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CHAPTER I
THE GRAPH Cc(a,b)

1.1 Introduction

Let G be a finite abelian group such that G # {0} and a,b € G ~ {0} with
o(b) < o(a). Let Cg(a,b) be the undirected graph whose vertex set is G and the

edge set is given by
E={{x,x +a},{z,x+b},{x, 2 —a},{x,2 — b} : x € G}.

We shall assume that a # +b, otherwise C(a, b) degenerates into Cg(a) = Cg(b),
where Cg(a) is the graph whose vertex set is G and the edge set is given by
E={{z,x+a},{zx,xr —a} : 2 € G}. A connected component of the graph Cg(a)
is called an a-cycle.

A graph is k-regular if all its vertices have the same degree k. Under the above

conditions, we can classify Cg(a,b) into three types of regular graph as follows.
Theorem 1.1.1. Let a,b € G ~ {0} such that a # +b and o(b) < o(a).

(1) Cg(a,b) is 2-regular if and only if a and b are elements of order two.

(2) Ca(a,b) is 3-reqular if and only if b is an element of order two but a is not.
(3) Ca(a,b) is 4-reqular if and only if a and b are not elements of order two.

Proof. (1) Assume that Cg(a,b) is 2-regular. Let x be a vertex of Cg(a,b). Since
a#+b,x+a#x+tbsox+a=x—aand xr+b=x—b Thus, 2a =0 and
2b = 0. Since a,b # 0, o(a) = 2 = o(b). Conversely, suppose that a and b are

elements of order two. Then 2a = 0 and 2b =0, so x+a = x—a and x+b = x—b



for all x € G. Thus, the edge set of Cg(a,b) is {{z,z +a}, {z,x+b} : x € G}.

Since a # b, the vertices Cg(a, b) is 2-regular.

(2) Assume that Cg(a,b) is 3-regular. Let = be a vertex of Cg(a,b). Since a # =+b,
r+a#x+b, soeither v +a=x—aorx+b=x—bThus, either 2a =0 or
2b = 0. Since a,b # 0 and o(b) < o(a), o(b) = 2 < o(a). Conversely, suppose
that b is an element of order two but a is not. Then 2b = 0 and 2a # 0, so
r+b=x—band z+a # z—a for all z € G. Thus, the edge set of C(a,b) is
{{z,z+a},{z,x —a},{z, 2+ b} : x € G}. Since a # +b, Cs(a,b) is 3-regular.

(3) Assume that Cg(a,b) is 4-regular. Let x be a vertex of Cg(a,b). Then {x,x +
a},{z,x—a},{x, x+b}, {x,2—b} are distinct. So x+a # x—a and x+b # x—0,
which implies 2a # 0 and 2b # 0. Hence, o(a) # 2 and o(b) # 2. Conversely,
suppose that a and b are not elements of order two. Then 2a # 0 and 2b # 0,
sor+a#x—aandz+b#x—0bforall x € G. Since a# +b, zr+a#x+tb
for all x € G. Thus, {z,z + a}, {z,z — a},{z,z + b},{z,z — b} are distinct.
Hence, Cg(a,b) is 4-regular.

This completes the proof. O

Example 1.1.2. Since o((1,2)) = 6 # 2,0((0,3)) = 2 and 0o((0,1)) = 6 #
2,0((1,0)) = 2 in Zy X Zg, Crz,x2:((1,2),(0,3)) and Cz,xz,((0,1),(1,0)) are 3-

regular graphs as respectively shown below.

(1,4)

(1.3)

(1,2)

(0,0)

(0,1)

(1,0)

(0,5)

(0,2)

(03)

(0,4)

(1,4)

(13)

(0,0)

(0,2)

(1,2)

(1,0)

(0,3)

(0,4)

Remark. When G = (g) is cyclic, G has a unique element of order 2, so Cg(a,b)

1s not 2-reqular. Then it is either 3-reqular or 4-reqular.

Next, we give a condition for C(a,b) to be connected.




Theorem 1.1.3. The graph Cg(a,b) is connected if and only if the group G is
generated by a and b.

Proof. Assume that Cg(a,b) is connected. Let y € G and y # 0. Then there is a
path between vertices 0 and y, so y = ka + b for some k,l € Z. Thus, y € (a,b).
Hence, G = (a,b). Conversely, suppose that G = (a,b). Let x and y be two
distinct vertices in Cg(a,b). Then y —z € G = (a,b). Thus, y — 2 = ka + Ib for
some k,l € Z. This means that there is a path between x and y. Hence, C¢(a, b)

is connected. [l

Corollary 1.1.4. Let G = (g) be a cyclic group. The graph Cg(a,b) is connected
if and only if g = ka + b for some k,l € 7Z.

Proof. 1t directly follows from Theorem 1.1.3 because G = (g) = (a, b) is equivalent
to g = ka + Ib for some k,l € Z. n

Two graphs (V, E) and (V' E’) are said to be isomorphic, denoted by (V, E) ~
(V' E'), if there exists a bijection f : V' — V' such that {z,y} € E if and only
if {f(x),f(y)} € E for all z,y € V. Note that Cg(a,b) and Cg(b,a) are triv-
ially isomorphic. Moreover, since the edge sets of the graphs Cg(a,b), Ca(—a,b),
Cg(a,—=b), Cg(—a, —b) are the same sets, they are also isomorphic.

We can generalize Theorem 1.1.3 as follows.

Theorem 1.1.5. If H = (a,b), then the graph Cg(a,b) has |G : H] = |G|/|H|

connected components, each of which is isomorphic to Cy(a,b).

Proof. Let € G and let © + Cy(a,b) be the translation graph whose vertex
set is  + H and edge set is {{z + h,z + h+a},{x + h,o + h + b}, {z + h,x +
h —a},{z + h,o +h —b} : h € H}. Clearly, z + Cg(a,b) is isomorphic to
Cy(a,b). By Theorem 1.1.3, Cy(a,b) is connected, so x + Cx(a,b) is a connected
component of Cg(a,b) for all z € G. Since |J, (2 + Cu(a,b)) = Cg(a,b) and
H{Hx + Cgla,b) : x € G}| = {oe+ H : x € G} =[G : H] = |G|/|H|, we have
Ce(a,b) has |G|/|H| connected components and each component is isomorphic to

CH(CL, b) [



Remark. IfG = Z, is a cyclic group of order n > 2, then H = (a,b) = (gcd(a, b)),
so |H| =

n
~ ged(n,ab

ced( ped(a )] 5 and Cg(a,b) has ged(n,a,b) connected compo-

nents.

Furthermore, for a cyclic group G, Nicoloso and Pietropaoli [2] studied the
isomorphism testing problem for connected circulant graphs Cg(a,b) and derived
a necessary and sufficient condition to test whether two circulant graphs Cg(a, b)
and Cg(a',V') are isomorphic. They proposed an elementary method to solve
isomorphism testing, which is purely combinatorial and new for the problem.

In addition, properties of the classes of mutually isomorphic graphs were ana-
lyzed. Later, they studied vertex coloring for connected circulant graphs Cg(a, b)
in [3]. They provided an algorithm to find an assignment of colors to the vertices of
circulant graph Cg(a,b) such that adjacent vertices receive different colors and the
number of colors is minimized. The vertex coloring of connected graph Cg(a,b) is
based on the representative matrix of C¢(a,b).

In this work, we let G be any finite abelian group and use their properties
to define the representative matrix of C'g(a,b) and derive isomorphism testing on
the graph Cg(a,b) defined above. We study classes of isomorphic graphs. This
generalizes Nicoloso and Pietropaoli’s paper [2]. In addition, we shall study the
algorithms in [3] to give an explicit assignment of colors to the vertices of graph
Cg(a,b) such that adjacent vertices receive different colors and the number of
colors is minimized.

The thesis is organized as follows. In the next section, we represent our graph
Cq(a, b) as the matrix Mg(a, b) and study its properties including a-cycles, b-cycles,
column jumps and block jumps. Isomorphism criteria are studied in Chapter II.
The final chapter gives some results on chromatic numbers and explicit vertex

coloring schemes from the algorithms presented in [3].



1.2 Cycles and matrices

In the previous section, we learn that each connected components of Cg(a,b) is
isomorphic to Cy(a,b) where H = (a,b). Now we start with the definition of rep-
resentative matrix of Cy(a,b) denote by M¢(a,b), which will be used to prove the
isomorphism testing as our main theorem in the next chapter. The representative

matrix Mq(a,b) for the graph Cy(a,b) can be defined as the following table.

0 a 2a . (o(a) — Da

b b+a b+ 2a b+ (o(a) —1)a

2b 2b+a 2b + 2a 2b+ (o(a) — 1)a
(o(b+{a)) —1)b | (o(b+{a))—1)b+a | (o(b+{(a)) —=1)b+2a | ... | (o(b+ {a)) —1)b+ (o(a) — 1)a

Lemma 1.2.1. Let a,b € G ~ {0} with a # +b and H = (a,b). Then

H/{a) = {(a),b+ (a),2b+ (a),...,(o(b+ (a)) — )b+ (a)} = (b+ (a)).

|H|

In particular, o(b+ (a)) = o(a)

Proof. Clearly, (b+ (a)) C H/{a). Let x € H. Then « = ka + (b for some k,l € Z,
so z + (a) = ka+1b+ (a) = 1b+ (a) € (b+ (a)). Hence, H/(a) = (b + (a)).

Moreover, o(b+ (a)) = [(b+ (a))| = |H/{(a)| = O‘(ial) O

From the above matrix, M¢(a,b) has r = o(b+(a)) rows and ¢ = o(a) columns.
The number of entries of M¢(a,b) is o(b+ (a))o(a) = |H|. Each row corresponds
to a coset in the quotient H/(a) and all entries of M¢(a,b) are distinct. In other
words, vertices of Cy(a,b) appear exactly once.

Two vertices x,y € G are said to be a-adjacent and {x,y} is an a-edge if
y —x = £a and z,y are in an a-cycle if y — z € (a). Notice that two consecutive
entries of a row are a-adjacent and the first and the last entries of a same row
also are a-adjacent, so that each row of Mg(a,b) corresponds to an a-cycle of
Cp(a,b). Thus, Cy(a,b) consists of o(b+ (a)) a-cycles of length o(a). In addition,

two consecutive entries of a column are b-adjacent, that is, their difference is =+b.



However, the first and the last entries of a same column are not necessarily b-

adjacent. It depends on the column-jump of Mg(a,b) denoted by Ag(a,b).
Lemma 1.2.2. Let a,b € GN{0} with a # +b. Then there exists a unique number
Aa(a,b) € {0,1,...,0(a) — 1}, called the column-jump of Mg(a,b), satisfying
rb = Ag(a,b)a. (1.2.1)
Proof. Since b+ (a) € G/(a), we have
rb+ (a) = o(b+ (a))b+ (a) = o(b+ (a))(b+ (a)) = (a),

so rb € (a). Hence, there exists a unique \g(a,b) € {0,1,...,0(a) — 1} such that
rb = Ag(a,b)a as desired. O

Some remarks on the column-jump of Mg (a, b) are studied in the next theorem.
Theorem 1.2.3. Let a,b € G~ {0} with a # =£b.
(1) Aa(—a,b) =0 if and only if Ac(a,b) = 0.
(2) Aa(—a,b) = o(a) — A\g(a,b) if Aa(a,b) and A\g(—a,b) are nonzero.
(3) Ag(a,—b) =0 if and only if \g(a,b) = 0.
(4) Ag(a,—b) = o(a) — Ag(a,b) if Ag(a,b) and Ag(a, —b) are nonzero.
(5) Aa(—a,—b) = Ag(a,b).

Proof. (1) Assume Ag(—a,b) = 0. By Lemma 1.2.2, we have \g(a,b)a = o(b +
(a))b =o0(b+ (—a))b = —Ag(—a,b)a = 0. Since \g(a,b) € {0,1,...,0(a) — 1},

Ag(a,b) = 0. A similar argument proves the reverse.

(2) From Lemma 1.2.2, we have (o(a) — Ag(—a,b))a = o(a)a — Ag(—a,b))a =
o(b+(—a))b = o(b+{a))b = Ag(a,b)a. Then (Ag(a,b)+Ag(—a,b)—o(a))a = 0.
Since Ag(a,b), \g(—a,b) € {1,2,...,0(a) — 1}, Aa(—a,b) = o(a) — Ag(a,b).



(3) Analogous to the proof of (1).
(4) Analogous to the proof of (2).

(5) If Ag(a,b) = 0, then by (3) and (1), we have A\g(a,b) =0 < A\g(a,—b) =0 <
Ag(—a,—b) = 0, so A\g(—a, —b) = Ag(a,b). Assume that Ag(a,b) # 0. From
(2) and (4), we have

A¢(—a,—b) = o(a) — Ag(a, —b) = o(a) — (o(a) — Ag(a,b)) = Ag(a,b).

The proof completes. O
Theorem 1.2.4. Let a,b € G. Then £ - O(b).
ola+{b))
Proof. If a or b = 0, the conclusion is trivial. Assume that a,b € G ~ {0}.
H H
From Lemma 1.2.1, we have r = i and o(a + (b)) = |(_b’) Then rc = |H| =
c 0
c o(b)
b))o(b = . O
oo+ (B)o(b). 50— =

Theorem 1.2.5. Let a,b € G ~ {0} with a # £b and write A = Ag(a,b) # 0.
Then ged(X, o(a)) = o(a + (b)).

Proof. From Eq. (1.2.1) and r = o(b + (a)) | o(b),

o(b) o(b) o(a)
r et om) " T T a0, o)
Thus, we have ged(A, o(a)) = o(a) - 57 = o(a + (b)) by Theorem 1.2.4. O
From the above theorem, (Aa) = {0, \a, 2)a, . . ., (O((‘l’i‘?b)) —1)Aa}. This implies
that a b-cycle of Cy(a,b) consists of h = O(giagbn = Saipy Columns. As a conse-

quence, Mg(a,b) can be partitioned into h equally sized submatrices, the blocks
denoted by 5 where [ € {0,1,...,h—1}. The block (3, is defined on all the r rows
and o(a+ (b)) consecutive columns from column lo(a+ (b)) +1 to (I4+1)o(a+ (b)).

Since o(a + (b)) | Aa(a,b), that is, Ag(a,b) is a multiple of o(a + (b)). From



this, we define the block-jump of Mg(a,b) to be

)\(;(a, b)

Ac(a,b) = ola+ ()’

(1.2.2)

where Ag(a,b) € {0,1,...,h— 1}. Moreover, we have
Theorem 1.2.6. Let a,b € G~ {0} with a # =+b.

(1) Ag(—a,b) = h — Ag(a,b).

(2) Ag(a,—b) = h — Ag(a,b).

(3) Aa(—a,—b) = Ag(a,b).

Proof. We use the definition of block-jump and Theorem 1.2.3 to prove (1)—(3) as

follows.

_ Ag(=ab) _ o(a)=Ag(ab) _  o(a) Ag(ab)
(1) Ae(=0.b) = 28505 = "ot = oty — olatin — 0~ Aala,b).

_ Agla,=b) _ o(a)—Ag(ab) —  o(a) Ag(ab)
(2) AG(a’ _b> o O(g-f—(—b)) - o(a-&-?b)) T o(ak(b)) o(g—i-(b)) =h - AG(a7b>'

Aa(—a,—b A (ab
(3) Aa(—a,—b) = £ = 255 = Aala,b).

This completes the proof. O]

Example 1.2.7. Let a = (1,2),b = (0,3) be in G = Zy X Zg. Since Zy X Zg =
((1,2),(0,3)), the graph Cz,xz,((1,2),(0,3)) is connected. We have r = o((0, 3) +
((1,2))) = 2 and

(07 O) = 2(07 3) = T(()? 3) = )‘G((la 2)7 (07 3))(17 2)7

50 A¢((1,2),(0,3)) = 0, which implies Ag((1,2),(0,3)) = ZE GO = & = 0.
Since ¢ = 0((1,2)) = 6, Mg(a,b) has r = 2 rows and ¢ = 6 columns. The
representative matrix Mg ((1,2),(0,3)) for the graph Cz,xz,((1,2),(0,3)) is the

following table (the blocks are separated by double lines)

(0,0) || (1,2) || (0,4) || (1,0) || (0,2) || (1,4)
(0,3) || (1,5) || (0,1) || (1,3) || (0,5) || (1,1)




Example 1.2.8. Let a = (0,1,2),b = (1,1,1) be in G = Zy X Zg X Z3. Since Zy X
Zo x Zs = ((0,1,2),(1,1,1)), the graph Cz,xz,xz,((0,1,2),(1,1,1)) is connected.
We have r = o((1,1,1) 4+ ((0,1,2))) = 2 and

(0,0,2) =2(1,1,1) = r(1,1,1) = A¢((0,1,2), (1,1,1))(0, 1, 2),

50 Aa((0,1,2), (1,1,1)) = 4, which implies A((0,1,2), (1,1,1)) = 24/ T2hliril —

2 =2. Since ¢ = 0((0,1,2)) = 6, Mg(a,b) has r = 2 rows and ¢ = 6 columns. The

representative matrix M ((0, 1,2), (1,1, 1)) for the graph Cz, xz,xz,((0,1,2), (1,1, 1))

is the following table (the blocks are separated by double lines)

(0,0,0) | (0,1,2) || (0,0,1) | (0,1,0) || (0,0,2) | (0,1,1)
(1,1,1) | (1,0,0) | (1,1,2) | (1,0,1) || (1,1,0) | (1,0,2)




CHAPTER 11
ISOMORPHISM TESTING

In the previous chapter, we defined the representative matrix Mg(a,b) for the
graph Cp(a,b), which has r = o(b + (a)) rows and ¢ = o(a) columns. Moreover,
we defined the block-jump of Mg(a,b) denoted by Ag(a,b), which is a constant
in {0,...,h — 1}, where h = % In this chapter, we study the isomorphism
testing problem for the graphs Cp(a,b) and use the properties of Mg(a,b) to

derive a necessary and sufficient condition to test whether two graphs Cg(a, b) and

Cq(ad', V') are isomorphic. We analyze more results when G is cyclic in Section 2.2.

2.1 Isomorphism Theorem

Our main theorem is as follows.

Theorem 2.1.1. Let a,a’,b,b' € G ~ {0} such that a # +b,a’ # £V, 0(b) < o(a)
and o(b') < o(a'). Then Cy(a,b) and Cy/(a’', ') are isomorphic if and only if either

one of the following two conditions holds:
(1) r=1", o)) = 0o(b) < c = and Ag(a,b) = £Ag(d’,V);

(2) r=1", 0ol/) = o(b) = c = and either Ag(a,b) = £Aq(d', V') or Ag(a,b) =
:tAg(b/, CLI),

where H = (a,b), H' = (a’,b'),7 = o(b+ {(a)),r = ot/ + (d')),c = o(a),d =
o(a’), Ag(a,b) = o)EiJ(:L(I?))) and Ag(a', V) = OA(E’,(+/<’;/>)), where A\g(a,b) and Ag(a', ') are

the column-jump of Mg(a,b) and Mq(a',b') respectively.

Proof. Case 1. r = 1/, o(l/) = o(b) < ¢ = ¢ and Ag(a,b) = £Ag(d,b"). By

Theorem 1.2.4, o(a + (b)) = o= #b/,) - = o(d’ + (b)) and observe
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that h = S5y = o(a’i(b’>) = h'. Then Mg(a,b) and Mg(d',b") have the

same number of rows and columns and the same size of the blocks.



1.1 Ag(a,b) = Ag(d', V). Then Ag(d',b') = Ag(d',b)o(a’ + (b)) = Ag(a,b)o(a + (b)) = Ag(a,b). Let A = Ag(a,b) = A\g(d, V).

The representative matrices Mg(a,b) and Mg(a',b') are shown below.

0 A=1a || da | ... (c—1a
(r=1b|...| r=0Db+(c—A=1a | r=1b+(c—Na i oo | r=1)b+(c—1a

0 A=1)a’ | X | ... (c—1)d
(r=210 | ... | (r=Db+(c=A=1)d | (r=1b +(c—N)d e e L r =1V + (e = 1)d

We see that {{(r—1)b+ja, (A+j)a} :0<j<c=A—=1}and {{(r—=1)b+(c—A+j)a,ja} : 0 < j < A—1} contain boundary
b-edges connecting an entry of the last row with an entry of the first row of Mg(a,b). While, {{(r — 1)/ + ja', (A + j)d'} :
0<j<c—A—1}and {{(r—1V + (c—A+j)d,ja’} : 0 <j <X — 1} contain boundary b’-edges connecting an entry of
the last row with an entry of the first row of Mg(a’,0"). We define a bijection f : H — H' by f(ib+ ja) = ib' 4+ ja’ where
i€ {0,1,...,r—1} and j € {0,1,...,¢c—1}. Then f is a bijection preserving the adjacency condition, so Cg(a,b) and

Cy/(d', V') are isomorphic.

¢l



1.2 Ag(a,b) = —Ag(d,b'). Then \g(d', V') = Ag(d’,b)o(a’ + (V') = (h — Ag(a,b))o(a + (b)) = ¢ — Ag(a,b). Let A = A\g(a,b).

The representative matrices Mg(a,b) and Mg(a',b') are shown below.

0 (A=1a Aa (c=A=1)a (c=MNa (c—1a
(r=1b ... r=100+OW—-1)a || r=Db+Xa | ... | r=Db+(c=A=1a | (r=1b+(c—Na | ... | (r=1b+(c—1)a

0 (A=1)a Ad’ (c=A—=1)d (c—Nd (c—1)d
(r=10 | ... | (r=1D04+XN=1d | (r—1DV+Xd | ... | (r=1DV+(c—2A=1)d | r=1DV +(c=Nd | ... | (r=1)b +(c—1)d

We see that {{(r—1)b+ja, (A+j)a} :0<j<c=A—=1}and {{(r—=1)b+(c—A+j)a,ja} : 0 < j < A—1} contain boundary
b-edges connecting an entry of the last row with an entry of the first row of M¢g(a,b). While, {{(r —1)b'+jd', (c—=A+j)d'} :
0<j<A—=1}and {{(r — V' + (A +j)d,ja'} : 0 < j < c— \—1} contain boundary b'-edges connecting an entry of the
last row with an entry of the first row of Mg(a',b"). We define a bijection f: H — H’ by f(ib+ ja) = ib' + (c—j — 1)d
where i € {0,1,...,7 —1} and j € {0,1,...,¢ —1}. Then f is a bijection preserving the adjacency condition, so Cg(a,b)

and Cpy(a’,b") are isomorphic.

€l
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Case 2. r = ¢/, o(b/) = o(b) = ¢ = ¢ and either Ag(a,b) = £Ag(d, V) or
Ag(a,b) = £Aq(V,a’). Clearly, if Ag(a,b) = £Aq(d’,b'), then Cy(a,b)
and Cy(a’,b') are isomorphic. Suppose Ag(a,b) = £Aq(V',a’). Then we
can apply Case 1 by swapping a’ and ¥, we have Cy(a,b) ~ Cy/(V',d’).
From trivially isomorphic, Cy(a,b) and Cg/(a’,b") are isomorphic as de-
sired.

Conversely, assume that Cy(a,b) and Cg(a’,b’) are isomorphic. Then the
representative matrices Mg(a,b) and Mg(d',b’) have the same number of rows

and columns and the same size of the blocks, which implies » = ;¢ = ¢ and

ofa + (b)) = o(a’ + (V). So o(b) = 575 = O(QTJIFC(/b,» = o(V'). Since we have

assumed that o(b) < ¢, we clearly obtain in the following two conditions.
(1) r=1",0(t)) =0(b) < c= and Ag(a,b) = £As(d,b');

(2) r =1, o(b') = o(b) = ¢ = ¢ and either Ag(a,b) = £Ag(d',V') or Ag(a,b) =
:tAg(b,, CL/),

as desired. [
Lemma 2.1.2. Let a,a’, bt/ € G~ {0} such that a # £b and o’ # £U'.

(1) If r = 1";0(b) = o(t/) and ¢ = , then rt/ = +Ag(a,b)d’ if and only if
Ag(a,b) = £Aq(d,1).

(2) If r = 1" and o) = o(b) = ¢ = ¢, then rd’ = £Ag(a,b)b if and only if
Ac(a,b) = £Aq(V, d).

Here, r = o(b + (a)),r" = o(l' + (d)),c = o(a),d = o(d), A¢(a,b) = OA(iJ(r“(’b?) and

Ag(d' V) = O’\(g,(+/<’é’,/>)), where Ag(a,b) and Ag(a',b') are the column-jump of Mq(a,b)

and Mg(a',b'") respectively.
Proof. (1) Let r =17 0(b) = o(b') and ¢ = . By Theorem 1.2.4, we have

o(a—i-(b)):L-c: d

o(b) o(l)

- =o(a' + (V')).
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Assume that rb’ = £Ag(a,b)a’. From
Ag(a,b)a’ = £rt) = +r'V = +0g(d, b)),

so (Ag(a,b) £ Ag(d',b'))a’ = 0. Then ¢ = o(a') divides A\g(a,b) £ Ag(d', V'),

which implies Ag(a,b) £ Ag(d/,b') = 0. By Eq. (1.2.2), Ag(a,b) = o/\(f;f(f))) =

i% = +Aq(d, ). Conversely, assume that Ag(a,b) = £Aq(d’, V). By
Eq. (1.2.2), we have Ag(a,b) = Ag(a,b)o(a+ (b)) = £Aq(d’,0)o(a’ + (V') =

+Ag(d', V'), so

rt! =1t = \g(d',b)ad = £Ag(a,b)d
as desired.

(2) We can apply (1) by swapping a’ and b'.

Hence, we have the lemma. O

Corollary 2.1.3. Let a,a’,b,b' € G ~ {0} such that a # £b,a’ # £V, 0(b) < o(a)
and o(b') < o(a’). Then Cg(a,b) and Ce(a’,b') are isomorphic if and only if either

one of the following two conditions holds:
(1) r=1", o)) = 0(b) < c=¢ and rb' = £Ag(a,b)a’;
(2) r=1", 0o(l)) = o0(b) = c= ¢ and either rb' = £Ag(a,b)a’ or ra’ = £Ag(a, bV,

where 1 = o(b + (a)),r = ot/ + (d')),c = o(a),d = o(d') and Ag(a,b) is the

column-jump of Mg(a,b).

Proof. Let H = (a,b) and H' = (da/,V'). Assume Cg(a,b) and Cpy/(a',V') are
isomorphic. Then |H| = |H’|, which implies Cg(a,b) and Cg(a’,b") have the
same number of connected components. Moreover, each connected components
of Cg(a,b) is isomorphic to Cy(a, b) and each connected components of Cg(a', 1)
is isomorphic to Cy(a’,b') by Theorem 1.1.5. So Cg(a,b) and Cg(d’,b') are iso-
morphic. Clearly, if Cg(a,b) and Cg(a/,') are isomorphic, then Cg(a,b) and
Cy/(d', V') are isomorphic. Hence, this corollary follows from Theorem 2.1.1 and

Lemma 2.1.2. OJ
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We give examples to demonstrate the above corollary.

Example 2.1.4. Let a = (1 0),a’ =(0,1),b=(0,2),0 = (2,0) bein G = Zy X Zy4.
Then o(t') = o((2,0)) = (( ,2)) = o(b) < ¢ =0((1,0)) =4 =0((0,1)) =
and 7 = 0((0,2) +((1,0))) =2 = 0((2,0)+((0,1))) = r’. From Lemma 1.2.2, since

(0,0) =2(0,2) =1b= Ag(a,b)a = Ag(a,b)(1,0)
for some A\g(a,b) € {0,1,2,3 =c— 1}, Ag(a,b) = 0. Thus,
rb = 2(2,0) = (0,0) = 0(0, 1) = Ag(a, b)d

By Corollary 2.1.3, C7z,xz,((1,0),(0,2)) is isomorphic to C7z,xz,((0,1),(2,0)).

Example 2.1.5. Let a = (1,0),d" = (1,1),b = (0,1),/ = (2,0) be in G =
Zy X Zy. Since o(b') = 0((2,0)) =2 # 4 = 0((0,1)) = o(b), Cz,x2,((1,0),(0,1))
and C7z,xz,((1,1),(2,0)) are not isomorphic by Corollary 2.1.3.

We quote two results on finite abelian groups as follows.

Theorem 2.1.6. [1] Let G be a finite abelian group. Then there exist integers

ni,...,ng > 1 such that
G = Zpy X Ly X -+ X L,

Theorem 2.1.7. [1] Let Gy, Gs, . . ., Gy be finite abelian groups and (a1, as, . .., a;) €
[1._, Gi. Then

o((ay,as,...,a;)) =lem(o(ay),o(az),...,o(as)),

where o(a;) denotes order of a; in G; for alli € {1,2,... t}.
The next corollary gives an easier way to compute the order of elements.

Corollary 2.1.8. Leta = (ay,az,...,a;),0 = (b1, b, ..., b)) € Ly X Ly X+ -+ X Ly,

where ny,...,ny > 1. Then
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(Z) O(G) = lcm<gcd(7rlbl1,a1)’ gcd(:?z,ag)’ T gcd(?ztt,at)> .
o(a) - o(b)
(2) |H| = W, where H = <a,b>.
H|

(3) ofb-+ () = o5

Example 2.1.9. Let a = (1,2),a’ = (0,1),b = (0,3),b = (1,0) be in G = Zy X Zg.
By Example 1.2.7, we have r = 0((0,3) 4+ ((1,2))) = 2 and Ag((1,2),(0,3)) =0, so

rb' =2(1,0) = (0,0) = 0(0,1) = Ag(a, b)d’.

From

c=o(a) =0((1,2)) = lcm<gcd(2271), gcd?&m) = lem(2,3) = 6,
¢ =o(d") =0((0,1)) = lcm<gcd?270), gcd?671)> =lem(1,6) = 6,
o(b) = 0((0,3)) = 1cm(m, gd?—m)) — lem(1,2) = 2,

and (a’) N (b') = ((0,1)) N {(1,0)) = {(0,0)}, we have o(t/) = o(b) < ¢ = ¢’ and
|H'| = \()<(5>)ﬁ()<§>l:))| = @ 12, which imply " = o(¥/ + (a’)) = o“(i/') =12_9—y By

6
Corollary 2.1.3, Cz,xz,((1,2), (0,3)) is isomorphic to Cz,xz,((0,1), (1,0)).

Example 2.1.10. Let a = (0,1,2),a’ = (1,0,1),b = (1,1,1),5 = (0,1,1) be in
G = Zy x Ly X Z3. From Example 1.2.8, we have r = o((1,1,1) + ((0,1,2))) = 2
and Ae((0,1,2), (1,1, 1)) = 4, so

rb =2(0,1,1) = (0,0,2) = —4(1,0,1) = —Ag(a,b)a’.
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From

_ _ _ 2 2 3 _ _
c=o(a) =0((0,1,2)) = lcm(gcd(w), wed(ZT) gcd(s,z)) = lem(1,2,3) = 6,

_ 2 2 3 _ —
- lcm(god(2,1)’ ged(2,0)? gcd(3,1)> - 1CH1(2, L, 3) =6,

)
o(b) = o((1,1,1)) = lem gy, zoatorys geaiay ) = lom(2,2,3) = 6,

2 2 3 . o
gcd(2,0) 7 ged(2,1)° gcd(3,1)> - 1CH1(1, 27 3) =6

and (a")N (V') = ((1,0,1))N{(0,1,1)) = {(0,0,0),(0,0,1),(0,0,2)}, we have o(t') =

o(b) =c = and |H'| = T<(;/))5o<(l1?;)| = @ 12, which imply ' = ot/ + (da’)) =

(')Z,‘) = 2 =2 =r. By Corollary 2.1.3, Cz,42,x2,((0,1,2), (1,1,1)) is isomorphic

to CZQXZQXZg((17 07 1)7 (07 17 1))

Example 2.1.11. Let ¢ = (6,9),a’ = (6,15),b = (12,18),¥' = (12,6) be in
G = Z36 X Z36' Then

¢ = oa) = o((6,9)) = lom (g3, ety ) = lem(6,4) = 12,
¢ = ofa) = o((6,15)) = lem ( sogitiys gty ) = lom(6,12) = 12,
o(b) = 0((12,18)) = lem (57 o, iy ) = lem(3,2) = 6,
o¥) = 0((12,6)) = lem gzt ey ) = lom(3,6) = 6,
(@) N () = ((6,9)) N (12, 18)) = {(0,0), (12, 18), (24,0), (0, 18), (12, 0), (24, 18)},
(@) 1 () = ((6.15)) N{(12.6)) = {(0.0). (0.18)}.

Since |H| = 2@l _ 126) _ 19 apq |g/| = o) O(b/)| = 122(6) =36, r = o(b +

(a)n(b)] 6 [{a”)N (V")
(a)) = (')% = 12 =1+#3= 36 = lﬁ‘) = o(b/ + (a’)) = r'. By Corollary 2.1.3,

)
Craex256((6,9), (12, 18)) is not isomorphic to Cz,,xz,,((6,15), (12,6)).

2.2 Cg(a,b) when G is cyclic

When G is a cyclic group, the next proposition gives the explicit form of elements

in G which have the same order. The proof is immediate.
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Proposition 2.2.1. Let a,a’ € G. Then o(a) = o(a’) if and only if a’ = ka for
some 1 < k < o(a) and ged(k,o0(a)) = 1.

Theorem 2.2.2. Let G be a cyclic group such that a,a’,b,b € G ~ {0} with
a # +b,a’ # £V,0(b) < o(a) and o(b') < o(a’). If o(a) = o(a’) and o(b) = o(b'),

then Cg(a,b) is connected if and only if Ca(a’,b'") is connected.

Proof. Assume Cg(a,b) is connected. Then G = (a, b) by Corollary 1.1.3. By the
above proposition, since o(a) = o(a’) and o(b) = o(V'), we have @’ = ka and b’ = [b

for some 1 < k < o(a),ged(k,0(a)) = 1,1 <1 < o(b) and ged(l,0(b)) = 1. Then
(a', by = (ka,lb) = {a,b) = G,

so Cg(a', V') is connected. By symmetry, we have the theorem. ]

Corollary 2.2.3. Let G be a cyclic group such that a,a’,b,b € G ~ {0} with
a # £b,a’ # £V, 0(b) < o(a) and o(t/) < o(a’). Then Cg(a,b) and Cg(a’,b') are

isomorphic if and only if either one of the following two conditions holds:
(1) o(t/) =0(b) < c = and rb' = £Ag(a,b)d’;
(2) o(t/) = o(b) = c = ¢ and either 1t/ = £Ag(a,b)a’ or ra’ = £ g(a,b)V,

where v = o(b + (a)),c = o(a),d = o(d') and Ag(a,b) is the column-jump of
Mg(a,b).

Proof. Assume o(a) = ¢ = ¢ = o(d’) and o(b) = o(b'). From Corollary 2.1.3,
it suffices to show that » = /. By Proposition 2.2.1, since G is cyclic, a’ = ka
and b = [b for some ged(k,0(a)) = 1 and ged(l,0(b)) = 1. Then H' = (/,V/) =
(ka,lb)y = (a,b) = H. From Lemma 1.2.1, we have r = ‘—Ij' = “Z,l' = 1’ as

desired. O

Proposition 2.2.4. Let G be a cyclic group of order n such that a,b € G. Then

n

(1) oa) = Cim )
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(2) ofb+ (a)) = —giz(gé";“?)).

(3) o(a) _ nged(n,a,b) |
ola+ (b)) ged(n,a)ged(n,b)

Proof. (1) comes from Corollary 2.1.8 (1). (2) is obtained from Corollary 2.1.8 (3)

and remark after Theorem 1.1.5. (3) can be proved by (1) and (2). O

Example 2.2.5. Let a = 3,0’ = 21,0 = 5,0 = 55 be in G = Zgy. Then o(V') =

_ 60 _ _ 60 _ _ _ _ 60 _ _
0(55) = cd(60,55) 12 = gcd(60,5) 0(5) - O(b) <c= 0(3) " ged(60,3) 20 =
s = 0(21) = ¢ and 7 = o(5+ (3)) = gigggg?;g) = 3. From Lemma 1.2.2, since

15 =3(5) = rb = Ag(a,b)a = A\g(a,b)3

for some A\g(a,b) € {0,1,...,19=¢c— 1}, Ag(a,b) = 5. Thus,

rb = 3(55) = 165 = 45 = 105 = 5(21) = Ag(a, b)d'.

This shows that Cz,,(3,5) is isomorphic to Cy,, (21, 55).

Example 2.2.6. Let a = d’ = 2,0 = 9,0/ = 15 be in G = Z4s. Then o(V) =

0(15):m:14:@%:0(9):0(6)<C:C/:0<2>:m:21
and 7 = 0(9 + (2)) = £4U22) _ o mom Lemma 1.2.2, since
ged(42,2,9)

18 =2(9) =1b = Ag(a,b)a = A\g(a,b)2

for some A\g(a,b) € {0,1,...,20 =c— 1}, Ag(a,b) =9. Thus,

rb = 2(15) = 30 # +£18 = 9(2) = +A¢(a, b)d’.

This shows that C7,,(2,15) is not isomorphic to Cz,,(2,9).

Lemma 2.2.7. Let G be a cyclic group such that a,a’,b,b' € G~ {0} with a # +b
and a’ # +b'.

(1) o(t/) =0(b) < c = and rb' = £Ag(a,b)d’ if and only if o(b) < ¢ and
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(', V) € {(ka,lb) :1 <k < o(a),ged(k,0(a)) =1,
1 <1<o(b),ged(l,0(b)) =1 and k =+l mod h}.

(2) o(b') = o(b) = ¢ = and either rt/ = £Ag(a,b)a’ or ra’ = £Ag(a,b)V’ if and
only if o(b) = ¢ and either

(@', V) € {(ka,lb) :1 <k <o(a),ged(k,0(a)) =1,
1 <i<o(b),ged(l,0(b)) =1 and k = £l mod h} or
(a',0') € {(I'b,K'a) : 1 <K <o(a),ged(k,0(a)) =1,
1 <V <o(b),ged(l';o(b)) =1 and k' = £I' mod h}.

Here, h = %,r =o(b+ (a)),c = o(a),d = o(d') and A\g(a,b) is the column-

jump of Mc(a,b).

Proof. (1) Assume o(b) = o(b') < o(a) = ¢ = ¢ = o(d’) and rb’ = £Ag(a,b)d’.
From Proposition 2.2.1, we have @’ = ka and b’ = [b where 1 < k < o(a), ged(k, 0(a)) =
1,1 <1 <o(b) and ged(l,0(b)) = 1. Then

rib =1t = £Agla, b)a’ = +Ag(a, b)ka = +rkb.

So (k£ 1)rb = 0, which implies o(b) divides (k £1)r = (k £ {)o(b+ (a)). Since
o(b)(b+ (a)) = o(b)b+ (a) = (a), o(b+ (a)) | o(b). Thus, h = % divides
k £+, hence k = £l mod h.

Conversely, assume that o(b) < ¢ and (da’,b') € {(ka,lb) : 1 < k < o(a),
ged(k,o0(a)) = 1,1 < 1 < o(b),ged(l,0(b)) = 1 and k& = £l mod h}. By
Proposition 2.2.1, o(b) = o(b') < o(a) = ¢ = ¢ = o(da’). Since k = +lI
mod h = —2Y_ o(b) divides (k +1)o(b+ (a)) = (k +1)r. That is, krb+ lrb =

o(b+(a))
(k £ 1)rb = 0 implies rlb = £rkb. From Lemma 1.2.2, we have

rt) = rlb = +rkb = £Ag(a,b)ka = £)g(a,b)d’.

(2) Assume o(b') = o(b) = ¢ = o(a) = o(d’) = ¢ and either 1t/ = +Ag(a,b))d
or ra’ = £Ag(a,b)t). By Proposition 2.2.1, @’ = I'b and b = k'a where
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1 <K <ofa),ged(K,0(a)) = 1,1 <1I' < o(b) and ged(l',0(b)) = 1. Clearly, if
rb = £Ag(a,b)d’, then (a/,b') € {(ka,lb) : 1 <k < o(a),ged(k,o0(a)) =1,1 <
I < o(b),ged(l,0(b)) =1 and k = £1 mod h}. Suppose ra’ = +Ag(a,b)b.
From

rl'b = ra’ = +Ag(a, b)) = £Ag(a,b)k'a = +rk'b,

so k' = 4+’ mod h.

On the contrary, suppose that o(b) = ¢ and either (a’,V') € {(ka,lb) : 1 <
kE < o(a),ged(k,o(a)) = 1,1 < I < o(b),ged(l,0(b)) = 1 and k = +lI
mod h} or (a,b') € {(I'bk'a) : 1 < K < o(a),ged(k,0(a)) = 1,1 <" <
o(b),ged(’;0(b)) = 1 and k¥ = £I' mod h}. By Proposition 2.2.1, o(b) =
o(b) = ¢ = o(a) = o(d") = . Clearly, if (d/,0') € {(ka,lb) : 1 < k <
o(a),ged(k,o0(a)) = 1,1 <1 < o(b),ged(l,0(b)) = 1 and k = £1 mod h}, then
rt’ = £Ag(a,b)a’. Suppose (a’,b') € {(I'b,K'a):1 <k <o(a),ged(k,o(a)) =
1,1 <V <o(b),ged(l',0(b)) =1 and k' = +I" mod h}. Then

ra’ =rl'b = +rk'b = £Ag(a,b)k'a = +g(a, b)b'.

This completes the proof. O

Next, we use Corollary 2.2.3 and Lemma 2.2.7 to derive classes of isomorphic

graphs. The results have necessary and sufficient conditions which not depends

on Ag(a,b) in the next theorem. It is equivalent to Theorem 5.2 of [2] but our

presentation is simpler.

Theorem 2.2.8. Let G be a cyclic group such that a,a’,b,b' € G ~ {0} with
a # £b,a’ # 2V, 0(b) < o(a) and o(t') < o(a’). Then Cg(a,b) and Cg(a’,b') are

isomorphic if and only if either one of the following two conditions holds:

(1) o(b) < ¢ and

(a',b') € {(ka,lb) :1 <k < o(a),ged(k,o0(a)) =1,
1 <1<o(b),ged(l,0(b)) =1 and k = £1 mod h};
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(2) o(b) = ¢ and either

(@', V) € {(ka,lb) :1 <k <o(a),ged(k,0(a)) =1,
1 <1<o(b),ged(l,0(b)) =1 and k = £l mod h} or
(a',0') € {(I'b,K'a) : 1 <K <o(a),ged(k,0(a)) =1,
1 <V <o(b),ged(l';o(b)) =1 and k' = £I' mod h},

— — o)
where ¢ = o(a) and h = m

Example 2.2.9. Cy,,(a',V) is isomorphic to C%,,(2,9) if and only if (a/,V') €
{(2k,90) : 1 < k < 21,ged(k,21) = 1,1 < 1 < 14,ged(l,14) = 1 and k = =+
mod A}, where h = 2& — 1 — 7 Then k € {1,2,4,5,8,10,11,13, 16,17, 19,20}
and [ € {1,3,5,9,11,13}. Since

{(k,1) : k=4l mod 7} ={(1,1),(1,13),(2,5),(2,9), (4, 3), (4,11), (5,5), (5,9)
(8,1),(8,13),(10,3),(10,11),(11,3), (11,11), (13, 1),
(13,13),(16,5),(16,9), (17,3), (17,11), (19,5), (19,9),
(20,1),(20,13)},

we have

4,3), (4,39), (8,27), (8,15), (10, 3),
,(16,33), (20,27), (20, 15), (22,27),
,(26,33), (32,3), (32,39), (34, 27),

Nej
~—  ~— =
—~
—_
(o)
e

,(38,39), (40,9), (40, 33) 1.



CHAPTER I11
VERTEX COLORING

In this chapter, we give some results on chromatic numbers of Cg(a, b) and explicit
vertex coloring schemes from the algorithms presented in [3]. The conclusion is

recorded in tables in Section 3.4.

3.1 Elementary results

Let G be a finite abelian group such that G # {0} and a,b € G ~ {0} with
a # £b and o(b) < o(a). In this chapter, we shall study the algorithms in [3] to
give an explicit assignment of colors to the vertices of graph Cg(a,b) such that
adjacent vertices receive different colors and the number of colors is minimized.
Since each connected componets of Cg(a,b) is isomorphic to Cy(a,b) where H =
(a, b), we just consider the assignment on the vertices of graph Cy (a, b) by using the
representative matrix Mg (a,b). Recall that Mg (a,b) is defined on r = o(b + (a))
rows and ¢ = o(a) columns and it can be partitioned into h = O(TC@)) blocks,
each block is equally sized r x o(a + (b)) submatrices and let A denotes Az (a,b) €
{0,1,...,¢— 1} such that rb = Aa.

A k-coloring of a graph G is an assignment of k£ colors to the vertices of G. It
is feasible if adjacent vertices receive different colors. A graph G is k-colorable if it
has a feasible k-coloring. The chromatic number x(G) is the smallest &k such that

G is k-colorable.
The representative matrix Mg(a,b) for the graph Cy(a,b) is as follows

0 A=Da || Aa | ... (ec—=1a

(r=1b | ... | r=1b+(c—A—=1)a | (r=1b+(c—Na oo | (r=Db+(c—1)a
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As for the a-edges of Mg(a,b), we distinguish into two types: Ay = {{ib +
ja,ib+ (j+1)a} : 0 <i<r—1and 0 < j < c¢— 2}, which contains ordinary a-
edges connecting consecutive entries in the same row and A; = {{ib, b+ (c—1)a} :
0 <i < r— 1}, which contains boundary a-edges connecting an entry of the last
column with an entry of the first column in the same row. As for the b-edges, we
distinguish into three types: By = {{ib+ ja, (i +1)b+ja}:0<i<r—2and 0 <
j < ¢ — 1}, which contains ordinary b-edges connecting consecutive entries in the
same column and By = {{(r — 1)b+ ja,(A +j)a} : 0 < j < ¢c— X —1} and
By = {{{r—1b+ (c— X+ jla,ja} : 0 < 7 < A —1}. We can use the fact
that rb = Aa to prove that B; and B, contain boundary b-edges connecting an
entry of the last row with an entry of the first row of Mg(a,b). Throughout the
whole chapter, we denote by B, W, R,G the colors black, white, red and green
respectively.

The coloring some entries of Mg(a,b) according to the BW -schema, we mean

the assignment BW : H — {B, W} such that

B

, if 24 7 is even;
BW(ib+ ja) =
W, if i+ jis odd,

for all i € {0,1,...,7 —1} and j € {0,1,...,¢c — 1}, while the W B-schema, we
mean the assignment WB : H — {B, W} such that
W, ifi+ jis even;
WB(ib + ja) =
B, ifi+ jis odd,
for all : € {0,1,...,r—1} and j € {0,1,...,c— 1}.

Next, we shall describe the vertex coloring algorithm for the graph Cy(a,b).

These colorings are usually given as elements of the free monoid generated by
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{B,W, R,G}, for instance,

BWB... WBWB, ifk>1:
B(WB) WB = k copies of WB

BWB, if k=0,

and we write B for B(WB)~'W B. In addition, when we write these elements in
a column, we shall mean we color vertically.

Let the chessboard coloring of Mg(a,b) denoted by C?, be a 2-coloring of
Mc¢(a,b) for which we color all its entries according to the BW-schema. The
block chessboard coloring, denoted by BC?, is a 2-coloring for which we color each
block By, ..., Bn_1 of Mg(a,b) like a chessboard, in such a way that the upper left
corner of each block has always the same color (B or W does not matter).

When we assign C? on Mg(a,b), we just consider coloring feasibility for three
sets of boundary edges, namely, A;, B; and Bs.

A criterian for 2-colorable is given in the next theorem.

Theorem 3.1.1. Let a,b € G~ {0} and H = (a,b). Then x(Cg(a,b)) =2 if and
only if r + X and ¢ are both even.
Proof. Assume r + X\ and c are both even.

Case 1. r and )\ are even. Then c¢— X is even. When we assign color to all entries
of Mg(a,b) according to the C*) we have

B (WB)z~! | W | B (WB)“z 1 w
(WB)z~! (BW)z~!
W (BW) = ! B| W | (BW):-! B

We see that Ay, By and B, are feasible. The coloring completes.

Case 2. r and A are odd. Then ¢ — X is odd. When we assign color to all entries

of M¢(a,b) according to the C?, we have

B (WB)**W | B| W | (BW)™2"B W

A—3 A—3

B (WB)>W | B |W | (BW) =B W
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We see that Ay, B; and B, are feasible. The coloring completes.

So C? is a vertex coloring for r + A and ¢ are both even. Hence x(Cp(a,b)) = 2.
Conversely, assume that x(Cg(a,b)) = 2. Then Cg(a,b) is bipartite. Recall

that a graph is bipartite if and only if there is no odd cycle. So {(r — 1)b, (r —

2)b,...,b,0,a,2a,..., a} and {0,a,2a,...,(c—1)a} are even cycles. Hence r + A

and c are both even. O
We give a example to demonstrate the above theorem.

Example 3.1.2. Consider the graph Cyz,+z.((1,2),(0,3)) in Example 1.2.7.

(0,0) | (1,2) | (0,4) | (1,0) | (0,2) | (1,4)
(0,3) | (1,5) [ (0,1) | (1,3) | (0,5) | (1,1)

Since r+ A =2+0 =2 and ¢ = 6 are even, by Case 1, we have the vertex coloring

for Cz,xz4((1,2),(0,3)) in the following table.

B W |B|W|B|W
w|B|W|B|W|B

Lemma 3.1.3. Let a,b € G~ {0} with b € {(a). Then there exists 2 < X\ < § such
that Cg(a,b) ~ Cy(a, \a) where H = {a).

Proof. Assume b € (a). Then r = o(b+ (a)) = 1 and H = (a,b) = (a). By
Lemma 1.2.2, since b # 0 and a # £b, we have b = Aa for some 2 < X\ < ¢ — 2.
Thus Cp(a,b) ~ Cg(a,Aa). By trivially isomorphic, Cy(a, Aa) ~ Cy(a, —Aa) ~
Ch(a,(c—=X)a). If 2| ¢, then Cx(a,b) ~ Cy(a, Aa) for some 2 < X < ¢, otherwise
Cr(a,b) ~ Cy(a, Aa) for some 2 < X < 1. Hence Cy(a, b) ~ Cy(a, Aa) for some

2< A<t O
From the above lemma, we now focus on 2 < X\ < ¢ for Cy(a,b) with b = Aa.

Lemma 3.1.4. If ¢ is odd, then Cy(a,2a) ~ Cy(a, (5)a).

Proof. Assume that ¢ is odd. Since ¢ — 2(51) =1, ged(%5+, ¢) = 1. Thus,

o(a) c _<_,

o(2a) = ged(2,0(a)) - ged(2,¢) 1
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and

1 = 0((%)@ + (a>> = r/. From Lemma 1.2.2,
Ac(a,2a) = 2. Since 0(2a) = o((51)a) = o(a) = ¢ and ra = —Ag(a, 2a)(5)a, we
5 )a)

have C(a,2a) ~ Cy(a, (55+)a) by Corollary 2.1.3. O

Lemma 3.1.5 (Theorem 4.1 of [3]). Let G be a cyclic group such that a,b €
G~A{0} and a # £b. Consider the graph Cy(a,b) such that either (a ¢ (b)Ab & (a))
or (ae (b) Vbe (a)). Then

2, if |H| even a,b odd,

5, if [H| =5;
X(Cu(a, b)) = <
4, if|H|=13,a=1,b=>5or |H| # 5,3} |H|,a=1,b e {2, H1}.

2

3, otherwise.

Lemma 3.1.6. Let G be a cyclic group such that a,b € G~ {0} with a # +b and
o(b) < o(a). Consider the graph Cy(a,b) such that either b ¢ (a) or b = Aa with

2< A< 5. Then

2, ifr+ X andc are even,

5, ifr=1andc=>5;
X(CH((I?b)):
4, ifr=le=1BA=5orr=1c#53fcAe {25 )

3, otherwise.

Proof. Since r = o(b+ (a)) < o(b) and o(b) < o(a) = ¢, we have r < ¢. The lemma

obtains directly from Lemma 3.1.5 and the fact that |H| = rc and r < c. O

We shall apply the above lemmas in the following sections.
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3.2 The case b € (a)

We study the vertex coloring for Cy(a,b) when b € (a) in this section.

Theorem 3.2.1. Let a,b € G ~ {0} and a # +b be such that b = Aa with

2 <A< 5. If Mis even or c is odd, then

5, ifc=75;
X(Cu(a,b)) = 1 4, ifc:13,)\:507"07&5,3{0,)\6{2,%};

3, otherwise.

\

Proof. Assume A is even or ¢ is odd. By Theorem 3.1.1, since r = o(b + (a)) =
o(Aa + (a)) =1, x(Cu(a,b)) > 2. Then Cy(a,b) ~ Cy(a, \a) where H = (a,b) =
(a) is a cyclic group. We obtain the chromatic number of Cy(a,b) from Lemma

3.1.6. B

Let S(a, Aa) be the pseudo-matrix of the graph Cy(a, Aa), which will be used
to assign the vertex coloring for Cy(a,Aa). It can be defined as the following

pseudo-matrix.

0 a (I—1)a la o | A=1a
Aa (A+1)a A+1—-1)a (A+Da o 23 =1a
2Xa (2A+1)a . 2CA+1—-1)a 2X+1)a o | BA=1)a
(g—Dra| ((g—DA+Da | ... | ((g=DA+I-1Da | ((g—DAX+Da | ... | (gh—1)a
gla (gA+1)a (gAh+1—-1)a

From the above pseudo-matrix, S(a, Aa) has ¢ + 1 rows where ¢ > 1 and A
columns, the number of its entries is ¢ = g\ + [ where 1 <[ < \. The last row of

S(a, Aa) is full if [ = A\, otherwise it contains [ = ¢ — g\ < A entries.

0 A=l-1a| A=0Dal|... | A=1a
Aa (2A—1)a

(g—Dra | ... ((g— DA+ Da oo | (A= 1a
qra oo [ (@A +1=1)a
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We distinguish the a-edges of S(a, Aa) into three types: Ag = {{(iA+7j)a, (i\+
(j+1)a} :0<i<gand 0 <j < XA— 2}, which contains ordinary a-edges
connecting consecutive entries in the same row while A; = {{0, (¢gA + 1 — 1)a}}
and Ay = {{ida, (iX — 1)a} : 1 < i < ¢}, which contain boundary a-edges. On
the other hand, we distinguish the b-edges of S(a, Aa) into three types: By =
H{EX+7)a, (i + DA+ j)a} :0<i<g—1and 0 < j < X\ — 1}, which contains
ordinary b-edges connecting consecutive entries in the same column while By =
{(@+ 47— N)aja} : A—1 < j < A—1} and By = {{((q— DA+ (1+))a, ja} -
0 <j<A—1—1}, which contain boundary b-edges.

The coloring some entries of S(a, Aa) according to the BW -schema, we mean

the assignment BW : (a) — {B, W} such that

B, ifi+ jis even;
BW((iX + j)a) =
W, ifi+ jis odd,

for all i € {0,1,...,¢} and j € {0,1,..., A — 1}, while the W B-schema, we mean
the assignment W B : (a) — {B,W} such that

W, it ¢+ j is even;
WB((iA+ j)a) =
B, ifi+jis odd,

for all ¢ € {0,1,...,q} and j € {0,1,...,A — 1}. Let the chessboard coloring
of S(a,\a), denoted by C? be a 2-coloring of S(a, Aa) for which we color all
its entries according to the BW-schema. The corner complemented chessboard
coloring, denoted by C%, is a 2-coloring such that color entries 0, a, Aa of S(a, \a)
according to the W B-schema and color the remaining entries according to the

BW -schema.
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Aa

Sy

BW -schema

In addition, the coloring some entries of S(a, Aa) according to the BW R-schema,

we mean the assignment BWR : (a) — {B, W, R} such that

(

B, ifj=0 mod 3;

BWR(ja) = W, ifj=1 mod 3;

R, if7=2 mod 3,
(

forall j € {0,1,...,c—1}. The BW RG-schema is the assignment BW RG : (a) —
{B,W, R,G} such that

B, ifj=0 mod 4;

W, itj=1 mod 4;
BWRG(ja) =

R, if 5 =2 mod 4;

G, if ) =3 mod 4,

for all j € {0,1,...,c—1}.

Case 1. ¢ =5. Since 2 < A < £, A = 2, so we have only one graph Cp(a, 2a), which

isomorphic to K5, the complete graph on five vertices. The coloring of its

vertices consists of assigning a different color to each vertex.

0

4a a

3a 2a



Case 2.

Case 3.
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c=13 and A = 5. Since ¢ = 2X + 3, S(a, a) has ¢+ 1 =3 rowsand A =5

columns. The last row contains | = 3 entries.

0 a 2a | 3a | 4a

5a 6a Ta | 8a | 9a

10a | 11a | 12a

Assign color according to the BW R-schema to entries 0, a, . .., 11a as shown.

B|\W|R|B|W
R|B|W|R| B
W | R

Since {11a,12a} € Ay, {12a,0} € A, and {7a,12a} € By, we assign the cell
12a in different color from R, B and W. Pick the color G for 12a.

B|\W|R|B|W
R| B |W|R| B
W | R |G

¢ #5 and X € {2,5*}. By Theorem 3.2.1, x(Cy(a, a)) = 4if 3 1 ¢
and x(Cg(a,a)) = 3 if 3 | ¢. From Lemma 3.1.4, we have the fact that
Cu(a,2a) ~ Cy(a, (5+)a) when c is odd. It suffices to verify the coloring

algorithm for Cy(a, 2a) only.

3.1 Assume that 3 | ¢. Then ¢ = 6k — 3 or 6k for some k € N.
3.1.1 ¢ = 6k — 3. Since ¢ = (3k —2)A+ 1, S(a,2a) has ¢+ 1 =3k — 1

rows and A = 2 columns. The last row contains [ = 1 entry.

0 a
2a 3a
4q 5a

(6k —6)a | (6k —5)a
(6k —4)a
Assign color to all entries of S(a, 2a) according to the BW R-schema.
Since 6k —6 =0 mod 3, BWR((6k — 6)a) = B.
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B w
R B
W R
(BRW)*=2 | (WBR)F2
B W
R

3.1.2 ¢ = 6k. Since ¢ = (3k — 1)\ + 2, then S(a, 2a) has ¢ + 1 = 3k rows
and A = 2 columns. Since [ = A = 2, the last row of S(a, 2a) is full.

0 a
2a 3a
4a oa
(6k —4)a | (6k —3)a
(6k — 2)a | (6k — )a
Assign color to all entries of S(a, 2a) according to the BW R-schema.

Since 6k —4 =2 mod 3, BWR((6k — 4)a) = R as follows.

B W
R B
1% R
(BRW)*=2B | (WBR)*2W
R B
w R

3.2 Assume that 31 cand ¢ =0or 3 mod 4. Then

6k — 2 if k is odd;

6k — 4,6k — 5,6k — 1 if k is even.

3.2.1 ¢ = 6k — 1 and k is even. Since ¢ = (3k — 1)\ + 1, S(a,2a) has

q+ 1 = 3k rows and A\ = 2 columns. The last row contains [ = 1
entry.
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0 a
2a 3a
4a oa
6a Ta

(6k —4)a | (6k —3)a
(6k — 2)a
Assign color to all entries of S(a,2a) according to the BW RG-
schema. Since k is even, k = 2n for some n € N. Then 6k — 4 =
12n —4 =0 mod 4, so BWRG((6k —4)a) = B.

B w
R G
B w
R

t
I

The same argument proves the case ¢ = 6k — 5 and k is even.
3.2.2 6k—2and k is odd. Since ¢ = (3k—2)A+2, S(a, 2a) has g+1 = 3k—1

rows and A\ = 2 columns. Since [ = X\ = 2, the last row of S(a, 2a)

is full.

0 a
2a 3a
4a oa
6a Ta

(6k —6)a | (6k—5)a
(6k —4)a | (6k —3)a
Assign color to all entries of S(a,2a) according to the BW RG-
schema. Since k is odd, kK = 2n + 1 for some n € N. Then 6k — 6 =
12n =0 mod 4, so BWRG((6k — 6)a) = B.
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Similarly, we have the case ¢ = 6k — 4 and k is even.

3.3 Assume that 31 cand ¢ =1 mod 4. Then ¢ = 6k — 5 or 6k — 1 where
k is odd. Consider the first case ¢ = 6k — 1. Since ¢ = (3k — 1)\ + 1,

S(a,2a) has ¢+ 1 = 3k rows and A\ = 2 columns. The last row contains

[ =1 entry.

0 a

2a 3a

4a 5a

6a Ta
(6k —8)a | (6k—T)a
(6k —6)a | (6k—5)a
(6k —4)a | (6k—3)a
(6k — 2)a

Assign color according to the BW RG-schema to entries 0,a, ..., (c —
6)a = (6k — 7)a. Since k is odd, k = 2n + 1 for some n € N. Then
6k —8 =12n—2 =2 mod 4, so BWRG((6k — 8)a) = R.
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Since {(6k — 2)a,0} € A; and {(6k — 2)a,a} € By, we assign the cell
(6k—2)a in different color from B and W. Pick the color R for (6k—2)a.

B w

R G

B w

R G
(BR)*'B | (WG)* W

R G

R

Since {(6k — 3)a, (6k — 2)a} € Ay and {(6k — 3)a,0} € B,, we assign

the cell (6k — 3)a in different color from R and B. We can assign color

W to (6k — 3)a.

B W
R €]
B w
R €]
(BR)"=°B | WG)* =W
R G
W
R

For the last three entries, we assign colors W, R, G to entries (6k —
6)a, (6k — 5)a, (6k — 4)a respectively. This leads to the following table.

B w

R G

B W

R G
(BR)*T°B | (WG)* W

R G

W R

G W

R
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A similar argument proves the case ¢ = 6k — 5 and k is odd.

3.4 Assume that 3{c and ¢ =2 mod 4. Then

6k — 4, if kis odd,;

CcC =
6k — 2, if kis even.

Consider the first case ¢ = 6k—2 where k is even. Since ¢ = (3k—2)\+2,
S(a,2a) has ¢+ 1 = 3k — 1 rows and A = 2 columns. Since [ = \ = 2,
the last row of S(a,2a) is full.

0 a

2a

3a

4a

5a

6a

Ta

(6k —6)a

(6k —5)a

(6k —4)a

(6k — 3)a

Assign color according to the BW RG-schema to entries 0,a, ..., (c —
3)a = (6k — 5)a. Since k is even, k = 2n for some n € N. Then
6k —6 =12n — 6 =2 mod 4, so BWRG((6k — 6)a) = R.

B W
R ]
B w
R €]
(BR)*='B | (WG)*=
R G

Since {(6k — 5)a, (6k — 4)a} € Ay, {(6k — 6)a, (6k — 4)a} € By and
{(6k —4)a,0} € By, we assign the cell (6k — 4)a in different color from
G, R and B. Pick the color W for (6k — 4)a.
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B w
R G
B W
R G
(BR)*"B | WG)* =W
R €]
W

Since {(6k — 4)a, (6k — 3)a} € Ay, {(6k — 5)a, (6k — 3)a} € By, {(6k —
3)a,0} € Ay and {(6k — 3)a,a} € B, we assign the cell (6k — 3)a in
different color from W, G and B. Pick the color R for (6k — 3)a. This
leads to the following table.

QIT| Q|

BB IR RS G

Similarly, we have the case ¢ = 6k — 4 and k is odd.

Case 4. 2 < A < § and A %, except ¢ = 13 and A = 5. The vertex coloring
algorithm for this case, we use 2-phases method. In the first phase we start
by suitably coloring S(a, Aa) with only colors B and W, such as C?, SbC?
and C*, which SbC? shall be refered after Subcase 4.4. Certainly, since A is
even or ¢ is odd, the bipartite graphs are excluded from this case, that is, any
2-coloring has to be infeasible. In order to remove infeasibilities we proceed
with the second phase, where we suitably modify into R the color of one
entry of each infeasible edge, which we shall consider from boundary edges
Ay, Ay, By and By of S(a, Aa) respectively, which these coloring is not make

a and b-edges become infeasible. Thus, we have the approach for Cy(a, Aa)’s

with 2 < A < £ as folows.
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0 A=Il-1a | (AN=1Da (A=1a
Aa :
((g— DA+ 1Da (gh—1)a
qAa (A +1-1)a

4.1 Assume that ¢, A and [ are even. Then \ — [ is even.

4.2

Phase 1: Assign color to all entries of S(a, Aa) according to the C?.

We see that A; is feasible.
Phase 2: Since A, is infeasible, we can modify by changing B to R in

B (WB)*z-! | W | B (WB)z—1 W
147 (BW)z—1!
(BW)3-1
W | (BW) T ! B
B (WB)z 1 1074

its left column and W to R in its right column.

B wB)*= - | W | B (WB)z—1 R
W (BR)3~!
(RW)2~
W | (BW)* T ! B
R (WB)z—! W

Since B is infeasible and {g\a, (gA+ 1)a} € Ay where g\a has color R,

we can modify by changing B to R in its bottom row and W to R in

its top row.
B WB)*>~1 | W | B (RB)z~1 R
w (BR)3~!
(RW)2-1
W | (BW) T ! B
R (WR)z~! w

We see that Bj is feasible. The coloring completes.

Assume that ¢ is odd and A, [ are even. Then A — [ is even.

Phase 1: Assign color to all entries of S(a, Aa) according to the C?.
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B (WB)*z ! | W | B (WB)z—1 W
w (BW)*z" B
(BW)*z B
B | (WB)*z ! W
w (BW)z~! B

Phase 2: Since A; is infeasible, we modify the cell 0 into R.

R (WB)*r 1 | w | B (WB)z—1 W
W (BW)*="B
(BW)*="B
B | (WB)*z ! 14
w (BW)z 1 B

Since A, is infeasible and {0, A\a} € By where 0 has color R, we can

modify by changing B to R in its left column and W to R in its right

column.
R (WB)Y’Z Y | W | B (WB)z~1 R
W (BR)*=*B
(RW)*="R
B | (WB)*z -1 R
w (BW)z~1 B

We see that By is feasible. Since some Bs is infeasible and {0,a} € Ag
where 0 has color R, we can modify by changing B to R in its top row
and W to R in its bottom row.

R (WR)*= -1 | W | B (WB)&~1 R
W (BR)'=*B
(RW)*T"R
B | (RB)*z ! R
w (BW)z 1 B

The coloring completes.

Assume that ¢ is odd and A is even and [ is odd. Then \ — [ is odd.
Phase 1: Assign color to all entries of S(a, Aa) according to the C?.



4.4
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We see that A; is feasible.
Phase 2: Since A, is infeasible, we can modify by changing W to R in

B WB)* =W | B | W (BW)="B w
w (BW)*z" B
(BW)*z B
W | (BW) = W
w (BW)'="B W

its left column and B to R in its right column.

B WB)*=W | B|W (BW)='B w
R (RW)*="R
(BR)*z='B
W | (BW) = W
R (BW)'= B W

Since some B is infeasible and {g\a, (¢\ + 1)a} € Ay where gAa has

color R, we can modify by changing W to R in its bottom row and B

to R in its top row.

A—1-—-3

B (WB)* W | B |W (RW)="R W
R (RW)*T"R
(BR)*="B
W | (BW) =" W
R (BR)='B R

We see that Bj is feasible. The coloring completes.

Assume that ¢, A are odd and [ is even. Then \ — [ is odd.

Phase 1: Assign color to all entries of S(a, Aa) according to the C?.

B (WB)*="W | B |W (BW)z—1 B
W (WB)* T W
(BW)*z B
B | (WB)*=" B
w (BW)z—1 B

Phase 2: Since A; is infeasible, we modify the cell 0 into R.



R (WB)* =W | B | W (BW)z—1 B
W (WB)'= W
(BW)*z'B
B | (WB)*=W B
w (BW)z~1 B

42

We see that As is feasible. Since Bj is infeasible and {(¢g\+1—1)a,0} €
Ay where 0 has color R, we can modify by changing W to R in its

bottom row and B to R in its top row.

R (WB)*="W | B | W (RW)35~1 R
W (WB)*=W
(BW)*z"B
B| (WB)* =W B
R (BR)z 1 B

Since some Bj is infeasible and {0, a} € Ay where 0 has color R, we can

modify by changing B to R in its top row and W to R in its bottom

TOW.
R WR)> =W | R| W (RW)%—1 R
W (WB)*= W
(BW)*="B
B | (RB)* =R B
R (BR)z~! B

The coloring completes.

In some condition on ¢, \ and [, the C? may not be suitable for coloring

of S(a,\a) in Phase 1. We have necessity to introduce the another one

namely S-block chessboard coloring, denoted SbC?. Tt will be useful for vertex

coloring in Subcases 4.5.2.2 and 4.6.2. S-block sizes and coloring schema

depend on ¢ = 2 and some condition on A, (.

1 1If 2

<l<3

and [ is odd, then color the S-block of the first | + (A

mod ) columns of S(a, Aa) according to the BW-schema and partition

the remaining columns into S-blocks of consecutive [ columns.

I+ (A mod [) columns

{ columns

[ columns
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1.1 If (A mod [) is even, then we assign color each S-block according

to the BW-schema.

BW -schema BW -schema

BW -schema,

1.2 If (A mod ) is odd, then we assign color each S-block according
to the W B-schema.

W B-schema W B-schema

BW -schema,

2 If X\ and [ are odd and % < [ < ), then color the S-block of the first

[ — 1 columns of S(a, Aa) according to the BW-schema and color the

remaining columns according to the W B-schema.

A — 1+ 1 columns

{ — 1 columns

W B-schema,

BW -schema

4.5 Assume that ¢, A are even and [ is odd. Then A — [ is odd.

4.5.1 Assume that ¢ > 2.

4511 2<i<A

Phase 1: Assign color to all entries of S(a, Aa) according to the
C2.

B (WB)*="W | B|W (BW)=*B W

w (BW)3-1

(BW)2~!
B| (WB)*=W B
B (WB) =W B

Phase 2: Since A; is infeasible, we modify the cell 0 into R.




4.5.1.2
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R (WB)*="W | B |W (BW)'="B W
w (BW)2—1
(BW)3~1
B | (WB)*=W B
B (WB) ='W B

Since A, is infeasible and {0, Aa} € By where 0 has color R, we can
modify by changing B to R in its left column and W to R in its

right column.

R (WB)* =W | B |W (BW)=' B R
w (BR)z !
(RW)2~!
B| (WB) =W B
R (WB) =W B

We see that By is feasible. Since some B is infeasible and {0,a} €
Ao where 0 has color R, we can modify by changing B to R in its

top row and W to R in its bottom row.

R (WR)*Z"W | R| W (BW)='B R
1474 (BR)%~1
(RW):!
B | (RB)**R B
R (WB) =W B

The coloring completes.
I =1. Since W(BW)= BR =W (BW) 'BR = R and
R(WB)Z'WB = R(WB)"'WB = R and the above complete col-

oring, we have

A

R (WR)>2W | R R
w (BR)z !
(RW)2
B | (RB)2 2R B
R

Since {gAa,0} € A; and those entries have the same color R, A,
is infeasible. This means, we cannot assign color to all entries of
S(a, Aa) according to the C? in Phase 1. So we renew these assign-

ing color according to C*.
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Phase 1: Assign color to all entries of S(a, Aa) according to the
c*.

w B | B | (WB)>—2 w
B B B
B (WB):—2W
(WB)32W
B|W | (BW)22 B
B

We see that Ay is feasible.
Phase 2: Since some A, is infeasible, we can suitably modify by

changing B to R in its left column and W to R in its right column.

W B| B | (WB)22 W
B B B
R (RB)2 %R
(WR)3>W
B|W | (BW)2—2 B
R

We see that Bj is feasible. Since some B; is infeasible, we can
suitably modify by changing W to R in its bottom row and B to

R in its top row.

W B| R | (WR)2~2 w
B B B
R (RB)2 2R
(WR)Z2W
B | W | (BR)22 B
R

Since {\a, 2Aa} € By where 2\a has color R and {\a, (A+1)a} € Ay

and those entries have the same color B. Pick the color R for

(A +1)a.

W B| R | (WR)22 w
B R B
R (RB)27%R
(WR)z—2W
B|W | (BR)272 B
R
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The coloring completes.
4.5.2 Assume that ¢ = 2. Since \ # %, A+l =g \+1l=c#2\+1, s0

1 #1.
4521 3 <1 < A\ Since RW(RW):"'R = RW(RW)°R = RWR and
R(BR):™'B = R(BR)"B = RB with 4.5.1.1, we have

R|(WR =W |R|W (BW)'="B R
W (BW)='B W | B| (RBY**"R|B
R (WB) =W B

These coloring is feasible for this case.

4522 2<1<3.

R (WR)* =W R|W | (BW)Z"B| R
W | (BW)ZB |W | B (RB)* =" B
R |(WB)ZW | B

Since there exists at least one consecutive entries in the same col-

>~

umn have color R, the above coloring is infeasible. So we renew
these assigning color in Phase 1 according to the SbC?. Since A is

even and [ is odd, we have the following two cases.

(A mod ) I columns 11312 columns I columns
columns
I columns (A mod 1) 1131=2 columns I columns
columns

[ columns




4.5.2.2.1 (A mod l) is even. Then [ 4+ (A mod [) is odd.
Phase 1: Assign color to all entries of S(a, Aa) according to the SbC?.

B | (WB)*%*“-1 | W | B (WB) =W B | [BWB)=WB]l?)=2 | B | (WB)="W | B
W (BW)="B W | B | (WB)>-1 | w | WBW)ZBW|li1-2 | W | (BW)=B | W
B (WB) =W B

Phase 2: Since A; is infeasible, we modify the cell 0 into R.
R | (WB)*%“-1 | w | B (WB)= W B | [BWB)=WB|l1)-2 | B | (WB)=W | B
w (BW)=' B W | B| (WB)>%-1 | W | W(BW)ZBW|l-2 | w | (BW)="B | W
B (WB) ='W B

We see that As is feasible. Since Bj is infeasible and {0, (gA 41— 1)a} € A; where 0 has color R, we can modify by changing
W to R in its bottom row and B to R in its top row.

R | (WB)*%“-1| W | B (WB) = W B | [BWB)ZWB|l1!=2 | R | (WR)=W | R
w (BW)= B W | B| (WB)> "W | WBW)=BW]l1=2 | w | (BW)=B | W
B (RB)="R B

Since some By is infeasible and {0,a} € Ay where 0 has color R, we can modify by changing B to R in its top row and W

to R in its bottom row.

R | (WR*>"-1|w | B (WB)="W B | [BWB)=WBIli-2 | R | (WR)ZW | R
w (BW)="B W | B | (RB)**-1 | R | W(BW)=BW|l2 -2 | W | (BW)="B | W
B (RB) =R B

Modify the remain infeasible Ay into R.
R | (WR*>1|w|B (WB) =W B | [RWB)ZWB|l3-2 | R | (WR)=W | R
W (BW)="B W | B | (RB)*%-1| R [W(BV{/)?BR]%J*2 W | (BW)=B | W
B (RB) =R B

Ly



The coloring completes.

4.5.2.2.2 (A mod [) is odd. Then [+ (A mod ) is even.
Phase 1: Assign color to all entries of S(a, Aa) according to the SbC?.

BB W | B W (BW)= B w | w(Bw)Bwl2 | w | BW)SB | W
W (BW)Z' B W | B | (WB)>"""w | B | [BWB)ZWB2 | B|WB%W| B
B (WB) ='W B

Phase 2: Since A; is infeasible, we modify the cell 0 into R.
RIWB)"ETW | B W (BW) = B w | wewYEBwlil-2 | w | (Bw)SB | w
4 (BW)=' B w | B | (wB)>"=w | B | BWB)SwWB|}-2 | B | WB)FW | B
B (WB)= W B

Since A, is infeasible and {0, Aa} € By where 0 has color R, we can modify by changing B to R in its left column and W

to R in its right column.

R|wWB*“™=w | B|W (BW) =" B W | W(BW)ZBW|lH-2 | w | (BW)F'B | R
w (BW)'='B w | Bl wB“"%"w | B | [BWB)ZwWB|}-2 | B| WB=W |B
R (WB) ='W B

We see that B is feasible. Since some By is infeasible and {0,a} € Ay where 0 has color R, we can modify by changing B

to R in its top row and W to R in its bottom row.

R | WR“™=w |R|W (BW)'5'B w | wBw)EBwltl-2 | w | BW)S'B | R
w (BW)'="B w | B | (RB)“™%"R | B | [BWB)ZWB]1}-2 | B | WB)ZW | B

R (WB) ='W B
Modify the remain infeasible A, into R.

87



R | (WR“™=W | R|W (BW)'='B R | [W(BW)'T" BR]l#1-2
W (BW)'3"B W | B | (RB)“™=R | B | [RWB)="WB|l3)-2
R (WB) =W B

The coloring completes.

6%
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4.6 Assume that ¢ is even and A, [ are odd. Then A — [ is even.

4.6.1

4.6.2

Assume that ¢ > 2.
Phase 1: Assign color to all entries of S(a, Aa) according to the C?.

B WB* ! | W |B| (WB=W B
W (WB)3 1
(BW):~!
B| (WB)'zT ! W
B (WB)=W | B

Phase 2: Since A; is infeasible, we modify 0 into R.

R WB)z ! | W |B| (WB=ZTW B
W (WB)z !
(BW)3~!
B| (WB)*z ! W
B WB)="W | B

We see that Aj is feasible. Since B; is infeasible and {(¢gA\+1—1)a,0} €
Ay where 0 has color R, we can modify by changing W to R in its

bottom row and B to R in its top row.

R WB*= -1 | W |R| (WR=ZW R
1474 (WB)3—1
(BW)3~!
B| (WB)*zT ! W
B (RB)=*R B

Since some Bj is infeasible and {0,a} € Ay where 0 has color R, we can

modify by changing B to R in its top row and W to R in its bottom

Trow.
R WR)*>~' | W | R| (WR=W R
W (WB)3—!
(BW):~!
B | (RB)*z ! R
B (RB)="R B

The coloring completes.

Assume that ¢ = 2. Since A\ # %, A+l =g \+1l=c#2\+1, s0
| # 1. For the reason, RW(BW)z~'B = RW(BW)°B = RWB and
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R(WB):'R = R(WB)°R = RR and the above complete coloring, we

have

R|WR*> 1| W|R| (WRZW |R

A-l_q

w (BW)="B W |B|(RB)=!|R
B (RB)="R B

If [ = )\, then the above coloring completes, otherwise does not because
{(A=1)a, (2XA —1)a} € By and those entries have the same color R. So
we cannot assign color to all entries of S(a, Aa) according to the C? in

Phase 1.
4.6.21 | =\

R | (WR)ZW | R
W | (BW)='B | W
B | (RB)="R | B

4622 2<l< % Since \ and [ are odd, we have the following two cases.
4.6.2.2.1 If (A mod [) is even, then the coloring same as 4.5.2.2.1.

4.6.2.2.2 If (A mod [) is odd, then the coloring same as 4.5.2.2.2.



4.6.2.3 % <l < A except [ =3 and A = 5. Then %_Qﬁ # —1.

A—1 2 -A-1 (-Da |A—1-1|O\-1)a
columns columns columns
-1 A+1-1)a A—1
columns columns
N-A—1|A+2-Da|{A=1-1|@r\+1-1)a
columns columns
Phase 1: Assign color to all entries of S(a, Aa) according to the SbC?.

B (WB)* T 1 W | B WB)*== |W |W|B| (WB* W |B|W
w (BW)'=" B|B|W (BW)*z 1 B
B| WB*> |wW|B|W| BW?<T2B |W|W

We see that A, is feasible.
Phase 2: Since A,

is infeasible, we can modify by changing B to R in its left column and W to R in its right column.

B (WB)*z 1 W |B| wB* > |W|W|B| (WB>72W |B|R
W (BW)=* B|B|W (BW)*r 1 B
R| wWB*> |wW|B|W| BW)?*72B |W|W

Since some Bj is

infeasible in the first 2l — A — 1 columns, we can suitably modify by changing B to R in its bottom row

and W to R in its top row.

21—X—3

B (WB)*z 1 W | B (RB)*=~" R|W|B| (WB? W |B|R
W (BW)'z" B|B|W (BW)*z 1 B
R| WR*=2" |wW|B|W| (BW>ZT72B |W|W

We see that Bj is feasible. Modify the remain infeasible Ay into R.

¢S



The coloring completes.

B (WB) 7 1 0% (RB)*=~" R (WB)*s —2W
w (BW) B (BW)*z 1
R | (WR*= B (BW)* T 2B | R

€q
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We illustrate Theorem 3.2.1 by the following examples.

ZsxZ
Example 3.2.2. The graph C7z,xz.((0,1),(0,2)) has m = 2 =5 con-

nected components, each of which isomorphic to Cy((0,1),(0,2)) where H =
((0,1),(0,2)). Since (0,2) = 2(0,1), A = 2. Since ¢ = 0((0,1)) = 5 = 2\ + 1,

S(a,2a) has 3 rows and 2 columns. The last row contains 1 entry.

00 |oy| [ay|ay| [eolen| 606y || @
02 [ 03] |02 @y [@2]@3)] 6263 | @] @3
(0,4) (1,4) (2,4) (3,4) (4,4)

By Case 1, we have the vertex coloring for C'y((0, 1), (0,2)) and the other compo-

nent in the following table.

B | W
R| G
Yz

Example 3.2.3. The graph C7,,(2, 10) has | <|2Z, i%’)\ = f—g = 2 connected components,
each of which isomorphic to Cy (2, 10) where H = (2,10). Since 10 = 5(2), A = 5.
Since ¢ = 0(2) = 13 = 2XA + 3, S(a, 5a) has 3 rows and 5 columns. The last row

contains 3 entries.

0124|6838 1135|719
10 | 12 | 14 | 16 | 18 11 13 | 15| 17 | 19
20 122 | 24 21 | 23|25

By Case 2, we have the vertex coloring for Cy(2,10) and the another component

in the following table.

B|\W|R|B|W
R| B |W|R| B
WIR|G

ZsxZ,
Example 3.2.4. The graph Cyz,«7.((1,1),(0,2)) has m = 2 =2 con-

nected components, each of which isomorphic to Cg((1,1),(0,2)) where H =
((1,1),(0,2)). Since (0,2) = 2(1,1), A = 2. Since ¢ = o((1,1)) = 8 = 3\ + 2,
S(a,2a) has 4 rows and 2 columns. Since [ = A = 2, the last row of S(a, 2a) is full.
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(0,0) | (1,1)
(0,2) | (1,3)
(0,4) | (1,5)
(0,6) | (1,7)

(
(
(
(

1,

Since 3 1 ¢ and ¢ = 0 mod 4, by Subcase 3.3.2, we have the vertex coloring for

Cu((1,1),(0,2)) and the another component in the following table.

B

w

G

w

R
B
R

G

Example 3.2.5. Since Z;3 = (1,2), the graph Cz,(1,2) is connected. Since
2=2(1), A\ =2. Since c = 0(1) =13 =6A+1, S(a,2a) has 7 rows and 2 columns.

The last row contains 1 entry.

0=l
2 |3
4 | 5
e
B g
10 | 11
12

Since 3 1 ¢ and ¢ = 1 mod 4, by Subcase

C7,5(1,2) in the following table.

3.3, we have the vertex coloring for

SmQ= Q=

I QAT | |0 |F| W

Example 3.2.6. Since Zos = (1,11), the graph C7,.(1,11) is connected. Since
11 = 11(1), A = 11. Since ¢ = o(1l) = 25 = 2A+3, ¢ = 2 and | = 3, so (A
mod /) = 2 and [2] = 3. We obtain S(a,11a) has ¢ + 1 = 3 rows and A = 11

columns. The last row contains | = 3 entries.
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0 1 2 314 |5 6 7189 |10
1112 (13 |14 | 15|16 | 17 | 18 [ 19 | 20 | 21
22123 |24

Since 2 < A < §, S(a,11a) is in Case 4. Since ¢ = 2 and A,l are odd where
2 <1< 3and (A mod ) is even, by Subcase 4.6.2.2.1, we have the vertex coloring
for Cz,.(1,11) in the following table.

R|\W|B|W|B| R\ W|B|R|W|R
wW|B|W|B|R|\W|B|R|W|B|W
B | R | B

Example 3.2.7. The graph C7z_.z7,.((3,1),(3,6)) has % =12 =5 con-
nected components, each of which isomorphic to Cy((3,1),(3,6)) where H =
((3,1),(3,6)). Since (3,6) = 6(3,1), A = 6. Since ¢ = 0((3,1)) = 25 = 4\ + 1,
g =4 and [ =1, that is, S(a,6a) has ¢ + 1 = 5 rows and A\ = 6 columns. The last

row contains [ = 1 entry.

(0,0) | (3,1) | (1,2) | (4,3) | (2,4) | (0,5)
(3,6) | (1,7) | (4,8) | (2,9) | (0,10) | (3,11)
(1,12) | (4,13) | (2,14) | (0,15) | (3,16) | (1,17)
(4,18) | (2,19) | (0,20) | (3,21) | (1,22) | (4,23)
(2,24)

(1,0) | (4,1) | (2,2) | (0,3) | (3,4) | (1,5)
(4,6) | (2,7) | (0,8) | (3,9) | (1,10) | (4,11)
(2,12) | (0,13) | (3,14) | (1,15) | (4,16) | (2,17)
(0,18) | (3,19) | (1,20) | (4,21) | (2,22) | (0,23)
(3,24)

(2,0) | (0,1) | (3,2) | (1,3) | (4,4) | (2,5)
(0,6) | (3,7) | (1,8 | (4,9) | (2,10) | (0,11)
(3,12) | (1,13) | (4,14) | (2,15) | (0,16) | (3,17)
(1,18) | (4,19) | (2,20) | (0,21) | (3,22) | (1,23)




3,0) | (1,1) | (4,2) | (2,3) | (0,4) | (3,5)
(1,6) | (4,7) | (2,8) | (0,9) | (3,10) | (1,11)
(4,12) | (2,13) | (0,14) | (3,15) | (1,16) | (4,17)
(2,18) | (0,19) | (3,20) | (1,21) | (4,22) | (2,23)
(0,24)

(4,0) | (2,1) | (0,2) | (3,3) | (L4) | (45)
(2,6) | (0,7) | (3,8) | (1,9) | (4,10) | (2,11)
(0,12) | (3,13) | (1,14) | (4,15) | (2,16) | (0,17)
(3,18) | (1,19) | (4,20) | (2,21) | (0,22) | (3,23)
(1,24)

57

Since 2 < A < §, S(a, 11a) is in Case 4. Since ¢, A are even with ¢ > 2 and [ = 1,

by Subcase 4.5.1.2, we have the vertex coloring for Cyz, vz, ((3,1), (3,6)) and the

other component in the following table.

w

WS | oW

TS W= |
WS || =

oW S|

WD W=

B
R
w
R

3.3 The case b ¢ (a)

When b ¢ (a), we have x(Cg(a,b)) = 2 (Theorem 3.1.1) and x(Cg(a, b)) = 3 with

vertex coloring algorithm in the next theorem.

Theorem 3.3.1. Let a,b € G~ {0} be such that a # £b,0(b) < o(a) and b ¢ (a).
If r+ X\ is odd or ¢ is odd, then x(Cg(a,b)) = 3.

Proof. Assume that r + X is odd or ¢ is odd. Then x(Cg(a,b)) > 2 by Theorem

3.1.1. We can prove this theorem by to finding an assignment of three colors to

the vertices of graph Cy(a,b).

Next we shall describe the vertex coloring algorithm for the graph Cpy(a,b)

with b ¢ (a), we use 2-phases method. In Phase 1, we start by suitably coloring

Mg (a,b) with C* and BC?. After that we suitably modify into R the color of one
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entry of each infeasible edge, which we shall consider from boundary edges A, By

and By of Mg(a,b) respectively, which these coloring do not make the other a and

b-edges become infeasible. Thus, we have an approach for Cy(a, b) as follows.

Case 1.

Case 2.

0 ‘(Afl)a‘/\a‘ (c—1a
(r—1) (r—1) (r—1) (r—1)
+(ec—=XA=1a | +(c—Na +(c—1a

r 1s odd and c, X are even. Then ¢ — X is even.

Phase 1: Assign color to all entries of Mg(a,b) according to the C2.

B (WB):~! | W | B (WB)*z 1 W
(WB)= W (BW)="B
B (WB)= 1 W | B| (WB)3! W

We see that A; is feasible.
Phase 2: Since B is infeasible, we can modify by changing B to R in its

bottom row and W to R in its top row.

B (WB):~: | W | B (RB)“= 1 R
(WB) =W (BW)™="B
R (WR)=z—1 W | B | (WB)3! W

Since By is infeasible and {(r — 1)b+ (¢ — 1)a, (r — 1)b} € A; where (r — 1)b
has color R, we can modify by changing B to R in its bottom row and W to

R in its top row.

B (RB)>~' | R | B (RB)“=> 1 R
(WB) =W (BW)= B
R (WR)Z 1 W|R|(WR): ! W

The coloring completes.

r,c are odd and X\ is even. Then ¢ — X\ is odd.

Phase 1: Assign color to all entries of Mg(a,b) according to the C?.

c—A—-3

B WB)2"' | W | B (WB) w B
(WB)= W (WB) =W
B (WB)“=2—W B|W | (BW)2~! B
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Phase 2: Since A; is infeasible, we can modify by changing B to R in its

left column and W to R in its right column.

R (WB)2~' | W | B (WB)“ =2~ W B
(WR)= W (RB)='R
R (WB)=2—W B| W | (BW)3~1 B

Since some By is infeasible and {(¢ — 1)a,0} € A; where 0 has color R, we

can modify by changing W to R in its top row and B to R in its bottom

TOwW.
R WB)21 | W | B (RB)* =R B
(WR) =W (RB)'='R
R (WR) 2= W R| W | BW)2! B

We see that Bj is feasible. The coloring completes.

r,c and A are odd. Then ¢ — ) is even.

Phase 1: Assign color to all entries of Mg(a,b) according to the C2.

B (WB)*TW | B | W (BW)= 1 B
(WB) =W (WB) =W
B (WB)="~! W | B| (WB)=W B

Phase 2: Since A; is infeasible, we can modify by changing B to R in its

left column and W to R in its right column.

R (WB)*Z*W | B | W (BW)= 1 B
(WR) =W (RB)"='R
R (WB)z -1 W | B | (WB*>W B

We see that Bj is feasible. Since some By is infeasible and {0,a} € Ay where

0 has color R, we can modify by changing B to R in its top row and W to

R in its bottom row.

R WR)ZW | R| W | (BW)*—1 B
(WR)=°W (RB)"="R
R (WB)z" -1 W | B| (RB)*T°R B

The coloring completes.
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Case 4. r is even, c is odd and X is even. Then ¢ — X is odd.

4.1 Assume that r > 2.
Phase 1: Assign color to all entries of Mg(a,b) according to the C?.

B (WB):~' | W | B | (WB)** W B
(WB)z~! (WB)z~!
1% (BW)*="B | W | B | (WB)2~! w

Phase 2: Since A; is infeasible, we can modify by changing B to R in

its left column and W to R in its right column.

c—A—3

R WB)2* | W | B | (WB) W B
(WR)5~1 (RB)5 !
w (BW)=—B | W | B | (WB)3~! R

We see that B is feasible. Since some Bs is infeasible and {0,a} € Ay
where 0 has color R, we can modify by changing B to R in its top row
and W to R in its bottom row.

A

R WR):=Y | W | B | (WB)* W B
(WR)z~" (RB)5™!
w (BW)=—B | W | B | (RB)%~! R

The coloring completes.



4.2 Assume that r = 2.

421 X < £. Since R(WR)2'W = R(WR)°W = RW and B(RB): 'R = B(RB)’R = BR and the above complete coloring,

4.2.2

we have

These coloring is feasible for this case.

C
>\>§.

Since there exists at least one consecutive entries in the same column have color R, the above coloring is infeasible. So we

adjust these assigning color in Phase 1 according to the BC?. Since ¢ is odd and o(a + (b)) | ¢, o(a + (b)) is odd.

R | (WR)2"! \ W | B|(WB“"W | B

W | (BW)="B | W |B \ (RB)*~! | R
R (WR)2~1 W |B| (WB)*>"W | B
W | (BW)="B| W |B (RB)3~! R

Phase 1: Assign color to all entries of Mg(a,b) according to the BC?.

B | wB)**=2=w | B | BWB)*“ ¥ = wBswien 2 | B | (WB)*“ = w | B
w | (BW) B | W | wBw) P Bwsetan 2 | W | (BW)* B | W
Phase 2: Since A; is infeasible, we can modify by changing B to R in its left column and W to R in its right column.
R | wB)* 2w | B | BWwB) = wplswiom 2 | B | (WB)* = w | B
w | (BW)* 2B | W | (w(BW) S Bw st 2 | wo | (BW)* 2B | R

We see that By and By are feasible. Since Ay is infeasible and {(r — 1)b+ (¢ — 1)a, (A — 1)a} € By and (r — 1)b+ (¢ — 1)a
has color R, we can suitably modify by changing W to R in the last column of a block and B to R in the first column of

consecutive block.

R

o(a+(b))—3
2

W | B

[R(WB)

o(at(b)—3
2

¢ ____9
WB] o(at (b))

o(at(b)—3
2

w

w

o(at(b))—
2

3

B

(W(BW)

o(a+(b))—3
2

BR] olatmy 2

o(a+(b))—3
2

B

The coloring completes.

19
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Case 5. r is even, ¢ and X are odd. Then ¢ — )\ is even.

5.1 Assume that r > 2.
Phase 1: Assign color to all entries of Mg(a,b) according to the C2.

B (WB)**W | B |W | (BW)= ! B
(WB)=-! (WB)5-!
W (BW)=-! | B|W | (BW)TB W

Phase 2: Since A; is infeasible, we can modify by changing B to R in

its left column and W to R in its right column.

R WB)*=W | B |W | (BW)= ! B
(WR):~! (RB)z~!
w (BW)="1 | B | W (BW)*z*B R

Since Bj is infeasible, we can modify by changing B to R in its bottom

row and W to R in its top row.

R (WB)*=*W | B | R | (BR)*= 1 B
(WR)5~1 (RB)5 !
W BW)-L | R| W | (BW)TB R

We see that Bs is feasible. The coloring completes.

5.2 Assume that r = 2.

521 A> £ Since RWR)2'W = R(WR)°W = RW and B(RB): 'R =
B(RB)’R = BR and the above complete coloring, we have
R| (WB)**W | B|R|(BR*='|B
W | ®RW)Z1|R|W| (BW)TB |R
These coloring is feasible for this case.

522 A< 3.

R | (WB)**W | B| R (BR)“="~! B

W (RW)5" 1 R|W | (BW) B |R

Since there exists at least one consecutive entries in the same col-

umn have color R, the above coloring is infeasible. So we adjust

these assigning color in Phase 1 according to the BC?. Since c is
odd and o(a + (b)) | ¢, o(a + (b)) is odd. The feasible coloring for

this case is same as 4.2.2.

Case 6. r,c are even and X\ is odd. Then ¢ — X\ is odd.
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6.1 Assume that r > 2.
Phase 1: Assign color to all entries of Mg(a,b) according to the C2.

B (WB)*= W \ B \ w (BW)=2"B w
(WB):~! (BW)5—1
w (BW)“=—B W | B| (WB)*&W B

We see that A; is feasible.
Phase 2: Since Bj is infeasible, we can modify by changing W to R in

its bottom row and B to R in its top row.

B (WB)*=W | B | W (RW)“3—R W
(WB)3~1 (BW)3~1
R (BR)* "B R|B| (WB**TW B

Since Bs is infeasible and {(r—1)b+(c—A—1)a, (r—1)b+(c—N)a} € Ag
and (r —1)b+ (¢ — A — 1)a has color R, we can modify by changing W

to R in its bottom row and B to R in its top row.

R WR)*ZW | R | W (RW)="R W
(WB): ! (BW):~!
R (BR)“% B R | B | (RB)*R B

The coloring completes.

6.2 Assume that 7 = 2. Since R(WB)2"'R = R(WB)°R = RR and
W(BW)27'B = W(BW)B = WB and the above complete coloring,

we have
R| (WR*>W |R|W (RW) =R W
R (BR)*>"B R|B|(RB)R| B

Since {0,b} € By and those entries have the same color R, the above
coloring is infeasible. So we adjust these assigning color in Phase 1
according to the BC?. Since A is odd and o(a + (b)) | A, o(a + (b)) is

odd. The feasible coloring for this case is same as 4.2.2.

This completes Theorem 3.3.1 and the coloring algorithm. O
We give three examples to demonstrate Theorem 3.3.1.

Zex1,
Example 3.3.2. The graph Cz,xz,:((0,2),(3,3)) has m = 1 = 6 con-

nected components, each of which isomorphic to Cg((0,2),(3,3)) where H =
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((0,2),(3,3)). Since r = 0((3,3) + ((0,2))) = 2 and (0,6) = r(3,3) = Ac(0,2), we
have A = 3. Since ¢ = 0((0,2)) =9, Mg(a,b) has r = 2 rows and ¢ = 9 columns.

(0,0) | (0,2) | (0,4) | (0,6) | (0,8) | (0,10) | (0,12) | (0,14) | (0,16)
(3,3) | 3,5) | 3,7) | (3,9) | (3,11) | (3,13) | (3,15) | (3,17) | (3,1)

(1,0) | (1,2) | (1,4) | (1,6) | (1,8) | (1,10) | (1,12) | (1,14) | (1,16)
(4,3) | (4,5) | (4,7 | (4,9) | (4,11) | (4,13) | (4,15) | (4,17) | (4,1)

(2,0) | (2,2) | (2,4) | (2,6) | (2,8) | (2,10) | (2,12) | (2,14) | (2,16)
(5,3) | (5,5) | (5,7) | (5,9) | (5,11) | (5,13) | (5,15) | (5,17) | (5,1)

(3,0) | (3,2) | (3,4) | (3,6) | (3,8) | (3,10) | (3,12) | (3,14) | (3,16)
(0,3) | (0,5) | (0,7) | (0,9) | (0,11) | (0,13) | (0,15) | (0,17) | (0,1)

(4,0) | (4,2) | (4,4) | (4,6) | (4,8) | (4,10) | (4,12) | (4,14) | (4,16)
(1,3) | (1,5) | (1,7) | (1,9) | (1,11) | (1,13) | (1,15) | (1,17) | (1,1)

(5,0) | 5,2) | (5,4) | (5;6) | (5,8) | (5,10) | (5,12) | (5,14) | (5,16)
(2,3) | (2,5) | (2,7) | (2,9) | (2,11) | (2,13) | (2,15) | (2,17) | (2,1)

Since r is even and ¢, A are odd, Mg(a,b) is in Case 5. Since r = 2,\ < § and
o(a+ (b)) = 0((0,2) 4+ ((3,3))) = 3, by Subcase 5.2.2, we have the vertex coloring
for Czyx2,5((0,2),(3,3)) and the other component in the following table.

R|\W|B|R|W|B|R|W|B
W|B|R|\W|B|R|W|B|R

ZoxZ
Example 3.3.3. The graph C7,xz,,((0,2),(3,9)) has \<(|0,3)X,(31729‘)>| = 2 =6 con-

nected components, each of which isomorphic to Cg((0,2),(3,9)) where H =
((0,2),(3,9)). Since r = 0((3,9) + ((0,2))) = 2 and (0,6) = r(3,9) = Ac(0,2), we
have A = 3. Since ¢ = 0((0,2)) = 6, Mg(a,b) has r = 2 rows and ¢ = 6 columns.
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(0,0) | (0,2) | (0,4) | (0,6) | (0,8) | (0,10)
(3,9) | (3,11) | (3,1) | (3,3) | (3,5) | (3,7)

(1,0) | (1,2) | (1,4) | (1,6) | (1,8) | (1,10)
(4,9) | (4,11) | (4,1) | (4,3) | (4,5) | (4,7)

(2,0) | (2,2) | (2,4) | (2,6) | (2,8) | (2,10)
(5,9) | (5,11) | (5,1) | (5:3) | (5,5) | (5:7)

(3,0) | (3,2) | (3,4) | (3,6) | (3,8) | (3,10)
(0,9) | (0,11) | (0,1) | (0,3) | (0,5) | (0,7)

(4,0) | (4,2) | (4,4) | (4,6) | (4,8) | (4,10)
(1,9) | @, 1) (L1 | (1,3) | (1,5) | (1,7)

(5,0) | (5.2) | (5,4) | (5,6) | (58) | (5,10)
(2,9) | (2,11) | (2,1) | (2,3) | (2,5) | (2,7)

Since r, ¢ are even and A is odd, M¢(a,b) is in Case 6. Since r = 2 and o(a +
(b)) = 0((0,2) + ((3,9))) = 3, by Subcase 6.2, we have the vertex coloring for
Crox745,((0,2),(3,9)) and the other component in the following table.

R|W|B|R|W|B
W|B|R|W|B|R

ZsxT
Example 3.3.4. The graph Cz,xz,:((0,2),(2,4)) has m = 18 = 4 con-

nected components, each of which isomorphic to Cg((0,2),(2,4)) where H =
((0,2),(2,4)). Since r = 0((2,4) +((0,2))) = 3 and (0,12) = r(2,4) = \(0,2), we
have A = 6. Since ¢ = 0((0,2)) = 9, Mg(a,b) has r = 3 rows and ¢ = 9 columns.



(0,0) | (0,2) | (0,4) | (0,6) | (0,8) | (0,10) | (0,12) | (0,14) | (0,16)
(2,4) | (2,6) | (2,8) | (2,10) | (2,12) | (2,14) | (2,16) | (2,0) | (2,2)
(4,8) | (4,10) | (4,12) | (4,14) | (4,16) | (4,0) | (42) | (44) | (46)
0,1) | (0,3) | (0,5) | (0,7) | (0,9) | (0,11) | (0,13) | (0,15) | (0,17)
(2,5) | 2,7 | 2,9 | (2,11) | (2,13) | (2,15) | (2,17) | (2,1) | (2,3)
(4,9) | (4,11) | (4,13) | (4,15) | (4,17) | (4,1) | (4,3) | (4,5) | (4,7)
(1,0) | (1,2) | (1,4) | (1,6) | (1,8) | (1,10) | (1,12) | (1,14) | (1,16)
(3,4) | (3,6) | (3,8) | (3,10) | (3,12) | (3,14) | (3,16) | (3,0) | (3,2)
(5,8) | (5,10) | (5,12) | (5,14) | (5,16) | (5,0) | (5,2) | (5,4) | (5,6)
1,1 | 1,3 | 1,5 | 0,7 | (1,9) | (1,11) | (1,13) | (1,15) | (1,17)
3,5 | 37 | 3,9 | 3,11 [ (3,13) | 3,15 | 3,17 | B, 1) | (3,3)
(5,9) | (5,11) | (5,13) | (5,15) | (5,17) | (5,1) | (5,3) | (5,5) | (5,7)
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Since 7,c are odd and X is even, by Case 2, we have the vertex coloring for

Crex745((0,2),(2,4)) and the other component in the following table.

R|\W|B|\W|B|W|B|R|B
wi|B | W |B|W|B|W|B|R
R\W|R|W|B|W|B|W|B




3.4 Conclusions

Let r = o(b+ (a)),c = o(a) and A € {0,1,...,c— 1} be such that rb = Aa. We shall conclude the vertex coloring algorithm for
Cy(a,b) developing in the previous sections in the following table.

Theorem 3.1.1 : r + X and ¢ are even.

Conditions Assignments
B (WB)2=! | W | B (WB)= 1 w
Case 1. r and ) are even (WB)z 1 BW -schema (BW)3~1
W (BW) =" ~1 B|W | (BW)z~! B
B (WB)*=W | B|W | (BW)“="B W
Case 2. r and )\ are odd (WB) Tlyy BW-schema, (BW) 2B
B (WB)*==W | B |W | (BW)=TB W

L9



Theorem 3.2.1 : Ais even or ¢ is odd with 2 < )\ <

<
2

Conditions Assignments
B|W
Case1l. ¢c=5 R| G
Y
B|\W|R|B|W
Case 2. ¢c=13and A =5 R|B|WI|R| B
WI|R|CG
Case 3. c#5and A € {2, %1
3.1 3¢
B w
R B
3.1.1 ¢=6k—3 where ke N W R
(BRW)k=2 | (WBR)*~2
B %%
R
B w
R B
3.1.2 ¢ = 6k where k € N W R
(BRW)k=2B | (WBR)*2W
R B
W R
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Conditions Assignments
3.2 3tcand c=0o0r3 mod 4
B w
R G
B %%
3.2.1 ¢=6k —1 or 6k — 5 where k is even R G
(BR)Z—3 | (WG)% 3
B w
R
B w
R G
6k — 2 if kis odd; b W
3.22 c= R G
6k —4 if k is even. (BR) sk Rize) sk
B w
R G
B w
R G
B w
R G
3.3 ¢ =6k —5 or 6k — 1 where k is odd (BR)*T°B | (WG)* =W
R G
%% R
G w
R
B w
R G
6k — 4, if kis odd; B W
34 c= R G
6k — 2, if kis even. (BR) Bt g wa) BT
R G
%% R
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Conditions

Assignments
Case 4. 2< A< Sand A\ # Cgl,exceptc:13and)\:5
B (WB)*=-! | W | B (RB)%—1 R
w BW-schema (BR)z !
4.1 g, and [ are even (RW)%—l
W (BW) T ! B
R (WR)z 1 w
R (WR)*=-! | W | B (WB):—1 R
w BW-schema (BR) ' B
4.2 qis odd and A,l are even (RW)%R
B | (RB)* T 1 R
W (BW)z—1 B
B WB)* =W | B | W (RW)="R W
R BW-schema (RW)*T°R
4.3 q,l are odd and \ is even (BR)'T'B
W | (BW) =B W
R (BR)= B R

0.



Conditions Assignments
R (WR)* =W | R | W (RW)3~1 R
W BW-schema (WB)*= W
4.4 q, )\ are odd and [ is even (BW)%B
B | (RB)**"R B
R (BR)z ! B
4.5 q, )\ are even and [ is odd
451 q>2
R (WR)* =W | R | W (BW)'="B R
W BW -schema (BR)3~!
4511 2<l< A\ (RW)z—1
B | (RB)* =R B
R (WB) =W B
w B| R | (WR)22 W
B R B
A519 -1 R BW -schema (RB)? 2R
(WR)22W
B | W | (BR)2"2 B
R

1L



Assignments

Conditions
452 q=2
R|(WR W |R|W (BW)="B R
4521 3 <l<A w (BW)=B W | B|(RB)Y**"R|B
R (WB) =W B

4522 2<1<3

R | (WR*>%-1|w | B WB)ZW B | [RWWB)ZWB]l1)-2 | R | (WR)=W
4.5.2.2.1 (A modl)iseven || W (BW)='B W | B | (RB)*>%*-1| R | W(BW)=BR|ZI-2 | W | (BW)=B
B (RB) =R B
R|(WR“™=wW | R|W (BW)'='B R | [W(BW)" BRJL#)-!
4.5.2.2.2 (A mod ) is odd W (BW)="B W | B | (RB)“™5"R | B | [RWB)FwB]l3]-!
R WB)=W B

¢l



Conditions Assignments
4.6 g is even and \,[ are odd
R (WR)*>~'|W | R| (WR=W R
1174 BW-schema (WB)3—1
4.6.1 ¢>2 (BW)%—l
B | (RB)*T 1 R
B (RB)=*R B
462 q=2
R | (WR)ZW | R
4621 1=\ W | (BW)=B | W
B | (RB)=°R | B
4622 2<1<3
4.6.2.2.1 (A mod ) is even same as 4.5.2.2.1
4.6.2.2.2 (A mod 1) is odd same as 4.5.2.2.2
B (WB) 1 W | B (RB)*==* R|W | B/| (WB* W
4623 5 <l<A w (BW)=" B| R |W (BW)*z 1
R| (WR*= |W|B|W| (BW)™*2B |R|W

€L



Theorem 3.3.1 : r + X\ is odd or c is

odd with b ¢ (a)

Conditions Assignments
B (RB)?~' | R | B (RB)= 1 R
Case 1. r is odd and ¢, A are even (WB) W BW -schema (BW) 2B
R (WR)= -1 W |R|(WR):>1 W
R (WB):=! | W | B (RB)*% "R B
Case 2. r,c are odd and ) is even (WR)?W BW -schema (RB) 72 R
R (WR) == W R| W | (BW)3-! B
R (WR)*T==W \ R \ 77 \ (BW)== 1 B
Case 3 r,c and A are odd (WR) =W BW-schema (RB)"="
R (WB)*z 1 W | B| (RB)*TR B

VL



Conditions

Assignments

Case 4. r, ) are even and c is odd

41 r>2

42 r=2

421 A<

[]eY

4.2.2 A >

(][}

R (WR)3~' | W | B | (WB)*+"W B
(WR)2~1 BW-schema (RB)3~1
1 (BW)=>B | W | B | (RB)2~! R
‘R (WR):=* | W | B | (WB)*>"W | B
‘W (BW)*="B | W | B | (RB)*~! | R
(WB)%W [R(WB)%WB]W—Q (WB)%W
(BW)*“"="p W (BW) = pRimme 2 | W | (BW) g

Gl



Conditions

Assignments

Case 5. r is even and ¢, A are odd

R (WB)**W | B | R| (BR)*= ! B
51 r>2 (WR)z~! BW-schema (RB)z~1
W (RW)5 Y| R|W | (BW)TB R
52 r=2
R| (WB)=W | B|R|(BR“"|B
52.1 A> ¢
? W (BW)ZU | R W | BW)B | R
522 A< 3 same as 4.2.2
Case 6. r,c are even and A is odd
R WR)ZW | R| W (RW)="R W
6.1 r>2 (WB)2~! BW -schema (BW)2—1
R (BR)=B R | B | (RB)**R B
6.2 r=2 same as 4.2.2

9.
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