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CHAPTERI

INTRODUCTION

1.1 General

It is well-known that a small-deformation analy$ flexure-dominating
structures (e.g. beams and rigid frames) basedapfjnon linear kinematics, linear
constitutive relation and fully decoupled axiai=dery interaction (e.g. [1-2]) can lead
to results that are of insufficient accuracy, esgBcwhen the displacement, rotation
and curvature of the stiucture are large and thal-bBending interaction becomes
significant. A well-kngwn egase is . the P-delta effgdenomena; presence of the
compressive force within the membér""'generally wetlde bending moment higher
than that obtained from linear analysisx‘;v »-

To clearly demonstrate such‘c_quIing effect, lehstder a simple case
associated with a simply-supported beé-_rr_lksubjea:teajttansverse load Q at the mid
span and an axial load P"at the right end as itetica Figure 1.1. A linear structural
analysis, when applied to selve this par-ti'culatbmm, provides no information about
the influence of the-axial load P on the bendingn@piinduced at any cross section;
in particular, results-from the analysis indicatattihe maximum bending moment

occurring at the mid span is independent of P anéqual to QL/4. However, it is

Q
X
Mﬂ?% i

Figure 1.1 Schematic of simply supported beam stdyjeto transverse load Q and

axial load P



evident that as the member deflects under the racfcthe transverse load Q, the
horizontally projected length of the member becorbes L and the axial load P
produces an extra bending moment,Rat the mid span of the beam in addition to
that caused by the load Q whevg denotes the downward deflection at the mid span.
As a consequence, the actual maximum bending moatetiite mid span becomes
QL/4 + PAy, if P is in compression and QL/4 -ARif P is in tension. As the axial
load P (in compression) becomes large in compansitim the buckling load of the
beam, the deflection, can be substantial and the shortening e becorgesicant.
This renders the maximum bending moment predictgdtie linear analysis
significantly deviates from the actual value.

Another limitatiop=of.the linear analysis is thdt provides very limited
information on the stability of ihe structure (eébgurcation loads and identification of
stability status of structures) and as well astigleavior beyond a point of bifurcation
(i.e. post-buckling behavior). ‘Te clea'r“ly---demonmtrauch limitation, let consider a
perfectly straight cantilever column of eonstamixfiral rigidity El and length L and
subjected to an axial load P as ShOV\!n__ vschematid:alll}igure 1.2(a). The linear
analysis, when applied to this particular'"p’rdblelimply yields a trivial solution that
the column remains in a straight configuratien &ory value of the load P; i.e. the

relation between the load P and the lateral defiect the tip of the column, denoted

El, L

- - A
(@) (b)

Figure 1.2 (a) Schematic of perfectly straight deamér column subjected to axial

load P and (b) relation between load P and tiped&tinA.



by A, is indicated by the blue line shown in Figure(ft)2A better solution can be

obtained if the second order analysis (Timoshenko Gere, 1972; Sampaio and
Hundhausen, 1998) is employed; results from thalyass are indicated by the red
line shown in Figure 1.2(b). While the second orderalysis can predict the

bifurcation or buckling load of the columnc(” n°El/4L?), the behavior beyond the

bifurcation point cannot be predicted (the tip defion beyond the bifurcation point
is still indeterminate) according to the limitatigqgpsed by a linear kinematics
assumption. If an exact kinematics (i.e..an exaetion among the curvature, rotation
and deflection) is employed as in the casc.of #ngel curvature analysis, the post-
buckling behavior of the column can now be captasdndicated by the dark line in

Figure 1.2(b).

The limitation of the Jinearized-kinematics-basedalgsis becomes more
apparent when applied‘to/very slender or very fillexistructures where change of
their configuration is sensitive to load applicaso For instance, a moment-resisting
cable, shown in Figure 1.3,/can undergo very latigplacement and rotation under
service loads. For this particular situation, a @enanalysis based on the linear
kinematics and enforcement of static eguilibriunthie undeformed configuration is
insufficient and cannot predict behavior of suctomplex structure in an acceptable

level of accuracy.

—— Deformed configuration

Undeformed configuration

Figure 1.3 Schematic of the deformed and undeforooafigurations of a moment-

resisting cable under service loads.

Besides mathematical curiosity and computationallehge, necessity to

incorporate proper nonlinear kinematics in the raathtical model is obligatory and



arises naturally in numerous practical applicatiassdescribed above, e.g. analysis
and design of structural components where the #paatling interaction is crucial,
analysis of very slender and flexible structureshsas bending resisting cables and
beams of a large span and high flexibility where displacement and rotation can be
substantial, the determination of the bifurcatiolad of axial-dominated structural
systems and their post-buckling behavior, etc. Bueomplexity of the boundary
value problem posed by the governing nonlinear rkisiics, works concerning large
curvature analysis of flexure-dominating: structuaes still relatively less extensive

than those based on linear analysis and this.atesvthe current investigation.

1.2 Background and Review

Linear structural amalysis® has. widely been usedth@ analysis and design
procedure of flexure-dominating structures (e.@nbe and rigid frames) as a result of
its simplicity, sufficient accuracy of analysis u#s for various practical situations,
and its vast availability in‘a form of commerciagsages. The key assumptions that
are central to this analysis technigue include (hpstatic equilibrium of the structure
is enforced only on its undéformed configuratioR) the constituting material is
linearly elastic, and (3) the linearized kinematiedating the deformation and
displacement is ‘pertained (Gallagher and Ziemia@002 West, 2002). As a
consequence of these assumptions, the correspondiatpematical model is
significantly simplified and renders an ease in ta&struction of its solution; in
particular, the fesponseof such:a mathematicaleinsdy linear function of external
applied loads.;Beside its simplicity, the modeleo$f no answer to various questions
of practicalyimportance- for. instance,, the., critidabd, and stability status of the
structure, ‘the post-buckling behavior, change dfnsss of the~structure due to
change of its geometry, etc. Note further that malgsis of various structural
problems (e.g. modeling of very slender and flexibtructures or structures with
load-dependent stiffness) the constitutive modaledaupon linear elasticity is still
sufficient and applicable for a wide range of apglioads; however, the major source
of error from linear analysis is due to the pregeat geometric nonlinearity. This

type of nonlinearity becomes more apparent wherchiamge of configuration of the



structure from the original state is significantiaas a result, the assumptions (1) and
(3) described above constitute no longer the ggaataximation of real behavior of
the structure. This therefore necessitates anratieg of the geometric nonlinearity
into a process of mathematical modeling or stradtigiealization.

One simple approach that has extensively beem weemodel geometric
nonlinearity is known as the second order analyKimwinkler and Seneviratna,
1998; Li, 2001; Silvestre and Camotim, 2007). Tihdluence of the geometric
nonlinearity was incorporated into the mathematicabdel by forming static
equilibrium equations based upon geemeliy of tmactire in a deformed state.
Treatment of geometric nonlinearity in this manmnenders the model capable of
exploring certain characterisucs of the structweh as the critical or bifurcation load
and its stability status (Ffimeshenko and Gere, 1$&2npaio and Hundhausen, 1998)
and the influence of theé axial load on the bendimyment and the stiffness of the
entire structure (Krawinkler and Seneviratna, 1998yestre and Camotim, 2007).
While the technique‘provides an answer to sevenekiipns as the linear analysis
cannot, the second order analysis still posseseesra limitations due to its
underline assumptions. For‘instance, it providesnmormation on behavior of the
structure beyond points of bifturcation (i.e. posickling behavior) and provides
results of insufficient accuracy when the displaeatrand rotation of the structure are
relatively large and: the discrepancy between -théordeed and undeformed
configurations is obvious. The key restriction festdrom the use of a linearized
kinematics, i.e! the curvature ofi the;member isiaesi-tohe small and it is related
linearly to the displacement and rotation.

To~further, broaden- the range ,of smodeling, capgbiioncerning geometric
nonlinearity, a more sophisticated mathematical @hottorporating-exact kinematics
was introduced and the associated problem was krasathe “elastica” problem. In
addition to equilibrium equations being set up e tdeformed configuration, the
model uses exact relationship among the curvatieedisplacement, and the rotation.
A first set of studies of elastica problems cantiaeed back to the late eighteen
century according to the work of Euler (1774) aragtange (1770-1773); in those

original works, the calculus of variation and thealytical integration via



representation of solutions in terms of a seriesewatilized with the primary
objective to find an exact elastic curve (the defld shape) of the beam undergoing
large deflections. Later, Kirchoff (1859) addressedanalogy between a problem of
finding elastica of a perfectly straight cantilevalumn subjected to an axial load
beyond the value of its buckling load and a probhoscillations of a pendulum.
With such analogy, a closed-form solution of thas&t curve can be constructed
using a so-called, elliptic integral method. Sintben, a series of investigations
concerning the elastica problem has continuousgnbmnducted (see Timoshenko,
1953 for extensive historical discussion).

The large curvature analysis based on the exaetriatics has, nowadays, gained
significant attention and,.extensively, been ugeyestigate various aspects of post-
buckling behavior of strugtures: This IS owing tos@nificant progress on the
computer-aid tools and.€xisting powerful numerteahniques allowing the treatment
of more complex boundary value problems. Here, wersarize certain relevant
works aiming not only te present the series ofdmsal breakthrough but also to
demonstrate the current gap of knowledge and tiggnal aspect of this current
investigation.

The first set of works sumimarized below is assedatith the study of a single
member subjected- to_various end conditions andiexpploads. Wang (1997)
employed, instead of the classical elliptic intégrethod, the numerical method
based upon the perturbation technique to investiga post-buckling behavior of a
prismatic, cantilevergcolumn subjected:tora)poe#d at,the tip. The post-buckling
behavior of the same column under the combinedomchietween a uniformly
distributed doad on the-entire-member and .a, conatmt load at the tip was later
examined'by Lee (2001). In"his ‘analysis, the nucaémtegration procedure based on
Butcher’s fifth-order Runge-Kutta method was uglizto construct the numerical
solutions. Phungpaingam and Chucheepsakul (200p)ogad the elliptic integral
technique and the shooting method to analyze algisypported beam of variable
arc-length and subjected to an inclined followercéoat any location within the
member. Vaz and Silva (2003) generalized the wo\Wang (1997) by replacing the

clamped end of the column by a rotational spring.their investigation, they



employed a two-parameter shooting method to expboté the buckling and post-
buckling behavior of the column. Results from trstirdy revealed that the rotational
constraint at the end of the column significanthfluences the post-buckling
configuration. Madhusudan et al. (2003) extendedwibrk of Lee (2001) to explore
the influence of nonuniform cross section on thestyimckling behavior of the
cantilever column. The problem is cast within thatext of dynamic formulation and
the resulting nonlinear equations are solved bguathi-order Runge-Kutta scheme.
Wang et al. (2006) reexamined a cantilever. bearjestda only to a point force at the
end. In their work, they employed a homoiopy anedytmethod to construct an
explicit solution of the rotation and displacemanthe free end. Shavartman (2007)
investigated a cantilever-beam with the clamped repiaced by a rotational spring
and subjected to a follower iorce .at the tip. e #mnalysis, the proper change of
variables was applied 0 convert the two-point likarg value problem to the initial
value problem. It was suggested from' this study mbsults can be obtained in a more
efficient manner than'that by the numerical shaptimethod and fourth order Runge-
Kutta method. Recently, Benjaree et al. (2008) @kgd the shooting method along
with the adomain decomposition to further perforange curvature analysis of a
cantilever beam under more complex loading conuitiand containing an inflection
point.

Note that all werks described above are restricpeonarily to structures
consisting of only a single member. Based on extensterature review, work
focusing on the large curvatureranalysis ef stmestieonsisting of multiple members
is still limitedgFor instance, Dado et al. (200#)vestigated the post-buckling
behavier ofia-cantilever, column, consisting of tvegments .of different properties
connecting by a rotational spring. In their wothe tfollowing' three-different methods
were used: a semi-analytical method based upogdherning equations cast in terms
of elliptic integral and being solved by Newton-Rapn technique, the numerical
integration technique, and the large displacemémtef element analysis using
NASTRAN. Result from their study revealed that feei-analytical has proved to be
computationally efficient and accurate in comparisevith the other two.

Suwansheewasiri and Chucheepsakul (2004) used ligmiceintegral method to



investigate the buckling and post-buckling behawbra two-member, inextensible
frame structure of a particular configuration; bttle symmetric and non-symmetric
post-buckling shapes of the structure were invastdy Most recently, Hu et al.
(2007) employed the differential quadrature elenmeathod (DQEM) to perform the
large deformation analysis of the frame structw@#aining discontinuity conditions.
Note that while the proposed method seems to bepotationally efficient, quite
general, and applicable to large displacement amsalgf structures with general
configurations, the method itself is an @pproximsteeme and the discretization of
the problem must be properly treated in.erder taiobconverged numerical results.
To the best knowledge of the investigator, a Syatentechnique based upon the
simple direct stiffness method furnishing by ex@leiment tangent stiffness matrices
is not available, and_the Current investigationpi®posed to close this gap of

knowledge.

1.3 Resear ch Objective L 4

The proposed investigation aims 0 /develop a syatiemefficient and accurate
technique that is capable of performing large cuumeaanalysis of flexure-dominating
structures (e.g. beams and- frame) of arbitrary igardtions and under various
loading conditions. The primary objective is to éaypsueh the developed technique
to explore the behavior and various aspects of seand frames when the exact

kinematics is taken into consideration.

1.4 Resear ch Seopes

Structures-focused on the proposed.investigatiertvan-dimensional and consist
of a collection of ‘'straight ‘and prismatic memb&ach individual member is made of
a homogeneous, isotropic, linearly elastic mateBath shear and axial deformations
(extensibility) are negligible and can be discareethout loss. The development is
restricted to the case that external loads ardexpphly at joints or defined node. The
numerical technique proposed is to be implementeéd an in-house, computer
program using FORTRANO9O0.



1.5 Resear ch M ethodol ogy

A computational technique proposed is based upsend-analytical approach. A
classical elliptic integral technique is employedierive a complete set of differential
equations governing each individual member. Thisofeequations is to be solved
first for a member of simple boundary conditiong}. ¢he simply-supported beam, to
obtain useful basic solutions. Such resulis are timed along with the coordinate
transformation and direct-and indireci differentins to form the exact element
tangent stiffness matrix for a two-dimensional memiA direct stiffness method is
proposed to assemble the“element tangent stifempsstions into the tangent stiffness
equations for the eniire structure.: The resultigtean of nonlinear algebraic

equations is to be solved hy Newton-Raphson tecieniq

1.6 Resear ch Significance v

The current investigation proposes a §ystematicrabdst technique that is well-
suited for large curvature analysis of twofdi.mena]oerxure-dominating structures.
The attractive features of the-proposed techniaueshat it is based primarily upon a
simple direct stiffness _strategy which thereforevat the treatment of structures of
general geometry and consisting of multiple membarsl that the exact element
tangent stiffness matrix for each element is exeliwhich therefore allows the
analytical solutiom (withinytheyround/ off-and; sodut-errors)-to be obtained without
mesh refinement.

An.-additional-contribution-of, the propesed .[nyveatign is, that the developed
technique, after™ performing “careful “verificationanc'be ' used~to generate the
benchmark solutions such a general nodal displaceareleformed configuration for
various structures; these reference solutions aefulifor verification of any new

developed numerical techniques.



CHAPTER II

BASIC EQUATIONS

This chapter briefly summarizes key assumptionsdha pertinent to the current
development and the integration of three basic wuns i.e. static equilibrium,
kinematics and constitutive relation, to form a.eétdifferential equations governing

behavior of an individual flexure-dominating member

2.1 Assumptions .

Basic assumptions employed in the developmentmodthematical model and the
derivation of a set of key governing differentiajuations for a flexure-dominating
member are summarized as follow: _

(1) The member is perfectly straight and prismatic;

(2) The constituting material’is isotropﬁ:;,wfi"-hqaellastic and homogeneous across the
member; FE

(3) The displacement, rotation-and curvature degae through exact kinematics;

(4) Static equilibrigm is enforced In the defornemhfiguration;

(5) Loads acting within the member are absent;

(6) The member jisiinextensible;

(7) The cross section remains plane before and @ifiergoing deformation; and

(8) Shear.deformation.is.negligible.

2.2 Basic Equations

Let consider a perfectly straight, prismatic membktength L and moment of
inertia | and made of an elastic material of Yoamgodulus E. Both undeformed and
deformed configurations of the member are showrmettically in Figure 2.1(a). The

undeformed configuration of the member occupiesaght line defined by x [0, L]
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and y = 0 and, resulting from loads acting at bertkls, it moves to a new, deformed
configuration. In particular, the material point, &) in the undeformed configuration
displaces to the same material point (x + u, vihim deformed configuration where u =
u(x) and v = v(x) denote the x-component and treyponent of the displacement of
the material point (x, 0), respectively. Let=f f(x), fy = fy(x) and m = m(x) denote a
resultant internal force in x-direction, a_ resultamternal force in y-direction, and a
resultant bending moment about the z-axis (the pristing outward of the paper),

respectively.

y
(o o 01t v+ dv) fy+dfy
@fm
ds fy+dfy
ds £ - /
m
(XHu;v)
s fy
dx /
T T X
(x,0)  (x+dx,0) 5
(@) (b)

Figure 2.1 (a) Schematic of deformed and undeforoaedigurations and (b) free body

dragram;of infinitesimal-element ds

Let.dx and.ds_be.the. same. infinitesimal materiaments .in the undeformed
configuration' and“in the 'deformed"configurationgprectively.“In ‘particular, dx is a
straight element connecting a point (x, 0) to anpt + dx, 0), and ds is a curve element
connecting a point (X + u, V) to a point (x + dxu+ du, v + dv) as shown in Figure
2.1(a). From geometric consideration of the eleminalong with the assumption (6)
(i.e. ds = dx), components of the displacement di varcan readily be related to the

rotation at any point of the member, denoted byy
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sind :ﬂ , (.1
dx
co =1+ (2.2)
dx

By enforcing static equilibrium of therinfinitesahelement ds in the deformed
configuration (see Figure 2.1(b) for the free-baliggram of the element ds) and then

using the geometric relations(2.1) and (2.2)gdds to three differential equilibrium

equations
df 4

x-0Q : 2.3
™ (2.3)
df, :
—=0, -4 2.4
™ | (2.4)
dm .
—=f,sinb+f cod . ] A (2.5)
dx S

Clearly, the first two equilibrium equations (2a)d (2.4) simply imply that the internal
resultant forces,fand f are constant throughout the member and they chw lfe
obtained if the’end forces are:knewn.

Upon exploiting the assumptions (6), (7) and {Bg value of normal strairz)(
varies Jinearly~as~a funection of the ,distance- znfrohe neutral,axis. The explicit

expression'is given by

€ =—-2K (2.6)

wherex is the curvature of the cross section and the sngign simply emphasizes that

the positive curvature produces a compressive rostnain at any point above the



13

neutral axis (z > 0). Combining the strain-curvattglation (2.6) and the assumption (2)

and then computing the moment resultant acrossdbgon leads to a well-known, linear

moment-curvature relationship

m=Elk . 2.7)

Upon using the definition of the curvature/alonghwhe inextensible assumption (i.e. ds
= dx), it leads to an exact-kinematic relation

do dob 2.8)

dsza

Combining (2.5), (2.7) and (2.8) yields an altenetorm of the moment equilibrium

equation
25 . n i
3—52 =f,sind +f cod =7/, (2.9)

where non-dimensional parameters are defined by/L, f,=f L >l and f,=fL2fEl.
To suit the direct integration of the differenteguation (2.9), a term on the left hand side

of (2.9) is first re-expréssed as

dz? _d (deJ_ dei[deJ_ 14d (@J (2.10)
de?  dg dg

de) ‘dedolde) 2do
With use of the relation (2.10), the equilibriumuation (2.9) can directly be integrated

to obtain

2
(g—Zj = C—2f cod) + 2f sind (2.11)
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where a constant C, arising form the integrationcess, can be determined from
boundary conditions. It is worth noting that, frafme moment-curvature relationship
(2.7), the normalized curvatud®/d¢ possesses an identical sign as that of the bending
moment. As a consequence, only one of the twoisakibfdo/dg obtained from (2.11) is
physically admissible and such a cheice dependsagoiy on the sign of the bending

moment. The unique solution can be expressed ameise form as

g _ _ 3(m) _ (2.12)
b Jc—2f co® + 2f sind
where g(m) is a moment-dependence function defined by
N 1 , m>|
9(m)= {_1 < (2.13)

with m = mL/El denoting the normalized beﬁding moment. Combir{idd2) and the
geometric relations (2.1) and (2.2) leads to twitedintial equations governing the two

components of the displacement u and v:

& (f)sind
dd Jc-2f,cod 2fesind

(2.14)

du g(M)(cod —1)

do _ n 1 (2.15)
do \/C— 2f,co® i 2f,sind

where i=u/L and V=v/L . A set of three ordinary differential equations @),1(2.14) and

(2.15) constitutes a basis for the developmenseful results presented in the following chapter



CHAPTER |1

DIRECT STIFFNESSMETHOD FOR LARGE CURVATURE ANALYSIS

In this chapter, a set of geverning differentiguations established in the
previous chapter is utilized to form essential gdjents (e.g. element tangent stiffness
matrix and tangent stiffness mairix of‘the entlr@i@ure) central to the development of
the direct stiffness method.forlarge 6Urvaturelymia To aid such development, some
fundamental results aresfirstsobtained for the asa simply supported beam and such
results are subsequently employed aipng with tke d& coordinate transformation to

arrive at desirable results.

3.1 Resultsfor Simply Supported Beam .
Consider a prismatic, simply—suppcirled beam oftleth, moment of inertia | and
Young's modulus E and subjected to end;fﬁé'mentﬁ fns} and end force,§ as shown

in Figure 3.1. =5 -

Uz
m1

fx1—|—>I i % %] > fyo

Figure 3.1 schematic of simply supported beam stdajeto end moments {inn,,} and

end force
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The essential boundary conditions of this particbkzam are given by

u@©=0,)=0 , (3.1)

v(0=0,)=0 , (3.2)

v(0=0,)=0 . (3.3)

Similarly, the natural b sclavith the prescribed end moments

{m1, m,} and end for

do . mL

~Z(0=0)=m =—= 3.4

£ =00 ===, (3.4)

do .~ m,L

=20=0.)=r. = 3.5

£ 0=0) =, =2 (35)

PO f.L?

f =f =2 3.6

X X2 EI ( )
N .\:"

By imposing the moment b 3. )%Icwith the relation (2.11), the

constant C can readily b‘e obtained as

oo s HBANENTNYINS
smst.tﬂnﬁ'lmmm%l PIANYIAY v 16, o

now become

g
o = SFE, 0,:f,.f,,m,) , (3.8)
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% = 9(M)sird FO ,0,;f,.f,.M,) (3.9)
du . PP
e 9(m)(co® -1)F@ 0,:f.f,.m,) (3.10)
where F is a rotation-dependence function defined b

: . (3.11)

FO 0,;f,.f,.M,) = _ /
\/ﬁ1§ + 2, (cos),—Cosb) - 2f (siib=sin 0)

By imposing the remaining moment boundary condi@m), we obtain an additional

relation relating kinematical and static guantities

M2 — i + 2, (co9, — coshy) — ny (Sin0 .~ sinjelj-: 0 (3.12)

The normalized support reactionzf:xi{,fyl,ﬁjz} can readily be computed by enforcing

|

equilibrium of the entire memberin the deforrhedf'cgnration and results are given by

1’:\xlz_f\x ) 13)

~  m+m

fy1: 12 (3.14)
d

- m, + m

fy2:— 1a 2 (3.15)

wheref, =f L2/l , f, =f L2fEI, f,=f L2/El andd =1+ with {,=u,/L.
Next, let define®’, 0" and V' as the normalized rotation, the normalized

displacement in x-direction and the normalized ldispment in y-direction at any
normalized coordinaté” =x /L, respectively. By integrating equations (3.8)-(.ftom

0=0,t00=0",itleads to
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.
jg(m)F(e 0, f0f,,M)do=¢" (3.16)
01

0 A

j 8()sird FO 0,.f,.f,.M,)do =0 (3.17)
6,

0 R

j 9()(cod — 1) Fg 0,.f,.f,,M,)do =0 (3.18)

6,

in which the essential beundary conditions at #feénd, i.e. (3.1) and (3.2), have been
employed. The relations (3:46)-(3.18) provide a pi@t@ set of equations sufficient for
determining the rotation and two compﬁqents ofdisplacement at any point within the
beam provided that all. unknown quantiﬂés at boitisehave been solved.

By considering the right end. point" 1) and recalling that' =6,, &' =1, and

¥ =0, equations (3.16)-(3.18) when specialized to paigicular point become

0, A o, ,

j S(MFO 0,.f,.f,,m,)d0=1 —" (3.19)

0, s

0, ~ X

j 9(M)sird F© 0,.f,.f,,ma)do=0 (3.20)
6,

0, R R

j 9()(cod — 1) Fl 04,f of,.Me)dd= T, . (3.21)

6,

For a given set of end loadsf {m.;m,}, the unknown dispfacement and rotations
{0,0,,0,} can be solved from a system of nonlinear equati($19)-(3.20) with use of
(3.6) and (3.12) to eliminatef{f }. This implies that the quantitiesff,m,,m,}
constitutes a proper choice of primary unknownghd force method is concerned. In
contrast, if the displacement method is concerrednathe current investigation, the

situation is reversed; i.e. the problem statemew tecomes to find the end loads
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{f,,.m,,Mm,}in terms of the prescribed displacement and st {(, 6,,6,}. According
to the geometric constraint posed by the membedtensibility, the problem indicated
above is not well-posed or, in the other word, §,,0,} cannot be specified arbitrarily.
If { f,.0,,0,} are prescribed instead, the end loads,,,/m,} can be solved from (3.6),
(3.19) and (3.20) and the end displacememian subsequently be computed from (3.21).
However, lack of the displacement componéntrenders a setf{,0,,0,} not well-suited
for treatment by the displacement method:

To circumvent such ineonvenience, wé chooded,.0,.f,} as a set of primary

unknowns. To allowl,be one-ofindependent variables, the strong reaeint posed by
(3.21) must be relaxed.via the introduction of s dual® such that

0, Ll
R=d— j 9(f)co® FO 04f famddd . (3.22)

x1' g
0

Furnished by (3.22), forfany given sediz_{ell,é-z,fx}, the quantities {,,,m, M, X} can

always be determined from /(3.6), (3.19), (3.21) 48®22). It is worth noting that
{ az,el,ez,fx} and the correspondingf{z,rﬁl,mzﬁ} are solutions of the boundary value

problem only if the residuak vanishes, I.ex = 0.

3.1.1 Gradient matrix

Let fy be a vectoredefined by =qfp f]" wheref, = {f_.im, m, %} and f, =
{f.f of .} and”letue be a vector defined by = { ,6,0,.f,} 7. From (3.6), (3.12)-
(3.15), (3.19)-(3.20) and (3.22), it ean be vedfteatf = fy(u) and, from Taylor series
expansion, ‘this| nonlinear fungtiol) . possesses a best linear approximation in the

neighborhood of any vectao, given by

f(s)(u):f(s)(uo)+g(uo)(u_uo) (323)
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whereg is the gradient matrix defined by

of
9= iz{gp} (3.24)
ou © g,

with the sub-matriceg, and g, representing the gradient of the vectgpand vectorf,
with respect to the vectarg), respectively. The explicit definition of the sofatrix gy is
given by

[of Joh, of Jo0,  Of J00 e el Jof ¢ |
om,/ot, om0y amdoos em Jof
o, lot, o, bog® oradlod’/ ém Jot |
| oRlon, oRice, dlordood foRlch|

(3.25)

By denoting g as an entry located at tHB"-riow and {' column of the sub-matrig,, the
sub-matrixg, can readily be Obtaified, in terms of by
, =2l

_glld _gl2d -4, d —Q; ==
1 ~
g :E —S G> T ___Uo2+ Oy O Gz — (3.26)
S GG 0 Gz — G Oa

wheres= (i + f, ).d.

To form the gradient matrig;-it therefore'necessitates‘the construction oftie
matrix g,. As_clearly indicated by (3.6), (3.19),48.20)da(3.22), certain entries of the
sub-matrix can trivially. be obtained,©.g1g Gz =h3= 1= Go= Cand g,= g1 = 1.

With these results, the sub-matgxnow becomes

gpl ng
= 3.27
gp |:gp3 gp4:| ( )
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where the matricego1, Op2, 9p3 andgps are defined by

gpl:[o] J 8)2
9,,=09p5=[0 0 1 , (3.29)

om, /00, om0, o Jof
Upe =| OM,/00, o Jo0, om Jof,| . 3.30)
ORI00, ORIC0, ORIeR,

Determination of the mairig,. is nen-irivial and theoretically requires impliciifferentiations.
The explicit form of suchrthe mairgg. can fl‘.thher be derived for various cases depenalintpe
existence and location of inflection points;\)\n/ithhe member. For instance, a single curvature
member contains either no inflection point or infien points only at its ends while a double
curvature member contains an inflection Wi_thin thember. Presence of the inflection point
within the member poses two potential difficultigsat require a careful treatment; one is

associated with the singularity of-the functiontire inflection point and the other corresponds

to the discontinuity of the momeni-tdependence fan&(m) at the inflection point.

3.1.2 Deter mination of sub-matrix g,

Determination of the sub-matrix, is established for the following three cases: a
member containing [no inflectionfpoint, @ membertaming an inflection point at the
end, and a member containing an inflection poirthiwithe member. Results for these

three casesare sufficient-for-the.developmentathout-further, below.

3.1.2.1 Member containing no inflection point
Consider a beam member where the bending momt> ofor £ < [0, 1] or

m() <ofor ¢ e [0,1]. This particular case arises when the applied srments
{ m,,m,} are non-zero and of the opposite sign. The resplieformed configuration of

the beam possesses a single curvature and, inadditm) becomes a constant function
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with its value equal to either 1 or -1 dependingtlos sign ofm, i.e. 3(m) = Ifor m> 0
and 9(m) = -1for m< 0. It is worth noting that the function F, defihby (3.11), is well-
behaved in the sense that the quantity within tuae root is always greater than zero;
this results directly from the fact that = Ofor the entire beam. Such desirable feature of
F renders all involved integrals nonsingular améréfore, allows a standard procedure
be employed in their treatment.

For convenience in further development, let reregp the governing equations
(3.19) and (3.20) in a form

0, .
Ty(01,0,,f 1) = 8 [ FO40; ff ,1,)d0 -1-0 (3.31)

0y

0, I
T,(0,,0,,1,.f,,M,) =98I B0 0, F.§,m.)d <0 (3.32)
el

and recall from (3.22) that

0y o i &
R = R(0;,0,,U,.1,.f,, g =d=9 [ o8 FO 0, f,,M,)d0 M. (3.33)

x1y xy?
Oy

From the auxiliary relation (3.12), it can be cam#d that

f =f (0,,0,,f,.m, ) " )3

With use of /(3.83), equations*(8:31)"and (3.32) haiy-define”the’ normalized end
moments {h,,m, } as functions of §,,0,,f }, i.e.

fh, = i, 0.,0,,F,) (3.35)

M, =M, ©0,,0,f) . (3.36)
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By taking derivative of (3.31)-(3.33) with respetot{el,ez,fx} along with employing

(3.34)-(3.36) and the chain rule of differentiatiore obtain the relation

Sg,,=-D (3.37)

6F2 afy

(3.38)

(3.39)

Upon using the explicit function form of {;I’z, X }, the matrix S and D can be obtained

mmwyﬂUH?ﬂﬂW§Wﬂqﬂ§
%ﬁaﬁﬂ%mwnwmaﬂ

S— _'zsz i,—is)m ’ (3.40)
$F%

(5_|§2) 1 (5"351) 2 q

$-9 $-F%
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_S(iz_i§2)7"1+ﬂi S(iz_i1sz)7”z+A_1 Siz(cl_cz)+i§12+9i3
S~ 8 m $— % m 5= S
D= _9(i4—i§2)7\,1+; 3(i4_i§2)7" 2+i 9 i4(cl_ Cz)"‘ i§12+9i5 (3_41)
-3 m $- 3% m $= B
_S(iS_i3S2)7\‘1+A& S(is_i §3)>" 2+¥ Sis(cl_cz)"'isslz +9ie
L S~ m $- % m S~ i

where g = sirb;, $ = SiM,, S = , C1 = €c09;, & = C0oPy, x1=fxsl+fycl,

A, =fs, +fAyc2 and integrals noted by

i, = IFB(G,GZ;fx,fy,rﬁz)(je/ _ (3.42)
0, \ .

i,= [F(0.0,if,.f,.m,)sie J/E=Y | (3.43)
iy = [F(0,0,:f,.f,,M,)cod Pz ) (3.44)

6, o _ St LAY A
i,= [F0.0,1,f M)snfed . L (3.45)
b v Y]

9 ) 9

i = fFa(e,ez;fx,fy,rhz)sirnﬂﬁ@ 6 Y (3.46)

O AUEINININYINS
“ARARSII AN INgIaY 7

By solving a system of linear equations (3.37), ol¢ain an explicit expression of the

matrix gp4 in @ form
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I 2i251_ ilsyi_ i4+h i2(51+ Sz)_ ilslsz_ i4 Cl :S'H;z __E; ]
9C3mf rAnl 9C3ﬁ’l ﬁ] Csml ml
gp4 --SD= '2(51+ Sz)A_ '}Slsz_ Iy 2i 25— |1§2 + z“ CvlSZj-CZ _ f:z (3.48)
8C3m1m2 Sgsmz m, Csmz m,
lel"'gz_& Cl%"‘gz__c% 2i2i315_i§i4_i1§_i_6
Cgmy My Csm, M, 9Cs 9

where ¢, =ij,~ij, ¢ =ij.—ii,and&, =i +j,. Clearly, the matrixg,, is essentially
symmetric and it can further be verified thatitaditionally positive definite.
3.1.2.2 Member containing interior nflection point

Consider a beam.member where there exists artioftepoint at an interior point
§, € (0,1) or, equivalently, the' bending moment vanishes &te (0,1) and
mE,)mE,) <0 for g€ [04€ )and &, e f&z,l] This particular case arises when the
applied end momentsfj, .} are non zero and of the same sign. The resulting
deformed configuration of the beam possesses alelauibvature; i.e. the curvature on

both sides of the inflection peint is of ,the,,‘.aoppesmgn. As a result, the moment-
dependence functiog is discontinuous a;_,f_a_nq takes different values on both sides of

the inflection point. For the applied end moments>0,in, < it results in§=-1for
£ e [0,&,) and 8=1fer £ e (,,1] and, for m, <0, m+>(, it results in 9=1for
£ e [0,¢,) and §=-1for ¢ e (§,,1]. Schematic of the_ beam associated with the former
case is shown in Figure 3:2:
At the linfleetion’ peint, a _special: condition assted with vanishing of the

bending moment is given by

do
agw:egzo : (3.49)

wheref, denotes the rotation at the inflection point. Byoecing this special condition,

the constant C can be obtained from (2.11) as
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fx]_ T
Z

i l/#

Figure 3.2 Schematic of pprt o0 end moments of same sign

Uz
o%\ " N
' 0 7 » 1x2

c=2f .C0%), _2f sme (3.50)
By substituting the C(;n A, it leads to
%=9(rh)|:z(e ez,fx,f (3.51)
do
v _ ()i F,(0,0,:f . ) (3.52)
do zA T Xy ,’ ﬂ*"‘n:’e # '
du_ 9(M)(coP -1) v 0 ’ (3.53)
do ' m
where the f““ﬁﬂﬂﬁf}% N9 'W e ‘3

(3.54)

By integrating equations (3.51)-(3.53) over thdrertteam, we obtain

0, o 0, R
‘V|:_I|:z(e ,Gz;fx,fy)d9+ IFZ(G lez;f X’f y)de:|=1 ’ (355)
0, 9,
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0, A 0, A
| —[sind E 6.6,:f,.f,)do+ [sind F @ ,ez;fx,fy)de}o : (3.56)
0, 0,
[ o, o 0, o
|~ [ (cosd—1 £ 0.0,:f.f)do+ [(coso— 3 £ Q 0, ,f y)de} =0, (3.57)
91 ez

(3.58)

the inflection point; thus, all
singular integrals app . ) regispecial treatments. To overcome such

difficulty, a series of varia ory S ifgrod ced to remove and regularize

f2=f2+f? , cosd, = W= . (3.59)

. v ' ‘
terms appearing in the sc ssed as

f Ccos0 — f sin®

ﬁf%ﬁ%ﬂﬂ%ﬂﬂﬂﬂﬁ o

ammmm UAIINYAY

After substltutlng identities (3.60) and (3.61)ar{B.54), the function /now becomes

1

F0.0,0,f) =—=
\/Zfsz[cosez—eo)— cosf-96, )

(3.62)
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Upon change of a variable=r+(6-6,) and use of an identitgosd = 1-2sin’(6/2)

we then obtain

\/4@2 {sinzéj sw@ﬂ

whered, =n+(0,-0,). Finally, we intteduce. another variable transfdtiom

RO 0, )= (3.63)

psing = sin(0/2) wherep.=sin(@,/2) . The function Ein (3.63) now becomes

- 1 o~
J452(p? - psinfh ) 21D Cos)

F, @1, (3.64)

From the relation® ==+ (0 - 0,) and psinp = sinQ/ 2), we obtain the differential relation

betweend to ¢ as

do = o — PO A Pcog [y (3.65)

c0s0/2) " i sio

Note that to obtain the relation (3.65) we havelise following identity
cos@/ 2)= -y P siRp” = (3.66)

The parametey appearing on the right hand side of (3.66) is usdddicate the sign of
cos@/2). Ifthe applied end momentsi{,,M, } ‘are positive, the'shear force within the

beam is also positive and this renders the ajglefalling into the quadrants 2 or 3 or,
equivalently, cos@/ 2)< C. In the contrary, ff the applied end moment$,{fm,} are
negative, the shear force within the beam is akgative and this renders the argle

falling into the quadrant 1 or, equivalentlyos@/2)> C. By using (3.64)-(3.66),
equations (3.55)-(3.57) become
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nl2 nl2

[ fo(ap)do+ [ f,@:p)dp=T, (3.67)
b o
/2 nl2
[ £.(6.0,,P)do+ [ f,(6.0,;P)p=0 (3.68)
¢1 ¢2
nl2 /2 -
jfwe m®+jf@e P =11, (3.69)
where psing, =sin(6,/2), p 5in(0 Zg(el—eo) 6,=n+(6,-6,) and
T——
——
fo(4:P) = (3.70)
1-p
f.(4.6,:P)= , (3.71)
fu(¢’ eo;ﬁ)_ (372)
Once all un member asolved, the rotation,
normalized displace 1, entin-x-direction-andn I "cement in y-direction at any

interior point & =x /L , can readily be obtained by

(0, dg
integrating (3.51)-(3. ) frorrt 0 to &= g along with the use of (3.64)-(3.66). The

express'ﬁuwnw'ﬁWﬂ'nn'ﬁ
gfs-‘oﬁﬁ‘“‘mﬂmﬁiimwmaﬂ

[T(¢:p)do+ [ f(4:P)dp &, <& <1
!

;
[1.(6,0,:P)do <® <t
[

nl2 nl2

[ £.,(60,0,;P)do+ [ 1,00, P)dp &, <& < 1
¢1 ‘1;

13)

<>
*

—

Il

"
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)
[1.(6,0,;P)0¢ < <,
O*fs - ‘:1/2 nl2 KB)

[1.(0.05D)do+ [ 1,0.0,P)dp & <& <1
& ¢

where sin@®"/2) =psing" and 6 =n+(8 -6,). Finally, the normalized support

reactions § f fyz} can be computed from (3.13)-(3.15).

x1? y11
By imposing the remaining two moment boundary doms at both ends of the

beam in addition to the beundary condition(3:bleads to two auxiliary equations

8,(0,,0,,f .f, ) = M2 +2F (cod) & €0s0,) 2f (sind, =sin0,) =0 , (3.76)

8,(0,,0,.f . f . h,) = M2 42F (€09, —cose) 2f (sme ~sing,)=0 . (3.77)
‘a‘

The residual function for this partlcular casenﬂeg by
4 _.r. o

== '“
“mt2 /2

£=ﬁwﬂ%%ﬂpﬁﬁkn+§_ft@9 DL {00, )0 (3.78)

s

The governing equations (3.67) and (3.68) canraterely be expressed as

rwﬁnum—?f@pmw]f@pri | (3.79)
[
FL (608t ]f@emmw+]f@e Pa-e” ) (3.80)

[

From the relations (3.79) and (3.80) along with tf@msformationsd =+ (6—-6,) and
psinp = sin@/ 2}, it implies thato, andfy are implicit functions of §,,0,.f, }, i.e.

0,=0,(0,0,,f) (3.81)
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f,=f(0,0,f) . (3.82)
By using conditions (3.76) and (3.77) along wittB@ and (3.82), the end momentg
and r, are implicit functions of §,,0,.,}, i.e. i, =M, ©0,.0,.f,) andm, = /,©,.0,.f,).

By taking derivative of (3.76) and (3.77) with respto6,, 6, and fx, it leads to:

o, o,
0, 0, o | [nim. 0 (cz—q)/m}{%’hl &= $)/ml, 5 g3

om, om, 0 “wphm, (cu— cymI-A, /m  (s- s)/m
o0, 09,

o)}
3)

jo))
>N3> 9),,)

2

wheres, = sind,, ¢, = casdy, M +f 8+ F.c. and the matrA is defined by

8)

rsrda

From (3.78) and (3.81)-(3.8'2)', it implieé fiﬁi’&éﬁ(epez,fx). By differentiating (3.78)

with respect to®,, 6, and fo, we then obtain

oKX Or OX|_B.ica (3.85)
%0, 0, o,

where the matriceR-andC are-given by

oR ok
00, of

, C-= (3.86)

a_| 0K R R
00, 00, of

X y

Note that all entries of the matricBsandC can be obtained from the function form of
% defined by (3.78) along with the transformatiohs x+(0—0,) and psin = sin/ 2,
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(see explicit results in Appendix A). To computd ahtries of the matrixA, we
differentiate equations (3.79) and (3.80) with extgo6,, 6, and fo and this results in a

system of equations:

DA=F (3.87)
where the matrice® andF are given by
ar, ar,
00, of,
D= : (3.88)
ar, or,
0, of,
or, or, or,
00, 0, of .
F—_| ! 2 x , v (3.89)
or, er, dr,
00, 00, of,

All entries ofD andF.can be obtained from the funetion-form of andr, defined by
(3.79) and (3.80) along with the transformatiansz+ (0= 0,) and psinp= sinp/ 2, (see
explicit results in Appendix A). Ono& is solved from (3.87), it is substituted into (3.8
and (3.85) to obtain allgentries of the matgps. Due to the complexity of the function
form resulting“from the variable: transformationbe tmatricesB, C, D and F are

computed numerically.

3.1.2.3 Member containing inflection point at the end
Finally, consider a beam member containing areatitbn point only at one of its
ends or, equivalently, the bending moment possefsessame sign throughout the
member and vanishes only at one of its ends. Tdniscplar case arises when one of the

applied end momentsr,,m,} vanishes. The resulting deformed configurationtod

beam possesses a single curvature and, in additiermoment-dependence functién
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becomes a constant function with its value equdaitieer 1 or -1 depending on the sign
of non-vanishing applied end momentsnf{m,}. Without loss of generality, the
development presented below focuses only on thelraenontaining an inflection point
at the right end. While results for the member ammbg an inflection point at the left
end are also needed, the treatment of such mewlber$ the same procedure.

Now, let restrict attention to the case that thanbés subjected only to non-zero
m, whereasm, vanishes. Specifically, the beam possesses aiv@ositirvature if and

only if m, <0 and possesses a negative curvature if and omy #0. It is worth noting

that the case treated here-is a special case @iublal curvature beam discussed in
subsection 3.1.2.2; in particulad, = 6., &, =1, and the point of singularity move to the

right end. As a consequence, basic eq'uations amegures adopted in the previous case
can, after a proper spegialization, be apblied"lm particular case. Due to the moment-
dependence function taking a single value throughioer member, there is no need to

separate all involved integrals that are éya_l_ualmf the entire member into two parts.
By replacingo, =0, into (3.54), we obtain'a new function, called, f[given by

S

dt

_ : FENE (3.90)
|2, (co9, — cosb) - 2f, (sirp, sin )

F.0 0,:f,f,) =

It is evident that the function,fs singular at the right-end of the beam. The guwer
equations (3.55)-(3.57), when specialized-to tladigular case, now take the following

form

0, b1 BN
—y [ F, (050,57 )0@=1 , (3.91)
el

0, A
—y [ sin £ 6 0,:f,f,)do=0 (3.92)
e1



34

0, A
—y [ (cos0— 1 £ 0.0, .f)do =0, (3.93)
el

where y =1 for m, <0 and y =-1 for m, > 0. By introducing the same type of variable
transformations as employed in the previous case) &+ (0—6,) and psinp = sin@/ 2,,

equations (3.91)-(3.93) become

n/2

[f(e:p)do=1, (3.94)
&1

[r,00:mw=0 )
&1

[1.(00,P-10, 1 %)
&1 LN

where psing, = sin(0,/2) /6, =+ (0,-6,), and functionst,,f ,f, are defined by (3.70)-
(3.72). A

In addition, the rotation, normalized displacemenk-direction and normalized
displacement in y-diréction at any interior pofit= x /L #(0,1), denoted byd", " and

V", can readily be obtained in a similar manner &edfinal expressions are given by

¢

fo= [T (6P)det ¢ (3.97)
b1
¢
f, = L6105 Paer) (3.98)
[

L

a'f, =jf (6,6,;P)dd 3.99)
¢1

where sin@® /2) =psing" and 6 =n+(8 -0,). Finally, the normalized support

reactions §,,f,.f ,} can be computed from (3.13)-(3.15).

x1? y11
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Since the end momerit, is prescribed equal to zero, the rotation at it iend
6,is no longer an independent quantity but can baioétl in terms of other independent
unknowns via the constraifit, = 0. Let redefinef such thatf = [f, f]" wheref, =
{f,m,%}andf, = {f,.f,,f,} and redefineu such that = { @, 0,,f,}". Consistent with
these new definitions, the reduced gradient maakes the formg=[g, g/]" where the

sub-matricegy, andg, are of dimensions 3x3 and given by

— gpl gpz
g,=|_ _ : 3.100
e o] (3.100
1 _glla _glza __glsAd 1 0 0 _Ad
9, :E -S [ % ZE S 9 .,_93 (3.101)
S % — 95 f 0 9%

where 5= (i + m, Y d, G, denotes.an entry located at tHerow and {' column of the

sub-matrixg, and
9.=[0] . Y (3.)02

9,=0,=[0 1 , (3.103)

(3.104)

Tos

om, 100, (amyaf,
ORIo0, ' DRICK,

It still remains to'compute theomatrig,, and a procedure similarito that employed in

section 3.1.2.2 is utilized.
By imposing the remaining moment boundary conditad the left end of the

beam in addition to the boundary condition (3.6leads to an auxiliary equation

8,(0,,0,,f f,,M,) = M? + 2f, (cod),— cosh,) - 2f (sinh, —sinB,) =0 (3.105)
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The residual function resulting from (3.96) is givey

N oA . 11t/2 .
= 0,0, 8,P)= Ur = [ 1,60 D) (3.106)

s ¢

The governing equations (3.94) and (3.95) canraterely be expressed as

nl2

To(0ufoP)= [ f(0:P)dp—F.= (3.107)
[

nl2

T, (0 fP) = [ 1,(6.0, (3.108)
[

3) along Wik n ormation® =+ (6-6,) and
o \\ ions of ,,f 1, i.e.

(3.109)

From the relations (3.
psinp = sin@/ 2,, it impli

e2 =92(91,]:x) )
f,=f(0,f) . (A L (3.110)
V» A

By using conditions 5105) along with (3.109) a(GdEO) the end moment, is an

e B Al SN o 00
o WAGHINANNNY

where the matrixA is defined by
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D
D>
)
D
D
)

x

(3.112)

|
I
o)}
HGD
2, X,

[S))
D
=
2,

From (3.106) and (3.109)-(3.110), it implies tﬁ.’a:w\’,(el,fx). By differentiating (3.106)

with respect t®, and fx, we then obtai

OR OR| = ==

— — |=B+CA B

& e o3

where the matriceB a

‘z{@ x| (3.114)
00, of,

be obtained from the function form of
aticnsn+(0—0,) and psinp= sinp/ 2}

Note that all entries of the' matfio®s and
% defined by (3.106) along with ansfc
(see explicit results-in_Ap YT 'ies of the matrixA, we

) R
éu andf, and this results in a

system of equations: Iﬂ

e AUEINENINEINT L.,
e REAASAIBLUNING A

or,
00, of
or, or

\i \

0, of

differentiate equatic 5

(3.116)

ol
Il
<
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or, or,

= |00, o0,

F=or o | 3.117)
00, 00,

All entries of D and F can be obtained from the function form of andT, defined by
(3.107) and (3.108) along with the transformatigns=+(6—6,) and psinp = sin@/ 2,
(see explicit results in Appendix B). OnéeisSolved from (3.115), it is substituted into
(3.111) and (3.113) to obtain all entries of-ih&rira ,. Due to the complexity of the
function form resulting frem the varic';tble transfaiions, the matrice®, C, D and

F are computed numeiically:

3.2 Local Element Tangent Stiffness M at;rjllx

Consider now asmember with 'f.-mbre general boundamyditons as shown
schematically in Figure 3:3. Let {x. v} bé a loaadordinate system of the undeformed
member and {X y} is the coordinate system of the deformed memiadindd such that
a chord connecting its end points alwaysiles @nxthaxis. With this specific choice of
{x", vy}, behavior of the member observed from this couats system is identical to that
of the simply-supportbeain

The normalized end loads and normalized end dispilaats and rotations are

denoted by fxl,fyl,rhl,f m,} and {0,,V,,0,,0,,V,,05}, in the {X,y} system and by

{ o fo i fon Bd pand, £0;,0:305) R the o {4y}~ system. From geometric

x21 ! y2;

consideration ‘of, the deformed configurationy,{0;,0,} can be expressed in terms of

{ fJ1'91!91’1\12792’92} by,

0 =0,—¢ |, (3.118)

0,=0,-¢ , (3.119)
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iquuations of member subjected

DA §
»\\

0,0€e ‘1'

Figure 3.3 Schematic ofdindefo é \\\

| _ ﬁ‘ '
0, = (1+ U, — U )cop— (y—7\ )sit égiﬁf Y ‘ (3.120)
" ;,-::J:'
where¢ is a chord rotation de ine .,'r?q g
) (3.121)

(1+0, - Uy)sing - (V V m

Let f be the internal forqgln xdirection amd% be the residual defined in the {/}

e v b fggwrgm 25 S R chooseis, 7 such
ammmm UNIINYIAY

f, =f, (3.122)

(3.123)
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By applying the coordinate transformation, a vedtor {f ,f . m,,f,.f,.m, %} is

related to a vectdr = { fr iy, &5, f L f0 L6} by

whereR(¢) is a transformation matrix of dimension 7x7 gi\®n

0 000 g -3 0
0 000g ¢ 0
0 100 0 O 0
R(¢) = c, 000 0 0.3 (3.125)
s, 000 0 0O« ¢
0O 010 0O 0 .0
|0 001 00 0

with s, = sinp and ¢ = co®. By definingu'= { 0, 0,,0,,,0 ,f }andu” = {0,0,,0,f}
and then recalling (3.118)-(3.123), we obtain tlationu” = u’(u). From the fact that
behavior of the member in the {4/} system IS identical to that for the simply supedr
beam,f” andu” are related by =f (u). Comblng (3.124)y" = u'(u) andf =f (u")

leads to the relation
f =f(u) =R(¢)  (u (u)) . (3.126)

Upon use ofiiTaylar series” expansion, jthe. nonlineaction f defined by (3.126)

possesses a best linear approximation in the neigbbd of a given vectar, as
f(u) =f(ug) + k/(Uo)(U'— Uo) (3.127)

wherek, is a local element tangent stiffness matrix ofrtteanber given by

k —ORf O 1R g (3.128)
op ou ou
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Note that the relatiog = &f /ou” has been utilized.

For the case that the member contains an inflegmnt at the right end, the end
moment m, vanishes and the corresponding end rotatigis eliminated from a set of

unknowns. In particular, let define the reducedtmecf , f*, t andu” such that f
{fxl’fyl’r’hl'fx?fyz'ﬁ}' f_*: {f;Z’r:h*l"%’* ’fxl’fyl’fyz}' U = {011’\\/1761’021’\\/2’fx} and U* =

{0,0,0,f ). By applying the coordinate transformation, aatiein between the reduced

vectorsf and f” is given by
f=R(¢)f (3.129)

whereR(¢) is a reduced ransformation matrix of dimensiox @iven by

O O O

(3.130)

P O O O O O

Ry
O o o+ OO

o

By using the relations (3.118) and (3.119)-(3.1¥&) ,0btain the relation” = T (u) and,
from the fact that behavior-of the membenin the §x} system is identical to that for the
simply supported beant,” and @ are related byf" = f1(u ). Combing (3.129)a =
U (u)andf =f(T") yields

f=T(a)=R)F (T (7)) . (3.131)

From Taylor series expansion, the nonlinear fumctiodefined by (3.131) possesses a
best linear approximation in the neighborhood given vectort, as
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f(u)=7(u,) +k,(0,)(U-1,) (3.132)

wherek, is a reduced, local element tangent stiffness mafrithe member containing

the inflection point at the right end and is gil®n

(3.133)

~I
Il
D
= ‘ Al
—h*l
Q)‘Q)
cl|&
+
puli
«l
(o))
2|2

in which the relationg = 2f"/éu" has been used. Note that the reduced, local etemen
tangent stiffness matrix“is of dimensions 6x6.

The reduced, local element tangent stiffness mafrithe member containing an
inflection point at the-l€ft end €an be obtainea isimilarfashion.
3.3 Global Element Tangent Stiffness M a"t:_ri;

Let the orientation of the membe(-'ii'n‘Undeformedfigmmation be denoted by an
angle B between the local x-axis (definé:?‘dn‘jn‘ section &AY the global X-axis. The
element tangent stiffness matrix referring@ 'Jf.lubgl coordinate system {X, Y} can be

obtained using the following'st'andard cobfdiﬁéﬁesformation formula
k,=Q'kQ (3.134)

wherek, is the global'element tangent stiffness matrix @nis, a transformation matrix

given by
[c,. s 070 Y00 0]
- ¢ 0 0 0 00O
0O 01 0o O0O00O0
Q=0 00 ¢ s 00O (3.135)
0 00 -5 ¢ 00O
0O 00 O 010
/10 0 0 O 0 0 1]
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in which ¢ = sir and g = co$.
Similarly, the reduced, global element tangentfretds matrix for the beam

containing an inflection point at the right endjigen by

k, =Q"k,Q (3.136)

where Rq is the reduced, glebal element-tangent stiffneasrimmand Q is a reduced

transformation matrix given-oy

el

o oo ow

(3.137)

Ql

I
O 0O 0 oOoHN M
o o o o
O ¢ o o o

o O O OO0
il ol WeL ]

¥

The reduced, global element tangent stiffnessixnatithe member containing an
inflection point at the left end can be obtainédansimilar fashion. The reduced

transformation matrix@ for this partictlar case is given by

el

© oo ow

(3.138)

Ql

I
O .0 O OH M
o. 0 Lo O
O P O O O O
Taelllelleiyolleo]]

©0v0O O Mo o

3.4 Global Structure Tangent Stiffness Equations
The global tangent stiffness equations of the tireccan readily be obtained by a
direct assembly procedure of the element tangdffnests equation. The strategy

employs two key ingredients: the compatibility bétdisplacement and rotation at nodes
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and at ends of the members and equilibrium of eatdoads and member end forces at

nodes. The resulting equations are given by

P=P,+K,(U-U,) (3.139)

whereP is a vector of nodal loads and zero residuals lomaimbersU is a vector of
nodal displacements and rotations and the intexial force of all membersR, U}
are vectors at the reference state, aldis the glebal tangent stiffness matrix of the

entire structure. The matiky can be obtained from a direct assembly of the ajlob
element tangent stiffnesssmairides given by (3.134), and the reduced global element

tangent stiffness matricefs/ , given'by (3.136), of allmembers.

3.5 Numerical Implementation
In this section, we briefly. describe the numericdégration technique used to
evaluate all integrals in"the governing eguationg &ne iterative strategy for solving a

A4

system of nonlinear equations:

3.5.1 Numerical-integration

In the construction of the gradient matgxand the reduced gradient matigx it
is required ansevaluation,of ellipticiintegrals ssttler-integrals of the same kind. Since
the involved integrands are very complex, a dieg@lytical integration is impractical or
sometimes, impossible. This.therefore .necessitdtesuse of a.numerical integration
technique 't0 approximate ‘such™integrals. 'Since iralblved “integrals are already
regularized such that the integrands are well-bethaand non-singular, they can
efficiently be integrated by a standard Gaussiaadpture. To ensure the accuracy of
integrated results, the quadrature is tested fay@és of integrals by varying the number
of integration points. It has been found that atreély low number of integration points

is needed to obtain sufficiently accurate numeriealilts.
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3.5.2 Newton-Raphson technique

A system of nonlinear equations governing behawiothe entire structure is
nonlinear and mathematically complex due partlythe use of exact kinematics. An
explicit solution of such system of nanlinear edquat does not exist and this necessitates
the use of an iterative method to construct.@ppnate solutions instead. In the current
investigation, a standard Newton-Rnghson methodtiiized along with the direct
stiffness strategy to solve-such noﬁlinear eguatiorhe structure tangent stiffness
equation (3.139) consiitutes«the best linear appration of the governing nonlinear
functions in the neighborheod of the'lreferenceestmd is employed in the iterative
procedure to progressively improve }f'i‘e numericadutems. The accuracy of the
approximate solutions is controlled byj,.limiting therm of the residual force vector

within a specified tolerance.



CHAPTER IV

VERIFICATION AND RESULTS

As a means to verify both the formulation and nuca implementation and
also demonstrate the capability and versatilitytted current technique, extensive
numerical experiments are performed for variouguite-dominating structures. In a
verification procedure, a set of simple beundarluegroblems is first investigated
and results are compared with existing analytieliteons and, subsequently, more
complex structures are.analyzed and results anfiedeby those obtained from a
reliable technique, finiie element method (FEM)ndHy, the verified technique is
utilized to examine vasious aspects and behavibrseveral structures undergoing
large displacement and fotation; Stru—ctures coimginmultiple members and

inflection points are treated.

4.1 Verification with analytical'solution

In this section, we consider structures wherebdrading moment is piecewise
constant while the dnternal axial force and shemrd identically vanish. For this
particular case, differential equations governing teflected shape are significantly
simplified such that the corresponding analyticdlson can readily be obtained via
a direct integrationymethodain addition;: te emphashesindependence of a level of
mesh refinement, results obtained from the cureetinique are reported for a series

of meshes.

4.1.1 Cantilever beam subjected to end moment

Consider a cantilever beam of length L and flekuigidity El and subjected
to the end moment M at the tip while fixed at te# bnd as shown schematically in
Figure 4.1(a). In the analysis, three uniform meslas depicted in Figure 4.1(b), are
adopted; in particular, Mesh-1, Mesh-2 and MesleStain 1, 2 and 4 members of

equal length, respectively.
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Y & 9
‘ Mesh-1
M [ . 4 9
§ El. L ) X Mesh-2
*—o—o—o0—0
Mesh-3
(@) (b)
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The exact solution of a deflected shape of tharbgaven by (4.3)-(4.6) is
reported in Figure 4.2 foih € {0.5, 1, 1.5, 2, 3 along with numerical results obtained
by the current technique; normalized coordinatethefdeflected shape for each mesh
are reported only at the nodal points. It is evidieom this set of results that the
current technique vyields highly accurate displacgmat the nodal points
(indistinguishable from the analytical solution)darsuch accuracy exhibits no
dependence on the level of mesh refinement. Itagttwnoting that such a crucial
feature of the current technique results directhnt the use of the exact element

tangent stiffness matrix and no approximation tdran of the solution and governing

eqguations.
1.0
—— EXact
/A Mesh 1
8F A O Mesh?2
J1 .
Y/L

Figure 4.2 Deflected shape of cantilever beam stéxeto end moment where
XL =E+0.and YL =V

The rotation and displacement at the tip of thanbere also obtained and
reported as a function of the normalized end momenh Figure 4.3. Similar to the
previous set of results, the current technique {ft@sh-1) yields very accurate
numerical solutions for any value of the normalizz®l momeni. It is also found
that the horizontal and vertical displacementshattip are nonlinear functions of the

applied end momenfhwhile the end rotation varies linearly with respéxtm. In
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particular, the vertical displacement increases otmmcally until it reaches the
maximum at a particular value of the bending momeamd after that it gradually
decreases. In the contrary, the magnitude of thredmtal displacement increases
monotonically for the entire range dohtreated. The observed behavior is clearly

illustrated by the deflected shape shown in Figuge

Normalize values] t

iy L L L I L S S S

0.0 5 10 {151 2.0 2.5 3.0

Figure 4.3 Relations between the displacement aiadion at the tip and the applied

end moment.

4.1.2 Cantilever_beam stibjected to two momenis

Consider nextthe same cantilever beam of lengtnd. flexural rigidity El
but subjected to two moments 1.5M and -M, the forayeplied at the tip and the
latter applied-at the mid/spamas shown: in Figude(d).«Note for this particular case
that the bending moment within the left half of themm is equal to 0.5M while in the
right half, the bending moment.is, equal to,-M-Jehmiform-meshes (consisting of 2,
4 and 8 members of ‘equallength) employed in"tladyars are'illustrated in Figure
4.4(b). Results are obtained for various valueghef normalized applied moment
m=MLEI e {1,2,3,4,5.

Since the bending moment is constant for the ledtragght halves of the beam,
the governing equations (4.1)-(4.3) are applicabléoth portions. Upon a direct
integration of such equations along with the uséaindary conditions at the fixed

end and continuity conditions at the mid spanedtds to the close form solution for



50

the rotation, the displacement in X-direction ahd tisplacement in Y-direction at

any pointg=x/L, x [0, L] :

e:{?_aﬁ; , B&< O 4.7)
Mm(0.75-¢) , 0.5¢&< 1
M ) £ , 0<E<0.E
- 4.8
! sin(0.25m)+ fin((0-75§ )m)ré_,—l J05e<1 o
2-2c0s(0.51 ) , 0<£<05
. = 5 77 (4.9)
2-3c0s(0.2 m; COS(@FRE /)M | facr< a
Y
S 1.5M M
=
. 0.5L (. 05L |
I ! I
(a)
Mesh-1 Mesh-2 Mesh-3
(b)

Figure 4.4 (a) Schematic,of-cantilever beam subiettimoments at the mid span and

at the tip and (b) three meshes adopted in the/sisal

The deflected shapes of the beam for different esalaf mare shown in
Figure 4.5. The numerical results obtained for eaxdsh are reported only at the
nodal points and compared with the analytical sotutgiven by (4.7)-(4.9). As
evident from this set of results, the numericausohs exhibit excellent agreement

with the benchmark solution with no dependencehenevel of mesh refinement. For
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this particular problem, the bending moment andaiure of the left half is twice of
and opposite to that of the right half. As the &aplmomentm increases, the
deflected shape of the beam is significantly défdrfrom its original shape and

obviously different from that predicted by linearadysis.

1.0

Y/L

Figure 4.5 Deflected shape of cantilever beam stdxjeto two moments where
XIL=Eg+d andY.LL =V

4.1.3 Frame sub) ected to moments

Finally, consider a more complex problem corresiiogp to a rigid frame
consisting of @'single: columniand two.overhangiagrs, as' shown schematically in
Figure 4.6(a). athe column and the two beams atéeotame length L and the same
flexuralrigidity-El-and the frame is.subjectedttvee,moments. {\M M,, M3} where
M, and M are applied at'the free end 'of the beams-apdsMpplied at the junction
of the beams and the column. In the analysis, wesd {M;, M2, M3} such that M =
M, = 2El/lLand My = —=5EI/L and three meshes (consisting of 3, 6, Hhdnembers)
are adopted as shown in Figure 4.6(b). For thisiaptading condition, it yields a
constant bending moment within the beam the beam Band the column Cand
zero internal axial and shear forces over the ersiructure. Similar to the first two

cases, the analytical solution for the rotation digghlacement at any point within the
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structure can readily be obtained by applying tbeegning equations (4.1)-(4.3) to
the beams Band B and the column Calong with the use of the boundary conditions

at the fixed base and the continuity conditionthatjunction.

Y
M3
M
1C. L, El m L, El DMz
By B,
oL, Ei
. —— X
(@)

Mesh-1 Mesh-2/; Mesh-3
(b).:
Figure 4.6(a) Schematic of rigid frame subjectethiee moments and (b) three

meshes adopt in the analysis

The deflected:shapesand theroriginal shape ofiti@ frame are reported in
Figure 4.7. Again, numerical results for the displaent at the nodal points obtained
from all three-meshes-caincide, with,the-analytisalutions-and, in addition, no
dependence on “the “level “of* mesh refinement is~wvbderAs ‘evident from the
deflected shape, the beamsd®d B and the column (possess a single curvature; in

particular, the curvature of the beamiBopposite to that of the beam. B

From above three verifications, the developed teglen yields numerical
results that are identical to existing analyticdusons. While the possible small error

may be introduced in the evaluation of integralsstandard Gaussian quadrature and
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nonlinear solver by Newton-Ralpson iteration, ic@mtrollable and can be reduced by
either increasing the number of integration pomtghe level of solution tolerance.
The independence of the level of mesh refinemerdnisattractive feature of the
current technique that allows the optimal numbemeimbers be used in the analysis
without altering the accuracy of obtained results.

It is noted that all three problems considered abare associated only with
structures containing no inflection point withinetrmember and possessing a
piecewise constant bending moment @ad. no interri@l and shear force. More
verification is still needed for structures” censigt of members possessing non-

uniform internal forces and/or containing an infien point.

207

[ Undeformed sta
[ —zlExat solutior
& Mesh1
[0 Mesk-2
15 + MMest-3

Y/L 1.0

0.0"

X/l

Figure 4.7 Deflected shape of rigid frame Subjettethree moments where
XL =E+0.and. YL =V

4.2 Verification with finite element method

In this section, verifications of the current teijue are conducted for more
complex structures (e.g. structures containingeatibn points and/or possessing non-
uniform and non-zero internal forces) that are latknalytical solution. As a means
for comparison, the benchmark solutions are coatduby a reliable computational

technique called a finite element method (FEM). 8itsure the accuracy of the
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benchmark solutions, their convergence is firsestigated and a sufficiently refined
mesh is then utilized. As a result of the indepacdeof mesh refinement, numerical
results presented further below are obtained frgmossible coarsest mesh. Solutions
at interior points of the member can readily beaot#d from equations (3.16)-(3.18)
or (3.73)-(3.75) or (3.97)-(3.99) after all unknovguantities at the ends were

determined.

4.2.1 Simply-supported beam subjected to end moments and axial force
Consider a simply-supported beam oirlength L amstant flexural rigidity
El as shown in Figure 4:8. The beam is subjectdddocounterclockwise Mand M
at both ends and the axial forGeat the right end. For this particular case, thanbe
contains an interior infle€tion point and, addigdy, the bending moment, axial force

and shear force exist and are non-uniform.

Figure 4.8 Schematic of simply supported beam si#geto end moments and axial

force

In the analysis,;we treat following two loading ddrons: case-l associated withyM
= M, =8.8El/L.and {=.0.and case-ll,corresponding ta M 4El/L; M, = 5EI/L and
f, = —4.5EI/1%.' The beam “is” dis¢réetized into a 'single’ member twattains an
inflection point.

Deflected shapes of the beam are reported in &igu® for the case-l and
case-ll. As compared with the benchmark solutiomsstructed byhe FEM. results
obtained from the current technique are highly emteuand nearly indistinguishable

from the benchmark solutions with the error lessth fraction of one percent.
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values of compressive force

To further investigate the influence of the axialpressive force, on the

deflected shape of the beam, we fix the applied randhents to M = 4EI/L, M, =
5EI/L and varyf, such thaty=f L*/El € {0, 1, 2, 3, 4}. The deflected shape obtained

for each value of  is reported in Figure 4.10. From these resultsait be concluded
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that presence of the axial force significantly uefhces the deflected shape of the
beam. In particular, ag increases the inflection point gradually movesh® pinned
support and the deflected shape starts to resethblduckling shape of the first

mode. In addition, the horizontal displacement bé troller support increases
monotonically with respect 9.

4.2.2 Portal rigid frame subjected to horizontal force

To further verify the current technique and alsendestrate its capability in
the treatment of structures comprising multiple rhers, we consider a portal frame
that consists of two identical columns and one bearthe same length L and the
same flexural rigidity Elras<shown schematically figure 4.11. The frame is

completely fixed at theddase and subjected to edotal concentrated force P at the

top.
Y
o K L, El )
—
L, El L, EI
3 4
mm mm X

Figure 4.11 Schematic of,portabframessubjectea borizontal concentrated force at

the top.

In the analysis, the structure is ‘discretized tht@e members and four nodes
as shown in Figure 4.11 and the horizontal fordakign such that PIEI = 15. Note
that a large value of the force P is chosen in mtdeamplify the influence of the
nonlinear geometry and, as a result, augment tieplexity of the problem. The
deflected shapes of the frame are obtained frontihent method and the FEM and
results are then reported in Figure 4.12. The bmack solution from the FEM is

obtained by using a very fine mesh containing 108mimers for each beam and
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column, and coordinates of the deflected shapeirdatarom the current technique

are plotted only at nodal points. Results indi¢htd the current technique gives rise

to very accurate numerical solution and nearly ade with those from the FEM.

Although the computed results are presented ontiieahodal points, coordinates of

all interior points of all members can readily ddaoned when quantities at their ends

are known. Since nodal quantities can be solvey aecurately, solutions within the

member possess the comparable level of accuratheyfwere plotted in Figure 4.12,

no distinction from results from the FEM will bessyved.
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Figure 4.12 Deflected shape of portal frame subge i horizontal concentrated force

at the top
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Figure 4.13 (a) Normalized horizoniél displacenwniode 1 and node 2 versus

normalized appliedforece and (b) thé'-_sla_.r_ne relaiiaiplotted in magnified scale

Next, we examine the influence of the Jocation amagnitude of the horizontal
concentrated force P on the horizontal _-di;splacenmérmode 1 and node 2. Two
locations of the applied force, node 1 and nodex@ considered in this investigation.
It is worth noting that the linear analysis presliob difference among the horizontal
displacements at node 1 and node 2 and this oligervsaindependent of the location
of the applied-force P.|Neyvertheless;ithe diffelmitavior, is:captured when the large
curvature analysis is employed. The normalizedzoortial displacements/l at node
1 and.node.2-fordifferent-locations, of-the appliette, P-are displayed in Figure
4.13. Due 1o 'the inextensibility “assumption, "astheam ‘member undergoes
deflection, the horizontal projected length is ala/éess than its original length. This
therefore renders the horizontal displacementsoofenl always larger than that of
node 2. Furthermore, when comparing the horizatitgdlacement at the same node
but changing the location of the force P insteadults from analysis indicate certain

discrepancy. Such discrepancy is insignificantsfoall values of P but becomes more
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apparent when P increases. In addition, nonlineafithe load-displacement relation

is observed for large values of P.

0.00¢
7 Pull at node
-01F
€ —.02;— Pusl at node
-.03;
__047‘Hu_“uluuuu‘l‘Huuulu‘;uu‘
Q 5 10 15 20

PLYEI

Figure 4.14 Relation between reductic')“n of normallizerizontal projected length and

normalized applied force

To clearly illustrate the reductio'nr of the horizainprojected length of the
beam, we also plot the difference between the niimathhorizontal displacements at
node 2 and node 1, denoted &yversus the normalized applied force as shown in
Figure 4.14. From these results, the horizontajegted length for the case P is
applied at node 1 is always shorter than thatHerdase P is applied at node 2 and
such difference hecames more @pparent when the,Rioereases. This is due to the
fact that whengthe force P is applied at node d pigam is in compression and tha P-
effect significantly, amplifies.the elastic short@misln contrast, when the force P is
applied ;at node 2, the"beam"is in“tension and sxad force trends to stretch the

beam and therefore reduces the elastic shortening.

4.2.3 Portal rigid frame subjected to horizontal and vertical forces
Consider the same structure as treated in theiqugvexample but now

subjected to both the horizontal force P and thetios# force V as shown
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schematically in Figure 4.15. Again, in the anaysi mesh consisting of one beam

member and two column members is utilized.

Vv \Y
P
ll L, El lz
L, El L, El
7, s

Figure 4.15 Schematieof poital frame subjectelaigzontal and vertical forces

First, we obtainftheg” deflected shape of the framder the applied loads
PLYEl = 4 and VIJ/El =/5 and the result is reported in Figure 4.)6l@ this plot,
two other sets of results; one obtained from line@alysis and the other obtained
from 2" order analysis, are also included. It is obviousnf these results that the
deflected shapes obtained ftom the three analydebiesignificant discrepancy. In
particular, the linear analysis-underestimatesathrizontal displacement at the top of
the frame and noinformation on the downward movenie predicted while the"2
order analysis considerably overestimates the @oia movement of the top of the
beam and, similarly, it still lack information ohet downward movement due to the
linear kinemati¢stassumption:

Next, we investigate the influence of the vertitaice V on the horizontal
displacement.of node l-of.the-frame and.demonstnateapability of the linear and
2" order analyses in comparison“with 'the éurrent-oubtfthat is based on large
curvature analysis). Figure 4.16(b) shows the mibtthe normalized horizontal
displacement versus the normalized vertical foaetfie constant horizontal force
PL%El = 4. From large curvature analysis, it is fouthét while maintaining the
horizontal force constant but increasing the vattiorce, the horizontal displacement
at the top of the frame increases monotonically extubits strong dependence on the

value of the vertical force V. This is owing to additional bending moment induced
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by the PA effect. It is also important to point out that theear analysis yields the
solution that is independent of the vertical loadwiile the 2% order analysis can
capture the axial-bending coupling but it yieldsywmaccurate results especially for

large values

2.0

- ———- Undeforme: shap:
I ———- Lineal

2.5

AUt Innean

RIS AVENaY
VIE:)/)EI

Figure 4.16 (a) Deflected shape of the frame obthinom different types of analysis

and (b) normalized horizontal displacement at nb#ersus normalized vertical force
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4.2.4 Gable frame subjected to horizontal force at thetip

Consider next a structure of more complex geometryerms of member
orientations as shown in Figure 4.17. The gablené&aconsists of two vertical
members of length L and flexural rigidity El andatvinclined members of length
J2L and flexural rigidity EI and it is subjected tdvarizontal concentrated force P at
the vertex. In the analysis, a mesh consistingoaf imembers, two vertical and two

inclined members, is adopted.

Figure 4.17 Schematic of gable frame subjectedtzbntal load at the vertex.

As an additional verification of the current tedaune, we first obtain results
for a particular applied force P = 4E%/and then compared with those obtained from
FEM in Figure 4.18: Again,nitecan/ be:-concluded thegults computed from the
current technigue exhibit excellent agreement wite benchmark solution. In
addition, the deflected.shape-obtained from-lir@aalysis-is significantly different
from that ‘obtained from' the “large curvature anatysn particular, the horizontal
displacement of the frame is over predicted whileré is no information of the
downward movement of the vertex. This implies #mthe structure undergoes large
displacement and rotation, the linear analysis ormér yields results of sufficient
accuracy. It is also found that the deflected shayfethe gable frame (predicted by
the large curvature analysis) for the force P =/l6Elnd P = 15EI/f are very
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different; strong dependence of the applied loadhendeformed configuration of the

structure becomes apparent when the level of apfdeds is sufficiently large.
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Figure 4.18 Deflected shape of gable frame subjeicténorizontal force at vertex

Next, we investigate the location of the inflectjpmint within the two inclined
members. Within the context of linear analysis glanth the use of anti-symmetry, it
can readily be deduced that both inclined membessgss a single curvature and
always contain an iaflection point at the vertex.-dontrast, the large curvature
analysis predicts different solutions. As the homial force P increases, the inflection
point moves /from ithe| vertex; intoathezmember 2, aasla-results, the member 1
possesses a single curvature while the membersegess a double curvature. Figure
4.19 indicates, the relation. between sthe-positionths inflection point and the
normalized applied force. Note that a parametés definedw = 100(L/+/2L ) where
L is the length of the portion of the member 2 tisabn the left of the inflection
point. As clearly demonstrated by these resulisyate of movement of the inflection
point with respect to the applied force is larg¢hat beginning and then starts to drop
as the applied force increases.

Another important aspect observed in the analysiBis particular structure is

that the anti-symmetry of the structure that isliapple to the linear analysis is
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completely destroyed as the structure deformedcandho longer be employed in the

large curvature analysis.
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10 b
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Figure 4.19 Relationbetween position of inflectimint and normalized applied

force

4.2.5 Multi-storey rigid frame subjected to later al forces
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Figure 4.20 Schematic of multi-storey frame sulgddb lateral forces

As a final example, consider a multi-storey rigidarhe as shown
schematically in Figure 4.20. In addition to vexdiion of the current technique, this
example serves to demonstrate its capability tat taestructure consisting of several

members. The frame consists of columns of the dangth L and flexural rigidity El
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and beams of the same length 2L and flexural igigl, and it is subjected to a set of

later forces of the same magnitude P as indicatdeigure 4.20. In the analysis, the

structure is discretized into 15 column members Hhdeam members.

_____ Undeformed shaj
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Figure 4.21 Deflected shape of multi-storey framigjected to lateral forces

¥

For purpose of verificatioti, we fitst perform theadysis for PE/El = 2.5. The

deflected shapes of the frame obtained from theeptrtechnique and FEM are

reported in Figure 4.21. It can be concluded tiahputed numerical results are

nearly indistinguishable from the benchmark sohlutidhis implies that the current

technique vyieldsthighly accurate results-withousimeefinement. To further confirm

such high accuracy, numerical values of the lai@ndl vertical displacements at three

nodes-onsthe-top-floer.ef the-frame and the-reactorces- at-its.three supports are

shown in Table 4.1 and Table 4.2; respectivelys kvident from-this set of results

that errors of numerical results relative to thedbenark solutions are only small

fractions of one percent.

To further investigate the difference between tssobtained from linear

analysis and large curvature analysis, we perfaralyais of the structure for a range

of the applied load PIEI e [0, 2.5]. The horizontal displacement at the cmpde
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of each floor and the horizontal and vertical reactorces versus the applied load are

reported in Figure 4.22 and Figure 4.23, respelgtive

Table 4.1 Nodal displacements at top floor of msiltirey frame

Normalized horizontal Normalized vertical

displacement displacement

FEM Current Error
Method (%)

4‘ “E—
Left node . 0.00814 -0.79503 -0.79501 0.00469

i

Central node 0.00286 0120 -0.80118 0.00416

€

Right node

| A\ .
40.00155 -0.79562 -0.79559 0.00352
T 3 .'4 q... ,’\ “

e : &
Table 4.2 Reatti Ftc{aﬁ,%hﬁe supports ofiratdtey frame.
d A

dlidaa
r F

g o dok |+ Ml

No e .ormalized vertical reactive
75
reactive % force
- I‘j’ "
M Current Error

Method (%)

i

- e
Left node | -9.00390| -9.00415 | -5.80340  -5.80350 0.2033
- Tl

Central node| -4.52140| -4.52134 -0.00130  -0.31481 -0.31514 0.3038

Right nodﬂ uzgs‘b J 115%5&4 moﬁ:isw ﬂe@ﬁﬁ' 6.11878  0.00048
4
, ¢ o LY
AFETRATTIRU AVIAN B SHfcp)r appied toads

the horizontal displacements at each floor obtaifrech linear analysis and large

curvature analysis are comparable but a signifiadintrepancy of those results

become more apparent for large values of appliaddolt can also be pointed out that
the large curvature analysis provides informatiartlee increase of structural stiffness
due to geometric nonlinearity; in particular, as #pplied loads increase, the slope of

the displacement-load curve decreases monotonically
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Figure 4.22 Normalized.horizontal displacementseattral node of each floor versus

normalized horizontal force.

Regarding to linear analysis, iﬁe- reactive forcesha three supports vary
linearly with respect to the applied Ioéd_ P_andiriranti-symmetric properties of the
given structure, the vertical reactive fgir_cé at demtral support vanishes and the
magnitude of horizontal and.vertical reactive faree the left and right supports are
identical. However, the large curvat-u‘r_-eﬁv-analysisedmts significantly distinct
solutions. The horizantal reactive forces at thedad right supports are not the same
and exhibit major difierence from those predictgdibe linear analysis while the
vertical reactive forces show somewhat less disorep It is noticed in addition that
the negative horizantal reactive:force at the rginppport,changes to positive values
when the displacement becomes large; this aspdmtladvior cannot be captured by
the linear,analysis. Remark also ;that for-the @brguppert,-a nonzero but small
vertical reactive force'is predicted from the laogevature analysis:

Regarding to linear analysis, the reactive forcesha three supports vary
linearly with respect to the applied load P andnfranti-symmetric properties of the
given structure, the vertical reactive force at temtral support vanishes and the
magnitude of horizontal and vertical reactive fareg the left and right supports are
identical. However, the large curvature analysiedmts significantly distinct

solutions. The horizontal reactive forces at thiedad right supports are not the same
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and exhibit major difference from those predictgdtbe linear analysis while the
vertical reactive forces show somewhat less disorep. It is noticed in addition that
the negative horizontal reactive force at the rigigpport changes to positive values
when the displacement becomes large; this aspemtttdvior cannot be captured by
the linear analysis. Remark also that for the eérgupport, a nonzero but small

vertical reactive force is predicted from the lacgevature analysis.
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Figure 4.23 (a) Normalized horizontal reactive &rand (b) normalized vertical
reactive force versus normalized applied load. Symfl, m, r} and {L, M, R} are
used to indicate results from linear and large ature analyses for left, central and

right supports, respectively.
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As demonstrated by extensive numerical experimentarious structures
(e.g. simple or complex geometries, single or mpldtmembers, containing inflection
point(s) or no inflection points, small or largelwes of applied loads, etc.), the
current technique has proven to yield highly acmuraumerical results without any
mesh refinement. As compared with either existinglical solutions or benchmark
solutions constructed by a reliable numerical methe. FEM, small errors in the
order of a fraction of one percent have been oleskerlt is worth to emphasize again
that the current technique exploits no approxinmatd the form of the solution and
governing equations; as a-consequence,only patesatiirces of errors are due to the
numerical integration of involved integrals and Swution tolerance employed in

Newton-Ralphson iteration:

4.3 Other interesting results

In this section, a verified technigue is employedinvestigate behavior of
various structures undergoing large displacemedtratations, e.g. nonlinear load-
displacement relations; deformed configuration &snation of applied loads, change

of locations of inflection points; etc. 2

4.3.1 Square box rigid frame subjected to pair of-horizontal forces

Consider a square box rigid frame as shown in reigu24(a). The frame
consists of two horizontal member and two vertioalmbers of the same length L and
the same flexural rigidity Elandiis subjected tpa@rof opposite, horizontal forces P
at the mid span of the vertical members. The fraéneonstrained against the rigid
body movement by a.pinned suppeort and roller supgpoimdicated, in Figure 4.24(a).
Since a pair of ‘applied’loads s self equilibratiéere issho reactive force induced at
the two supports. Figure 4.24(b) shows a genetilected shape of the frame under
the application of forces anddenotes the distance between the mid spans oivthe t

vertical members.
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Figure 4.24 (a) Schematic of squaré box rigid frameected to a pair of horizontal

forces'and (b) deflected shape of the frame

——— Undeforned shap
[ -—=—— Linear analysi
1.2+ _—=—— Current metho

L i~

—_—

Y/L

0.0+

o
B

Figure-4.25 DPeflected.shape of sguare box rigith&aubjected to a pair of

horizontal forces

In the analysis, the structure is discretized #htmembers, 2 vertical and 2
horizontal members. The deflected shapes of tedrabtained from linear and large
curvature analyses are reported, fof/EL= o, = 20, in Figure 4.25. As indicated by
these results, the linear analysis predicts a clefieshape with no movement of nodes

1, 2, 3 and 4 while the large curvature analyseddgi significant different deflected
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shape. In particular, the displacements at the Inpoiats obtained from the current
technique are nonzero and this results primariynfrthe elastic shortening due to
members undergoing large curvature. The deflechtegbes of the frame from large
curvature analysis for various values of the appl@ads is shown in Figure 4.26.
Clearly, the deflected shape of the frame exhdirtsng dependence on the magnitude

of the applied loads.

I —— Undeformedshay = o =8 - o=12
12F—oa=4 —— =12 e o = 19.6(max)
8t
YL |
Ar
0.0F
/) SA—— I ) el . | 1
-4 0.0 4 8 1.2

XM fomia
Figure 4.26 Deflected shapes of square box rigihér for various values of applied

forces

Next, wegexamine the prelation: between the «distahcand the applied
horizontal forees P. As reported in Figure 4.2& fimear analysis yields a linear
relationshipsbetween-and P-and,such,a linear regime is also.observedeinarge
curvature analysis ‘provided-that'the ‘applied load $ufficiently 'small. However, for
large values of P, the current technique predicterdinear behavior and, in addition,
significant deviation from linear results is obssdy Remark that the distance
L obtained from large curvature analysis is alwags kaan that obtained from linear
analysis. This is due to the fact that for thedinease, the nodal points 2 and 3 are not
allowed to move in the horizontal direction in arde maintain inextensibility (in the

sense of linearized kinematics) of the two horiabntembers.
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Figure 4.27 Relation b %@sand normalized applied force

Figure 4.28 shows th I een the horiat placement at the mid span of
the left vertical memb ' | V|dent that results from both
linear and large cu ) ; fieidint and such discrepancy results

directly from the elastic ' ¢ lefrtical member undergoing large

>
=
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Figure 4.28 Relation between horizontal displacdaraémid span of the left vertical

member and applied loads
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4.3.2 Opened square box subjected to pair of vertical forces

Consider an opened square box rigid frame as showkigure 4.29. The
frame possesses the same geometry as that of@heys example except at the top
where it contains two identical overhanging bearfke flexural rigidity EI is
constant throughout the structure and the framsulgected to a pair of opposite
vertical forces P as indicated in Figure 4.29 {d)e generic deflected shape of the
structure under such applied loads is shown scheafigtin Figure 4.29(b). As
clearly illustrated by the undeformed configuratmfrthe structure, anti-symmetry of
the structure can be employed to reduce” Computdtieffort in the linear analysis.
However, as the structure undergoes displacemedt dgeformation, the anti-
symmetry of the structure“is.completely destroyed ean no longer be applied. To
perform analysis by the'Cuirent technique, a mesisisting of 3 horizontal members
and 2 vertical membersiis adopted.

P
0.5L, El f 0.5L, El

v

P

L, El |

L, El

() (b)

Figure 4.29 (a) Schematic of opened square boxestdg) to a pair of vertical forces

and.(b).generic,deflected shape of the frame

Numerical results are obtained for various valeésthe applied force P
ranging from zero to 1.8ElfLand reported in Figure 4.30. In particular, Figure
4.30(c) illustrates the evolution of the deflectdthpe as the applied load P increases.
Clearly, for large values of the applied load Re tleflected shape is substantially
different from the original undeformed configuratidt can also be observed that all

members, except the bottom member, possess a sinyiature.
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displacement versus normalized applied load, &grees of deflected shape of frame

The horizontal and vertical displacements at @fe dnd right free ends are
depicted in Figure 4.30(a) and 4.30(b), respectivélnlike the linear case, the
horizontal and vertical displacements at the leff aght free ends predicted by the

current technique are very different and exhibgt@ng nonlinearity on the applied
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load. Such nonlinearity and discrepancy from linegults become more evident as
the applied load is sufficiently large. In additjomoth the horizontal and vertical
displacements at the left free end are always tatggn those at the right free end.
The rate of change of the horizontal displacemeitit wespect to the applied load
(commonly known as the tangent flexibility) for thght free end is less than that for
the left free end for small values of applied Idddbut as the applied load P is
sufficiently large, such rate of change graduakgréases and reverses the trend. In
contrast, the rate of change of the vertical desgt@ent for the right free end is greater
than that for the left free end for an eniite ranféhe applied load considered in the
analysis. Another observation is that the inflactifmoint present within the bottom
beam moves from the mid span toward the left supp®his results from that as the
structure undergoes dgformation, the actual momentof the force acting at the left
free end (measuring fram the pinned support) deeavhile the actual moment arm

of the force acting at the'right free end“(meangﬁnm the roller support) increases.

4.3.3 Simply-suppor ted beaim sub.j_;ec_;tved to unequal end moments

As a final example, we investigatrer the movemerarofnflection point within
the member as the loading condition changes. Censicgimply-supported beam of
length L and flexural rigidity El and subjecteddotnterclockwise end moments;M
and M, respectively;:as shown in Figure 4.31. From linaaalysis, the bending
moment diagram is linear throughout the beam aus there exists a point (called an
inflection point) where|the bending: mement vanistiesan:further be verified that
the location ofsan inflection point remains uncheah@s long as the ratio between the
two end mements.is the-same-, In this.investigatiom will prove, within the context

of large curvature analysis, that this phenomesaroilonger'valid.

M M,

' L, El

Figure 4.31 Schematic of simply-supported beamesuiégl to two counterclockwise

end moments
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In the analysis, a mesh consisting only one mensbatilized and values of
the applied end moments are chosen such thatBV= 3 and M = nM; where & n
< 2. The end moment Mis chosen sufficiently high to ensure that thenbea
undergoes large displacement and rotation, andhadmedimensional parameteyr is
chosen to be greater than or equal to 1 simplpteefthe inflection point moving to
left support. Figure 4.32 shows a series of defle@chapes of the beam for various
values of the loading parametgrSmall circle symbols appearing in the plot intkca
locations of the inflection point. As evident fraimese results, as the ratio between
the end momentg = My/My increases, the-inilection point moves from the spdn
(for n = 1) towards the left support. To explore furtHet,define two parameters r
and p such that

e S ' (4.10)

s of

rn=

where s is the ar€ length of a pdrtidn of the beam onl#fieof the inflection
point, s is the arc length of a portion of the, beam onrtpket of the inflection point,
Sy Is the horizontal projected-length of a‘ portiontbé beam on the left of the
inflection point and's is the horizontal projééted length of a portiortlod beam on
the right of the inflection point. The relation een the two parametersand p and
the loading parameter is reported in Figure 4.33.

As clearly demonstrated in Figure.(4.33), the ratiis a nonlinear function of
the loading parameteq with the slope (greater than one while the ratiovaries
linearly with respect ta) and, inaddition, the.constant slope; is unity. Titwener
observation: impliess that the. large curvature anslywediCts a greater rate of
movement of the inflection point towards the endgessing a smaller moment than
that by the linear analysis. In contrast, the tafiteding concludes that if the spatial
coordinates is utilized in stead of the materiadrdinates in the identification of the

inflection point, both linear and large curvaturalyses yield the same conclusion.
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CHAPTER YV

CONCLUSION

5.1 Summary

A simple, systematic method has been developedafalysis of flexure-
dominating structures undergoing large displacenasct rotation. The technique is
based primarily on a standard direct stiifressetnaand Newton-Ralphson iteration.
The element tangent stiffness matrix essentialtie development of the direct
stiffness method has bheen _eonstructed by directlvirgy the nonlinear governing
differential equations. In particular, the gradiematrix of a simply-supported beam
has first been established and subsequently begrloged as a basis for the
development of the tangent stiffiness 'matrix foldiwing three types of members: a
single curvature member containing noe inflectionnpoa single curvature member
containing an inflection"point at the eng;,__énd alde curvature member containing
an interior inflection point. It iS-worth noti‘ngnahthe resulting tangent stiffness matrix
possesses two attractive features: (i) it is exacthe sense that it involves no
approximation of ‘a-solution form or governing edmias’ and (i) all entries of the
matrix are given in an explicit form concerning #leptic integrals or other integrals
of the same kind. The former feature enhancesateeaf convergence of a nonlinear
solver and, when properly incorporated:with theleaton .of exact residuals, it can
in principle yield numerical solutions of the sampeality as an analytical solution.
The latter, feature, is, well-suited. for, humerical leadion-of -the, tangent stiffness
matrix by a standard Gaussian quadrature.

In addition, the length constraint posed by the mmeminextensibility has
directly been incorporated in the constructionhsd element tangent stiffness matrix
and this increases dimensions of the matrix by oBech direct integration of the
length constraint allows the nodal displacementdsgted as primary unknowns and,
as a consequence, this is well-suited for thenst#$ method. The tangent stiffness

matrix of the entire structure has been obtainadavdirect assembly procedure. This
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crucial ingredient has been utilized in the iteratprocess of a nonlinear solver by
Newton-Ralphson iteration.

The proposed technique is a semi-analytical approgltere all ingredients
essential for the development of a direct stiffnessthod (e.g. element tangent
stiffness matrix and residual vector) are deriviemmf exact governing equations but
all entries of the tangent stiffness matrix must daluated numerically and a
resulting system of algebraic nonlinear equationstnalso be solved by a numerical
technique. Hence, the accuracy of numerical soistiobtained from the current
technique depends primarily on the accuraey of rthmerical integration and the
accuracy of the solution solver via the specifieerance. Upon an extensive and
careful study of the number.of integration pomits! aolution tolerance, the current
technique has yielded highly accurate numericaltsmis. Another crucial feature of
the current technique is that there is no requiréme mesh refinement in order to
achieve the desirable agcuracy. This feature magmihe number of members in the
structure discretization toreduce the computatioost.

From extensive" verifications wvia the comparison hwigither analytical
solutions or benchmark solutions constructed framfinite element method (FEM),
the current technique has-praven to yield highlguaate numerical solutions and
confirmed the independence of the level of mesimngésient. The observed errors are
only a small fraction-of one percent. Although firéie element method employed
can solve the same problem, analysis must be peefbrusing either a series of
meshes or a sufficiently-fine meshito ensure theremenee of numerical solutions.
In addition, suech method still possesses somedimits such as an ability to perform
the analysis.over.a limited range of,applied.loads.

As ‘evident from extensive numerical experimentsvarious structures, the
current technique has offered two crucial benefisstly, the method proposes a
simple and systematic means capable of modelingelatructures when exact
kinematics is presumed and, secondly, it is solidynfirmed to yield “exact”
numerical solutions (within round off errors androes caused by a numerical
guadrature and nonlinear solver) that are indepwmeleof the level of mesh

refinement. One practical contribution of the catrmvestigation is that it provide an
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accurate computational tool well-suited for analysf structures undergoing large
displacement and rotation, e.g. very flexible swEs, moment-resisting cables,
slender drill string rods, etc. According to itgihiaccuracy, the proposed technique

can also be employed to generate benchmark sodufitmra comparison purpose.

5.2 Limitations and possible extensions

The key formulation underlying the current techmigis still restricted to
structures made from linearly elastic materialsciSdimitation can pose some
potential drawbacks (e.g.yields numerical resoftsnsufficient accuracy, misleads
the response prediction, provides ho informationsome aspects etc.) when the
technique is applied to analyze certain structuregeneral, the deformation induced
within the structure undergeing large displacermaamd rotation is not small and this
can generate stress exceegding the prbportionaﬁ tima constituting material; as a
result, a linear relation' between thej deformationl @nternal force is no longer
applicable. To capture /this situatioh'-_ accuratelye tmaterial nonlinearity must
properly be incorporated, in additio,[j-i_fo the geoarmoenonlinearity, into the
development of a mathematical‘model. Extensiomefmrrent development to treat
material nonlinearity is in fact-nontrivial and eeges a careful treatment.

In addition;either elongation or shortening aldig axis of the member is not
allowed in the current development. This restrictiposed by the inextensibility
assumption is no longer acceptable when the Sneictunder consideration can
undergo both-axial and /bending deformations: of @maiple-magnitude. To capable
of treating sugch structures, the inextensibilitysuamption must be removed and

nontrivial modifications.must be taken into-accoantl requires-further investigation.
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APPENDIX A

This section presents explicit results for allrigrst of matrice®, C, D andF.
By recalling thatsing, = sin@,/ 2)/sinf,/ 2 and then differentiating this relation with
respect to §,,0, }, we obtain

o9, _  cos(b,/2)
80, 2sin(0,/2)cosd,

‘ V//_/{/_- (A1)

%, __—tang, (A.2)
00, 2tan@,/2)
Similarly by taking de ing, - ‘ ~ 2 with respect to §,,90,},
it leads to A A \

_ P4 |
20, 2sin(0,/2)cosh, '
op,  —tang, (A4)

80, 2tan@,/2) V

.

By differentiatingp = sn;(@AZ) with respe&,t@z, it yields

AUYINENINEING

cos— (A.5)

émmmmwwwmaﬂ

From the relation®, =n+(0,-6,), 6,=n+(0,-0,) ande, =n+(0,-6,), we obtain

o8, 08, 06, _, (A6)
00, 00, 00,
06, 006, 00

_ 9% 1 (A.7)
00, 00, 09
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By taking derivatives of), =sin (-f, /,/f? +f2) with respect to {, ,f, }, it leads to
-f

a?" =, (A.8)
of,  fi+f]
D _ =f (A.9)
of, f7+f; , v
By taking derivatives f }, ityields
ats =f—§ , (A.10)
of, fs

f
afs =2 (A.11)
of,
By employing (A.1)-(A.2) and (#

vy C:—_—:_—

06, _ 09,00, (€O (A.12)

o0, 00,00, 2si il

i %ﬁiu%*%ﬁ[ﬂ%‘}ﬁ%) s
o, WA Bl m,tu UAINYIAY

A.14
0, 00,00, 2tan@,/2) A

O, _ 04, 00, 00, 09, 80, 0, [ cos@,/2) _  tanp, , (A.15)

of, 90, 00, of, 00, 00, of, (2sin@,/2)cosh, 2tank,/ 2Jfr+fr T
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By employing (A.3)-(A.4) and (A.6)-(A.11), we obiai

a(I)Z — 8?2 a62 — 00_3(62/2)
00, 00,00, 2sin(0,/2)cosp,

(A.16)

~

o, _ 09, 06, 00, N o9, 90, 00, [ cos@,/2)  tang,
of, 90,00, of, 00, 80, of,

f
COS %, | A1)
2sin@,/2)cosp, 2tan,/ 2)f7 +f?

99, _ 99, 662 _ —tang,
0, 00,00, 2tan@®,/2)

(A.18)

09, _ 09, 00, 00, o C tang, AfXA . (A19)
of. 00, 00, of in(© \ 2tang,/ 2 f2
y y ’

By employing (A.5)-

P _0pN, 1., (A.20)
%0, 00,00, 2

p _ p 06, 00, 1. aAT ) (A.21)
of 06, 08, of, ?:__, 1 '

] | g

ahp ap 09, 08 (A.22)

ﬁuﬁ?ﬁﬂﬂsWﬂwnﬁ

* taWW”T%’wfi‘fﬁ‘?m“Wﬁﬂ Y
T=—(Zcose /1= DP?sin®d, + 2y sind, psing, + %) : (A.23)
R =__1(2coseOM+2\ysine psing, +m) , (A.24)

op, f ° J1-p’sin’g,
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5 /2 n/2
oK _ af”d¢+ af

op b
2pcosh, . P{-cosh )
I e + 2y sind, sing — ————°”_ —— do
2pcosd, . P(-cosh,)
j mu\psmeosm—mw (A.25)
0\ g db (A.26)
(L—cos9,)
L \1-Pp?sin’, @
do) (A.27)
Similarly, by taking @ 1! rivatives of (3.79 mtiﬁ{¢l b, fs p} and (3.80) with
respect to §,,
ﬁﬁﬂqwﬂﬂsWﬂnﬂﬁ
(A.28)
W\‘lﬂ‘im URIINYIAY
a, 1
o e (A.29)
7/2 — 72 _
a = | p_ o+ [—P (A. 30)
p & A/1-Pp°sind b2 \/1-P°s
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°=-1, A.31
. (A.31)
v~ 2sin0._1- psin’e, — 2y cosH, psing, - ——nds (A.32)
1 \1-p%sin’},
or, . — . sing,
= 2sin6,/1-p“sin“$, — 2y cosH, psing, - —=— (A.33)
2 \1-p%sin’y,
n/2 /2
or, Iaf_v d¢+J‘
b ;P b
"j-z — 2psino,
i V1-Pp’sin®
n/2 o=
I 2psing, (A.34)
i, \J1-P’sin®
or, *fof,
do- |
00, b 00, 2 r
/2 J‘“ ”J
= IZcose 1/1 p2sind a:gg’;;m dd
7c/2
+ j 2cos0, !r.r“*** do . (A.35)

b2 m

By exploitinﬂ%ﬂ:@ﬂﬂ%%’% Elef'mf%.tiation, entries of the

matrix B can réadily be obtained gs

W AN 3T UAIINYAY

00, 0, 09,

OR _ OX 08, , (A.37)
00, oh, 00,

8?% _oX %, ox 09, +ﬁ P, ox D LR afs (A.38)
of oo, of, 00, of ~ op of, 0, of ~ Of of,

X



Entries of the matrixC is given by

OR _0R o4, R b, OX op
20, 0,00, 00,00, Ip 00,

ayé:ayéa¢1+af/€a¢2 ayeap+69€ae oR of
of, oo, of, b, of, P of, 08, of, Of, of,

y

Entries of the matri is giv:

ol 3 or', o, N o', o,
00, 0, 08, 0Ib, 9

or, _ar, a9, o
80, 04, 00,

or, _dr, 8, or, 9,4
of, oo, of, 00, of,

y

or, ar, o4,
of, 00, of

y

, 00,0,

Similarly, entries of the‘matnE is given b

. o ad,ﬂ‘lm?ﬂﬂﬂi%lﬂ\’]ﬂ‘i

889

aﬁmmnmumwmaﬂ

0 6¢2
ae2 00, 00,

or, _ T, 04, 0T, 89, 3T, op , L, o,
of o4, of, 04, 0f P of, of, of,

or, ar, o4,
00, b, 00,

90

(A.39)

(A.40)

(A.41)

(A.42)

(By

(Ap

(A.45)

(A.46)

(A.47)

(A.48)
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or, oar, dp,

- 1 (A.49)
00, ob, 00,

or, _ar, o¢,  or, o,  or, op , or, o9,
of, 06, of 0b, of, P of, 00, of,

(A.50)

g
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APPENDIX B

This section presents explicit results for allriest of matrice® ,C,D and
F. By recalling thatsing, = sin@,/ 2)/sin@,/ 2 and then differentiating this relation

with respect to §,,0,}, we obtain

o9, _  cos(6,/2)
20, 2sin(,/2)cosd,

(B.1)

op,  —tang,
00, 2tan@,/2)

(B.2)

(B.3)

| e
From the relation§1=n+(e o;gl £(6,—-6,), we obtain

_ Cammeer 1
o6, o0, __, L] (B.4)
50, 00

- ﬂUﬂ?ﬂﬂWiWEﬂﬂ'ﬁ ®5)

1

By ta&wrl@&nﬁﬂw Wﬁhﬂsﬂéﬂ@ ﬂ it leads to

00 —f
2 == yAz , (B.6)
N i +fy
0 _f
2 == XAZ . (B.7)
of, fo+f,
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By taking derivatives of 2 = ,/f 2 +fy2 with respect to {, ,f, }, it yields

of, f

==, B.8
of fy

S =2 B.9

op, 0, 00, . C

00, 00,00, 2sin

o, b, 00, 00, .\
of, 00, 00, of,

5
S 'i'!l:f\!
) sl k >
N

#.II a2t

RefRe
3 (D

o9, 0, 00, —ta
%0, 00,00, 2tan@,/

N
DS (D

op, o, 90, 00,
afy 00, 00, of y--———--— ------

By employlngélB .3)-(B9);we obtain

uﬂr’mﬂmwmm

ap ap 00,

(B.14)
Wﬂaqmmumawmaﬂ
aP aﬁae A, =Ecos§—2A L — (B.15)
of, 00,00, 0f, 2 2f21f2
aPzaPaéza%:—lcosé—zA fAXA , (B.16)
of, 0,00,0f, 2 2f24f2
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By taking derivatives of (3.106) with respect tq,{ao,fs,r)}, we obtain

(Zcose \1-P’sin’g, + 2y sind psing, + (A= cosh,) —_—) , (B.17)
54)1 fs J1-p3sin?¢,
5 w2
L
adp ;5 P
/2 —
_ 2pcosd (B.18)
o V1-P°sin“d
oR _"f of,
0, ; 99,
/2
= j —2sind do | (B.19)
31
/2
a% =i2(_'|. fu
of, o3
2 T _
=f—1(j20039 1-pZsi - 2y Sing_ in¢1+md¢) (B.20)
S h _Zk7)5 7 J1-pisin’h,

(= i
Similarly, by takin {rﬁ'j‘ ..f.p} and (3.108) with

respect to §,,0,,p}, ityields :

ﬂuﬂ"mw%’wmm

" ﬂ’éﬁ (B.21)
qmmmmumawmaﬂ

ar: _{ms dp B.(2)

?;’:—1 , (B.23)



95

= 2sin0,/1- p’sin’¢, — 2y cosH,_ Psing, — sme (B.24)
,/1 p?sin®,
n/2
or, _ af_V do
o ;P
7,;/2 YR —_ .
- Zpsz'”eo 2y cosd sinp—— P2 gy (B.25)
b y1-P7sin“g 1-p’sin’d
/2
o, _ of, do
0, , 09,
/2
= j 2cosh, do . (B.26)
31
By exploiting above i hain | ifferentiation, entries of the

matrixB can readily be

oR _oR o (B.27)
20, b, 00,
R 0K 0b, 0K Ep

J
Entries of the matrixC i§ given by

3wﬂwsWﬂ1ﬂ§

ok oR a¢1 aﬂa op (5.29
o @W’l ﬁQﬂ'ﬁU URIINYIAY
aﬂe_aﬂe 3, R op  oR 20, oR o, (5.30

of o, of

y

P o, o, o,

y



Entries of the matri is given by

or, _aor, o9, , ar, p
0, 00,00, op a0,

or, _or, o, or, op

0, 0,0, op e,

or, _ T, 8, , o, op | ar 06
afy 6¢1 81’:\ {

or, _aor, 04,

of, 00, of, P

Similarly, entries of

or, or, oo,

0, 0, 00,

or, _or, 6¢; T, p
61’:\x 6¢1 61’:\x f
or, or, oo,

o0, o4, o0,

ﬂuEI’JVIEJ'VliW?J’mﬁ

pal“

%’ﬁﬁﬁ@ﬂ%ﬁz ﬁ‘ﬁﬁ'mmaﬂ
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(B.31)

(B.32)

&)

&)

(B.35)

(B.36)

(B.37)

(B.38)
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