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CHAPTER I

INTRODUCTION

1.1 Special relativity

This chapter is about “special relativity”, a branch of theory of relativity. It

is necessary for us to learn this relativity before we study general relativity. The

reason is that special relativity can be described by simple equations so that we

can visualize real-life situations using equations of Galilean and Lorentz transfor-

mations. Later on we will generalize special relativity to general relativity. In this

chapter, we will discuss the content of special relativity such as transformations,

connections between special relativity, and general relativity.

1.1.1 Background

Special relativity was established in 1905 by Albert Einstein in his journal

about electrodynamics. About 300 years ago, Galileo stated that all motions with

constant velocity were relative, and that their absolute static status could not be

defined. For example, person A, who is on a boat thinks that he is at rest on

the boat, however person B, who is standing on the beach, perceives person A

as moving. Einstein’s theory consists of Galilean relativity and hypothesis that

all observers estimate the velocity of light to be about the same no matter what

motion they are in as long as they have constant velocity [1–5].

Newton believed that objects had dimension, and mass. These can be ob-

served in daily life. However, Einstein stated that it was not so since dimension,

and mass were related depending on their velocity. More precisely, he said that if
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they moved as fast as the velocity of light, then the new and original time, length

and mass would be different to observers. In this chapter, we will discuss concepts

of time dilation, length contraction, and mass increasing.

Indeed, since we can never move as fast as the velocity of light, we therefore

see that time, dimension and mass remain as they are [1–5]. Special relativity is

just the special case of general relativity used in the situation for any observer

that does not move with acceleration. That is, when they move with constant

velocity. On the other hand, general relativity is used for describing accelerated

motions, and objects in the gravitational field [1–5].

1.1.2 Frames of reference

In order to study the motion of objects, we have to specify their location at

each instant. However, to identify the object’s location, we have to compare it

with a reference point. We can define the reference point to be the origin point

in any coordinate system. Moreover, we have to identify time t of the object at a

given location [1–5].

Figure 1.1: Example of two reference frames S and S ′ moving with velocity ν [4].
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1.1.3 Inertial frame

The law of inertia states that

1. If an object is stationary, it will remain static unless there is an external

forces applied upon it.

2. If an object moves with constant velocity, it will remain in such a motion

unless an external force is applied upon it (see also [1]).

Assuming that there is a frame that satisfies these two conditions, we call it

inertial frame. There can be more than one inertial frame. Hence, any frame

moving with constant velocity is an inertial frame [1].

A frame that is not inertial and accelerated is called a non-inertial frame.

Inertial frames are important for the physical rules such as Newtonian movement,

conservation of momentum, etc [1, 2, 5].

1.1.4 Postulates of special relativity

1. In every inertial frame, the law of physics always remains the same.

2. The speed of light in vacuum, c = 3 × 108 m/s, is always the same in all

inertial frames which do not depend on the observers’ velocity or the velocity

of light sources (see also [1–3, 5]).

1.1.5 Concepts of special relativity

1. Time dilation: Time interval for a given event depends on the velocity of

observers in a reference frame. For example, consider the problem of twin

paradox. When the first twin went up into space with speed near the speed
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of light and came back to earth, we would find that the second twin older

than the first one.

2. Simultaneity of events: Two exact same events which happen in different

frames under the same period of time may appear to be different for a given

observer.

3. Length (Lorentz) contraction: Dimension (e.g. length) of the object

which is measured by one observer may appear to be different for another

observer. For example, in case of ladder paradox, a ladder moving at the

speed of light will appear to be shorter than the original one.

4. Combination of velocities: The velocities and speeds cannot always be

combined directly.

5. Inertia and momentum: when the object’s speed is close to the speed of

light, its mass will be greater.

6. Equivalence of mass and energy: Mass and energy can be transformed

into each other. For example, gravitational force of apple falling can be

divided into mass and kinetic energy (see also [1–3, 5]).

1.2 Newtonian relativity

Newton’s laws are applicable to objects moving in all inertial frames. This

inertial frame is the coordinates’ axis or the reference frame with zero acceleration.

Other reference frames with constant relative velocity are also inertial frames. For

example, all experiments conducted on constant-velocity vehicle yield the same

outcome as those conducted on zero-velocity or static vehicle [1–3, 5].
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1.2.1 Galilean transformations

Galilean transformations deal with the reference frames moving with constant-

velocity and the rest reference frames. This type of transformation applies only to

non-relativistic situations. Moreover, the length with the observer in the measur-

able reference frame with constant-velocity is equal to the length with the observer

in the measurable reference frame at rest (L′ = L).

Consider figure 1.2

Figure 1.2: A reference frame S or (t, x, y, z) of the observer and the frame S ′ or

(t′, x′, y′, z′) moving with its velocity ν [6].

When the reference frame (t, x, y, z) of the observer noting the frame (t′, x′, y′, z′)
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moving with its velocity v, we derive

x= x′ + vt′, (1.1)

y= y′, (1.2)

z= z′, (1.3)

t= t′. (1.4)

So the differences of dimension and time are

∆x′= ∆x− v∆t, (1.5)

∆y′= ∆y, (1.6)

∆z′= ∆z, (1.7)

∆t′= ∆t. (1.8)

Thus, velocities associated with all axes are given by

dx′

dt
=

dx

dt
− v, (1.9)

dy′

dt
=

dy

dt
, (1.10)

dz′

dt
=

dz

dt
, (1.11)

i.e.

ux′= ux − v, (1.12)

uy′= uy, (1.13)

uz′= uz, (1.14)

And their accelerations are

ax′= ax, (1.15)

ay′= ay, (1.16)

az′= az. (1.17)
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Similarly, from 2nd law of Newton, we obtain

Fx′= m
d2x′

dt2
= m

d2x

dt2
= Fx, (1.18)

Fy′= m
d2y′

dt2
= m

d2y

dt2
= Fy, (1.19)

Fz′= m
d2z′

dt2
= m

d2z

dt2
= Fz. (1.20)

Hence, the basic laws of physics such as laws of motion, conservation laws

of momentum and energy will be invariant for two systems in different frames.

That means the laws of physics or the form of equations are the same in both

systems although they are at rest or moving with constant velocity. Galilean

transformations is only applicable for systems moving with velocity far less than

the velocity of light (v ≪ c).

For all objects moving with velocity close to the velocity of light, it is necessary

to use Einstein’s relativity to describe their motions [1–3, 5].

1.2.2 Lorentz transformations

Lorentz transformations must be used instead of Galilean transformations

when the object moves near the speed of light.

Once we know the coordinates of the event in the reference frame, we can ob-

tain the coordinates in another reference frame by using Lorentz transformations

and postulates of special relativity as follows:

In Galilean transformations

x= x′ + vt′, (1.21)

y= y′, (1.22)

z= z′, (1.23)

t= t′. (1.24)



8

The first postulate of special relativity states that “for any inertial frames,

the laws or equations of physics are invariant.” Thus, we can derive the following

equations

x= x′ + vt′, (1.25)

x′= γ(x− vt), (1.26)

x= γ(x′ + vt′), (1.27)

y= y′, (1.28)

z= z′, (1.29)

If we put x′ from (1.27) in (1.26), then we derive

x = γ [γ (x− vt) + vt′] , (1.30)

t′= γt+

(

1− γ2

γv

)

x. (1.31)

The second postulate of special relativity implies that “the speed of light in

vacuum is equal in every inertial frame and does not depend on the observer’s

velocity or the light source’s velocity”. Hence, this postulate allows the frame

(t, x, y, z) and the frame (t′, x′, y′, z′) to have the same velocity of light. That is

x= ct, (1.32)

x′= ct′. (1.33)

Substituting x′ from (1.27) and t′ from (1.31), then we derive

γ (x− vt) = cγt+

(

1− γ2

γv

)

cx, (1.34)

x = ct

[

1 + v
c

1− ( 1
γ2 − 1) c

v

]

. (1.35)

Using (1.32) and (1.36), we derive

1 + v
c

1− ( 1
γ2 − 1) c

v

= 1. (1.36)
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Thus we derive the parameter γ called “Lorentz factor” which is

γ =
1

√

1− (v
2

c2
)
, (1.37)

And Lorentz transformations read

x=
x′ + vt′

√

1− (v2/c2)
, (1.38)

y= y′, (1.39)

z= z′, (1.40)

t=
t′ + (vx′2)
√

1− (v2/c2)
. (1.41)

(See also [6–8])

Time dilation

The verification of time dilation was done by using “atomic clock” made from

Cesium-133 heated in control stove which makes it run through the magnetic

atoms enabled to absorb the Cesium-133 energy. This experiment was performed

by Britain’s National Physical Laboratory in 1955. When magnetic atoms pass

through the microwave, they will release its energy with frequency at 9,192,631,770

Hz. In 1971, Haefelle and Keating used Helium atomic clock in the jet and let

the plane fly around the earth about 45 hours and then they compared it with

the atomic clock on earth. After they ignored some errors, they found that both

atomic clocks showed different time. The atomic clock in the jet ran slower than

the one on the earth which confirmed the prediction of the theory of relativity

[1–5].

Calculation for proper time

For theory of relativity, the proper time can be calculated for each frame by

substituting the time change. That is
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T ′= t
′

2 − t
′

1, (1.42)

T= t2 − t1. (1.43)

In order to calculate proper time T ′, we will put T and v into the equation

(1.44)

T ′ =
T

√

1− (v2/c2)
. (1.44)

So we derive T ′ from T [5–7].

Length contraction

Figure 1.3: Length contraction of an object from a low velocity to a very high

velocity.

Figure 1.3 illustrates that when an object moves with its velocity near the

speed of light, its length is shorter and its mass increases which makes it heavier

and heavier. As a result, it will never be able to move at the speed of light.

Length contraction is also a consequence of the theory of relativity. When the

object moves with relativistic speed near the speed of light, its length is shorter

and its mass increases which makes it heavier and thus it cannot move at the

speed of light.
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To calculate the proper length, we use length contraction formulae together

with the Lorentz transformations. That is we substitute

L= x2 − x1, (1.45)

L′= x
′

2 − x
′

1, (1.46)

into

L′ = L
√

1− (v2/c2), (1.47)

to obtain the length contraction of an object of interest [1, 2].

1.2.3 Minkowski space

Minkowski’s diagram

To understand Minkowski’s space we will use the system S of graph presented

by H. Minkowski in 1908. The coordinates consist of (ct, x), where ct is time

coordinate and x is 3-space coordinate. And we put ct on the vertical axis whereas

x on the horizontal axis. Worldline, which is the trajectory in the spacetime is

the series of events. We define the lightcone diagram to be s2 ≡ c2t2−x2 = 0 and

divide spacetime into three parts, past, now, future and elsewhere [3, 5].

Moving Coordinate Systems

Consider the body located at a point (x′, t′) moving with a velocity v to the

right-hand side relative to the frame (x, t), we derive x′ = 0 iff x = vt as shown

in figure 1.4.

Consider two frames (x, t) and (x′, t′), we can see the spacetime diagram as

shown in figure 1.5.
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Figure 1.4: The movement of the frame (x′, t′) with a velocity v in the x-direction

relative to the frame (x, t) [6].

Figure 1.5: Graph of cone-shape, lightcone, in first quadrant [5].

1.3 General relativity

In the previous chapter, we learnt about special relativity. In this chapter,

we will be dealing with general relativity which also constitute the concepts of

special relativity. This subject is about the theory of gravitation built upon

differential geometry established by Einstein. Equipped with knowledge about

general relativity, we will be able to understand the next chapter which is the

main part of this thesis.

General relativity is based on the principle of equivalence. That is, in the
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reference frame, freely falling object in gravitational field can be compared with

the inertial reference frame without gravitation or its acceleration is equal to the

result of gravitation [1–5].

1.4 Concepts and tools in general relativity

In this section, we present mathematical tools and notations used in general

relativity from coordinate transformation to curvature calculation to stress-energy

tensor, geodesic equations, covariant and contravariant derivatives, Christoffel’s

symbol, and Einstein’s tensor.

Space

There are many types of space such as

1. Euclidean space is the n-dimension space which contains Euclidean or flat

plane altogether to grid form with n-dimension called Euclidean geometry.

2. Minkowski spacetime is a set which is used in theory of relativity. This

space composes of 3 space dimensions and one time t. For example, in

Cartesian coordinates, the Minkowski spacetime is given by

ηµν =





















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





















= diag (−1, 1, 1, 1) (1.48)

3. Manifold is essentially a mathematical space. It is a set of points which

can locally be mapped into R
n, where n is the dimension of the manifold.

For example, real line R1 is one dimensional manifold. Euclidean space R3 is



14

3-dimensional manifold. Minkowski space R3+1 is four dimensional manifold

[10, 11].

Worldline

Worldline is the trajectory in spacetime which is a parametric curve depend-

ing on t. In special relativity, worldline is the path that traces out spacetime. The

worldline can be written as C = C (t) that tells us about the point or location in

the spacetime whether it is an event or a series of events [3, 4, 10].

Light cone

Figure 1.6: Lightcone and worldline [3].

Hence, the object’s worldline is the unique path that indicates the move-

ment of object in spacetime. From figure 1.6, we see an example of a 3D light

cone which tells us about the motion of an object in time. In general, spacetime

can be classified into three types as follows:

1. Light-like:consists of points or locations and that their velocity are equal
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to the light’s velocity and all of them are formed into cone-shape classified

into two parts, future and past.

2. Time-like:consists of points or locations and that their velocities are less

than the light’s velocity. All objects except light itself move in the time-like

region of spacetime.

3. Space-like:describes the region outside the cone. There is no physical ob-

ject that can travel outside the lightcone. There is an imaginary object

that can travel in the spacetime region known as Tachyon which is a type

of theoretical particle and moves faster than the speed of light. The word

“tachyon” was named by Gerald Feinberg in the 1960s [4, 10, 12].

In the next part, we discuss mathematical tools of general relativity.

Geodesic

In mathematics, geodesic is defined by the shortest path between two points

in space, in metric form. In affine connection, geodesic is defined by a curve whose

tangent vector is still parallel when it is transported along this curve [10].

The word “geodesic” comes from “geodesy” which means the science of mea-

suring the earth’s size and shape. In navigation, geodesic is the shortest route

between two points on the surface of the earth or the arch length of great circle.

For example, geodesic in figure 1.15 is the arch between two vertexes. Worldline

of free particles without external forces is an example of geodesic i.e. particles

move freely along geodesic.

In special relativity, geodesic on Lorentz manifold can be classified into three

categories by norm of tangent vector, ds2, using metric (−+++) as follows:

1. Time-like geodesic has a tangent vector whose norm is negative.
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2. Null-geodesic has a tangent vector whose norm is zero.

3. Space-like geodesic has a tangent vector whose norm is positive [10].

Tangent vector

Tangent vector is a vector which has its direction on curve or surface at a

point. For example, ∂
∂xα is a tangent vector on some manifold [13, 14].

1.4.1 Tensor

Tensor is the transformation of coordinates from a space to another and is

non-singular [4]. There are three types as follows:

1. Contravariant tensor has only an upper index such as velocity Uµ or accel-

eration aµ.

2. Covariant tensor has only lower index such as metric tensor gµν .

3. Mixed tensor has both upper and lower indexes such as Riemann curvature

tensor Rµ
ναβ [4].

1.4.2 Rank of tensor

Rank of tensor is a combination of both upper and lower indices of tensor

such as Aβ1...βs

βs+1...βN
has N thrank [4].

1.4.3 Contraction

Contraction is the operation of both upper and lower indexes which are the

same symbol confute such as gµg
µν = gν [4].
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1.4.4 Christoffel symbols

Christoffel symbols, established by Elwin Bruno Christoffel (1829–1900), are

numerical arrays such as matrix implying location and using the result of parallel

transportation in curved surface [4]. These Christoffel symbols tell us about the

coordinates of Levi-Civita’s continuity space which derives from a metric tensor.

Christoffel symbols may be used to calculate in differential geometry. For example,

Riemann curvature tensor can be written in terms of Christoffel symbols and first

partial differentiation. If (xi) , i = 1, 2, ..., n is the local specific coordinate in

manifold M , then tangent vectors ei = ∂
∂xi , i = 1, 2, . . . , n defined to be basis

of tangent space in M . Thus we derive Christoffel symbols Γk
ij, which satisfies

∇iej = Γk
ijek, where ∇i Levi-Civita continuity on M [13, 14]. Thus if we write

Christoffel symbols Γk
ij in terms of metric tensor gik, then we derive

0 = ∇ℓgik =
∂gik
∂xℓ

− gmkΓ
m
iℓ − gimΓ

m
kℓ =

∂gik
∂xℓ

− 2gmm[kΓ
m
i]l. (1.49)

These nabla ∇ and partial differential ∂ are written in lower position with ;

and ,. Thus the equation (1.49) can be arranged to the new form

0 = gik;ℓ = gik,ℓ − gmkΓ
m
iℓ − gimΓ

m
kℓ. (1.50)

By permutation of index and rearrangement, we derive this equation below for

finding Christoffel symbols in the form of metric tensors. That is

Γi
kℓ =

1

2
gim
(

∂gmk

∂xℓ
+

∂gmℓ

∂xk
− ∂gkℓ

∂xm

)

=
1

2
gim(gmk,ℓ + gmℓ,k − gkℓ,m) (1.51)

(See details in [13, 14]).
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1.4.5 Curvature

Definition

1. Curvature refers to any number of loosely related concepts in different areas

of geometry.

2. Curvature is the amount by which a geometric object deviates from being

flat, or straight in the case of a line, but this is defined in different ways

depending on the context.

3. The (signed) curvature of a curve parameterized by its arc length is the rate

of change of direction of the tangent vector.

Figure 1.7: The components of curve C = C (t) [15–17].

1.4.6 Calculating

To introduce the definition of curvature, in this section we consider that

α(s) is a unit-speed curve, where s is the arc length. The tangential angle ϕ

is measured counterclockwise from the x-axis to the unit tangent T = α(s), as

shown in figure 2.1.

The curvature κ of curve α is the rate of change of direction at that point of

the tangent line with respect to arc length, that is,
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Figure 1.8: Curvature and tangential angle

κ =
dϕ

ds
. (1.52)

The absolute curvature of the curve at the point is the absolute value |κ|.

Since α has unit speed, T · T = 1. Differentiating this equation yields

T
′ · T = 0. (1.53)

The change of T (s) is orthogonal to the tangential direction, so it must be

along the normal direction. The curvature is also defined to measure the turning

of T (s) along the direction of the unit normal N(s) where T (s)×N(s) = 1. That

is,

T
′

=
dT

ds
= κN. (1.54a)

We can easily derive one of the curvature definitions (1.51) and (1.54a) from

the other. For instance, if we start (1.51) with (1.54a), then
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κ= T ′ ·N, (1.55)

=
dT

ds
·N, (1.56)

= lim
△s→0

T (s+ △ s)− T (s)

△ s
·N, (1.57)

= lim
△s→0

△ ϕ · ‖T‖
△ s

, (1.58)

= lim
△s→0

△ ϕ

△ s
, (1.59)

=
dϕ

ds
. (1.60)

Types of curvature κ by its sign

1. Positive with κ > 0.

2. Negative with κ < 0.

3. Spatial flat with κ = 0.

The curvature affects the curve that bends or flexes the curve as shown

in figure 1.9 (see also [15–17]).

Figure 1.9: Types of curvature affect a curve [15–17].



21

1.4.7 Riemann curvature tensor

Before we learn about the Riemann curvature tensor, we shall consider the

parallel transportation of vector around closed curve in figure 1.10.

Figure 1.10: Paths from point p to point q [13].

We need to know the first route, from point p = (0, 0) → (0, t) → (s, t) = q as

follows:

Firstly, consider (0, 0) → (0, t) transferring the vector V , then we derive

V ρ |p → V ρ |p − Γρ
βσ |p V σ |p

dxβ

dt

∣

∣

∣

∣

p

t+O
(

t2
)

≡ V ρ
∣

∣

(0,t) . (1.61)

Next, consider (0, t) → (s, t) transferring the vector V ρ
∣

∣

(0,t) , then we derive

V ρ
∣

∣

(0,t) → V ρ
∣

∣

(0,t) − Γρ
ασ

∣

∣

(0,t) V
σ
∣

∣

(0,t)
dxα

ds

∣

∣

∣

∣

(0,t)

.s+O
(

s2
)

≡ V ρ
∣

∣

(s,t) . (1.62)

Similarly for the second route, consider point p = (0, 0) → (s, 0) → (s, t) = q,

which is simply the permutation of α ↔ β. Let vector from parallel transportation

in the second route be V ′ρ
∣

∣

(s,t) against V ρ
∣

∣

(s,t) . Then we derive
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V ′ρ
∣

∣

(s,t) − V ρ
∣

∣

(s,t) = −
{

∂αΓ
ρ
βγ − ∂βΓ

ρ
αγ + Γρ

ασΓ
σ
βγ − Γρ

βσΓ
σ
αγ

}

V γ |p
dxα

dt

∣

∣

∣

∣

p

dxβ

ds

∣

∣

∣

∣

p

st+ . . . . (1.63)

So we will define Riemann curvature tensor to be

Rρ
γαβ ≡ ∂αΓ

ρ
βγ − ∂βΓ

ρ
αγ + Γρ

ασΓ
σ
βγ − Γρ

βσΓ
σ
αγ (1.64)

(See details in [13, 14]).

Properties of Riemann curvature tensor

1. Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ (skew or anti-symmetry and two-

pair symmetry).

2. Rαβγδ + Rβδαγ + Rαδβγ = 0 (cyclic permutation sum or 1st Bianchi

identity).

Hence, Riemann curvature tensor is calculated from Christoffel symbols ([13,

14]). Next, we will use this tensor to find another tensor, called Ricci curvature

tensor.

1.4.8 Ricci curvature tensor

In differential geometry, Ricci curvature tensor, Ricci scalar or scalar cur-

vature, named by Gregorio Ricci-Curbastro, means the amount which implies

deviation of the particle’s volume from Euclidean space to Riemann manifold.

This method is a measurement of curvature or degree of geometry by Riemann

curvature tensor or Riemann metric, which is used in Euclidean space and Rie-

mann manifold [4, 13]. However, Ricci tensor is often used in pseudo-Riemannian

manifold which is Lorentz manifold.
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Ricci tensor

Ricci tensor is also a curvature in Riemann manifold defined by

Rσν = Rρ
σρν = Γρ

νσ,ρ − Γρ
ρσ,ν + Γρ

ρλΓ
λ
νσ − Γρ

νλΓ
λ
ρσ = 2Γρ

σ[ν,ρ] + 2Γρ
λ[ρΓ

λ
ν]σ. (1.65)

It is also a Riemann curvature tensor with simple contractions over two indices

[4, 13, 14].

Ricci scalar

In Riemann manifold, Ricci scalar or scalar curvature is a simplest measure-

ment of curvature. Define

R ≡ gαβRαβ = Rα
α. (1.66)

Ricci scalar is important in calculating Einstein’s tensor [4, 10, 13, 14].

4-vector

Define 4-vector in spacetime or Minkowski space with four coordinates as

shown below.

x = xµ =
(

x0, xi
)

=
(

x0, x1, x2, x3
)

= (ct, x, y, z) = (t, x, y, z) , (1.67)

where µ is the Greek letter meaning µ = 0, 1, 2, 3 and
⇀
x = xi = (x, y, z)

is the coordinates in Cartesian. Generally, we will use the natural unit, that is

c = 1. Moreover, we can write this 4-vector in the linear algebraic form which is

Cartesian coordinates as shown below.
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x = xµ =





















x0

x1

x2

x3





















=





















t

x

y

z





















. (1.68)

Thus the reason that x = xµ = (x0, x1, x2, x3) in the coordinates of spacetime

is that it consists of the space xi =
⇀
x = (x1, x2, x3) and time x0 = ct. That is

(

x0,
⇀
x
)

. This vector
(

x0,
⇀
x
)

points to a location called “event” which identifies

a particular space and time [10].

We define 4-vector xµ, which has an upper index µ to be a “contravariant

vector” and 4-vector xµ = (x0, x1, x2, x3), which has a lower index µ to be a

“covariant vector”. Consider the length between two events, xµ
1 = (x0

1, x
1
1, x

2
1, x

3
1)

and xµ
2 = (x0

2, x
1
2, x

2
2, x

3
2). By Pythgorean theorem, we derive this length

ds2= (ds)2 , (1.69)

=
(

x0
1 − x0

2

)2
+
(

x1
1 − x1

2

)2
+
(

x2
1 − x2

2

)2
+
(

x3
1 − x3

2

)2
, (1.70)

=
(

dx0
)2

+
(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2

, (1.71)

= dx · dx = dxµdxµ, (1.72)

=
3
∑

µ,ν=0

ηµνdx
µdxν , (1.73)

≡ ηµνdx
µdxν , (1.74)

where ds is the length between two events, xµ and xµ ≡ xν (dxµ is a differential

value of xµ). Thus this value is the event in differential Manifold. Einstein ignored

the symbol
∑3

µ,ν=0to write in equations. This is called Einstein’s summation

convention for convenience to calculate. Moreover, we have defined ηµν to be a



25

metric tensor in the spacetime in this equation as shown below.

ds2 = −dt2 + dx2 + dy2 + dz2, (1.75)

=





















dt

dx

dy

dz





















T 



















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









































dt

dx

dy

dz





















, (1.76)

= (dx)T ηµνdx = ηµνdx
µdxν , (1.77)

Then ηµν =





















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





















can also be rewritten as ηµν =







η00 0

0 δµν






or

ηµν ≡ sign (−,+,+,+) which is the signature and satisfies xµ = ηµνx
ν [10]. The

scalar product of two vectors, in general, can be written as x ·y = xµyµ = gµνx
µyν

. Before we use this metric tensor gµν = ηµν , we have to understand the meaning

of ds2.

1.4.9 Differential geometry

Differential geometry is concerned with the theory of differentiable, Rieman-

nian manifolds and calculations for curves and surfaces [11, 18].

In curvature manifold, we define ds2 to be













ds2























> 0 ⇒ spacelike interval

= 0 ⇒ lightlike (null) interval

< 0 ⇒ timelike interval












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Figure 1.11: Light cone and worldline [3].

1.4.10 Stress energy tensor or energy momentum tensor

In order to understand the meaning of momentum and energy we need to

know the meaning of stress energy tensor.

A momentum of an object is the scalar product between 4-velocity and the

object’s mass. We can define m to be any object’s mass and Uµ = (u0, u1, u2, u3)

to be the 4-velocity. Define 4-momentum to be

pµ = mUµ, (1.78)

=
(

mu0,mu1,mu2,mu3
)

, (1.79)

=
(

p0, p1, p2, p3
)

, (1.80)

in spacetime [13].

So stress energy tensor T µν is the µth-component of the momentum pµ which

moves on the surface in the direction.

Before we define a perfect fluid, we need to know the definition of “perfect” .

There are three fundamental properties to consider, namely isotropic property, no

viscosity and no heat conduction. Isotropy means all directions are independent

of each other and they are equal. Hence, if there exists an independent component
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Figure 1.12: Stress energy tensor [19, 21].

P ij, then the value of P ij is equal for i, j = 1, 2, 3 [19–21].

1.4.11 Viscosity

Viscosity is the force that is parallel to the interface between particles. So no

viscosity means no such force i.e. the force and the component of the object are

perpendicular. Mathematically, T ij = 0 for all i, j = 1, 2, 3 and i 6= j. But there

is still the force that are parallel to the component of the object that are nonzero.

That is T ij = P ij when i = j = 1, 2, 3 [20, 21].

1.4.12 Heat conduction

Heat conduction is the energy that transfers from a place or an object of

higher temperature to a lower temperature [21, 22]. Because of the energy, that

is E = cp, so heat conduction means the flux of the component ν of the energy

into the direction µ. So no heat conduction means T 0j = 0 for all j = 1, 2, 3 and

T i0 = 0 for all i = 1, 2, 3 which is the symmetry of tensor (T µν = T νµ) [20]. So

stress energy tensor is
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T µν =





















ρ 0 0 0

0 P 11 0 0

0 0 P 22 0

0 0 0 P 33





















. (1.81)

Since spacetime has the property of isotropy, each coordinates are independent.

So pressures in all direction are P 11 = P 22 = P 33 ≡ P . Thus, stress energy tensor

is

T µν =





















ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P





















. (1.82)

1.4.13 Curvature and relativity

Einstein attempted to use special relativity to explain gravitation which gen-

eralized Minkowski flat spacetime to curved spacetime through the use of curva-

ture tensor analysis. We know that the earth is flat by our visual sense since we

see only the locality of the earth. Indeed, the earth is spherical.

Since the earth’s surface is a manifold, what we observe is therefore local which

means that we see it as flat.

1.4.14 Geodesics

Classification by norm

In general relativity, geodesic is a straight line (shortest path) on a spacetime

manifold. For example, worldline of free particle without external forces is a

geodesic. Such a particle can move freely along geodesic.
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In special relativity on Lorentz manifold, we can classify geodesics by norm as

follows:

1. Time-like geodesic has a negative norm of tangent vector.

2. Null-geodesic has a zero norm of tangent vector.

3. Space-like geodesic has a positive norm of tangent vector.

(See details in [10, 13])

Classification by shape

In general geometry it is useful to distinguish the three definitions above as

three different types of lines. Events of two geodesics in the hyperbolic plane are

1. Equidistant lines

2. Parallel geodesics

3. Geodesics sharing a common perpendicular

Two lines in a plane that do not intersect or meet are called parallel lines.

Two geodesics can be either

1. intersecting: they intersect in a common point in the plane.

2. parallel: they do not intersect in the plane, but do in the limit to infinity.

3. ultra parallel: they do not even intersect in the limit to infinity.



30

Figure 1.13: Types of line on a geometry [8].

Three geodesics in the hyperbolic plane

The three geodesics are intersecting, parallel, and ultra parallel lines through

a with respect to l in the hyperbolic plane. The parallel lines appear to intersect

l just off the image. This is an artifact of the visualization. It is not possible to

isometrically embed the hyperbolic plane in three dimensions. In a real hyperbolic

space the line will get closer to each other and “touch” at infinity.

On the spherical plane there is no such thing as a parallel line. Line a is a

great circle, the equivalence of a straight line in the spherical plane. Line c is

equidistant to line a but is not a great circle. It is a parallel of latitude. Line b

is another geodesic which intersects a in two antipodal points. They share two

common perpendiculars.
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Figure 1.14: Perpendicular line from two great circles a and b [8].

1.5 Geodesic equations

1.5.1 Extremization of curve

From definition of geodesics, using ds2 = gµνdx
µdxν , the total length can be

obtained as follows:

s =

∫

ds, (1.83)

=

∫

ds

dσ
dσ, (1.84)

=

∫

√

ds2

dσ2
dσ, (1.85)

≡
∫

Ldσ, (1.86)

where

L =

√

gµν
dxµ

dσ

dxν

dσ
≡ L (x, ẋ) , (1.87)

is a Lagrangian and

ẋ =
dx

dσ
, (1.88)

as shown in [21].

Now, by using Hamilton’s principle, we can extremize the length to be δs =

δ
∫

L (x, ẋ) dσ = 0 [10]. Then we will use this in the next section.
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1.5.2 Extremization of curve length

Figure 1.15: Geodesics between two points.

0= δs, (1.89)

= δ

∫ σf

σi

L(x, ẋ)dσ, (1.90)

=

∫ σf

σi

(

∂L

∂x
δx+

∂L

∂ẋ
δẋ

)

dσ, (1.91)

=

∫ σf

σi

∂L

∂x
δxdσ +

∫ σf

σi

∂L

∂ẋ
δẋdσ, (1.92)

=

∫ σf

σi

∂L

∂x
δxdσ +

∫ σf

σi

∂L

∂ẋ

d

dσ
δxdσ, (1.93)

=

∫ σf

σi

∂L

∂x
δxdσ+

[

∂L

∂ẋ
δx

]σf

σi

−
∫ σf

σi

d

dσ

(

∂L

∂ẋ

)

δxdσ. (1.94)

So we derive

0 =

∫ σf

σi

[

∂L

∂x
− d

dσ

(

∂L

∂ẋ

)]

(δx) dσ. (1.95)

Lagrange’s equation

∂L

∂x
− d

dσ

∂L

∂ẋ
= 0. (1.96)

Using
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L =
1

2
gγδ ẋ

γ ẋδ, (1.97)

then

1

2
gγδ,α ẋ

γ ẋδ − d

dλ
[gγδ ẋ

γ] = 0, (1.98)

where

gγδ,α ≡ ∂gγδ
∂xα

(1.99)

but we have

d

dσ
gγα =

∂gγα
∂xδ

ẋδ, (1.100)

we obtain

1

2
gγδ,α ẋ

γ ẋδ −gγα,δ ẋ
δ ẋγ −gγα ẍ

γ=

(

1

2
gγδ,α − gγα,δ

)

ẋγ ẋδ −gγα ẍ
γ , (1.101)

= 0.

Multiplying by gνα, we get

gνα
(

1

2
gγδ,α − gγα,δ

)

ẋγ ẋδ − ẍγ = 0. (1.102)

Rearranging it

ẍγ = −gνα
(

gγα,δ −
1

2
gγδ,α

)

ẋγ ẋδ . (1.103)

This resembles Newton’s laws. In terms of the Christoffel symbol, it reads

ẍγ = −Γν
γδ ẋ

γ ẋδ (1.104)
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which is a “Geodesic equation” [10, 13, 21].

1.5.3 Einstein’s field equations and Einstein tensor

Einstein’s equations or Einstein’s field equations are equations that govern the

relation between the curvature of spacetime and mass-energy. Einstein equations

are in the form

Gµν = 8πTµν , (1.105)

where Gµν is Einstein’s tensor which tells us about the gravitation through the

curvature, while stress energy tensor Tµν is the amount of the energy or mass that

causes the gravitational force.

By considering Einstein’s concept, we can state the following: The Einstein’s

equations describe how particles are affected by gravitational fields around them

when they move. The use of the geodesic equation is similar to the use of the sec-

ond law of Newtonian gravitation on the left-hand side. There is also a similarity

with the Poisson equation, ∇2Φ(~x) = 4πGρ(~x), it resembles the right-hand part

of this equation.

Next, we will discuss a mathematical structure of Einstein’s equations. Equa-

tions in general relativity are normally given in terms of metric tensors. The

rationales of Einstein equations are interesting due to the arguments based on

physical grounds.

In Newton’s gravitation, static mass creates a gravitational force. But in

special relativity, we know that static mass and energy are equivalent or similar.

So we aim that everything in general relativity, both energy and momentum,

create the curvature of spacetime. Similarly, the mass-density ρ is the result of

the gravitational potential energy Φ. Thus we can use the right side of Poisson
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equation that should be κT αβ , where κ is a constant. The left side of the Poisson

equation is directly proportional to the potential energy. If we apply gradient ∇

to both sides, then we derive the derivative of metric. Again, if we apply gradient

∇ to both sides, then we derive the second order derivative of metric. We know

that Riemann tensor and the contraction of Ricci tensor and scalar consist of the

second-order metrics. Thus, this will make them become the left-hand side of the

Einstein’s equation. So the equation can be presented as

Rαβ = κTαβ. (1.106)

But it is not completely right because of the followings. Due to the law of energy

conservation, that is T αβ
;α = 0 which depends on Ricci tensor but Rαβ

;α 6= 0. So

Einstein rearranged this equation by transferring it to the same side and defined

it to be a new tensor which satisfies the condition, called Einstein’s tensor. Hence,

the equation becomes

Gαβ ≡ Rαβ −
1

2
gαβR = κTαβ. (1.107)

If we compare the Einstein equation in a Newtonian system with a Poisson equa-

tion, then the constant κ is 8πG/c4. So the Einstein’s equation becomes

Gαβ = Rαβ −
1

2
gαβR = 8πGTαβ/c

4 = 8πTαβ, (1.108)

where c = 1, and G = 1 is a universal gravitational constant [21]. Einstein tensor

or trace-reversed Ricci tensor (defined by Gαβ), named by Albert Einstein, is a

tensor that identifies the curvature of a Riemannian manifold. This tensor derived

from Einstein’s equation and is used to find the curvature of space-time [21].
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1.5.4 Some analytical calculations in general relativity

Metric tensors and Christoffel’s symbols

As an example, let θ be an opposite angle to latitude angle and ϕ be azimuthal

coordinate. Then the component of covariant metric tensor is

gµν =







gθθ gθϕ

gϕθ gϕϕ






=







1 0

0 sin2 θ






. (1.109)

Christoffel’s symbol and geodesic equation are

Γα
µν ≡ 1

2
gαβ (gβv,µ + gβv,µ − gµv,β) , (1.110)

and

d

dt

(

dxα

dt

)

+ Γα
βµ

dxβ

dt

dxµ

dt
= 0. (1.111)

From gµνgµν = I or δνµ where gµν is contravariant metric tensor, I is an identity

matrix and δνµ is a kronecker delta function. So gµν is an inverse of gµν . By

calculation, we derive gµν =







1 0

0 1
/

sin2 θ






, which are gϕϕ, gϕθ, gθϕ, gθθ, gϕϕ,

gϕθ, gθϕ, gθθ to calculate Christoffel’s symbols. For example,

gµνgµν= I
(

δνµ
)

, (1.112)






gθθ gθϕ

gϕθ gϕϕ













gθθ gθϕ

gϕθ gϕϕ






=







1 0

0 1
/

sin2 θ













1 0

0 sin2 θ






, (1.113)

= I
(

δνµ
)

. (1.114)

To calculate Christoffel’s symbols, we can find it from its definition
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Γα
µν ≡ 1

2
gαβ (gβv,µ + gβv,µ − gµv,β) . (1.115)

There are 23 Christoffel’s symbols in this coordinate because this coordinate

has two index, θ and ϕ. So Christoffel’s symbols are

Γθ
θθ=

1

2
gθθ (gθθ,θ + gθθ,θ − gθθ,θ) = 0, (1.116)

Γθ
θϕ=

1

2
gθθ (gθθ,ϕ + gθϕ,θ − gθϕ,θ) = 0, (1.117)

Γθ
ϕθ= Γθ

θϕ, (1.118)

Γθ
ϕϕ=

1

2

(

0 + 0− ∂ sin2 θ

∂θ

)

= − sin θ cos θ, (1.119)

Γϕ
θϕ= Γϕ

ϕθ =
cos θ

sin θ
, (1.120)

Γϕ
ϕϕ=

cosφ

sinφ
. (1.121)

To find the geodesic equation, from definition

d

dt

(

dxα

dt

)

+ Γα
βµ

dxβ

dt

dxµ

dt
= 0. (1.122)

If we let the coordinate be xα = θ and substitute in the above equation, then

we obtain

d

dt

(

dθ

dt

)

+ Γθ
θθθ̇θ̇ + Γθ

θϕθ̇ϕ̇+ Γθ
ϕθϕ̇θ̇ + Γθ

ϕϕϕ̇ϕ̇ = 0. (1.123)

That is

θ̈ − sin θ cos θϕ̇2 = 0. (1.124)

Similarly, if we let the coordinate xα = ϕ and substitute in the above equation,

then we obtain

ϕ̈+ 2
cos θ

sin θ
θ̇ϕ̇ = 0. (1.125)
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To calculate Riemann curvature tensor Rα
βµν , there are 2

4 components because

this coordinate has two indices. Furthermore, we have a definition of Riemann

curvature tensor in terms of Christoffel’s symbols

Rα
βµν ≡ Γα

βν,µ − Γα
βµ,ν + Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ, (1.126)

and the two properties of antisymmetry

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ, (1.127)

and cyclicity

Rαβγδ +Rβδαγ +Rαδβγ = 0, (1.128)

which implies that

Rθθϕϕ = −Rθθϕϕ = Rϕϕθθ. (1.129)

A contraction with a metric tensor gµν , we arrived at

Rθϕθϕ = gθαR
α
ϕθϕ = gθθR

θ
ϕθϕ. (1.130)

Finally, substituting all Christoffel’s symbols in the equation (1.126)

Rθϕθϕ = Γθ
ϕϕ,θ − Γθ

ϕθ,ϕ + Γθ
αθΓ

σ
ϕϕ − Γθ

σϕΓ
σ
ϕθ, (1.131)

then we obtain

Rθϕθϕ =
(

− cos2 θ + sin2 θ
)

+ 0 + 0 +
(

cos2 θ
)

= sin2 θ (1.132)

(See details in [23])
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Transformations Galilean Lorentzian

constant γ 1 γ = 1√
1−(ν/c)2

velocity ν ≪ c ν < c

Table 1.1: Comparison between Galilean and Lorentzian transformations

1.6 Conclusion

Einstein’s special relativity tells us that the laws of physics remain invariant

in all inertial frames which are reference frames that move at constant velocities.

Therefore, studying a system in one inertial frame is equivalent to studying it in

another one despite the big difference in velocities of the two frames.

Lorentzian and Galilean transformations convert the inertial (rest) reference

frames into one another, see table 1.1.

Spacetime is not always flat, it can be curved because of the existence of a

gravitational field due to the presence of mass or energy. One consequence is the

bending of light rays in the vicinity of massive objects such as the sun. This effect

means that to an observer, the star light that appears in the line of sight does not

imply that it is located precisely in the line of sight. We will discuss more about

this in the next chapter.

General relativity is the geometric theory of gravitation first published by Al-

bert Einstein in 1915. This is thus called Einstein’s theory of gravitation. It

generalizes special relativity and Newton’s law of universal gravitation into a uni-

fied theory of gravitation based on a spacetime concept. Special relativity, which

does not describe gravity, corresponds to a flat spacetime called Minkowski space.

Spacetime is a concept that already occurs in special relativity, a theory which does

not incorporate gravity. Especially, the curvature of Minkowski space is related to
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the four-momentum of matter and radiation. In this chapter, we have described

mathematical structures of general relativity. The basic equations of general rel-

ativity are the Einstein field equations or Einstein equations, a system of partial

differential equations. These constitute a system of nonlinear partial differential

equations which indicate the interaction between the geometry of spacetime and

the ambient mass-energy. The main idea of this theory of general relativity is the

principle of equivalence. The equivalence principle is involved in the calculation

of gravity by considering reference frames with accelerations.

General relativity is a concept of relativity in general cases so that it can be

considered in any reference frame with metric tensor. In special relativity, we

only consider inertial reference frames; meaning no acceleration or deceleration

and a specific metric tensor namely the Minkowski metric. Both special relativity

and general relativity apply to relativistic situations, namely when objects travel

at very high speeds. For the other two theories, that is, Newtonian and non-

Newtonian gravitation, they are applicable when velocities are much less than the

velocity of light based on Galilean relativity. Thus, to learn general relativity, one

should start from special relativity.

Figure 1.16: Algorithm for computing geometrical quantities in general relativity.

This figure 1.16 illustrates how to calculate geometrical quantities such as

Christoffel’s symbols, Riemann curvature tensors, Ricci tensors, Ricci scalars, and
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Einstein’s tensors in general relativity.



CHAPTER II

TRANSFORMATION THEOREMS

2.1 Introduction

Figure 2.1: The main form of black hole consists of the large amount of gravita-

tional field [24].

We already know that a black hole is a region of space from which nothing, not

even light, can escape. But we do not know a few things about black holes. For

instance, whether black holes really exist, or if they exist, what could their shape

be. So we just assume their shape by using coordinates to discover their properties

such as if using perfect fluid spheres (Schwarzchild’s coordinates, Gaussian Polar

coordinates, etc.) to be the model of black holes, then we derive a few differential

equation to generate transformation between perfect fluid spheres in this thesis.

Before using perfect fluid spheres, we need to know their definition and examples,

then we can differentiate black holes and perfect fluid spheres.
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2.1.1 Definition of black holes

A black hole is a region of spacetime with an extremely strong force of gravi-

tation from which nothing, including light, can escape. Hence, we cannot see the

center of a black hole. There are areas around the center of a black hole called

“event horizon”. At the Schwarzchild’s radius, when an object comes into the

event horizon, it must accelerate its velocity to more than the velocity of light to

escape from the event horizon. However, it is possible that an object can generate

a velocity more than the velocity of light (there has been suggestions by Einstein

and by other scientists in 1967 that it is possible that, indeed, Einstein’s relativity

does not prohibit that any particle or signal cannot move with their velocity faster

than the velocity of light [25, 27, 28]).

2.1.2 Classification of black holes by size

We can classify black holes in many different ways. In general, different types

of black holes vary significantly in sizes, which can be classified into 4 types as

follows:

Supermassive black holes

Supermassive black holes consist of one hundred billion folds of solar masses

and it is believed that they really exist in the center of most galaxies including

Milky Ways. It is believed that they are important in the occurrence of nucleus

of galaxies and may occur from the combination of many small back holes or

accumulation of stars and gases in space [25].
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Intermediate-mass black holes

Intermediate-mass black holes consist of several thousand folds of solar masses.

It is believed that they are the energetic sources of the high-density X-rays but

there is no evidence where these black holes come from. It is supposed that they

occur from collision of small-size black holes in the center of stars in groups of

spherical stars or galaxies. This event results in the creation of an extremely strong

gravitational field. These two classifications are merely ordinary occurences.

Other information such that smallest-size mass or largest-size mass black holes

can establish from collapsing of supermassive stars is not well known but it is

believed that this type of black holes may be smaller than two hundred folds of

solar masses [25].

Stellar-mass black holes

Stellar-mass black holes consist of a few folds of solar masses (from Tolman–

Oppenheimer–Volkoff limit for the maximal mass of neutron stars) to twenty

folds. These black holes occur from collapsing of the single stars or combination

of the dual neutron stars which cannot be separated due to gravitational radiation.

Initially, these stars may consist of one hundred folds of solar masses or more but

they lose their outer mass during the initial evolution. For instance, the losing of

mass of a star during its stage of existence as red huge stars or the explosion of a

supernova can change a star into a neutron star or a black hole. In the last step

of the model in the theory of stars’ evolution, we still do not know the maximal

size of stars that could change into a black hole. If the center of a star is clear,

then it will become a white dwarf [25].



45

Micro black holes

Micro black holes have a smaller size than stellar-mass black holes. Since

they have this size, they are highly dependant on quantum mechanics. No known

mechanics can explain the general occurrence of these black holes from stars’

evolution. But the assumption of extensive galaxies shows that black holes have

been occurring since first period of the universe. By considering some theorem

about gravitation in quantum physics, these black holes may occur from the high-

energetic reaction which comes from the reaction between cosmic rays and at-

mosphere or a particle’s accelerator. The theory of Hawking’s rays predicts that

these types of black holes will evaporate into a bright light during the radiation

of gamma rays [25].

2.1.3 Properties and components of black holes

Event horizon

Event horizon is the surface of spacetime which identifies coordinates such

that anything cannot escape when they enter into this region. Thus, anything

in this surface cannot be seen by any outer observer. Besides, event horizon is

unified together with the general space, but without any distinctive observable

freature. Event horizon is not matter (in physics terms), or a solid obstacle or

slow moving radioactivity [25].

Outside of Event horizon, the gravitational field is established by the symmet-

rical spheres that have equal masses. This tells us that the idea of black holes

absorbing everything is incorrect because there are still chains of materials around

black holes, outside the photon sphere, not affecting the gravitation radioactivity.

Then it makes the losing of energy from running around resembling the effect
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from electromagnet radioactivity [25].

Singularity

In theory of general relativity, within the center of black holes, there is a

singularity of spacetime. The black holes will be pressured until their volume

becomes zero. Thus, the black holes’ density becomes infinity when their volume

becomes zero. This density, which is at the center of these black holes, is called

“singularity” [25].

Photon sphere

Photon sphere is the boundary of zero thickness when photons move along

the tangent line of circle, which makes orbit circular. In nonspinning black holes,

their photon spheres have their radius around 1.5 times of Schwarzchild’s radius.

Their orbits are not constant. Thus, anything that comes into photon sphere will

grow across the time although it is fixed in orbit to escape from black holes or

Event horizon [25].

Ergosphere

Spinning black holes will be surrounded by spacetime that can not be sta-

tionery. This is called Ergosphere which results from moving of frames [25].

Schwarzschild radius

Schwarzschild radius is the boundary region of nonspinning black holes. Its

length is about 3 kilometres calculated fromRs = 2GM/c2, whereRs is Schwarzschild

radius, G is the universal gravitational constant and c is the speed of light [25].
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Figure 2.2: This figure shows the black hole [28].

Escape velocity

Escape velocity is the minimal speed that makes any object escape from black

holes calculated by vesc =
√

2GM/Rs = c, where vesc is escape velocity [25].

2.2 Black hole solutions

In this thesis, to learn about black holes, we first need to learn about Ein-

stein’s field equation. This equation implies that singularities of black holes really

exist. Thus, before we study in Einstein’s field equation, we have to learn about

relativity by starting from special relativity to general relativity and Einstein’s

field equation.

Consider the spherical massM with its Einstein equationGµν = Rµν− 1
2
gµνR =

0. In this spherical symmetric coordinate, when we get the solutions, they are

called “Schwarzschild solution” found by German physicist, Karl Schwarzschild

in 1916, which greatly surprised Eienstein because he did not think that anyone

could solve the Einstein equation in such a short period of time. From Gµν = 0
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and contraction of Ricci tensor and metric tensor, that is 0 = gµνGµν = gµνRµν −
1
2
gµνgµνR = R− 2R. So Rµν = 0.

The Schwarzschild’s solution in spherical coordinate is given by

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2dΩ2, (2.1)

where

dΩ2 = dθ2 + sin2 θdϕ2, (2.2)

dΩ2 is the metric on 2-sphere (S2).

Before we study perfect fluid sphere and compare it with black hole, we need

to know about the definition of perfect fluid sphere. The next section will explain

about fluid, sphere and perfect fluid in physics, respectively [26].

Figure 2.3: Two-sphere coordinate

2.3 Fluid Mechanics

Fluid mechanics is the branch of mechanics of liquid or gas which is static

or dynamic. The study of fluid mechanics and fluid dynamics is necessary for the

fundamental understanding of fluid mechanics. However, we need to know the

basic definition and the properties.
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2.4 Spherical symmetry

Spherically symmetry means “having the same symmetry as a sphere”. That

is a metric of S2 is dΩ2 = dθ2 + sin2 θdφ2. Indeed, “sphere” or “2-sphere” means

S2. In the metric on a differentiable manifold, we can consider those metrics

that have such symmetries. We can also use the characteristics of symmetries

of the metric. By spherical symmetry, we can simplify the equations of motion

considerably [26].

2.5 Perfect fluid spheres

Figure 2.4: A few model of black hole [24].

Perfect fluid spheres are well known in this research field because of their first

approximations to construct a realistic model for a relativistic star in general rel-

ativity. Though they illustrate a real importance in astrophysics, they are full

of the general solutions of the perfect fluid in general relativity and have been

gradually developed for other solutions. The first Static Spherically Symmet-

ric Perfect Fluid solution, abbreviated to be SSSPF, with constant density was

found by Karl Schwarzschild in 1918. He discovered the two exact solutions in
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Einstein’s equation, the “exterior solution” and the “interior solution”. Especially,

Schwarzschild solutions are easily available in view of Einstein’s equations, which

are very complex. Schwarzschild solution means that anyone can explain most

general relativistic effects in the planetary system. The reason is that this state-

ment can be described by the gravitational field outside spherically symmetric

body like the planets and the sun, which are quite spherical [26].

For almost a hundred years, there had been a confusion about the specific

perfect fluid spheres which had been discovered with most of these examples that

seemed independent from each other [26].

Many algorithms of solving differential equations together with the field equa-

tions have been explored, often by choosing the special coordinate systems, or

making simple ansatzë for one or other of the metric components. The evolu-

tion over the last several years has introduced many algorithmic techniques that

allow us to generate large classes of perfect fluid spheres in a purely mechanical

way. Perfect fluid spheres can be simplified, but they still provide a amazingly

mathematical and physical structure [26].

In this chapter, we will extend these algorithmic ideas, by proving several so-

lution generating theorems of varying levels of complexity. Then, we shall explore

the formal properties of these solution-generating theorems and then will use these

theorems to classify some of the previously known exact solutions. In addition,

we will generate several previously unknown perfect fluid solutions by the original

perfect fluid spheres.

2.5.1 Static spherically symmetric perfect fluid

In metric theory of gravitation, especially in general relativity, static spheri-

cally symmetric perfect fluid, is the fluid with isotropic pressure and static sphere
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in the spacetime created by stress energy tensor.

These solutions are often used to construct the model of stars, especially im-

pact object such as White dwarf star or neutron stars. In general relativity, the

models of single stars consisting of fluid are the solutions of perfect fluid from

Einstein’s equation and in external area are flat vacuum solutions. Both areas

must be satisfied on the earth’s surface spherically and pressure is zero [26].

2.5.2 Spheres

Perfect fluid spheres are the model for general relativistic stars that collapse

to be black holes. Firstly, in geometry of physics and mathematics, sphere can

be classified into various forms depending on its dimension. Sphere is a round

object in three-dimensional space such as the shape of a ball in three-dimensional

Euclidean space (or 2-sphere) or the shape of a circle in two-dimensional Euclidean

space (or 1-sphere). Sphere consists of center and radial distance from center to

spherical surface. Perfect sphere implies that sphere is completely symmetrical

around its center that it is not quite elliptic such as the earth. For example,

terrestrial sphere is a model or a coordinate system for the earth or the sun, and

celestial sphere is a model or a coordinate system for the solar system.

Figure 2.5: Terrestrial sphere is the model for the Earth and Sun with 1st meridian

at G and its constituents [29].
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Figure 2.6: Celestial sphere is the model for the Solar system in cosmology and

astronomy [29].

2.5.3 Fluid

In physics, fluid is a substance that has the “continuum” property, being a

continuous material that flows under shear stress. The “continuum” is a collec-

tion of particles so numerous that the dynamics of individual particles cannot be

followed. Fluids are a subset of the phases of matter that include liquids, gases,

plasmas and, to some extent, plastic solids. Fluid mechanics can be divided into

Newtonian and Non-Newtonian fluid mechanics.

2.5.4 Perfect fluid

Previously, we already know the stress energy tensor Tµν of perfect fluid, that

is



53

Tµν =





















ρ 0 0 0

0 pr 0 0

0 0 pt 0

0 0 0 pt





















, (2.3)

where pr = pt. Perfect fluid spheres are not only a completely spherical object,

but also have the other three properties; no heat conduction which implies that

T0i = Ti0 = 0, no viscosity which implies that only diagonal entries are not zero

and isotropy that is pr = pt [26, 30–32, 37, 38].

2.6 Generating theorems of perfect fluid spheres

2.6.1 Introduction

It is well known that perfect fluid spheres in general relativity, both static

and non-static, are realistic models for a general relativistic star [26, 30, 33–37].

In this thesis, we develop several new transformation theorems that map perfect

fluid spheres into perfect fluid spheres. Firstly, we need to know the definition of

the stress energy tensor Tµυ, which is defined by

Tµυ = (ρ+ p) uµuν + pgµν , (2.4)

=





















ρ 0 0 0

0 pr 0 0

0 0 pt 0

0 0 0 pt





















, (2.5)

where ρ is the energy density, uµ and uν are the four-velocity as measured by an

observer moving together with the fluid, and pr, pt are the radial pressure and the

transverse pressure, respectively.
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In the conditions of perfect fluid spheres, the word “perfect” means it has the

isotropic property, independent of all coordinates in the stress energy tensor and

equality, that is

pr = pt. (2.6)

The Einstein’s equations

Gµν = 8πTµυ, (2.7)

and (2.6) give us

Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. (2.8)

Note that Einstein’s tensor, Gr
r = Gθ

θ = Gφ
φ, are the version that are more

traditional in the older literature, but it only works for diagonal metrics, whereas

the hatted version , Gr̂r̂ = Gθ̂θ̂ = Gφ̂φ̂ , can in principle be generalized to arbitrary

metrics.

Over the last 90 years, there are many algorithmic methods to solve this dif-

ferential equation, which have been explored, often by picking special coordinate

systems, or making simple ansatzë which is the metric in the form of

ds2 = −B (r) dt2 + A (r) dr2 + r2dΩ2, (2.9)

where dΩ2 = dθ2 + sin2 θdϕ2 is the metric of a two-sphere and for one or other of

the metric components [38–41]. (For recent overviews see [33–35].) The outcome

over the last several years has been the “algorithmic” techniques that allow one to

generate large classes of perfect fluid spheres in a purely mechanical way [42–44].

In this thesis, we will present and extend these new algorithmic ideas, by proving

several solution-generating theorems of complex different levels. Then we shall
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demonstrate their properties of these solution-generating theorems and use these

transformation to group some of the previously known exact solutions. Moreover,

we will construct several new previously unknown perfect fluid solutions. Besides,

we use the mathematical programming, “maplet”, which is an easy and compact

way to construct the program of perfect fluid sphere, to find and classify the set

of all perfect fluid spheres instead of calculating by hand.

2.6.2 Schwarzschild solution

The gravitational field of a spherically symmetric particle such as black hole

firstly appears in Newtonian as well as in the Einsteinian theory. This gravita-

tional field of the Eienstein model of stars consists of the exterior and the interior

Schwarzschild solutions. They are joined together at its surface.

The use of arbitrary coordinates is allowed in general relativity. Indeed, the

physical significance of statements about tensors or vectors and other quantities

are not always obvious. Nevertheless, there exist some situations where the inter-

pretation is nearly as straightforward as in special relativity. The center of the

point of a local inertial coordinate system is the most common example that is

easy to understand [26].

2.7 Coordinates system in perfect fluid spheres

Generally, there are several coordinates for us to apply with our object that

we want to measure. For example, Euclidean system is useful for a straight line or

graph. Cylindrical and spherical systems are useful for a cylindrical or circular-

shaped curve. Polar system is useful for the graph with constant radial distance

and angle.

In special relativity, the metric of perfect fluid sphere often appears in the
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form of

A (r) dr2 + B (r) dΩ2, (2.10)

where dΩ2 = dr2 + sin2 θdφ2. There are still several coordinates for us to use.

2.7.1 Schwarzchild’s coordinates

This coordinate system is the most well-known coordinate system for studying

perfect fluid spheres, approximately 55% while other coordinates such as isotropic

coordinates is estimated to be 35%. Schwarzchild’s metric is in the form of

ds2 = −ζ (r)2 dt2 +
dr2

B (r)
+ r2dΩ2, (2.11)

For a perfect sphere, there is no arbitrary parameter in term of r2dΩ2. This

coordinate system is the model for the object in the gravitational field outside

a spherical, non-rotating mass (a non-rotating star, planet, or black hole). It is

good for estimating a slowly rotating body like the earth or the sun.

2.7.2 Isotropic coordinates

With the approximate usage of 35%, this coordinate system is the second

most well-known coordinate system for studying perfect fluid spheres. It is differ-

ent from the radial coordinate of Schwarschild’s coordinates. It is defined for light

cones to appear round which means that (except for the trivial case of a locally

flat space), the angular isotropic coordinates do not represent distances within the

nested spheres, nor does the radial coordinate represent radial distances. Con-

versely, angles in the constant time exist without distortion, that follows from the

name of their coordinates [26].
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This system is often used in static spherically symmetric spacetimes in gravi-

tational theories such as general relativity. Moreover, they can also be applied to

a model of a spherically pulsating fluid 2-sphere object. The metric of isotropic

coordinates is

ds2 = −ζ (r)2 dt2 +
1

ζ (r)2 B (r)2
{

dr2 + r2dΩ2
}

. (2.12)

The co-parameter 1
/

ζ (r)2 B (r)2 between dr2 and r2dΩ2 tells us that both of

them cannot be distorted individually [30–32].

2.7.3 Gaussian polar coordinates

A third alternative is the Gaussian polar coordinates, which correctly represent

radial distances, but distorts transverse distances and angles. In all three pos-

sibilities, the nested geometric spheres are represented by coordinate spheres, so

we can say that their roundness is correctly represented. The metric of Gaussian

polar coordinates is

ds2 = −ζ (r)2 dt2 + dr2 +R (r)2 dΩ2. (2.13)

The parameter R (r)2 in dΩ2 means that there is some distortion between

transverse distances and angles [30–32].

2.7.4 Synge isothermal coordinates

This coordinates system was first introduced by Gauss Korn and Lichtenstein.

They have proved that these coordinates exist around any point on a two-dimensional

Riemannian manifold. The metric of Synge isothermal coordinates is

ds2 = −ζ (r)−2 {dt2 − dr2 +R (r)2 dΩ2} (2.14)
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(see also [30–32]).

2.7.5 General diagonal coordinates

This coordinate system can be represent in the metric in the form of

ds2 = −ζ (r)2 dt2 +
dr2

B (r)
+R (r)2 dΩ2. (2.15)

Generally, this form is used to calculate various manifold but quite inefficient

in specific cases.

2.7.6 Buchdahl’s coordinates

This coordinate system is a sort of a mixture between Synge isothermal (tor-

toise) coordinates and Gaussian polar (proper radius) coordinates [30–32]. This

coordinate system represents the metric in the form

ds2 = −ζ (r)2 dt2 + ζ (r)−2 {dr2 +R(r)2dΩ2
}

. (2.16)

2.7.7 Solution generating theorems

In Schwarzschild (curvature) coordinates [26, 30, 37, 43, 44], the metric is

ds2 = −ζ(r)2dt2 +
dr2

B(r)
+ r2dΩ2, (2.17)

whose parameters are {ζ(r),B(r)} . Then, its ODE is

[

r(rζ)′
]

B′ +
[

2r2ζ ′′ − 2(rζ)′
]

B + 2ζ = 0, (2.18)

which reduces the freedom to choose the two functions in equation (2.17) to one.

This equation (2.18) is a first-order non-homogeneous linear equation in B(r).
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Thus, once you have chosen a ζ(r) this equation (2.18) can always be solved for

B(r). Solving for B(r) in terms of ζ(r) is the basis of [43, 44], (and is the basis

for 1st BVW theorem and integrating factor below) [26]. On the other hand, we

can also re-group this same equation as

2r2ζ ′′ +
[

r2B′ − 2rB
]

ζ ′ + [rB′ − 2B + 2] ζ = 0, (2.19)

which is a linear homogeneous second-order ODE for ζ(r), which will become the

basis for 2nd BVW theorem [26] and a new convenient transformation theorem

below. Our objective in this section is, how to systematically “deform” the ge-

ometry (2.17) while still maintaining the perfect fluid spheres. We start with the

Schwarzschild’s metric, defined by

ds2 = −ζ0(r)
2dt2 +

dr2

B0(r)
+ r2dΩ2, (2.20)

and assume that it represents a perfect fluid sphere. We need to show how to

“deform” this solution, from {ζ0 (r) ,B0 (r)} to another, by applying our different

transformation theorems on {ζ0 (r) ,B0(r)}, such that the outcome still presents

a perfect fluid sphere. The result of this process will depend on one or more free

parameters that are σ, ε or γ, and so automatically produce the entire family

of perfect fluid spheres of which the original starting point is only one member.

Additionally, we analyze what is going on if we apply these theorems more than

once, iterating them in various ways.

Similarly, in general diagonal coordinates, the metric is

ds2 = −ζ(r)2dt2 +
dr2

B(r)
+R (r)2 dΩ2, (2.21)

whose parameters are {ζ(r),B(r), R (r)} . Then, its ODE is
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[

R (Rζ)′
]

B′ +
[

2RR′′2ζ ′′ − 2RR′ζ ′ − 2 (R′)
2
ζ
]

B + 2ζ = 0. (2.22)

This is the first-order non-homogeneous linear in B (r), and the second-order

homogeneous linear in ζ (r). Also in exponential coordinates, the metric is

ds2 = − exp (−2z) dt2 + exp (+2z)

{

dz2

B (z)
+R (z)2 dΩ2

}

, (2.23)

whose parameters are {B (z) , R (z)}. Then, its ODE is

B′ [RR′] + B
[

4R2 − 2 (R′)
2
+ 2RR′′

]

+ 2 = 0. (2.24)

This is the first-order non-homogeneous linear in B (z).

2.7.8 New technique

In this thesis, we present a new technique to derive the first theroem which is

the same as transformation in [26]. This new technique of the following theorem

uses an integrating factor technique to solve an ODE (2.18), then we derive a new

Beta. This method is not too complicated because it consists of only one factor.

Thus, it can easily be used to generate a new metric.

Theorem 1 (Integrating Factor [45]). For a perfect fluid sphere {ζ (r) ,B0 (r)},

define γK(r) , where γ is an arbitrary constant, and

K(r) ≡ exp

(∫

−2r2ζ ′′ − 2rζ ′ − 4ζ

r (rζ)′
dr

)

, (2.25)

then {ζ (r) ,B0 (r) + γK(r)} is still a perfect fluid sphere. That is a transforma-

tion

T1 : {ζ (r) ,B0 (r)} 7→ {ζ (r) ,B0 (r) + γK(r)} , (2.26)

map a perfect fluid sphere to a perfect fluid sphere and this transformation is

idempotent.
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Proof. We know that for the 1st order differential equation

M(x, y)dx+N(x, y)dy = 0, (2.27)

and we need to find an integrating factor µ = µ(v) for exact condition, that is

∂

∂y
(µM) =

∂

∂x
(µN) . (2.28)

Simplify and rearrange them, then we derive

1

µ

dµ

dv
=

(

∂M
∂y

− ∂N
∂x

)

(

N ∂
∂x

−M ∂
∂y

)

v
≡ F (v) . (2.29)

We assume that v = v (x), and check 1
N

(

∂M
∂y

− ∂N
∂x

)

≡ F = F (x), then

1

N

(

∂M

∂y
− ∂N

∂x

)

≡ F (x) =
1

µ

dµ

dx
, (2.30)

and we derive µ = exp
(∫

F (x) dx
)

as desired.

Now, we can change this 1st order differential equation

M(x, y)dx+N(x, y)dy = 0 (2.31)

to

y′ + P (x)y = Q(x), (2.32)

where

M(x, y) = P (x)y −Q(x), (2.33)

and

N(x, y) = 1. (2.34)

Therefore,

F (x) =
1

N

(

∂M

∂y
− ∂N

∂x

)

= P (x) , (2.35)

and

µ = µ (x) = exp

(∫

F (x) dx

)

= exp

(∫

P (x) dx

)

. (2.36)
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Thus, we can solve this differential equation which we derive

y =
1

µ (x)

(∫

µ (x)Q (x) dx

)

. (2.37)

Finally, we compare this differential equation y′+P (x)y = Q(x) with our

1st order ODE

[

r (rζ)′
]

B′ +
[

2r2ζ ′′ − 2 (rζ)′
]

B + 2ζ = 0, (2.38)

where

x = r, (2.39)

y = B (r) , (2.40)

P (x) =
2r2ζ ′′ − 2 (rζ)′

r (rζ)′
, (2.41)

Q(x) = − 2ζ

r (rζ)′
, (2.42)

(recall that ζ = ζ (r)).

By calculating, we define µ = exp
(

∫

2r2ζ′′−2rζ′−2ζ
r(rζ)′

dr
)

and

B (r) =

[

exp

(∫

−2r2ζ ′′ − 2rζ ′ − 2ζ

r (rζ)′
dr

)]

×





∫

−2
exp

(

∫

2r2ζ′′−2rζ′−2ζ
r(rζ)′

dr
)

r (rζ)′
dr + γ



 , (2.43)

= B0 (r) + γK1 (r) , (2.44)

where γ is an arbitrary constant, and

B0 (r) =

[

exp

(∫

−2r2ζ ′′ − 2rζ ′ − 2ζ

r (rζ)′
dr

)]

×





∫

−2
exp

(

∫

2r2ζ′′−2rζ′−2ζ
r(rζ)′

dr
)

r (rζ)′
dr



 , (2.45)

K (r) = exp

(∫

−2r2ζ ′′ − 2rζ ′ − 2ζ

r (rζ)′
dr

)

. (2.46)

Hence, this transformation is T1 : {ζ,B} 7→ {ζ,B0 (r) + γK1 (r)} .
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To prove this transformation is idempotent. We see that

T2
1 = T1 ◦ T1 = {ζ (r) ,B0 (r)} (2.47)

7→ {ζ (r) ,B1 (r)} = {ζ (r) ,B0 (r) + γK(r)} (2.48)

7→ {ζ (r) ,B2 (r)} = {ζ (r) ,B1 (r) + γK(r)} (2.49)

= {ζ,B0 (r) + 2γK(r)} , {ζ (r) ,B (r)} = T1. (2.50)

Thus, this transformation is idempotent.

* the notation “J1*, J2*” means that they are new metrics, which are discov-

ered by Panit, they are definitely perfect fluid solutions, where

F1 (m, r,R) ≡ −2

∫







(mr3 + 2r4)R2 − 2r6

+(m2 + rm− r2)R4













(2mR2 + r3 − rR2)r

×(mR2 + 2r3 − rR2)







dr, (2.51)

F2(A,B, r) ≡ − A

8Br4
− 1

2
ln r. (2.52)

Note that B (r) of Wyman IIb (n=2) in [33] is wrong. We can check that

{ζ (r) ,B (r)} is exactly a perfect fluid sphere by using maplets (program for perfect

fluid spheres (Theorem 1-4)) in chapter 5. The correct B (r) of Wyman IIb (n=2)

is from ar → a
r
.
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Name Parameters Name

{ζ (r) ,B (r)} γK (r) γ

Minkowski {1, 1} γr2 − 1
R2

Einstein

static

Exterior

Schwarz-

schild











√

1− 2m/r,

1− 2m/r











γ (m− r)2

×
(

1− 2m
r

)

4C Kuch68 II

Tolman V

(A=0)











Br1+n,

(2− n2)
−1











γr
2(2−n2)

2+n −A
(2−n2)

Tolman V

M–W III















√

Ar (r − a),
(

7/4

1−r2/a2

)−1















4γ (r−a)22/3r7/3

(4r−3a)4/3
−B/4 Martin 2

Heint IIa

(C=0)















(1 + ar2)
3/2

,
[

(1+ar2)
(1−ar2/2)

]−1















(

−2
√
5γr2

15

√
1+4r2a

1+r2a

)

−
√
3
2
C Heint IIa

B-L

{√
A r

a
,
1+ r2

a2

2

}

γr2 arbitrary B-L

K-O III {A+ Br2, 1} γr2

(A+3Br2)
2
3

−C Martin 3

Kuch1 Ib
{

Ar + Br ln r, 1
2

}

γr2

2A+2B ln r+B
−C
2

Martin 1

Kottler











c
√

1− 2m
r
− r2

R2 ,

1− 2m
r
− r2

R2











γ exp (F1 (m,R, r)) γ J1*

Wyman

IIb (n=2)











A
r
− Br3,

−1
2
+ a

r
exp

(

− A
4Br4

)











γ exp (F2 (A,B, r)) γ J2*

Table 2.1: Examples of metrics implied by theorem 1.
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2.7.9 Additivity theorems in various coordinate systems

Schwarzschild coordinates

In Schwarzschild coordinates (also called curvature coordinates) [30–32, 43, 44],

the metric is most usefully rearranged in the form

ds2 = −ζ(r)2dt2 +
dr2

B(r)
+ r2dΩ2, (2.53)

which is a functional of the two functions {ζ(r),B(r)} . Then, the ODE arising

from the isotropy condition is

[

r(rζ)′
]

B′ +
[

2r2ζ ′′ − 2(rζ)′
]

B + 2ζ = 0, (2.54)

which reduces the freedom to choose the two functions in equation (2.53) to one.

This equation (2.54) is a first-order linear non-homogeneous equation in B(r). The

solution space is one-dimensional, and since the ODE is inhomogeneous, this one-

dimensional solution space is uniquely determined by any two distinct solutions

B1(r) and B2(r).

However, in this thesis we will find it more useful to rearrange equation (2.54)

into the form:

2r2ζ ′′ +
[

r2B′ − 2rB
]

ζ ′ + [rB′ − 2B + 2] ζ = 0, (2.55)

This equation is a linear homogeneous second-order ODE for ζ(r) and is the basis

for 2nd BVW theorem in [26]. The solution space is two-dimensional, and since the

ODE is homogeneous, this two-dimensional solution space is uniquely determined

by any two distinct solutions ζ1(r) and ζ2(r).

Definition 2 (Solution space — Schwarzschild). Let Υ(B) be the set of all solu-

tions to equation (2.55) for fixed B(r).
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Theorem 3 (Summation — Schwarzschild). Let {ζ1(r),B(r)}, {ζ2(r),B(r)} rep-

resent perfect fluid spheres. Then for any arbitrary linear combination

ζ(r) = c1ζ1(r) + c2ζ2(r), (2.56)

the pair {ζ(r),B(r)} also represents a perfect fluid sphere. Furthermore since

Υ(B) is a two-dimensional vector space, any element of Υ(B) can be put in this

form for suitable constants c1 and c2.

The proof is immediate from the fact that equation (2.55) is a 2nd-order linear

homogeneous ODE.

Theorem 4 (2nd BVW Theorem [26]). If {ζ (r) ,B (r)} represents a perfect fluid

sphere, then {ζ (r) Z (r) ,B (r)} also represents a perfect fluid sphere, where σ, ε

are arbitrary constants and

Z (r) = σ + ε

∫

rdr

ζ2 (r)
√

B (r)
. (2.57)

That is, the map or transformation

T2 : {ζ (r) ,B (r)} 7→ {ζ (r) Z (r) ,B (r)} . (2.58)

takes perfect fluid spheres to perfect fluid spheres. Furthermore since Υ(B) is a

two-dimensional vector space, any element of Υ(B) can be put in this form for an

arbitrary choice of ζ(r) ∈ Υ(B) and for suitable constants σ and ǫ.

The proof is immediate from an application of reduction of order to the (as-

sumed known) solution ζ(r) of the ODE (2.55). For one of these theorems chose

to apply, it depends on the amount of background information which one has.

If for instance, one has a table or list of perfect fluid spheres [33, 34] that al-

ready contain distinct perfect fluid spheres {ζ1(r),B(r)} and {ζ2(r),B(r)} then

summation is the easiest course. If after diligent searching one only finds a single
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solution {ζ(r),B(r)}, then the 2nd BVW theorem is indicated — though it might

be difficult or impossible to perform the integration hiding inside the factor Z in

a simple closed form. If for some specified B(r) no previously known perfect fluid

spheres are found, then one has to resort to attempting to directly solve the ODE

(2.55). This may or may not be possible. In any of these cases once two distinct

solutions have been found, then the general solution is automatic via the summa-

tion theorem — there is no point to trying to apply the summation theorem and

2nd BVW theorem in tandem, as either one of them will yield the full solution

space.

Isotropic coordinates

Isotropic coordinates are quite common in the study of perfect fluid spheres. These

coordinates are used in about 35% of the relevant literature [44]. In isotropic

coordinates the metric is most conveniently given by

ds2 = −ζ(r)2dt2 +
1

ζ(r)2B(r)2
{dr2 + r2dΩ2}. (2.59)

The Einstein tensor components are

Gr̂r̂= −2BB′2

r
+ B′2ζ2 − ζ ′2B2, (2.60)

Gθ̂θ̂= Gφ̂φ̂ = −BB′2

r
+ B′2 ζ2 −BB′′2 + B2ζ ′2, (2.61)

Gt̂t̂= 2B2ζζ ′′ +
4B2ζζ ′

r
− 3B2ζ ′2 − 2BB′ζζ ′

+2BB′′ζ2 − 3B′2ζ2 +
4BB′ζ2

r
. (2.62)

The ODE coming from the isotropy demand is either

(

ζ ′

ζ

)2

=
B′′ −B′/r

2B
;

ζ ′

ζ
= ±

√

B′′ −B′/r

2B
, (2.63)

or

B′′ − B′

r
− 2

(

ζ ′

ζ

)2

B = 0. (2.64)
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The ODE for ζ(r) can either be viewed as a first-order nonlinear ODE, or as a

pair of first-order linear ODEs. In counterpoint to the situation for Schwarzschild

coordinates, here it is the ODE for B(r) that is second-order linear homogeneous.

This the additivity theorem will now be a theorem for B(r).

Definition 5 (Solution space — isotropic). Let Υ(ζ) be the set of all solutions to

equation (2.64) for fixed ζ(r).

Theorem 6 (Summation — isotropic). Let {ζ(r),B1(r)} and {ζ(r),B2(r)} rep-

resent perfect fluid spheres. Then for any arbitrary linear combination

B(r) = c1B1(r) + c2B2(r), (2.65)

the pair {ζ(r),B(r)} also represents a perfect fluid sphere. Furthermore since Υ

is a two-dimensional vector space, any element of Υ(B) can be put in this form

for suitable constants c1 and c2.

The proof is immediate from the fact that equation (2.64) is a 2nd-order linear

homogeneous ODE.

Theorem 7 (8th BVW Theorem [26]). Let {ζ(r),B(r)} be a perfect fluid sphere

and let

Z (r) = σ + ε

∫

rdr

B (r)2
. (2.66)

Then for all σ and ε, with fixed ζ(r), the pair {ζ(r),Z(r)B(r)} also represents a

perfect fluid sphere. That is, in isotropic coordinates, if

ds2 = −ζ(r)2dt2 +
1

ζ(r)2B(r)2
{dr2 + r2dΩ2} (2.67)

is a perfect fluid sphere then

ds2 = −ζ(r)2dt2 +
1

ζ(r)2B(r)2Z(r)2
{dr2 + r2dΩ2} (2.68)
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is also a perfect fluid sphere. That is, the mapping

T8 : {ζ (r) ,B (r)} 7→ {ζ (r) ,B (r) Z(B (r))} (2.69)

maps perfect fluid spheres into perfect fluid spheres. Furthermore since Υ(ζ) is a

two-dimensional vector space, any element of Υ(ζ) can be put in this form for an

arbitrary choice of B(r) ∈ Υ(ζ) and for suitable constants σ and ǫ.

The proof is immediate from an application of reduction of order to the

(assumed known) solution B(r) of the ODE (2.64). Note that in comparing

Schwarzschild coordinates with isotropic coordinates the roles of ζ(r) and B(r)

have effectively changed. Note also that the precise nature of the ODEs one en-

counters depend not only on the specific coordinate system one adopts but also

on the choice of functional form of the spacetime metric. Analogously to the case

of Schwarzschild coordinates, either the summation theorem or the 8th BVW the-

orem is enough to explore the entire two-dimensional solution space, now for B(r)

at fixed ζ(r) — there is no point to trying to apply the summation theorem and

8th BVW theorem in tandem, as either one of them will yield the full solution

space.

Gaussian polar coordinates

In Gaussian polar coordinates the metric can be put in the form

ds2 = −ζ(r)2dt2 + dr2 +R(r)2dΩ2. (2.70)

The Einstein tensor components are easily computed

Gt̂t̂=
−R′2 − 2RR′′ + 1

R2
, (2.71)

Gr̂r̂=
ζR′2 − ζ + 2ζ ′RR′

R2ζ
, (2.72)

Gθ̂θ̂= Gφ̂φ̂ =
ζR′′ + ζ ′R′ + ζ ′′R

Rζ
. (2.73)
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The ODE arising from the demand of pressure isotropy is

ζ ′′ − ζ ′
R′

R
+ ζ

{

1−R′2 +R′′R

R2

}

= 0. (2.74)

We note that this is a second-order linear homogeneous ODE for ζ(r), and proceed

in the by now quite standard manner.

Definition 8 (Solution space — Gaussian). Let Υ(R) be the set of all solutions

to equation (2.74) for fixed R(r).

Theorem 9 (Summation—Gaussian). Now in Gaussian coordinates, let {ζ1(r), R(r)}

and {ζ2(r), R(r)} represent perfect fluid spheres. Then for any arbitrary linear

combination

ζ(r) = c1ζ1(r) + c2ζ2(r), (2.75)

the pair {ζ(r), R(r)} also represents a perfect fluid sphere. Furthermore since

Υ(R) is a two-dimensional vector space, any element of Υ(R) can be put in this

form for suitable constants c1 and c2.

The proof is immediate from the fact that equation (2.74) is a 2nd-order linear

homogeneous ODE.

Theorem 10 (9th BVW Theorem [26]). Suppose we are in Gaussian polar coor-

dinates, and that {ζ(r), R(r)} represents a perfect fluid sphere. Define

Λ (r) = σ + ε

∫

R (r) dr

ζ (r)2
. (2.76)

Then for all σ and ε, the geometry defined by holding R(r) fixed and setting

ds2 = −ζ(r)2Λ(r)2 dt2 + dr2 +R(r)2dΩ2, (2.77)

is also a perfect fluid sphere. That is, the mapping

T9 : {ζ, R} 7→ {ζΛ(ζ, R), R} (2.78)
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takes perfect fluid spheres into perfect fluid spheres. Furthermore since Υ(R) is a

two-dimensional vector space, any element of Υ(R) can be put in this form for an

arbitrary choice of ζ(r) ∈ Υ(R) and for suitable constants σ and ǫ.

The proof is immediate from an application of reduction of order to the (as-

sumed known) solution ζ(r) of the ODE (2.74). Analogously to the case of

Schwarzschild or isotropic coordinates, either the summation theorem or the 9th

BVW theorem is enough to explore the entire two-dimensional solution space,

now for ζ(r) at fixed R(r) — there is no point to trying to apply the summation

theorem and 9th BVW theorem in tandem, as either one of them will yield the

full solution space.

Synge isothermal coordinates

Similarly, consider the metric in Synge isothermal coordinates, that is

ds2 = −ζ(r)−2 {dt2 − dr2 +R(r)2dΩ2}. (2.79)

The Einstein’s tensor components are

Gt̂t̂=
−3R2ζ ′2 + 2R2ζζ ′′ + 4RR′ζζ ′2 + ζ2 −R′2ζ2 − 2RR′′2ζ2

R2
, (2.80)

Gr̂r̂=
3R2ζ ′2 − 4RζR′ζ ′ +R′2ζ2 − ζ2

R2
, (2.81)

Gθ̂θ̂=
3Rζ ′2 − 2ζR′ζ ′ − 2R ζζ ′′ + ζ2R′′

R
. (2.82)

Demanding isotropy yields the ODE

ζ ′′ − ζ ′
R′

R
− ζ

{

1−R′2 +RR′′

2R2

}

= 0. (2.83)

We now proceed as usual.

Definition 11 (Solution space — Synge). Let Υ(R) be the set of all solutions to

equation (2.83) for fixed R(r).
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Theorem 12 (Summation — Synge). Now in Synge isothermal coordinates let

{ζ1(r), R(r)} and {ζ2(r), R(r)} represent perfect fluid spheres. Then for any ar-

bitrary linear combination

ζ(r) = c1ζ1(r) + c2ζ2(r), (2.84)

the pair {ζ(r), R(r)} also represents a perfect fluid sphere. Furthermore since

Υ(R) is a two-dimensional vector space, any element of Υ(R) can be put in this

form for suitable constants c1 and c2.

The proof is immediate from the fact that equation (2.83) is a 2nd-order linear

homogeneous ODE.

Theorem 13 (11th BVW Theorem [26]). Suppose {ζ(r), R(r)} represents a per-

fect fluid sphere in Synge isothermal coordiantes. Define

A (r) = σ + ε

∫

R (r) dr

ζ (r)2
. (2.85)

Then for all σ and ε, the geometry defined by holding R(r) fixed and setting

ds2 = − 1

ζ(r)2A(r)2
{

dt2 − dr2
}

+
R(r)2

ζ(r)2A(r)2
dΩ2 (2.86)

is also a perfect fluid sphere. That is, the mapping

T11 : {ζ, R} 7→ {ζA(ζ, R), R} (2.87)

takes perfect fluid spheres into perfect fluid spheres. Furthermore since Υ(R) is a

two-dimensional vector space, any element of Υ(R) can be put in this form for an

arbitrary choice of ζ(r) ∈ Υ(R) and for suitable constants σ and ǫ.

The proof is immediate from an application of reduction of order to the (as-

sumed known) solution ζ(r) of the ODE (2.83). Analogously to the previous cases,

either the summation theorem or the 11th BVW theorem is enough to explore
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the entire two-dimensional solution space, now for ζ(r) at fixed R(r) — there is

no point to trying to apply the summation theorem and 11th BVW theorem in

tandem, as either one of them will yield the full solution space.

2.7.10 Weighted Means

In this part, we will introduce this theorem called “weighted means”. This

theorem is used to generate new B (r) by finding weighted means of perfect fluid

sphere with fixed ζ0 (r) for each Bi (r).

Corollary 14 (Weighted Means). Let {{ζ0 (r) ,Bi (r)}}ni=1 be the family of perfect

fluid spheres with fixed ζ0 (r), then

{

ζ0 (r) ,
n
∑

i=1

piBi (r)

/

n
∑

i=1

pi

}

is the perfect fluid

sphere for all arbitrary constants p1, p2, ..., pn.

Proof. Let {{ζ0 (r) ,Bi (r)}}ni=1 be the family of perfect fluid spheres with fixed

ζ0 (r), then

[

r (rζ0)
′]B′

i +
[

2r2ζ ′′0 − 2 (rζ0)
′]Bi + 2ζ0 = 0, (2.88)

for all i = 1, .., n for some n ∈ N.

When we derive (2.88) with pi, we derive

[

r (rζ0)
′] (piBi)

′ +
[

2r2ζ ′′0 − 2 (rζ0)
′] piBi + 2piζ0 = 0. (2.89)

We now, take summation of (2.89) for all i = 1, .., n, so

[

r (rζ0)
′]
(

n
∑

i=1

piBi

)′

+
[

2r2ζ ′′0 − 2 (rζ0)
′]

n
∑

i=1

piBi + 2
n
∑

i=1

piζ0 = 0, (2.90)

i.e.

[

r (rζ0)
′]









n
∑

i=1

piBi

n
∑

i=1

pi









′

+
[

2r2ζ ′′0 − 2 (rζ0)
′]









n
∑

i=1

piBi

n
∑

i=1

pi









+ 2ζ0 = 0. (2.91)
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Therefore

{

ζ0 (r) ,
n
∑

i=1

piBi (r)

/

n
∑

i=1

pi

}

is also the perfect fluid sphere for all

arbitrary constants p1, p2, ..., pn.

The proof of this theorem is easy but it give us more advantages and better

than we expected. For instance, if we need to eliminate some constants that we

do not know, then we can choose suitable weights to eliminate them as desired.

Name
Parameters

ζ(r) B1(r), B2(r) and B(r) =
aB1(r)+bB2(r)

a+b
a b

M-W III
√

Ar (r − a) B1(r) =
4
7

(

1− r2

a2

)

- -

Martin 2
√

Ar (r − a) B2(r) =
4
7

(

1− r2

a2
−B (r−a)r

7
3

(4r−3a)
4
3

)

- -

*Martin 2
√

Ar (r − a) B(r) =4
7

(

1− r2

a2
+ Br

7
3 (r−a)

(4r−3a)
4
3

)

1 − 1
B

Table 2.2: This table shows new B(r) generated by applying the weighted means

theorem.

2.7.11 New convenient transformation theorem

In this part, the new convenient transformation theorem is similar to the

new technique but this transformation needs an initial B0 (r) to calculate a new

B (r). This is not a problem since we want to generate a new B (r) from the initial

perfect fluid sphere {ζ0 (r) ,B0 (r)} that already has B0 (r) to use together with

ζ0 (r). Thus, calculation for finding a new B (r) is easier than the new technique.

2.7.12 General diagonal coordinates

Consider the metric
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ds2 = −ζ (r)2 dt2 +
dr2

B (r)
+R (r)2 dΩ2, (2.92)

and assume that it satisfies the condition of perfect fluid spheres, then

Gr̂r̂ = Gθ̂θ̂ = Gϕ̂ϕ̂, (2.93)

where

Gr̂r̂ =
ζB (R′)2 + 2BRζ ′R′ − ζ

R2ζ
, (2.94)

and

Gθ̂θ̂ = −1

2

2Bζ ′R′ + 2ζR′′B + ζB′R′ + 2Rζ ′′B +Rζ ′B′

Rζ
. (2.95)

By using Gr̂r̂ = Gθ̂θ̂, which gives us an ODE

[

R (Rζ)′
]

B′ +
[

2RR′′2ζ ′′ − 2RR′ζ ′ − 2 (R′)
2
ζ
]

B + 2ζ = 0, (2.96)

we will construct the new transformation as the following:

Theorem 15 (New convenience). In general diagonal coordinates, if we have a

perfect fluid sphere {ζ0 (r) ,B0 (r) , R0 (r)}, then

{ζ0 (r) ,B0 (r)Y0 (ζ0 (r) ,B0 (r) , R0 (r)) , R0 (r)} (2.97)

is also a perfect fluid sphere, where

Y0 (ζ0 (r) ,B0 (r)) ≡ 1 + k exp

(

∫

2ζ0 (r)
/[

R0 (r) (R0 (r) ζ0 (r))
′]

B0 (r)
dr

)

, (2.98)

and an arbitrary constant k i.e. this transformation Tg maps a perfect fluid sphere

to a perfect fluid sphere such that

Tg : {ζ0 (r) ,B0 (r)} 7→ {ζ0 (r) ,B0 (r)Y0 (ζ0 (r) ,B0 (r) , R0 (r)) , R0 (r)} . (2.99)
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Proof. Let {ζ0 (r) ,B0 (r) , R0 (r)} be a perfect fluid sphere, then

[

R0 (R0ζ0)
′]B′

0 +
[

2R0R
′′
0ζ0 + 2R2

0ζ
′′
0 − 2R0R

′
0ζ

′
0 − 2 (R′

0)
2
ζ0

]

B0 + 2ζ0 = 0,

(2.100)

i.e.

B′
0 +

[

2R0R
′′
0ζ0 + 2R2

0ζ
′′
0 − 2R0R

′
0ζ

′
0 − 2 (R′

0)
2 ζ0

R0 (R0ζ0)
′

]

B0 +
2ζ0

R0 (R0ζ0)
′ = 0, (2.101)

Conveniently, we will define

F1 (r) ≡ 2R0R
′′
0ζ0 + 2R2

0ζ
′′
0 − 2R0R

′
0ζ

′
0 − 2 (R′

0)
2 ζ0

R0 (R0ζ0)
′ , (2.102)

F2 (r) ≡ 2ζ0

R0 (R0ζ0)
′ . (2.103)

Hence,

B′
0 + F1 (r) B0 + F2 (r) = 0. (2.104)

Let Y satisfy

(B0Y )′ + F1 (r) B0Y + F2 (r) = 0. (2.105)

Then

(B0Y )′ + F1 (r) B0Y + F2 (r) = B0Y
′ + Y B′

0 + F1 (r) B0Y (2.106)

+F2 (r) , (2.107)

= B0Y
′ + Y B′

0 + F1 (r) B0Y (2.108)

+F2 (r)Y − F2 (r)Y + F2 (r) , (2.109)

= Y (B′
0 + F1 (r) B0 + F2 (r)) (2.110)

+B0Y
′ − F2 (r)Y + F2 (r) , (2.111)

= B0Y
′ − F2 (r)Y + F2 (r) . (2.112)

Now we derive the new first ODE

B0Y
′ − F2 (r)Y + F2 (r) = 0. (2.113)
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We know that

Y ′

Y − 1
=

(Y − 1)′

Y − 1
, (2.114)

= (ln (Y − 1))′ , (2.115)

then

Y ′

Y − 1
=

F2 (r)

B0

, (2.116)

(ln (Y − 1))′ =
F2 (r)

B0

, (2.117)

ln (Y − 1) = C +

∫

F2 (r)

B0

dr, (2.118)

Y − 1 = exp

(

C +

(∫

F2 (r)

B0

dr

))

, (2.119)

= k exp

(∫

F2 (r)

B0

dr

)

, (2.120)

Y = 1 + k exp

(∫

F2 (r)

B0

dr

)

. (2.121)

By substituting F2 (r) ≡ 2ζ0
R0(R0ζ0)

′ , we derive

Y = 1 + k exp

(

∫

2ζ0
/[

R0 (R0ζ0)
′]

B0 (r)
dr

)

, (2.122)

where k is an arbitrary constant which comes from integration.

Thus, this theorem reduces the several terms for calculation by using B0 (r)

that we already know from the assumption.

Since this case is the same as in Schwarzschild coordinates, this transformation

Tg is not idempotent.

2.7.13 Schwarzschild coordinates

Theorem 16 (New convenience). In Schwarzschild coordinates, if we have a per-

fect fluid sphere {ζ0 (r) ,B0 (r)}, then {ζ0 (r) ,B0 (r) Λ (ζ0 (r) ,B0 (r))} is also a
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perfect fluid sphere, where

Λ (ζ0 (r) ,B0 (r)) ≡ 1 + k exp

(

∫

2ζ0 (r)
/[

r (rζ0 (r))
′]

B0 (r)
dr

)

, (2.123)

and an arbitrary constant k i.e. this transformation Ts maps a perfect fluid sphere

to a perfect fluid sphere such that

Ts : {ζ0 (r) ,B0 (r)} 7→ {ζ0 (r) ,B0 (r) Λ (ζ0 (r) ,B0 (r))} . (2.124)

Proof. Let {ζ0 (r) ,B0 (r)} be a perfect fluid sphere, then

[

r (rζ0)
′]B′

0 +
[

2r2ζ ′′0 − 2 (rζ0)
′]B0 + 2ζ0 = 0, (2.125)

i.e.

B′
0 +

[

2r2ζ ′′0 − 2 (rζ0)
′

r (rζ0)
′

]

B0 +
2ζ0

r (rζ0)
′ = 0. (2.126)

Conveniently, we will define

F1 (r) ≡ 2r2ζ ′′0 − 2 (rζ0)
′

r (rζ0)
′ , (2.127)

F2 (r) ≡ 2ζ0

r (rζ0)
′ . (2.128)

Hence,

B′
0 + F1 (r) B0 + F2 (r) = 0. (2.129)

Let Λ satisfy

(B0Λ)
′ + F1 (r) B0Λ + F2 (r) = 0. (2.130)
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Then

(B0Λ)
′ + F1 (r) B0Λ + F2 (r) = B0Λ

′ + ΛB′
0 + F1 (r) B0Λ (2.131)

+F2 (r) , (2.132)

= B0Λ
′ + ΛB′

0 + F1 (r) B0Λ (2.133)

+F2 (r) Λ− F2 (r) Λ + F2 (r) , (2.134)

= Λ (B′
0 + F1 (r) B0 + F2 (r)) (2.135)

+B0Λ
′ − F2 (r) Λ + F2 (r) , (2.136)

= B0Λ
′ − F2 (r) Λ + F2 (r) . (2.137)

Now we derive the new first ODE

B0Λ
′ − F2 (r) Λ + F2 (r) = 0. (2.138)

We know that

Λ′

Λ− 1
=

(Λ− 1)′

Λ− 1
, (2.139)

= (ln (Λ− 1))′ , (2.140)

then

Λ′

Λ− 1
=

F2 (r)

B0

, (2.141)

(ln (Λ− 1))′ =
F2 (r)

B0

, (2.142)

ln (Λ− 1) = C +

∫

F2 (r)

B0

dr, (2.143)

Λ− 1 = exp

(

C +

(∫

F2 (r)

B0

dr

))

, (2.144)

= k exp

(∫

F2 (r)

B0

dr

)

, (2.145)

Λ = 1 + k exp

(∫

F2 (r)

B0

dr

)

. (2.146)

By substituting F2 (r) ≡ 2ζ0
r(rζ0)

′ , we derive

Λ = 1 + k exp

(∫

2ζ0 (r)

r (rζ0 (r))
′ B0 (r)

dr

)

, (2.147)
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where k is an arbitrary constant which comes from integration.

Thus, this theorem reduces the several terms for calculation by using B0 (r)

that we already know from the assumption.This transformation Ts is not idem-

potent since

Ts ◦ Ts : {ζ0,B0} 7→ {ζ0,B0Λ0} 7→ {ζ0,B0Λ0Λ1} , (2.148)

and

Λ0 × Λ1 =

(

1 + k exp

(∫

2ζ0 (r)

r (rζ0 (r))
′ B0 (r)

dr

))

(2.149)

×
(

1 + k exp

(∫

2ζ0 (r)

r (rζ0 (r))
′ B0 (r) Λ0

dr

))

, (2.150)

6=
[

1 + k exp

(∫

2ζ0 (r)

r (rζ0 (r))
′ B0 (r)

dr

)]

= Λ (2.151)

for an arbitrary form of Λ = 1 + k exp
(

∫ 2ζ0(r)

r(rζ0(r))
′B0(r)

dr
)

.

F3 (m,R, r) ≡ exp

(

−2R2

∫

1

−rR2 +mR2 + 2r3
dr

)

, (2.152)

F4 (A,B, r) ≡ exp
(

− A
4Br4

)

−r + 2a exp
(

− A
4Br4

) . (2.153)

* the notation “J3*, J4*” means they are modified metrics by applying new

convenient transformation theorem (Ts) (Kottler for J3, Wyman IIb (n=2) for

J4*). Indeed, J1*, J2* (from integrating factor) and J3*, J4* (from new con-

venient) form are equivalent but both of them are produced in different ways

depending on each algorithm, respectively.

2.7.14 Exponential coordinates

Consider the metric

ds2 = − exp (−2z) dt2 + exp (+2z)

{

dz2

B (z)
+R (z)2 dΩ2

}

, (2.154)
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Name
Parameters

Theorem 4
{ζ(r), B(r)} Λ (ζ(r), B(r)) k

Minkowski {1, 1} 1 + kr2 − 1
R2

Einstein

static

Exterior

Schwarz-

schild











√

1− 2m/r,

1− 2m/r











1 + k(r −m)2 4C Kuch68 II

Tolman V

(A=0)











Br1+n,

(2− n2)
−1











1 + kr

(

2(2−n2)
2+n

)

−A Tolman V

K-O III {A+Br2, 1} 1 + k r2

(A+3Br2)2/3
−C Martin 3

Kuch1 Ib
{

Ar + Br ln r, 1
2

}

1+ kr2

2A+2B ln r+B
−C Martin 1

Kottler











c
√

1− 2m
r
− r2

R2 ,

1− 2m
r
− r2

R2











1 + kF 3 (m,R, r) k J3*

Wyman

IIb (n=2)











A
r
− Br3,

−1
2
+ a

r
exp

(

− A
4Br4

)











1 + kF 4 (A,B, r) k J4*

Table 2.3: This table shows new B(r) generated by applying the new convenient

transformation theorem (Ts).

and assume that it satisfies the condition of perfect fluid spheres, then

Gẑẑ = Gθ̂θ̂ = Gϕ̂ϕ̂, (2.155)

where

Gẑẑ =

(

BR2 − (R′)2 B + 1
)

exp (−2z)

R2
, (2.156)

and

Gθ̂θ̂ = −1

2

(B′R′ + 2R′′B + 2BR) exp (−2z)

R
. (2.157)
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By using Gẑẑ = Gθ̂θ̂, which gives us an ODE

[RR′] B′ +
[

4R2 − 2 (R′)
2
+ 2RR′′

]

B + 2 = 0, (2.158)

we will construct the new transformation as the following:

Theorem 17 (New convenience). In exponential coordinates, if we have a per-

fect fluid sphere {B0 (z) , R0 (z)}, then {B0 (z)V0 (B0 (z) , R0 (z)) , R0 (z)} is also a

perfect fluid sphere, where

V0 (B0 (z) , R0 (z)) ≡ 1 + k exp

(∫

2/[R0R
′
0]

B0 (z)
dz

)

, (2.159)

and for an arbitrary constant k i.e. this transformation Te maps a perfect fluid

sphere to a perfect fluid sphere such that

Te : {B0 (z) , R0 (z)} 7→ {B0 (z)V0 (B0 (z) , R0 (z)) , R0 (z)} . (2.160)

Proof. Let {B0 (z) , R0 (z)} be a perfect fluid sphere, then

[R0R
′
0] B

′
0 +

[

4R2
0 − 2 (R′

0)
2
+ 2R0R

′′
0

]

B0 + 2 = 0, (2.161)

i.e.

B′
0 +

[

4R2
0 − 2 (R′

0)
2 + 2R0R

′′
0

R0R′
0

]

B0 +
2

R0R′
0

= 0, (2.162)

Conveniently, we will define

F1 (r) ≡ 4R2
0 − 2 (R′

0)
2 + 2R0R

′′
0

R0R′
0

, (2.163)

F2 (r) ≡ 2

R0R′
0

. (2.164)

Hence,

B′
0 + F1 (r) B0 + F2 (r) = 0. (2.165)

Let V satisfy

(B0V )′ + F1 (r) B0V + F2 (r) = 0. (2.166)
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Then

(B0V )′ + F1 (r) B0V + F2 (r) = B0V
′ + V B′

0 + F1 (r) B0V

+F2 (r) , (2.167)

= B0V
′ + V B′

0 + F1 (r) B0V + F2 (r)V

−F2 (r)V + F2 (r) , (2.168)

= V (B′
0 + F1 (r) B0 + F2 (r))

+B0V
′ − F2 (r)V + F2 (r) , (2.169)

= B0V
′ − F2 (r)V + F2 (r) . (2.170)

Now we derive the new first ODE

B0V
′ − F2 (r)V + F2 (r) = 0. (2.171)

We know that

V ′

V − 1
=

(V − 1)′

V − 1
, (2.172)

= (ln (V − 1))′ , (2.173)

then

V ′

V − 1
=

F2 (r)

B0

, (2.174)

(ln (V − 1))′ =
F2 (r)

B0

, (2.175)

ln (V − 1) = C +

∫

F2 (r)

B0

dr, (2.176)

V − 1 = exp

(

C +

(∫

F2 (r)

B0

dr

))

, (2.177)

= k exp

(∫

F2 (r)

B0

dr

)

, (2.178)

V = 1 + k exp

(∫

F2 (r)

B0

dr

)

. (2.179)

By substituting F2 (r) ≡ 2
R0R′

0
, we derive

V = 1 + k exp

(∫

2/[R0R
′
0]

B0 (r)
dr

)

, (2.180)



84

where k is an arbitrary constant which comes from integration.

Thus, this theorem reduces the several terms for calculation by using B0 (r)

that we already know from the assumption.

Since this case is the same as in Schwarzschild coordinates. Thus, in the

exponential coordinates, this transformation Te is not idempotent.

2.8 Relations of three transformations

Before starting, we will introduce the 1st BVW transformation (T1) as fol-

lowing [26]:

Theorem 18 (1st BVW transformation (T1)[26]). Suppose {ζ0 (r) ,B0 (r)} rep-

resents a perfect fluid sphere. Define

∆0 (r) =

(

ζ0 (r)

ζ0 (r) + rζ ′0 (r)

)2

r2 exp

{

2

∫

ζ ′0 (r)

ζ0 (r)

ζ0 (r)− rζ ′0 (r)

ζ0 (r) + rζ ′0 (r)
dr

}

. (2.181)

Then for all arbitrary constant λ, the geometry defined by holding ζ0 (r) fixed and

setting

ds2 = −ζ0 (r)
2 dt2 +

dr2

B0 (r) + λ∆0 (r)
+ r2dΩ2 (2.182)

is also a perfect fluid sphere. That is, the mapping

T1 (λ) : {ζ0,B0} 7→ {ζ0,B0 + λ∆0 (ζ0)} (2.183)

takes perfect fluid spheres into perfect fluid spheres. Furthermore, it has idempo-

tence.

Thus, we will find the relation of all three transformations as follows:

2.8.1 Algorithm and proof for calculation

In the 1st BVW transformation, its algorithm defines the summation’s term

(∆0 (r)). Then, we substitute this term into an ODE for B (r) and find its value
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which is above. In transformations from new technique, its algorithm uses the

integrating factor method to directly find the solution B (r). Also, if we know an

initial B0 (r), then we can take B (r) in the term of B0 (r). In the new convenient

transformation theorem (T0), its algorithm adds the factor Λ multiplying with an

initial B0 (r), then find its value. The comparison of these transformations is how

complex these algorithms are. The first and the third transformation theorems

are just substituting for each the summation’s term as we define an ODE for

B (r) and find its value but for the second, we need to know the integrating factor

method before finding the solution B (r) and define an initial B0 (r) to derive the

summation’s term. Hence, the first and the third transformation theorems will

reduce the steps of algorithm.

2.8.2 The summation’s term and its amounts of terms

By considering each of these three summation’s term, the 1st BVW transfor-

mation has an easy way to compute since there is no second derivative of ζ (r).

Also, it is easy to make the mathematical program such as this maplet for calcu-

lating new B (r) because the second derivative of ζ (r) does not sometimes exist.

For the second, it has nearly the same amounts of terms in computation but it

has the second derivative of ζ (r), then we need to find it before calculating. For

the third, it has the least amounts of terms in computation although it has to

know an initial B0 (r) for solving. Instead of its difficulty, it is useful to bring an

initial B0 (r) for calculating. However, if we want to transform some perfect fluid

sphere with an initial B0 (r), then it is preferred to the third transformation.
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Transformation 1st BVW Integrating factor New convenient form

Number of terms many moderate few

ζ ′′(r) exists No Yes No

Using B0(r) No No Yes

Idempotence Yes Yes No

Complexity Yes Yes No

Table 2.4: Comparison between three transformations.

2.9 Conclusion

In this chapter, we have introduced many theorems, and corollary. These will

help us generate the new metric of perfect fluid spheres easier. Instead of explain-

ing the details of the analysis yet again, we would like to stress a few points that

we believe are useful to understand the overall concept of these transformations

as the followings:

• The first theorem (Integrating factor) can be used to generate new Beta

with fixed Zeta where new Beta comes from summation of the initial Beta

and a term that consists of an integrating factor with an arbitrary constant.

This theorem is the same as the first theorem in [26] but less terms for

calculating. This theorem uses the method of solving ODE by using an

integrating factor.

• A binary operator on perfect fluid spheres called “summation” will be used

with the second transformation in [26] to construct additivity of the second

transformation to generate Zeta with fixed Beta.

• Weighted means can be used to generate new Beta by finding weighted
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means of perfect fluid sphere with fixed Zeta for each Beta. The proof of

this theorem is easy but it gives us more advantages than we expect. For

instance, if we need to eliminate some constants that we do not know, then

we can choose suitable weights to eliminate them as desired.

• The third theorem (new convenient transformation theorem) can also be

used to generate new Beta with fixed Zeta which is consistent with the first

theorm. But the method to get new Beta is different. Instead of summation,

this theorem uses a multiplicative factor with the initial Beta to generate

new Beta. Again, this theorem is equivalent to the first theorem in [26] and

the first theorem in this thesis. However, this theorem can be used with

the least number of terms for calculating. Thus, it should be called a new

convenient transformation theorem.



CHAPTER III

CONCLUSION

In general, there are many ways to find solutions to various problems. Indeed,

we need the best way for deriving our solutions as required. For instance, if we

can reduce the steps or modules used in calculating the solutions, then our tasks

will be more conveniently completed. Moreover, we can reduce not only the

algorithms but also complexity, variables and calculations. In physics, we would

like to extend theorem from a few cases to general cases. In this thesis, there

are not only theoretical physics but also applied mathematics and computational

programs for calculation.

3.1 The main concepts and analysis of this thesis

Firstly, in chapters one and two, we highlighted the key features: special

relativity and general relativity. Before we derived the solutions to the problems

related to these relativities, we had to learn about the physical values such as

tensors (stress energy tensor, metric tensor, Riemann tensor, Ricci tensor, etc.).

All physical values used in this thesis come from relativity. However, we had to

understand special relativity before learning general relativity since it is easier to

comprehend special relativity. Then we extended this relativity to general relativ-

ity. These first three chapters were background information for the construction

of our researches which appeared in chapter four.

In chapter three, we focused on the solutions of black holes in the form of per-
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fect fluid spheres. Mainly, in this thesis, we have developed a few transformation

theorems that map perfect fluid spheres to perfect fluid spheres using all related

coordinates. Moreover, we have established other algorithms or different ways

that are equivalent to the first BVW transformation theorem for upgrading meth-

ods and advantages such as reducing operation counting and complexity. Hence,

this concept makes the title of this thesis “Algorithmic simplification of solution

generating theorems for perfect fluid spheres in general relativity”.

In chapter four “Mathematical programming with maplets”, we also con-

structed a program for finding our solutions as required. Many times, the cal-

culation process in physics can yield the solutions with some errors because of

inaccurate input process, runtime error, and wrong codes in mathematical pro-

gram, etc.

3.2 Additional information

In this thesis, there are also algorithms and examples for finding physical

values such as Riemann curvature tensor, Christoffel’s symbol, Ricci tensor and

Einstein’s tensor for each coordinates.

At last, we would like you to comprehend the meaning of “exact solutions”

which satisfy the “exactness” conditions. In mathematics, there are many condi-

tions of exactness such as integrating factor of first and second order differential

equation. But, in physics, there are more and more conditions of exactness such

as the 3D Navier-Stokes equations, Schrodinger equation for modified Kratzer’s

molecular potential, pendulum Differential Equations, etc. Finally, if we can de-

velop this research further, we may further explore “non exactness” conditions

which extend to general cases.
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APPENDICES

APPENDIX A

ANOTHER ALGORITHM FOR FINDING SOLUTIONS

Consider 1st order linear differential equation

a(x)u′(x) + b(x)u(x) + c(x) = 0. (2.184)

If one solution is known, say u0(x) then the *useful* trick for finding the

general solution is to make the additive substitution

u(x) = u0(x) +Q(x), (2.185)

since then the differential equation for Q(x) is very simple

a(x)Q′(x) + b(x)Q(x) = 0, (2.186)

with solution

Q (x) = exp

(∫

b (x)/a (x)dx

)

. (2.187)

This was the basis of our (BVW) old theorems.

“New convenient” theorem is based in contrast on the multiplicative sub-

stitution

u(x) = u0(x)Z(x), (2.188)

since the differential equation for Z(x) now is simply
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a(x)u0(x)Z
′(x)− c(x)Z(x) + c(x) = 0. (2.189)

This is a special first order linear ODE with special coefficients and with a

particularly simple solution

Z (x) = 1 + k exp

(∫

c (x)/[a (x) u0 (x)]dx

)

, (2.190)

so that the general solution is

u (x) = u0 (x)

[

1 + k exp

(∫

c (x)/[a (x) u0 (x)]dx

)]

. (2.191)

The point is that although you now need to know u0(x) explicitly to do the

integral, sometimes it turns out to be an easier integral to do.

APPENDIX B

MATHEMATICAL PROGRAMMING WITH MAPLETS

Introduction

In this section we introduce a mathematical programming tool, “maplets”. The

maplet software package resides on top of the Maple symbolic calculator, which

is an advanced calculator for mathematics, that is, a program that has many

packages that can be used to calculate any areas of mathematics. Moreover,

Maple is also useful for creating teaching files which are effective, accurate, and

faster than manual calculation. Additionally, these mathematical programs can

be used to check correctness of analytic solutions, or verify numerical solutions

that are extracted if analytic solutions do not exist.

A maplet is a powerful mathematical program for calculation and solving prob-

lems in all areas of modern mathematics using a Graphical User Interface (GUI,
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sometimes pronounced gooey) which is a type of user interface item that allows

people to interact with programs in a direct manner. A maplet program running

under Maple uses Maple commands to create a Graphical User Interface for using,

for example, the viewer, popup menus, input and output dialog or check boxes.

Given recent developments in general relativity, the evolution of an easily-used

mathematical program for calculations in general relativity is important for con-

venience [46]. In this thesis, these maplet programs given are examples of finding

the exact solutions of the perfect fluid spheres. A maplet consists of one or more

windows which interact with the user by means of buttons, checkboxes, text fields,

and other standard graphical controls [46–49].

Figure 2.7: This figure shows the results when we insert input variables through

maplets, these programs send input variables to Maple to calculate and send back

the solutions to maplets to show us the output.

While Maple is a powerful problem-solving tool in advanced mathematics, the

cost of this power is moderately high. Although Maplesoft products are relatively

expensive, it gives us many more tools than we originally expected, especially

with the latest version having user-interface builder so that we can make ourselves
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customized interfaces.

How to construct maplets?

Figure 2.8: maplet builder

Briefly, the 1st box consists of tools such as bodies (buttons, viewers, boxes),

commands, layouts, toolbars, menus, dialogs and others which are used to build

user-friendly interfaces for clicking, inserting and viewing output. Next, the 2nd

box is a panel for putting tools from 1st-order box into the 2nd box in their desired

form. Finally, we have to insert commands (Maple code fragments) for calculation

into the 3rd box. Then, saving to a maplet file (*.maplet), the dedicated program

is ready to be used.

The particularmaplet we developed is called “Program for Perfect Fluid Spheres

(Theorem 1-4)”, and is designed to check and find new exact solutions for perfect

fluid spheres by applying theorems 1 to 4 of [26, 30, 37].
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Figure 2.9: This is a maplet application for finding new exact solutions for perfect

fluid spheres by applying theorems 1 to 4 of references [26, 30, 37].

User guide

To find the new exact solution of perfect fluid spheres by applying theorems 1 to

4, we need to understand the basic features of the buttons, textfields, and viewers.

From figure 2.10, this textfield is used to enter the value of “Beta”, B0(r), with

default value “1”. We can enter this Beta using standard Maple code as required.

The “Default” button is used to reset value in textfield of “Beta” to the default

value “1”.

Figure 2.10: Textbox for input B(r)
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Figure 2.11: Toggle to calculate new B(r)

By using theorem 1, we know that whenever {ζ0(r), B0(r)} is a perfect fluid

sphere, then {ζ0(r), B0 (r) + λ∆0(r)} is also a perfect fluid sphere, where λ is an

arbitrary constant and ∆0 = ∆0 (r) such that

∆0(r) =

(

ζ0(r)

ζ0(r) + rζ ′0(r)

)2

r2 exp

{

2

∫

ζ ′0(r)

ζ0(r)

ζ0(r)− rζ ′0(r)

ζ0(r) + rζ ′0(r)
dr

}

. (2.192)

Indeed, we do not need to know ∆0(r) (since calculating ∆0(r) is the job of this

maplet). So we just input B0(r) in the textfield “Beta” in figure 2.10 and then

click “view” button in figure 2.11. So new B1(r) is generated as in figure 2.12 as

below.

Figure 2.12: Output B(r)

Figure 2.13: Textbox for input parameter λ

When we want to specify λ, we can specify this by inserting λ (or any other

parameter name) in the textfield “lambda” in figure 2.13 and then click “view”

button in figure 2.11. The new Beta is generated as in figure 2.14 as below.
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Figure 2.14: Output B(r)

Using theorem 2, we know that if {ζ0(r), B0(r)} is a perfect fluid sphere, then

{ζ0(r)Z0(r), B0(r)} is also a perfect fluid sphere, where Z0 = Z0(r) (see [26, 30,

37]). Considering figure 2.15 below which is the textfield “Zeta” for entering

(ζ0(r)). To generate a new Zeta is similar to Beta as above, the user does not

need to calculate Z0(r), the maplet does it for us.

Figure 2.15: Textbox for input ζ(r)

Figure 2.16: Toggle to calculate new ζ(r)

By applying theorem 3 and 4 to the metric, since theorem 3 is the composition

of theorem 1, then theorem 2, we can click button “New Beta” before “New Zeta”

. Similarly, theorem 4 is composition of theorem 2 followed by theorem 1 — we

just click button “New Zeta” before “New Beta” .
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Other features

Several other features we built into the maplet are as follows.

1. Check Button

Figure 2.17: Toggle for verification purposes

The “check” button and textbox are used to verify that {ζ0(r), B0(r)} really

is a perfect fluid sphere. After we input {ζ0(r), B0(r)} in their respective

textfields and click the “check” button, the output is “yes” or “no” . “Yes”

means {ζ0(r), B0(r)} is a perfect fluid sphere. In contrast, “No” means

{ζ0(r), B0(r)} is not a perfect fluid sphere.

2. Metric

Figure 2.18: Toggle to generate output metric
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The “Metric” button is used to view the spacetime metric

ds2 = −ζ0(r)
2dt2 +

1

B0(r)
dr2 + r2dΩ2, (2.193)

when we insert ζ0(r) and B0(r). The output is shown as below in figure

2.19.

Figure 2.19: Output metric when we insert ζ0(r) and B0(r) as shown

3. Pressure and Density

Figure 2.20: Toggles to calculate pressure and density

These “Pressure” and “Density” buttons are used to view their respective
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values as calculated by these formulae:

Gtt = 8πρ, (2.194)

Grr = 8πp, (2.195)

where Gtt and Grr are components of the Einstein tensor (in Schwarzschild

coordinates) with metric

ds2 = −ζ0(r)
2dt2 +

1

B0(r)
dr2 + r2dΩ2. (2.196)

Conclusion

The mathematical program, called Maplet, in this research, will help us to

find new parameters of the perfect fluid sphere with the first, second, third, and

fourth transformations in [26]. Moreover, this program can be used to check that

if parameters are perfect fluid spheres and also has tools that check their metrics

whether they are. Finally, this maplet helps us to find the solutions of perfect

fluid spheres easier and faster.

APPENDIX C

ALBERT EINSTEIN’S BIOGRAPHY

Albert Einstein was born on March the 14th , 1879, in a town called Ulm in

southwest Germany. His father, Hermann Einstein, was in electrical equipment

business. Later the business failed so his family moved to Italy, but he stayed at

Munich, to pursue his studies at Luitpold Gymnasium.

When Albert was young, even though he had some speech difficulties, he was

the top student at school. He was a slow talker, pausing to consider what he would
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say. As he grew older, he experimented by making models, mechanical devices

and showed keen interest in mathematics.

In 1905, he received his PhD from the University of Zurich and had pub-

lished four scientific papers. One introduced his special relativity and another his

equation which related mass and energy.

In 1909, he became an associate professor of theoretical physics at Zurich and

professor at the German University in Prague in 1911. Then he returned to the

Institute of Technology in Zurich the following year.

In 1914, he was appointed Director of the Kaiser Wilhelm Institute for Physics

and Professor in the University of Berlin. During that year, he became a German

citizen and published his general theory of relativity later in 1916.

In 1921, Einstein received the Nobel Prize in Physics for his discovery of the

law of the photoelectric effect and his work in the field of theoretical physics.

In 1920’s, he had lectured in Europe, North and South America and Palestine,

where he was involved in the foundation of the Hebrew University in Jerusalem.

In 1933, Einstein emigrated to America as Nazis took power in Germany. He

accepted a position at the Institute of Advanced Study in Princeton and took US

citizenship.

He retired from the institute in 1945 and continued to work towards a uni-

fied field theory to construct a merger between quantum theory and his general

relativity. He also continued to be active in the peace movement and in support

of Zionist causes and in 1952 he was offered the presidency of Israel, which he

declined.

Albert Einstein died on April the 18th , 1955, in Princeton, New Jersey.

In his lifetime, he received honorary doctorate degrees in various fields from

many European and American universities. The leading scientific academies
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throughout the world considered it a privilege to award fellowships of their in-

stitutes to Einstein. He gained numerous awards, some of the most important

being the Nobel Prize, Copley Medal of the Royal Society of London and Franklin

Medal of the Franklin Institute.

Albert Einstein, a German-born theoretical physicist, was considered the most

famous scientist of the 20th century. He is not just a role model for teachers, but

also an inspiring personality for students of science all over the world [53].
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