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CHAPTER I 

 

INTRODUCTION 

 

 

1.1 General 

It is well-known that a small-deformation analysis of flexure-dominating 

structures (e.g. beams and rigid frames) based primarily on linear kinematics, linear 

constitutive relation and fully decoupled axial-bending interaction (e.g. [1-2]) can lead 

to results that are of insufficient accuracy, especially when the displacement, rotation 

and curvature of the structure are large and the axial-bending interaction becomes 

significant. A well-known case is the P-delta effect phenomena; presence of the 

compressive force within the member generally yields the bending moment higher 

than that obtained from linear analysis.  

To clearly demonstrate such coupling effect, let consider a simple case 

associated with a simply-supported beam subjected to a transverse load Q at the mid 

span and an axial load P at the right end as indicated in Figure 1.1. A linear structural 

analysis, when applied to solve this particular problem, provides no information about 

the influence of the axial load P on the bending moment induced at any cross section; 

in particular, results from the analysis indicate that the maximum bending moment 

occurring at the mid span is independent of P and is equal to QL/4. However, it is 

 

Figure 1.1 Schematic of simply supported beam subjected to transverse load Q and 

axial load P 

Q 

Q 

P 

L 

∆m 

e L´ 
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evident that as the member deflects under the action of the transverse load Q, the 

horizontally projected length of the member becomes L´ < L and the axial load P 

produces an extra bending moment P∆m at the mid span of the beam in addition to 

that caused by the load Q where ∆m denotes the downward deflection at the mid span. 

As a consequence, the actual maximum bending moment at the mid span becomes 

QL´/4 + P∆m if P is in compression and QL´/4 – P∆m if P is in tension. As the axial 

load P (in compression) becomes large in comparison with the buckling load of the 

beam, the deflection ∆m can be substantial and the shortening e becomes significant. 

This renders the maximum bending moment predicted by the linear analysis 

significantly deviates from the actual value. 

Another limitation of the linear analysis is that it provides very limited 

information on the stability of the structure (e.g. bifurcation loads and identification of 

stability status of structures) and as well as the behavior beyond a point of bifurcation 

(i.e. post-buckling behavior). To clearly demonstrate such limitation, let consider a 

perfectly straight cantilever column of constant flexural rigidity EI and length L and 

subjected to an axial load P as shown schematically in Figure 1.2(a). The linear 

analysis, when applied to this particular problem, simply yields a trivial solution that 

the column remains in a straight configuration for any value of the load P; i.e. the 

relation between the load P and the lateral deflection at the tip of the column, denoted 

 

Figure 1.2 (a) Schematic of perfectly straight cantilever column subjected to axial 

load P and (b) relation between load P and tip deflection ∆. 

EI, L 

P 

(a) (b) 

∆ 

P 

Pcr 
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by ∆, is indicated by the blue line shown in Figure 1.2(b). A better solution can be 

obtained if the second order analysis (Timoshenko and Gere, 1972; Sampaio and 

Hundhausen, 1998) is employed; results from this analysis are indicated by the red 

line shown in Figure 1.2(b). While the second order analysis can predict the 

bifurcation or buckling load of the column (Pcr = π2EI/4L2), the behavior beyond the 

bifurcation point cannot be predicted (the tip deflection beyond the bifurcation point 

is still indeterminate) according to the limitation posed by a linear kinematics 

assumption. If an exact kinematics (i.e. an exact relation among the curvature, rotation 

and deflection) is employed as in the case of the large curvature analysis, the post-

buckling behavior of the column can now be captured as indicated by the dark line in 

Figure 1.2(b). 

The limitation of the linearized-kinematics-based analysis becomes more 

apparent when applied to very slender or very flexible structures where change of 

their configuration is sensitive to load applications. For instance, a moment-resisting 

cable, shown in Figure 1.3, can undergo very large displacement and rotation under 

service loads. For this particular situation, a simple analysis based on the linear 

kinematics and enforcement of static equilibrium in the undeformed configuration is 

insufficient and cannot predict behavior of such a complex structure in an acceptable 

level of accuracy.    

 

Figure 1.3 Schematic of the deformed and undeformed configurations of a moment-

resisting cable under service loads. 

 

Besides mathematical curiosity and computational challenge, necessity to 

incorporate proper nonlinear kinematics in the mathematical model is obligatory and 

Deformed configuration 

Undeformed configuration 
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arises naturally in numerous practical applications as described above, e.g. analysis 

and design of structural components where the axial-bending interaction is crucial, 

analysis of very slender and flexible structures such as bending resisting cables and 

beams of a large span and high flexibility where the displacement and rotation can be 

substantial, the determination of the bifurcation load of axial-dominated structural 

systems and their post-buckling behavior, etc. Due to complexity of the boundary 

value problem posed by the governing nonlinear kinematics, works concerning large 

curvature analysis of flexure-dominating structures are still relatively less extensive 

than those based on linear analysis and this motivates the current investigation. 

 

1.2 Background and Review 

Linear structural analysis has widely been used in the analysis and design 

procedure of flexure-dominating structures (e.g. beams and rigid frames) as a result of 

its simplicity, sufficient accuracy of analysis results for various practical situations, 

and its vast availability in a form of commercial packages. The key assumptions that 

are central to this analysis technique include that (1) static equilibrium of the structure 

is enforced only on its undeformed configuration, (2) the constituting material is 

linearly elastic, and (3) the linearized kinematics relating the deformation and 

displacement is pertained (Gallagher and Ziemian, 2000; West, 2002). As a 

consequence of these assumptions, the corresponding mathematical model is 

significantly simplified and renders an ease in the construction of its solution; in 

particular, the response of such a mathematical model is a linear function of external 

applied loads. Beside its simplicity, the model offers no answer to various questions 

of practical importance for instance, the critical load and stability status of the 

structure, the post-buckling behavior, change of stiffness of the structure due to 

change of its geometry, etc. Note further that in analysis of various structural 

problems (e.g. modeling of very slender and flexible structures or structures with 

load-dependent stiffness) the constitutive model based upon linear elasticity is still 

sufficient and applicable for a wide range of applied loads; however, the major source 

of error from linear analysis is due to the presence of geometric nonlinearity. This 

type of nonlinearity becomes more apparent when the change of configuration of the 
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structure from the original state is significant and, as a result, the assumptions (1) and 

(3) described above constitute no longer the good approximation of real behavior of 

the structure. This therefore necessitates an integration of the geometric nonlinearity 

into a process of mathematical modeling or structural idealization.      

  One simple approach that has extensively been used to model geometric 

nonlinearity is known as the second order analysis (Krawinkler and Seneviratna, 

1998; Li, 2001; Silvestre and Camotim, 2007). The influence of the geometric 

nonlinearity was incorporated into the mathematical model by forming static 

equilibrium equations based upon geometry of the structure in a deformed state. 

Treatment of geometric nonlinearity in this manner renders the model capable of 

exploring certain characteristics of the structure such as the critical or bifurcation load 

and its stability status (Timoshenko and Gere, 1972; Sampaio and Hundhausen, 1998) 

and the influence of the axial load on the bending moment and the stiffness of the 

entire structure (Krawinkler and Seneviratna, 1998; Silvestre and Camotim, 2007). 

While the technique provides an answer to several questions as the linear analysis 

cannot, the second order analysis still possesses several limitations due to its 

underline assumptions. For instance, it provides no information on behavior of the 

structure beyond points of bifurcation (i.e. post buckling behavior) and provides 

results of insufficient accuracy when the displacement and rotation of the structure are 

relatively large and the discrepancy between the deformed and undeformed 

configurations is obvious. The key restriction results from the use of a linearized 

kinematics, i.e. the curvature of the member is assumed to be small and it is related 

linearly to the displacement and rotation. 

  To further broaden the range of modeling capability concerning geometric 

nonlinearity, a more sophisticated mathematical model incorporating exact kinematics 

was introduced and the associated problem was known as the “elastica” problem. In 

addition to equilibrium equations being set up in the deformed configuration, the 

model uses exact relationship among the curvature, the displacement, and the rotation. 

A first set of studies of elastica problems can be traced back to the late eighteen 

century according to the work of Euler (1774) and Lagrange (1770-1773); in those 

original works, the calculus of variation and the analytical integration via 
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representation of solutions in terms of a series were utilized with the primary 

objective to find an exact elastic curve (the deflected shape) of the beam undergoing 

large deflections. Later, Kirchoff (1859) addressed an analogy between a problem of 

finding elastica of a perfectly straight cantilever column subjected to an axial load 

beyond the value of its buckling load and a problem of oscillations of a pendulum. 

With such analogy, a closed-form solution of the elastic curve can be constructed 

using a so-called, elliptic integral method. Since then, a series of investigations 

concerning the elastica problem has continuously been conducted (see Timoshenko, 

1953 for extensive historical discussion). 

The large curvature analysis based on the exact kinematics has, nowadays, gained 

significant attention and, extensively, been used to investigate various aspects of post-

buckling behavior of structures. This is owing to a significant progress on the 

computer-aid tools and existing powerful numerical techniques allowing the treatment 

of more complex boundary value problems. Here, we summarize certain relevant 

works aiming not only to present the series of historical breakthrough but also to 

demonstrate the current gap of knowledge and the original aspect of this current 

investigation. 

The first set of works summarized below is associated with the study of a single 

member subjected to various end conditions and applied loads. Wang (1997) 

employed, instead of the classical elliptic integral method, the numerical method 

based upon the perturbation technique to investigate the post-buckling behavior of a 

prismatic, cantilever column subjected to a point load at the tip. The post-buckling 

behavior of the same column under the combined action between a uniformly 

distributed load on the entire member and a concentrated load at the tip was later 

examined by Lee (2001). In his analysis, the numerical integration procedure based on 

Butcher’s fifth-order Runge-Kutta method was utilized to construct the numerical 

solutions. Phungpaingam and Chucheepsakul (2002) employed the elliptic integral 

technique and the shooting method to analyze a simply supported beam of variable 

arc-length and subjected to an inclined follower force at any location within the 

member. Vaz and Silva (2003) generalized the work of Wang (1997) by replacing the 

clamped end of the column by a rotational spring. In their investigation, they 
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employed a two-parameter shooting method to explore both the buckling and post-

buckling behavior of the column. Results from their study revealed that the rotational 

constraint at the end of the column significantly influences the post-buckling 

configuration. Madhusudan et al. (2003) extended the work of Lee (2001) to explore 

the influence of nonuniform cross section on the post-buckling behavior of the 

cantilever column. The problem is cast within the context of dynamic formulation and 

the resulting nonlinear equations are solved by a fourth-order Runge-Kutta scheme. 

Wang et al. (2006) reexamined a cantilever beam subjected only to a point force at the 

end. In their work, they employed a homotopy analytical method to construct an 

explicit solution of the rotation and displacement at the free end. Shavartman (2007) 

investigated a cantilever beam with the clamped end replaced by a rotational spring 

and subjected to a follower force at the tip. In the analysis, the proper change of 

variables was applied to convert the two-point boundary value problem to the initial 

value problem. It was suggested from this study that results can be obtained in a more 

efficient manner than that by the numerical shooting method and fourth order Runge-

Kutta method. Recently, Benjaree et al. (2008) exploited the shooting method along 

with the adomain decomposition to further perform large curvature analysis of a 

cantilever beam under more complex loading conditions and containing an inflection 

point. 

Note that all works described above are restricted primarily to structures 

consisting of only a single member. Based on extensive literature review, work 

focusing on the large curvature analysis of structures consisting of multiple members 

is still limited. For instance, Dado et al. (2004) investigated the post-buckling 

behavior of a cantilever column consisting of two segments of different properties 

connecting by a rotational spring. In their work, the following three different methods 

were used: a semi-analytical method based upon the governing equations cast in terms 

of elliptic integral and being solved by Newton-Raphson technique, the numerical 

integration technique, and the large displacement finite element analysis using 

NASTRAN. Result from their study revealed that the semi-analytical has proved to be 

computationally efficient and accurate in comparison with the other two. 

Suwansheewasiri and Chucheepsakul (2004) used an elliptic integral method to 
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investigate the buckling and post-buckling behavior of a two-member, inextensible 

frame structure of a particular configuration; both the symmetric and non-symmetric 

post-buckling shapes of the structure were investigated.  Most recently, Hu et al. 

(2007) employed the differential quadrature element method (DQEM) to perform the 

large deformation analysis of the frame structures containing discontinuity conditions. 

Note that while the proposed method seems to be computationally efficient, quite 

general, and applicable to large displacement analysis of structures with general 

configurations, the method itself is an approximate scheme and the discretization of 

the problem must be properly treated in order to obtain converged numerical results. 

To the best knowledge of the investigator, a systematic technique based upon the 

simple direct stiffness method furnishing by exact element tangent stiffness matrices 

is not available, and the current investigation is proposed to close this gap of 

knowledge. 

 

1.3 Research Objective 

The proposed investigation aims to develop a systematic, efficient and accurate 

technique that is capable of performing large curvature analysis of flexure-dominating 

structures (e.g. beams and frame) of arbitrary configurations and under various 

loading conditions. The primary objective is to employ such the developed technique 

to explore the behavior and various aspects of beams and frames when the exact 

kinematics is taken into consideration.  

 

1.4 Research Scopes 

Structures focused on the proposed investigation are two-dimensional and consist 

of a collection of straight and prismatic members. Each individual member is made of 

a homogeneous, isotropic, linearly elastic material. Both shear and axial deformations 

(extensibility) are negligible and can be discarded without loss. The development is 

restricted to the case that external loads are applied only at joints or defined node. The 

numerical technique proposed is to be implemented into an in-house, computer 

program using FORTRAN90.   
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1.5 Research Methodology 

A computational technique proposed is based upon a semi-analytical approach. A 

classical elliptic integral technique is employed to derive a complete set of differential 

equations governing each individual member. This set of equations is to be solved 

first for a member of simple boundary conditions, e.g. the simply-supported beam, to 

obtain useful basic solutions. Such results are then used along with the coordinate 

transformation and direct and indirect differentiations to form the exact element 

tangent stiffness matrix for a two-dimensional member. A direct stiffness method is 

proposed to assemble the element tangent stiffness equations into the tangent stiffness 

equations for the entire structure. The resulting system of nonlinear algebraic 

equations is to be solved by Newton-Raphson technique.   

 

1.6 Research Significance 

The current investigation proposes a systematic and robust technique that is well-

suited for large curvature analysis of two-dimensional, flexure-dominating structures. 

The attractive features of the proposed techniques are that it is based primarily upon a 

simple direct stiffness strategy which therefore allows the treatment of structures of 

general geometry and consisting of multiple members, and that the exact element 

tangent stiffness matrix for each element is exploited which therefore allows the 

analytical solution (within the round off and solution errors) to be obtained without 

mesh refinement. 

An additional contribution of the proposed investigation is that the developed 

technique, after performing careful verification, can be used to generate the 

benchmark solutions such a general nodal displacement or deformed configuration for 

various structures; these reference solutions are useful for verification of any new 

developed numerical techniques. 

 

 



CHAPTER II 

 

BASIC EQUATIONS 

 

 

This chapter briefly summarizes key assumptions that are pertinent to the current 

development and the integration of three basic equations, i.e. static equilibrium, 

kinematics and constitutive relation, to form a set of differential equations governing 

behavior of an individual flexure-dominating member. 

 

2.1 Assumptions 

Basic assumptions employed in the development of a mathematical model and the 

derivation of a set of key governing differential equations for a flexure-dominating 

member are summarized as follow: 

(1) The member is perfectly straight and prismatic; 

(2) The constituting material is isotropic, linearly elastic and homogeneous across the 

member;  

(3) The displacement, rotation and curvature are related through exact kinematics; 

(4) Static equilibrium is enforced in the deformed configuration; 

(5) Loads acting within the member are absent; 

(6) The member is inextensible; 

(7) The cross section remains plane before and after undergoing deformation; and  

(8) Shear deformation is negligible. 

 

2.2 Basic Equations 

Let consider a perfectly straight, prismatic member of length L and moment of 

inertia I and made of an elastic material of Young's modulus E. Both undeformed and 

deformed configurations of the member are shown schematically in Figure 2.1(a). The 

undeformed configuration of the member occupies a straight line defined by x ∈ [0, L] 
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and y = 0 and, resulting from loads acting at both ends, it moves to a new, deformed 

configuration. In particular, the material point (x, 0) in the undeformed configuration 

displaces to the same material point (x + u, v) in the deformed configuration where u = 

u(x) and v = v(x) denote the x-component and the y-component of the displacement of 

the material point (x, 0), respectively. Let fx = fx(x), fy = fy(x) and m = m(x) denote a 

resultant internal force in x-direction, a resultant internal force in y-direction, and a 

resultant bending moment about the z-axis (the axis pointing outward of the paper), 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 (a) Schematic of deformed and undeformed configurations and (b) free body 

diagram of infinitesimal element ds 

 

 Let dx and ds be the same infinitesimal material elements in the undeformed 

configuration and in the deformed configuration, respectively. In particular, dx is a 

straight element connecting a point (x, 0) to a point (x + dx, 0), and ds is a curve element 

connecting a point (x + u, v) to a point (x + dx + u + du, v + dv) as shown in Figure 

2.1(a). From geometric consideration of the element ds along with the assumption (6) 

(i.e. ds = dx), components of the displacement u and v can readily be related to the 

rotation at any point of the member, denoted by θ, by 

(x,0) (x+dx,0) 

dx 

ds 

(x+u,v) 

(x+dx+u+du,v+dv) 

θ 

x 

y 

fx 

fy 

m 

fx+dfx 
 

fy+dfy 
 

m+dm 
ds 

(a) (b) 
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dx
dv

sinθ = ,                                              (2.1) 

 

dx
du

1cosθ +=   .                                   (2.2) 

 

 By enforcing static equilibrium of the infinitesimal element ds in the deformed 

configuration (see Figure 2.1(b) for the free body diagram of the element ds) and then 

using the geometric relations (2.1) and (2.2), it leads to three differential equilibrium 

equations  

 

0
dx
dfx =  ,                                                                             (2.3) 

 

0
dx

dfy =  ,                                                                                        (2.4) 

 

cosθfsinθf
dx

dm
yx +=  .                                                                   (2.5) 

 

Clearly, the first two equilibrium equations (2.3) and (2.4) simply imply that the internal 

resultant forces fx and fy are constant throughout the member and they can fully be 

obtained if the end forces are known.  

 Upon exploiting the assumptions (6), (7) and (8), the value of normal strain (ε) 

varies linearly as a function of the distance z from the neutral axis. The explicit 

expression is given by  

 

zκε −=                          (2.6) 

 

where κ is the curvature of the cross section and the minus sign simply emphasizes that 

the positive curvature produces a compressive normal strain at any point above the 
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neutral axis (z > 0). Combining the strain-curvature relation (2.6) and the assumption (2) 

and then computing the moment resultant across the section leads to a well-known, linear 

moment-curvature relationship 

 

EIκm =   .              (2.7) 

 

Upon using the definition of the curvature along with the inextensible assumption (i.e. ds 

= dx), it leads to an exact kinematic relation 

 

dx
dθ

ds
dθ

κ ==  .             (2.8) 

 

Combining (2.5), (2.7) and (2.8) yields an alternative form of the moment equilibrium 

equation 

 

cosθfsinθf
dξ
θd

yx2

2
ˆˆ +=              (2.9) 

 

where non-dimensional parameters are defined by ξ = x/L, 2
x xf̂ f L EI=  and 2

y yf̂ f L EI= . 

To suit the direct integration of the differential equation (2.9), a term on the left hand side 

of (2.9) is first re-expressed as 

 
2

2

2

dξ

dθ

dθ

d

2

1

dξ

dθ

dθ

d

dξ

dθ

dξ

dθ

dξ

d

dξ

θd








=








=








=         (2.10) 

 

With use of the relation (2.10), the equilibrium equation (2.9) can directly be integrated 

to obtain 

 

sinθf2cosθf2C
dξ
dθ

yx

2

ˆˆ +−=







                               (2.11) 
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where a constant C, arising form the integration process, can be determined from  

boundary conditions. It is worth noting that, from the moment-curvature relationship 

(2.7), the normalized curvature dθ/dξ possesses an identical sign as that of the bending 

moment. As a consequence, only one of the two solutions of dθ/dξ obtained from (2.11) is 

physically admissible and such a choice depends primarily on the sign of the bending 

moment. The unique solution can be expressed in a concise form as 

 

sinθf̂2cosθf̂2C

)m̂(

dθ

dξ

yx +−

ϑ
=           (2.12) 

 

where ˆ(m)ϑ  is a moment-dependence function defined by  

 
ˆ  1       ,     m > 0

ˆ(m)
ˆ1       ,     m < 0


ϑ = 

−
          (2.13) 

 

with m̂ = mL/EI denoting the normalized bending moment. Combining (2.12) and the 

geometric relations (2.1) and (2.2) leads to two differential equations governing the two 

components of the displacement u and v: 

 

sinθf2cosθf2C

)sinθm(

dθ

vd

yx
ˆˆ

ˆˆ

+−
=

ϑ
                     (2.14) 

 

sinθf2cosθf2C

1))(cosθm(
dθ
ud

yx
ˆˆ

ˆˆ

+−

−
=

ϑ
                     (2.15) 

 

where Luu =ˆ  and Lvv =ˆ . A set of three ordinary differential equations (2.12), (2.14) and 

(2.15) constitutes a basis for the development of useful results presented in the following chapter. 
 



fy2 fy1 

fx2 
m2 

m1 

y 

u2 

x θ1 
θ2 

fx1 

CHAPTER III 

 

DIRECT STIFFNESS METHOD FOR LARGE CURVATURE ANALYSIS 

 

 

 In this chapter, a set of governing differential equations established in the 

previous chapter is utilized to form essential ingredients (e.g. element tangent stiffness 

matrix and tangent stiffness matrix of the entire structure) central to the development of 

the direct stiffness method for large curvature analysis.  To aid such development, some 

fundamental results are first obtained for the case of a simply supported beam and such 

results are subsequently employed along with the law of coordinate transformation to 

arrive at desirable results. 

 

3.1 Results for Simply Supported Beam 

 Consider a prismatic, simply-supported beam of length L, moment of inertia I and 

Young’s modulus E and subjected to end moments {m1, m2} and end force fx2 as shown 

in Figure 3.1.  

 

 

 

 

 

 

 

 

 

Figure 3.1 schematic of simply supported beam subjected to end moments {m1, m2,} and 

end force fx2 
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The essential boundary conditions of this particular beam are given by 

 

1u( ) 0θ = θ =   ,                (3.1)  

 

1v( ) 0θ = θ =   ,                                                                                                               (3.2) 

 

2v( ) 0θ = θ =   .                                                                              (3.3) 

 

Similarly, the natural boundary conditions associated with the prescribed end moments 

{m1, m2,} and end force fx2 are given by 

 
1

1 1

m Ld
ˆ( ) m

d EI

θ
θ = θ = =

ξ
 ,                                                                 (3.4) 

 
2

2 2

m Ld
ˆ( ) m

d EI

θ
θ = θ = =

ξ
 ,                                                                 (3.5) 

 
2

x2
x x2

f Lˆ ˆf f
EI

= =  .                                                                             (3.6) 

 

By imposing the moment boundary condition (3.5) along with the relation (2.11), the 

constant C can readily be obtained as 

 

2y2x
2
2 sinθf̂2cosθf̂2m̂C −+=   .                               (3.7) 

 

Substituting the constant C from (3.7) into the relations (2.12), (2.14) and (2.15), they 

now become 

 

)m̂,f̂,f̂;θ, )F(θm̂(
dθ

dξ
2yx2ϑ=   ,                                 (3.8) 
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2 x y 2

ˆdv ˆ ˆˆ ˆ(m)sinθ F(θ ,θ ;f ,f ,m )
dθ

= ϑ   ,                                 (3.9) 

 

2 x y 2

ˆdu ˆ ˆˆ ˆ(m)(cosθ 1)F(θ ,θ ;f ,f ,m )
dθ

= ϑ −                                                      (3.10) 

 

where F is a rotation-dependence function defined by  

 

2 x y 2
2
2 x 2 y 2

1ˆ ˆ ˆF(θ ,θ ;f ,f ,m )
ˆ ˆm̂ 2f (cosθ cos θ) 2f (sinθ sin θ)

=
+ − − −

    .                           (3.11) 

 

By imposing the remaining moment boundary condition (3.4), we obtain an additional 

relation relating kinematical and static quantities: 

 
2 2
2 1 x 2 1 y 2 1

ˆ ˆˆ ˆm m 2f (cosθ cos θ ) 2f (sinθ sin θ ) 0− + − − − =    .                            (3.12) 

 

The normalized support reactions { y2y1x1 f̂,f̂,f̂ } can readily be computed by enforcing 

equilibrium of the entire member in the deformed configuration and results are given by  

 

x1 x
ˆ ˆf f= −   ,                                             (3.13) 

 

1 2
y1

ˆ ˆm m
f̂

d̂

+
=   ,                                 (3.14) 

 

1 2
y2

ˆ ˆm m
f̂

d̂

+
= −                                  (3.15) 

 

where 2
x1 x1f̂ f L EI= , 2

y1 y1f̂ f L EI= , 2
y2 y2f̂ f L EI=  and 

2
ˆ ˆd = 1 + u  with 2 2û u L= .  

 Next, let define *θ , *û  and *v̂  as the normalized rotation, the normalized 

displacement in x-direction and the normalized displacement in y-direction at any 

normalized coordinate * *ξ x / L= , respectively. By integrating equations (3.8)-(3.10) from 

θ = θ1 to θ = *θ , it leads to  
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*
θ

θ

2yx2 ξ)dθm̂,f̂,f̂,θ, )F(θm̂(

*

1

=ϑ∫    ,                          (3.16)  

 
*

1

θ

*
2 x y 2

θ

ˆ ˆˆ ˆ ˆ(m)sinθ F(θ ,θ ,f ,f ,m )dθ vϑ =∫    ,                  (3.17)  

 
*

1

θ

*
2 x y 2

θ

ˆ ˆˆ ˆ ˆ(m)(cos 1) F(θ ,θ ,f ,f ,m )dθ uϑ θ − =∫           (3.18)  

 

in which the essential boundary conditions at the left end, i.e. (3.1) and (3.2), have been 

employed. The relations (3.16)-(3.18) provide a complete set of equations sufficient for 

determining the rotation and two components of the displacement at any point within the 

beam provided that all unknown quantities at both ends have been solved. 

 By considering the right end point (*ξ 1= ) and recalling that * 2θ = θ , *
2ˆ ˆu u=  and 

*v̂ 0= , equations (3.16)-(3.18) when specialized to this particular point become     

 
2

1

θ

2 x y 2

θ

ˆ ˆˆ ˆ(m)F(θ ,θ ,f ,f ,m )dθ 1ϑ =∫  ,                                                 (3.19) 

 
2

1

θ

2 x y 2

θ

ˆ ˆˆ ˆ(m)sinθ F(θ ,θ ,f ,f ,m )dθ 0ϑ =∫     ,                               (3.20) 

 
2

1

θ

2 x y 2 2

θ

ˆ ˆˆ ˆ ˆ(m)(cos 1) F(θ ,θ ,f ,f ,m )dθ uϑ θ − =∫   .                               (3.21) 

 

For a given set of end loads {x2 1 2
ˆ ˆ ˆf ,m ,m }, the unknown displacement and rotations 

{ 2 1 2û ,θ ,θ } can be solved from a system of nonlinear equations (3.19)-(3.20) with use of 

(3.6) and (3.12) to eliminate {x y
ˆ ˆf , f }. This implies that the quantities {x2 1 2

ˆ ˆ ˆf ,m ,m } 

constitutes a proper choice of primary unknowns if the force method is concerned. In 

contrast, if the displacement method is concerned as in the current investigation, the 

situation is reversed; i.e. the problem statement now becomes to find the end loads 
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{ x2 1 2
ˆ ˆ ˆf ,m ,m } in terms of the prescribed displacement and rotations { 2 1 2û ,θ ,θ }. According 

to the geometric constraint posed by the member inextensibility, the problem indicated 

above is not well-posed or, in the other word, {2 1 2û ,θ ,θ } cannot be specified arbitrarily. 

If { x 1 2f̂ ,θ ,θ } are prescribed instead, the end loads {x2 1 2
ˆ ˆ ˆf ,m ,m } can be solved from (3.6), 

(3.19) and (3.20) and the end displacement 2û can subsequently be computed from (3.21). 

However, lack of the displacement component 2û  renders a set {x 1 2f̂ ,θ ,θ } not well-suited 

for treatment by the displacement method.  

 To circumvent such inconvenience, we choose {2 1 2 x
ˆû ,θ ,θ ,f } as a set of primary 

unknowns. To allow 2û be one of independent variables, the strong requirement posed by 

(3.21) must be relaxed via the introduction of the residual R such that 

 
2

1

θ

2 x y 2

θ

ˆ ˆ ˆˆ ˆd (m)cosθ F(θ ,θ ;f ,f ,m )dθ≡ − ϑ∫R    .                                         (3.22) 

 

Furnished by (3.22), for any given set {2 1 2 x
ˆû ,θ ,θ ,f }, the quantities { x2 1 2

ˆ ˆ ˆf ,m ,m ,R } can 

always be determined from (3.6), (3.19), (3.21) and (3.22). It is worth noting that 

{ x212 f,θ,θ,u ˆˆ } and the corresponding {x2 1 2
ˆ ˆ ˆf ,m ,m ,R } are solutions of the boundary value 

problem only if the residual R  vanishes, i.e. R= 0. 

 

3.1.1 Gradient matrix 

 Let f(s) be a vector defined by f(s) = [fp fr]
T where fp = { x2 1 2

ˆ ˆ ˆf ,m ,m ,R } and fr = 

{ x1 y1 y2
ˆ ˆ ˆf ,f ,f } and let u(s) be a vector defined by u(s) = { 2 1 2 x

ˆû ,θ ,θ ,f } T. From (3.6), (3.12)-

(3.15), (3.19)-(3.20) and (3.22), it can be verified that f(s) = f(s)(u) and, from Taylor series 

expansion, this nonlinear function f(s) possesses a best linear approximation in the 

neighborhood of any vector uo given by 

 

))(()()( ooo)s()s( uuugufuf −+=              (3.23) 
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where g is the gradient matrix defined by  

 

g = 







=

∂

∂

r

p

)s(

)s(

g

g

u

f
              (3.24) 

 

with the sub-matrices gp and gr representing the gradient of the vector fp and vector fr 

with respect to the vector u(s), respectively. The explicit definition of the sub-matrix gp is 

given by 

 

x2 2 x2 1 x2 2 x2 x

1 2 1 1 1 2 1 x
p

2 2 2 1 2 2 2 x

2 1 2 x

ˆ ˆ ˆ ˆ ˆˆf / u f / θ f / θ f / f

ˆˆ ˆ ˆ ˆˆm / u m / θ m / θ m / f

ˆˆ ˆ ˆ ˆˆm / u m / θ m / θ m / f

ˆˆ/ u / θ / θ / f

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

=  
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

g

R R R R

     .                                (3.25) 

 

By denoting gij as an entry located at the ith row and jth column of the sub-matrix gp, the 

sub-matrix gr can readily be obtained, in terms of gij, by 

 

11 12 13 14

r 22 32 23 33 24 34

22 32 23 33 24 34

ˆ ˆ ˆ ˆg d g d g d g d
1

ŝ g g g g g g
d̂

ŝ g g g g g g

 − − − −
 

= − + + + 
 − − − − − − 

g                     (3.26) 

 

where 1 2
ˆˆ ˆ ˆs (m m ) d= + .  

 To form the gradient matrix g, it therefore necessitates the construction of the sub-

matrix gp. As clearly indicated by (3.6), (3.19), (3.20), and (3.22), certain entries of the 

sub-matrix can trivially be obtained, e.g. g11 = g12 = g13 = g21 = g31 = 0 and g14 = g41 = 1. 

With these results, the sub-matrix gp now becomes 

 

p1 p2
p

p3 p4

 
=  
 

g g
g

g g
                                                                                     (3.27) 
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where the matrices gp1, gp2, gp3 and gp4 are defined by 

 

[ ]p1 0=g      ,                                                                                            (3.28) 

 

[ ]T
p2 p3 0 0 1= =g g      ,                                                                    (3.29) 

 

1 1 1 2 1 x

p4 2 1 2 2 2 x

1 2 x

ˆˆ ˆ ˆm / θ m / θ m / f

ˆˆ ˆ ˆm / θ m / θ m / f

ˆ/ θ / θ / f

 ∂ ∂ ∂ ∂ ∂ ∂
 
 = ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂  

g

R R R

     .                                            (3.30) 

 

Determination of the matrix gp4 is non-trivial and theoretically requires implicit differentiations. 

The explicit form of such the matrix gp4 can further be derived for various cases depending on the 

existence and location of inflection points within the member. For instance, a single curvature 

member contains either no inflection point or inflection points only at its ends while a double 

curvature member contains an inflection within the member. Presence of the inflection point 

within the member poses two potential difficulties that require a careful treatment; one is 

associated with the singularity of the function F at the inflection point and the other corresponds 

to the discontinuity of the moment-dependence function ˆ(m)ϑ at the inflection point.   

 

3.1.2 Determination of sub-matrix gp4 

 Determination of the sub-matrix gp4 is established for the following three cases: a 

member containing no inflection point, a member containing an inflection point at the 

end, and a member containing an inflection point within the member. Results for these 

three cases are sufficient for the development carried out further below.    

 

3.1.2.1 Member containing no inflection point 

 Consider a beam member where the bending moment m̂( ) > 0ξ for   [0, 1]ξ ∈  or 

m̂( ) < 0ξ for   [0, 1]ξ ∈ . This particular case arises when the applied end moments 

{ 21 m̂,m̂ } are non-zero and of the opposite sign. The resulting deformed configuration of 

the beam possesses a single curvature and, in addition, ˆ(m)ϑ  becomes a constant function 
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with its value equal to either 1 or -1 depending on the sign of m̂ , i.e. ˆ(m) = 1ϑ for m̂ > 0 

and ˆ(m) = -1ϑ for m̂ < 0. It is worth noting that the function F, defined by (3.11), is well-

behaved in the sense that the quantity within the square root is always greater than zero; 

this results directly from the fact that m̂  0≠ for the entire beam. Such desirable feature of 

F renders all involved integrals nonsingular and, therefore, allows a standard procedure 

be employed in their treatment.  

 For convenience in further development, let re-express the governing equations 

(3.19) and (3.20) in a form 

 
2

1

θ

1 1 2 x y 2 2 x y 2

θ

ˆ ˆ ˆ ˆˆ ˆ(θ ,θ , f ,f ,m ) F(θ ,θ ,f ,f ,m )dθ 1 0Γ = ϑ − =∫   ,                         (3.31) 

 
2

1

θ

2 1 2 x y 2 2 x y 2

θ

ˆ ˆ ˆ ˆˆ ˆ(θ ,θ , f ,f ,m ) sinθ F(θ ,θ ,f ,f ,m )dθ 0Γ = ϑ =∫                              (3.32) 

 

and recall from (3.22) that  

 
2

1

θ

1 2 2 x y 2 2 x y 2

θ

ˆ ˆ ˆ ˆ ˆˆ ˆ(θ ,θ ,u ,f ,f ,m ) d cosθ F(θ ,θ ;f ,f ,m )dθ= = − ϑ∫R R    .                                         (3.33) 

 

From the auxiliary relation (3.12), it can be concluded that 

 

 y y 1 2 x 1 2
ˆ ˆ ˆ ˆ ˆf f (θ ,θ , f ,m ,m )=   .                                                                                               (3.34) 

 

With use of (3.33), equations (3.31) and (3.32) implicitly define the normalized end 

moments { 21 m̂,m̂ } as functions of { 1 2 x
ˆθ ,θ , f }, i.e. 

 

1 1 1 2 x
ˆˆ ˆm m (θ ,θ , f )=    ,                                                                                                       (3.35) 

 

2 2 1 2 x
ˆˆ ˆm m (θ ,θ , f )=   .                                                                                                       (3.36) 
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By taking derivative of (3.31)-(3.33) with respect to { 1 2 x
ˆθ ,θ , f } along with employing 

(3.34)-(3.36) and the chain rule of differentiation, we obtain the relation 

 

p4 = −Sg D             (3.37) 

 

where the matrices S and D are given by 

 

y y1 1 1

1 2 2y y

y y2 2 2

1 2 2y y

y y

1 2 2y y

ˆ ˆf f
0

ˆ ˆˆ ˆ ˆm m mf f

ˆ ˆf f
0

ˆ ˆˆ ˆ ˆm m mf f

ˆ ˆf f
1

ˆ ˆˆ ˆ ˆm m mf f

 ∂ ∂∂Γ ∂Γ ∂Γ
+ 

∂ ∂ ∂∂ ∂ 
 

∂ ∂ ∂Γ ∂Γ ∂Γ
= + ∂ ∂ ∂∂ ∂ 
 

∂ ∂∂ ∂ ∂ + ∂ ∂ ∂∂ ∂ 

S

R R R

 ,                              (3.38) 

 

y y y1 1 1 1 1 1

1 1 2 2y y x y x

y y y2 2 2 2 2 2

1 1 2 2y y x y x

y y y

1 1 2 2y y x y x

ˆ ˆ ˆf f f
ˆ ˆ ˆ ˆ ˆf f f f f

ˆ ˆ ˆf f f
ˆ ˆ ˆ ˆ ˆf f f f f

ˆ ˆ ˆf f f
ˆ ˆ ˆ ˆ ˆf f f f f

 ∂ ∂ ∂∂Γ ∂Γ ∂Γ ∂Γ ∂Γ ∂Γ
+ + +

∂θ ∂θ ∂θ ∂θ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂Γ ∂Γ ∂Γ ∂Γ ∂Γ ∂Γ
= + + +

∂θ ∂θ ∂θ ∂θ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
− − − − − −
∂θ ∂θ ∂θ ∂θ∂ ∂ ∂ ∂ ∂

D

R R R R R R







 
 
 
 
 



    .                            (3.39) 

 

Upon using the explicit function form of {Γ1,Γ2,R }, the matrix S and D can be obtained 

explicitly by 

 
( ) ( )

( ) ( )

( ) ( )

2 1 2 1 2 1 1 2

2 1 2 1

4 2 2 1 4 2 1 2

2 1 2 1

5 3 2 1 5 3 1 2

2 1 2 1

ˆ ˆi i s m i i s m
0

s s s s

ˆ ˆi i s m i i s m
0

s s s s

ˆ ˆi i s m i i s m
1

s s s s

 ϑ − ϑ −
− 

− − 
 ϑ − ϑ −
 = −

− − 
 ϑ − ϑ − −
 − − 

S   ,                             (3.40) 
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2 1 2 1 2 1 2 2 2 1 2 1 12
3

2 1 1 2 1 2 2 1

4 2 2 1 1 4 2 2 2 2 4 1 2 2 12
5

2 1 1 2 1 2 2 1

5 3 2 1 5 2 3 2 5 1 21 2

2 1 1 2 1 2

(i i s ) (i i s ) i (c c ) i s1 1
i

ˆ ˆs s m s s m s s

(i i s ) s (i i s ) s i (c c ) i s
i

ˆ ˆs s m s s m s s

(i i s ) (i i s ) i (c cc c
ˆ ˆs s m s s m

ϑ − λ ϑ − λ − +
− + + ϑ + ϑ

− − −

ϑ − λ ϑ − λ − +
= − + + ϑ + ϑ

− − −

ϑ − λ ϑ − λ −
− + + ϑ

− −

D

3 12
6

2 1

) i s
i

s s

 
 
 
 
 
 
 +

+ ϑ 
−  

               (3.41) 

 

where s1 = sinθ1, s2 = sinθ2, s12 = sin( θ1 - θ2 ), c1 = cosθ1, c2 = cosθ2, 1y1x1 cf̂sf̂ +=λ , 

2y2x2 cf̂sf̂ +=λ  and integrals {i1, i2, i3, i4, i5, i6} are denoted by 

 
2

1

3
1 2 x y 2

ˆ ˆ ˆi F ( , ;f , f ,m )d
θ

θ

= θ θ θ∫   ,           (3.42) 

 
2

1

3
2 2 x y 2

ˆ ˆ ˆi F ( , ;f , f ,m )sin d
θ

θ

= θ θ θ θ∫   ,                    (3.43) 

 
2

1

3
3 2 x y 2

ˆ ˆ ˆi F ( , ;f , f ,m )cos d
θ

θ

= θ θ θ θ∫    ,         (3.44) 

 
2

1

3 2
4 2 x y 2

ˆ ˆ ˆi F ( , ;f , f ,m )sin d
θ

θ

= θ θ θ θ∫    ,         (3.45) 

 
2

1

3
5 2 x y 2

ˆ ˆ ˆi F ( , ;f , f ,m )sin cos d
θ

θ

= θ θ θ θ θ∫    ,                    (3.46) 

 
2

1

3 2
6 2 x y 2

ˆ ˆ ˆi F ( , ;f , f ,m )cos d
θ

θ

= θ θ θ θ∫   .         (3.47) 

 

By solving a system of linear equations (3.37), we obtain an explicit expression of the 

matrix gp4 in a form  
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2
2 1 1 1 4 1 2 1 2 1 1 2 4 1 1 2 1

2
3 1 1 3 1 2 3 1 1

2
1 2 1 2 1 1 2 4 2 2 1 2 4 2 1 2 2 2

p4 2
3 1 2 3 2 2 3 2 2

2 3 51 1 2 1 1 2 2 2

3 1 1 3 2 2

2i s i s i i (s s ) i s s i s c
ˆ ˆ ˆ ˆ ˆ ˆm m m m m m

i (s s ) i s s i 2i s i s i s c
ˆ ˆ ˆ ˆ ˆ ˆm m m m m m

2i i is c s c
ˆ ˆ ˆ ˆm m m m

−

− − λ + − − ζ + ζ
+ −

ϑζ ϑζ ζ

+ − − − − λ ζ + ζ
= − = + −

ϑζ ϑζ ζ

−ζ + ζ ζ + ζ
− −

ζ ζ

g S D

2 2
3 4 1 5 6

3

i i i i i

 
 
 
 
 
 
 − −
 ϑζ ϑ 

       (3.48) 

 

where 1 2 3 1 5i i i iζ = − , 1 2 5 3 4i i i iζ = −  and 2
3 2 1 4i i iζ = − . Clearly, the matrix gp4 is essentially 

symmetric and it can further be verified that it is additionally positive definite. 

 

3.1.2.2 Member containing interior inflection point 

 Consider a beam member where there exists an inflection point at an interior point 

z   (0, 1)ξ ∈  or, equivalently, the bending moment vanishes at z   (0, 1)ξ ∈  and 

1 2
ˆ ˆm( )m( ) < 0ξ ξ  for 1 z  [0, )ξ ∈ ξ and 2 z  ( ,1]ξ ∈ ξ . This particular case arises when the 

applied end moments { 21 m̂,m̂ } are non-zero and of the same sign. The resulting 

deformed configuration of the beam possesses a double curvature; i.e. the curvature on 

both sides of the inflection point is of the opposite sign. As a result, the moment-

dependence function ϑ  is discontinuous atzξ  and takes different values on both sides of 

the inflection point. For the applied end moments 1 2
ˆ ˆm  > 0, m  < 0, it results in 1ϑ = − for 

z  [0, )ξ ∈ ξ  and 1ϑ = for z  ( ,1]ξ ∈ ξ  and, for 1 2
ˆ ˆm  < 0, m  > 0, it results in 1ϑ = for 

z  [0, )ξ ∈ ξ  and 1ϑ = − for z  ( ,1]ξ ∈ ξ . Schematic of the beam associated with the former 

case is shown in Figure 3.2. 

At the inflection point, a special condition associated with vanishing of the 

bending moment is given by 

 

z

d
( ) 0

d

θ
θ = θ =

ξ
  .                                         (3.49) 

 

where θz denotes the rotation at the inflection point. By enforcing this special condition, 

the constant C can be obtained from (2.11) as 
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Figure 3.2 Schematic of simply supported beam subjected to end moments of same sign 

 

zyzx sinθf̂2cosθf̂2C −=    .          (3.50) 

 

By substituting the constant C into (2.12), (2.14) and (2.15), it leads to  

 

)f̂,f̂;θ, (θ)Fm̂(
dθ

dξ
yxzzϑ=    ,          (3.51)                          

 

)f̂,f̂;θ, (θF )sinθm̂(
dθ
v̂d

yxzzϑ=    ,         (3.52) 

 

)f̂,f̂;θ, (θ1)F)(cosθm̂(
dθ
ûd

yxzz−ϑ=          (3.53) 

 

where the function Fz is defined by 

 

θ)sin (sinθf̂2θ) cos(cosθf̂2

1
)f̂,f̂;θ, (θF

zyzx

yxzz
−−−

=  .     (3.54) 

 

By integrating equations (3.51)-(3.53) over the entire beam, we obtain 

 
z 2

1 z

z z x y z z x y
ˆ ˆ ˆ ˆF (θ ,θ ;f ,f )d F (θ ,θ ;f ,f )d 1

θ θ

θ θ

 
ψ − θ + θ = 
  
∫ ∫     ,                                                          (3.55) 

fy2 fy1 

fx2 
m2 m1 

y 

u2 

x θ1 
θ2 

fx1 θz 
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z 2

1 z

z z x y z z x y
ˆ ˆ ˆ ˆsin  F (θ ,θ ;f ,f )d sin  F (θ ,θ ;f ,f )d 0

θ θ

θ θ

 
ψ − θ θ + θ θ = 
  
∫ ∫   ,                                       (3.56) 

 

( ) ( )
z 2

1 z

z z x y z z x y 2
ˆ ˆ ˆ ˆ ˆcos 1 F (θ ,θ ;f ,f )d cos 1 F (θ ,θ ;f ,f )d u

θ θ

θ θ

 
ψ − θ − θ + θ − θ = 
  
∫ ∫                            (3.57) 

 

where a constant ψ is defined by 

 

1 2

1 2

ˆ ˆ1     ,    m ,m 0

ˆ ˆ  1     ,    m ,m 0

− <
ψ = 

>
  .          (3.58) 

 

It is evident from (3.54) that the function Fz is singular at the inflection point; thus, all 

singular integrals appearing in (3.55)-(3.57) require special treatments. To overcome such 

difficulty, a series of variable transformations is introduced to remove and regularize 

such singularity. By defining quantities  

 

2 2 2
s x y

ˆ ˆ ˆf f f= +  , x
o 2

s

f̂
cos

f̂
θ =  , y

o 2
s

f̂
sin

f̂
θ = −   ,                      (3.59) 

 

terms appearing in the square root in (3.54) can be expressed as 

 
2

x y s o
ˆ ˆ ˆf cos f sin f cos( )θ − θ = θ − θ    ,         (3.60) 

 
2

x z y z s z o
ˆ ˆ ˆf cos f sin f cos( )θ − θ = θ − θ   .                    (3.61) 

  

After substituting identities (3.60) and (3.61) into (3.54), the function Fz now becomes 

 

[ ]
z z o s

2
s z o o

1ˆF (θ ,θ ,θ ;f )
ˆ2f cos( ) cos( )

=
θ − θ − θ − θ

   .       (3.62) 
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Upon change of a variable o( )θ = π + θ − θ  and use of an identity )2(sin21cos 2 θ−=θ , 

we then obtain 

 

z z s

2 2 2z
s

1ˆF (  , ;f )

ˆ4f sin sin
2 2

θ θ =
    θ θ

−    
   

        (3.63) 

 

where z z o( )θ = π + θ − θ . Finally, we introduce another variable transformation 

)2sin(sinp θ=φ  where )2sin(p zθ= . The function Fz in (3.63) now becomes   

 

z s
2 2 2 2

ss

1 1ˆF ( ;p,f )
ˆˆ 2f pcos4f (p p sin )

φ = =
φ− φ

 .                  (3.64) 

 

From the relations o( )θ = π + θ − θ  and psin sin( 2)φ = θ , we obtain the differential relation 

between θ  to φ  as 

 

2 2

2pcos 2 p cos
dθ dθ d d

cos(θ 2) 1 p sin

φ ψ φ
= = φ = φ

− φ
    .         (3.65) 

 

Note that to obtain the relation (3.65) we have used the following identity 

 
2 2cos( 2) 1 p sinθ = −ψ − φ     .                     (3.66) 

 

The parameter ψ appearing on the right hand side of (3.66) is used to indicate the sign of 

)2cos(θ . If the applied end moments { 21 m̂,m̂ } are positive, the shear force within the 

beam is also positive and this renders the angle2θ  falling into the quadrants 2 or 3 or, 

equivalently, cos( 2) 0θ < . In the contrary, ff the applied end moments { 21 m̂,m̂ } are 

negative, the shear force within the beam is also negative and this renders the angle2θ  

falling into the quadrant 1 or, equivalently, cos( 2) 0θ > . By using (3.64)-(3.66), 

equations (3.55)-(3.57) become 
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1 2

/ 2 / 2

o o s
ˆf ( ;p)d f ( ;p)d f

π π

φ φ

φ φ + φ φ =∫ ∫     ,                                                                                  (3.67) 

 

1 2

/ 2 / 2

v o v of ( , ;p)d f ( , ;p)d 0
π π

φ φ

φ θ φ + φ θ φ =∫ ∫    ,                                                                       (3.68) 

 

1 2

/ 2 / 2

u o u o s 2
ˆ ˆf ( , ;p)d f ( , ;p)d f u

π π

φ φ

φ θ φ + φ θ φ =∫ ∫                                                                (3.69) 

 

where )2sin(sinp 11 θ=φ , )2sin(sinp 22 θ=φ , 1 1 o( )θ = π + θ − θ , 2 2 o( )θ = π + θ − θ  and  

 

o 2 2

1
f ( ;p)

1 p sin
φ =

− φ
   ,          (3.70) 

 
2 2o

v o o o2 2

sin
f ( , ;p) 2sin 1 p sin 2 pcos sin

1 p sin

θ
φ θ = − θ − φ − ψ θ φ

− φ
   ,     (3.71) 

 
2 2o

u o o o2 2

cos 1
f ( , ;p) 2cos 1 p sin 2 psin sin

1 p sin

θ −
φ θ = − θ − φ + ψ θ φ

− φ
   .     (3.72) 

 

 Once all unknowns at both end of the member are resolved, the rotation, 

normalized displacement in x-direction and normalized displacement in y-direction at any 

interior point * *ξ x / L (0,1)= ∉ , denoted by *θ , *û  and *v̂ , can readily be obtained by 

integrating (3.51)-(3.53) from ξ 0=  to *ξ ξ=  along with the use of (3.64)-(3.66). The 

final expressions are given by 
 

*

1

*
1

*
o z

*
s / 2 / 2

*
o o z

f ( ;p)d                                ,  0

f̂

f ( ;p)d f ( ;p)d      ,  1

φ

φ

π π

φ φ


φ φ < ξ < ξ


ξ = 

 φ φ + φ φ ξ < ξ <


∫

∫ ∫
    ,                                                    (3.73) 

 
*

1

*
1

*
v o z

*
s / 2 / 2

*
v o v o z

f ( , ;p)d                                     ,  0
ˆv̂ f

f ( , ;p)d f ( , ;p)d      ,  1

φ

φ

π π

φ φ


φ θ φ < ξ < ξ


= 
 φ θ φ + φ θ φ ξ < ξ <


∫

∫ ∫
    ,                                           (3.74) 
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*

1

*
1

*
u o z

*
s / 2 / 2

*
u o u o z

f ( , ;p)d                                     ,  0
ˆû f

f ( , ;p)d f ( , ;p)d      ,  1

φ

φ

π π

φ φ


φ θ φ < ξ < ξ


= 
 φ θ φ + φ θ φ ξ < ξ <


∫

∫ ∫
                                                (3.75) 

 

where ** sinp)2sin( φ=θ  and * *
o( )θ = π + θ − θ . Finally, the normalized support 

reactions { y2y1x1 f̂,f̂,f̂ } can be computed from (3.13)-(3.15).  

 By imposing the remaining two moment boundary conditions at both ends of the 

beam in addition to the boundary condition (3.6), it leads to two auxiliary equations  

 
2

1 1 z x y 1 1 x 1 z y 1 z
ˆ ˆ ˆ ˆˆ ˆ(θ ,θ ,f ,f ,m ) m 2f (cosθ cos θ ) 2f (sinθ sin θ ) 0δ = + − − − =   ,                       (3.76) 

 
2

2 2 z x y 2 2 x 2 z y 2 z
ˆ ˆ ˆ ˆˆ ˆ(θ ,θ ,f ,f ,m ) m 2f (cosθ cos θ ) 2f (sinθ sin θ ) 0δ = + − − − =   .                (3.77) 

 

The residual function for this particular case is given by 

 

1 2

/ 2 / 2

1 2 o 2 s 2 u o u o

s

1ˆ ˆˆ ˆ( , , ,u , f , p) u f ( , ;p)d f ( , ;p)d
f̂

π π

φ φ

 
= φ φ θ = + φ θ φ + φ θ φ 

  
∫ ∫R R                             (3.78) 

 

The governing equations (3.67) and (3.68) can alternatively be expressed as 

 

1 2

/ 2 / 2

o 1 2 s o o s
ˆ ˆ( , ,f ,p) f ( ;p)d f ( ;p)d f 0

π π

φ φ

Γ φ φ = φ φ + φ φ − =∫ ∫     ,                                                    (3.79) 

 

1 2

/ 2 / 2

v 1 2 s v o v o
ˆ( , ,f ,p) f ( , ;p)d f ( , ;p)d 0

π π

φ φ

Γ φ φ = φ θ φ + φ θ φ =∫ ∫    .                                               (3.80) 

 

From the relations (3.79) and (3.80) along with the transformations o( )θ = π + θ − θ  and 

psin sin( 2)φ = θ , it implies that zθ  and yf̂  are implicit functions of { 1 2 x
ˆ, , fθ θ }, i.e. 

 

z z 1 2 x
ˆ( , , f )θ = θ θ θ     ,                                                                                                       (3.81) 
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y y 1 2 x
ˆ ˆ ˆf f ( , , f )= θ θ     .                                                                                                       (3.82) 

 

By using conditions (3.76) and (3.77) along with (3.81) and (3.82), the end moments 1m̂  

and 2m̂  are implicit functions of { 1 2 x
ˆ, , fθ θ }, i.e. 1 1 1 2 x

ˆˆ ˆm m ( , ,f )= θ θ  and 2 2 1 2 x
ˆˆ ˆm m ( , ,f )= θ θ . 

By taking derivative of (3.76) and (3.77) with respect to 1θ , 2θ  and xf̂ , it leads to: 

 

1 1 1

1 2 x 1 1 z 1 1 z 1 1 z 1

2 2 z 2 2 z 2 2 z 22 2 2

1 2 x

ˆ ˆ ˆm m m
ˆθ θ ˆ ˆ ˆ ˆf / m 0 (c c ) / m / m (s s ) / m

ˆ ˆ ˆ ˆˆ ˆ ˆ 0 / m (c c ) / m / m (s s ) / mm m m
ˆθ θ f

∂ ∂ ∂ 
 ∂ ∂ ∂ λ − −λ −     = +     λ − −λ −∂ ∂ ∂     
∂ ∂ ∂  

A      (3.83) 

 

where z zs sin= θ , z zc cos= θ , z x z y z
ˆ ˆf s f cλ = +  and the matrix A is defined by  

 

z z z

1 2 x

y y y

1 2 x

θ θ θ

ˆθ θ f

ˆ ˆ ˆf f f
ˆθ θ f

∂ ∂ ∂ 
 ∂ ∂ ∂ =  ∂ ∂ ∂ 
 ∂ ∂ ∂ 

A                                                                                                    (3.84) 

 

From (3.78) and (3.81)-(3.82), it implies that 1 2 x
ˆ( , , f )= θ θR R . By differentiating (3.78) 

with respect to 1θ , 2θ  and xf̂ , we then obtain 

 

1 2 x
ˆθ θ f

 ∂ ∂ ∂
= + 

∂ ∂ ∂  
B CA

R R R
                                                                                           (3.85) 

 

where the matrices B and C are given by 

 

1 2 x

ˆ ˆ ˆ

ˆθ θ f

 ∂ ∂ ∂
=  

∂ ∂ ∂  
B

R R R
     ,     

z y

ˆ ˆ

ˆθ f

 ∂ ∂
=  

∂ ∂  
C

R R
                                                               (3.86) 

 

Note that all entries of the matrices B and C can be obtained from the function form of  

R̂  defined by (3.78) along with the transformations o( )θ = π + θ − θ  and psin sin( 2)φ = θ  
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(see explicit results in Appendix A). To compute all entries of the matrix A, we 

differentiate equations (3.79) and (3.80) with respect to 1θ , 2θ  and xf̂  and this results in a 

system of equations: 

 

=DA F                                                                                                                          (3.87) 

 

where the matrices D and F are given by 

 

o o

z y

v v

z y

ˆθ f

ˆθ f

∂Γ ∂Γ 
 ∂ ∂ =  ∂Γ ∂Γ
 
∂ ∂  

D      ,                                                                                                     (3.88) 

 

o o o

1 2 x

v v v

1 2 x

ˆθ θ f

ˆθ θ f

∂Γ ∂Γ ∂Γ 
 ∂ ∂ ∂ = −
 ∂Γ ∂Γ ∂Γ
 
∂ ∂ ∂  

F     .                                                                                          (3.89) 

 

All entries of D and F can be obtained from the function form of  oΓ  and vΓ  defined by 

(3.79) and (3.80) along with the transformations o( )θ = π + θ − θ  and psin sin( 2)φ = θ  (see 

explicit results in Appendix A). Once A is solved from (3.87), it is substituted into (3.83) 

and (3.85) to obtain all entries of the matrix gp4. Due to the complexity of the function 

form resulting from the variable transformations, the matrices B, C, D and F are 

computed numerically.  

 

3.1.2.3 Member containing inflection point at the end 

 Finally, consider a beam member containing an inflection point only at one of its 

ends or, equivalently, the bending moment possesses the same sign throughout the 

member and vanishes only at one of its ends. This particular case arises when one of the 

applied end moments { 21 m̂,m̂ } vanishes. The resulting deformed configuration of the 

beam possesses a single curvature and, in addition, the moment-dependence function ϑ  
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becomes a constant function with its value equal to either 1 or -1 depending on the sign 

of non-vanishing applied end moments { 21 m̂,m̂ }. Without loss of generality, the 

development presented below focuses only on the member containing an inflection point 

at the right end. While results for the member containing an inflection point at the left 

end are also needed, the treatment of such member follows the same procedure. 

Now, let restrict attention to the case that the beam is subjected only to non-zero 

1m̂  whereas 2m̂  vanishes. Specifically, the beam possesses a positive curvature if and 

only if 1m̂ 0<  and possesses a negative curvature if and only if 1m̂ 0> . It is worth noting 

that the case treated here is a special case of a double curvature beam discussed in 

subsection 3.1.2.2; in particular, z 2θ = θ , z 1ξ = , and the point of singularity move to the 

right end. As a consequence, basic equations and procedures adopted in the previous case 

can, after a proper specialization, be applied to this particular case. Due to the moment-

dependence function taking a single value throughout the member, there is no need to 

separate all involved integrals that are evaluated over the entire member into two parts. 

By replacing z 2θ = θ into (3.54), we obtain a new function, called Fz1, given by   

 

z1 z x y

x 2 y 2

1ˆ ˆF (θ ,θ ;f ,f )
ˆ ˆ2f (cosθ cos θ) 2f (sinθ sin θ)

=
− − −

 .     (3.90) 

 

It is evident that the function Fz1 is singular at the right end of the beam. The governing 

equations (3.55)-(3.57), when specialized to this particular case, now take the following 

form 

 
2

1

z z x y
ˆ ˆF (θ ,θ ;f ,f )d 1

θ

θ

−ψ θ =∫     ,                                                                                  (3.91) 

 
2

1

z z x y
ˆ ˆsin  F (θ ,θ ;f ,f )d 0

θ

θ

−ψ θ θ =∫   ,                                                                           (3.92) 

 



 

 

34 

( )
2

1

z z x y 2
ˆ ˆ ˆcos 1 F (θ ,θ ;f ,f )d u

θ

θ

−ψ θ − θ =∫                                                                            (3.93) 

  

where 1ψ =  for 1m̂ 0<  and 1ψ = −  for 1m̂ 0> . By introducing the same type of variable 

transformations as employed in the previous case, i.e. o( )θ = π + θ− θ  and psin sin( 2)φ = θ , 

equations (3.91)-(3.93) become  

 

1

/ 2

o s
ˆf ( ;p)d f

π

φ

φ φ =∫     ,                                                                                                       (3.94) 

 

1

/ 2

v of ( , ;p)d 0
π

φ

φ θ φ =∫    ,                                                                                               (3.95) 

 

1

/ 2

u o s 2
ˆ ˆf ( , ;p)d f u

π

φ

φ θ φ =∫                                                                                                    (3.96) 

 

where )2sin(sinp 11 θ=φ , 1 1 o( )θ = π + θ − θ , and functions o v uf , f , f  are defined by (3.70)-

(3.72).   

 In addition, the rotation, normalized displacement in x-direction and normalized 

displacement in y-direction at any interior point * *ξ x / L (0,1)= ∉ , denoted by *θ , *û  and 

*v̂ , can readily be obtained in a similar manner and the final expressions are given by 

 
*

1

*
s of̂ f ( ;p)d

φ

φ

ξ = φ φ∫     ,                                                                                                      (3.97) 

 
*

1

*
s v o

ˆv̂ f f ( , ;p)d
φ

φ

= φ θ φ∫     ,                                                                                                 (3.98) 

 
*

1

*
s u o

ˆû f f ( , ;p)d
φ

φ

= φ θ φ∫                                                                                                      (3.99) 

 

where ** sinp)2sin( φ=θ  and * *
o( )θ = π + θ − θ . Finally, the normalized support 

reactions {
y2y1x1 f̂,f̂,f̂ } can be computed from (3.13)-(3.15). 
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 Since the end moment 2m̂  is prescribed equal to zero, the rotation at the right end 

2θ is no longer an independent quantity but can be obtained in terms of other independent 

unknowns via the constraint2m̂ 0= . Let redefine f such that f = [fp fr]
T where fp = 

{ x2 1
ˆ ˆf ,m ,R } and fr = { x1 y1 y2

ˆ ˆ ˆf ,f ,f } and redefine u such that u = { 2 1 x
ˆû ,θ ,f } T. Consistent with 

these new definitions, the reduced gradient matrix takes the form T T T
p r[  ]=g g g  where the 

sub-matrices pg  and rg  are of dimensions 3x3 and given by 

 

p1 p2
p

p3 p4

 
=  
 

g g
g

g g
     .                                                                              (3.100) 

 

11 12 13

r 22 23 22 23

22 23 22 23

ˆ ˆ ˆ ˆg d g d g d 0 0 d
1 1

ˆ ˆs g g s g g
ˆ ˆd dˆ ˆs g g s g g

   − − − −
   

= − = −   
   − − − −   

g                   (3.101) 

 

where 1 2
ˆˆ ˆ ˆs (m m ) d= + , ijg  denotes an entry located at the ith row and jth column of the 

sub-matrix pg  and  

 

[ ]p1 0=g      ,                                                                                          (3.102) 

 

[ ]T
p2 p3 0 1= =g g      ,                                                                  (3.103) 

 

1 1 1 x
p4

1 x

ˆˆ ˆm / θ m / f

ˆ/ θ / f

 ∂ ∂ ∂ ∂
=  
 ∂ ∂ ∂ ∂ 

g
R R

     .                                                      (3.104) 

 

It still remains to compute the matrix p4g and a procedure similar to that employed in 

section 3.1.2.2 is utilized.  

 By imposing the remaining moment boundary condition at the left end of the 

beam in addition to the boundary condition (3.6), it leads to an auxiliary equation  

 
2

1 1 2 x y 1 1 x 1 2 y 1 2
ˆ ˆ ˆ ˆˆ ˆ(θ ,θ ,f ,f ,m ) m 2f (cosθ cos θ ) 2f (sinθ sin θ ) 0δ = + − − − =                              (3.105) 
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The residual function resulting from (3.96) is given by 

 

1

/ 2

1 o 2 s 2 u o

s

1ˆ ˆˆ ˆ( , ,u , f , p) u f ( , ;p)d
f̂

π

φ

= φ θ = + φ θ φ∫R R                                                              (3.106) 

 

The governing equations (3.94) and (3.95) can alternatively be expressed as 

  

1

/ 2

o 1 s o s
ˆ ˆ( ,f ,p) f ( ;p)d f 0

π

φ

Γ φ = φ φ − =∫     ,                                                                            (3.107) 

 

1

/ 2

v 1 s v o
ˆ( ,f ,p) f ( , ;p)d 0

π

φ

Γ φ = φ θ φ =∫    .                                                                     (3.108) 

 

From the relations (3.107) and (3.108) along with the transformations o( )θ = π + θ− θ  and 

psin sin( 2)φ = θ , it implies that 2θ  and yf̂  are implicit functions of { 1 x
ˆ, fθ }, i.e. 

 

2 2 1 x
ˆ( , f )θ = θ θ     ,                                                                                                         (3.109) 

 

y y 1 x
ˆ ˆ ˆf f ( , f )= θ     .                                                                                                          (3.110) 

 

By using conditions (3.105) along with (3.109) and (3.110), the end moment 1m̂  is an 

implicit function of { 1 x
ˆ, fθ }, i.e. 1 1 1 x

ˆˆ ˆm m ( ,f )= θ . By taking derivative of (3.105) with 

respect to 1θ  and xf̂ , it gives rise to 

 

1 1
1 1 z 1 1 z 1 1 z 1

1 x

ˆ ˆm m
ˆ ˆ ˆ ˆ/ m (c c ) / m / m (s s ) / m

ˆθ f

 ∂ ∂
= λ − + −λ −        ∂ ∂  

A                                 (3.111) 

 

where the matrix A  is defined by  
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2 2

1 x

y y

1 x

θ θ

ˆθ f

ˆ ˆf f
ˆθ f

∂ ∂ 
 ∂ ∂ =  ∂ ∂
 
 ∂ ∂ 

A                                                                                                           (3.112) 

 

From (3.106) and (3.109)-(3.110), it implies that 1 x
ˆ( ,f )= θR R . By differentiating (3.106) 

with respect to 1θ  and xf̂ , we then obtain 

 

1 x
ˆθ f

 ∂ ∂
= + 

∂ ∂  
B CA

R R
                                                                                                  (3.113) 

 

where the matrices B and C are given by 

 

1 x

ˆ ˆ

ˆθ f

 ∂ ∂
=  

∂ ∂  
B

R R
     ,     

2 y

ˆ ˆ

ˆθ f

 ∂ ∂
=  

∂ ∂  
C

R R
                                                                       (3.114) 

 

Note that all entries of the matrices B  and C  can be obtained from the function form of  

R̂  defined by (3.106) along with the transformations o( )θ = π + θ − θ  and psin sin( 2)φ = θ  

(see explicit results in Appendix B). To compute all entries of the matrix A , we 

differentiate equations (3.107) and (3.108) with respect to 1θ  and xf̂  and this results in a 

system of equations: 

 

=DA F                                                                                                                        (3.115) 

 

where the matrices D  and F  are given by 

 

o o

2 y

v v

2 y

ˆθ f

ˆθ f

∂Γ ∂Γ 
 ∂ ∂ =  ∂Γ ∂Γ
 
∂ ∂  

D      ,                                                                                                   (3.116) 
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

















θ∂

Γ∂

θ∂

Γ∂
θ∂

Γ∂

θ∂

Γ∂

−=

2

v

1

v

2

o

1

o

F     .                                                                                                (3.117) 

 

All entries of D  and F can be obtained from the function form of  oΓ  and vΓ  defined by 

(3.107) and (3.108) along with the transformations o( )θ = π + θ− θ  and psin sin( 2)φ = θ  

(see explicit results in Appendix B). Once A  is solved from (3.115), it is substituted into 

(3.111) and (3.113) to obtain all entries of the matrix p4g . Due to the complexity of the 

function form resulting from the variable transformations, the matrices B , C , D  and 

F are computed numerically.  

 

3.2 Local Element Tangent Stiffness Matrix 

Consider now a member with more general boundary conditions as shown 

schematically in Figure 3.3. Let {x, y} be a local coordinate system of the undeformed 

member and {x*, y*} is the coordinate system of the deformed member defined such that 

a chord connecting its end points always lies on the x*  axis. With this specific choice of 

{x * , y*}, behavior of the member observed from this coordinate system is identical to that 

of the simply-support beam 

The normalized end loads and normalized end displacements and rotations are 

denoted by { 2y2x21y1x1 m̂,f̂,f̂,m̂,f̂,f̂ } and { 222111 θ,v̂,û,θ,v̂,û }, in the {x,y} system and by 

{ *
2

*
y2

*
x2

*
1

*
y1

*
x1 m̂,f̂,f̂,m̂,f̂,f̂ } and { *

2
*
1

*
2 θ,θ,û } in the {x*,y*} system. From geometric 

consideration of the deformed configuration, { *
2

*
1

*
2 θ,θ,û } can be expressed in terms of 

{ 222111 θ,v,u,θ,v,u ˆˆˆˆ } by 

 
*
1 1θ θ= − φ    ,                 (3.118) 

 
*
2 2θ θ= − φ   ,                 (3.119) 

 

 



 

 

39 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3 Schematic of undeformed and deformed configurations of member subjected 

to general boundary conditions. 

 
*
2 2 1 2 1ˆ ˆ ˆ ˆ ˆu (1 u u )cos (v v )sin 1= + − φ − − φ −                                     (3.120) 

 

where φ is a chord rotation defined by 

 

0)cosvv()sinuu(1 1212 =φ−−φ−+ ˆˆˆˆ  .                      (3.121) 

 

Let *
xf̂  be the internal force in x*-direction and R* be the residual defined in the {x*, y*} 

system in the same way as given by (3.22). In the {x, y} system, we choose {xf̂ , R} such 

that 

 
*

x x
ˆ ˆf f=  ,                                                                (3.122) 

 

*RR =   .                                                (3.123) 

 

fy1 

*
x1f  

y 

x 

θ2 

θ1 

φ 

φ 

fx1 

fx2 

fy2 
*
x2f  

*
y1f  

*
y2f  

*
11 m,m  

*
22 m,m  

*
1θ  

*
2θ  

*x  

*y  



 

 

40 

By applying the coordinate transformation, a vector f = { R,m̂,f̂,f̂,m̂,f̂,f̂ 2y2x21y1x1 } is 

related to a vector f* = { *
y2

*
y1

*
x1

**
2

*
1

*
x2 f̂,f̂,f̂,,m̂,m̂,f̂ R } by 

f = R(φ)f*                        (3.124) 

 

where R(φ ) is a transformation matrix of dimension 7x7 given by 

 

R(φ) =

0 0 0 0 c s 0

0 0 0 0 s c 0

0 1 0 0 0 0 0

c 0 0 0 0 0 s

s 0 0 0 0 0 c

0 0 1 0 0 0 0

0 0 0 1 0 0 0

φ φ

φ φ

φ φ

φ φ

− 
 
 
 
 

− 
 
 
 
 
 

                             (3.125) 

 

with sφ = sinφ and cφ = cosφ. By defining u = { 1 1 1 2 2 2 x
ˆˆ ˆ ˆ ˆu ,v ,θ ,u ,v ,θ ,f } and u* = { * * * *

2 1 2 x
ˆû ,θ ,θ ,f } 

and then recalling (3.118)-(3.123), we obtain the relation u* = u*(u). From the fact that 

behavior of the member in the {x*, y*} system is identical to that for the simply supported 

beam, f* and u* are related by f* = f*(u*). Combing (3.124), u* = u*(u) and f* = f*(u*) 

leads to the relation  

 

f = f(u) = R(φ) f*(u*(u))   .        (3.126) 

 

Upon use of Taylor series expansion, the nonlinear function f defined by (3.126) 

possesses a best linear approximation in the neighborhood of a given vector uo as 

 

f(u) = f(uo) + kl(uo)(u – uo)                         (3.127) 

 

where kl is a local element tangent stiffness matrix of the member given by 

 

kl 
φ∂

∂
=

R f*

u∂
φ∂ +R g

u
u
∂
∂ *

 .                           (3.128) 
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Note that the relation g = ∂f* /∂u* has been utilized.  

 For the case that the member contains an inflection point at the right end, the end 

moment 2m̂  vanishes and the corresponding end rotation 2θ is eliminated from a set of 

unknowns. In particular, let define the reduced vectors f , *f , u  and *u  such that  f  = 

{ x1 y1 1 x2 y2
ˆ ˆ ˆ ˆˆf ,f ,m ,f ,f ,RRRR }, *f = { * * * * * *

x2 1 x1 y1 y2
ˆ ˆ ˆ ˆˆf ,m , ,f ,f ,fRRRR }, u  = { 1 1 1 2 2 x

ˆˆ ˆ ˆ ˆu ,v ,θ ,u ,v ,f } and *u  = 

{ * * * *
2 1 2 x

ˆû ,θ ,θ ,f }. By applying the coordinate transformation, a relation between the reduced 

vectors f and *f  is given by 

 

f = ( )φR *f           (3.129) 

 

where ( )φR  is a reduced transformation matrix of dimensions 6x6 given by  

 

( )φR =

0 0 0 c s 0

0 0 0 s c 0

0 1 0 0

c 0 0 s

s 0 0 c

0 0 1

φ φ

φ φ

φ φ

φ φ

− 
 
 
 0 0
 

0 0 − 
 0 0
 

0 0 0  

  .                  (3.130) 

 

By using the relations (3.118) and (3.119)-(3.123), we obtain the relation *u = *u ( u ) and, 

from the fact that behavior of the member in the {x*, y*} system is identical to that for the 

simply supported beam, *f  and *u  are related by *f  = *f ( *u ). Combing (3.129), *u = 

*u ( u ) and *f  = f*( *u ) yields 

 

f = f ( u ) = ( )φR *f ( *u ( u ))   .        (3.131) 

 

From Taylor series expansion, the nonlinear function f  defined by (3.131) possesses a 

best linear approximation in the neighborhood of a given vector ou  as 
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f ( u ) = f ( ou ) + k l ( ou )( u – ou )                        (3.132) 

 

where k l  is a reduced, local element tangent stiffness matrix of the member containing 

the inflection point at the right end and is given by 

 

k l
∂

=
∂φ
R *f ∂φ

∂u
+ R g

*∂
∂
u
u

 .                           (3.133) 

  

in which the relation g  = ∂ *f /∂ *u  has been used. Note that the reduced, local element 

tangent stiffness matrix is of dimensions 6x6.  

The reduced, local element tangent stiffness matrix of the member containing an 

inflection point at the left end can be obtained in a similar fashion. 

 

3.3 Global Element Tangent Stiffness Matrix 

Let the orientation of the member in undeformed configuration be denoted by an 

angle β between the local x-axis (defined in section 3.2) and the global X-axis. The 

element tangent stiffness matrix referring to the global coordinate system {X, Y} can be 

obtained using the following standard coordinate transformation formula 

 

kg = QTklQ                    (3.134) 

 

where kg is the global element tangent stiffness matrix and Q is a transformation matrix 

given by 

 

Q = 





























−

−

1000000

0100000

00cs000

00sc000

0000100

00000cs

00000sc

ββ

ββ

ββ

ββ

              (3.135) 
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in which sβ = sinβ and cβ = cosβ.  

 Similarly, the reduced, global element tangent stiffness matrix for the beam 

containing an inflection point at the right end is given by 

 

kg  = Q T k l Q                     (3.136) 

 

where k g  is the reduced, global element tangent stiffness matrix and Q  is a reduced 

transformation matrix given by 

 

β β

β β

β β

β β

c s 0 0 0 0

-s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 -s c 0

0 0 0 0 0 1

 
 
 
 

=  
 
 
 
  

Q                    (3.137) 

 

 The reduced, global element tangent stiffness matrix of the member containing an 

inflection point at the left end can be obtained in a similar fashion. The reduced 

transformation matrix Q  for this particular case is given by 

 

β β

β β

β β

β β

c s 0 0 0 0

-s c 0 0 0 0

0 0 c s 0 0

0 0 -s c 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 

=  
 
 
 
  

Q                     (3.138) 

 

3.4 Global Structure Tangent Stiffness Equations 

The global tangent stiffness equations of the structure can readily be obtained by a 

direct assembly procedure of the element tangent stiffness equation. The strategy 

employs two key ingredients: the compatibility of the displacement and rotation at nodes 
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and at ends of the members and equilibrium of external loads and member end forces at 

nodes. The resulting equations are given by   

 

)( oto UUKPP −+=          (3.139) 

 

where P is a vector of nodal loads and zero residuals of all members, U is a vector of 

nodal displacements and rotations and the internal axial force of all members, {Po, Uo} 

are vectors at the reference state, and  Kt is the global tangent stiffness matrix of the 

entire structure. The matrix Kt can be obtained from a direct assembly of the global 

element tangent stiffness matrices kg, given by (3.134), and the reduced global element 

tangent stiffness matrices kg , given by (3.136), of all members. 

 

3.5 Numerical Implementation 

In this section, we briefly describe the numerical integration technique used to 

evaluate all integrals in the governing equations and the iterative strategy for solving a 

system of nonlinear equations. 

 

 

3.5.1 Numerical integration 

In the construction of the gradient matrix g  and the reduced gradient matrix g , it 

is required an evaluation of elliptic integrals and other integrals of the same kind. Since 

the involved integrands are very complex, a direct analytical integration is impractical or 

sometimes impossible. This therefore necessitates the use of a numerical integration 

technique to approximate such integrals. Since all involved integrals are already 

regularized such that the integrands are well-behaved and non-singular, they can 

efficiently be integrated by a standard Gaussian quadrature. To ensure the accuracy of 

integrated results, the quadrature is tested for all types of integrals by varying the number 

of integration points. It has been found that a relatively low number of integration points 

is needed to obtain sufficiently accurate numerical results. 
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3.5.2 Newton-Raphson technique 

A system of nonlinear equations governing behavior of the entire structure is 

nonlinear and mathematically complex due partly to the use of exact kinematics. An 

explicit solution of such system of nonlinear equations does not exist and this necessitates 

the use of an iterative method to construct approximate solutions instead. In the current 

investigation, a standard Newton-Ralphson method is utilized along with the direct 

stiffness strategy to solve such nonlinear equations. The structure tangent stiffness 

equation (3.139) constitutes the best linear approximation of the governing nonlinear 

functions in the neighborhood of the reference state and is employed in the iterative 

procedure to progressively improve the numerical solutions. The accuracy of the 

approximate solutions is controlled by limiting the norm of the residual force vector 

within a specified tolerance.    

 

 



CHAPTER IV 

 

VERIFICATION AND RESULTS 

  

 

 As a means to verify both the formulation and numerical implementation and 

also demonstrate the capability and versatility of the current technique, extensive 

numerical experiments are performed for various flexure-dominating structures. In a 

verification procedure, a set of simple boundary value problems is first investigated 

and results are compared with existing analytical solutions and, subsequently, more 

complex structures are analyzed and results are verified by those obtained from a 

reliable technique, finite element method (FEM). Finally, the verified technique is 

utilized to examine various aspects and behaviors of several structures undergoing 

large displacement and rotation; structures containing multiple members and 

inflection points are treated.   

 

4.1 Verification with analytical solution 

 In this section, we consider structures where the bending moment is piecewise 

constant while the internal axial force and shear force identically vanish. For this 

particular case, differential equations governing the deflected shape are significantly 

simplified such that the corresponding analytical solution can readily be obtained via 

a direct integration method. In addition, to emphasize the independence of a level of 

mesh refinement, results obtained from the current technique are reported for a series 

of meshes.   

 

  4.1.1 Cantilever beam subjected to end moment 

  Consider a cantilever beam of length L and flexural rigidity EI and subjected 

to the end moment M at the tip while fixed at the left end as shown schematically in 

Figure 4.1(a). In the analysis, three uniform meshes, as depicted in Figure 4.1(b), are 

adopted; in particular, Mesh-1, Mesh-2 and Mesh-3 contain 1, 2 and 4 members of 

equal length, respectively. 
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Figure 4.1 (a) Schematic of cantilever beam subjected to end moment and (b) three 

meshes employed in the analysis 

 

For this particular case, the governing equations for the rotation (θ ), normalized 

displacement in the X-direction (û ) and normalized displacement in the Y-direction 

( v̂ ) reduce to  

 
dθ

m̂
d

=
ξ

                                                     (4.1) 

 
ˆdu cos 1

ˆd m

θ −
=

θ
                                                    (4.2) 

 
ˆdv sin

ˆd m

θ
=

θ
                                         (4.3) 

 

where m̂ = ML/EI . By perform a direct integration of (4.1)-(4.3) along with the use of 

boundary conditions at the fixed end, we obtain the displacement and rotation at any 

point x / L,  x [0, L]ξ = ∈  as 

 

ˆθ m= ξ                                                      (4.4) 

 
ˆsin(m )

û
m̂

ξ
= − ξ                                                     (4.5) 

 
ˆ1 cos(m )

v̂
m̂

− ξ
=                                          (4.6) 

 

M 
EI, L 

(a) (b) 

Mesh-1 

Mesh-3 

Mesh-2 X 

Y 
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 The exact solution of a deflected shape of the beam given by (4.3)-(4.6) is 

reported in Figure 4.2 for ̂m  {0.5, 1, 1.5, 2, 3}∈  along with numerical results obtained 

by the current technique; normalized coordinates of the deflected shape for each mesh 

are reported only at the nodal points. It is evident from this set of results that the 

current technique yields highly accurate displacement at the nodal points 

(indistinguishable from the analytical solution) and such accuracy exhibits no 

dependence on the level of mesh refinement. It is worth noting that such a crucial 

feature of the current technique results directly from the use of the exact element 

tangent stiffness matrix and no approximation of a form of the solution and governing 

equations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Deflected shape of cantilever beam subjected to end moment where 

ˆX / L u= ξ +  and ˆY / L v=  

 

 The rotation and displacement at the tip of the beam are also obtained and 

reported as a function of the normalized end moment m̂  in Figure 4.3. Similar to the 

previous set of results, the current technique (for Mesh-1) yields very accurate 

numerical solutions for any value of the normalized end moment̂m . It is also found 

that the horizontal and vertical displacements at the tip are nonlinear functions of the 

applied end moment ̂m while the end rotation varies linearly with respect to m̂ . In 
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0
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2

3

particular, the vertical displacement increases monotonically until it reaches the 

maximum at a particular value of the bending moment and after that it gradually 

decreases. In the contrary, the magnitude of the horizontal displacement increases 

monotonically for the entire range of m̂ treated. The observed behavior is clearly 

illustrated by the deflected shape shown in Figure 4.2.  

  

 

 

 

 

 

 

 

 

 

Figure 4.3 Relations between the displacement and rotation at the tip and the applied 

end moment. 

 

  4.1.2 Cantilever beam subjected to two moments 

Consider next the same cantilever beam of length L and flexural rigidity EI 

but subjected to two moments 1.5M and -M, the former applied at the tip and the 

latter applied at the mid span as shown in Figure 4.4 (a). Note for this particular case 

that the bending moment within the left half of the beam is equal to 0.5M while in the 

right half, the bending moment is equal to -M. Three uniform meshes (consisting of 2, 

4 and 8 members of equal length) employed in the analysis are illustrated in Figure 

4.4(b). Results are obtained for various values of the normalized applied moment 

m̂ = ML/EI  {1, 2, 3, 4, 5}∈ . 

Since the bending moment is constant for the left and right halves of the beam, 

the governing equations (4.1)-(4.3) are applicable to both portions. Upon a direct 

integration of such equations along with the use of boundary conditions at the fixed 

end and continuity conditions at the mid span, it leads to the close form solution for 

θL 

Lv̂  

Lû  

m̂ 

Normalize values 
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the rotation, the displacement in X-direction and the displacement in Y-direction at 

any point x / L,  x [0, L]ξ = ∈ : 

 

( )
ˆ0.5m             ,      0 0.5

θ
m̂ 0.75    ,   0.5 1

ξ ≤ ξ ≤= 
− ξ ≤ ξ ≤

                                                            (4.7) 

 
ˆ2sin(0.5m )

                                    ,      0 0.5
m̂û

ˆ ˆsin(0.25m) sin((0.75 )m)
1    ,   0.5 1

m̂

ξ
− ξ ≤ ξ ≤

= 
+ − ξ + ξ − ≤ ξ ≤



                                   (4.8) 

 
ˆ2 2cos(0.5m )

                                  ,      0 0.5
m̂v̂

ˆ ˆ2 3cos(0.25m) cos((0.75 )m)
    ,   0.5 1

m̂

− ξ
≤ ξ ≤

= 
− + − ξ ≤ ξ ≤



                                   (4.9) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 (a) Schematic of cantilever beam subjected to moments at the mid span and 

at the tip and (b) three meshes adopted in the analysis 

 

The deflected shapes of the beam for different values of m̂ are shown in 

Figure 4.5. The numerical results obtained for each mesh are reported only at the 

nodal points and compared with the analytical solution given by (4.7)-(4.9). As 

evident from this set of results, the numerical solutions exhibit excellent agreement 

with the benchmark solution with no dependence on the level of mesh refinement. For 
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this particular problem, the bending moment and curvature of the left half is twice of 

and opposite to that of the right half. As the applied moment m̂  increases, the 

deflected shape of the beam is significantly different from its original shape and 

obviously different from that predicted by linear analysis.     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Deflected shape of cantilever beam subjected to two moments where 

ˆX / L u= ξ +  and ˆY / L v=  

 

  4.1.3 Frame subjected to moments 

 Finally, consider a more complex problem corresponding to a rigid frame 

consisting of a single column and two overhanging beams as shown schematically in 

Figure 4.6(a). The column and the two beams are of the same length L and the same 

flexural rigidity EI and the frame is subjected to three moments {M1, M2, M3} where 

M1 and M2 are applied at the free end of the beams and M3 is applied at the junction 

of the beams and the column. In the analysis, we choose {M1, M2, M3} such that M1 = 

M2 = 2EI/L and M3 = –5EI/L and three meshes (consisting of 3, 6, and 12 members) 

are adopted as shown in Figure 4.6(b). For this special loading condition, it yields a 

constant bending moment within the beam B1, the beam B2 and the column C1 and 

zero internal axial and shear forces over the entire structure. Similar to the first two 

cases, the analytical solution for the rotation and displacement at any point within the 
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structure can readily be obtained by applying the governing equations (4.1)-(4.3) to 

the beams B1 and B2 and the column C1 along with the use of the boundary conditions 

at the fixed base and the continuity conditions at the junction.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6(a) Schematic of rigid frame subjected to three moments and (b) three 

meshes adopt in the analysis 

 

The deflected shape and the original shape of the rigid frame are reported in 

Figure 4.7. Again, numerical results for the displacement at the nodal points obtained 

from all three meshes coincide with the analytical solutions and, in addition, no 

dependence on the level of mesh refinement is observed. As evident from the 

deflected shape, the beams B1 and B2 and the column C1 possess a single curvature; in 

particular, the curvature of the beam B1 is opposite to that of the beam B2.  

 

From above three verifications, the developed technique yields numerical 

results that are identical to existing analytical solutions. While the possible small error 

may be introduced in the evaluation of integrals by standard Gaussian quadrature and 
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nonlinear solver by Newton-Ralpson iteration, it is controllable and can be reduced by 

either increasing the number of integration points or the level of solution tolerance. 

The independence of the level of mesh refinement is an attractive feature of the 

current technique that allows the optimal number of members be used in the analysis 

without altering the accuracy of obtained results. 

It is noted that all three problems considered above are associated only with 

structures containing no inflection point within the member and possessing a 

piecewise constant bending moment and no internal axial and shear force. More 

verification is still needed for structures consisting of members possessing non-

uniform internal forces and/or containing an inflection point.   

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Deflected shape of rigid frame subjected to three moments where 

ˆX / L u= ξ +  and ˆY / L v=  

 

4.2 Verification with finite element method 

 In this section, verifications of the current technique are conducted for more 

complex structures (e.g. structures containing inflection points and/or possessing non-

uniform and non-zero internal forces) that are lack of analytical solution. As a means 

for comparison, the benchmark solutions are constructed by a reliable computational 

technique called a finite element method (FEM). To ensure the accuracy of the 
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benchmark solutions, their convergence is first investigated and a sufficiently refined 

mesh is then utilized. As a result of the independence of mesh refinement, numerical 

results presented further below are obtained from a possible coarsest mesh. Solutions 

at interior points of the member can readily be obtained from equations (3.16)-(3.18) 

or (3.73)-(3.75) or (3.97)-(3.99) after all unknown quantities at the ends were 

determined.  

 

  4.2.1 Simply-supported beam subjected to end moments and axial force 

 Consider a simply-supported beam of length L and constant flexural rigidity 

EI as shown in Figure 4.8. The beam is subjected to two counterclockwise M1 and M2 

at both ends and the axial force fx at the right end. For this particular case, the beam 

contains an interior inflection point and, additionally, the bending moment, axial force 

and shear force exist and are non-uniform.  

 

 

 

 

 

 

Figure 4.8 Schematic of simply supported beam subjected to end moments and axial 

force 

 

In the analysis, we treat following two loading conditions: case-I associated with M1 

= M2 = 8.8EI/L and fx = 0 and case-II corresponding to M1 = 4EI/L, M2 = 5EI/L and 

fx = –4.5EI/L2. The beam is discretized into a single member that contains an 

inflection point.  

 Deflected shapes of the beam are reported in Figure 4.9 for the case-I and 

case-II. As compared with the benchmark solutions constructed by the FEM. results 

obtained from the current technique are highly accurate and nearly indistinguishable 

from the benchmark solutions with the error less than a fraction of one percent.   
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Figure 4.9 Schematic of deflected shape of simply supported beam subjected 

to two loading conditions 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Schematic of deflected shape of simply supported beam for various 

values of compressive force 

 

To further investigate the influence of the axial compressive force xf on the 

deflected shape of the beam, we fix the applied end moments to M1 = 4EI/L, M2 = 

5EI/L and vary xf such that 2
xf L / EIγ = ∈ {0, 1, 2, 3, 4}. The deflected shape obtained 

for each value of xf is reported in Figure 4.10. From these results, it can be concluded 
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that presence of the axial force significantly influences the deflected shape of the 

beam. In particular, as xf increases the inflection point gradually moves to the pinned 

support and the deflected shape starts to resemble the buckling shape of the first 

mode. In addition, the horizontal displacement of the roller support increases 

monotonically with respect toxf . 

 

  4.2.2 Portal rigid frame subjected to horizontal force 

To further verify the current technique and also demonstrate its capability in 

the treatment of structures comprising multiple members, we consider a portal frame 

that consists of two identical columns and one beam of the same length L and the 

same flexural rigidity EI as shown schematically in Figure 4.11. The frame is 

completely fixed at the base and subjected to a horizontal concentrated force P at the 

top. 

 

 

 

 

 

 

 

 

Figure 4.11 Schematic of portal frame subjected to a horizontal concentrated force at 

the top. 

 

In the analysis, the structure is discretized into three members and four nodes 

as shown in Figure 4.11 and the horizontal force is taken such that PL2/EI = 15. Note 

that a large value of the force P is chosen in order to amplify the influence of the 

nonlinear geometry and, as a result, augment the complexity of the problem. The 

deflected shapes of the frame are obtained from the current method and the FEM and 

results are then reported in Figure 4.12. The benchmark solution from the FEM is 

obtained by using a very fine mesh containing 100 members for each beam and 
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column, and coordinates of the deflected shape obtained from the current technique 

are plotted only at nodal points. Results indicate that the current technique gives rise 

to very accurate numerical solution and nearly coincide with those from the FEM. 

Although the computed results are presented only at the nodal points, coordinates of 

all interior points of all members can readily be obtained when quantities at their ends 

are known. Since nodal quantities can be solved very accurately, solutions within the 

member possess the comparable level of accuracy; if they were plotted in Figure 4.12, 

no distinction from results from the FEM will be observed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Deflected shape of portal frame subjected to horizontal concentrated force 

at the top 
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Figure 4.13 (a) Normalized horizontal displacement of node 1 and node 2 versus 

normalized applied force and (b) the same relation but plotted in magnified scale 

 

Next, we examine the influence of the location and magnitude of the horizontal 

concentrated force P on the horizontal displacement of node 1 and node 2. Two 

locations of the applied force, node 1 and node 2, are considered in this investigation. 

It is worth noting that the linear analysis predicts no difference among the horizontal 

displacements at node 1 and node 2 and this observation is independent of the location 

of the applied force P. Nevertheless, the different behavior is captured when the large 

curvature analysis is employed. The normalized horizontal displacements ux/L at node 

1 and node 2 for different locations of the applied force P are displayed in Figure 

4.13. Due to the inextensibility assumption, as the beam member undergoes 

deflection, the horizontal projected length is always less than its original length. This 

therefore renders the horizontal displacements of node 1 always larger than that of 

node 2. Furthermore, when comparing the horizontal displacement at the same node 

but changing the location of the force P instead, results from analysis indicate certain 

discrepancy. Such discrepancy is insignificant for small values of P but becomes more 
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apparent when P increases. In addition, nonlinearity of the load-displacement relation 

is observed for large values of P.         

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Relation between reduction of normalized horizontal projected length and 

normalized applied force 

 

To clearly illustrate the reduction of the horizontal projected length of the 

beam, we also plot the difference between the normalized horizontal displacements at 

node 2 and node 1, denoted by ε, versus the normalized applied force as shown in 

Figure 4.14. From these results, the horizontal projected length for the case P is 

applied at node 1 is always shorter than that for the case P is applied at node 2 and 

such difference becomes more apparent when the force P increases. This is due to the 

fact that when the force P is applied at node 1, the beam is in compression and the P-∆ 

effect significantly amplifies the elastic shortening. In contrast, when the force P is 

applied at node 2, the beam is in tension and such axial force trends to stretch the 

beam and therefore reduces the elastic shortening.     

 

  4.2.3 Portal rigid frame subjected to horizontal and vertical forces 

 Consider the same structure as treated in the previous example but now 

subjected to both the horizontal force P and the vertical force V as shown 
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schematically in Figure 4.15. Again, in the analysis, a mesh consisting of one beam 

member and two column members is utilized. 

 

 

 

 

 

 

 

 

Figure 4.15 Schematic of portal frame subjected to horizontal and vertical forces 

 

 First, we obtain the deflected shape of the frame under the applied loads 

PL2/EI = 4 and VL2/EI = 5 and the result is reported in Figure 4.16(a). In this plot, 

two other sets of results, one obtained from linear analysis and the other obtained 

from 2nd order analysis, are also included. It is obvious from these results that the 

deflected shapes obtained from the three analyses exhibit significant discrepancy. In 

particular, the linear analysis underestimates the horizontal displacement at the top of 

the frame and no information on the downward movement is predicted while the 2nd 

order analysis considerably overestimates the horizontal movement of the top of the 

beam and, similarly, it still lack information on the downward movement due to the 

linear kinematics assumption.   

Next, we investigate the influence of the vertical force V on the horizontal 

displacement of node 1 of the frame and demonstrate the capability of the linear and 

2nd order analyses in comparison with the current method (that is based on large 

curvature analysis). Figure 4.16(b) shows the plot of the normalized horizontal 

displacement versus the normalized vertical force for the constant horizontal force 

PL2/EI = 4. From large curvature analysis, it is found that while maintaining the 

horizontal force constant but increasing the vertical force, the horizontal displacement 

at the top of the frame increases monotonically and exhibits strong dependence on the 

value of the vertical force V. This is owing to an additional bending moment induced 
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by the P-∆ effect. It is also important to point out that the linear analysis yields the 

solution that is independent of the vertical load V while the 2nd order analysis can 

capture the axial-bending coupling but it yields very inaccurate results especially for 

large values of the vertical force V.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 (a) Deflected shape of the frame obtained from different types of analysis 

and (b) normalized horizontal displacement at node 1 versus normalized vertical force 
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  4.2.4 Gable frame subjected to horizontal force at the tip 

Consider next a structure of more complex geometry in terms of member 

orientations as shown in Figure 4.17. The gable frame consists of two vertical 

members of length L and flexural rigidity EI and two inclined members of length 

2L  and flexural rigidity EI and it is subjected to a horizontal concentrated force P at 

the vertex. In the analysis, a mesh consisting of four members, two vertical and two 

inclined members, is adopted.  

  

 

 

 

 

 

 

 

 

 

Figure 4.17 Schematic of gable frame subjected to horizontal load at the vertex. 

 

As an additional verification of the current technique, we first obtain results 

for a particular applied force P = 4EI/L2 and then compared with those obtained from 

FEM in Figure 4.18. Again, it can be concluded that results computed from the 

current technique exhibit excellent agreement with the benchmark solution. In 

addition, the deflected shape obtained from linear analysis is significantly different 

from that obtained from the large curvature analysis; in particular, the horizontal 

displacement of the frame is over predicted while there is no information of the 

downward movement of the vertex. This implies that as the structure undergoes large 

displacement and rotation, the linear analysis no longer yields results of sufficient 

accuracy. It is also found that the deflected shapes of the gable frame (predicted by 

the large curvature analysis) for the force P = 6EI/L2 and P = 15EI/L2 are very 
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different; strong dependence of the applied load on the deformed configuration of the 

structure becomes apparent when the level of applied loads is sufficiently large.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Deflected shape of gable frame subjected to horizontal force at vertex 

 

Next, we investigate the location of the inflection point within the two inclined 

members. Within the context of linear analysis along with the use of anti-symmetry, it 

can readily be deduced that both inclined members possess a single curvature and 

always contain an inflection point at the vertex. In contrast, the large curvature 

analysis predicts different solutions. As the horizontal force P increases, the inflection 

point moves from the vertex into the member 2 and, as a results, the member 1 

possesses a single curvature while the member 2 possesses a double curvature. Figure 

4.19 indicates the relation between the position of the inflection point and the 

normalized applied force. Note that a parameter ϖ is defined ϖ = 100(L / 2L ) where 

L  is the length of the portion of the member 2 that is on the left of the inflection 

point. As clearly demonstrated by these results, the rate of movement of the inflection 

point with respect to the applied force is large at the beginning and then starts to drop 

as the applied force increases. 

Another important aspect observed in the analysis of this particular structure is 

that the anti-symmetry of the structure that is applicable to the linear analysis is 
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completely destroyed as the structure deformed and can no longer be employed in the 

large curvature analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Relation between position of inflection point and normalized applied 

force 

 

  4.2.5 Multi-storey rigid frame subjected to lateral forces 

 

 

 

 

 

 

 

 

 

Figure 4.20 Schematic of multi-storey frame subjected to lateral forces 

 

As a final example, consider a multi-storey rigid frame as shown 

schematically in Figure 4.20. In addition to verification of the current technique, this 

example serves to demonstrate its capability to treat a structure consisting of several 

members. The frame consists of columns of the same length L and flexural rigidity EI 
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and beams of the same length 2L and flexural rigidity EI, and it is subjected to a set of 

later forces of the same magnitude P as indicated in Figure 4.20. In the analysis, the 

structure is discretized into 15 column members and 10 beam members.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Deflected shape of multi-storey frame subjected to lateral forces 

 

For purpose of verification, we first perform the analysis for PL2/EI = 2.5. The 

deflected shapes of the frame obtained from the current technique and FEM are 

reported in Figure 4.21. It can be concluded that computed numerical results are 

nearly indistinguishable from the benchmark solution. This implies that the current 

technique yields highly accurate results without mesh refinement. To further confirm 

such high accuracy, numerical values of the lateral and vertical displacements at three 

nodes on the top floor of the frame and the reactive forces at its three supports are 

shown in Table 4.1 and Table 4.2, respectively. It is evident from this set of results 

that errors of numerical results relative to the benchmark solutions are only small 

fractions of one percent. 

To further investigate the difference between results obtained from linear 

analysis and large curvature analysis, we perform analysis of the structure for a range 

of the applied load PL2/EI ∈ [0, 2.5]. The horizontal displacement at the central node 
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of each floor and the horizontal and vertical reactive forces versus the applied load are 

reported in Figure 4.22 and Figure 4.23, respectively. 

 

Table 4.1 Nodal displacements at top floor of multi-storey frame 

 

Normalized horizontal 

displacement 

Normalized vertical  

displacement 

  

FEM Current 

method 

Error 

(%) 

FEM Current 

Method 

Error 

(%) 

Left node 2.54630 2.54622 0.00314 -0.79503 -0.79501 0.00269 

Central node 2.54120 2.54113 0.00286 -0.80120 -0.80118 0.00216 

Right node 2.53590 2.53586 0.00155 -0.79562 -0.79559 0.00352 

 

Table 4.2 Reactive forces at three supports of multi-storey frame. 

 

Normalized horizontal 

reactive force 

Normalized vertical reactive 

force 

  

FEM Current 

method 

Error 

(%) 

FEM Current 

Method 

Error 

(%) 

Left node -9.00390 -9.00415 -0.00281 -5.80340 -5.80359 0.00332 

Central node -4.52140 -4.52134 -0.00130 -0.31481 -0.31514 0.10383 

Right node 1.02530 1.02549 0.01893 6.11870 6.11873 0.00048 

 

Results shown in Figure 4.22 indicates that for small values of applied loads 

the horizontal displacements at each floor obtained from linear analysis and large 

curvature analysis are comparable but a significant discrepancy of those results 

become more apparent for large values of applied loads. It can also be pointed out that 

the large curvature analysis provides information on the increase of structural stiffness 

due to geometric nonlinearity; in particular, as the applied loads increase, the slope of 

the displacement-load curve decreases monotonically.    
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Figure 4.22 Normalized horizontal displacements at central node of each floor versus 

normalized horizontal force. 

 

Regarding to linear analysis, the reactive forces at the three supports vary 

linearly with respect to the applied load P and, from anti-symmetric properties of the 

given structure, the vertical reactive force at the central support vanishes and the 

magnitude of horizontal and vertical reactive forces at the left and right supports are 

identical. However, the large curvature analysis predicts significantly distinct 

solutions. The horizontal reactive forces at the left and right supports are not the same 

and exhibit major difference from those predicted by the linear analysis while the 

vertical reactive forces show somewhat less discrepancy. It is noticed in addition that 

the negative horizontal reactive force at the right support changes to positive values 

when the displacement becomes large; this aspect of behavior cannot be captured by 

the linear analysis. Remark also that for the central support, a nonzero but small 

vertical reactive force is predicted from the large curvature analysis.      

Regarding to linear analysis, the reactive forces at the three supports vary 

linearly with respect to the applied load P and, from anti-symmetric properties of the 

given structure, the vertical reactive force at the central support vanishes and the 

magnitude of horizontal and vertical reactive forces at the left and right supports are 

identical. However, the large curvature analysis predicts significantly distinct 

solutions. The horizontal reactive forces at the left and right supports are not the same 
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and exhibit major difference from those predicted by the linear analysis while the 

vertical reactive forces show somewhat less discrepancy. It is noticed in addition that 

the negative horizontal reactive force at the right support changes to positive values 

when the displacement becomes large; this aspect of behavior cannot be captured by 

the linear analysis. Remark also that for the central support, a nonzero but small 

vertical reactive force is predicted from the large curvature analysis.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 (a) Normalized horizontal reactive force and (b) normalized vertical 

reactive force versus normalized applied load. Symbols {l, m, r} and {L, M, R} are 

used to indicate results from linear and large curvature analyses for left, central and 

right supports, respectively. 
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 As demonstrated by extensive numerical experiments on various structures 

(e.g. simple or complex geometries, single or multiple members, containing inflection 

point(s) or no inflection points, small or large values of applied loads, etc.), the 

current technique has proven to yield highly accurate numerical results without any 

mesh refinement. As compared with either existing analytical solutions or benchmark 

solutions constructed by a reliable numerical method, i.e. FEM, small errors in the 

order of a fraction of one percent have been observed. It is worth to emphasize again 

that the current technique exploits no approximation of the form of the solution and 

governing equations; as a consequence, only potential sources of errors are due to the 

numerical integration of involved integrals and the solution tolerance employed in 

Newton-Ralphson iteration. 

 

4.3 Other interesting results 

 In this section, a verified technique is employed to investigate behavior of 

various structures undergoing large displacement and rotations, e.g. nonlinear load-

displacement relations, deformed configuration as a function of applied loads, change 

of locations of inflection points, etc.  

  

  4.3.1 Square box rigid frame subjected to pair of horizontal forces 

 Consider a square box rigid frame as shown in Figure 4.24(a).  The frame 

consists of two horizontal member and two vertical members of the same length L and 

the same flexural rigidity EI and is subjected to a pair of opposite, horizontal forces P 

at the mid span of the vertical members. The frame is constrained against the rigid 

body movement by a pinned support and roller support as indicated in Figure 4.24(a). 

Since a pair of applied loads is self equilibrated, there is no reactive force induced at 

the two supports. Figure 4.24(b) shows a generic deflected shape of the frame under 

the application of forces and L denotes the distance between the mid spans of the two 

vertical members. 
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Figure 4.24 (a) Schematic of square box rigid frame subjected to a pair of horizontal 

forces and (b) deflected shape of the frame 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 Deflected shape of square box rigid frame subjected to a pair of 

horizontal forces 

 

In the analysis, the structure is discretized into 4 members, 2 vertical and 2 

horizontal members. The deflected shapes of the frame obtained from linear and large 

curvature analyses are reported, for PL2/EI = α = 20, in Figure 4.25. As indicated by 

these results, the linear analysis predicts a deflected shape with no movement of nodes 

1, 2, 3 and 4 while the large curvature analysis yields significant different deflected 

(a) 

0.5L, EI 

L, EI 

 

0.5L, EI 

0.5L, EI 0.5L, EI 

L, EI 

P P 

1 2 

3 4 

(b) 

L  



 

 

71 

-.4 0.0 .4 .8 1.2
-.4

0.0

.4

.8

1.2

Undeformed shape 

α = 4 
α =8 

α = 12 
α = 12 

α = 19.6(max) 

X/L 

Y/L 

shape. In particular, the displacements at the nodal points obtained from the current 

technique are nonzero and this results primarily from the elastic shortening due to 

members undergoing large curvature. The deflected shape of the frame from large 

curvature analysis for various values of the applied loads is shown in Figure 4.26. 

Clearly, the deflected shape of the frame exhibits strong dependence on the magnitude 

of the applied loads.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Deflected shapes of square box rigid frame for various values of applied 

forces 

 

Next, we examine the relation between the distance L and the applied 

horizontal forces P. As reported in Figure 4.27, the linear analysis yields a linear 

relationship between L and P and such a linear regime is also observed in the large 

curvature analysis provided that the applied load P is sufficiently small. However, for 

large values of P, the current technique predicts a nonlinear behavior and, in addition, 

significant deviation from linear results is observed. Remark that the distance 

L obtained from large curvature analysis is always less than that obtained from linear 

analysis. This is due to the fact that for the linear case, the nodal points 2 and 3 are not 

allowed to move in the horizontal direction in order to maintain inextensibility (in the 

sense of linearized kinematics) of the two horizontal members. 
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Figure 4.27 Relation between normalized distance L / L and normalized applied force 

 

Figure 4.28 shows the relation between the horizontal displacement at the mid span of 

the left vertical member and the applied loads. It is evident that results from both 

linear and large curvature analyses are slightly different and such discrepancy results 

directly from the elastic shortening due to the left vertical member undergoing large 

curvature. 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 Relation between horizontal displacement at mid span of the left vertical 

member and applied loads 
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  4.3.2 Opened square box subjected to pair of vertical forces 

Consider an opened square box rigid frame as shown in Figure 4.29. The 

frame possesses the same geometry as that of the previous example except at the top 

where it contains two identical overhanging beams. The flexural rigidity EI is 

constant throughout the structure and the frame is subjected to a pair of opposite 

vertical forces P as indicated in Figure 4.29 (a). The generic deflected shape of the 

structure under such applied loads is shown schematically in Figure 4.29(b). As 

clearly illustrated by the undeformed configuration of the structure, anti-symmetry of 

the structure can be employed to reduce computational effort in the linear analysis. 

However, as the structure undergoes displacement and deformation, the anti-

symmetry of the structure is completely destroyed and can no longer be applied. To 

perform analysis by the current technique, a mesh consisting of 3 horizontal members 

and 2 vertical members is adopted.    

 

 

 

 

 

 

 

 

 

Figure 4.29 (a) Schematic of opened square box subjected to a pair of vertical forces 

and (b) generic deflected shape of the frame 

 

 Numerical results are obtained for various values of the applied force P 

ranging from zero to 1.8EI/L2 and reported in Figure 4.30. In particular, Figure 

4.30(c) illustrates the evolution of the deflected shape as the applied load P increases. 

Clearly, for large values of the applied load P, the deflected shape is substantially 

different from the original undeformed configuration. It can also be observed that all 

members, except the bottom member, possess a single curvature.  
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Figure 4.30 (a) Normalized horizontal displacement and (b) normalized vertical 

displacement versus normalized applied load, (c) a series of deflected shape of frame 

 

 The horizontal and vertical displacements at the left and right free ends are 

depicted in Figure 4.30(a) and 4.30(b), respectively. Unlike the linear case, the 

horizontal and vertical displacements at the left and right free ends predicted by the 

current technique are very different and exhibit a strong nonlinearity on the applied 
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load. Such nonlinearity and discrepancy from linear results become more evident as 

the applied load is sufficiently large. In addition, both the horizontal and vertical 

displacements at the left free end are always larger than those at the right free end. 

The rate of change of the horizontal displacement with respect to the applied load 

(commonly known as the tangent flexibility) for the right free end is less than that for 

the left free end for small values of applied load P, but as the applied load P is 

sufficiently large, such rate of change gradually decreases and reverses the trend. In 

contrast, the rate of change of the vertical displacement for the right free end is greater 

than that for the left free end for an entire range of the applied load considered in the 

analysis. Another observation is that the inflection point present within the bottom 

beam moves from the mid span toward the left supports. This results from that as the 

structure undergoes deformation, the actual moment arm of the force acting at the left 

free end (measuring from the pinned support) decreases while the actual moment arm 

of the force acting at the right free end (measuring from the roller support) increases. 

 

  4.3.3 Simply-supported beam subjected to unequal end moments 

As a final example, we investigate the movement of an inflection point within 

the member as the loading condition changes. Consider a simply-supported beam of 

length L and flexural rigidity EI and subjected to counterclockwise end moments M1 

and M2, respectively, as shown in Figure 4.31. From linear analysis, the bending 

moment diagram is linear throughout the beam and thus there exists a point (called an 

inflection point) where the bending moment vanishes. It can further be verified that 

the location of an inflection point remains unchanged as long as the ratio between the 

two end moments is the same. In this investigation, we will prove, within the context 

of large curvature analysis, that this phenomenon is no longer valid.   

 

 

 

 

Figure 4.31 Schematic of simply-supported beam subjected to two counterclockwise 

end moments 
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In the analysis, a mesh consisting only one member is utilized and values of 

the applied end moments are chosen such that M1L/EI = 3 and M2 = ηM1 where 1≤ η 

≤ 2. The end moment M1 is chosen sufficiently high to ensure that the beam 

undergoes large displacement and rotation, and the non-dimensional parameter η is 

chosen to be greater than or equal to 1 simply to force the inflection point moving to 

left support. Figure 4.32 shows a series of deflected shapes of the beam for various 

values of the loading parameter η. Small circle symbols appearing in the plot indicate 

locations of the inflection point. As evident from these results, as the ratio between 

the end moments η = M2/M1 increases, the inflection point moves from the mid span 

(for η = 1) towards the left support. To explore further, let define two parameters r1 

and r2 such that    

 
pRR

1 2
L pL

ss
r          ;           r

s s
= =                                                      (4.10)  

 

where sL is the arc length of a portion of the beam on the left of the inflection 

point, sR is the arc length of a portion of the beam on the right of the inflection point, 

spL is the horizontal projected length of a portion of the beam on the left of the 

inflection point and spR is the horizontal projected length of a portion of the beam on 

the right of the inflection point. The relation between the two parameters r1 and r2 and 

the loading parameter is reported in Figure 4.33.    

As clearly demonstrated in Figure (4.33), the ratio r1 is a nonlinear function of 

the loading parameter η with the slope greater than one while the ratio r2 varies 

linearly with respect to η and, in addition, the constant slope is unity. The former 

observation implies that the large curvature analysis predicts a greater rate of 

movement of the inflection point towards the end possessing a smaller moment than 

that by the linear analysis. In contrast, the latter finding concludes that if the spatial 

coordinates is utilized in stead of the material coordinates in the identification of the 

inflection point, both linear and large curvature analyses yield the same conclusion. 
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Figure 4.32 Deflected shape of simply-supported beam for various values of loading 

parameter η 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Relation between the parameters r1 and r2 and loading parameter η  
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CHAPTER V 

 

CONCLUSION 

 

 

5.1 Summary 

A simple, systematic method has been developed for analysis of flexure-

dominating structures undergoing large displacement and rotation. The technique is 

based primarily on a standard direct stiffness strategy and Newton-Ralphson iteration. 

The element tangent stiffness matrix essential for the development of the direct 

stiffness method has been constructed by directly solving the nonlinear governing 

differential equations. In particular, the gradient matrix of a simply-supported beam 

has first been established and subsequently been employed as a basis for the 

development of the tangent stiffness matrix for following three types of members: a 

single curvature member containing no inflection point, a single curvature member 

containing an inflection point at the end, and a double curvature member containing 

an interior inflection point. It is worth noting that the resulting tangent stiffness matrix 

possesses two attractive features: (i) it is exact in the sense that it involves no 

approximation of a solution form or governing equations and (ii) all entries of the 

matrix are given in an explicit form concerning the elliptic integrals or other integrals 

of the same kind. The former feature enhances the rate of convergence of a nonlinear 

solver and, when properly incorporated with the evaluation of exact residuals, it can 

in principle yield numerical solutions of the same quality as an analytical solution. 

The latter feature is well-suited for numerical evaluation of the tangent stiffness 

matrix by a standard Gaussian quadrature.   

In addition, the length constraint posed by the member inextensibility has 

directly been incorporated in the construction of the element tangent stiffness matrix 

and this increases dimensions of the matrix by one.  Such direct integration of the 

length constraint allows the nodal displacements be treated as primary unknowns and, 

as a consequence, this is well-suited for the stiffness method.  The tangent stiffness 

matrix of the entire structure has been obtained via a direct assembly procedure. This 
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crucial ingredient has been utilized in the iterative process of a nonlinear solver by 

Newton-Ralphson iteration.  

The proposed technique is a semi-analytical approach where all ingredients 

essential for the development of a direct stiffness method (e.g. element tangent 

stiffness matrix and residual vector) are derived from exact governing equations but 

all entries of the tangent stiffness matrix must be evaluated numerically and a 

resulting system of algebraic nonlinear equations must also be solved by a numerical 

technique. Hence, the accuracy of numerical solutions obtained from the current 

technique depends primarily on the accuracy of the numerical integration and the 

accuracy of the solution solver via the specified tolerance. Upon an extensive and 

careful study of the number of integration points and solution tolerance, the current 

technique has yielded highly accurate numerical solutions. Another crucial feature of 

the current technique is that there is no requirement on mesh refinement in order to 

achieve the desirable accuracy. This feature minimizes the number of members in the 

structure discretization to reduce the computational cost.        

From extensive verifications via the comparison with either analytical 

solutions or benchmark solutions constructed from the finite element method (FEM), 

the current technique has proven to yield highly accurate numerical solutions and 

confirmed the independence of the level of mesh refinement. The observed errors are 

only a small fraction of one percent. Although the finite element method employed 

can solve the same problem, analysis must be performed using either a series of 

meshes or a sufficiently fine mesh to ensure the convergence of numerical solutions. 

In addition, such method still possesses some limitations such as an ability to perform 

the analysis over a limited range of applied loads.    

As evident from extensive numerical experiments on various structures, the 

current technique has offered two crucial benefits. Firstly, the method proposes a 

simple and systematic means capable of modeling large structures when exact 

kinematics is presumed and, secondly, it is solidly confirmed to yield “exact” 

numerical solutions (within round off errors and errors caused by a numerical 

quadrature and nonlinear solver) that are independence of the level of mesh 

refinement. One practical contribution of the current investigation is that it provide an 
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accurate computational tool well-suited for analysis of structures undergoing large 

displacement and rotation, e.g. very flexible structures, moment-resisting cables, 

slender drill string rods, etc. According to its high accuracy, the proposed technique 

can also be employed to generate benchmark solutions for a comparison purpose.   

 

5.2 Limitations and possible extensions   

The key formulation underlying the current technique is still restricted to 

structures made from linearly elastic materials. Such limitation can pose some 

potential drawbacks (e.g. yields numerical results of insufficient accuracy, misleads 

the response prediction, provides no information on some aspects etc.) when the 

technique is applied to analyze certain structures. In general, the deformation induced 

within the structure undergoing large displacement and rotation is not small and this 

can generate stress exceeding the proportional limit of a constituting material; as a 

result, a linear relation between the deformation and internal force is no longer 

applicable. To capture this situation accurately, the material nonlinearity must 

properly be incorporated, in addition to the geometric nonlinearity, into the 

development of a mathematical model. Extension of the current development to treat 

material nonlinearity is in fact nontrivial and deserves a careful treatment.    

In addition, either elongation or shortening along the axis of the member is not 

allowed in the current development. This restriction posed by the inextensibility 

assumption is no longer acceptable when the structure under consideration can 

undergo both axial and bending deformations of comparable magnitude. To capable 

of treating such structures, the inextensibility assumption must be removed and 

nontrivial modifications must be taken into account and requires further investigation.  
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APPENDICES 



APPENDIX A 

 

 

 This section presents explicit results for all entries of matrices B, C, D and F. 

By recalling that 1 1 zsin sin( 2) /sin( 2)φ = θ θ  and then differentiating this relation with 

respect to { 1θ , zθ }, we obtain 
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Similarly by taking derivative of 2 2 zsin sin( 2) /sin( 2)φ = θ θ  with respect to { 2θ , zθ }, 

it leads to 
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By differentiating zp sin( 2)= θ  with respect to zθ , it yields 
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From the relations 1 1 oθ ( )= π + θ − θ , 2 2 oθ ( )= π + θ − θ  and z z oθ ( )= π + θ − θ , we obtain 
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By taking derivatives of 1 2 2
o y x y

ˆ ˆ ˆsin ( f / f f )−θ = − +  with respect to {xf̂ , yf̂ }, it leads to 
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By taking derivatives of 2
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By employing (A.1)-(A.2) and (A.6)-(A.11), we obtain  
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By employing (A.3)-(A.4) and (A.6)-(A.11), we obtain  
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By employing (A.5)-(A.11), we obtain  
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By taking derivatives of (3.78) with respect to {1 2 o s
ˆ, , , f ,pφ φ θ }, we obtain 
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 .        (A.27) 

 

Similarly, by taking derivatives of (3.79) with respect to { 1 2 s
ˆ, , f , pφ φ } and (3.80) with 

respect to { 1 2 o, , , pφ φ θ }, it yields 
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By exploiting above information and chain rule for differentiation, entries of the 

matrix B can readily be obtained as  
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Entries of the matrix C is given by 
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Entries of the matrix D is given by 
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Similarly, entries of the matrix F is given by 
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APPENDIX B 

 

 

 This section presents explicit results for all entries of matricesB , C , D  and 

F . By recalling that 1 1 2sin sin( 2) /sin( 2)φ = θ θ  and then differentiating this relation 

with respect to { 1θ , zθ }, we obtain 
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By differentiating 2p sin( 2)= θ  with respect to2θ , it yields 
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From the relations 1 1 oθ ( )= π + θ − θ  and 2 2 oθ ( )= π + θ − θ , we obtain 

 

1 2

o o

θ θ
1

θ θ

∂ ∂
= = −

∂ ∂
  ,                             (B.4) 

 

1 2

1 2

θ θ
1

θ θ

∂ ∂
= =

∂ ∂
 .                             (B.5) 

 

By taking derivatives of 1 2 2
o y x y

ˆ ˆ ˆsin ( f / f f )−θ = − +  with respect to {xf̂ , yf̂ }, it leads to 
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By taking derivatives of 2
y

2
x

2
s f̂f̂f +=  with respect to {xf̂ , yf̂ }, it yields 
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By employing (B.1)-(B.2) and (B.4)-(B.9), we obtain  
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By employing (B.3)-(B.9), we obtain  

 

2
cos

2

1

θ

θ

θ

p

θ

p 2

2

2

22

θ
=

∂

∂

∂
∂

=
∂
∂

  ,                                                                                 (B.14) 

 

2
y

2
x

y2

x

o

o

2

2x f̂f̂

f̂

2
cos

2

1

f̂

θ

θ

θ

θ

p

f̂

p

+

θ
=

∂

∂

∂

∂

∂
∂

=
∂

∂
  ,            (B.15) 

 

2
y

2
x

x2

y

o

o

2

2y f̂f̂

f̂

2
cos

2

1

f̂

θ

θ

θ

θ

p

f̂

p

+

θ
−=

∂

∂

∂

∂

∂
∂

=
∂

∂
  ,            (B.16) 

 



 94 

By taking derivatives of (3.106) with respect to {1 o s
ˆ, , f , pφ θ }, we obtain 
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Similarly, by taking derivatives of (3.107) with respect to { 1 s
ˆ, f , pφ } and (3.108) with 

respect to { 1 o, , pφ θ }, it yields 
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By exploiting above information and chain rule for differentiation, entries of the 

matrixB can readily be obtained as  
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Entries of the matrix C is given by 
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Entries of the matrix D is given by 
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Similarly, entries of the matrix F is given by 
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