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CHAPTER I 
 

INTRODUCTION 
 
 
1.1 Background and Motivations 

Nonlinear Response History Analysis (NL-RHA) is a powerful tool for study 

of structural seismic responses. The seismic performance of structures when subjected 

to a set of ground motions can be estimated accurately. In spite of the accuracy and 

efficiency of the computational tools have increased substantially, there are still some 

reservations about the NL-RHA, which are mainly related to its complexity for 

practical design applications. Therefore, NL-RHA is an onerous task to estimate 

seismic demands. 

Since the nonlinear dynamic analysis of structures is not feasible for most 

practical applications, many researchers are trying to develop more rational analysis 

methods that would achieve a satisfactory balance between required reliability and 

applicability for everyday design use. Consequently, approximate procedures, called 

Nonlinear Static Procedures (NSPs) which are rooted in structural dynamic theory, 

were developed as an alternative to rigorous NL-RHA. The main content of 

approximate procedures is to estimate seismic demands of multi-degree-of-freedom 

(MDOF) systems due to an earthquake by nonlinear static analysis of structure which 

is simpler and more practical for structural design.  

The Nonlinear Static Procedure (NSP) described in FEMA-356 (ASCE, 2000) 

and ATC-40 (ATC, 1996) guidelines for seismic evaluation of buildings, seismic 

demands are computed by nonlinear static analysis of the structure subjected to 

monotonically increasing lateral forces with a specified, usually invariant, height-wise 

distribution until a pre-determined target displacement is reached. The target roof 

displacement is determined from the deformation of an equivalent single-degree-of-

freedom (SDF) system. Also known as pushover analysis, these procedures are now 

standard in structural engineering practice. They provide a better assessment of the 

actual capacity and expected performance of the structure than traditional linear static 

analysis, but require much less computational effort compared to rigorous Nonlinear 



2 

 

Response History Analysis. A formulation of the pushover analysis can be found in 

Krawinkler and Seneviratna (1998). This procedure is obviously based on two major 

assumptions: (1) the response of the multi-degree-of-freedom (MDOF) system can be 

related to the response of an equivalent SDF system, implying that the response is 

controlled by a single ‘mode’ and this mode shape remains unchanged even after 

yielding occurs; and (2) the invariant later force distribution can represent and bound 

the distribution of inertia forces during an earthquake. 

However, these NSPs based on invariant load patterns provide accurate 

seismic demand estimates only for low- and medium-rise moment-frame buildings 

where contributions of higher ‘modes’ response are not significant and inadequate to 

predict inelastic seismic demands in buildings when the higher ‘modes’ contribute to 

the response (Krawinkler and Seneviratna, 1998; Gupta and Krawinkler, 1999; Gupta 

and Kunnath, 2000; Chopra and Goel, 2002; Chintanapakdee and Chopra, 2003a; 

Chopra and Chintanapakdee, 2004a; Kunnath and Kalkan, 2004; Chintanapakdee et 

al., 2009; and Nguyen et al., 2010). To overcome these drawbacks, an improved 

pushover procedure, called Modal Pushover Analysis (MPA), was proposed by 

Chopra and Goel (2002) to include contributions of higher ‘modes’, where seismic 

demands due to individual terms in the modal expansion of the effective earthquake 

forces are determined by a pushover analysis using the inertia force distributions 

associated with each mode up to a modal target displacement. The MPA procedure 

has been demonstrated to increase accuracy of seismic demand estimation in taller 

moment-frame buildings, e.g., 9- and 12-story tall, compared to the conventional 

pushover analysis (Chopra and Goel, 2002; Chintanapakdee and Chopra, 2003a; 

Chopra and Chintanapakdee, 2004a; and Chopra et al., 2004; and Nguyen et al., 

2010).  

Another type of pushover method is the adaptive pushover procedures, where 

the force distributions are updated to consider changes in the structure during inelastic 

phase (Fajfar and Fischinger, 1989; Bracci et al., 1997; and Gupta and Kunnath, 

2000). In this procedure, equivalent seismic loads are calculated at each pushover step 

using the immediate ‘mode’ shape. Recently, a new adaptive pushover method, called 

Adaptive Modal Combination (AMC) procedure, has been developed by Kalkan and 
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Kunnath (2006) where a set of adaptive mode-shape based inertia force patterns is 

applied to the structure. This procedure has been validated for regular moment frame 

buildings (Kalkan and Kunnath 2006; 2007). It was shown that the AMC procedure 

provides more accuracy in estimating seismic demands than MPA in comparison with 

Nonlinear Response History Analysis. However, it is conceptually complicated and 

computationally demanding for routine application in structural engineering practice 

while the MPA method is generally simpler, and thus, more practical than adaptive 

pushover procedures for seismic design. 

These researches focused mainly on two-dimensional (2D) analysis of 

buildings while corresponding works on three-dimensional (3D) analysis and bridges 

have been very limited. Recently, a three-dimensional pushover analysis procedure to 

estimate seismic demands of a collapsed reinforced concrete chimney was proposed 

by Huang and Gould (2007). Meanwhile, a new modal pushover analysis procedure 

was proposed by Chopra and Goel (2004) to account for the effect of torsional 

vibration of asymmetric-plan buildings. Subsequently, an extension of modal 

pushover analysis procedure to seismic assessment of bridges was proposed by 

Paraskeva et al. (2006). The main goal of their study is to propose the displacement 

monitoring points of the bridge which will be discussed in the next section. At the 

same time as Paraskeva et al. (2006), a displacement-based adaptive pushover for 

assessment of buildings and bridges was developed by Pinho et al. (2006). This 

method is an extended version of adaptive pushover which takes into account both the 

contributions of higher ‘modes’ to response and the redistribution of inertia forces due 

to structural yielding associated changes in vibration properties. A number of 

idealized bridges were analyzed to verify this procedure. However, the finite element 

models of the bridges were simplified in these studies. In addition, due to limitations 

of the software used in these investigations, the pushover analysis and the NL-RHA 

had to be performed to different finite element models. In particular, nonlinear 

rotational spring elements were used in the finite element models used in NL-RHA, 

while the built-in beam hinge properties were implemented in the models set up for 

pushover analysis. Therefore, these simple models may not be able to capture the 

torsional and vertical vibrations of the deck of the bridges and their seismic behaviors 

may not represent the actual bridges. 
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The main objective of this study is to extend the modal pushover analysis 

procedure for seismic evaluation of complex actual bridges that requires a three-

dimensional analysis procedure. The spatial modal force distributions are applied to 

pushover analysis. Furthermore, the monitoring displacement, which is the roof 

displacements in building analysis procedure, is proposed in this study to take into 

account the contributions of torsional and vertical vibrations of bridges.  

The work presented in this dissertation focused on the bias and accuracy of the 

proposed extension of MPA procedure for seismic assessment of actual bridges. Its 

applicability in estimating seismic demands of bridges is investigated. The 

contribution is therefore towards an extension of modal pushover analysis procedure 

which can be applied in evaluating or designing actual bridges due to an earthquake.   

 

1.2 Review of Previous Researches 

There are several studies regarding the Nonlinear Static Procedures for 

seismic evaluation of structures. Most of these procedures can be classified into two 

major groups: (1) the non-adaptive group, and (2) the adaptive group. The approach 

of the first group is to consider the contribution of higher ‘modes’ but neglecting any 

changes in the mode shapes during an earthquake and using invariant lateral force 

pattern. The second group considers the effect of higher ‘modes’ as well as their 

changes after the structure yields due to an earthquake. The variant lateral load 

patterns are updated in each step to consider the change in structure during inelastic 

phase. 

 

1.2.1 Estimating Deformation of Inelastic SDF System 

One of critical tasks of nonlinear static procedures is to predict the target 

displacement of inelastic multi-degree-of-freedom structures due to a ground motion. 

Several approaches were proposed to estimate the target displacement by using an 

equivalent SDF system. The methods described in the ATC-40 and FEMA-356 

guidelines are now commonly used in practice.  
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According to the nonlinear static procedure described in ATC-40 and FEMA-

356 documents, seismic demands are computed by nonlinear static analysis of a 

structure subjected to monotonically increasing lateral loads representing inertia 

forces due to an earthquake (pushover analysis) with a specified, usually invariant 

height-wise distribution until a pre-determined target displacement is reached. The 

target displacement of these procedures is estimated from the deformation D of an 

equivalent inelastic SDF system which is derived from relationship between base 

shear force and roof displacement known as the pushover curve.    

The ATC-40 presents an approach, called Capacity Spectrum Method 

(CSM), to estimate seismic response of inelastic SDF systems where the deformation 

D of an inelastic SDF system is determined by an iterative method which requires 

analysis of a sequence of equivalent linear systems with successively updated values 

of period and damping ratio. This method is typically implemented graphically. 

However, the accuracy and convergence of the ATC-40 iterative procedure can be 

considerable (Chopra and Goel, 2000). The ATC-40 tends to underestimate the 

deformation over a wide range of periods.  

Unlike the ATC-40 Capacity Spectrum Method, FEMA-356 presents an 

alternative approach, known as Displacement Coefficient Method (DCM), in which 

the target displacement, tδ , at each floor level is estimated by multiplying the 

deformation of the corresponding linear system.  

                                               
2

0 1 2 3 2
e

t a
TC C C C S gδ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                          (1.1) 

0C  is modification factor to relate spectral displacement of an equivalent 

SDF system to the roof displacement of the building MDOF system. The coefficient 

1C  relates expected maximum inelastic deformation to deformation determined for 

linear elastic response. The coefficient 2C  accounts for the effect of pinched 

hysteretic shape, stiffness degradation and strength deterioration on maximum 

displacement response and modification factor. 3C  represents the increase in the 

deformation due to negative post-yield stiffness arising from P −Δ  effects. eT  is 



6 

 

effective fundamental period and aS  is spectral acceleration at the effective 

fundamental period and damping ratio of the structure in the direction under 

consideration. Numerical values of these coefficients are based on research results.  

The limitations on accuracy of ATC-40 Capacity Spectrum Method such as 

lack of convergence or large error in some cases (Chopra and Goel, 2000), and the 

lack on research results of coefficient 1C  of FEMA-356 Displacement Coefficient 

Method are specified and rectified in FEMA-440 report (ATC, 2005). Then, an 

investigation on accuracy of improved nonlinear static procedures in FEMA-440 was 

carried out by Akkar and Metin, (2007). It was found that both of these improved 

procedures provide fairly good deformation demand estimations. 

To overcome the limitation of previously mentioned methods, several 

improved methods were proposed and investigated. An improved Capacity Demand 

Diagram (CDD) method, which was originally developed by Freeman et al. (1975) 

and Freeman (1978), based on inelastic design spectrum for estimating seismic 

deformation of inelastic structures using SDF systems was developed and illustrated 

by Chopra and Goel, (1999a-b). Subsequently, Chopra et al. (2001), and Chopra and 

Goel, (2002) suggested that the contribution of the nth vibration mode to the target 

roof displacement of an inelastic MDOF system in MPA procedure rnou  is 

                                                 rno n rn nu DΓ φ=                                                           (1.2) 

where rnφ  = value at the roof of the nth mode shape vector nφ  and 

                           n
n

n

L
M

Γ =        T
n nL = mφ ι         T

n n nM = mφ φ                               (1.3) 

where m = mass matrix and ι  is the influence vector whose each element is equal to 

unity; and nD  is peak value of deformation ( )nD t  of an equivalent inelastic SDF 

system  of nth ‘mode’, determined rigorously by nonlinear response history analysis 

by solving the uncoupled modal response history analysis (UMRHA) governing 

equation for the nth ‘mode’: 
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,sign
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n n n n g
n

F D D
D D u t

L
ζ ω+ + = −                       (1.4) 

where natural frequency nω  and damping ratio nζ  correspond to the MDOF system, 

and /sn n nF L D−  relation between resisting force and modal coordinate obtained from 

pushover curve as described in Chopra and Goel, (2002).  For planar analysis of 

symmetric-plan building, the peak modal responses rnou , each determined by 

pushover analysis for modal force distribution and dynamic analysis of the nth ‘mode’ 

inelastic SDF system, may be combined using an appropriate modal combination rule 

such as the square-root-of-sum-of-squares (SRSS) rule to obtain a MPA estimate of 

the total roof displacement: 

                                                      ( ) 2

1

N

r rnoMPA
n

u u
=

= ∑       (1.5) 

Then, an investigation on accuracy of single-degree-of-freedom estimate of 

displacement for pushover analysis of buildings was carried out by Chopra et al. 

(2003). The statistics show that the roof displacement of a multi-story building can be 

determined from the deformation of an equivalent SDF system. The estimation 

considering first ‘mode’ SDF system overestimates the median roof displacement for 

systems subjected to large ductility demand μ , but underestimates for small μ . The 

bias and dispersion of this method tend to increase for longer period system for every 

value of μ  and increasing when P −Δ  effects are included due to gravity loads. On 

the other hand, considering the contribution of higher ‘modes’ by using Equation (1.5) 

of MPA procedure helps reduce the dispersion in the roof displacement, but it 

increases slightly the overestimation of roof displacement of buildings responding far 

into the inelastic range (Chopra et al., 2003). 

For further examination, inelastic deformation ratios for design and evaluation 

of structures using SDF bilinear systems was investigated by Chopra and 

Chintanapakdee, (2004b) to assess the relationship between the peak deformation of 

inelastic and corresponding linear SDF systems.  
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1.2.2 Nonlinear Static Analysis Procedure for Symmetric Structures 

The nonlinear static procedure in FEMA-356 (ASCE, 2000), which is 

commonly used in engineering practice, requires development of a pushover curve, a 

relationship between base shear forces versus roof displacement, by nonlinear static 

analysis of structure subjected to gravity loads, followed by monotonically increasing 

lateral forces with a specified invariant heightwise distribution. At least two force 

distributions must be considered for this approach. The first is to be selected among 

the following: (1) first mode distribution: *
1j j js m φ= , where jm  is the mass and 1jφ  is 

the mode shape value at the jth floor; (2) equivalent lateral force (ELF) distribution: 
* k
j j js m h= , where jh  is the height above the base of jth floor and k is a coefficient 

related to the vibration period 1T  as shown in Equation (1.6) below; and (3) response 

spectrum analysis (RSA) distribution: A vertical distribution proportional to the story 

shear distribution calculated by combining modal responses from a response spectrum 

analysis of the building; a vector of lateral forces at the various floor levels 

is *
jn n j jns mΓ φ= .  

                       ( )
1

1 1

1

1 0.5
1.5 / 2 0.5 2.5
2 2.5

T
k T T

T

≤⎧
⎪= + ≤ ≤⎨
⎪ ≥⎩

                             (1.6) 

The second distribution is either the uniform distribution or an adaptive 

distribution. Each of these force distribution is applied to the building in the same 

direction over the height of the building. These four FEMA-356 force distributions for 

the Los Angeles 9-story building are illustrated as follow by Chopra (2007) (Figure 

1.1). 

Seismic demands of building are determined by extracting the responses 

from the pushover analysis when the target displacement estimated by displacement 

coefficient method as mentioned before is reached. The potential and limitations of 

FEMA-356 force distributions are demonstrated by Goel and Chopra (2004a); and 

Chopra and Chintanapakdee (2004a). The FEMA-356 force distributions provide a 

good estimate of story drifts for low-rise building, e.g., 3-story buildings. However, 

the first ‘mode’ distribution grossly underestimates the story drifts, especially in the 
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upper stories of tall building, e.g., 9-, and 20-story buildings, implying that the higher 

mode contributions are significant in the seismic demands for upper stories. Although 

the ELF and RSA force distributions in FEMA-356 are intended to account the 

contribution of higher ‘modes’, they do not provide satisfactory estimates of seismic 

demands for buildings that are deformed moderately or far into the inelastic range. On 

the other hand, the uniform load distribution seems to significantly overestimate story 

drifts in lower stories and significantly underestimate in upper stories (Goel and 

Chopra, 2004a; and Chopra and Chintanapakdee, 2004a).  

Nevertheless, the above method is obviously limited by the assumption that 

response of the structure is controlled by its fundamental ‘mode’. As a result, both the 

invariant forces distributions and the target displacement do not account for higher 

‘modes’ contribution, which can affect both, particularly in the inelastic range. 

Therefore, extension of the standard pushover analysis to consider higher ‘mode’ 

effects has attracted attention. Firstly, Sasaki et al. (1998) developed the Multimode 

Pushover Procedure (MMP) to identify the effects of higher ‘modes’ in pushover 

analysis of buildings by appropriately extending the Capacity Spectrum Method 

(CSM), which directly compares building capacity to earthquake demand; separate 

pushover curves were derived for each mode without an attempt to combine modal 

responses.  

 
Figure 1.1 FEMA-356 force distributions for the Los Angeles 9-story building: (a) 

first ‘mode’; (b) ELF; (c) RSA; (d) uniform (Chopra, 2007). 
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To overcome the limitation of nonlinear static procedure in FEMA-356, an 

improved NSP known as Modal Pushover Analysis (MPA) was proposed by Chopra 

and Goel (2002) to account for the contribution of higher ‘modes’ in estimating 

seismic deformation demands for a symmetric-plan multistory building subjected to 

earthquake ground motion along an axis of symmetry. Seismic demands in MPA due 

to individual terms in the modal expansion of the effective earthquake forces are 

determined by a pushover analysis using the inertia force distributions associated with 

each ‘mode’ up to a modal target displacement. The peak value rnou  of ( )rnu t , the 

roof displacement of the inelastic MDF system due to earthquake forces ( ),eff np t  can 

be estimated from Equation (1.2), where nD  is the peak value of deformation ( )nD t  

of the nth ‘mode’ inelastic SDF system. It can be determined by solving Equation 

(1.4). Then, the peak modal responses rnor , each determined by pushover analysis for 

force distribution *
n n=s mφ  and dynamic analysis of the nth ‘mode’ inelastic SDF 

system, are combined using an appropriate modal combination rule, e.g., the SRSS, 

Equation (1.5), or CQC rule  to obtain a MPA estimate of the total response. Although 

the rule of superposition of modal responses does not apply in the inelastic range of 

the response (because modes are not uncoupled anymore), Goel and Chopra (2004b) 

have shown that the error, taking the results of nonlinear response history analysis 

(NL-RHA) as the benchmark, is typically smaller than in the case that superposition is 

carried out at the level of loading (with fixed loading pattern) as recommended in 

FEMA-356.  The lateral force distributions *
n n=s mφ  of the SAC-Los Angeles 9-story 

building are illustrated as follow (Figure 1.2). 

To assess the accuracy and classify the potential limitations of MPA 

procedure, an investigation on accuracy of MPA using generic frames was carried out 

by Chintanapakdee and Chopra (2003a-b); and an evaluation of modal and FEMA 

pushover analyses using vertically ‘regular’ and ‘irregular’ generic frames was done 

by Chopra and Chintanapakdee (2004a). Concurrently, an evaluation of modal and 

FEMA pushover analyses was carried out by Goel and Chopra (2004a). Then, the 

superiority of MPA method over the conventional dynamic analysis method 

recommended by the code, in a seismic evaluation of multi-storey RC frame was 
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brought out by Chandrasekaran and Roy (2006). The MPA procedure has been 

demonstrated to increase accuracy of seismic demand estimation in taller moment-

frame buildings, e.g., 9- and 12-story tall, compared to the conventional pushover 

analysis.  

Despite including the contribution of higher ‘modes’, MPA is conceptually 

no more difficult than standard procedures because higher ‘modes’ pushover analyses 

are similar to the first ‘mode’ pushover analysis. Moreover, MPA procedure 

considering the first few (two or three) ‘modes’ contribution are typically sufficient 

(Chintanapakdee and Chopra, 2003a; Chopra and Chintanapakdee, 2004a; and 

Chandrasekaran and Roy, 2006). Although MPA is sufficiently accurate to be useful 

in seismic evaluation of many buildings for many ground motions, and is much more 

accurate than FEMA-356 procedures, it may not be highly accurate for buildings 

subjected to very intense ground motions that deform the structure far into the 

inelastic range and the region of negative postyield stiffness (Goel and Chopra, 

2004a; Chintanapakdee et al., 2009).  

 

 
Figure 1.2 Lateral force distributions *

n n=s mφ , n = 1, 2 and 3 for first three ‘modes’ 

of the SAC-Los Angeles 9-story building (Chopra, 2007). 
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For further examination, an investigation on accuracy of MPA procedure for a 

different class of buildings, reinforced concrete special moment resisting frame (RC-

SMRF) buildings, was carried out by Bobadilla and Chopra (2007).  These RC-SMRF 

buildings were characterized by deterioration of strength and stiffness under cyclic 

deformation. The accuracy of MPA and FEMA-356 nonlinear static procedure in 

estimating seismic demands for RC-SMRF buildings was also compared in this 

research. It was concluded that even for intense ground motions that deform the 

buildings far into the inelastic range, the MPA procedure demonstrates a sufficient 

degree of accuracy, making it useful for practical application in estimating seismic 

demands for RC-SMRF structures. 

To reduce the computational effort of MPA procedure in estimating seismic 

demands, a Modified Modal Pushover Analysis (MMPA) procedure was proposed by 

Chopra et al. (2004) in which the response contributions of higher vibration ‘modes’ 

are computed by assuming the building to be linearly elastic. It was found that the 

MMPA leads to a larger estimate of seismic demands, improving the accuracy of the 

MPA results in some cases (relative to nonlinear response history analysis). Although 

it is not necessarily more accurate than the MPA procedure, the MMPA approach 

provides a larger estimate of demand.  

An alternative pushover method is the adaptive pushover procedure in which 

the load pattern distributions are redefined. The loading pattern is determined by 

modal combination rules (e.g. SRSS of modal loads) at each stage of the response 

during which the dynamic characteristics of the structure change, usually at each step 

when a new plastic hinge forms in inelastic range (Fajfar and Fischinger, 1987; Bracci 

et al., 1997; and Gupta and Kunnath, 2000). In this procedure, equivalent seismic 

loads are calculated at each pushover step using the immediate ‘mode’ shape. 

Recently, a new adaptive pushover method, called Adaptive Modal Combination 

(AMC) procedure, has been developed by Kalkan and Kunnath (2006) where a set of 

adaptive mode-shape based on inertia force patterns is applied to the structure. This 

procedure has been validated for regular moment frame buildings (Kalkan and 

Kunnath, 2006; 2007). In recent development, an adaptive pushover analysis 

procedure called the Incremental Response Spectrum Analysis (IRSA) method was 
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proposed by Aydinoglu (2004) to take into account the influence of higher ‘modes’ as 

well as their changes in the mode shapes depending on the seismic intensity. In each 

pushover analysis, the effect of modal coupling on the formation of the plastic hinges 

is taken into account and each time a new hinge forms in the structure, elastic modal 

response spectrum analysis is performed to consider the change in the dynamic 

properties of the structure. 

It was shown that the AMC procedure provides a higher accuracy in 

estimating seismic demands than MPA in comparison with Nonlinear Response 

History Analysis (NL-RHA). However, it is conceptually complicated and 

computationally demanding for routine application in structural engineering practice 

while the MPA method is generally simpler, and thus, more practical than adaptive 

pushover procedures for seismic design. 

Back in the mid-1980s, a relatively simple nonlinear method, known as the 

N2 method (N stands for Nonlinear analysis and 2 for two mathematical models), was 

developed by Fajfar and Fischinger (1987, 1989). The method combines the nonlinear 

static pushover analysis of a MDOF system and the response spectrum analysis 

approach of an equivalent SDF system; similar to the capacity spectrum method, 

applied in ATC-40 and displacement coefficient method, applied in FEMA-356. It 

was initially based on the Q-model developed by Saiidi and Sozen (1981). This 

approach is based on two main assumptions: (1) the response of a structure is 

governed by one ‘mode’ and (2) this ‘mode’ does not change significantly when the 

structure is subjected to different seismic intensities. The N2 method has been 

included in the Eurocode 8 standards for the seismic analysis of structures (CEN, 

2004a-b). Then, the method has been gradually improved by Fajfar and Gaspersic 

(1996) and its application has been extended to bridges (Fajfar et al., 1997). The N2 

method, for convenience, has been formulated in the acceleration-displacement 

( )A D− format by Fajfar (1999). This version combines the advantages of the visual 

representation of the capacity spectrum method and the sound physical basis of 

inelastic demand spectra. Generally, the N2 method provides a reasonably accurate 

result for structures which oscillates predominantly in the first ‘mode’. The 

similarities and differences among the N2 method, the FEMA-273 (ATC, 1997), and 
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ATC-40 nonlinear static procedures for performance-based seismic design have been 

investigated and discussed by Fajfar (2000a). Subsequently, a practical version of the 

N2 method for seismic performance evaluation was developed by Fajfar (2000b). It 

was concluded that the applications of the methods are restricted to planar structures 

vibrating predominantly in the fundamental ‘mode’; and can be used both for the 

seismic performance evaluation of newly designed or existing structures. However, 

the limitations of the N2 method as well as ATC-40 and FEMA-237 should be 

recognized as mentioned before. 

Considering the influence of the higher ‘modes’ in the nonlinear pushover 

analysis of reinforced concrete single column bent viaducts, an investigation on 

ability of the N2 method (single mode procedure) and typical multimode approaches 

(MPA, adaptive pushover procedure, and IRSA) was carried out by Isakovic and 

Fishchinger (2006). It was concluded that the influence of higher ‘modes’ is typically 

small when the columns (substructure) do not hinder free deformation of the 

superstructure in transverse direction and the N2 method works well in these cases. 

Conversely, all multimode procedures provide good estimates in most cases, although 

the degree of accuracy was different among them. However, all the methods have 

limitations related to the higher ‘modes’ effect linked to the torsional flexibility in the 

transverse direction of the viaducts. It was also concluded that MPA is simpler and 

easier to apply than the other methods. On the other hand, IRSA is theoretically sound 

procedure but it requires considerable effort in application. Subsequently, an overview 

of the application of the N2 method and two typical multimode pushover procedures 

(MPA and IRSA) for the analysis of single column bent viaducts in the transverse 

direction was discussed by Isakovic et al. (2008). It shows that the N2 method is 

accurate enough for bridges where the effective modal mass of the fundamental mode 

is at least 80% of the total mass. On the contrary, both multi-mode procedures, MPA 

and IRSA, perform well in the case of the moderately irregular long viaducts, which 

are frequently used in construction design practice. Again, it was recommended that 

all pushover methods should be used with care for torsionally sensitive structures.  

More recently, an Improved Modal Pushover Analysis (IMPA) procedure 

was proposed by Jianmeng et al. (2008) to consider the redistribution of inertia forces 
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after the structure yields. The structural stiffness changes after it yields, so the 

displacement shape vector also changes. The IMPA procedure uses the product of the 

time variant floor displacement vector (as the displacement shape vector) and the 

structural mass matrix as the lateral force distribution at each load step beyond the 

yield point of the structure. However, to avoid a large computation, only two phase 

lateral load distribution was recommended. In the first phase, the pushover analysis is 

performed by using the first few elastic natural ‘modes’ of structure, i.e., similar to the 

MPA. In the second phase, only for the first ‘mode’ the lateral load distribution is 

based on assumption that the floor displacement vector at the initial yielding point is 

the displacement shape vector. 

An alternative pushover analysis procedure to estimate seismic displacement 

demands, referred to as the Mass Proportional Pushover (MPP) procedure, was 

recently proposed by Kim and Kurama (2008). The main advantage of MPP 

procedure over other approximate procedures is the use of a single pushover analysis 

for the structure with no need to conduct a modal analysis to capture the effect of 

higher ‘modes’. The effects of higher ‘modes’ on the lateral displacement demands 

are lumped into a single invariant lateral force distribution that is proportional to the 

total seismic masses at the floor and roof levels, given by g =m wι ι  where m is the 

mass matrix and w  is weight matrix. This lateral force distribution is similar to 

uniform lateral force pattern described in FEMA-356. The floor/roof lateral 

displacement vector (normalized with respect to the roof displacement) obtained from 

the linear-elastic response range are used to replace ‘mode’ shape vector. This 

approximate approach is proposed for structures which are primarily governed by the 

first ‘mode’; and thus, structures that develop weak/soft story mechanisms are outside 

the scope of this procedure. 

 

1.2.3 Nonlinear Static Analysis Procedure for Unsymmetrical Structures 

Nonlinear static pushover analysis procedures have attracted attentions of a lot 

of researchers since the mid-1980s. However, most of the work performed in the 

direction of improvement or extending the applicability of pushover analysis focused 

on planar frames or symmetrical buildings. Starting in 1997, various researchers have 
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extended pushover analysis to unsymmetrical-plan buildings. By applying a height-

wise distribution of lateral forces, typical of standard planar pushover analysis at the 

floor centers of mass, an approximate nonlinear static analysis procedure was 

developed by Kilar and Fajfar (1997). Nevertheless, the procedure does not pretend to 

be very accurate by the authors’ admission. 

In the effort of extending the applicability of pushover analysis, an evaluation 

on the effect of multimode pushover analysis in three dimensional asymmetric frame 

structures was discussed by Barros and Almeida (2005). A different lateral force 

distribution was proposed for pushover analysis, based on a multimode combination 

of the vibration modes obtained from a linear elastic analysis of the structure. The 

proposed load pattern (LP) is proportional to the shape of the considered modes of 

vibration, each affected by the participation factor. The load pattern is defined in the 

following equation: 

                         1 1 2 2
1

...
n

n n i i
i

LP α α α α
=

= + + + =∑φ φ φ φ   (1.7) 

where nφ are the modes of vibration of the structure and nα  is the participation factor 

of the nth ‘mode’, that represents the contribution of each mode to the global response 

of the system using: 

                                                            n
n

g

R
R

α =   (1.8) 

The global dynamic response of a structure, gR , subjected to a ground motion 

excitation is decomposed into modal contributions, nR , using the equation: 

                                                             g nR R=∑   (1.9) 

The proposed multi-mode load pattern was evaluated by comparing the results 

of the proposed pushover analysis with both the conventional pushover analysis 

(single mode pushover) and the results obtained from NL-RHA. It was concluded that 

the proposed multimodal load pattern improves the accuracy and reliability of the 

pushover analysis. 
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To consider the effect of torsional vibration of building, an extension of MPA 

procedure to unsymmetric-plan buildings, which respond in coupled lateral-torsional 

motions during earthquakes, was proposed by Chopra and Goel (2004). The force 

distribution *
ns  used in the pushover analysis for each ‘mode’ now includes two lateral 

forces and torque at each floor as: 

                                           *
xn

n yn

O nθ

φ
φ
φ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

m
s m

I
                                            (1.10) 

where m is a diagonal mass matrix with diagonal entry jj jm m= , the mass lumped at 

the jth floor diaphragm; OI  is a diagonal matrix with diagonal entry jj OjI I= , the 

polar moment of inertia of the jth floor diaphragm about a vertical axis through the 

center of mass (CM); and xnφ , ynφ  and nθφ  are three subvectors of the nth natural 

vibration mode of the structure, nφ .  

 Between the two pushover curves obtained corresponding to two lateral 

directions, x and y, preferably choose the pushover curve in the dominant direction of 

the motion of the ‘mode’. Gravity loads and their P −Δ  effects are now included in 

pushover analysis for all ‘modes’. The response due to the nth ‘mode’ is computed by 

n n g gr r r+= − , where gr  is the contribution of gravity load alone. The total seismic 

demands are determined by combining gravity response and the peak ‘modal’ 

responses using the complete quadratic combination (CQC) rule, instead of the SRSS 

rule: 

                                    
1/ 2

1 1
max

J J

g in i n
i n

r r r rρ
= =

⎡ ⎤⎛ ⎞
≈ ±⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∑∑                                 (1.11) 

where the correlation coefficient inρ  is given by: 

                            ( )
( ) ( ) ( )

3/ 2

2 2 2 2 2

8
1 4 1 4

i n in i n in
in

in i n in in i n in

ζ ζ β ζ ζ β
ρ

β ζ ζ β β ζ ζ β
+

=
− + + + +

                (1.12) 
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in which /in i nβ ω ω=  is the ratio of the ith and nth modal frequencies, and iζ  and nζ  

are the damping ratios for these modes. 

The extended MPA procedure to unsymmetric-plan buildings has been 

demonstrated to provide generally accurate seismic response estimates for 

unsymmetric systems to a similar degree as it was for a symmetric building (Chopra 

and Goel, 2004; Goel and Chopra, 2005).  

Meanwhile, Fajfar and his co-workers have observed that the torsional effects 

of plan-asymmetric buildings are mostly pronounced in the elastic range and early 

stages of plastic behavior and tend to decrease with an increase in the plastic 

deformations. Hence, the amplifications in the displacement demands due to torsional 

effects computed from elastic dynamic analysis can be used as a rough and 

conservative estimate both in the elastic and inelastic range. Based on this 

observation, Fajfar et al. (2005) developed the extension of the N2 method, which 

was developed for the nonlinear static analysis of planar structures, to plan-

asymmetric buildings. Pushover analysis of the three-dimensional (3D) mathematical 

model of the building is performed independently in two horizontal directions and the 

target roof displacement for each horizontal direction is computed using the N2 

method. Then, a linear response spectrum analysis of the 3D model is carried out 

independently in two horizontal directions and the results are combined using the 

SRSS rule. The correction factors to be applied to the relevant results of pushover 

analysis are determined. After that, the correction factor is defined as the ratio 

between the normalized roof displacements obtained by elastic modal analysis and by 

pushover analysis. The normalized roof displacement is the ratio of the roof 

displacement at an arbitrary location to the roof displacement at the center of mass 

(CM). 

Subsequently, a 3D pushover analysis procedure was developed by Huang and 

Gould (2007) to analyze a collapsed reinforced concrete chimney. The idea of this 

new approach is to apply two directional lateral forces to the structure to obtain the 

responses over the height. However, the lateral load patterns may be selected from 

those that were described in FEMA-356.   
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To evaluate the capability and applicability of the extension of N2 method 

(Fajfar et al., 2005) and extension of MPA approach (Chopra and Goel, 2004) in 

capturing the torsional effects that arise from plan irregularities, an assessment of 

these procedures on the estimation of torsional effects in low-rise frame buildings was 

carried out by Erduran, (2008). Results of numerical analyses show that far-fault and 

near-fault ground motions have similar influences on the displacement demand of 

structures as far as torsional effects are concerned. These procedures proposed for 

asymmetric buildings were found to be effective in capturing torsional effects 

whereas the classical nonlinear static procedure developed originally for planar 

systems significantly underestimates torsional rotation demands in structures. 

 

1.2.4 Nonlinear Static Analysis Procedure for Bridges 

In view of previous considerations, most of researches performed in the 

direction of extending the applicability of pushover analysis to structures focused on 

buildings. Such works on bridges, on the other hand, have been implemented for a 

limited number of cases; although the contribution of higher ‘mode’ on bridges 

usually play a more critical role than in buildings.  

The inelastic behavior of a highway concrete bridge (Greveniotikos bridge) 

was investigated by Abeysinghe et al. (2002) from the first pier hinging to the 

inelastic equilibrium condition during the design-level earthquake by using the 

conventional pushover analysis. The effects on the seismic demand of period 

lengthening and damping increase produced by structural deterioration were evaluated 

in this study. Pushover analysis is performed in both longitudinal and transverse 

directions in which invariant force patterns are applied separately. The capacity curve 

(pushover curve) and the initial curve (design spectrum) are both plotted in the 

acceleration-displacement response spectra (ADRS) domain. Then, the design of 

Greveniotikos was checked by using the well known capacity spectrum method. 

Aydinoglu (2004) proposed the Incremental Response Spectrum Analysis 

(IRSA) as mentioned previously, which includes an application to a bridge structure, 

taking one or eight ‘modes’ into account, without any detailed discussion of the 

resulting differences. In the studies by Isakovic and Fishchinger (2006) and Isakovic 
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et al. (2008), investigations on ability of the N2 method (single mode procedure) and 

typical multimode approaches (MPA, adaptive pushover procedure, and IRSA) were 

carried out for the analysis of hypothetical irregular, torsionally sensitive bridges.  

Recently, an extension of modal pushover analysis procedure to seismic 

assessment of bridges was proposed by Paraskeva et al. (2006). It was then examined 

the relative accuracy by comparing results with results obtained from NL-RHA as 

well as ‘standard’ pushover analysis (SPA) (single ‘mode’ load pattern) for a realistic 

case of highway bridge. In their study, the capacity spectrum method (CSM) was used 

to define the earthquake displacement demand associated with each of pushover 

curves, instead of NL-RHA of each SDF system proposed by Chopra and Goel 

(2002). The main goal of their study is to propose the displacement monitoring points 

of the bridges. It was suggested that the monitoring point may be the point of the deck 

that corresponds to the location of an equivalent SDF system (along the longitudinal 

axis of the bridge), *
nx , defined by following relationship: 

                                        1*

1

N

j j jn
j

n N

j jn
j

x m
x

m

φ

φ

=

=

=
∑

∑
                                           (1.13) 

in which, jx  is the distance of the jth mass from a selected point of the bridge, and 

jnφ  is the ordinate of the nth mode shape nφ  at the jth mass. *
nx  is essentially 

independent of the way the ‘mode’ is normalized. It was concluded that comparative 

evaluation of the calculated response of the bridge illustrates the applicability and 

potential of the MPA approach for bridges. 

 At the same time as Paraskeva et al. (2006), a displacement-based adaptive 

pushover for assessment of buildings and bridges was developed by Pinho et al. 

(2006). This method is an extended version of adaptive pushover which takes into 

account both the contributions of higher ‘modes’ to response and the redistribution of 

inertia forces due to structural yielding and associated changes in vibration properties. 

A number of idealized 2D bridges were analyzed to verify this procedure. The results 
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show that the approach can lead to the attainment of significantly improved 

predictions.  

More recently, to assess the suitability of various analysis methods and 

software tools for performing practical seismic analysis of structures, an evaluation of 

nonlinear static analysis methods and software tools [SAP2000 (CSi, 1997), GT-

STRUDL (GT-STRUDL, 2000), ADINA 800-node (ADINA, 2000), and SC-Push3D 

(SC Solutions, 1998)] for seismic analysis of a two-span highway bridge was carried 

out by Shattarat et al. (2008). The analysis revealed that some software programs are 

well suited to perform nonlinear static analysis.  

In these studies, the finite element models of the bridges were simplified. 

Therefore, these simple models may not able to capture the torsional and vertical 

vibrations of the deck of the bridges and their seismic behaviors may not represent for 

the actual bridges. 

 

1.2.5 Displacement Monitoring Point 

One of critical steps of multi-mode pushover procedures is to select the 

displacement monitoring point, which is usually the roof when buildings are analyzed. 

The selection of the monitoring point affects the shape of the pushover curve in the 

inelastic range. For bridges, intuitive selections for the displacement monitoring point 

are the centre of deck mass as recommendation by CEN (2004a-b). It can be also 

selected as the point of the deck which is determined from the properties of the 

structure using Equation (1.13) recommended by Paraskeva et al. (2006). However, 

the applicability of this approach in structural engineering practice seems to be 

unsuitable for complicated structures.  

Another proposal for the displacement monitoring point of single column bent 

viaducts is at the maximum displacement of the superstructure as recommended by 

Isakovic and Fischinger (2006). The selection of the displacement monitoring point 

for multi-mode pushover analysis of bridge as recommendation of the previous 

mentioned researchers is not able to take into account the contributions of torsional 

and vertical vibrations of the bridge because the modal load patterns will not cause 

any displacements at that monitoring point. To overcome these drawbacks, relevant 
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displacement monitoring points for MPA procedure when it is applied to bridges will 

be proposed in Section 2.3 of this study. 

 

1.3 Research Objectives 

Based on a comprehensive literature review, the primary objective of this 

study is to develop an MPA procedure to analyze bridges that require a three-

dimensional analysis. The objectives of this research are as follows: 

(1) Investigation on the accuracy of current nonlinear static procedures for 

seismic assessment of steel structures such as buckling-restrained 

braced frames.  

(2) To develop an MPA procedure which can be applied to three-

dimensional analysis of bridges using spatial distribution force 

patterns. 

(3) Relevant displacement monitoring points are proposed and evaluated 

for this pushover analysis procedure when it is applied to bridges. 

(4) To evaluate the bias and accuracy of proposed MPA procedure for 

bridges by comparing the results obtained from MPA estimates with 

results determined by NL-RHA as well as conventional pushover 

analysis. 

 

1.4 Scope of Research 

The scopes of this research are stated as follows: 

(1) An existing continuous twin I-girder bridge with PC slab is analyzed to 

evaluate the bias and accuracy of proposed MPA procedure. 

(2) Both geometric and material non-linearities, which are crucial for 

understanding the complex structural behaviour under strong 

earthquake excitations, are accounted for.  
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(3) Two cases of bearing supports are considered in this study: (a) the 

superstructure is supported by steel bearings (SBs); and (b) the deck is 

seismically isolated by Lead Rubber Bearings (LRBs). A trilinear 

force-deformation model of the LRB bearings is used to accurately 

represent the influence of hardening of isolators at the high strains 

induced by intense earthquake ground motions. 

(4) A set of Large-Magnitude-Small-distance (LMSR) ground motions (20 

records) is used to evaluate the bias and accuracy of proposed MPA 

procedure for bridges. 

(5) The bias and accuracy of the proposed extension of MPA procedure are 

evaluated by a comparison of the response quantities with results from 

Nonlinear Response History Analysis (NL-RHA) which can be 

considered as ‘exact’ results. Conventional pushover analysis 

procedure was also evaluated. 

(6) The response quantities considered in this study are the peak deck  

displacements, pier (column) drifts, hinge rotations and internal forces, 

which are the main quantities used for assessing the bridges. The pier 

drift, which indicates deformation demand in the column, is defined as 

the displacement at top of the pier relative to its base divided by the 

pier height. 

(7) Multiple-support excitations are not considered in this research. 

 

1.5 Assumptions 

The assumptions used in this study are stated as follows: 

(1) Plastic hinges form at beam or column ends whereas the rest of each 

element remains elastic. 

(2) The coupling of modal coordinates due to yielding of the structure is 

neglected in the proposed extension of MPA procedure.  
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1.6 Organization of the Contents 

The dissertation contents are organized into six chapters. The first chapter 

presents the general introduction of this study including the research motivations, a 

brief review of previous researches and research objectives. 

In Chapter 2, the theoretical backgrounds of nonlinear response history 

analysis and modal pushover analysis procedures to estimate seismic demands for 

inelastic systems are presented. Then, an extension of modal pushover analysis 

procedure for seismic evaluation of bridges is proposed. 

With the increase in the number of alternative pushover analysis procedure 

proposed in recent years, it is useful to assess the accuracy and classify the potential 

limitations of these methods. Therefore, Chapter 3 provides an assessment of current 

nonlinear static procedures for seismic evaluation of buckling-restrained braced frame 

buildings. 

Chapter 4 presents the configuration and the comprehensive three-dimensional 

analytical model of the continuous twin I-girder bridge which is selected to evaluate 

the bias and accuracy of the proposed extension of MPA procedure. Subsequently, the 

ensemble of 20 ground motions and statistical analysis are introduced. 

In Chapter 5, the bias and accuracy of the proposed extension of MPA 

procedure in estimating peak displacements, pier drifts, internal forces and hinge 

rotations of studied bridge are evaluated by comparing with the results determined by 

NL-RHA which can be considered as ‘exact’ solutions. Moreover, the effects of 

bearing supports on the accuracy of the proposed extension of MPA procedure are 

investigated.  

Finally, the significant findings and general conclusions obtained throughout 

this research are summarized in Chapter 6.  

 



CHAPTER II 
 

THEORETICAL BACKGROUND AND METHODOLOGY 
 
 
2.1 Introduction 

In recent years, nonlinear structural analysis has gained a greater momentum 

because of the need to assess inelastic structural behavior under earthquake loads. 

Common seismic design philosophies for buildings or bridges allow some degree of 

damage without collapse. To control and evaluate damage, a post-elastic nonlinear 

structural analysis is required (Moehle, 1995; and JSCE, 1996). Nonlinear Response 

History Analysis (NL-RHA) is usually performed for the safety evaluation of 

structures to determine their inelastic responses when subjected to strong earthquake 

ground motions. This method is a powerful tool and provides a realistic measure of 

structural responses.  

Although the nonlinear response history analysis is not difficult in concept, it 

requires careful structural modeling and intensive computing effort. The NL-RHA of 

structures therefore is not feasible for most practical applications. On the other hand, 

the nonlinear static analysis procedures which are rooted in structural dynamic theory 

have advantages in that it is simpler and more practical than NL-RHA for structural 

design. These approaches have been demonstrated to provide reasonable results in 

estimating seismic demands for buildings.  The Modal Pushover Analysis (MPA) 

procedure has been considered as one of the efficient methods of approximate 

procedures that would achieve a satisfactory balance between required reliability and 

applicability for everyday design use.  

Theoretical approaches of the NL-RHA and the MPA procedure to estimate 

seismic demands for inelastic systems are presented in this chapter. First, the 

theoretical background of rigorous nonlinear response history analysis is reviewed. 

Then, the approximate MPA procedure for inelastic systems developed earlier for 

estimating seismic demands for buildings (Chopra and Goel, 2002) is presented. 

Finally, an extension of modal pushover analysis procedure for seismic evaluation of 

bridges is proposed. 
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2.2 Modal Pushover Analysis Procedures: Inelastic Systems 

2.2.1 Nonlinear Response History Analysis (NL-RHA) 

 The governing equations of an inelastic system due to earthquake ground 

motion ( )gu t  are as follows: 

                                       ( ) ( ), signs gu t+ + = −mu cu f u u mι   (2.1) 

where u  is the vector of displacements, m , c , and k are the mass, classical damping, 

and lateral stiffness matrices of the system; ι  is the influence vector whose each 

element equals to unity. These coupled equations can be solved directly to get ‘exact’ 

NL-RHA results.  

 The right hand side of Equation (2.1) can be considered as effective 

earthquake forces: 

                                                    ( ) ( )eff gt u t= −p mι  (2.2) 

The effective earthquake forces can then be expressed as 

                                        ( ) ( ) ( ),
1 1

N N

eff eff n n g
n n

t t u t
= =

= = −∑ ∑p p s   (2.3) 

where ns  is modal inertia force distribution for the nth-mode 

                                                      n n nΓ=s mφ   (2.4) 

and 

                                   
1 1

N N

n n n
n n

Γ
= =

= =∑ ∑mι s mφ   (2.5) 

in which nφ  is the nth natural vibration mode of the structure, and 

                             n
n

n

L
M

Γ = ;            T
n nL = mιφ ;         T

n n nM = mφ φ   (2.6) 

 The contribution of the nth-mode to the effective earthquake forces (Equation 

2.3) can then be rewritten as 
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                                                 ( ) ( ),eff n n gt u t= −p s    (2.7) 

 The effect of ( ),eff n tp  to the response of the inelastic MDF system is entirely 

in the nth-mode, with no contributions from other modes.  

 The classical modal analysis is no longer valid for inelastic system because the 

coupling of modal co-ordinates due to yielding of the structure. The ‘modes’ other 

than the nth-‘mode’ will also contribute to the system response: 

                                                  ( ) ( )
1

N

n r r
r

t q t
=

= ∑u φ   (2.8) 

 However, Chopra and Goel (2002) have demonstrated that the contributions of 

‘modes’ other than the nth-mode are relatively small or weakly coupled. Expanding 

the displacements of the inelastic system in terms of the natural vibration modes of 

the corresponding linear system, we get 

                                                    ( ) ( )
1

N

n n
n

t q t
=

= ∑u φ   (2.9) 

Substituting Equation (2.9) into Equation (2.1), and pre-multiplying both side 

by T
nφ , then using the orthogonality of mass, and classical damping of modes gives 

                   ( )2 , 1,2,...,sn
n n n n n g

n

Fq q u t n N
M

ζ ω Γ+ + = − =     (2.10) 

 Equation (2.10) represents N equations in the modal co-ordinates nq . Unlike 

linearly elastic systems, these equations are coupled for inelastic systems.  

 

2.2.2 Modal Pushover Analysis (MPA) 

If the effect of coupling of modal coordinates for inelastic system is neglected, 

Equation (2.10) leads to the Uncoupled Modal Response History Analysis (UMRHA) 

procedure. This approximate RHA procedure was proposed by Chopra and Goel 

(2002) and used as a basis for developing an MPA procedure for inelastic systems. 

Neglecting the coupling of modal coordinates, the displacements of system 

can be approximated as:  
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                                         ( ) ( ) ( )
1

N

n r r n n
r

t q t q t
=

= ∑u φ φ   (2.11) 

Substituting this approximation into Equation (2.1), and pre-multiplying by 
T
nφ  gives Equation (2.10): 

                   ( )2 , 1,2,...,sn
n n n n n g

n

Fq q u t n N
M

ζ ω Γ+ + = − =     (2.10) 

where snF  now depends only on one modal co-ordinate, nq : 

                                     ( ) ( ),sign ,signT
sn sn n n n s n nF F q q q q= = fφ  (2.12) 

The solution nq  of Equation (2.10) now can be expressed in similar form with linear 

elastic systems: 

                                                     ( ) ( )n n nq t D tΓ=   (2.13) 

Substituting Equation (2.13) into Equation (2.10) gives: 

                                          ( )2 sn
n n n n g

n

FD D u t
L

ζ ω+ + = −   (2.14) 

and 

                                     ( ) ( ),sign ,signT
sn sn n n n s n nF F D D D D= = fφ   (2.15) 

 Equation (2.14) is the equation of motion for the nth-mode inelastic SDF 

system with vibration properties (natural frequency nω  and damping ratio nζ ) of the 

nth-mode of the corresponding linear MDF system subjected to ( )gu t . 

Substituting Equation (2.13) into Equation (2.11) gives the displacements 

                                                     ( ) ( )n n n nt D tΓ=u φ     (2.16) 

 Response quantities of inelastic system denoted as ( )r t , e.g., story drifts, 

internal element forces, etc., can be expressed as 

                                                      ( ) ( )st
n n nr t r A t=     (2.17) 
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where st
nr  denotes the modal static response which is determined by nonlinear static 

analysis due to lateral force pattern ns , and 

                                                     ( ) ( )2
n n nA t D tω=    (2.18)  

is the pseudo-acceleration response of the nth-mode inelastic SDF system. Figure 2.1 

shows the conceptual explanation of these approaches.  

The response of the inelastic system to the total excitation ( )eff tp  is given by: 

                                         ( ) ( ) ( )
1 1

N N

n n n n
n n

t t D tΓ
= =

= =∑ ∑u u φ   (2.19) 

                                          ( ) ( ) ( )
1 1

N N
st

n n n
n n

r t r t r A t
= =

= =∑ ∑     (2.20) 

Equations (2.17) to (2.20) are used to estimate seismic demands of inelastic 

system due to an earthquake and known as the UMRHA procedure.  

Alternatively, the peak response nr  of the inelastic system to ( ),eff n tp  can be 

determined by a nonlinear pushover analysis of the structure subjected to lateral 

forces *
n n=s mφ  with the forces increased to push the structure up to the target roof 

displacement rnou . 

                                                          rno n rn nu DΓ φ=   (2.21) 

in which nD  is determined by solving Equation (2.14) with dynamic properties (e.g., 

natural frequency nω  and damping ratio nζ ) are based on the nth-mode pushover 

curve, a relationship between base shear bnV  and roof displacement rnu  as shown in 

Figure 2.2a. This capacity curve is then idealized as a bilinear curve.  

Subsequently, convert the idealize bilinear curve to the force-deformation 

( )/sn n nF L D−  curve for the nth-mode inelastic SDF system, which is required in 

Equation (2.14) by: 
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Figure 2.1 Conceptual explanation of uncoupled RHA of inelastic MDF system 

(Chopra and Goel, 2002). 

                                            *
sn bn

n n

F V
L M

=      ;        rn
n

n rn

uD
Γ φ

=                        (2.22) 

The concept of this step is shown in Figure 2.2b, where the yield values of /sn nF L  

and nD  are 

                                           *
sny bny

n n

F V
L M

=      ;         rny
ny

n rn

u
D

Γ φ
=         (2.23) 

in which *
n n nM L Γ=  is the effective modal mass, and rnφ  is the value of the roof of 

nφ .  

 

Figure 2.2 (a) Pushover curve and (b) Force and deformation relationship of SDF 

system. 
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 The initial slope of this curve is equal to 2
nω  indicating that the vibration 

period nT  of the inelastic SDF system is given by 

                                        
1/ 2

2 n ny
n

sny

L D
T

F
π
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.24) 

in which subscript y indicates the yield values. This value of nT , which may differ 

from the period of the corresponding linear system, should be used for estimating 

deformation of the inelastic SDF system. 

 The peak modal response are combined according to the Square-Root-Of-

Sum-Of-Squares (SRSS) by Equation (2.25) or the Complete Quadratic Combination 

(CQC) rules. 

                                                            
1/ 2

2

1

N

o no
n

r r
=

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠
∑   (2.25) 

More details of the this procedure can be found in Chopra and Goel (2002). 

 

2.3 Proposed Extension of MPA Procedure for Seismic Evaluation of Bridges 

The previously mentioned modal pushover analysis (MPA) procedure, which 

was proposed by Chopra and Goel (2002), is an extension of conventional pushover 

analysis to include contribution of higher ‘modes’. This approach was developed to 

estimate seismic demands for buildings. To extend the applicability of MPA 

procedure to the case of three-dimensional bridges, a step-by-step of proposed 

extension of MPA procedure to estimate the seismic demands for bridges is presented 

as a sequence of steps: 

(1) Compute the natural frequencies, nω , and mode shape vectors, nφ  , for 

linearly elastic vibration modes of the three-dimensional structure. It is 

noted that in the case of bridges, the number of ‘modes’ whose masses 

contribute to at least 90% of the total mass of a complex bridge 

structure – a criterion commonly used in seismic codes- that have to be 

taken into account is significantly higher than in the case of buildings.  
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(2) Identify the most dominant modes that need to be considered in the 

MPA procedure based on the effective modal masses (as a fraction of 

the total mass) of the linearly elastic bridge in each direction (in the 

longitudinal, transverse and vertical directions). The most dominant 

modes are dependent on the response quantities under consideration 

(e.g., the peak displacements of the deck in transverse or longitudinal 

directions). The bridge modes may be categorized by their primary 

motion: longitudinal, transverse, vertical or torsional, or coupled 

motion such as longitudinal-vertical or transverse-torsional.  Category 

of a mode shape may be identified from deformed shape of the bridge 

and effective modal masses. The effective modal mass determined by 

*
n n nM LΓ=  in which 

T
n nL = mφ ι , 

T
n

n T
n n

Γ =
m
m

φ ι
φ φ , and ι  is the influence 

vector and each element of the influence vector ι  corresponding to the 

direction of the ground motion is equal to unity. 

(3) For the nth-dominant ‘mode’, develop the pushover curve (capacity 

curve), which is the relationship between the base-shear and the 

displacement of the monitoring point ( bn mnV u− ), by nonlinear static 

analysis of the bridge using the spatial force distribution *
n n=s mφ  

where m  is the mass matrix of the structure. Gravity loads are applied 

before each pushover analysis, and P −Δ  effects are included. The 

value of the desired dynamic response of the bridge due to gravity 

loads is denoted as gr .  

The displacement monitoring point of the bridge for the nth-dominant 

‘mode’ is proposed to be at the degree of freedom where mode shape 

value is maximum in the direction of applied ground motion. This 

proposed monitoring point can take into account the contributions of 

torsional and vertical vibrations of bridges, and this approach is no 

more complicated than before because the mode shape was already 

computed in Step 1.  
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Figure 2.3 (a) Pushover curve and (b) the nth-mode inelastic SDF system curve. 

(4) Idealize the pushover curve as a bilinear curve (Figure 2.3a). There are 

several ways to idealize this curve. The implementation of bilinear 

idealization in this study adopted the criterion specified in FEMA-356 

that: (a) the first linear segment shall intersect the actual curve at 60% 

of the (idealized) yield force; and (b) the energy (area under the curve) 

associated with the peak response has to be the same as for the actual 

curve. More details of this approach can be found in Appendix A. 

(5) Convert the idealized pushover curve to the force–deformation 

( )/sn n nF L D−  relation of the nth-dominant ‘mode’ inelastic SDF 

system by using */ /sny n bny nF L V M= ; /ny mny n mnD u Γ φ=  in which mnφ  is 

the value of nφ  at the displacement monitoring point; and determine 

the elastic modal frequency nω . The nth-dominant ‘mode’ inelastic 

SDF system is defined by the force–deformation curve of Figure 2.3b 

(with post-yield stiffness ratio nα ) and damping ratio nζ  specified for 

the nth ‘mode’.  

(6) Peak value of deformation, ( )maxn nt
D D t

∀
≡ , of an equivalent inelastic 

SDF system of nth ‘mode’ (with force–deformation relation of Figure 

2.3b) due to ground excitation ( )tug , are determined rigorously by 

nonlinear response history analysis (NL-RHA) (Equation 2.14). The 

reason for choosing this approach is mentioned in Section 1.2.1. 
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(7) Calculate the peak monitoring displacement mnou  associated with the 

nth-dominant ‘mode’ inelastic SDF system from 

                                                            mno n mn nu DΓ φ=   (2.26) 

(8) The response quantities of interest (e.g., displacements of deck, piers; 

plastic hinge rotations; and internal forces), nor , are evaluated by 

extracting from the pushover database when the displacement of 

monitoring point equals to mnou . 

(9) Repeat Steps 3–8 for as many ‘modes’ as required for sufficient 

accuracy. For seismic evaluation of buildings, usually the first two or 

three ‘modes’ will suffice for buildings shorter than 10 stories 

(Chintanapakdee and Chopra, 2003a; Chopra and Chintanapakdee, 

2004a). On the other hand, as mentioned in Step 1, the required number 

of ‘modes’ may be far in the case of bridges.  

(10) Compute the dynamic response due to the nth-dominant mode: 

n n g gr r r+= − , where gr  is the contribution of gravity load alone. 

(11) Determine the total response MPAr  by combining the peak ‘modal’ 

responses using appropriate modal combination rule, e.g., Square-

Root-of-Sum-of-Squares (SRSS) by Equation (2.27) or Complete 

Quadratic Combination (CQC) rule by Equation (2.28) 

                                                      
1/ 2

2

1
max

J

g n
n

r r r
=

⎡ ⎤⎛ ⎞
≈ ±⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∑  (2.27) 

                                                      
1/ 2

1 1
max

J J

g in i n
i n

r r r rρ
= =

⎡ ⎤⎛ ⎞
≈ ±⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∑∑  (2.28) 

where the correlation coefficient inρ  is given by: 

                                        ( )
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in which /in i nβ ω ω=  is the ratio of the ith and nth modal frequencies, 

and iζ  and nζ  are the damping ratios for these modes. 

 



CHAPTER III 
 

ASSESSMENT OF CURRENT NONLINEAR STATIC 
PROCEDURES FOR SEISMIC EVALUATION OF BUILDINGS 

 
 
3.1 Introduction 

Steel moment-resisting frames are vulnerable to large lateral displacements 

during severe earthquakes. In response to many practical and economic issues 

involved, conventional braced frames have been widely used as lateral-force resisting 

systems in seismic resistant design; however, their post-elastic behavior is susceptible 

to rapid stiffness and strength degradation after the braces buckle due to compression 

forces. That was observed in past earthquakes, such as the 1985 Mexico (Osteraas and 

Krawinkler, 1989), 1989 Loma Prieta (Kim and Goel, 1992), 1994 Northridge 

(Krawinkler et al., 1995; and Mahin, 1998), and 1995 Hyogo-Ken Nanbu (Tremblay 

et al., 1996) earthquakes. Thus, their energy dissipation capacity is limited when 

subjected to earthquake loading (Figure 3.1a). Alternatively, Buckling-Restrained 

Braced Frame (BRBF) is an innovative structural system that prevents buckling of the 

braces by using a steel core and an outer casing filled with concrete for the brace. 

Brace axial force is resisted only by the steel core, which is restrained from buckling 

by the outer shell and the infill mortar. This results in a stable hysteresis loop like a 

bilinear relationship (Figure 3.1b) where significant hysteretic energy dissipation can 

be achieved. The system is considered to have favorable seismic performance over 

traditional braced frames, making it an attractive option to structural engineers. 

Moreover, lateral-force-resisting systems with buckling restrained braces can yield 

significant structural cost saving over conventional special concentrically braced 

frame systems. This saving is resulted from decreased material quantities and 

foundation demands due to the reduced base shear and required brace cross-section 

areas. The saving increases with building height, as the greater quantities of materials 

offset the more expensive braces (DASSE, 2007). A more comprehensive background 

on this system can be found in (Kumar et al., 2007; and Uang and Nakashima, 2003). 

Therefore, BRBF has become a preferable system in seismic resistant design recently. 
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Figure 3.1 Hysteretic behavior of conventional bracing and buckling-retrained bracing 

under cyclic loading (Kumar et al., 2007). 

To estimate seismic demands in the design and evaluation of buildings, the 

Nonlinear Static Procedures (NSPs) using the lateral force distributions recommended 

in ATC-40 (ATC, 1996) and the FEMA-356 (ASCE, 2000) documents are now 

standard in engineering practice. The nonlinear static procedure in these documents is 

based on the Capacity Spectrum Method (ATC-40) and Displacement Coefficient 

Method (FEMA-356), and assumes that the lateral force distribution for the pushover 

analysis and the conversion of the results to the capacity diagram are based on the 

fundamental vibration mode of the elastic structure. Consequently, these NSPs based 

on invariant load patterns provide accurate seismic demand estimates only for low- 

and medium-rise moment-frame buildings where the contributions of higher ‘modes’ 

response are not significant and inadequate to predict inelastic seismic demands in 

buildings when the higher ‘modes’ contribute to the response (Krawinkler and 

Seneviratna, 1998; Gupta and Krawinkler, 1999; Chopra and Goel, 2002; 

Chintanapakdee and Chopra, 2003a; Kunnath and Kalkan, 2004; Bobadilla and 

Chopra, 2007).  

To overcome these drawbacks, an improved pushover procedure, called Modal 

Pushover Analysis (MPA), was proposed by Chopra and Goel, (2002) to include the 

contributions of higher ‘modes’. The MPA procedure has been demonstrated to 

increase the accuracy of seismic demand estimation in taller moment-frame buildings, 

e.g., 9- and 12-stories tall, compared to the conventional pushover analysis (Chopra 

Tension 
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Deformation 
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Compression 
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Deformation 
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(a) Conventional bracing (b) Buckling-restrained bracing 
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and Chintanapakdee, 2004a; and Chopra et al., 2004). In spite of including the 

contribution of higher ‘modes’, MPA is conceptually no more difficult than standard 

procedures because higher ‘modes’ pushover analyses are similar to the first ‘mode’ 

pushover analysis. Moreover, MPA procedure considering for the first few (two or 

three) ‘modes’ contribution are typically sufficient (Chintanapakdee and Chopra, 

2003a; and Chopra and Chintanapakdee, 2004a).  

Another pushover method is the adaptive pushover procedures, where the load 

pattern distributions are updated to consider the change in structure during the 

inelastic phase (Fajfar and Fischinger, 1989; Bracci and Kunnath, 1997; and Gupta 

and Kunnath, 2000). In this type of procedure, equivalent seismic loads are calculated 

at each pushover step using the immediate ‘mode’ shape. Recently, a new adaptive 

pushover method, called the Adaptive Modal Combination (AMC) procedure, has 

been developed by Kalkan and Kunnath, (2006) where a set of adaptive mode-shape 

based inertia force patterns is applied to the structure. This procedure has been 

validated for regular moment frame buildings (Kalkan and Kunnath, 2006; 2007). 

However, it is conceptually complicated and computationally demanding for routine 

application in structural engineering practice while the MPA method is generally 

simpler, and thus, more practical than adaptive pushover procedures for seismic 

design. 

More recently, an Improved Modal Pushover Analysis (IMPA) procedure 

was proposed by Jianmeng et al. (2008) to consider the redistribution of inertia forces 

after the structure yields. The structural stiffness changes after it yields, so the 

displacement shape vector also changes. The IMPA procedure uses the product of the 

time variant floor displacement vector (as the displacement shape vector) and the 

structural mass matrix as the lateral force distribution at each applied-load step 

beyond the yield point of the structure. However, to avoid a large computation, only 

two phase lateral load distribution was recommended. In the first phase, the pushover 

analysis is performed by using the first few elastic natural ‘modes’ of structure, i.e., 

similar to the MPA. In the second phase, only for the first ‘mode’ the lateral load 

distribution is based on assumption that the floor displacement vector at the initial 

yielding point is the displacement shape vector.  
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An alternative pushover analysis method to estimate the seismic 

displacement demands, referred to as the Mass Proportional Pushover (MPP) 

procedure, was proposed by Kim and Kurama (2008). The main advantage of the 

MPP is that the effects of higher ‘modes’ on the lateral displacement demands are 

lumped into a single invariant lateral force distribution that is proportional to the total 

seismic masses at the floor and roof levels. However, the accuracy of both IMPA and 

MPP procedures has been verified for a limited number of cases.  

With the increase in the number of alternative pushover analysis procedure 

proposed in recent years, it is useful to assess the accuracy and classify the potential 

limitations of these methods. An assessment on accuracy of MPA and FEMA 

pushover analyses for moment resisting frame buildings was investigated by Chopra 

and Chintanapakdee (2004a). Then, an investigation on the accuracy of improved 

nonlinear static procedures in FEMA-440 was carried out by Akkar and Metin (2007). 

Meanwhile, the ability of FEMA-356, MPA and AMC in estimating seismic demands 

of a set of existing steel and reinforced concrete buildings was examined by Kalkan 

and Kunnath (2007). More recently, an investigation into the effects of nonlinear 

static analysis procedures which are the Displacement Coefficient Method (DCM) 

recommended in FEMA 356 and the Capacity Spectrum Method (CSM) 

recommended in ATC 40 to performance evaluation on low-rise RC buildings was 

carried out by Irtem and Hasgul (2009).  

To assess the ability of current procedures, this chapter aims to investigate 

comparatively the bias and accuracy of MPA, IMPA and MPP procedures when 

applied to buckling-restrained braced frames (BRBFs).  

 

3.2 Review of Selected Nonlinear Static Procedures 

This section briefly introduces the modal, improved modal pushover analysis 

(MPA, IMPA) and mass proportional pushover (MPP) procedures in estimating 

seismic demands for building design. 
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3.2.1. Modal Pushover Analysis (MPA) 

The Modal Pushover Analysis (MPA), which has been proposed by Chopra 

and Goel (2002), is an extension of conventional pushover analysis to include 

contribution of higher ‘modes’. A step-by-step summary of the MPA procedure to 

estimate the seismic demands for building is presented as a sequence of steps: 

(1) Compute the natural frequencies, ωn , and mode shape vectors, nφ , for 

linearly elastic vibration modes of the building. 

(2) For the nth-‘mode’, develop the base-shear—roof-displacement 

( bn rnV u− ) pushover curve by nonlinear static analysis of the building 

using the force distribution *
n n=s mφ  where m is the mass matrix.  

(3) Idealize the pushover curve as a bilinear curve (Figure 3.2a).  

(4) Convert the idealized pushover curve to the force–deformation 

(Fsn/Ln−Dn) relation of the nth-‘mode’ inelastic SDF system and 

determine the elastic modal frequency nω , and yield deformation nyD . 

The nth-‘mode’ inelastic SDF system is defined by the force–

deformation curve of Figure 3.2b (with post-yield stiffness ratio αn) 

and damping ratio ζn specified for the nth ‘mode’. Where *
n n nM LΓ=  is 

the effective modal mass, T
n nL = mφ ι , 

T
n

n T
n n

Γ =
m
m

φ ι
φ φ , and each element 

of the influence vector ι  is equal to unity. 

(5) Compute the peak deformation, Dn ≡ 
t∀

max |Dn(t)|, of the nth-‘mode’ 

inelastic SDF system with the force–deformation relation of Figure 

3.2b due to ground excitation ( )tug  by solving: 

                                      
( ) ( )tu

L
DDFDD g

n

nnsn
nnnn −=++

,2 ωζ                              (3.1) 

(6) Calculate the peak roof displacement rnou  associated with the nth-

‘mode’ inelastic SDF system from 
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Figure 3.2 (a) Pushover curve and (b) Force and deformation relationship of SDF 

system. 

                                                                rno n rn nu DΓ φ=                                      (3.2) 

(7) Extract other desired responses, nor , from the pushover database when 

roof displacement equal to rnou . 

(8) Repeat Steps 2–7 for as many ‘modes’ as required for sufficient 

accuracy; usually the first two or three ‘modes’ will suffice for 

buildings shorter than 10 stories. 

(9) Determine the total response MPAr  by combining the peak ‘modal’ 

responses using appropriate modal combination rule, e.g., Square-

Root-of-Sum-of-Squares (SRSS) as shown by Equation (3.3) or 

Complete Quadratic Combination (CQC) rule: 

                                                            ∑ =
=

j

n noMPA rr
1

2
                              (3.3) 

where j is the number of ‘modes’ included. 

The MPA procedure summarized in this paper is developed for symmetric 

buildings (Chopra and Goel, 2002).  

 

3.2.2 Improved Modal Pushover Analysis (IMPA) 

Unlike the MPA procedure where the response is obtained from invariant 

multi-mode lateral load pattern vectors, the improved modal pushover analysis 

(IMPA) proposed by Jianmeng et al. (2008) considering the redistribution of inertia 
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forces after the structure yields. The principal improvement of the IMPA is to use 

deflection shape of structure after yielding as an invariant later load pattern. However, 

to avoid a large computation, a two-phase lateral load distribution is suggested for the 

first ‘mode’ while the force patterns for higher ‘modes’ are similar to the MPA 

approach. The IMPA procedure is summarized by following steps: 

(1) Implement the Steps 1-3 of the MPA procedure described in previous 

section for first ‘mode’. The lateral force distribution *
1 1=s mφ  is 

considered as the first-phase load pattern. 

(2) Determine the displacements vector of structure, 1yψ , at the yielding 

point with the pushover analysis obtained from Step 1.  

(3) Continue pushover analysis from the structure yielding point by 

applying the load distribution *
1 1y y=s mψ , which is considered as the 

second-phase lateral load pattern to obtain new pushover curve. Then, 

this new pushover curve is used for determining the response of the 

structure by Steps 4-7 of MPA procedure described in Section 3.2.1. 

(4) Determine the total response IMPAr  with SRSS or CQC combination 

rules by combining the response for the first ‘mode’ obtained from 

Step 3 and the responses due to other higher ‘modes’ obtained from 

MPA procedure. 

 

3.2.3 Mass Proportional Pushover (MPP) Procedure 

An alternative pushover analysis procedure, called the Mass Proportional 

Pushover (MPP), was proposed by Kim and Kurama (2008) to estimate the peak 

seismic lateral displacement demands for buildings. The main advantage of the MPP 

procedure over other approximate procedures is the use of a single pushover analysis 

for the structure with no need to conduct a modal analysis to capture the effect of 

higher ‘modes’. A summary of the mass proportional pushover procedure, whose 

details can be found in Kim and Kurama (2008), is as follows:  
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(1) Determine the multi-degree-of-freedom (MDOF) base shear force 

versus the roof displacement ( b rV u− ) relationship using the force 

distribution given by g =m wι ι  where m is the mass matrix and w  is 

weight matrix. 

(2) Idealize the pushover curve as a bilinear curve. 

(3) Convert the idealized pushover curve to the pseudo-acceleration versus 

the displacement ( A D− ) relationship of an equivalent SDF system 

using: 

                                                    bVA
M

=      ;        ruD
Γ

=               (3.4) 

where M  is the total mass and Γ  is the participation factor calculated 

as: 
T
e

T
e e

Γ =
u m

u mu
ι

; eu  is the lateral floor displacement vector 

(normalized with respect to the roof) obtained from the linear-elastic 

response range of the pushover analysis using the g =m wι ι  force 

distribution which is the same as uniform distribution of FEMA-356. 

(4) Determine the maximum SDF displacement, maxD by solving Equation 

(3.1) with Fs/L = A. 

(5) Calculate the maximum MDOF roof and floor displacements of 

structure as: max max eD Γ=u u  

 

3.3 Structural Systems and Analytical Models 

Analyses of 3-, 6-, 10-, and 14-story BRBF buildings are presented to evaluate 

the bias and accuracy of MPA, IMPA and MPP procedures. Building designs for the 

BRBF system in both the 3-story and 6-story cases adhered to the criteria for the 3vb2 

and 6vb2 model cases studied by Sabelli et al. (2003). These office buildings are 

assumed to be located in downtown Los Angeles on site class D. Figure 3.3 shows 

floor plans of the 3- and 6-story buildings. Models 3vb2 and 6vb2 were designed 

using response modification factor, R = 8, which was recommended by Structural 
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Engineers Association of California (SEAOC, 2001) for buckling restrained braced 

frame design. The typical story height is 4 m, except for the first story of the 6-story 

building, which has a story height of 5.5 m. The floor plan dimensions are 36.6 m × 

54.9 m for the 3-story building and 45.8 m × 45.8 m for the 6-story building. Both 

buildings have beam spans equal to 9.15 m in each direction. Each floor slab and the 

roof is a 76-mm metal deck with normal-weight concrete topping. The 3-story 

building has eight bays of bracing, four in each direction, while the 6-story building 

has twelve bays of bracing, six in each direction. The elevation view of all BRBF 

systems is shown in Figure 3.4.  

Braces were designed for the force calculated based on equivalent static base 

shear. Brace sizes were set to be within 2% of computed required cross-sectional area 

based on a nominal yield stress of 248 MPa for the yielding core without using any 

strength-reduction factor. Table 3.1 lists brace yield forces and axial stiffnesses for 

each story, sizes of beams and columns determined for 3-and 6-story are also shown. 

To calculate brace stiffness, yielding of buckling-restrained brace core was assumed 

to occur in 70% of the brace length and the cross-sectional area of non-yielding zone 

is three to six times that of the yielding zone. 

The characteristics of the 10- and 14-story buildings are adopted from 

Asgarian and Shokrgozar (2009). Figure 3.5 shows the floor plan of these buildings. 

The floor plan dimensions are 18 m × 18 m for both buildings with the beam spans 

equal to 6 m in each direction. Each building has eight bays of bracing, four in each 

direction. The story height of both models is 3.2 m. The dead load of 6 kN/m2 was 

used for gravity load. The buildings were designed as per the requirement of Iranian 

Earthquake Resistance Design Code and Iranian National Building Code which is 

similar to AISC-89. The importance factor of I = 1, seismic zone factor of A = 0.35 

and preliminary response modification factor of R = 9.5 were considered for frame 

design. Asgarian and Shokrgozar (2009) concluded that response modification factor 

of 9.4, very close to 9.5, is suitable for inverted-V buckling-restrained braced frames 

designed per the Iranian National Building Code. Braces were designed to sustain 100 

percents of the lateral load. Sizes of members determined for the 10-story building are 

shown in Table 3.2. 
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Table 3.1 Member properties for the 3- and 6-story buildings. 
Buckling-restrained braces Building 

model Story Tensile yield force 
(kN) 

Axial stiffness 
(kN/cm) 

Beams Columns 

 3 520 1030   
3-story 2 872 1651 W14x48 W12x96 

 1 1081 1905   
 6 391 799  
 5 712 1419  

6-story 4 961 1881 W14x48 
W14x132 

 3 1161 2238  
 2 1299 2482  
 1 1699 2501  

W14x211 

(a) 3-story (b) 6-story (c) 10-story (d) 14-story 

Figure 3.4 Frame elevations of 3-, 6-, 10-, 
and 14-story buildings. 
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Figure 3.5 Floor plans of 10- and 
14-story BRBF buildings. 
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(a) 3-story building (b) 6-story building 
Figure 3.3 Floor plans of 3- and 6-story BRBF buildings. 
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Table 3.2 Member properties for the 10-story building. 
Buckling-restrained braces 

Story Tensile 
yield force 

(kN) 

Axial 
stiffness 
(kN/cm) 

Beams Columns  
D-1, D-4 

Columns  
D-2, D-3 

10 198 521 IPE300 
9 273 717  B100x100x10 B125x125x10* 

8 322 847  
7 372 977  B125x125x12 B150x150x15 

6 397 1042  
5 422 1107 IPE360 B175x175x15 B225x225x15 

4 446 1172  
3 471 1238  B250x250x15 B250x250x20 

2 496 1303  
1 521 1368  B275x275x22 B300x300x25 

*B125x125x10 is a square tube with 125 x 125mm cross section and 10mm thickness. 

 

Table 3.3 Natural periods of building models in this study. 
Modal natural periods Tn (sec) Mode 3-story 6-story 10-story 14-story 

1 0.504 0.797 0.982 1.274 
2 0.197 0.296 0.338 0.423 
3 0.120 0.174 0.187 0.230 

In this study, compressive yield strengths of the braces are 110% of their 

tensile yield strengths (Sabelli et al., 2003) and the post-yield stiffness was taken as 

1/1000 of the elastic stiffness (Kumar et al., 2007). Section nonlinear properties of 

beams and columns were defined using bilinear moment-rotation relationships with 

3% post-yield stiffness ratio (Chintanapakdee and Chopra, 2003a). 

The analysis of a three-dimensional building was simplified to analysis of a 

single two-dimensional BRBF. Seismic masses for each BRBF were calculated by 

dividing the total mass per floor by the number of BRBFs in each principal direction, 

which are the floor level masses used in the analysis to account for horizontal inertia 

forces. Global P–∆ effect was considered by a gravity column carrying vertical loads 

based on the tributary area of the frame, i.e., total gravity load divided by number of 

BRBFs in each direction. The stiffness of this gravity column represents the 

equivalent stiffness for all non-frame columns in the building (Kiggins and Uang, 

2006). A Rayleigh damping model was used with 5% critical damping ratios for the 
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first two modes, according to common practice for code designed steel structures 

(Sabelli et al., 2003; and Kiggins and Uang, 2006). Nonlinear static and dynamic 

analyses were carried out using the nonlinear dynamic analysis computer program 

DRAIN-2DX (Prakash et al., 1993). The natural periods of all models are shown in 

Table 3.3. 

 

3.4 Ground Motions and Response Statistics 

Two sets of ground motions, referred as LA2/50 and LA10/50, corresponding 

to 2% and 10% probabilities of exceedence in a 50-year period are used in this study. 

These ground motions were compiled by the SAC Phase II Steel Project for a site in 

Los Angeles, California (Somerville et al., 1997). These acceleration time histories 

were derived from historical recordings or from simulations of physical fault rupture 

processes. Each set of ground motions consists of 20 records which are the fault-

normal and fault-parallel components of 10 recordings. The records in these suites 

include near-fault and far-fault records. The ground acceleration time histories of the 

LA10/50 and LA2/50 ensembles are shown in Figures 3.6 and 3.7, respectively. The 

pseudo-acceleration spectra for the two sets of ground motions are shown in Figure 

3.8 together with the median spectra (black solid lines). Tables 3.4 and 3.5 provide the 

information of LA10/50 and LA2/50 sets of records including: recording station, 

earthquake magnitude, distance, scaling factor, and peak ground acceleration (PGA). 

To determine the seismic demands of a building due to a set of ground 

motions, each record was scaled such that the spectral acceleration at the fundamental 

natural period of the building is equal to the median spectral acceleration for that 

period (Table 3.6). This method of scaling helps reduce the dispersion of results 

(Shome and Cornell, 1997).  The pseudo-acceleration spectra of scaled LA10/50 and 

LA2/50 sets of ground motions for analyzing 3-, 6-, 10-, and 14-story models are 

shown in Figures 3.9.  
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Table 3.4 Set of ground motions having 10% probability of being exceeded in 50
years (LA10/50). 
Record Earthquake/Recording station Earthquake

Magnitude 
Distance 

(km) 
Scaling 
Factor 

PGA
(cm/sec2)

LA01 1940 Imperial Valley, El Centro 6.9 10 2.01 452
LA02 1940 Imperial Valley, El Centro 6.9 10 2.01 662
LA03 1979 Imperial Valley, Array #05 6.5      4.1 1.01 386
LA04 1979 Imperial Valley, Array #05 6.5      4.1 1.01 478
LA05 1979 Imperial Valley, Array #06 6.5      1.2 0.84 295
LA06 1979 Imperial Valley, Array #06 6.5      1.2 0.84 230
LA07 1992 Landers, Barstow 7.3 36 3.20 412
LA08 1992 Landers, Barstow 7.3 36 3.20 417
LA09 1992 Landers, Yermo 7.3 25 2.17 509
LA10 1992 Landers, Yermo 7.3 25 2.17 353
LA11 1989 Loma Prieta, Gilroy 7.0 12 1.79 652
LA12 1989 Loma Prieta, Gilroy 7.0 12 1.79 950
LA13 1994 Northridge, Newhall 6.7      6.7 1.03 664
LA14 1994 Northridge, Newhall 6.7      6.7 1.03 644
LA15 1994 Northridge, Rinaldi RS 6.7      7.5 0.79 523
LA16 1994 Northridge, Rinaldi RS 6.7      7.5 0.79 568
LA17 1994 Northridge, Sylmar 6.7      6.4 0.99 558
LA18 1994 Northridge, Sylmar 6.7      6.4 0.99 801
LA19 1986 North Palm Springs  6.0      6.7 2.97 999
LA20 1986 North Palm Springs  6.0      6.7 2.97 967
 

 

Table 3.5 Set of ground motions having 2% probability of being exceeded in 50 years 
(LA2/50). 
Record Earthquake/Recording station Earthquake

magnitude 
Distance 

(km) 
Scaling 
factor 

PGA
(cm/sec2)

LA21 1995 Kobe 6.9 3.4 1.15 1258
LA22 1995 Kobe 6.9 3.4 1.15 903
LA23 1989 Loma Prieta 7.0 3.5 0.82 410
LA24 1989 Loma Prieta 7.0 3.5 0.82 464
LA25 1994 Northridge 6.7 7.5 1.29 854
LA26 1994 Northridge 6.7 7.5 1.29 925
LA27 1994 Northridge 6.7 6.4 1.61 909
LA28 1994 Northridge 6.7 6.4 1.61 1304
LA29 1974 Tabas 7.4 1.2 1.08 793
LA30 1974 Tabas 7.4 1.2 1.08 973
LA31 Elysian Park (simulated) 7.1       17.5 1.43 1271
LA32 Elysian Park (simulated) 7.1       17.5 1.43 1164
LA33 Elysian Park (simulated) 7.1       10.7 0.97 767
LA34 Elysian Park (simulated) 7.1       10.7 0.97 668
LA35 Elysian Park (simulated) 7.1       11.2 1.10 973
LA36 Elysian Park (simulated) 7.1       11.2 1.10 1079
LA37 Palos Verdes (simulated) 7.1 1.5 0.90 698
LA38 Palos Verdes (simulated) 7.1 1.5 0.90 761
LA39 Palos Verdes (simulated) 7.1 1.5 0.88 491
LA40 Palos Verdes (simulated) 7.1 1.5 0.88 613
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Figure 3.6 LA10/50 ensemble of 20 ground motions: ground accelerations. 
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Figure 3.7 LA2/50 ensemble of 20 ground motions: ground accelerations. 
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The response of each building to each set of the ground motions was 

determined by nonlinear response history analysis (NL-RHA), and a nonlinear static 

procedure (NSP), e.g., MPA, IMPA and MPP. The peak value of inter-story drift, Δ, 

determined by NL-RHA is denoted by RHANL−Δ  , and from NSP by NSPΔ . From these 

data for each ground motion, a response ratio was determined from the following 

equation: RHANLNSPNSP −ΔΔ=Δ /* . The median values, x̂ , defined as the geometric 

mean, of n  observed values ( ix ) of NSPΔ , RHANL−Δ  and *
NSPΔ ; and the dispersion 

measures δ  of *
NSPΔ  defined as the standard deviation of logarithm of the n  observed 

values were calculated: 

                                                    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑ =

n
x

x
n

i i1
ln

expˆ  (3.5) 

                                                    
( )

1
ˆlnln

1
2

−

−
= ∑ =

n
xxn

i iδ         (3.6) 

An advantage of using the geometric mean as the estimator of median is that 

the ratio of the median of NSPΔ  to the median of RHANL−Δ  is equal to the median of the 

ratio *
NSPΔ , i.e., the bias of NSP in estimating the median response is equal to the 

median of bias in estimating response to individual excitation. 
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Figure 3.8 Pseudo-acceleration spectra of (a) LA10/50, and (b) LA2/50 set of ground 

motions.  
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Figure 3.9 Pseudo-acceleration spectra of scaled LA10/50 and LA2/50 sets of ground 

motions for analyzing 3-, 6-, 10-, and 14-story buildings. 



53 

 

Table 3.6 Median spectral acceleration at the fundamental period A(T1) /g of each 
building. 

Median spectral acceleration A(T1) /g Set of records 3-story 6-story 10-story 14-story 
LA10/50 1.187 0.896 0.781 0.619 
LA2/50 1.775 1.783 1.390 1.205 

 

3.5 Evaluation of Selected Nonlinear Static Procedures 

The bias and accuracy of the MPA, IMPA and MPP procedures applied to 

BRBF buildings are evaluated by comparing the target roof displacements, peak floor 

(or roof) displacements and inter-story drifts compared to more accurate results from 

nonlinear response history analysis (NL-RHA). 

  

3.5.1 Target Roof Displacements 

Pushover curves, which show the relationship between the base shear force 

and the roof displacement, for the 3-, 6-, 10- and 14-story BRBF buildings due to the 

first ‘mode’ load pattern (MPA), variable lateral force distribution (IMPA) and 

seismic mass (or weight) distribution (MPP) are plotted in Figure 3.10. The pushover 

curves for these frames are approximately tri-linear in nature whose details were 

discussed by Chintanapakdee et al. (2009). The variable lateral force distribution of 

IMPA procedure in this study is taken as a three-phase load pattern, which changes at 

the first and second yielding points of the pushover curve. Figure 3.10 shows that the 

pushover curve of IMPA is similar to MPA. This results in nearly identical estimates 

of target roof displacements of both procedures. It implies that the changes of lateral 

load distribution of IMPA procedure are not significant whereas the g =m wι ι  force 

distribution of MPP leads to different results. Pushover curves of MPP are always 

higher and stiffer than both MPA’s and IMPA’s for all cases.  

On each pushover curve, diamond (MPA), star (IMPA) and circle (MPP) 

markers show the peak roof displacements of buildings determined by NL-RHA of 

the equivalent single-degree-of-freedom (SDF) system due to 20 records in each set of 

ground motions. The ductility factors of the first ‘mode’, defined here as the ratio 

between median of peak roof displacements determined by NL-RHA and yield roof 
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displacement estimated by first ‘mode’ load pattern, are about 1.94 to 6.02 for 

LA10/50 and 2.93 to 14.85 for LA2/50 ground motions, respectively. Table 3.7 shows 

the median ductility factors for these BRBF buildings calculated from NL-RHA 

estimate. The median ductility factor noticeably decreases when the building height 

increases.  
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Figure 3.10 First ‘mode’ pushover curves of 3-, 6-, 10-, and 14-story BRBF buildings 
due to (a) LA10/50 and (b) LA2/50 ground motions. 



55 

 

Table 3.7 Median ductility factors for building models calculated from NL-RHA 
estimate of peak roof displacement. 

Building model 
Set of records 3-story 6-story 10-story 14-story 
LA10/50 6.02 3.25 2.20 1.94 
LA2/50 14.85 7.29 3.52 2.93 
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Figure 3.11 Histograms of ratio ( )*
r SDF

u for 3-, 6-, 10-, and 14-story BRBF buildings 

due to (a) LA10/50 and (b) LA2/50 ground motions. 
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The accuracy of target maximum roof displacements predicted by 

displacement of the equivalent SDF systems: ( ) 1 1 1r rSDF
u DΓ φ=  for MPA and IMPA 

or ( ) maxr SDF
u DΓ= for MPP are examined by calculating the ratio between the SDF 

system’s estimate and roof displacement determined from NL-RHA: 

( ) ( ) ( ) RHANLrSDFrSDFr uuu −= /* . The ratio ( )SDFru*  being close to 1 indicates good 

accuracy. The histograms of these ratios are shown in Figure 3.11. The median and 

dispersion of the peak roof displacements are also noted. Figure 3.11 shows that the 

SDF systems of these nonlinear static procedures slightly over-estimate the maximum 

roof displacements but the bias of MPA and IMPA is no larger than 15% for set of 

LA10/50 ground motions and 19% for stronger ground motions LA2/50 while the bias 

of MPP is 14% and 28% for LA10/50 and LA2/50 records, respectively. The IMPA 

tends to predict the median and dispersion of target roof displacements better than 

MPA; however, the difference is not significant while the MPP tends to estimate the 

maximum roof displacements slightly more accurate than both MPA and IMPA for 

set of LA10/50 but less accurate for stronger records LA2/50.  

  

3.5.2 Peak Floor/Roof Displacements 

The responses of the BRBF buildings studied to the two sets of ground 

motions were determined by MPA, IMPA, MPP nonlinear static procedures and by 

nonlinear response history analysis (NL-RHA). The MPA and IMPA were considered 

as many modes as to include participating mass at least 95% of the total mass. For the 

structures in this study, the contribution of the first two ‘modes’ for a 3-story building, 

three ‘modes’ for 6- and 10-story buildings, and four ‘modes’ for a 14-story building 

were considered to estimate the seismic demands. The combined values of floor 

displacements and story drifts were computed by using the SRSS modal combination 

rule. 

The peak floor/roof displacement demands from the four methods are 

compared in Figure 3.12; the results from modal pushover analysis (MPA) including 

only the fundamental ‘mode’ are also shown by the dashed line. These results lead to 

the following observations for the BRBF system. The contributions of higher ‘modes’ 
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of MPA and IMPA procedures to floor displacements are not significant. One ‘mode’ 

pushover analysis, MPA, and IMPA can estimate the peak floor displacements 

reasonably well with a tendency to slightly overestimate the floor/roof displacement 

compared to NL-RHA while the MPP tends to significantly overestimate peak floor 

displacements of lower stories (Figure 3.12).  
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Figure 3.12 Median floor displacements of 3-, 6-, 10- and 14-story BRBF buildings 

determined by one ‘mode’ pushover analysis, MPA, IMPA, MPP and NL-RHA due to 

LA10/50 (first row), and LA2/50 (second row) ground motions. 

Figure 3.13 shows the median floor displacement ratio, RHANLNSPNSP uuu −= /* , 

due to the two sets of ground motions. It can be seen that the MPA procedure can 

accurately estimate floor displacements of the 3-, 6-, 10-, and 14-story BRBF 

buildings; the bias is generally less than 20% and 30% for LA10/50 and LA2/50 

ground motions, respectively. The IMPA tends to overlap the MPA with slight 

difference whereas the MPP tends to much overestimate peak floor displacements of 
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lower stories with increasing bias when the building height increases. The bias of 

MPP is very large for BRBF buildings taller than 6 stories considered in this study.  
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Figure 3.13 Floor displacement ratio of 3-, 6-, 10- and 14-story BRBF buildings due 

to LA10/50 (first row) and LA2/50 (second row) ground motions. 

 

3.5.3 Story Drift Demands 

Unlike the floor/roof displacements, the contributions of higher ‘modes’ in 

estimating the story drifts of MPA and IMPA procedures are more significant, 

especially in upper stories of tall BRBF buildings. Figure 3.14 shows that the story 

drift demands of 10-, and 14-story BRBF buildings predicted by MPA are able to 

follow the NL-RHA results whereas the first ‘mode’ alone is inadequate. With three 

or four ‘modes’ included, the story drifts estimated by MPA are generally similar to 

the results from nonlinear RHA. However, the MPA story drift results including two 
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‘modes’ for 3-story and three ‘modes’ for 6-story BRBF buildings are close to the one 

‘mode’ results indicating that the contributions of higher ‘modes’ are not significant 

for these buildings. Both one ‘mode’ pushover analysis and MPA can estimate the 

response of structures reasonably well, although their results differ from the NL-RHA 

results at some stories. Similar to investigations of peak floor/roof displacements, 

IMPA estimates tend to overlap the MPA estimates in estimating story drift demands. 

The MPP excessively overestimates story drifts in the lower stories but 

underestimates the story drifts in the upper stories in these cases. Moreover, the story 

drifts predicted by the MPP procedure seem to be uniform in the upper stories, 

especially for 10- and 14-story BRBF buildings.  
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Figure 3.14 Median story drifts of 3-, 6-, 10- and 14-story BRBF buildings 

determined by one ‘mode’ pushover analysis, MPA, IMPA, MPP and NL-RHA due to 

LA10/50 (first row), and LA2/50 (second row) ground motions. 
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Figure 3.15 shows the median story drift ratio, RHANLNSPNSP −ΔΔ=Δ /* , due to 

the two sets of ground motions. The bias of MPA, IMPA and MPP nonlinear static 

procedures in estimating seismic demands tends to increase for stronger excitations 

and the variation of the NSP bias in estimating seismic demands along building height 

primarily depends on the building height rather than the intensity of ground motions.  

The bias of MPA and IMPA in estimating peak story drifts at an individual story can 

be as large as 50% and 60% at certain locations for LA10/50 and LA2/50 ground 

motions, respectively. Meanwhile, the bias of MPP in peak story drifts estimation at 

an individual story can be as large as 80% for two sets of ground motions; however, it 

overestimates story drifts by as much as 200% for the lower stories of 14-story 

building.  This is because the MPP significantly overestimates floor displacements for 

lower stories due to the total seismic mass (or weight) load pattern (Figure 3.12).  
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Figure 3.15 Story drift ratio of 3-, 6-, 10- and 14-story BRBF buildings due to 

LA10/50 (first row) and LA2/50 (second row) ground motions. 
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Figure 3.16 Maximum story drifts over all stories determine by NSP, NSPΔ , versus 

‘exact’ values NL RHA−Δ , for 3-, 6-, 10- and 14-story BRBF buildings due to LA10/50 

(first row), and LA2/50 (second row) ground motions. 

To verify a building design or to evaluate an existing structure, building codes 

usually require the maximum story drift in any stories to be less than its allowable 

value. Figure 3.16 plots the maximum story drifts over all stories determined by NL-

RHA and NSP as abscissa and ordinate, respectively, with diamond markers for 

MPA, star markers for IMPA and circle markers for MPP. The MPA and IMPA data 

points are clustered along the diagonal line indicating that the maximum story drifts 

over all stories estimated by MPA and IMPA are close to the value from NL-RHA. 

The median and dispersion of story-drift ratio *
NSPΔ  considering maximum story drift 

over all stories are also shown in Table 3.8. The median story-drift ratios of MPA, 
*
MPAΔ , range from 0.93 to 1.14 while the median story-drift ratios of IMPA, *

IMPAΔ , 

from 0.92 to 1.16 indicating that both MPA and IMPA procedures predict maximum 

story drifts over all stories with a bias less than 14%  and 16% for these BRBF 

buildings, respectively. On the contrary, the bias in estimating the maximum story 

drifts over all stories of MPP can be considerable in the range from 1.22 to 2.26. This 

implies that MPP significantly overestimates the maximum story drift over all stories.  

3-story 6-story 10-story 14-story 
LA 10/50 

LA 2/50 
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Table 3.8 Median and dispersion of maximum story drift ratios over all stories 
determine by MPA, IMPA and MPP, NSPΔ , versus ‘exact’ values, NL RHA−Δ . 
Set of 

records 3-story 6-story 10-story 14-story 

LA10/50 

*
MPAΔ =0.982;δ =0.119 
*
IMPAΔ =0.983;δ =0.117 
*
MPPΔ =1.353;δ =0.163 

*
MPAΔ =0.949;δ =0.205
*
IMPAΔ =0.952;δ =0.206
*
MPPΔ =1.244;δ =0.209

*
MPAΔ =1.058;δ =0.214 
*
IMPAΔ =1.101;δ =0.220 
*
MPPΔ =2.154;δ =0.284 

*
MPAΔ =0.986;δ =0.248
*
IMPAΔ =0.987;δ =0.249
*
MPPΔ =1.831;δ =0.317

LA2/50 

*
MPAΔ =0.926;δ =0.132 
*
IMPAΔ =0.922;δ =0.128 
*
MPPΔ =1.225;δ =0.149 

*
MPAΔ =1.013;δ =0.203
*
IMPAΔ =1.015;δ =0.202
*
MPPΔ =1.422;δ =0.212

*
MPAΔ =1.143;δ =0.226 
*
IMPAΔ =1.161;δ =0.227 
*
MPPΔ =1.839;δ =0.364 

*
MPAΔ =1.046;δ =0.298
*
IMPAΔ =1.048;δ =0.297
*
MPPΔ =2.256;δ =0.287

 

The dispersion δ  of story-drift ratios of MPA and IMPA range from 0.117 for 

3-story building to 0.298 for a 14-story building with a tendency to increase as the 

building becomes taller or ground motions become stronger. Meantime, the dispersion 

δ  of story-drift ratios of MPP range from 0.149 to 0.364 for these BRBF buildings. 

This implies that the accuracy of NSPs in predicting the response due to an individual 

ground motion deteriorates when applied to taller BRBF buildings or subjected to 

stronger ground motions. Among these cases, the dispersion is still small, less than 

0.298 for MPA and IMPA and 0.364 for MPP, when NSPs are used to estimate the 

maximum story drift over all stories. Moreover, the dispersion of story-drift ratios of 

MPP is always larger than both MPA’s and IMPA’s.  Thus, MPA and IMPA can be a 

useful analysis tool to estimate the peak story drift over all stories in evaluating 

existing buildings or design of new buildings using BRBFs. Both of these procedures 

provide practically the same results but MPA is simpler and more practical than 

IMPA because it involves an invariant load pattern. On the contrary, the MPP method 

is simple with no need to conduct a modal analysis to capture the effects of higher 

‘modes’ but it may be inaccurate in estimating seismic demands for BRBF tall 

buildings due to strong ground motions. 

 



CHAPTER IV 
 

STRUCTURAL SYSTEM, GROUND MOTIONS AND  
RESPONSE STATISTICS 

 
 
4.1 Introduction 

Bridges are extremely important components in modern transportation 

networks. Bridges play the role of critical lifeline facilities due to their significance in 

the economic development of a nation and their importance in supporting the daily 

functions. Unfortunately, such essential systems often become the victims of 

earthquakes. Society suffers a tremendous cost and inconvenience due to the collapse 

of a bridge. Even non-collapsed, the temporary lost of post-earthquake serviceability 

of important bridges may cause very costly disruption to vehicle traffic on major 

transportation arteries and is simply unacceptable (Zhang, 1999; and Hashimoto et al., 

2005). Additionally, the direct economic loss, attributed to replacement or repair cost 

of the damaged bridges, forms only a minor portion of the total losses. The major 

cost, which is often difficult to estimate accurately, is associated with the disruption 

of vehicular movement immediately following the earthquakes and during the long 

reconstruction phase (Rose and Lim, 2002). In order to ensure the functionality and 

operationally of bridges, it is therefore essential to design them to safely withstand the 

devastating forces of earthquake ground motions. 

With the rapid development of highway systems, steel bridges have become a 

viable option of highway viaducts, urban expressways, valley- or river-crossings and 

widely used in Japan because of the simplicity of fabrication and construction, speed 

of erection as well as low cost for maintenance. They are considered specially 

advantageous in regions of high seismic activity (Usami and Kumar, 1998; and Hsu 

and Chang, 2001). Recent strong earthquakes have caused collapse or severe damage 

to a considerable number of steel bridges. For instance, a steel girder bridge named 

South Fork Eel was damaged due to the 1992 Petrolia Earthquake, as reported by Itani 

et al. (2004). Local failures or total collapses of bridges represent not only immediate 

concern for loss of life and repair costs, but also financial restrictions and major 
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economic impact due to the temporary suspension of traffic serviceability (Menoni, 

2001; Chang and Nojima, 2001; and Rose and Lim, 2002). 

Japan is one of the most seismically prone countries in the world and has often 

suffered significant damage from large earthquakes. More than 3000 bridges have 

sustained seismic damage since the 1923 Kanto earthquake (Unjoh, 1999). The 1995 

Hyogoken Nanbu earthquake supposed an inflexion point in seismic design of bridges 

in Japan. Seismic design of bridge structures has greatly evolved in the last decade in 

response to the serious damage to bridges observed in the 1995 Hyogoken-Nanbu 

earthquake. The simply-supported bridges are vulnerable by the failure due to deck 

unseating (Dicleli and Bruneau, 1995; and Rashidi and Saadeghvaziri, 1997). As a 

positive fact, the Hyogoken-Nanbu earthquake provided a stimulus to investigate the 

seismic response of highway bridges. Immediately after the earthquake the Japanese 

Specifications for Highway Bridges were revised in 1996 (JRA, 1996). To improve 

the seismic performance of bridges due to deck unseating in the particular case of 

simply-supported superstructures, a possible solution consists in making girders 

continuous over the piers by linking the webs together with tie-plates (Keady et al., 

1999). 

It is widely recognized that bridges are complex structures which consist of 

many structural members. Therefore, an accurate prediction of the bridge dynamic 

responses requires the adoption of three-dimensional models instead of two-

dimensional analytical approaches. These three-dimensional models can provide 

accurate estimates of seismic nonlinear behaviors of bridges due to both material and 

geometrical nonlinearities of the structures. 

One of irregularities of bridges is found at the weak connection between deck 

superstructure and substructure members. This link is considerably fragile due to the 

vulnerability of bearing supports. Several examples of bearing failures can be found 

in the 1995 Hyogoken Nanbu earthquake (Wilson, 2003). Figure 4.1 shows several 

examples of various types of structural damages to steel bearings of bridges occurred 

in Hokkaido during the 2003 Tokachi Oki Earthquake (Julian, 2005). 
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    (a) Concrete pedestal failure             (b) Residual bearing displacement 
 

  
(c) Dislodgement of roller bearing             (d) Destruction of bearing assembly 

Figure 4.1 Seismic damages to steel bearing supports (Julian, 2005). 

Based on the above considerations, it should be clear how the necessity of 

accurately assessing the state of existing bridges or estimating seismic demands in 

design new bridges has become a deeply felt issue. For this reason, the study 

presented proposes an extension of MPA procedure in estimating seismic demands for 

bridges. This chapter presents a structural system which is analyzed to assess the bias 

and accuracy of the proposed extension of MPA procedure. Different bearing supports 

of the bridge are also considered in this study. 

 

4.2 Structural System 

In recent decades, steel bridges have become widely used to support highway 

viaducts in urban areas, valley- or river-crossings, and considered specially 

advantageous in regions of high seismic activity. Twin I-girders steel bridges have 

been considered as one of the most popular bridge types for short and medium span 

bridges in Japan with span length of more than 50 m. This type of steel bridge has 



66 

 

advantageous in relation to the simplicity of its fabrication, design and low cost for 

maintenance, speed of erection as well as construction. However, these I-girders have 

lower structural damping and less torsional stiffness than conventional plate girder 

bridges and may cause problems related to vibration due to earthquakes, especially 

when the span length of the bridges becomes longer. For these reasons, an actual twin 

I-girder bridge is selected and analyzed due to a set of 20 strong ground motions to 

assess the bias, accuracy, efficiency, and also the practicality of the proposed 

extension of MPA procedure in this study. 

 

4.2.1 Description of the Bridge 

The bridge selected in this study is an existing continuous steel twin I-girder 

bridge with PC slab that has structural characteristics of typical highway viaducts in 

Japan, with bridge components designed in compliance with the Japanese Code (JRA, 

1996). The bridge considered is the Chidorinosawa river bridge which has four spans 

with two steel main girders and concrete slab (Tamura et al., 1998). The selected 

bridge is 194 m total length divided into four spans varying from 41 m to 53 m. The 

bridge superstructure consists of a concrete deck slab that rests on two I-shape steel 

girders. The two main I-girders are 2.9 m deep and spaced transversely 5.7 m apart. 

The girders are interconnected by end-span diaphragms as well as intermediate 

diaphragms spacing of 5.0 m to 6.0 m. The deck weight is supported by three piers 

whose height varies from 32 m to 34 m along the length.  The elevation view of this 

bridge is shown in Figure 4.2. The global coordinate system for the bridge is shown in 

the figure, in which the x-axis refers to the longitudinal direction of the bridge along 

the centerline of the road, the y-axis indicates the transverse horizontal direction, and 

the z-axis is vertical. 

 
Figure 4.2  Elevation view of Chidorinosawa river bridge. 
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Figure 4.3 End and intermediate cross sections of the bridge studied. 

The cross sections of the two main girders are uniform throughout the bridge’s 

spans. These main girders are interconnected with each other by a reinforced concrete 

bridge deck, which acts compositely with the steel main girders, and transverse 

members (e.g., the cross beams). The cross beams are connected to the webs of main 

girders through transverse stiffeners of 250mm wide and 25mm thick. The cross 

section the basic geometric properties of the studied bridge are presented in Figure 4.3 

and Table 4.1, respectively.  

Seismic forces at the deck are transmitted from the cross beams to arrive at the 

top of the bearings, to reach the substructure and finally the ground. In this study the 

effect of soil-structure interaction is not taken into account, and the base of piers are 

considered as fixed supports on the ground. 

Table 4.1 Basic geometric properties of cross section of the studied bridge. 
Deck width x thickness (m)  11.4x0.32
Dimensions of the main girders (mm) Upper flange 500x30

Web 2900x24
Lower flange 800x50

Dimensions of the cross beam (mm) Web 900x16
Flange 300x25

Dimensions of the end cross beam (mm) Web 1900x16
Flange 300x25
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4.2.2 Bearing Supports 

To consider the influence of bearing supports to the bias and accuracy of the 

proposed extension of MPA procedure in estimating seismic responses of the bridges. 

Two cases of bearing supports are considered in this study: (1) the superstructure is 

supported by steel bearings (SB), and (2) the deck is seismically isolated by Lead 

Rubber Bearings (LRBs). 

 

4.2.2.1 Steel Bearing Supports 

Steel bearings have been extensively installed in bridges to transfer vertical 

and horizontal forces from the superstructure to the substructure. An adequate 

combination of fixed and roller steel bearings is considered optimal to support the 

superstructure weight, providing accommodation for thermal expansion, contraction 

and rotation to the deck superstructure. However, recent strong earthquakes, including 

the Hyogoken-Nanbu earthquake, have clearly demonstrated the poor performance of 

steel bearings under seismic loads and the disastrous consequences that a bearing 

failure can have on the overall earthquake performance of a bridge (Tanimura et al., 

2002). Therefore, it emphasized that the bearing support is one of the essential 

structural members of a bridge. 

In the bridge equipped with steel bearings (SB) in this study, steel fixed 

bearings are installed on all piers (P1, P2 and P3 as shown in Figure 4.2) and steel 

roller bearings are applied at both end of the bridge to allow for movement in the 

longitudinal direction while restrained by stoppers in the transverse direction. 

A typical steel fixed bearing consists of a metal casing with each part welded 

to the top and bottom steel plates. The top steel plate of the bearing is connected to the 

deck girder by connection bolts and the bottom steel plate is connected to the pier by 

anchor bolts. Steel roller bearings have similar details of fixed bearings, except the 

casings, which have a special configuration to allow for some movement of the 

supported deck in longitudinal direction. Roller supports are free to translate along the 

surface upon which the roller rests, allowing the bridge structure to move under 

seismic and non-seismic loadings. Therefore, both steel bearings are considered 

transversally fixed in the 3D model. 
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4.2.2.2 Lead-Rubber Bearing Isolation System 

Steel bearings have performed poorly and have been damaged by relatively 

minor seismic shaking (DesRoches et al., 2004). Therefore, many innovative systems 

are being developed for the purpose of seismic isolation of bridges. One of the most 

widely adopted isolation system is the Lead Rubber Bearing (LRB) shown in Figure 

4.4. Lead-Rubber Bearings (LRB) have found wide application in bridge structures to 

replace the vulnerable steel bearing supports (Pan et al., 2005). LRB bearings are steel 

reinforced elastomeric bearings in which a lead plug is inserted to provide hysteretic 

damping as well as rigidity against minor earthquakes, wind and service loads. The 

lead plug yields at relatively low shearing stress resulting in significant dissipation of 

seismic energy and reduction of earthquake response (Turkington et al., 1989). It has 

been demonstrated that the bridges equipped with LRB support perform effectively in 

reducing the seismic responses during earthquake (Bessason and Haflidason, 2004).  

 

4.2.2.2.1 Components of LRB bearings 

Under normal conditions, LRB bearings behave like regular bearings. The 

isolation device, represented in Figure 4.5, is characterized by a high initial stiffness 

provided by the lead plug inserted in the bearing to avoid undesirable displacements 

under service requirements, wind action and minor earthquakes. However, the shear 

stiffness decreases favorably for moderate levels of deformation, allowing the isolator 

to uncouple the bridge from the damaging action of earthquake ground motions. 

Therefore, the seismic damage of the structure is minimized through the reduction of 

the seismic inertial loads. 

  

Figure 4.4 LRB isolation devices installed in bridge structures. 
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Figure 4.5 Components of LRB bearing supports. 

 

 

Figure 4.6 Response spectrum of bridge. 

Bridges are ideal candidates for the adoption of base isolation technology due 

to the convenience of installation, inspection and maintenance of isolation devices. 

The seismic isolation bearing protects the bridge by increasing the fundamental 

natural period and also by dissipation of seismic energy through the additional 

hysteretic damping due to yielding of the lead core (Robinson, 1982). Thus the natural 

vibration period of the bridge is moved away from the high-energy seismic ground 

period and seismic energy transfer to the structure is minimized (Figure 4.6). 

Therefore usage of seismic isolation on soft or weak soil conditions, where long 

period ground motion is dominant, reduces the benefits offered by the technology 

(Yoshikawa et al., 2000). Another consideration is related to the large deformations 
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that may occur in the seismic base-isolation bearings during an intense ground 

motion, which causes large displacements of the deck (Roberts, 2005).  

 

4.2.2.2.2 LRB Analytical Model 

LRB bearings can be modeled in a variety of ways, ranging from very simple 

models to rather sophisticated finite element models (Hwang et al., 1996; Salomon et 

al., 1999). Nevertheless, the most widely used analytical model is the bilinear 

idealization due to its simplicity and accuracy to estimate the force-displacement 

relationship of the isolation systems (Ali et al., 1995). Figure 4.7a presents the 

bilinear force-displacement hysteresis loop of LRB bearing supports. It has been 

demonstrated that the bilinear analytical model can provide a good estimate of LRB 

behaviour under low-to-moderate earthquake ground motions. However, this 

analytical model is not able to capture the hardening behaviour at large strain ranges 

of LRB system due to strong ground motions (Julian et al., 2007). 

Sato et al. (2002) showed that the LRB supports display significant hardening 

behaviour beyond certain high strain levels. This hardening behaviour is caused by 

geometric effects and rubber material properties. Due to hardening effect on the LRB 

supports, the seismic response of the bridges are affected when subjected to strong 

earthquake ground motions. For this reason, a trilinear analytical model shown in 

Figure 4.7b was introduced to represent the strain hardening effect at high strain 

levels, and thus to accurately reproduce the hysteresis loop obtained from 

experimental tests on LRB bearings. This trilinear analytical model can accurately 

capture the large strain hardening behaviour with relatively easy implementation 

(Morishita et al., 2002). 

For the isolated case considered in this study, the superstructure is supported 

on three piers (P1, P2 and P3) by LRB bearings. The structural properties of LRB 

bearing supports used in this study is L1 representing the small bearing (Table 4.2). 

The characteristics of L1 LRB can be found in Julian et al. (2007). The orientation of 

the LRBs is such that they allow for longitudinal and transverse movements. The 

LRBs are represented by the trilinear force-displacement hysteresis loop shown in 

Figure 4.7b.  
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Table 4.2 Structural properties of LRB bearings considering hardening effect. 
Bearing 

type 
Pier 

location 
K1 

(MN/m) 
K2 

(MN/m) 
K3 

(MN/m) 
F1 

(MN) 
F2 

(MN) 

L1 P1, P2, P3 24.50 2.45 7.35 0.245 0.833 

 

 
Figure 4.7 Bilinear and trilinear analytical models of LRB bearing supports. 

 

4.2.3 Finite Element Model of the Bridge 

A bridge can be modeled in a variety of ways, ranging from very simple 

models to rather sophisticated finite element models (Ali and Abdel-Ghaffar, 1995; 

Chen, 1996; Jangid, 2004; Nasim et al., 2008; and Ngo-Tran et al., 2008). The 

dynamic analysis of complex structural systems, like bridges, for earthquake loads 

often entails simplifying assumptions. Regardless of the type of models adopted, 

reasonable results can be obtained if all important behavioral aspects of the bridge are 

properly accounted for. For instance, two-dimensional (2D) plane-frame structural 

models have been often used in the recent past to study the vibration and dynamic 

responses of bridges. These 2D models are still widely required for the preliminary 

seismic assessment of bridges when only approximate solutions are needed or when 

detailed models are not warranted. Despite its simplicity and ease of application, these 
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simple models may not be able to capture the dynamic responses of the bridges and 

their seismic behaviors may not represent the actual bridges.  

For this reason, in making the refinement, three-dimensional (3D) analytical 

models have become necessary in design of complex structures, since 2D models can 

not capture important seismic response characteristics. For instance, a 3D model 

allows for consideration of the torsional vibration of the bridge deck or coupling 

between lateral and torsional responses of actual bridges.  

The three-dimensional finite element model of the selected bridge is created 

by using appropriate elements. The piers are modeled as a series of frame elements. 

ATC-32 (1996a-b) suggested that a minimum of three elements per bent should be 

used. However, the piers are modeled by using twenty elements to represent long 

piers in this study. The three-dimensional frames is used to simulate the seismic 

behavior of bridge structures. In the analytical model, the material nonlinear behavior 

is modeled by plastic hinges using moment-rotation ( M θ− ) relation 

(Chintanapakdee and Chopra, 2003a; Paraskeva et al., 2006; and Banerjee and 

Shinozuka, 2007). Plastic hinges and shear failures are considered for all girder, pier 

and crossbeam elements. The three-dimensional P-M-M interaction yield surface 

proposed by El-Tawil and Deierlein (2001a-b) was used. Cross-section properties of 

girders and piers were defined using bilinear moment-rotation relationships for each 

P-M plane with 1% post-yield stiffness ratio. A finite element mesh of steel main 

girders and crossbeam elements are modeled at the bottom surface of the deck slabs. 

The mass of the superstructure is divided and lumped on nodes of the steel main 

girder elements, and the mass of the substructure is similarly divided and lumped on 

nodes of elements (Murakoshi et al., 2006; Fumoto et al., 2006; and Julian et al., 

2007). Rayleigh damping was used with 2% damping ratios for the first two modes, 

according to common practice for code designed steel structures (Julian et al., 2007). 

P–∆ effect was also considered for this study. Nonlinear static and dynamic analyses 

were carried out using computer program PERFORM 3D (CSi, 2006) and MATLAB 

(2007) was used for pre and post processing. The finite element model of the studied 

bridge is shown in Figure 4.8. 
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Figure 4.8  Finite element model of the studied bridge. 

 

4.3 Ground motions 

The seismic excitation used in this study is defined by a set of 20 LMSR 

(Large-Magnitude-Small-distance) records. Table 4.3 provides the information of the 

LMSR set of records including: name of record, recording station, earthquake 

magnitude, distance, peak ground acceleration (PGA), peak ground velocity (PGV) 

and peak ground displacement (PGD). These ground motions were obtained from 

California earthquakes of magnitude ranging from 6.6 to 6.9 recorded at distances of 

13 to 30 km on firm soil (NEHRP site class D) and used by Chintanapakdee and 

Chopra (2003b). The ground acceleration, velocity and displacement time histories of 

the LMSR ensemble are shown in Figures 4.9, 4.10 and 4.11. Note that although this 

set of 20 records is binned for the given earthquake scenario, there is large variability 

from record to record. The pseudo-acceleration, pseudo-velocity and deformation 

spectra for the set of ground motions with damping ratio 2% are shown in Figures 

4.12, 4.13 and 4.14 together with the median spectra (black solid lines). These ground 

motions are applied in both horizontal directions of the bridge, namely transverse and 

longitudinal directions. 
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Table 4.3 List of ground motions in LMSR ensemble. 

No. Earthquake Name Record Location Magnitude 
*R  

(km) 
gou  

(cm/s2) 
gou  

(cm/s) 
gou

(cm)
1 1989 Loma Prieta LP89agw  Agnews State Hospital 6.9 28.2 169 25.9 12.6
2 1989 Loma Prieta  LP89cap  Capitola 6.9 14.5 435 29.2 5.5
3 1989 Loma Prieta LP89g03  Gilroy Array #3 6.9 14.4 360 44.7 19.3
4 1989 Loma Prieta  LP89g04  Gilroy Array #4  6.9 16.1 208 37.9 10.1
5 1989 Loma Prieta  LP89gmr Gilroy Array #7  6.9 24.2 221 16.4 2.5
6 1989 Loma Prieta  LP89hch  Hollister City Hall  6.9 28.2 242 38.5 17.7
7 1989 Loma Prieta  LP89hda  Hollister Diff. Array  6.9 25.8 274 35.6 13.0
8 1989 Loma Prieta  LP89svl  Sunnyvale - Colton Ave.  6.9 28.8 203 37.3 19.1
9 1994 Northridge  NR94cnp  Canoga Park - Topanga Canyon 6.7 15.8 412 60.7 20.3
10 1994 Northridge  NR94far LA - N Faring Rd  6.7 23.9 268 15.8 3.3
11 1994 Northridge  NR94fle  LA - Fletcher Dr  6.7 29.5 236 26.2 3.6
12 1994 Northridge  NR94glp  Glendale - Las Palmas 6.7 25.4 202 7.40 1.8
13 1994 Northridge NR94hol  LA - Hollywood Stor FF 6.7 25.5 227 18.2 4.8
14 1994 Northridge  NR94nya  La Crescenta - New York  6.7 22.3 156 11.3 3.0
15 1994 Northridge  NR94stc Northridge-Saticoy St  6.7 13.3 361 28.9 8.4
16 1971 San Fernando SF71pel  LA - Hollywood Stor Lot  6.6 21.2 171 14.8 6.3
17 1987 Superstition Hills SH87bra  Brawley  6.7 18.2 153 13.9 5.3
18 1987 Superstition Hills  SH87icc  El Centro Imp. Co. Center  6.7 13.9 351 46.3 17.6
19 1987 Superstition Hills  SH87pls  Plaster City  6.7 21.0 182 20.6 5.4
20 1987 Superstition Hills SH87wsm Westmorland Fire Station 6.7 13.3 169 23.5 13.1
*The closest distance to fault rupture.  
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Figure 4.9 Ground accelerations of LMSR ensemble of 20 ground motions. 
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Figure 4.10 Ground velocities of LMSR ensemble of 20 ground motions.  
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Figure 4.11 Ground displacements of LMSR ensemble of 20 ground motions. 
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Figure 4.12 Pseudo-acceleration spectra of the set of LMSR, 2%ς = . 

0

50

100

150

200

250

0 1 2 3 4
Period (sec)

Ps
eu

do
-v

el
oc

ity
 (c

m
/s)

 
Figure 4.13 Pseudo-velocity spectra of the set of LMSR, 2%ς = . 
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Figure 4.14 Deformation spectra of the set of LMSR, 2%ς = . 
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4.4 Response Statistics 

The dynamic responses of the bridge studied to each of the 20 ground motions 

are determined by the two procedures described in the previous chapter: nonlinear 

response history analysis (NL-RHA) (Section 2.2.1), and the proposed extension of 

MPA procedure (Section 2.3).  

The “exact” peak value of structural response, r , determined by NL-RHA is 

denoted by NL RHAr − , and the approximate value from MPA by MPAr . From these data 

for each ground motion, a response ratio is calculated from the following equation: 
* /MPA MPA NL RHAr r r −= . An approximate method is biased if the median of the response 

ratio differs from one, underestimates the median response if the ratio is less than one, 

and provides an overestimate if the ratio is larger than one. 

The median and the dispersion of *
MPAr  were calculated by Equations (3.5) and 

(3.6) as described in Section 3.4. 

 

 
 



CHAPTER V 
 

SEISMIC RESPONSES OF BRIDGE USING THE PROPOSED 
EXTENSION OF MODAL PUSHOVER ANALYSIS PROCEDURE  
 
 
5.1 Introduction 

The modal pushover analysis (MPA) procedure proposed and developed 

earlier for estimating seismic demands for buildings (Chopra and Goel, 2002) is 

adapted for three-dimensional bridges (Section 2.3). The proposed extension of MPA 

procedure is implemented in estimating seismic demands of the studied bridge due to 

the set of twenty LMSR ground motions. The bridge selected in this study is an 

existing continuous steel twin I-girder bridge with PC slab that has structural 

characteristics of typical highway viaducts in Japan, described in Section 4.2. The 

bias and dispersion of this procedure are evaluated by comparing its estimates of 

seismic demands to the results from nonlinear response history analysis (NL-RHA) 

which are considered as the ‘exact’ results. The estimates by the conventional 

pushover analysis are also compared. The response quantities considered in this study 

are the peak deck displacements, pier (column) drifts, hinge rotations and internal 

forces which are related to structural damages and serviceability of bridges.  

 

5.2 Bridge Vibration Characteristics 

The usual first step in performing a dynamic analysis is determining the 

natural frequencies and mode shapes of the structure. These results characterize the 

basic dynamic behaviors of the structure. The number of natural frequencies and 

associated mode shapes is equal to the number of dynamic degrees-of-freedom of 

structure. However, among many natural frequencies and associated mode shapes, 

only some of the first few modes are interesting because of their significant influences 

in dynamic response of the structure. Presented in this section are vibration properties: 

periods, mode shapes, and effective modal masses of the selected bridge. These 

vibration properties are used to identify the modes that contribute significant to the 

total response.  
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The first six natural vibration periods and mode shapes of the selected bridge 

with two types of bearing supports: (a) Steel bearings (SB), and (b) Lead Rubber 

Bearing (LRB) supports are presented in Figures 5.1 and 5.2, respectively. Also 

included for each mode are the effective modal mass, as a fraction of the total mass, in 

the longitudinal, transverse and vertical directions (x-, y-, and z-directions). The 

bridge natural modes may be categorized by their primary motion: longitudinal, 

transverse, vertical or torsional, or coupled motion such as longitudinal-vertical or 

transverse-torsional.  Category of a mode shape may be identified from deformed 

shape of the bridge and effective modal masses. For example, a longitudinal, 

transverse, and vertical mode shape displays deflection and nonzero value of the 

effective modal mass in the longitudinal (Figure 5.1a), transverse (Figure 5.1b) and 

vertical (Figure 5.1e) direction, respectively. A torsional mode displays rotation about 

the x-axis and nonzero value of the effective modal mass in the transverse direction. 

A coupled longitudinal-vertical mode displays motions and nonzero values of the 

effective modal mass in the longitudinal and vertical direction; and a coupled 

transverse-torsional mode displays transverse and rotational motions about the x-axis 

but nonzero value of the effective modal mass in the transverse direction. The 

fundamental modes of the studied bridge display little coupling between longitudinal 

and vertical motions, transverse and torsional motions (Figures 5.1a and b; Figures 

5.2a and b). The coupling of modes are more significant for the higher modes in this 

study (Appendices B and C). It is noted that, in some cases, it is not easy to classify 

the mode shapes because of the coupling of modes. 

Tables 5.1 and 5.2 show the values of the effective modal mass as proportion 

of total mass, and the natural periods of the first thirty modes of the bridge studied 

with two types of bearing supports: (a) Steel bearings (SB), and (b) Lead Rubber 

Bearing (LRB) supports; respectively. The types of vibration modes of the studied 

bridges are also listed in these tables. Modes with effective modal masses >0.01 are 

highlighted with bold font. 
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(a) Mode 1 – The first longitudinal mode (L1): T1 = 1.750 s,  *

1 0.913,0.000,0.000M =  
 

 
(b) Mode 2 – The first transverse mode (H1): T2 = 1.656 s,  *

2 0.000,0.711,0.000M =  
 

 
(c) Mode 3 – The second transverse mode (H2): T3 = 1.025 s,  *

1 0.000,0.0006,0.000M =  

Figure 5.1 Mode shapes, vibration periods, and effective modal masses as a fraction 

of total mass of the studied bridge supported by steel bearings. 

(a) Three-dimensional view (b) Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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(d) Mode 4 – The third transverse mode (H3): T4 = 0.619 s,  *

4 0.000,0.0733,0.000M =  

 

 
(e) Mode 5 – The first vertical mode (V1): T5 = 0.526 s,  *

5 0.0021,0.0000,0.0054M =  

 

 
(f) Mode 6 – The second vertical mode (V2): T6 = 0.455 s,  *

6 0.0003,0.0000,0.0014M =  

Figure 5.1 (Continued) Mode shapes, vibration periods, and effective modal masses as 

a fraction of total mass of the studied bridge supported by steel bearings. 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 
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Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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(a) Mode 1 – The first longitudinal mode (L1): T1 = 3.019 s,  *

1 0.8977,0.000,0.000M =  

 

 
(b) Mode 2 – The first transverse mode (H1): T2 = 1.809 s,  *

2 0.000,0.6998,0.000M =  
 

 
(c) Mode 3 – The second transverse mode (H2): T3 = 1.062 s,  *

3 0.000,0.0003,0.000M =  

Figure 5.2 Mode shapes, vibration periods, and effective modal masses as a fraction 

of total mass of the studied bridge with LRB supports. 

Three-dimensional view Plan view 
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Three-dimensional view Plan view 

Elevation view 
 

Side view 
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(d) Mode 4 – The first vertical mode (V1): T4 = 0.661 s,  *

4 0.000,0.000,0.0027M =  
 

 
(e) Mode 5 – The first torsional mode (T1): T5 = 0.640 s,  *

5 0.000,0.0022,0.000M =  
 

 
(f) Mode 6 – The third transverse mode (H3): T6 = 0.624 s,  *

6 0.000,0.0724,0.000M =  

Figure 5.2 (Continued) Mode shapes, vibration periods, and effective modal masses as 

a fraction of total mass of the studied bridge with LRB supports. 
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Table 5.1 Dynamic characteristics of the bridge supported by steel bearings. 
Effective modal mass as proportion of total mass Mode 

No. 
Period 
(sec) 

Frequency 
(Hz) x-direction y-direction z-direction Cumulative 

x-direction 
Cumulative 
y-direction 

Cumulative 
z-direction 

Type* 

1 1.75020 0.57136 0.9132 0.0000 0.0000 0.9132 0.0000 0.0000 Longitudinal (L1) 
2 1.65560 0.60401 0.0000 0.7106 0.0000 0.9132 0.7106 0.0000 Transverse (H1) 
3 1.02460 0.97599 0.0000 0.0006 0.0000 0.9132 0.7113 0.0000 Transverse (H2) 
4 0.61949 1.61423 0.0000 0.0733 0.0000 0.9132 0.7846 0.0000 Transverse (H3) 
5 0.52634 1.89991 0.0021 0.0000 0.0054 0.9153 0.7846 0.0054 Vertical (V1) 
6 0.45473 2.19911 0.0003 0.0000 0.0014 0.9157 0.7846 0.0068 Vertical (V2) 
7 0.41634 2.40188 0.0000 0.0000 0.0000 0.9157 0.7846 0.0068 Transverse (H4) 
8 0.38541 2.59464 0.0025 0.0000 0.2311 0.9181 0.7846 0.2379 Vertical (V3) 
9 0.37378 2.67537 0.0000 0.0057 0.0000 0.9181 0.7903 0.2379 Torsional (T1) 
10 0.36741 2.72175 0.0000 0.0000 0.0000 0.9181 0.7903 0.2379 Torsional (T2) 
11 0.33022 3.02828 0.0020 0.0000 0.3390 0.9201 0.7903 0.5769 Vertical/Longitudinal (V4) 
12 0.31893 3.13548 0.0000 0.0296 0.0000 0.9201 0.8198 0.5769 Transverse/Torsional (H5) 
13 0.29526 3.38685 0.0000 0.0002 0.0000 0.9201 0.8200 0.5769 Torsional (T3) 
14 0.26122 3.82819 0.0000 0.0010 0.0000 0.9201 0.8210 0.5769 Transverse/Torsional (H6) 
15 0.23255 4.30015 0.0000 0.0014 0.0000 0.9201 0.8224 0.5769 Torsional/Transverse (T4) 
16 0.22463 4.45177 0.0000 0.0000 0.0000 0.9201 0.8224 0.5769 Transverse/Torsional (H7) 
17 0.20301 4.92587 0.0001 0.0000 0.0000 0.9202 0.8224 0.5769 Longitudinal (L2) 
18 0.18556 5.38909 0.0143 0.0000 0.0005 0.9345 0.8224 0.5774 Longitudinal/Vertical (L3) 
19 0.18355 5.44811 0.0000 0.0007 0.0000 0.9345 0.8231 0.5774 Transverse (H8) 
20 0.16544 6.04449 0.0000 0.0102 0.0000 0.9345 0.8334 0.5774 Transverse/Torsional (H9) 
21 0.16495 6.06244 0.0000 0.0000 0.0003 0.9345 0.8334 0.5777 Vertical/ Longitudinal (V5) 
22 0.16204 6.17132 0.0000 0.0050 0.0000 0.9345 0.8384 0.5777 Torsional/Transverse (T5) 
23 0.15275 6.54664 0.0000 0.0009 0.0000 0.9345 0.8393 0.5777 Torsional/Transverse (T6) 
24 0.15059 6.64055 0.0011 0.0000 0.0013 0.9356 0.8393 0.5790 Longitudinal/Vertical (L4) 
25 0.14909 6.70736 0.0000 0.0006 0.0000 0.9356 0.8399 0.5790 Torsional/Transverse (T7) 
26 0.13841 7.22491 0.0000 0.0142 0.0000 0.9356 0.8541 0.5790 Transverse/Torsional (H10) 
27 0.13837 7.22700 0.0006 0.0000 0.0024 0.9362 0.8541 0.5814 Vertical/Longitudinal (V6) 
28 0.13442 7.43937 0.0000 0.0204 0.0000 0.9362 0.8745 0.5814 Transverse/Torsional (H11) 
29 0.12896 7.75434 0.0001 0.0000 0.0022 0.9363 0.8745 0.5837 Vertical/ Longitudinal (V7) 
30 0.12755 7.84006 0.0219 0.0000 0.0015 0.9582 0.8745 0.5851 Longitudinal/Vertical (L5) 
*L: Longitudinal; H: Transverse; V: Vertical; and T: Torsional 

 



Table 5.2 Dynamic characteristics of the bridge equipped with LRB supports. 
Effective modal mass as proportion of total mass Mode 

No. 
Period 
(sec) 

Frequency 
(Hz) x-direction y-direction z-direction Cumulative 

x-direction 
Cumulative 
y-direction 

Cumulative 
z-direction 

Type* 

1 3.01860 0.33128 0.8977 0.0000 0.0000 0.8977 0.0000 0.0000 Longitudinal (L1) 
2 1.80900 0.55279 0.0000 0.6998 0.0000 0.8977 0.6998 0.0000 Transverse (H1) 
3 1.06200 0.94162 0.0000 0.0003 0.0000 0.8977 0.7001 0.0000 Transverse (H2) 
4 0.66053 1.51394 0.0000 0.0000 0.0027 0.8977 0.7001 0.0027 Vertical (V1) 
5 0.64041 1.56150 0.0000 0.0022 0.0000 0.8977 0.7023 0.0027 Torsional (T1) 
6 0.62386 1.60292 0.0000 0.0724 0.0000 0.8977 0.7747 0.0027 Transverse (H3) 
7 0.51498 1.94182 0.0000 0.0000 0.0000 0.8977 0.7747 0.0027 Vertical (V2) 
8 0.47364 2.11131 0.0000 0.0021 0.0000 0.8977 0.7768 0.0027 Torsional (T2) 
9 0.42270 2.36574 0.0000 0.0000 0.0000 0.8977 0.7768 0.0027 Transverse (H4) 
10 0.40802 2.45086 0.0001 0.0000 0.1949 0.8978 0.7768 0.1976 Vertical (V3) 
11 0.34653 2.88575 0.0001 0.0000 0.4086 0.8979 0.7768 0.6062 Vertical (V4) 
12 0.34109 2.93178 0.0000 0.0035 0.0000 0.8979 0.7802 0.6062 Torsional (T3) 
13 0.32322 3.09387 0.0000 0.0256 0.0000 0.8979 0.8058 0.6062 Transverse (H5) 
14 0.27737 3.60529 0.0000 0.0018 0.0000 0.8979 0.8077 0.6062 Torsional (T4) 
15 0.26984 3.70590 0.0021 0.0000 0.0000 0.9000 0.8077 0.6062 Longitudinal (L2) 
16 0.26827 3.72759 0.0000 0.0024 0.0000 0.9000 0.8101 0.6062 Transverse (H6) 
17 0.26435 3.78286 0.0105 0.0000 0.0000 0.9105 0.8101 0.6062 Longitudinal (L3) 
18 0.25088 3.98597 0.0238 0.0000 0.0003 0.9342 0.8101 0.6065 Longitudinal (L4) 
19 0.24137 4.14302 0.0000 0.0084 0.0000 0.9342 0.8185 0.6065 Transverse (H7) 
20 0.21585 4.63285 0.0000 0.0006 0.0000 0.9342 0.8191 0.6065 Transverse (H8) 
21 0.20865 4.79272 0.0000 0.0009 0.0000 0.9342 0.8200 0.6065 Transverse (H9) 
22 0.19507 5.12636 0.0000 0.0071 0.0000 0.9342 0.8271 0.6065 Torsional/ Transverse (T5) 
23 0.19289 5.18430 0.0000 0.0320 0.0000 0.9342 0.8591 0.6065 Transverse/Torsional (H10) 
24 0.18934 5.28150 0.0000 0.0000 0.0000 0.9342 0.8591 0.6065 Longitudinal/Vertical (L5) 
25 0.18367 5.44455 0.0007 0.0000 0.0003 0.9350 0.8591 0.6067 Vertical (V5) 
26 0.18260 5.47645 0.0000 0.0000 0.0000 0.9350 0.8591 0.6067 Torsional (T6) 
27 0.17779 5.62461 0.0000 0.0066 0.0000 0.9350 0.8658 0.6067 Transverse (H11) 
28 0.17048 5.86579 0.0000 0.0000 0.0000 0.9350 0.8658 0.6067 Vertical (V6) 
29 0.15852 6.30835 0.0000 0.0021 0.0000 0.9350 0.8678 0.6067 Transverse (H12) 
30 0.15081 6.63086 0.0000 0.0000 0.0100 0.9350 0.8678 0.6167 Vertical (V7) 
*L: Longitudinal; H: Transverse; V: Vertical; and T: Torsional 
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The results presented in Figures 5.1 and 5.2, and Tables 5.1 and 5.2 lead to 

several observations on the type and number of modes that need to be considered for 

the modal pushover analysis.  

First, it is noticeable that the type of bearing supports have a significant effect 

on the natural frequencies of the studied bridge especially with the first longitudinal 

mode. The fundamental natural period of the bridge equipped with isolation bearings 

is 1.73 times longer than that of the bridge with steel bearings. This value is close to 

the recommendations of Specifications for Highway Bridges in Japan (JRA, 1996). 

This first mode corresponds to the mode shape that displaces in the longitudinal 

direction of the bridge, and the period is significantly influenced by the size of the 

lead plug inserted in the isolation bearings. For example, short natural period is a 

result of excessively large lead core and the bridge response can not benefit from 

isolation effect due to elongation of the fundamental natural period, and therefore, the 

spectral acceleration is not much reduced during a seismic attack, as described in 

Section 4.2.2.2.1.  

Secondly, as displayed in the Figures 5.1 and 5.2, the mode shapes of the 

bridge studied are affected by the types of bearings. The order of vibration modes are 

also affected. However, the first and second modes are always the first longitudinal 

vibration (L1) and the first transverse one (H1). The second transverse vibration (H2) 

is the third mode. On the other hand, the order and the properties of torsional and 

higher modes of the two bridges are different. It is noted that the effective modal mass 

of the vibration modes are also affected by the type of bearing supports. 

Many more modes will be required to accurately estimate the seismic demands 

in bridges, especially in the transverse direction, compared to the case of buildings. 

According to the building code, the number of ‘modes’ to be included in response 

spectrum analysis shall capture at least 90% of the total mass of structure which was 

adopted in MPA procedure. For the studied bridge, as shown in Tables 5.1 and 5.2, 

the cumulations of the effective modal mass of the first thirty modes in transverse 

direction of the bridge equipped with steel bearings and LRB supports are 87.5%  and 

86.8% of the total mass, respectively. It would need consideration of 50 modes to 

capture 90% of the total mass in transverse direction of the bridge equipped with steel 
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bearings and LRB supports considered in this study. The effective modal masses of 

higher modes are much lower than those of the fundamental modes in both the 

longitudinal and transverse directions. The effective modal mass of many higher 

‘modes’ are very small (say less than 0.1%) and the contributions in MPA estimate of 

these modes are not significant as shown in Figure 5.3. Therefore, the contributions of 

those modes should be neglected in MPA estimate to avoid a large computation.  

Finally, the number and types of modes to be included in MPA procedure  

depend on the response quantity being evaluated. For example, the first longitudinal 

mode (L1) may be sufficient to estimate the peak displacements and pier drifts of the 

bridge supported by steel bearings in longitudinal direction, whereas seven ‘modes’ – 

second (H1), fourth (H3), ninth (T1), 12th (H5), 20th (H9), 26th (H10), and 28th (H11) 

– are required to estimate the peak displacements, pier drifts and internal forces of the 

bridge in the transverse direction.  
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Figure 5.3  (a) The peak transverse displacement at middle of the first span, and (b) 

the transverse pier drift of pier 1 (P1) of the bridge equipped with LRB supports due 

to LP89g03 (No. 3) ground motion.  
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5.3 Pushover Curves 

Pushover curves, which show the relationships between base shear force and 

monitoring displacement, based on spatial modal force distributions were performed 

in the longitudinal and transverse directions of the bridge. It is noted that unlike the 

case of buildings where the pushover curve is generally defined in terms of base shear 

and roof displacement in the direction under consideration, in case of bridges the 

shape of the pushover curve depends on the location of the monitoring point 

(Paraskeva et al., 2006). The selection of the monitoring point affects the shape of the 

pushover curve especially in the inelastic range. For bridges, intuitive selections for 

the displacement monitoring point are the centre of deck mass as recommended by 

CEN (2004). It can also be selected as the point of the deck which is determined by 

using Equation (1.13) recommended by Paraskeva et al. (2006). However, the 

applicability of this approach in structural engineering practice seems to be unsuitable 

for complicated structures. The selection of the displacement monitoring point for 

multi-mode pushover analysis of bridge as mentioned above is not able to take into 

account the contributions of torsional and vertical vibrations of the bridge because the 

modal force distributions will not cause any displacements at that monitoring point. 

As mentioned in Section 2.3, the pushover curve for the nth ‘mode’ used in 

this study is defined in terms of base shear force and displacement of monitoring 

point. The displacement monitoring point of the bridge for the nth ‘mode’ is proposed 

to be at the degree of freedom where mode shape value is maximum in the direction 

of applied ground motion. This proposal is advantageous because the mode shapes 

were already computed in Step 1 of MPA procedure and the pushover analysis can be 

performed for every modes (e.g., to take into account the contributions of torsional 

and vertical vibrations of bridges). For the bridge considered in this study, the 

longitudinal and vertical motions are usually coupled while the transverse and 

torsional vibrations are coupled as shown in Figures 5.1 and 5.2.  

Figure 5.4 shows the pushover curves calculated by applying the spatial modal 

force distributions of the first modes in the longitudinal (L1) and transverse (H1) 

directions of the studied bridges equipped with steel bearings (SB) and LRB supports. 

The peak displacements of the deck determined by NL-RHA due to 20 LMSR ground 
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motions in both longitudinal and transverse directions are also shown in Figure 5.4. 

The pushover curves are presented in the form of normalized force ( )/bV W  versus 

reference drift ( )/mn mnu H , where bV , W  and mnu  are base shear force, total weight 

and displacement of monitoring point in the direction under consideration, 

respectively; and mnH  is height from the base of the pier 2 (P2) to the monitoring 

point. It is observed that the bridge was driven far into the inelastic range in most of 

cases.  
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Figure 5.4 First ‘mode’ pushover curves of the studied bridge with (a) steel bearings; 

and (b) LRB supports in the longitudinal and transverse directions. The peak 

displacements of the deck determined by NL-RHA due to 20 LMSR ground motions 

in both directions are also shown. 
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Pushover curves presented show that the bearing supports affect the pushover 

analysis and the inelastic response of the bridge. The pushover curves of the bridge 

supported by steel bearings are much stiffer than those of the bridge with LRB 

supports. This trend is clearly noticed in the longitudinal direction as the bridge 

response is dominated by the first mode where the superstructure slides over the 

bearing supports. 

The pushover curves of the most dominant modes used in this study were 

performed and shown in Figures 5.5 and 5.6. These curves were derived by applying 

the spatial modal force distributions with respect to the displacement of monitoring 

point for each ‘mode’ (e.g., longitudinal, transverse, tosional and vertical modes). 

These pushover curves are then idealized as bilinear curves using the procedure 

described earlier in Step 4, Section 2.3. As discussed in more detail by Paraskeva et 

al. (2006), these curves are not necessarily representative of the actual response of all 

structural members of the bridge. For example, the pushover curve corresponding the 

fifth longitudinal mode (L5) or the tenth transverse mode (H10) of the bridge 

supported by steel bearings is purely linear, for this reason the bridge does not enter 

the inelastic range when subjected to these modal force distributions, even for very 

strong ground accelerations.  
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Figure 5.5 Pushover curves of the bridge supported by steel bearings derived by 

applying modal force distributions: (a) longitudinal, (b) transverse, (c) torsional, and 

(d) vertical modes. 

0.00

0.05

0.10

0.15

0.20

0 0.002 0.004 0.006 0.008

V b
/W

L1
L3
L4
L6
L7

0.00

0.05

0.10

0.15

0.20

0 0.002 0.004 0.006 0.008

V
b/W

H1
H3
H5
H6
H7
H10
H11

0.00

0.05

0.10

0.15

0.20

0 0.001 0.002 0.003 0.004

V
b/W

T1
T2
T3
T5

0.00

0.05

0.10

0.15

0.20

0 0.0002 0.0004 0.0006 0.0008 0.001

V
b/

W

V3
V4
V7
V8
V9

Figure 5.6 Pushover curves of the bridge equipped with LRB supports derived by 

applying modal force distributions: (a) longitudinal, (b) transverse, (c) torsional, and 

(d) vertical modes. 
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5.4 Accuracy of the Proposed Extension of MPA Procedure 

The proposed extension of MPA procedure was implemented in estimating 

seismic demands of the selected bridge due to the set of LMSR ground motions. The 

bias and accuracy of this procedure are evaluated by a comparison of the response 

quantities with results from Nonlinear Response History Analysis (NL-RHA), which 

can be considered as ‘exact’ results, as well as the conventional pushover analysis 

(CPA). The response quantities considered in this study are the peak deck  

displacements, pier (column) drifts, hinge rotations and internal forces. The pier drift, 

which indicates deformation demand in the column, is defined as the displacement at 

top of the pier relative to its base displacement divides by its height. 

The responses of the studied bridge to the selected ground motions were 

determined by proposed extension of MPA procedure and also by NL-RHA. For 

comparison purposes, the conventional pushover analyses (fundamental mode based 

pushover analysis) were also performed in the longitudinal and transverse directions 

of the studied bridge, to serve as the reference (i.e., the least involved procedure). The 

longest-period modes in the longitudinal direction (L1) of the bridges equipped with 

steel bearings and LRB supports have a period of 1.75 s and 3.02 s; and the 

participating mass ratios for the longitudinal direction are 91.32% and 89.77% 

respectively. The participating mass ratios for the transverse direction are zero for 

both bridges. Similarly, the longest-period modes in the transverse direction (H1) of 

the bridges equipped with steel bearings and LRB supports have a period of 1.66 s 

and 1.81 s; and the participating mass ratios for the transverse direction are 71.06% 

and 69.98%, respectively. The participating mass ratios for the longitudinal direction 

are zero for both bridges. 

As recommended for response spectrum analysis by building code, MPA 

usually considers as many modes as to include participating mass at least 90% of the 

total mass (usually the first two or three modes for buildings shorter than 10 stories). 

However, the number of modes required to capture 90% of the total mass is far too 

many for the case of bridges, especially in bridges analyzed by very detailed three-

dimensional finite element models. As mentioned before, it will need consideration of 

50 modes to capture 90% of the total mass in transverse direction of the bridge 
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considered in this study. It is also found in this study that the contribution of modes 

whose effective modal mass is very low (say less than 0.1%) is not significant. 

Therefore, to avoid a large computation, the contribution of five longitudinal ‘modes’ 

(L1, L3, L4, L6, and L7) and five vertical ‘modes’ (V3, V4, V7, V8, and V9) were 

considered to estimate the seismic demands related to the longitudinal direction of the 

bridge; whereas six transverse ‘modes’ and four torsional ‘modes’ (H1, H3, H5, H7, 

H10, H11, T1, T2, T3, and T5) were included to estimate the seismic demands related 

to the transverse direction of the bridge equipped with LRB supports. In the same 

way, the contributions of six ‘modes’ in the longitudinal direction (L1, L3, L5, V1, 

V3, and V4) and nine ‘modes’ in transverse direction (H1, H3, H5, H9, H10, H11, T1, 

T4, and T5) whose effective modal mass is larger than 0.1% were considered to 

estimate the seismic demands of the bridge supported by steel bearings (SB). 

For the bridge supported by steel bearings, the 95.6% and 87.04% of the total 

mass have been included in MPA estimates in the longitudinal and transverse 

directions, respectively. Similarly, the 95.87% and 85.97% of the total mass have 

been included in the longitudinal and transverse directions in case of the bridge with 

LRB bearing supports, respectively.  

The total values for desired response quantities calculated by MPA estimates 

are then determined by combining the  peak modal responses using both Square-Root-

of-Sum-of-Squares (SRSS) and Complete Quadratic Combination (CQC) rules (these 

results are denoted as MPA-SRSS, and MPA-CQC). This simple procedure was used 

for the peak displacements, pier drifts, hinge rotations and internal forces in the 

present study, which are the main quantities used for assessing the bridges.  

 

5.4.1 Peak Displacements 

The median peak displacement responses of the bridges equipped with steel 

bearings (SB) and LRB supports subjected to LMSR ground motions from two 

analysis procedures are compared in Figures 5.7 and 5.8, respectively; the results 

from pushover analysis including only fundamental mode (the conventional pushover 

analysis) are also shown. Note that  for the selected bridge, ground motions applied in 

the x-direction cause response only in the longitudinal direction of the bridge and 
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ground motions applied in the y-direction lead to response only in the transverse 

direction of the bridge. So the responses presented are due to excitation in its 

corresponding direction. The results show that the contributions of higher modes in 

estimating the peak displacements in the transverse direction and rotations of the deck 

are significant, since higher ‘modes’ participate more actively, particularly towards 

both ends of the bridges (Figures 5.7b-d, and 5.8b-d). The peak transverse 

displacements and rotations of the deck predicted by the proposed extension of MPA 

are closer to the NL- RHA results than the results from fundamental mode pushover 

analysis. On the contrary, including response contribution of higher modes in 

estimating the peak longitudinal and vertical displacements is indifferent (Figures 

5.7a-c and 5.8a-c). This can easily be understood that the longitudinal vibrations of 

the bridges equipped with steel bearings (SB) and LRB supports are dominated by the 

longitudinal fundamental mode whose effective modal masses of the first longitudinal 

mode alone are 91.32% and 89.77%, respectively; and the bridges behave very much 

like a SDF system. Consequently, the conventional pushover analysis procedure (one 

‘mode’ pushover analysis) is adequate to predict the peak displacements of the 

bridges studied in the longitudinal and vertical directions. 

 Figures 5.9 and 5.10 show the median errors in estimating the peak 

displacements of the bridges equipped with steel bearings (SB) and LRB supports, 

respectively. It can be seen that the proposed extension of MPA procedure can 

accurately estimate the peak displacements of the deck of the studied bridges. In case 

of the bridge supported by steel bearings, the bias of the proposed extension of MPA 

procedure is less than 10% in estimating the peak longitudinal, vertical and transverse 

displacements and generally less than 25% in estimating torsional rotation of the 

deck. On the contrary, the bias of one ‘mode’ pushover analysis in estimating 

transverse displacements or rotation of the deck can be large, especially near both 

ends of the bridge. The bias of the one ‘mode’ pushover analysis is less than 25% in 

estimating the peak displacements in the transverse direction of the bridge and 

generally less than 30% in predicting the rotation of the deck.  

 Similarly for the bridge with LRB supports, the bias of the proposed extension 

of MPA procedure is generally less than 10% in estimating the peak longitudinal, 
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vertical and transverse displacements and 30% in estimating rotation of the deck, 

whereas the bias of the one ‘mode’ pushover analysis is 20% in estimating the peak 

displacements in the transverse direction of the bridge and 30% in predicting the 

rotation of the deck. However, the bias of the proposed extension of MPA procedure 

and the one ‘mode’ pushover analysis in estimating the torsional rotation of the deck 

near both ends of the bridge are large in percentage due to small rotation values.  

The MPA estimates combined by CQC are slightly more accurate than by 

SRSS rule. This is because the modes are coupled. Nevertheless, the couplings of 

modes are not significant for the first few modes in this case. Both versions of the 

proposed extension of MPA procedure using SRSS and CQC combination rules 

(MPA-SRSS, MPA-CQC) can estimate the peak displacement reasonably well with a 

tendency to slightly underestimate peak displacements compared to NL-RHA.  

 

5.4.2 Pier Drifts 

The median pier displacements and median pier drifts of the bridges equipped 

with steel bearings (SB) and LRB supports determined by the proposed extension of 

MPA procedure and NL-RHA subjected to the set of twenty LMSR ground motions 

are compared in Figures 5.11, 5.12, 5.13 and 5.14; also included are the results from 

pushover analysis including contribution of only the fundamental ‘mode’. The pier 

drift, which indicates deformation demand in the column, is defined as the 

displacement at top of the pier relative to its base displacement divided by the pier 

height.  

Similar to investigation of the peak displacements of the bridges considered in 

this investigation, the presented results show that the pier displacements and pier 

drifts of the bridges in the transverse direction predicted by both versions of the 

proposed extension of MPA procedure (i.e., MPA-SRSS, and MPA-CQC) are very 

close to those from the ‘exact’ NL-RHA procedure, whereas the one ‘mode’ pushover 

analysis underestimates these values. Nevertheless, the proposed extension of MPA 

procedure and the conventional pushover analysis predicts well the peak pier 

displacements and pier drifts in the longitudinal direction of the bridges. The accuracy 

of this procedure in estimating the pier displacements and pier drifts in the 
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longitudinal direction of the bridges is not worse than that of the proposed extension 

of MPA procedure. This implies that the contributions of higher ‘modes’ in estimating 

these responses are not significant and can be neglected in these cases.   

In this section, the errors due to both approximate methods, the conventional 

pushover analysis (CPA) and the proposed extension of MPA procedure, are 

investigated by comparing the peak values of the responses determined by 

approximate procedures and by the NL-RHA, the ‘exact’ approach. Figures 5.15 and 

5.16 show the median errors of the pier drifts in the longitudinal and transverse 

directions of the bridges equipped with steel bearings and LRB supports, respectively. 

The results presented indicate that all three procedures (the CPA, MPA-SRSS, and 

MPA-CQC) provide estimates that are essentially identical, and are very close to 

those from the NL-RHA in estimating the pier drifts of the bridges in the longitudinal 

direction, which are within about 5% of the exact results for both types of bearings. 

The bias of the proposed extension of MPA procedure in estimating the pier drifts of 

the bridges in the transverse direction is generally less than 5%, whereas the bias of 

the one ‘mode’ pushover analysis can be 17% in predicting the pier drifts of the 

bridges in the transverse direction. 

To demonstrate how bias and dispersion measures relate to the accuracy of the 

proposed extension of MPA procedure, the pier drift ratios in the longitudinal and 

transverse directions of the bridges, *
MPAΔ , due to the set of 20 LMSR ground motions 

are shown in Figures 5.17, 5.18, 5.19 and 5.20. The median value and dispersion of 

the pier drift ratios are also shown in these figures. The pier drift ratio is defined by 

the following equation: * /MPA MPA NL RHA−Δ = Δ Δ , in which NL RHA−Δ  is the peak pier drift 

determined by NL-RHA, and the approximate value from the proposed extension of 

MPA is MPAΔ . The pier drift value determined by the conventional pushover analysis 

(CPA) is denoted as CPAΔ . These approximate methods are invariably biased in the 

sense that the median of the response ratio differs from one, underestimates the 

median response if the ratio is less than one, and provides an overestimate if the ratio 

exceeds one. The results presented permit the following observations: 
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• The proposed extension of MPA procedure accurately estimates the 

pier drifts of the bridges considered in this investigation in both the 

longitudinal and transverse directions with the bias is less than 5%.  

• The contributions of higher ‘modes’ in estimating the pier drifts in the 

transverse direction are significant, especially for piers near by the both 

ends of the bridge. Both versions of proposed extension of MPA 

procedure are able to capture the NL-RHA results. However, the MPA 

pier drift results including the contributions of higher ‘modes’ in 

estimating these responses in the longitudinal direction are close to one 

‘mode’ results indicating that the contributions of higher ‘modes’ are 

not significant and negligible in these cases.  

• The dispersions of the pier drift ratios determined by the proposed 

extension of MPA procedure are smaller than 5% and 10% in the 

longitudinal and transverse directions, respectively. Dispersion tends to 

increase for seismic responses in the transverse direction as the 

contribution from the higher-modes becomes more significant. 

• The one ‘mode’ pushover analysis procedure estimates pier drift 

demands of the studied bridges with less than 5% bias in the 

longitudinal direction; however, it underestimates pier drift demands of 

the bridges equipped with steel bearings and LRB supports by 15% and 

20% in the transverse direction for certain locations, respectively.  

• The dispersions of the pier drift ratio for bridges determined by the one 

‘mode’ pushover analysis procedure range from 5% for demand in the 

longitudinal direction to 20% for demand in the transverse direction.  

• These trends in variation of bias and dispersion in the conventional 

pushover analysis are similar to earlier observations from the proposed 

extension of MPA results. 

• The accuracy of the proposed extension of MPA procedure in 

predicting pier drift response in the transverse direction can be as large 

as 30% due to an individual ground motion. 
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Figure 5.7 Median peak displacements of the bridge supported by steel bearings 

determined by one ‘mode’ pushover analysis, MPA and NL-RHA due to LMSR 

ground motions. 

(a) Longitudinal displacement of SB bridge 

(b) Transverse displacement of SB bridge 

(c) Vertical displacement of SB bridge 

(d) Deck rotation of SB bridge 

Longitudinal distance (m) 
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Figure 5.8 Median peak displacements of the bridge equipped with LRB supports 

determined by one ‘mode’ pushover analysis, MPA and NL-RHA due to LMSR 

ground motions. 

(a) Longitudinal displacement of LRB bridge 

(b) Transverse displacement of LRB bridge 

(c) Vertical displacement of LRB bridge 

(d) Deck rotation of LRB bridge 

Longitudinal distance (m) 
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Figure 5.9 Median errors of (a) longitudinal displacements, (b) transverse 

displacements, (c) vertical displacements and (d) torsional rotations of the deck of the 

bridge supported by steel bearings. 

(a) Longitudinal displacement of SB bridge 

(b) Transverse displacement of SB bridge 

(c) Vertical displacement of SB bridge 

(d) Deck rotation of SB bridge 
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Figure 5.10 Median errors of (a) longitudinal displacements, (b) transverse 

displacements, (c) vertical displacements and (d) torsional rotations of the deck of the 

bridge equipped with LRB supports. 

(a) Longitudinal displacement of LRB bridge 

(b) Transverse displacement of LRB bridge 

(c) Vertical displacement of LRB bridge 

(d) Deck rotation of LRB bridge 

Longitudinal distance (m) 
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Figure 5.11 Comparison of longitudinal pier (a) displacements and (b) drifts of the 

bridge supported by steel bearings determined by three analyses: one ‘mode’ 

pushover analysis, the proposed extension of MPA, and NL-RHA. 
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Figure 5.12 Comparison of transverse pier (a) displacements and (b) drifts of the 

bridge supported by steel bearings determined by three analyses: one ‘mode’ 

pushover analysis, the proposed extension of MPA, and NL-RHA. 
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Figure 5.13 Comparison of longitudinal pier (a) displacements and (b) drifts of the 

bridge equipped with LRB supports determined by three analyses: one ‘mode’ 

pushover analysis, the proposed extension of MPA, and NL-RHA. 
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Figure 5.14 Comparison of transverse pier (a) displacements and (b) drifts of the 

bridge equipped with LRB supports determined by three analyses: one ‘mode’ 

pushover analysis, the proposed extension of MPA, and NL-RHA. 
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Figure 5.15 Median errors of the pier drifts of the bridge supported by steel bearings 

in the (a) longitudinal, and (b) transverse directions. 
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Figure 5.16 Median errors of the pier drifts of the bridge equipped with LRB supports 

in the (a) longitudinal, and (b) transverse directions. 
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Figure 5.17 (a) Pier drift ratios, *

MPAΔ  or *
CPAΔ , (b) median of pier drift ratios, and (c) 

dispersion of the pier drift ratios in the longitudinal direction of the bridge supported 

by steel bearings subjected to the set of 20 LMSR ground motions. 
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Figure 5.18 (a) Pier drift ratios, *

MPAΔ  or *
CPAΔ , (b) median of pier drift ratios, and (c) 

dispersion of the pier drift ratios in the transverse direction of the bridge supported by 

steel bearings subjected to the set of 20 LMSR ground motions. 
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Figure 5.19 (a) Pier drift ratios, *

MPAΔ  or *
CPAΔ , (b) median of pier drift ratios, and (c) 

dispersion of the pier drift ratios in the longitudinal direction of the bridge equipped 

with LRB supports subjected to the set of 20 LMSR ground motions. 

 

 

 

 

 

 

 

 

(a) LRB 

(b) LRB 

(c) LRB 



111 

 

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0 1 2 3 4
Pier

Δ
*M

PA
 o

r 
Δ

*C
PA

1 'mode'
MPA-SRSS
MPA-CQC

0

0.1

0.2

0.3

0 1 2 3 4
Pier

D
is

pe
rs

io
n

1 'mode'
MPA-SRSS
MPA-CQC

0.8

0.9

1.0

1.1

1.2

0 1 2 3 4
Pier

Δ
*M

PA
 o

r 
Δ

*C
PA

1 'mode'
MPA-SRSS
MPA-CQC

 
Figure 5.20 (a) Pier drift ratios, *

MPAΔ  or *
CPAΔ , (b) median of pier drift ratios, and (c) 

dispersion of the pier drift ratios in the transverse direction of the bridge equipped 

with LRB supports subjected to the set of 20 LMSR ground motions. 
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5.4.3 Internal Forces 

The internal forces of the studied bridges, which are the main quantities used 

for assessing the bridges, due to the set of 20 LMSR ground motions were determined 

by the proposed extension of MPA procedure and also by NL-RHA. Figures 5.21, 

5.22, 5.23 and 5.24 show the median values of bending moments about x- and y-axes 

at the base of piers, and bending moment ratios, * /MPA MPA NL RHAM M M −=  or 

* /CPA CPA NL RHAM M M −= . Note that x-axis is the longitudinal direction and y-axis is the 

transverse direction. The median and dispersion of moment ratios of the bridges 

equipped with steel bearings (SB) and LRB supports due to the set of selected ground 

motions are also shown. 

Similar to investigation of the peak deck displacements and pier drifts, the 

presented results show that the contributions of higher modes in estimating the 

bending moments about x-axis at the base of piers when subjected to excitation are 

significant (Figures 5.22a and 5.24a). The MPA-SRSS and MPA-CQC results are 

very close to those from the NL-RHA procedure. The proposed extension of MPA 

procedure underestimates slightly the bending moments about x-axis with the bias is 

less than 10% for both types of bearings of the bridges considered (Figures 5.22c and 

5.24c).  

The dispersion of the moment about x-axis ratios determined by the proposed 

extension of MPA procedure is generally smaller than 15%. Comparing the dispersion 

of the pier drifts in the transverse direction to dispersion of the moment about x-axis 

predicted by the proposed extension of MPA procedure, we can observe that the pier 

drifts can be estimated by MPA more accurately than bending moment demands. This 

is consistent with the intuition that the global response quantities, e.g., pier 

displacements or pier drifts, are more easily and accurately estimated than local 

response quantities, e.g., bending moments or plastic hinge rotations; especially when 

the bridge was driven far into the inelastic range and more inelastic deformations have 

occurred and led to large bias of MPA. 

On the contrary, the one ‘mode’ pushover analysis seems to fail in estimating 

moment about x-axis. The median and dispersion of the moment about x-axis by one 
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‘mode’ pushover analysis can be as large as 18%. Figures 5.22d and 5.24c show the 

cases where both bias and dispersion are large, and clearly the one ‘mode’ pushover 

analysis procedure does not provide a reasonable estimate for bending moment about 

x-axis. 

The presented results also show that both versions of the proposed extension 

of MPA procedure (i.e., MPA-SRSS and MPA-CQC) and the conventional pushover 

analysis procedure slightly underestimates bending moment about y-axis with the bias 

is less than 5%. This implies that the conventional pushover analysis is adequate to 

predict the bending moments about y-axis at the base of piers, because the bridges 

considered in this investigation are dominated by the first longitudinal ‘mode’ whose 

effective modal masses alone are 91.32% and 89.77% for the bridges equipped with 

steel bearings and LRB supports, respectively. The dispersion of both approximate 

procedures, the one ‘mode’ pushover analysis and the proposed extension of MPA 

procedures, in estimating the moment about y-axis is very small, less than 5% for all 

cases (Figures 5.21 and 5.23). 

Similar results for bias and dispersion of MPA in estimating pier 

displacements and pier drifts, the bias and dispersion for moment about y-axis is 

much smaller compared to moment about x-axis, indicating that moment about y-axis 

can be estimated by MPA more accurately than moment about x-axis demands. This 

demonstrates that an approximate procedure, such as the proposed extension of MPA 

procedure, is more likely to be accurate for an individual ground motion if both its 

bias and dispersion are small. On the other hand, compared to the moment about y-

axis, the dispersion tends to increase for moment about x-axis as the contribution from 

the higher-modes becomes more significant, in particular, for the piers near the both 

ends of the bridge where higher modes are more active. 

Figures 5.25 and 5.26 show the median axial forces at the base of piers of the 

bridges equipped with steel bearings and LRB supports, respectively; median errors of 

axial forces are also shown in these figures. The results show that the axial force at 

the base of piers can be estimated by the proposed extension of MPA procedure as 

well as the conventional pushover analysis for both types of bearings. The bias is 

relatively small, less than 5% for the bridge with LRB supports and 10% for bridge 
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supported by steel bearings, respectively. This is because the axial force at the base at 

piers is essentially contributed by gravity load.  

Median shear forces along x- and y-axes at the base of piers of the bridge 

supported by steel bearings due to the set of LMSR ground motions are shown in 

Figures 5.27 and 5.28; median errors of shear force demands are also shown. 

Similarly, Figures 5.29 and 5.30 show the median shear forces and errors along x- and 

y-axes at the base of piers of the bridge equipped with LRB supports, respectively. 

These results lead to the following observations. 

Including the response contributions of higher ‘modes’ in estimating the shear 

forces are significant. Both MPA-SRSS and MPA-CQC can estimate the shear forces 

along x- and y-axes at the base of piers reasonably well with a tendency to slightly 

underestimate shear force demands compared to NL-RHA. The bias of the proposed 

extension of MPA procedure in estimating the shear forces along x- and y-axes is less 

than 10% for both types of bearings. With several ‘modes’ included, the shear force 

estimated by MPA is generally similar to the ‘exact’ results from NL-RHA. 

On the contrary, the one ‘mode’ pushover analysis is inadequate in estimating 

shear forces at the base of piers with the bias is relatively large. It underestimates 

shear force demands by 20% and 30% bias for the bridges equipped with steel 

bearings and LRB supports, respectively. However, the first ‘mode’ alone is sufficient 

in estimating the shear force along x-axis at the base of piers of the bridge supported 

by steel bearings (see Figure 5.27). 
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Figure 5.21 (a) Median values of bending moment about y-axis, (b) bending moment 

about y-axis ratios, *
MPAM  or *

CPAM , (c) median of bending moment about y-axis 

ratios, and (d) dispersion of the bending moment about y-axis ratios at the base of 

piers of the bridge supported by steel bearings. 
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Figure 5.22 (a) Median values of bending moment about x-axis, (b) bending moment 

about x-axis ratios, *
MPAM  or *

CPAM , (c) median of bending moment about x-axis 

ratios, and (d) dispersion of the bending moment about x-axis ratios at the base of 

piers of the bridge supported by steel bearings. 
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Figure 5.23 (a) Median values of bending moment about y-axis, (b) bending moment 

about y-axis ratios, *
MPAM  or *

CPAM , (c) median of bending moment about y-axis 

ratios, and (d) dispersion of the bending moment about y-axis ratios at the base of 

piers of the bridge equipped with LRB supports. 

(a) LRB 

(b) LRB 

(c) LRB 

(d) LRB 

M
* M

PA
 o

r 
M

* C
PA

 
M

* M
PA

 o
r 

M
* C

PA
 



118 

 

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0 1 2 3 4
Pier

1 'mode'
MPA-SRSS
MPA-CQC

0.8

0.9

1.0

1.1

1.2

0 1 2 3 4
Pier

1 'mode'
MPA-SRSS
MPA-CQC

0

0.1

0.2

0.3

0 1 2 3 4
Pier

D
is

pe
rs

io
n

1 'mode'
MPA-SRSS
MPA-CQC

0

10

20

30

40

50

1 2 3
Pier

M
om

en
t a

bo
ut

 x
-a

xi
s 

(M
N

m
)

1 'mode' MPA-SRSS MPA-CQC NL-RHA

 
Figure 5.24 (a) Median values of bending moment about x-axis, (b) bending moment 

about x-axis ratios, *
MPAM  or *

CPAM , (c) median of bending moment about x-axis 

ratios, and (d) dispersion of the bending moment about x-axis ratios at the base of 

piers of the bridge equipped with LRB supports. 
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Figure 5.25 (a) Median axial forces, and (b) median errors of axial forces at the base 

of piers of the bridge supported by steel bearings subjected to the set of 20 LMSR 

ground motions. 
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Figure 5.26 (a) Median axial forces, and (b) median errors of axial forces at the base 

of piers of the bridge equipped with LRB supports subjected to the set of 20 LMSR 

ground motions. 
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Figure 5.27 (a) Median shear forces along x-axis, and (b) median errors of shear 

forces along x-axis at the base of piers of the bridge supported by steel bearings 

subjected to the set of 20 LMSR ground motions. 
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Figure 5.28 (a) Median shear forces along y-axis, and (b) median errors of shear 

forces along y-axis at the base of piers of the bridge supported by steel bearings 

subjected to the set of 20 LMSR ground motions. 
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Figure 5.29 (a) Median shear forces along x-axis, and (b) median errors of shear 

forces along x-axis at the base of piers of the bridge equipped with LRB supports 

subjected to the set of 20 LMSR ground motions. 
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Figure 5.30 (a) Median shear forces along y-axis, and (b) median errors of shear 

forces along y-axis at the base of piers of the bridge equipped with LRB supports 

subjected to the set of 20 LMSR ground motions. 
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5.4.4 Hinge Rotation 

The proposed extension of MPA procedure has been implemented for each of 

the bridges and for each of the 20 LMSR excitations, and contributions from several 

‘modes’ were considered. The combined values of hinge rotations were computed 

included several ‘modes’ as mentioned before in Section 5.4. Figures 5.31, 5.32, 5.33, 

and 5.34 show these median values of hinge rotation demands at the base of piers for 

the bridges considered, together with the results of NL-RHA. Also included are the 

results of the conventional pushover analysis procedure, in which pushover analysis 

considers only the fundamental ‘mode’. Hinge rotation ratios, * /MPA MPA NL RHAθ θ θ −=  or 

* /CPA CPA NL RHAθ θ θ −= , median and dispersion of hinge rotation ratios at the base of 

piers of the bridges equipped with steel bearings (SB) and LRB supports due to the set 

of selected ground motions are also shown in these Figures. These results permit the 

following observations. 

The proposed extension of MPA procedure is least biased in estimating hinge 

rotation demands at the base of piers for the bridge with LRB supports and relatively 

more biased for the bridge supported by steel bearings (SB). This can easily be 

understood that the bridge equipped with Lead Rubber Bearings (LRB) are 

seismically isolated by LRB isolator, and most of piers remain elastic while yielding 

occurs at LRB systems. On the contrary, the yielding mainly forms at the base of piers 

of the bridge supported by steel bearings due to intense ground motions. 

For the bridge supported by steel bearings, the MPA-SRSS and MPA-CQC 

procedures can estimate the hinge rotation demands at the base of piers reasonably 

well with a tendency to slightly underestimate hinge rotations about x-axis and 

overestimate hinge rotations about y-axis when compared to NL-RHA. The 

contributions of higher modes in estimating the hinge rotations about x-axis at the 

base of the piers when subjected to excitation are significant. The bias of the proposed 

extension of MPA procedure in estimating hinge rotations about x- and y-axes at the 

base of the piers is generally less than 10%. Conversely, the biases of the one ‘mode’ 

pushover analysis in estimating these responses are 10% and 20% for hinge rotations 

about y- and x-axes, respectively (Figures 5.31 and 5.32). 
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The bias of the proposed extension of MPA procedure in estimating hinge 

rotations about x- and y-axes at the base of the piers is relatively small; but the 

dispersions are quite large, 0.2 for hinge rotation about y-axis and 0.3 for hinge 

rotation about x-axis, because the data points scatter over a wide range from 

underestimation to significant overestimation (Figures 5.31b-d, and 5.32b-d). The 

MPA-SRSS and MPA-CQC estimates are significantly inaccurate for several 

excitations, although the median values of hinge rotations *
MPAθ  are very close to 1. 

This is because the bridge with steel bearings was driven far into the inelastic range 

by the set of LMSR strong ground motions, and many yields have formed at the base 

of the piers. Therefore, more inelastic deformations have occurred and led to larger 

bias of the proposed extension of MPA procedure. 

For the bridge equipped with LRB supports, including the response 

contributions of higher ‘modes’ in estimating the hinge rotations are significant. The 

hinge rotations about x- and y-axes at the base of the piers can be accurately estimated 

by both MPA-SRSS and MPA-CQC with a tendency to slightly underestimate hinge 

rotation demands compared to NL-RHA. The bias of the proposed extension of MPA 

procedure in estimating the hinge rotations about x- and y-axes is less than 5%. With 

several ‘modes’ included, the hinge rotation estimated by MPA is generally similar to 

the ‘exact’ results from NL-RHA (Figure 5.34). The presented results also show that 

the dispersion of hinge rotations is generally small, less than 0.07 for hinge rotation 

about y-axis and 0.14 for hinge rotation about x-axis. On the contrary, the bias of the 

one ‘mode’ pushover analysis in estimating hinge rotation about x-axis is relatively 

large (20%). It means that the conventional pushover analysis may be inadequate to 

estimate hinge rotation demands about x-axis. 

Finally, both bias and dispersion of the proposed extension of MPA procedure 

in estimating the hinge rotations about x- and y-axes of the bridge equipped with LRB 

supports are small compared to those of the bridge with steel bearings (SB), indicating 

that MPA-SRSS and MPA-CQC estimate the hinge rotation demands of the bridge 

with LRB accurately more often than the SB case. As mentioned before, this is 

because the bridge equipped with LRB are isolated and most of piers remain elastic 

while yielding occurs at LRB systems due to strong ground motions.   
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Figure 5.31 (a) Median values of hinge rotation about y-axis, (b) hinge rotation about 

y-axis ratios, *
MPAθ  or *

CPAθ , (c) median of hinge rotation about y-axis ratios, and (d) 

dispersion of the hinge rotation about y-axis ratios at the base of piers of the bridge 

supported by steel bearings subjected to the set of 20 LMSR ground motions. 
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Figure 5.32 (a) Median values of hinge rotation about x-axis, (b) hinge rotation about 

x-axis ratios, *
MPAθ  or *

CPAθ , (c) median of hinge rotation about x-axis ratios, and (d) 

dispersion of the hinge rotation about x-axis ratios at the base of piers of the bridge 

supported by steel bearings subjected to the set of 20 LMSR ground motions. 
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Figure 5.33 (a) Median values of hinge rotation about y-axis, (b) hinge rotation about 

y-axis ratios, *
MPAθ  or *

CPAθ , (c) median of hinge rotation about y-axis ratios, and (d) 

dispersion of the hinge rotation about y-axis ratios at the base of piers of the bridge 

equipped with LRB supports subjected to the set of 20 LMSR ground motions. 
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Figure 5.34 (a) Median values of hinge rotation about x-axis, (b) hinge rotation about 

x-axis ratios, *
MPAθ  or *

CPAθ , (c) median of hinge rotation about x-axis ratios, and (d) 

dispersion of the hinge rotation about x-axis ratios at the base of piers of the bridge 

equipped with LRB supports subjected to the set of 20 LMSR ground motions. 
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5.4.5 Bearing Response 

To demonstrate how bias and dispersion measures relate to the accuracy of the 

proposed extension of MPA procedure in estimating bearing responses, Figures 5.35 

and 5.36 show the median shear forces along x- and y-axes, shear force ratios, 
* /MPA MPA NL RHAS S S −=  or * /CPA CPA NL RHAS S S −= ; median and dispersion of shear force 

ratios of LRB supports are also shown in these figures. Similar to investigation the 

peak displacements and internal forces, the presented results show that the bearing 

responses predicted by both MPA-SRSS and MPA-CQC are able to follow the NL-

RHA results whereas the first ‘mode’ alone is inadequate. With several ‘modes’ 

included as discussed early in this section, the shear forces along x- and y-axes of 

LRB systems estimated by the proposed extension of MPA procedure is generally 

similar to the results from NL-RHA.  

The bias of MPA-SRSS and MPA-CQC in estimating shear forces along x- 

and y-axes of LRB systems is less than 10% for LMSR ground motions. Conversely, 

the bias of the one ‘mode’ pushover analysis in shear force estimation at an individual 

pier can be as large as 20%. However, the dispersion of three these procedures (the 

one ‘mode’ pushover analysis, MPA-SRSS, and MPA-CQC) in estimating LRB shear 

force demands is relatively large, 0.25 and 0.2 for shear forces along x- and y-axes, 

respectively. This is because the data points scatter over a wide range from significant 

underestimation to overestimation (Figures 5.35b-d, and 5.36b-d). The MPA-SRSS 

and MPA-CQC estimates are significantly inaccurate for several excitations, although 

the median values of shear forces *
MPAS  are close to 1. This is understood that the LRB 

system was driven far into the inelastic range by the set of LMSR strong ground 

motions. Consequently, more inelastic deformations have occurred and led to larger 

bias of the proposed extension of MPA procedure. 
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Figure 5.35 (a) Median shear forces along x-axis, (b) shear force along x-axis ratios, 

*
MPAS  or *

CPAS , (c) median of shear force along x-axis ratios, and (d) dispersion of  

shear force along x-axis ratios of LRB supports subjected to the set of 20 LMSR 

ground motions. 
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Figure 5.36 (a) Median shear forces along y-axis, (b) shear force along y-axis ratios, 

*
MPAS  or *

CPAS , (c) median of shear force along y-axis ratios, and (d) dispersion of 

shear force along y-axis ratios of LRB supports subjected to the set of 20 LMSR 

ground motions. 
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CHAPTER VI 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
6.1 Conclusions 

6.1.1 Accuracy of Current Nonlinear Static Procedures for Seismic Analysis of 

BRBF Buildings 

The following conclusions are obtained from the accuracy assessment of 

nonlinear static procedures (MPA, IMPA, and MPP) in estimating the seismic 

demands of buckling-restrained braced frame buildings using LA10/50 and LA2/50 

sets of intense ground motions. These conclusions are based on a comparison of NSP 

estimates of seismic demands and the corresponding values determined by NL-RHA 

for 3-, 6-, 10-, and 14-story BRBF buildings which were designed to meet seismic 

code criteria. 

(1) The equivalent bilinear SDF systems of nonlinear static procedures can 

estimate the peak roof displacement quite accurately with a bias no larger than 

15% and 19% for LA10/50 and LA2/50 sets of ground motions, respectively. 

The IMPA tends to predict the median and dispersion of target roof 

displacements more accurately than MPA; however, the difference is not 

significant while the MPP tends to estimate the maximum roof displacements 

slightly more accurately than both MPA and IMPA for set of LA10/50 but less 

accurate for the stronger records LA2/50. 

(2) The story drift demands predicted by MPA and IMPA are able to follow the 

NL-RHA results. However, the higher ‘modes’ contributions of these 

procedures in the response of 3-, and 6-story BRBF buildings are generally not 

significant, so the first ‘mode’ alone may be adequate. 

(3) Despite considering the redistribution of inertia forces after structure yields, 

the pushover curve of IMPA is similar to MPA, resulting in nearly identical 

estimates of target roof displacements by both procedures. The IMPA tends to 

overlap the MPA in estimating story drifts with slight differences.  
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(4) The MPP tends to significantly overestimate seismic demands for lower 

stories but underestimates story drifts for upper stories with increasing bias 

when the building height increases. Moreover, the story drifts predicted by the 

MPP procedure seem to be uniform in upper stories, especially for 10- and 14-

story BRBF buildings considered in this study.     

(5) The bias and dispersion of nonlinear static procedures in estimating seismic 

demands tends to increase for taller BRBF buildings and stronger excitations. 

The height-wise variation of bias primarily depends on the structural 

properties, e.g., building height, rather than the intensity of ground motions. 

(6) The bias of MPA and IMPA procedures in estimating the maximum story drift 

over all stories is generally small; however, the bias of these procedures in 

estimating peak story drift at an individual story can be considerable for 

certain cases. Both of these procedures provide practically similar results 

whereas MPA is slightly simpler and more practical than IMPA as it involves 

an invariant load pattern. On the contrary, the bias in estimating maximum 

story drifts over all stories of MPP can be large.  

 

6.1.2 Accuracy of the Proposed Extension of MPA Procedure for Seismic 

Evaluation of Bridge 

The median seismic demands for an existing continuous twin I-girder bridge 

due to an ensemble of 20 LMSR ground motions were computed by the conventional 

pushover analysis, the proposed extension of MPA and NL-RHA procedures and 

compared. The bias and dispersion of the proposed extension of MPA procedure are 

evaluated over a wide range of bridge responses from essentially within the linearly 

elastic range to far into the inelastic range. The presented results have led to the 

following conclusions: 

(1) Types of bearings have a significant effect on the natural frequencies of the 

studied bridge especially with the first longitudinal mode. Mode shapes, 
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effective modal masses, and the order of vibration modes of bridges studied 

are also affected by the types of bearing supports.  

(2) Many more modes may be required to accurately estimate the seismic 

demands in bridges, especially in transverse direction, compared to the case of 

buildings. The effective modal masses of higher modes are much lower than 

those of the fundamental modes in both the longitudinal and transverse 

directions. Additionally, the effective modal mass of many higher ‘modes’ are 

very small (say less than 0.1%) and the contributions of these modes are not 

significant. Therefore, the contributions of those modes should be neglected in 

MPA estimate to avoid a large computation.  

(3) The number and types of modes to be included in MPA procedure depend on 

the response quantities of interest.  

(4) Bearing supports have significant influence on the results of analyses. 

Pushover curves of the bridge supported by steel bearings are much stiffer 

than those of the bridge with LRB supports. This trend is clearly noticed in the 

longitudinal direction as the bridge response is dominated by the first mode 

where the superstructure slides over the bearings. 

(5) The one ‘mode’ pushover analysis predicts the peak displacements and 

internal forces well in the longitudinal direction only (first longitudinal mode 

dominates), but it fails to accurately predict seismic demands in the transverse 

direction of the bridges studied. It is also demonstrated that the conventional 

pushover analysis procedure currently used by bridge engineers is inadequate 

for estimating seismic demands in the transverse direction of bridges.  

(6) The contributions of higher modes in estimating seismic demands in the 

transverse direction of the bridges considered are significant, since higher 

‘modes’ participate more actively, particularly towards both ends of the 

bridges. The seismic responses of the bridges predicted by the proposed 

extension of MPA procedure are able to capture the NL- RHA results, whereas 

the one ‘mode’ pushover analysis is inadequate. Both the MPA-SRSS and 



134 

 

MPA-CQC procedures can estimate the peak displacements and internal 

forces reasonably well with a tendency to slightly underestimate responses 

when compared to NL-RHA. 

(7) Including response contribution of higher modes in estimating the peak 

responses in the longitudinal direction of the studied bridges is unaffected. 

Consequently, both the conventional pushover analysis and the proposed 

extension of MPA procedures provide estimates that are essentially identical, 

and are very close to those from the NL-RHA in estimating the median 

seismic demands of the bridges in the longitudinal direction.  

(8) The bias of the proposed extension of MPA procedure is relatively small in 

estimating the peak longitudinal, vertical and transverse displacements of the 

bridges. However, the biases of the proposed extension of MPA procedure and 

the one ‘mode’ pushover analysis in estimating the torsional rotation of the 

deck near both ends of the bridge can be large in percentage. 

(9) The bias of the proposed extension of MPA in estimating the peak 

displacements, pier drifts is generally small; conversely, the bias of the 

proposed extension of MPA in estimating hinge rotations at the base of piers 

of the bridge supported by steel bearings  can be large for certain locations.  

(10) The dispersion of the one ‘mode’ pushover analysis, MPA-SRSS, and MPA-

CQC in estimating LRB shear force demands is relatively large, 0.25 and 0.2 

for shear forces along x- and y-axes, respectively. 

(11) The dispersions of the pier drift ratios for bridges determined by the one 

‘mode’ pushover analysis procedure range from 5% for demand in the 

longitudinal direction to 20% for demand in the transverse direction. The 

dispersions of the pier drift ratios determined by the proposed extension of 

MPA procedure are smaller than 5% and 10% in the longitudinal and 

transverse directions, respectively. Dispersion tends to increase for seismic 

responses in the transverse direction as the contribution from the higher-modes 

becomes more significant. 
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(12) Comparing the bias and dispersion of the pier drifts, the internal forces in the 

transverse direction predicted by the proposed extension of MPA procedure, it 

is observed that the pier drifts can be estimated by MPA more accurately than 

internal force demands. It is shown that both the MPA-SRSS and MPA-CQC 

procedures provide estimates of peak total response that are very close to the 

peak response determined by exact NL-RHA. 

(13) The proposed extension of MPA procedure is least biased in estimating hinge 

rotation demands for the bridge with LRB supports and relatively more biased 

for the bridge supported on steel bearings.  

(14) The bias of the proposed extension of MPA procedure in estimating hinge 

rotations about x- and y-axes at the base of the piers of the bridge supported 

by steel bearings (SB) is relatively small; but the dispersions are quite large, 

0.3 and 0.2 for hinge rotations about x- and y-axes, respectively. Both bias and 

dispersion of the proposed extension of MPA procedure in estimating the 

hinge rotations about x- and y-axes of the bridge equipped with LRB supports 

are small compared to those of the bridge with steel bearings, indicating that 

MPA-SRSS and MPA-CQC estimate the hinge rotation demands of the bridge 

with LRB accurately more often than the SB case. 

(15) The MPA estimates combined by CQC are slightly more accurate than by 

SRSS rule. This is because the modes are coupled. Nevertheless, the couplings 

of modes are not significant for the first few modes in this case. Both versions 

of the proposed extension of MPA procedure using SRSS and CQC 

combination rules (MPA-SRSS, MPA-CQC) can accurately estimate the 

seismic demands of the bridges considered in this investigation. 

 

6.2 Recommendations 

Being an approximate method, the proposed extension of MPA procedure 

should obviously be evaluated comprehensively before practical application to bridge 

evaluation and design. More work is clearly required to further investigate the 
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accuracy and effectiveness of the MPA procedure for a wide range of bridges with 

different configuration, degree of irregularity, dynamic characteristics (in terms of 

higher mode significance, in particular bridges with important anti-symmetric and 

torsion modes), and ground motion ensembles. Since the MPA is expected to be even 

more valuable for the assessment of the actual inelastic response of bridges with 

significant higher modes. 
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APPENDIX A 
 

BILINEAR IDEALIZATION 
 
 

In the MPA procedure presented in Chapter 2, the force-deformation 

( )/sn n nF L D−  relation of equivalent inelastic SDF system is obtained from the 

pushover curve, the relationship between base-shear and displacement of the 

monitoring point ( bn rnV u− ). The pushover curve often consists of multi-linear 

segments as a result of successive yielding at different locations in the structure. Such 

multi-linear curve is usually idealized as bilinear curve to facilitate solution of 

Equation (2.14). The implementation of bilinear idealization in this study was 

presented by Chintanapakdee and Chopra, (2003b) adopted the criterion specified in 

FEMA-356 that the first linear segment shall intersect the actual curve at 60% of the 

(idealized) yield force; however, this criterion alone can not uniquely define a bilinear 

curve. Therefore, another widely used criterion  was adopted that the strain energy 

(area under the curve) associated with the peak response has to be the same as for the 

actual curve. To impose the second criterion, the target roof displacement is needed, 

but not yet known, so the idealization process needs to implemented iteratively: 

(1) Assume a trial target displacement of pushover analysis so that area 

under the pushover curve can be calculated. 

(2) Obtain a bilinear curve that satisfies the two criteria (by any 

optimization algorithm, e.g., fminsearch.m function in MATLAB, 

2007). 

(3) Convert the idealized pushover curve to the /sn n nF L D−  relation 

(Figure 2.2b) by utilizing Equation (2.23). 

(4) Compute the peak deformation, nD , of the nth-“mode” inelastic SDF 

system (Figure 2.2b) with force-deformation relation of Figure 2.2b by 

solving Equation (2.14), or from the inelastic response (or design) 

spectrum. 
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(5) Calculate the peak roof displacement rnou  associated with the nth-

“mode” inelastic SDF system from Equation (2.21). 

(6) Repeat steps (2)-(5) until the peak roof displacement is equal to the 

value in the previous iteration. 

It was found that the idealized bilinear curve is sensitive to the target roof 

displacement assumed in Step 1, implying that, without the iteration presented above, 

target displacement varies randomly with the arbitrarily assumed target displacement 

in bilinear curve idealization; therefore the iteration should be implemented 

(Chintanapakdee and Chopra, 2003b). 
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APPENDIX B 
 

MODE SHAPES OF THE STEEL BEARING BRIDGE 

 
Mode 1 – The first longitudinal mode (L1): T1 = 1.750 s,  *

1 0.913,0.000,0.000M =  
 

 
Mode 2 – The first transverse mode (H1): T2 = 1.656 s,  *

2 0.000,0.711,0.000M =  
 

 
Mode 3 – The second transverse mode (H2): T3 = 1.025 s,  *

1 0.000,0.0006,0.000M =  

(a) Three-dimensional view (b) Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 4 – The third transverse mode (H3): T4 = 0.619 s,  *

4 0.000,0.0733,0.000M =  

 

 
Mode 5 – The first vertical mode (V1): T5 = 0.526 s,  *

5 0.0021,0.0000,0.0054M =  

 

 
Mode 6 – The second vertical mode (V2): T6 = 0.455 s,  *

6 0.0003,0.0000,0.0014M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 7 – The fourth transverse mode (H4): T7 = 0.416 s,  *

7 0.000,0.000,0.000M =  

 

 
Mode 8 – The third vertical mode (V3): T8 = 0.385 s,  *

8 0.0025,0.0000,0.2311M =  

 

 
Mode 9 – The first torsional mode (T1): T9 = 0.374 s,  *

9 0.0000,0.0057,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 10 – The second torsional mode (T2): T10 = 0.367 s,  *

10 0.0000,0.0000,0.0000M =  

 

 
Mode 11 – The fourth vertical mode (V4): T11 = 0.330 s,  *

11 0.0020,0.0000,0.3390M =  

 

 
Mode 12 – The fifth transverse mode (H5): T12 = 0.319 s,  *

12 0.0000,0.0296,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 13 – The third torsional mode (T3): T13 = 0.295 s,  *

13 0.0000,0.0002,0.0000M =  

 

 
Mode 14 – The sixth transverse mode (H6): T14 = 0.261 s,  *

14 0.0000,0.0010,0.0000M =  

 

 
Mode 15 – The fourth torsional mode (T4): T15 = 0.233 s,  *

15 0.0000,0.0014,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 

 
Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 16 – The seventh transverse mode (H7): T16 = 0.225 s,  *

16 0.0000,0.0000,0.0000M =  

 

 
Mode 17 – The second longitudinal mode (L2): T17 = 0.203 s,  *

17 0.0001,0.0000,0.0000M =  

 

 
Mode 18 – The third longitudinal mode (L3): T18 = 0.186 s,  *

18 0.0143,0.0000,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 

 
Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 19 – The eighth transverse mode (H8): T19 = 0.184 s,  *

19 0.0000,0.0007,0.0000M =  

 

 
Mode 20 – The ninth transverse mode (H9): T20 = 0.165 s,  *

20 0.0000,0.0102,0.0000M =  

 

 
Mode 21 – The fifth vertical mode (V5): T21 = 0.165 s,  *

21 0.0000,0.0000,0.0003M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 

 
Side view 

Three-dimensional view Plan view 

Elevation view 

 

Side view 
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Mode 22 – The fifth torsional mode (T5): T22 = 0.162 s,  *

22 0.0000,0.0050,0.0000M =  

 

 
Mode 23 – The sixth torsional mode (T6): T23 = 0.153 s,  *

23 0.0000,0.0009,0.0000M =  

 

 
Mode 24 – The fourth longitudinal mode (L4): T24 = 0.151 s,  *

24 0.0011,0.0000,0.0013M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 25 – The seventh torsional mode (T7): T25 = 0.149 s,  *

25 0.0000,0.0006,0.0000M =  

 

 
Mode 26 – The tenth transverse mode (H10): T26 = 0.138 s,  *

26 0.0000,0.0142,0.0000M =  

 

 
Mode 27 – The sixth vertical mode (V6): T27 = 0.138 s,  *

27 0.0006,0.0000,0.0024M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 28 – The eleventh transverse mode (H11): T28 = 0.134 s,  *

28 0.0000,0.0204,0.0000M =  

 

 
Mode 29 – The seventh vertical mode (V7): T29 = 0.129 s,  *

29 0.0001,0.0000,0.0022M =  

 

 
Mode 30 – The fifth longitudinal mode (L5): T30 = 0.128 s,  *

30 0.0219,0.0000,0.0015M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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APPENDIX C 
 

MODE SHAPES OF THE LRB BRIDGE 

 
Mode 1 – The first longitudinal mode (L1): T1 = 3.019 s,  *

1 0.8977,0.000,0.000M =  

 

 
Mode 2 – The first transverse mode (H1): T2 = 1.809 s,  *

2 0.000,0.6998,0.000M =  
 

 
Mode 3 – The second transverse mode (H2): T3 = 1.062 s,  *

3 0.000,0.0003,0.000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 4 – The first vertical mode (V1): T4 = 0.661 s,  *

4 0.000,0.000,0.0027M =  

 

 
Mode 5 – The first torsional mode (T1): T5 = 0.640 s,  *

5 0.000,0.0022,0.000M =  

 

 
Mode 6 – The third transverse mode (H3): T6 = 0.624 s,  *

6 0.000,0.0724,0.000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 7 – The second vertical mode (V2): T7 = 0.515 s,  *

7 0.0000,0.0000,0.0000M =  

 

 
Mode 8 – The second torsional mode (T2): T8 = 0.474 s,  *

8 0.0000,0.0021,0.0000M =  

 

 
Mode 9 – The fourth transverse mode (H4): T9 = 0.423 s,  *

9 0.0000,0.0000,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 10 – The third vertical mode (V3): T10 = 0.408 s,  *

10 0.0001,0.0000,0.1949M =  

 

 
Mode 11 – The fourth vertical mode (V4): T11 = 0.347 s,  *

11 0.0001,0.0000,0.4086M =  

 

 
Mode 12 – The third torsional mode (T3): T12 = 0.341 s,  *

12 0.0000,0.0035,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 

 
Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 13 – The fifth transverse mode (H5): T13 = 0.323 s,  *

13 0.0000,0.0256,0.0000M =  

 

 
Mode 14 – The fourth torsional mode (T4): T14 = 0.277 s,  *

14 0.0000,0.0018,0.0000M =  

 

 
Mode 15 – The second longitudinal mode (L2): T15 = 0.270 s,  *

15 0.0021,0.0000,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 16 – The sixth transverse mode (H6): T16 = 0.268 s,  *

16 0.0000,0.0024,0.0000M =  

 

 
Mode 17 – The third longitudinal mode (L3): T17 = 0.264 s,  *

17 0.0105,0.0000,0.0000M =  

 

 
Mode 18 – The fourth longitudinal mode (L4): T18 = 0.251 s,  *

18 0.0238,0.0000,0.0003M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 19 – The seventh transverse mode (H7): T19 = 0.241 s,  *

19 0.0000,0.0084,0.0000M =  

 

 
Mode 20 – The eighth transverse mode (H8): T20 = 0.216 s,  *

20 0.0000,0.0006,0.0000M =  

 

 
Mode 21 – The ninth transverse mode (H9): T21 = 0.209 s,  *

21 0.0000,0.0009,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 22 – The fifth torsional mode (T5): T22 = 0.195 s,  *

22 0.0000,0.0071,0.0000M =  

 

 
Mode 23 – The tenth transverse mode (H10): T23 = 0.193 s,  *

23 0.0000,0.0320,0.0000M =  

 

 
Mode 24 – The fifth longitudinal mode (L5): T24 = 0.189 s,  *

24 0.0000,0.0000,0.0000M =  

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 

Three-dimensional view Plan view 

Elevation view 
 

Side view 
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Mode 25 – The fifth vertical mode (V5): T25 = 0.184 s,  *

25 0.0007,0.0000,0.0003M =  

 

 
Mode 26 – The sixth torsional mode (T6): T26 = 0.183 s,  *

26 0.0000,0.0000,0.0000M =  

 

 
Mode 27 – The eleventh transverse mode (H11): T27 = 0.178 s,  *

27 0.0000,0.0066,0.0000M =  
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Mode 28 – The sixth vertical mode (V6): T28 = 0.170 s,  *

28 0.0000,0.0000,0.0000M =  

 

 
Mode 29 – The twelfth transverse mode (H12): T29 = 0.159 s,  *

29 0.0000,0.0021,0.0000M =  

 

 
Mode 30 – The seventh vertical mode (V7): T30 = 0.151 s,  *

30 0.0000,0.0000,0.0100M =  
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