CHAPTER II

HYPERRINGS

There are many standard wn theorems in ring theory.
Hyperrings are a generalizatio v The main purpose of this

- chapter is to give some theore R errings which generalize

some standard theorex JFing t o in this chapter,

some general proper s _@Of jh _' ) \ ings are also given.

The following & poditic Ve some general properties

N

A hypergroup neg on ty and an element of
hypergroup with identity 2@_‘_ 1V 1 _inverse (see Example 3 on
page 11 and Examp e : 2) « ne first propdsition shows that

s Y

a semihypergroup bec flasian identity and each

of its elements has an inverse. This proposition will be used to prove

¢ o O
o e IV F AN S
U :
Proposition 2.1. If a semihypérgrou ﬁlﬁﬂ denti E]:l every
element ]f lﬂ hlaqnimkﬁ’ltii j{ .
A q
. Proof : To prove that H is a hypergroup, let x € H. Then x has

an inverse y in H. Thus there exists -an identity e in H such that

e € (xoy)N(yox) where o is the hyperoperation of H. To show that

Hox = H = xoH, let h € H. Then h € hoe. Since e € yox, we have that

hoe C ho(yox), and therefore hoe C (hoy)ox C Hox. Hence h ¢ Hox.
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This proves that H = Hox. It can be shown similarly that H = xoH. This
proves that Hox = H = xoH for all x € H. Hence H is a hypergroup.
! #
It is well-known in group theory that a nonempty subset S of

a group G is a subgroup of G if and only if xy-l € S for all x, y € S.

Example 5 on pagel3 shows that a s rgroup of a canonical hypergroup

16 shows that a canonical

subhypergroup of a canemica avg Qnot contain the scalar

identity of H. The fo
subhypergroup of a c | REGYC 1 containing the scalar identity
of H and it generaliz tTment d'at e for the abelian ease.

However, its proof sho . Boper y ©f commutativity can be omitted.

Proposition 2.2. Let | 3 'L;‘ Yy \ ergroup with scalar
identity e and S a none Isubs | en S is a canonical

i ] 1
subhypergroup of H con &1 ) ' & Sitor all x; y & 8.

Proof 5! 8 4 bhypergroup of H

containing e.

identity of S Eﬂﬂ?‘j ﬂsmﬂ? canonical and
tﬂies

e € S which i

TRTRYTIH S TNy TaE ™

x € 8, efe xox C S which es that x € eox (C S. Hence for

X, y € S, xoy = xo(y')'g S. Therefore S is a semihypergroup containing
the scalar identity e and each of its elements has a unique inverse in
S. By Proposition 2.1, S is a hypergroup. Since H is commutative and
reversible, we have that S is co@utative and reversible. Hence S is

a canonical subhypergroup of H containing e.

#
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We have an immediate consequence of Proposition 2.2 as follows :

Corollary 2.3. Let A be a hyperring and B a nonempty subset of A.

Then B is a subhyperring of A containing O if and only if for x, y € B,

x+y CBandxyeB.

We give a significant

t condition such that a hyperring

becomes a ring.

'
Proposition 2.4. + x = {0} for all

x g A, then A is a

Proof : To sh ~ 'w l«, fices to show that
|x + y| = 1 for all x ‘Let, : Al et z € X+ y. Then

z+y C G+ yff dvhdecii v x+ 0= {x}.

= {z}.

This proves that ence A is a ring.

e ¢

The followil@ propositioh'gives a geneﬂilization of the

”“FTTJ’H“’J’VI EI (L b2 i M

commutative'.

pmposi&ﬁ"slaﬁﬂ ﬁr;uum'g:m EJ’],@ E) < 5 dow a1

X, ¥y € A then A is a commutative hyperring.

Proof : For x € A, {xz} = (x + 0)2 =x+ 0= {x}, so x2 = X.

1 1 1
Then for x € A, X =X X = XX = X.

Let x, y € A. Then
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2
Xy + Xyx (xy + xyx)
2 2
= (xy)” + xyxyx + xyxxy + (xyx)
= Xy + XyX + Xy + XyX

= Xy + Xy + XyX + XyX

1 1
= xy + (xy) + xyx + (xyx)

and

yX + XyX
Since 0 is an elemen 3 and yx + (yx)
follows that 0 e xy \ By.uniqueness of an
additive inverse of x yXs

It follows ﬁ for any ring R,

if R\{O} is a 18 'ﬂf z‘d ation, then R~{0}

is a group. The fﬂlowing proposition shows @at this is also true

Proposition 2.6. Let A be a byperring. _If A\{O} isya left [right]
group de qaﬁaﬂ ﬁnmeuctﬁr}] g nﬂl’-]l.a Elnultipllcatlon.

Proof : Since A N{0} is a left group under multiplication,

we have that A~{0} is a union of multiplicative subgroups of A~ {0}

and ef = e for all e, £ € A~ {0} such that e2 = e and f2 o

Let e, f € A~{0} be such that e G £ e, Then

1
Oee+e'=ef+(ee) =ef+ee'=e(f+e').
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IE0¢ £+ e', then f + . gA\{O}, so e(f + e')c_:_A\{O_} sincé A~ {0}
is closed under multiplication, and hence 0 € A~ {0} which is a
contradiction. I;his proves that 0 € £ + e'. By uniqueness of an
additive inverse of f, we have that f' = e' and hence e = f. Therefore
A~{0} has a unique element e such that < Since A~ {0} is

a union of multiplicative sub ~ {0} we have that A~ {0}

is a group under multiplieat: n /,/

Corollary 2.7. <«

if and only if it

Proof : 'y from Proposition 2.6 and the fact

that every group a4

(2) followﬁ , atﬂeft [right] zero semigroup

is a left [right] 8rQup. . and a left ght] zero semigroup is a union

ke sﬂs%@’&'ﬂﬂﬂ‘ﬁﬂﬂ?ﬂ‘ﬁ
swm MIRTH WHATNUIE. Blipticative

structure is a Kronecker semigroup contains at most two elements.

This is also true for the case of hyperrings.

Proposition 2.8. Let A be a hyperring. If the multiplicative

structure of A is a Kronecker semigroup, then |Al < 2.

Proof : Since the multiplicative structure of A is a Kronecker

semigroup, it follows that for x, y € A,
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x if- x='y,
xy = yx = . i secesccocsee (*)
0 1E. stk g,
Suppose that |A| > 2. Let x and y be two distinct nonzero elements

of A. Then xx = X, yYy = y and Xy = yx = 0. Therefore

x(x +y) =xx+xy=x+0=1{x}. It follows from (*) that x + y = {x}.

Symmetrically, y + x = {y }. =Y + x, we have that x = y

which is a contradictio
The next prop erties of hyperideals of

hyperrings. Such pr or the case of rings.

Proposition 2.9.

< following statements
hold.

(1) If I an then I + J is a hyperideal
of A.

(2) yperideals of A, then

LY

1y

Proof : To prgve (1), let Igapd J be hyperideals of A. Let

X yers Jﬂ rheh thege Whieh Udenbotdl &5 b o <, 4 < 3 ouen

that x €a+candy € b + d. ¢ From Chapter I, page 8yb € I and

o Bl SR 3 Sl U Ve 8 v

structure of A is reversible and y € b + d, we have that y € b + d .

(1 I ta s hyperides
aelh

Thereforex+y C(a+c)+ O +d)= (s % 8-Y % Cesd )§I+J.
By Proposition 2.2, I + J is a canonical shbhy‘pergroup of A under
addition. Since AIC I, AT CJ, IACI and JA C J, it follows that
A(I +J) =AIl + AJCI+ Jand (I + J)A=IA+ JACTI + J. Hence

I + J is a hyperideal of A.
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To prove (2), let '{Ia} be a collection of hyperideals of A.
ael

From Chapter I, page 8, 0 ¢ Iu for all « € A. Then 0 € ) I, Let
ael

X, ye () I . Thenx, y e 1 for all «a € A. Since such I is
: ach i a0 : -

. ’ :
a hyperideal of A, we have that for all a € A. Thus x + y i

(¢}

for all a e A which impli @ 15 o o Hence by Proposition

AN I)SAl CI ‘ TIACla CI, For 411 Bie A Bence
ael ‘ ‘ '
A ) N 1 aﬁ- ‘"1 . This proves that M I
‘ 4 %\ ()
ael ael - ol
is a hyperideal of A.
We know that e of a rin phism is a subring

of the codomain o ext proposition shows

hyperring homomorphism isﬂlso a subhyperring of
the codomain ﬂgj jﬁﬁ Wfﬂ eed not contain
the zero of mai by Ex e 6 on page 16 .
eope L NI i@i@&%’?ﬁa ﬂa&lﬂnﬂ gl snco s

hyperrlng B, then ¢(A) is a subhyperring of B having w(O) as its

that the image of m

zero and for each x € A, (p(x ) is the unique inverse of @(x) in 9(A).

Proof : Since ¢ is a homomorphism, it is clear ‘that

9(x)9(0) = ¢(0)9(x) = ¢(0) for all x € A. To prove the proposition,

it suffices to prove that the following statements hold.
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(1) For x, ye A, 9(x) + ¢(y) € 9(A) and 9(x)o(y) € 9(a).

(2) For x e A, 9(0) + 9(x) = {9(x)}.

(3) For x € A, 9(0) € 9(x) + 9(x ) and if 9(0) € @(x) + o(y),
then 9(y) = o(x ).

(4) For x, y, z € A, 9(x) € o(y) + 9(z) implies that

9(z) € cp(y') + o(x).

(1) follows from a homomorphism,

A+ ACA and AA :A. 11 x € A, we.have that

9(0) + o(x) = (0 + x ~ Then (2) holds.
To prove (3)
9(0) e o(x + x') =

9(0) & o(x) + o(y). ‘ ) & °3 W us there exists an element

To prove V b that ¢(x) € ¢(y) + 9(z).

Then 9(x) € ¢(y + zﬁ Thus there exists an elmnent u€ey+ z such
ot o/ mmmm Lo
“Eﬁm ammwn wma 2

e kernel of a hyperring homomorphism may be empty. It is
shown by Example 6, page 16. General properties of a hyperring
homomorphism with nonempty kernel are obtained in the same way as those

of a ring homomorphism as follows :

Proposition 2.11. If ¢ is a homomorphism of a hyperring A into a

hyperring B, then the following statements are equivalent.
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(1) ker 9 # 4.

(2) Oe ker ¢.

(3) 9(0) =

4) 0e 9(a).

(5) (9(x)) =o(x') for all x e A.

(6) ker ¢ is a hyperidi

Proof : rove (2), let x ¢ ker ¢.

Then ¢ (x) = 0. ). +cp(x) =9(0 + x) = {p(x)},

so 9(0) = o(x). ker ¢.
It is cle wplies (4) and (4)
implies (1). Now, nd (4) are equivalent.

1£ 9(0) = e olx + x ) = 9(x) + o(x)
which implies that (9 Ed olx') for all x ¢ A,
0 € 9(0) + (9€0)) = ¢(0) + 9(0)

=o-

then (9(0))' = 9(0') =

=9(0 + 0) = {9 (0)} whi This proves that

(3) <=>(5) hold: g:m """""" # (3) (4) and (5) are
equivalent. E ; m

Assume that glAholds. The (5) holds. To prove (6), let

— umwmwmm-

Hence ¢ (x + vy ) = o(x) + ‘P(y =0+0= - This ipplies that

AT Q ﬁq &ﬂ*ﬂ@m’u % QQ ﬂ ﬂq<’a &I subiypargroup
of A under addition. Since ¢ (A(ker (P)) = (P(A)(P(ker 9) = (p(A){O} {0}
and ¢((ker 9)A) = 9(ker ¢)9(A) = {0}p(A) = {0}, we have that

A(ker ¢ ) C ker ¢ and (ker ¢ )J)A C ker ¢ . Therefore ker ¢ is a

hyperideal of A, that is, (6) holds. It is trivial that (6) implies

(L.

Hence the proposition is proved.

i#

14825200 -
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The following two corollaries are immediate consequences of

Proposition 2.10 and Proposition 2.11.

Corollary 2.12. 1If ¢ is a homomorphism of a hyperring A into a

hyperring B such that ker ¢ # 4, then ¢(A) is a subhyperring of B

2w G ¢ via).

‘containing 0 and for each x ¢

Corollary 2.13. If ¢ a hyperring A onto a

hyperring B, then ke

perring A into a

hyperring B such tha _ _1I:A 1 if and only if ker ¢ = {0}.

Proof : By Propos; ;:;~‘ : ; = 0 and
Assume that @ “Then ¢ (x) = 0 = 9(0).
—{0}

Convﬂh Wﬂ‘ﬂﬁ wzl;/]xn ﬁ Yy € A be such that

9 (x) = 9(y) e o(x) + («p(x)) + (q:(y)) = o(x) + v(y 5

e ARSI M AN o -

Thus z efker ¢. Since ker ¢ = = 0 which implies that 0 ¢ x + y .

Since ¢ is 1-1, x 0. Hence ker ¢

1 1 =
Thenx =y , 80 X = y. Hence ¢ is 1-1.

#

Using Corollary 2.14, we get

Corollary 2.15. Let ¢ be a homomorphism of a hyperring A into

a hyperfield F and |A| > 1. Then the following statements hold :
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(1) ¢ is 1-1 if and only if ker ¢ = {0}.
(2) 1If A is a hyperfield and ¢ is 1-1, then ¢(1) = 1 and

¢(x-l) = (w(x))-l for all x € A, x # O.

Proof : (1) Assume that ¢ is 1-1. Since ¢(0) = ¢(00) = (:p(O))2

and F is a hyperfield, 9(0) = 0 or @(0) = 1. If ¢(0) = 1, then for

- ' : = ¢(0) = 1 which is a contradiction
B! &17 2.14, ker9¢ = {0}.

rollary 2.14.

x € A, 9(x) = ¢(x)1 = 9(x)g

since ¢ is 1-1. Thus ¢

1d and ¢ is 1-1. By
(1), ker ¢ = {0} and, - “= 0. ' There 9(1) =9(1)1 =
= 1@ (@IN™) DGANT 2 oM™ = 1. since o

is 1-1, ¢(x) # 0 for 0}3, Hence\for, x ¢ AN{0},
ox 1) = olxLretx) (g G - o (L)t
= 2o = N = |
The following four théorems ge e isomorphism theorems in

-

ring theory. Y. Y}

Theorem 2.16. If ¢ is a homomorphism of a hyperring A onto a hyperring

o e TNUNTNYINT
[:Kkio bl gty i

e(x + ker 9) = o¢(x)
for all x € A. To show that & is well-defined, let x, y ¢ A be such .
that x + ker ¢ =y + ker 9. Then y € x + ker ¢, so there exists an
element z € ker ¢ such that y € x + z. Thus ¢(z) = 0 and therefore

9(y) € o(x + 2) = 9(x) + 9(2) = p(x) + 0 = {p(x)}. Hence ¢(x) = ¢(y)
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To show that ¢ is 1-1,

o(y + ker ¢). Then ¢(x)

1
¢(y + x ), so there exists

Then u € ker ¢. Since ue y

38

let x, y € A be such that ¢(x + ker ¢)

= ¢(y). Thus 0 e o(x) + (cp(x))' = o(y) + q;(x')

1
an element ue y + x such that ¢(u) =

1
+ x , by reversibility of A under addition,

we have that y e u + x. Then y ¢ X + u € x + ker ¢ which implies that

x + ker ¢ =y + ker 9. Henc
Next, to show t

o((x + ker ¢)

and

Sinc
@1sallhﬂmgg ﬂ

ism, let x, y € A. Then

))""*+kercp | Zex+y})
\"’s 0(z + ker ¢) | ze x + y}

ze X + y}

3 A e (y)

(% + ker ¢) + 0 (y + ker ¢)

_o(xy + ker ¢)

Q(x “ker ¢)o(y + ker @)

.T m Now, we have that
onto B ence Af/ker ¢ n B.

QW'WNT]?EUN"MWWEH&]EI

Lemma 2 ! « Let A and B be

hyperrings, ¢ : A - B an onto homomorphism

and I a hyperideal of A. Then ¢ (I) is a hyperideal of B.

Proof : Since I is a hyperideal of A, we have that I is a

subhyperring of A (see Chapter I, page 8 ). By Proposition 2.10,

9(I) is a subhyperring of B.

of B under addition. Since

In particular, ¢(I) is a subhypergroup

¢ is onto, B = ¢(A). We have that AI C I
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and IA C I since I is a hyperideal of A. Theﬁe imply that
Be(I) = ¢(A)e(I) = @(AI) = o(I) and ¢(I)B = ¢(I)e(A) = ¢(IA) S o(I).

Hence ¢(I) is a hyperideal of B.
#

Theorem 2.18. Let A and B be hyperrings, ¢ : A - B an onto homomorphism

9 € I. Then A/I &~ B/o(I).

/ﬁerideal of B. Define

tor:all x € A, *8i o \\ show that ¢ is a-

and I a hyperideal of A suc

§ : A~ B/e(I) by

homomorphism, let

o(x + y)

R e S—r~— >

and

°<ﬂ>uﬂ@f‘r‘l«ﬂ>‘iﬂﬁ We 1}

= ¢ (x)o(y) # o(1)
~RIN ﬂﬁmﬁdw']'lc'ﬂ)ﬁl'] N
= Q(x)‘b(y)
By Theorem 2.16, A/ker @ ~v B/¢(I).
By Corollary 2.13, q>(x') = (<p(x))' for all x € A since 9 is onto.

Next, we claim that ker ® = I. To prove this, let x € ker ®. Then

®(x) = ¢(I). But 9(x) = ¢(x) + 9(I), so #(x) € ¢(I). Then there exists
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an element y € I such that ¢(x) = ¢(y). This implies that

1
¢(x + y ). Thus there exists an

0 € o(y) + (v(y))' = o(x) + w(y'}

1
element z € x + y such that ¢(z) = 0, so z € ker 9. Since A is

1
reversible under addition and z € x + y , we have that xe z + y.
Therefore x € ker ¢ + IS I + I C I since ker ¢ & I. Hence we get

ker  =I. If x eI, theno(x) =l9(x) + ¢(I) = ¢(I) which implies

that x € ker ®. This pro i f Hence we have the

claim. From A/ker ¢ e obtain that A/I n B/¢(I)

as required. : .
# . .

WY\ |
Lemma 2.19. If I and perideals of a erring A such that

I ©J, then J/I is"a i deal

Proof : It fo ma 2.17 and the fact that

the map x - x + I is a homémorp! i_.é onto A/I.
' = #
LT M
Lemma 2.20. If I a"—'—‘--——“:'_'j-f!f'l"‘-"'—'-‘;:‘« ring A such that

I ©J, then the map :

y qﬁr +I)=x+J
(x € A) is an onto ho?omorphism.

AUIANENTNENDNT, .
- reyasmaghimn I

page 8). The map ¢ is clearly onto.
To show that ¢ is a homomorphism, let x, y € A. Then
p((x+ I+ (y+1I) = oz + I | zex+y})

{o(z + I) | z e x + y}

{z+J3 | zex+y}

(x+J) + (y +J)

e(x + I) + ¢(y + I)
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and
e((x + I)D(y + 1)) = olxy + I)
| = Xy +J
= (x+ Dy + J)
= o(x + Do(y + I).
#
Theorem 2.21. If I and erdideals of a hyperring A such that

Proof : By Le perideal of A/I. By Lemma
2.20, the map ¢ : A/ 4 inbd Dy O N ¥x+J(xeA)is

an onto homomorphism e that (A/I)/ker VAR
To prove that ker ¢ = Te -‘ % ¢ € A). Then 9(x + I) = J,
so x + J = J which mp x+ 1€ J[I; Hence

ker ¢ © J/I. Conversel ] sty £ 'y + J = J and therefore
o(y + I) =y+J=»..’|thich y + I € ker ¢. - Hence we have

that ker ¢ = J/I - tain that

LY

iy
w1 /):4) mrw%’wm 1 b
b a@mm HARVINENE Yertaes

of A Since INJ €I, INJ is a hyperideal of I. We have that J is

(A/T)/(I/T) ~ A/ Tl

a hyperideal of I + J since J is a hyperideal of A and JC I + J.
Define ¢ : I = (I + J)/J by

?(x) = x+J
for all x €I. If x €I and y €J, then (x +y) + I =x+ (y + J)'

=x + J = 9(x). This proves that ¢ is onto. Since the map x = x + J
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is a homomorphism of A onto A/J (see Chapter I, page 8 ), it follows

that ¢ is a homoxhorphism. .By Theorem 2.16, we obtain that

I/ker ¢ & (I + J)/J. Next, to show that ker ¢ = INJ, let x € ker 9.
Then x € I and ¢(x) = J. But ¢(x) =x + J, so x + J = J which implies

that x ¢ J. Therefore x € INJ. Hence ker ¢ &INJ. If x € INJ,

then J

I
"
+
(&
I
S
~
i
~
0]
(o]
»

us INJ C ker ¢. Now, we have
that ker J, w1t follows ‘that

®
I/(1nJ) ~ (1 + 1)/J.

It is well-kv g €l thatif I is an ideal of
a ring R, then there tion C et of all subrings of R
containing I onto the 1 s ' /I such that the
bijection takes the se ’ 214 ‘e ils of R containing I onto the set

of all ideals of R/I. ’ 4 A ;...-._ eneralizes this result in

Theorem 2.23. If] I-is—a hyperideai of inig A, then there

exists a bijection Bom ab yp%iugs of A containing

I onto the set of al]."abhyperrings ﬁ A/I having I as their zero

e e o U S W VAT 1

containing I onto the set of &11 hyperldﬂls of A/I.

FRIAN I URAINYIAH

PBroof : Let be the set of all subhyperrings of A containing
I and let )3 be the set of all subhyperrings of A/I 'having I as their
zero. Define o : J{fBby
¢(s) = 8/I
for all S e k.

To show that ¢ is 1-1, let 81, S, ¢ oL be such that @ (Sl) = Q(SZ).
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Then 81/1 = SZ/I° Let x € Sl' Then x + I € S]_/I. Since SllI = SZII’
x+ ILe SZ/I’ so there exists an element y € S, such that x + I =y + I.

Thus x ey + I €S, + S, C SZ' Hence slg SZ' By a similar proof, we

2 2
have that SZE Si' Hence Sl = SZ'

: *
Next, to show that ® is onto, let S e 3. Set

* 2
Since I ¢ S and x + I = : *{/)t follows that I € S.

e m—

" :
Let x, y € S. Then x S w==Simece"S contains I as its

i : s
Let J be a hyperideal of A/I. .Since ¢ is onto, there exists

a subhyperring J .14 :

J—— \ |
Let x € A and y e e J/1, so

xy + I = (x + D(y ml) € A/I’)(J/I) S J/1 sirﬂ TS e,
¢ o O/
hyperideal of uﬁqu3 mﬁ J such that
xy+I=z+ﬁhich mplies ‘a xye?.;L . injz eJand I ©J,
: iy s
- AR NI AR TN TR Y
#

hyperideal of A and ¢

It is known that every field has exactly two ideals and any
commutative ring with identity which has ex.actly two ideals is a field.
This is true for tﬁe case of hype;‘rings which is shown by the next
theorem. In order to prove Lhe theorem, we need the following lemma

and the fact that if S is a semigroup with zero 0 and identity 1 # 0
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4

such that for x € SN{0}, xy = yx = 1 for some y € S, then S~ {0}

forms a group under the operation of S.

Lemma 2.24. If A is a hyperring, then for each x e A, Ax [xA] is a

left [right] hyperideal of A.

1 1
Proof : Let x € A. __w,beA,ax+(bx) =ax + b x
' “..
= (a + b )x € Ax. By Propesition %ﬁs a canonical subhypergroup
of A under addition. . AlLSo, we @) (AA)x € Ax. Hence

‘Ax is a left hyperidea

Theorem 2.25. Let A N with identity and

|A| > 1. Then A is a f {0} and A are the only

hyperideals of A.

Proof : First, perfield. A and {0}

are hyperideals of A. deal of A such that I # {0}.

Then there exist&fsn-selemeat—x—tI such that <=

1.:’0 Since A is a

hyperfield, the muﬁ.p % u exists in A. Then

1= xx-l e I which inrlies that I =

ror i s wg,%@wgm:jm

of A. To show that A is a hyperfield, a mentloned a e, it suffices
- 2R AR UAANDARG: - »

‘such tha xy = 1. To prove this, let x € A and x # 0. By Lemma 2.24
and the commutativity of A, XA is a hyperideal of A. Then by assumption,
we have that xA = {0} or xA = A. Since 0 # x = x1 € xA, xA # {0},

so XA = A. But 1 € A, it follows that there exists an element y € A

such that xy = 1.
#
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The following five theorems and one corollary about hyperrings
concerning maximal hyperideals and prime hyperideals generalize

standard theorems of rings relating to maximal ideals and prime ideals.

Theorem 2.26. Let A be a commutative hyperring with identity and M

a hyperideal of A. Then M is a maximal hyperideal of A if and only

if A/M is a hyperfield. AN "///

Proof : We no +-.‘ sﬂ-xtity of the quotient

x e ANM. Since A is v eq AfM 1 mmutative.

a commutative hyperri : 4ddnt %\ and 1 + M # M. To show

AN

that A/M is a hyperfi v & ©on page 43, it suffices to show
that for x € A\ M, ther is - on'Slloent®y € A such that 1 e Xy + M
(which is equivalent to =1+ M. Let xe ANM. By

Lemma 2.24 and thf:)q: at XA is a hyperideal

of A. It then fo

A. Since le A andm e M, we get X € XA + M.'ﬁut MS xA + M and
x ¢ M, by ass 1 e Ay At
follows that @ﬁﬂiﬂeﬂ;ﬂ wﬂ élﬂjl € Xy + M.
TN
SR e

exists an element x € KN M. Since A/M is a hyperfield, the multiplicative

I}" M is a hyperideal of

inverse of x + M exists in A/M. Then there exists an element y e A
such that 1 + M = (x + M)(y + M), so 1 + M = xy + M which implies
that 1 € xy + M. Since K is a hyperideal of A and x e K, xy € K.
Then 1 e K + MEK + KK since M © K. Hence K = A. This proves

that M is a maximal hyperideal of A.
i#
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Theorem 2.27. Let A be a commutative hyperring and P a hyperideal of
A. Then P is a prime hyperideal of A if and only if A/P is a

hyperintegral domain.

Proof : Assume that P is a prime hyperideal of A. Let

+ P) = P. Then xy + P = P, so xy ¢ P.

Since P is a prime hyperi 'y//g or y e P. Thus x + P =P

X, y € A. be such that (x + P)(
&

or y + P=P. This p P erintegral domain.

Conversely, ntegral domain. Let
> T evA be such t
Since A/P is a hy

x. 2P or 'y’ e Pg

#

Corollary 2.28. In a com mGtativ g A with identity, every

maximal hyperide e i e J 5
In the rinﬂ:f integers, {0} is a proﬂ prime ideal but not

a maximal idﬁ u’[ﬁ;{; ﬂﬁ{t{i{ﬁ ﬂ ?rollary 2.28 is

not true. Th‘y'converse of Corollary true in Boolean hyperrings

- CERIAINTU UM INGIE Y

Theorem !.29. Let I be a hyperideal of a Boolean hyperring A with

identity. If I is a proper prime hyperideal of A, then I is a

maximal hyperideal of A.

1
Proof : First, we note that for x ¢ A, x = x since

X =XX = XX =X. Hence 0 € x + x for all x € A.
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To show that I is a maximal hyperideal of A, let K be a
hyperideal of A such that I &K and I # K. Let x € K~I. Since
Oe x+x=x1+xx=x(1+ ’f)’ there exists an element yel +x
such that xy = 0, so xy € I. Since I is a prime hyperideal of A and

x ¢ 'I, y € I which implies ths

since I€ K. Fromy el + x,

. 1
by reversibility of A u ve that 1 e y + x . But

Cos 1 B H' yperideal of A}.
Since I € €,  # ¢. clusion. Let 4 be

a chain in €. Let K = Let x, y ¢ K. Then

there exist Jl’ 2° ‘Without loss of

'
2y SO X +y c.J

t J; J JB 2

By Propositi éa a%l f A under addition.
It is clear Eﬁ aijﬁm HEFFB merideal of A.

Since ﬁ § L h] ﬁvﬁfore K ¢ €and
K 1is angupper b@m Ij m gn 's Lemma, ﬂs a.mai:imal element,

say M. Then I € M. Clearly, M is a maximal hypefideal of A

generahty, assume a 2° Thus x, y =K.

containing I.

#

Theorem 2.31. Let A be a commutative hyperring with identity having

exactly one maximal hyperideal M. If x € A is such that x2 = x,

then x is either 0 or 1.
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1
Proof : Let x € A be such that x2 =Xy > Then:0 & x 9%

“x s (xx) =x4xx wx(ls x'), so there exists an element y € 1 + x"
such that xy = 0. By reversibility of A under-addition, ley+x.

By Lemma 2.24 and the commutativity of A, xA and yA are hyperideals of
A. If xA and yA are proper hyﬁerideals of A, by Theorem 2.30 and M is

e have that XA ©E M and yASM

&4 © M which is a contradiction

#A, then 1 = xz for some

5 then 1 = yw for some we A

the only one maximal hyperid _ ’

since M # A. Then xA

It is immedi 'ﬁﬂ’. » ve ring R that R is
an integral domain if ly . Itiplicatively cancellative.

We need some verificati

Proposition 2.32. i g. Then A is a

hyperintegral domai plicatively cancellative,

- andx,emﬂl,y-
mﬁ%&%&ﬂ&ﬂﬁ%ﬂ%’}ﬂ‘ﬁaln-

X, Y, g€ Kibe such that xy = %z and x #0. Then O ¢ - (xy) =

o + N RN ?MNM’T@W&H@ Blenent

€y + z such that xu = 0. Since A is a hyperintegral domain and

that is, for x, y, De A, xy

(=

x # 0, we have that u = 0. ThusOey+z . Hence y = z.

For the converse, assume that A is multiplicatively cancellative.
Let x, y € A be such that xy = 0 and x # 0. Then xy = x0 and x 4 0.
Since A is multiplicatively cancellative, y = 0. This proves that A

is a hyperintegral domain.
#
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As in ring theory, we can prove by Proposition 2.32 that every
finite hyperintegral domain containing more than one element is a

hyperfield.

Theorem 2.33. A finite hyperintegral domain of order greater than 1

" is a hyperfield.

Proof : Let A b gral domain such that

*
[A] >1. Let A" =4 x, if 1 # j. Since in

j

- *
A, xy = 0 implies x 5 that A is closed under

multiplication. To ghow t] nder multiplication,

it is equivalent to g / ‘ r all %'e A «  Let

* *
x €A . Then xA = ey {1,2,...,n} are such

v _ / o8
that xx, = xxj, then b Therefore |xA | ‘=

* %* * *
But XA &-A and|xA ve that xA = A . Since A is

*

*
commutative, A x = XA is a group under

multiplication.

,,y_,___,,,_, m‘ ‘

An integra]ﬂoma

its field of quotients,. The proof of,the following theorem shows that

v con ol 1) mmwm@ S st
me g RPN Y T -

~hyperfield.

S tha we can enlarge it to

Proof : Let A be a hyperintegral domain. If A = {0}, then

A can be embedded in every hyperfield. Assume that |A| > 1. Define
the relation ~ on A x (A~ {0}) by

(a,b) ~ (c,d)<=> ad = bec
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for all (a,b), (c,d) e A x (A~{0}). Clearly ~ is reflexive on

A x (A~10}). Since A is commutative, "~ is symmetric. To show that
" is transitive, let (a,b), (c,d), (e,f) € A x (A~ {0}) be such that
(a,b) Vv (c,d) and (c,d) ™ (e,f).- Then ad = bc and c¢f = de, so

adf = bef and bef = bde. Thus adf = bde. Since A is a hyperintegral

ition 2.32 that af

domain and d # 0, we have by Pro

be which implies

that (a,b) Vv (e,f).

Let F = (A x (Ax{0}))/ ; i -5 &, . A x (AN{0})} where

[(a,b)] is the equivalence class % containing (a,b). Define the

= A
ol _.
e P

— -
L‘

for all (a,bﬂ(ﬁﬂ?ﬁ}j m){ﬂgjiﬂ(jo,o) is a

1

NN UAY. .,

(c,d), (c*,d™) e A x (A~{0}) be such that [(a,b)] = [(a*,b*)] and
Ekers 071 o Ee o0 o

(2,1 o [(c,d)]

[(a*,b)] o [(c”,d™)]

[(a,b)Jel(c,d)]

x € ad + be}

{[(x,bd)] | x € ad + bel},

{[(x,b*d*)] | xe o i ok b*c*},

[(ac,bd)] and
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* % Yook

[la” 2Tl a1 "m flae b ek

Since [(a,b)] = [(a",b")] and [(c,d)] = [(c¥,d*)], it follows that

* * *
(a,b) (a*,b ) and (c,d) ~ (c*,d ) which imply that ab = ba - and

ed” = de v« Thep (a8 + Bedbid h gk aF +:bed b = ba dd” .4 bdo p”
= (a7d" + b e*)Ivd.  Te ‘show that LGa,b)F o [(c,d)T= [(a*,b*)] ® [(c*,d*)],
let y €ad + be, that is, [(y,b

’ (a,b)] e [(c,d)]. Then
i+ (ad +bc)bd,sowe

1es that there exists

* %
yb*d* € (ad + be)b d .

*
have that yb 3 & (a%

an element z € a d

and hence [(y,bd)] = e,
[(z,bd")] e [(a,b - \\ollows that

Gk, ba)T, e TLAT 5790 Thae

[(a,b)] o [(c,d)] ¢ 2 tactistin

fa 1%y et ety Pd (a?_:e-ﬂﬁ;;* SR s pctat it Ly

* % * %
c ,d )]. From ab = ba and

* * ; PR I g
cd = dc , we ha ' implies that

* B3 ' *
(ac,bd) ~ (a*c ,bed?) ¢“9b d )] and hence

[(a,b)lol(c,d)] = Em

Sinc E ﬂg%lxw and the operation
® are clearlﬁo u t1 e on‘a o show t ® and © are associative
on F,

*:r‘maﬁ‘ ;‘m{mm 3148
([(a,b)Ige [(c [(e, {[(x,bd)] | x € ad + bc} o [(e,f)]

([(y,bd)] e [(e,£)])
ysad+bc

,b. )]@[(c T B

= U {[(x,bdf)] | x e yf + bde}
yead+be

= {[(x,bdf)] | x € (ad + bc)f + bde}

= {[(x,bdf)] | x € adf + b(cf + de)}
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U {[(x,bdf)] | x € adf + by}
yecf+de ' :

= U ([(a,b)] e [(y,d£)])
yecf+de

= [(a,b)] e {[(x,df)] | x € cf + de}
= [(a,b)] e ([(c,d)] e [(e,£)]) and
([(a,b)Jel(c,d)Del(e,£)]= | bd) Je[(e,f)] .

acaEEiE§53>]

\QE‘? R d)le[(e,£)]).

If u e AN 10} (¢ S \\ ,then
[(a,b)] e | ' i#f ‘F: : ‘\ € au + b0}
57\

\ {aul}

P} (from (3)).

This proves that fer AN10)EE hesscalar identity of

S Lia b)iﬂis the unique inverse

{15 vEImINS...
e ABIANNIDI AT DAY

the scalar identity of (F,e), thus fte' ,b)] is an inverse of [(a,b)]

the semihypergro~ﬁﬂ

To show th for

in (F,e). Let [(c,d)] be an inverse of [(a,b)] in (F,e). Since [(0,b)]
is the scalar identity of (F,e), [(0,b)] is the unique identity of
(F,8). Then [€0,b)] € [{a,b)] & [(c,d)]. But [(a,b) o [(c,d)]

= {[(x,bd)] | x € ad + be}, so there exists an element y € ad + be

such that [(0,b)] = [(y,bd)]. Thus (0,b) ~ (y,bd), so by = O.



53

Since A is a hyperintegral domain and b # 0, y = 0, so 0 € ad + bc.
This implies that bc = (ad)' = a'd, thus (a',b) ~ (c,d). Hence
[(a,b)] = [(c,d)].

To show that (F,e) is reversible, let [(a,b)], [(c,d)],

[(e,£)] € F be such that [(a,b)] e [(c,d)] e [(e,f)]. From the =

P 1
previous proof, [(c ,d)] is the e inverse of [(c,d)] in (F,e).

since [(c,d)] o [(e,£)] ={lCx,df) VAL e cf + de}, [(a,b)] = [(y,df)]
for some y e cf + de. G, b & adf = by. Since (A,+)
is reversible and y € c Agt| -‘~' lows.that de ¢ (c£)'+ y. Then
ed € c'f + y, and so b = c'fb + adf
= f(c'b + ad). Thére‘ A ' ¢ Bid ady . MWen
(6. 5) A {2,850, 56 L L(4,aB) ac (e, )] o [(a,0)]
B g ébﬁq;’Ffpﬁ.lafxbi-,'>] e T 3T 4 i)

Now, we have that ») is aleanonica hypergroup with scalar

identity [(0,u)] where u e sto 5 for each [(a,b)] ¢ F, [(a',b)] is

the unique inversé&wo in (F,e) e s a commutative
7 - L=
semigroup. ' L T o

If ue Anxiﬂl and [(a,b)] € F, the [( )]ot(o,u)j = [(0,bu)]
= [(0,w)] (fx £ s shows t calar identity of the
o O AR
[Ce,d) ] aye t A orn Y
oo AN JAMTIUANADE DAY,

= {[(a,b)Jo[(x,df)] | x € cf + de}

= {[(ax,bdf)] | x e cf + de}

= {[(axb,bdfb)] | x € cf + de} (from (3))
= {[(abx,bdbf)] | x € cf + de}

= {[(y,bdbf)] | y e ab(cf + de)}
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{[(y,bdb£f)] | y € acbf + bdae}

[(ac,bd)] @ [(ae,bf)]
([(a,b)]el(c,d)]) e ([(a,b)Iel(e,£)1).

Therefore (F,e,0) is a hyperring. It follows from (3) that

fori x # A SO Tk 506 tx, x0T = T BN et 011 TGEEYE & Frand

if [(a,b)] € F and a # 0, theayli# ol (b,a)] = [(ab,ba)] = [(ab,ab)].

Ls the identity of the

gd
Qb)] of F has [(b,a)]

e pro l_that (F,e,e) is a

semigroup (F,e) and e
as a multiplicative i
hyperfield, as requ x e A~ {0}, [€O0,x)]
is the zero and [(x, ¥,e,0) and for nonzero
element [(a,b)] of (Fge s multiplicative inverse.
Next, we shal nbedded in F. Let
k € A\ {0} and define ¢

o (x)

for all x € A. ,-,,' —"—_ hism, let a, b ¢ A. Then

Vo 5

;E]{[(xk K| xe a4+ bf iﬂ
f uﬂ?ﬂfm‘m i

| v € (a + )X}

PRSI TIviENa Y

= [(ak,k)] e [(bk,k)]

¢(a + b)

= ¢(a) e ¢(b)
and

¢(ab) [ (abk,k)]

o ECabRE NN T Cerom: (3))
= [(ak,k)Je[(bk,k)]

= q’(8)0¢(b)-
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To prove that ¢ is 1-1,‘ let a, b € A be such that ¢(a) = ¢(b).

Then [(ak,k)] = [(bk,k)]. Thus R ™ bt Since A is a hyperintegral

domain and k # 0, we have by Proposition 2.32 that a = b. Hence ¢
is 1-1.

Therefore, the theorem is completely proved.

i

from the hyperintegral

é 2.34 is in fact the

smallest hyperfield( : - any hyperfield K and
any l1-1 homomorphism : LN

2 exists a unique 1-1 homomorphism

The hyperfield (F

¢ : F =K such that i 6 Préve this, let K be a hyperfield
and 1 A~ K a 1l hi s g T 1 homomorphism,
A —q’b F that i(0) = 0 which
il ﬁ all x € A~{0}. |
K

) (4(b)) 1

7 Tet [(a;5)], [(c,d)T & F b4 such that

[Ca,1)] = [(c,a)]. [finen" SNNUOMENETo: . I}
¢[(aﬁ] - ) (mb)T W

1 UHANENINENT
| 1(ad) (1(8)) T(1@)zh v
cLUBRwit el R Y

MBI LY o8

= gleytatan L
= ¢[(c,d)].

Hence ¢ is well-defined.

To show that ¢ is 1-1, let [(a,b)], [(c,d)] € F be such that

$([Ca,b)] = ¢([(c,d)]). Then i(a)(i(b))-1'= i(c)(i(d))'l, so
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i(a)i(d) = i(b)i(c). Thus i(ad) = i(a)i'(d).= i(b)i(c) = i(be). Since
i is 1-1, ad = bec. Then (a,b) v (c,d). Hence [(a,b)] = [(c,d)].

To show that ¢ is a homomorphism, let [(a,b)], [(c,d)] e F.

- Then

¢([(a,b)] @ [(c,d)]) = ¢({[(x,bd)] | x € ad + be})

,bd) 1) l x e ad + bc}

]xe ad + bc}

3
\Q\“\HN\:HE)(;(b)i(d))
a4 i(bc)(i(b)i(d))
.\m N

\* \ R (i(d))
2 (i(b (i(d))

T+ i) aent
)10+ 4L (e, 1)

and

d’([(a,b) g‘d SRS SR, &
LY i

E = i(a i(c)(i(b)@l(i(d))-l

AUt Ingians”
i<>13mmm§ﬂ vﬁbj?[ M i‘*k><i<k>>'1

let § : F K be a 1-1 homomorphism such that i = dogp. Let
[(a,b)] € F. Let k € A~{0}. Then ‘

¢([(a,b)])

1(a) (L)) L
(($09) (a)) ((o@) (b))~L
($(9(a))) (4 (p(bINL
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= (a7 (by Corollary 2.15)
= #Cetadete®)™)

= $([(ak,k)Tol (bk,k)1™1)

= ¢([(ak,k)]Jo[(k,bk)])

= #([(ak?, kD)D)

Phedn B3

Hence ¢ = ¢.

The hyperfield. . {¥;&,0. be.called the hyperfield of

guotients of A.

s
AULINENININT
ARIAATUAMINYAE
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