬂ

ds® = —((r)*dt* + dr® + R(r)*dQ>. (2.70)

The Einstein tensor components are easily computed

—R?-2RR" +1
Gi= 72 , (2.71)
CR?—C+2'RR
Gro= o , (2.72)
/! ! / "
Gyym Gy = ST CH R (2.73)

bd — RC



70

The ODE arising from the demand of pressure isotropy is

/ _ P2 7
("—C’£+C{1 i ;RR}zo. (2.74)

R R

We note that this is a second-order linear homogeneous ODE for (), and proceed

in the by now quite standard manner.

Theorem 9 (Summatiou ). Now in Gaussian coordinates, let {¢(r), R(r)}

and {C(r), R(r)} repu \\ \

the pair {((r), R(r)} also gepre ;-! 'rfe ". d sphere. Furthermore since

en for any arbitrary linear
(2.75)

Y (R) is a two-dimensiona ’::- element of Y(R) can be put in this

. - A J‘
form for suitable copstants € -and cs

e rom o e

homogeneous ODE. ! -

Theorenm @%mhwg MFHLIAR S consion ot o

dinates, and that {¢(r) } repfesents a perfect fluid sphereysDefine

ARIAINE ng/l'ammaﬂ

Then for all o and €, the geometry defined by holding R(r) fized and setting

The proof is im ).74) is a 2nd-order linear

ds* = —((r)?A(r)? dt* + dr? + R(r)*dQ?, (2.77)
15 also a perfect fluid sphere. That s, the mapping

To - {C, R} = {CA(C, R), R} (2.78)
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takes perfect fluid spheres into perfect fluid spheres. Furthermore since Y(R) is a
two-dimensional vector space, any element of Y(R) can be put in this form for an

arbitrary choice of ((r) € Y(R) and for suitable constants o and e.

The proof is immediate from an application of reduction of order to the (as-

E (2.74). Analogously to the case of

4%?}

e summation theorem or the 9th
ore he@ dimensional solution space,

sumed known) solution ((r) of th

Schwarzschild or isotropic ¢
BVW theorem is enou
now for ((r) at fixed
theorem and 9th BVW. indem; as. eith er one of them will yield the

full solution space.

Synge isothermal

Similarly, consider the me coordinates, that is

(2.79)
The Einstein’s tensoo np
RQC’Q 4—;2&((” + 4RR’Ci’3+ ¢ - R’2§2 2RR"2§2’ (2.80)
o, ! MR%Mﬂﬁw e1nN9 e
w%%ﬁﬁ%ﬁ%ih NYRY e
Demandlng isotropy yields the ODE
¢ - g’% _¢ { - R:]; RRH} 0. (2.83)

We now proceed as usual.

Definition 11 (Solution space — Synge). Let T(R) be the set of all solutions to

equation (2.83) for fized R(r).
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Theorem 12 (Summation — Synge). Now in Synge isothermal coordinates let
{Ci(r), R(r)} and {C(r), R(r)} represent perfect fluid spheres. Then for any ar-

bitrary linear combination

C(r) = ca1Gi(r) + cala(r), (2.84)

W

)ct fluid sphere. Furthermore since
Y(R) is a two-dimension space, ﬂment of T(R) can be put in this
' —

the pair {C(r), R(r)} also repre

form for suitable const

The proof is immedi et | at eq on (2.83) is a 2nd-order linear

homogeneous ODE.

Theorem 13 (11th B 1126]). Suppose {C(r), R(r)} represents a per-

(2.85)
Then for all o »;EFETﬁ:ﬁ_-'T{:; r) fized and setting
. s ,
ds? EW A —dr' )+ o Q(Q(T)de (2.86)

o AR NENT BN S
QRIAITIHRINITAY 7

takes perfect fluid spheres into perfect fluid spheres. Furthermore since Y(R) is a

two-dimensional vector space, any element of Y(R) can be put in this form for an

arbitrary choice of ((r) € Y(R) and for suitable constants o and e.

The proof is immediate from an application of reduction of order to the (as-
sumed known) solution ((r) of the ODE (2.83). Analogously to the previous cases,

either the summation theorem or the 11th BVW theorem is enough to explore
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the entire two-dimensional solution space, now for ((r) at fixed R(r) — there is
no point to trying to apply the summation theorem and 11th BVW theorem in

tandem, as either one of them will yield the full solution space.

2.7.10 Weighted Means

In this part, we will introduce his 4 called “weighted means”. This

theorem is used to generate (1) by eighted means of perfect fluid

Corollary 14 (Weig 1 N et G B, (r)}}7 | be the family of perfect

fluid spheres with fize 5 Anen . ol ' DB, (r) sz} 1s the perfect fluid
-~ 2 i=1

Proof. Let {{{y(r),B
Co (1), then

fect fluid spheres with fixed

Y] 0 =0, (2.88)

for all i = 1,..,ngr‘somen€N. @

e INHNTNEINT
aw%ﬁ“&ﬁ%m’"ﬁw"ﬁ]ﬁz’i%ﬁ“ﬁl o

W take summation of (2.89) for all i = 1,..,n, so

r(r¢o)'] (sz ) + (2% = 2(rG) ] Y o piBi+2) piGo =0, (2.90)
i=1 i=1

l.e.

Zn: piBi i piBi
[r(r¢o)'] | = + 207 - 2(r0)] | & +2¢ = 0. (2.91)
> Di > Di




74

Therefore {Co (r), > piBi (r) / > pi} is also the perfect fluid sphere for all
i-1 i=1

arbitrary constants py, pa, ...

s Pn- U

The proof of this theorem is easy but it give us more advantages and better

than we expected. For instance, if we need to eliminate some constants that we

do not know, then we can ch ' v ts to eliminate them as desired.

Name

M-W III

Martin 2

*Martin 2

Table 2.2: This table shows

theorem.

,.ﬂﬂm B (r) 20 | |
776 -
A=) ||
AN

%(r—a)
( —30,)%

=

ed by applying the weighted means

2.7.11 New conyenlent transformatlon theorem

In this ﬁuﬂ ANUNITHYANT o« s o
;e:::%mmmﬁim b Ll -

perfect fluid sphere {(y (r

(r)} that already has By (r) to use together with

Co (). Thus, calculation for finding a new B (r) is easier than the new technique.

2.7.12 General diagonal coordinates

Consider the metric
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dr?
B(r)

and assume that it satisfies the condition of perfect fluid spheres, then

ds? = —¢ (r)?dt® + (r)? dQ?, (2.92)

(2.93)
where
(2.94)
and
' BRI : 2R("B + R('B’
Gy = ar S 4 3 . (2.95)
“do A = e v :
By using Gy =46 whieliigiie
SNaidinis 4
[R(RQ)] B.+ (R’ C|B+2¢=0, (2.96)
we will construct "' 7 ."\' © g:

Theorem 15 (New C(fnﬁlence In geeral dmfonal coordinates, if we have a

pergct i o 901 b R"MMI na
q Wl RONTRIATINYAHEY oo

s also a perfect fluid sphere, where

260 (r)/ [Ro (r) (Ro (r) Go (r))']
BO (7")

Yo (Go (), Bo(r)) =1+ kexp (/ dr) . (2.98)

and an arbitrary constant k i.e. this transformation T, maps a perfect fluid sphere

to a perfect fluid sphere such that

Ty {G (r),Bo(r)} = {Co (1), Bo (1) Yo (Go (1), Bo (r) , Ro (1)), o (r)} . (2.99)
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Proof. Let {(o (r),Bo (r), Ro (r)} be a perfect fluid sphere, then

[Ro (RoGo)'] By + |2RoRiCo + 203G — 2RoReCh — 2 (Rp)* Go| B+ 260 = 0,

(2.100)
i.e.
92 /" 2 -9 ! !
Bl RyRiGo + 2R5¢) RoR 0, (2.101)
Conveniently, we will def
Fi (r) (2.102)
Fy (1) (2.103)
Hence,
(2.104)
Let Y satisfy
(2.105)

Then

'I

(BoY) + Fy (r NP +Fa(r) = BOY’+YB0+F1( )BoY (2.106)

ﬂUEJ’JVIEWIﬂN&ﬂﬂ‘i 2107

ammnsmwi’mﬂ’léﬁ o

= Y(B6—|—F1 (T)B0+F2 (7")) (2110)
+BOY/—F2 (T)Y+F2 (7"), (2111)
= Boyl—Fg (T)Y+F2 (’f‘) (2112)
Now we derive the new first ODE

BoY' — Fy (r)Y + Fy () = 0. (2.113)



7

We know that

LA Ll)/, (2.114)

= (In(Y -1)), (2.115)
then

(2.116)
(2.117)
(2.118)
(2.119)
(2.120)

(2.121)

(2.122)

i |
|
W

where k is an arbitrary ‘ponstant which comes from integration.

s, s B8 94 B ST PRI Q 7 Gvion b wing Bo

that we alreada‘lknow from the asgumption.

o WG DGAANT IR B

T, is not idempotent. O

2.7.13 Schwarzschild coordinates

Theorem 16 (New convenience). In Schwarzschild coordinates, if we have a per-

fect fluid sphere {(o (r),Bo (1)}, then {(o (r),Bo(r)A(¢o(r),Bo(r))} is also a
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perfect fluid sphere, where

A(Co(r),Bo(r)) =1+ kexp </ 20 (T)/B[: ((:)CU (r)) ] dr> , (2.123)

and an arbitrary constant k 1.e. this transformation Ty maps a perfect fluid sphere

to a perfect fluid sphere such that

T, : {¢o (r) (2.124)
Proof. Let {Co (r) , By (1) ele
(2.125)
ie.
(2.126)
Conveniently, we
(2.127)
(2.128)

Hence,

AU t) 39 EWWW BN 212)

Let A satlsf

A mmmuma NENQY
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Then
(B()A), —+ F1 (’I") B()A =+ F2 (T‘) = B()AI —+ AB6 —+ F1 (7") B()A

+F (T)a

= B()A/ + AB6 + Fl (T') B()A

(2.131)
(2.132)
(2.133)
Fy(r)A—Fy (r)A+ Fy(r), (2.134)
(2.135)
(2.136)
(2.137)

(2.138)
We know that

(2.139)

(2.140)
then

(2.141)

ﬂuﬁmmw UINT o

Q 1 ﬂ"ﬂﬂ'ﬁfﬂ ﬂ?%?‘ﬂ Ej’}jauﬂ (2.143)
P (2.144)

= kexp </ b2 (r) dr) , (2.145)
Bo
A = 1+kexp (/ F%(T)dr) . (2.146)
0
By substituting F; (r) = we derive

(C)

A=1+kexp (/ o )5?30( )dr) , (2.147)
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where k is an arbitrary constant which comes from integration.
Thus, this theorem reduces the several terms for calculation by using By (r)
that we already know from the assumption.This transformation T is not idem-

potent since

(2.148)
and
Ao % Ay Fexp [ o (2.149)
(2.150)
(2.151)
for an arbitrary form 6f O
s (m, R.1) P T dr> L (2.152)
F, :211%:' ) , (2.153)

* the notation "g* J4*” means they are modlﬂd metrics by applying new

convenient trﬁﬂurﬁ]oﬁat%ﬂw ﬁ(l‘Wtﬂ fo]ﬂ ?yman IIb (n=2) for

J4*). Indeed, Yrx, Jor (from mt?gratlng fa,ctor) and J3%, J4* (from new con-

o) YT B G A B Bl

dependlng on each algorithm, respectively.

2.7.14 Exponential coordinates

Consider the metric

2

ds* = —exp (—22) dt* + exp (+22) { dz

B " R(2)*dQ } , (2.154)
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Parameters
Name Theorem 4
{¢(r), B(r)} A(¢(r), B(r)) k

. . ) . Einstein

Minkowski {1,1} 1+ kr —2
static

Exterior
Schwarz- 4C Kuch68 11
schild
Tolman V

—A Tolman V
(A=0)

\
Kuchl Ib ﬂ/ﬁ _ \\m‘ m+B —C Martin 1

Kottler ,RT k J3"
- S

Wyman

+4AB7' k J4*

IIb (n=2) R e

r ORI

Table 2.3: This table shows- ﬂl‘ (1) applying the new convenient

transformation th V Y|

- e
1 1l
W i¥ |

and assume that it satigfﬁ the conditior.9f perfect fluid spheres, then

AUINYNTNEINS
ammnmuﬁﬁwmaﬂ

(BR? — (R')’B + 1) exp (—22)
R? ’

(2.155)

Gs: = (2.156)

and

1 (BR' +2R"B + 2BR) exp (—2z
Gééz—g( - Joxp (22) (2.157)
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By using G:: = Gy, which gives us an ODE

[RR|B' + [432 2R+ QRR”] B+2=0, (2.158)
we will construct the new transformation as the following:

Theorem 17 (New convenience aponential coordinates, if we have a per-

fect fluid sphere {Bg (2) , Ry )}, t \I/ A 2o ( (2)),Ro(2)} is also a

Vo ( dz> : (2.159)

0
77/6WN
and for an arbitrary comstg (Mo ’ 1 ation Te maps a perfect fluid

sphere to a perfect fluidésphiers 5# .‘ ‘

) (B WA
(i < 2
Proof. Let {By (2) ,RO (2)} be-a perf

T, : {Bo(2), Ro

G BT+2 =0, (2.161)

1.e.

(2.162)

Convement” we will define

WA FRENATNENAY .,

Ry R},
F(r) = R02R6' (2.164)
Hence,
B{ + Fi (r)Bo+ F» (r) = 0. (2.165)

Let V satisfy

(BoV) 4 Fy (r) BV + Fy (r) = 0. (2.166)



Then
(BoV) + FL (r)BoV + Fy (r) = BoV' +VBj+ F (r)BeV

+F, (7“) )
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(2.167)

= BOV/+VB6+F1(7”)BOV+F2(T)V

Now we derive the

We know that

then

ﬂuﬂi%ﬂﬂﬁwawnﬁ

ammmmwéﬁ%maa
= o (C+(/ B—d>>
- v ([ Blar),
Vo= 1+kexp</F?3(0T)dr).

By substituting F» (r) = ﬁ we derive

(2.168)

(2.169)

(2.170)

(2.171)

(2.172)

(2.173)

(2.174)
(2.175)
(2.176)
(2.177)
(2.178)

(2.179)

(2.180)
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where k is an arbitrary constant which comes from integration.

Thus, this theorem reduces the several terms for calculation by using By (r)
that we already know from the assumption.

Since this case is the same as in Schwarzschild coordinates. Thus, in the

exponential coordinates, this transformatlon T, is not idempotent. ]

2.8 Relations of ns

Before starting, we ' sduce the 1st ‘=~..,Ajl transformation (T4) as fol-

lowing [26]:

Suppose {Co (1), Bo (1)} rep-

fi,[ W& (1)~ (1) }
Ay (r) = ' < drp. 2.181
0= (57 =N TOETHO R B
Then for all arbitrary constant- X -the. get ry defined by holding (o () fized and

setting -
ds

is also a perfect fluid sghge That s, thwappmg

AUHANAIRNEANT e
e QAR TR A e

tence.

r2d0? (2.182)

Thus, we will find the relation of all three transformations as follows:

2.8.1 Algorithm and proof for calculation

In the 1st BVW transformation, its algorithm defines the summation’s term

(Ag (r)). Then, we substitute this term into an ODE for B (r) and find its value
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which is above. In transformations from new technique, its algorithm uses the
integrating factor method to directly find the solution B (r). Also, if we know an
initial By (1), then we can take B (r) in the term of By (7). In the new convenient
transformation theorem (Ty), its algorithm adds the factor A multiplying with an

initial By (7), then find its value. The comparison of these transformations is how

complex these algorithms are. the third transformation theorems

are just substituting for rm as we define an ODE for
B (r) and find its valu o know the integrating factor
method before findi initial By (r) to derive the
summation’s term. ransformation theorems will

reduce the steps of

lating new B (r) becatse the second derivative of ¢ (7) does not sometimes exist.

For the Secorﬁ 1uﬂ§1W8%%n’Wﬁqeﬂﬁl computation but it

has the second¥derivative of ¢ (r ‘jhen we need to find it before calculating. For
o QR TRHHA TR
know an 1n1t1a1 By (7) for solving. Instead of its difficulty, it is useful to bring an
initial By (1) for calculating. However, if we want to transform some perfect fluid

sphere with an initial By (r), then it is preferred to the third transformation.
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Transformation 1st BVW | Integrating factor | New convenient form
Number of terms many moderate few
¢"(r) exists No Yes No
Using By(r) No No Yes
Idempotence Yes No
Complexity No

| d .
Table 2 on k twwanSformatlons.

2.9 Conclusio

In this chapter, , and corollary. These will

help us generate the s easier. Instead of explain-
ke to stress a few points that

we believe are useful to underslan: -"' e all concept of these transformations

as the followings: -

= = Y
e The first theo emsed to generate new Beta
with fixed Zeta W.here new Beta coxf:’es from summation of the initial Beta

oo ) DN PSRRI YT obioney constat,

This theorem is the same as the first theorem in [26]gbut less terms for

%M%&Nﬂ@&ﬂ%%&%&l&ﬁo& by using an

integrating factor.

e A binary operator on perfect fluid spheres called “summation” will be used
with the second transformation in [26] to construct additivity of the second

transformation to generate Zeta with fixed Beta.

o Weighted means can be used to generate new Beta by finding weighted
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means of perfect fluid sphere with fixed Zeta for each Beta. The proof of
this theorem is easy but it gives us more advantages than we expect. For
instance, if we need to eliminate some constants that we do not know, then

we can choose suitable weights to eliminate them as desired.

The third theorem (new convemnient transformation theorem) can also be

Weta which is consistent with the first

theorm. But the method™ get @etem. Instead of summation,

this theorem uses e, fa \.‘:‘j\ the initial Beta to generate

AULINENINYINT
ARIAATAUNNIING A Y



CHAPTER III

CONCLUSION

In general, there are m

)ons to various problems. Indeed,

we need the best way q SO@TGQUII‘ed For instance, if we

can reduce the steps or me € nused| ir \ alculating the solutions, then our tasks
will be more convenica | \\\k- can reduce not only the

algorithms but also comipleXif es and ca c lations. In physics, we would

like to extend theore cases. In this thesis, there

"‘\
are not only theoretical j nathematics and computational

programs for calculation.

3.1 The mai ' concept s and analveiihyf. 5 this thesis

Firstly, in chap@s one and two, we 1ghlight‘m the key features: special
relativity an I ﬁl ity. f iye ’Te olutions to the problems
related to thﬁri{ tj,vm if(ﬁ aﬂagjilt tﬂ %ysical values such as
tensoqq Wﬁnﬁﬁ v-]mqngle i tensor, etc.).
All physical values useﬁlﬁls thesis come from relativity. owever we had to

understand special relativity before learning general relativity since it is easier to
comprehend special relativity. Then we extended this relativity to general relativ-
ity. These first three chapters were background information for the construction
of our researches which appeared in chapter four.

In chapter three, we focused on the solutions of black holes in the form of per-
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fect fluid spheres. Mainly, in this thesis, we have developed a few transformation
theorems that map perfect fluid spheres to perfect fluid spheres using all related
coordinates. Moreover, we have established other algorithms or different ways
that are equivalent to the first BVW transformation theorem for upgrading meth-
ods and advantages such as reducing operation counting and complexity. Hence,
this concept makes the title b # } orithmic simplification of solution
generating theorems for - Hui ‘&erzﬂ relativity”.

¢

In chapter four ith maplets”, we also con-

structed a program ed. Many times, the cal-
culation process in h some errors because of
inaccurate input pr I rTor, and wrong codes in mathematical pro-

gram, etc.

In this thesis, uu A amples for finding physical
values such as Rlemang. curvature tensor Christoffel’s symbol, Ricci tensor and

sute's B HONENTNENT

At last, we Would like you togomprehend,the meaning of j‘exact solutions”
Whichatm E]ea)?ﬂ:ﬂsg mluﬁMQ{JhWaﬁlﬂ@e%Je many condi-
tions of!zxactness such as integrating factor of first and second order differential
equation. But, in physics, there are more and more conditions of exactness such
as the 3D Navier-Stokes equations, Schrodinger equation for modified Kratzer’s
molecular potential, pendulum Differential Equations, etc. Finally, if we can de-
velop this research further, we may further explore “non exactness” conditions

which extend to general cases.
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APPENDICES

APPENDIX A

ANOTHER ALGORITHM FOR FINDING SOLUTIONS

(2.184)
If one solution is ou the } eful*® trick for finding the
general solution is to
(2.185)
since then the differential 6 r) 18 very simple
(2.186)

with solution

AuEi mm/mmm
QR REATOINAIN 1N Y

“NeW convenient” theorem is based in contrast on the multiplicative sub-

stitution

u(z) = uo(z)Z(x), (2.188)

since the differential equation for Z(z) now is simply
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a(z)ug(z)Z'(z) — c(x)Z(z) + c(z) = 0. (2.189)
This is a special first order linear ODE with special coefficients and with a

particularly simple solution

]dx) : (2.190)

u(x) = ug (x)]dx)] . (2.191)
The point is that 'i‘? 6 up(z) explicitly to do the
integral, sometimes it tygrn o I tegral to do.

o

i

i
X '|

AWITH MAPLETS
Introducti V N
ntroauction ! m

In this section we intreduge a mathematigal programming tool, “maplets”. The

maple softw% bk sl 5 W o W4 Rabod Bk cotcutator, wtian

is an advanced calculator for mdthematics, thiat is, a progrémi that has many
packaga mtflaabg Is]d‘jomc&l’m;] gem’;]haiﬂs. Moreover,

Maple is also useful for creating teaching files which are effective, accurate, and

MATHEMATICAT, PROC

faster than manual calculation. Additionally, these mathematical programs can
be used to check correctness of analytic solutions, or verify numerical solutions
that are extracted if analytic solutions do not exist.

A maplet is a powerful mathematical program for calculation and solving prob-

lems in all areas of modern mathematics using a Graphical User Interface (GUI,
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sometimes pronounced gooey) which is a type of user interface item that allows
people to interact with programs in a direct manner. A maplet program running
under Maple uses Maple commands to create a Graphical User Interface for using,
for example, the viewer, popup menus, input and output dialog or check boxes.

Given recent developments in general relativity, the evolution of an easily-used

mathematical program for ca eral relativity is important for con-

venience [46]. In this th given are examples of finding

——
the exact solutions of uid sp -‘ maplet consists of one or more
windows which inter r | n\&m

. ons, checkboxes, text fields,

and other standard

‘o |Maplef
AUYINYTIWEINT
Figure 2.7: Thg figure shows thedesults whenawe insert inpuf yariables through
ma pleatmea@aaﬁsmrﬁ im umgs]tg\ﬂmegi al@aﬂaﬂd send back

the solutions to maplets to show us the output.

Ll

While Maple is a powerful problem-solving tool in advanced mathematics, the
cost of this power is moderately high. Although Maplesoft products are relatively
expensive, it gives us many more tools than we originally expected, especially

with the latest version having user-interface builder so that we can make ourselves
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customized interfaces.

How to construct maplets?

-

.
LS |

I
!
1

Briefly, the 1stibex consists of tools such as bodies (buttons, viewers, boxes),
v Y

commands, layouts, bar d otmrs which are used to build

user-friendly 1nterfaces .{or clicking, 1nserwg and viewing output. Next, the 2nd

s peff L BE IV A TINS5 o it desiod

form. Finally, We have to insert coshmands (Maple code fragments) for calculation
o bl BN L b bl 'l’} NN N p—
is ready to be used.

The particular maplet we developed is called “Program for Perfect Fluid Spheres
(Theorem 1-4)”, and is designed to check and find new exact solutions for perfect

fluid spheres by applying theorems 1 to 4 of [26, 30, 37].
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Figure 2.9: This is a map plication for f » new exact solutions for perfect

fluid spheres by applying e es [26, 30, 37].

User guide

- -

I ———— e e e

et 5Dy applying theorems 1 to

4, we need to understand the bas sof the b

To find the new e

tons, textfields, and viewers.

From figure 2.10, this textfield is used t@Lenter the value of “Beta”, By(r), with

st e B W Eh ) ELHLQ IAELN ) e o
:‘:ze“ﬁ’fiw;i)ﬁoaiﬁs% ﬁfﬁ ﬁuﬁi\?ﬁeﬁg}“ﬁ(ﬁto the default

Figure 2.10: Textbox for input B(r)
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Theorem 1 Hew Beta | Wign |

Figure 2.11: Toggle to calculate new B(r)

r} L (2.192)
Indeed, we do not need o K ' Singe, calculating Ao (r) is the job of this

“Beta” in figure 2.10 and then
click “view” button in fi : S S enerated as in figure 2.12 as

below.

Tl

|
-

AU MENINE N

R AR URNANTFR Y

Figure 2.13: Textbox for input parameter A

When we want to specify A, we can specify this by inserting A (or any other
parameter name) in the textfield “lambda” in figure 2.13 and then click “view”

button in figure 2.11. The new Beta is generated as in figure 2.14 as below.
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l—l—?l,r2

Figure 2.14: Output B(r)
Using theorem 2, we kno ,/ ). Bo(r )} is a perfect fluid sphere, then
{6olr) Zo(r), Bo(r)} is alsqi-path ' here Zo = Zo(r) (see [26, 30,

37]). Considering ﬁ Xtﬁeld “Zeta” for entering

(Co(r)). To generatesa . s above, the user does not

need to calculate Zy(i

Drefaulk

ﬂﬂﬂ’)‘ﬂﬂ'ﬂiﬂiﬂﬂ‘i
QW’] ASATEIENITNY IR Y

By applylng theorem 3 and 4 to the metric, since theorem 3 is the composition
of theorem 1, then theorem 2, we can click button “New Beta” before “New Zeta”
. Similarly, theorem 4 is composition of theorem 2 followed by theorem 1 — we

just click button “New Zeta” before “New Beta” .
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Other features

Several other features we built into the maplet are as follows.

1. Check Button

Figure 2 T o] 5 ion purposes

The “check” button

is a perfect ”iy

erify.that {(o(r), Bo(r)} really
‘:(_:‘ o(r)} in their respective

textfields and cl ! k the “che O1l, eou t is “yes” or “no” . “Yes”

P A

 GRAINTAUNIINGINY

Figure 2.18: Toggle to generate output metric
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The “Metric” button is used to view the spacetime metric

1
ds? = —(y(r)?dt? + mdﬁ + r2dQ?, (2.193)

when we insert (o(r) and By(r). The output is shown as below in figure

2.19.

AUBINENINGINS
CURENRERIE 8 Y

Figure 2.20: Toggles to calculate pressure and density

These “Pressure” and “Density” buttons are used to view their respective
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values as calculated by these formulae:

Gy = 8mp, (2.194)
G, = 8mp, (2.195)
where Gy and G, are compo of the Einstein tensor (in Schwarzschild

+ r2dQ?. (2.196)
Conclusion
The mathemati allede Maplet in this research, will help us to
NV |
find new parameters fectﬁf nidy phe ith the first, second, third, and
. " f « Jay L .
fourth transformations i . P& reOver, i ogram can be used to check that

if parameters are perfect 1as tools that check their metrics

whether they are. Fina o find the solutions of perfect

fluid spheres casier y---—--------—” = i"‘

=

APPENDIX C ‘a

AUANYNINYING

ALBERT EINSTEIN’S BIOGRAPHY

SN EUAAL A VAR A

southwest Germany. His father, Hermann Einstein, was in electrical equipment
business. Later the business failed so his family moved to Italy, but he stayed at
Munich, to pursue his studies at Luitpold Gymnasium.

When Albert was young, even though he had some speech difficulties, he was

the top student at school. He was a slow talker, pausing to consider what he would
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say. As he grew older, he experimented by making models, mechanical devices
and showed keen interest in mathematics.

In 1905, he received his PhD from the University of Zurich and had pub-
lished four scientific papers. One introduced his special relativity and another his

equation which related mass and energy.

In 1909, he became an ass ‘ cof theoretical physics at Zurich and

professor at the German : i 911. Then he returned to the

In 1914, he was a ‘ '. o Wilhelm Institute for Physics
and Professor in th iyersity/of B Dt ing tha rear, he became a German
citizen and publishe . elativi ater in 1916.

In 1921, Einstein i o ij -‘f—_‘ i ‘ sics for his discovery of the
law of the photoelectrie effgct anﬁftg. 1 in"t o eld of theoretical physics.

In 1920’s, he had lectured e : -

where he was involved . ew University in Jerusalem.

and South America and Palestine,

In 1933, Einsteinde : “J power in Germany. He

accepted a position amthe Institute of Advanced Stum in Princeton and took US

Citizenship dﬂ w EI /]
He retire om t e 1nst ute 1nn and continu fJ to Work towards a uni-
WA ﬂ"“ﬂ‘ﬂ"ﬁfﬂﬁiﬁﬁ“ﬂqﬂlﬁﬂhﬁﬁ“d s et

relativity. He also continued to be active in the peace movement and in support
of Zionist causes and in 1952 he was offered the presidency of Israel, which he
declined.

Albert Einstein died on April the 18th , 1955, in Princeton, New Jersey.

In his lifetime, he received honorary doctorate degrees in various fields from

many European and American universities. The leading scientific academies
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throughout the world considered it a privilege to award fellowships of their in-
stitutes to Einstein. He gained numerous awards, some of the most important
being the Nobel Prize, Copley Medal of the Royal Society of London and Franklin
Medal of the Franklin Institute.

Albert Einstein, a German-born theoretical physicist, was considered the most

AULINENINYINT
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