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CHAPTER I

PRELIMINARIES

In this chapter, we summarize basic concepts of root systems, abstract theory of

weights, Lie algebra, and representation theory which are related to this thesis in

Sections 1.1 – 1.4. Moreover, our motivation for this thesis and key theorems which

will play major roles in the following chapters are stated in Section 1.5. The main

references of these are from [2], [3] and [4].

1.1. Root Systems

First, we fix V to be a finite-dimensional Euclidean space with an inner prod-

uct ( , ). We introduce a reflection in V which is used for defining a root system

in V . Then, we define a base of a root system in V which is a basis of V with a

certain property. Finally, we bring in Dynkin diagrams which lead to catagorizing

root systems.

Definition 1.1.1. [4] A reflection in V is an invertible linear transformation leav-

ing pointwise fixed some hyperplane (subspace of codimension one) and sending any

vector orthogonal to that hyperplane into its negative.

Any nonzero vector α determines a reflection σα , with reflecting hyperplane Pα ={
β ∈ V : (β, α) = 0

}
. Of course, nonzero vectors proportional to α yield the same

reflection. Evidently, a reflection is orthogonal, i.e.,
(
σα(β), σα(γ)

)
= (β, γ) for all

α, β, γ ∈ V . There is an explicit formula for a reflection σα (α ∈ V ) as follows:

σα(β) = β − 2
(β, α)

(α, α)
α for all β ∈ V.
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Since the number 2
(β, α)

(α, α)
occurs frequently, for our convenience, we denote it by

(β, α∨) where α∨ =
2α

(α, α)
, so that σα(β) = β − (β, α∨)α .

Definition 1.1.2. [4] A subset Φ of V is called a root system in V if the following

axioms are satisfied:

(R1) Φ is finite, spans V , and does not contain 0.

(R2) If α ∈ Φ, the only multiples of α in Φ are ±α .

(R3) If α ∈ Φ, the reflection σα leaves Φ invariant.

(R4) If α, β ∈ Φ, then (β, α∨) ∈ Z .

For each root system Φ, the elements of Φ are called roots, and the rank of Φ is the

dimension of V .

Axiom (R4) in Definition 1.1.2 limits severely the possible angles occuring between

pairs of roots. Recall that the cosine of the angle θ between vectors α, β ∈ V is given

by the formula ‖α‖‖β‖ cos θ = (α, β). Therefore, (β, α∨) = 2
(β, α)

(α, α)
= 2

‖β‖
‖α‖

cos θ and

(α, β∨)(β, α∨) = 4 cos2 θ . This last number is a nonnegative integer; but 0 ≤ cos2 θ ≤ 1,

and (α, β∨), (β, α∨) have like sign. The following possibilities of θ and ‖β‖2/‖α‖2

are the only ones when α 6= ±β and ‖β‖ ≥ ‖α‖ are given.

(α, β∨) (β, α∨) θ ‖β‖2/‖α‖2

0 0 π/2 undetermined

1 1 π/3 1

−1 −1 2π/3 1

1 2 π/4 2

−1 −2 3π/4 2

1 3 π/6 3

−1 −3 5π/6 3
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Definition 1.1.3. [4] A subset ∆ of a root system Φ in V is called a base if

(B1) ∆ is a basis of V ,

(B2) each root β can be written as β =
∑
α∈∆

kαα with integral coefficients kα all

nonnegative or nonpositive.

The roots in a base are called simple. Moreover, σα , where α is a simple root, is

called a simple reflection.

Definition 1.1.4. [4] Let Φ be a root system, ∆ a base of Φ and β =
∑
α∈∆

kαα a

root. If all kα ≥ 0(kα ≤ 0), we call β positive (negative) and write β � 0 (β ≺ 0).

The set of all positive and negative roots (relative to Φ) is denoted by Φ+ and Φ− ,

respectively.

Note 1.1.5. Let Φ be a root system and ∆ a base of Φ. It is obvious that ∆ ⊆ Φ+

and Φ− = −Φ+ .

Definition 1.1.6. [4] Let Φ be a root system in V . The Weyl group W of Φ is the

subgroup of invertible linear transformations on V generated by reflections σα where

α ∈ Φ.

Example 1.1.7. We consider R2 as a vector space with the usual inner prod-

uct. Let Φ =
{
±(0, 1),±(1, 0)

}
. Then Φ is a root system in R2 with the base

∆ =
{
(0, 1), (1, 0)

}
and the Weyl group W =

{
iR2 , σ(0,1), σ(1,0), σ(0,1)σ(1,0)

}
where

σ(0,1)(0, 1) = −(0, 1) σ(0,1)(1, 0) = (1, 0)

σ(1,0)(0, 1) = (0, 1) σ(1,0)(1, 0) = −(1, 0).

It is not obvious that (B2) guarantees the existence of a base of a root system.

However, the following thoerem assures that. In fact, a base is not unique but there

is a relation between these bases.
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Theorem 1.1.8. [4] For each root system Φ in V , bases exist but are not unique.

Moreover, if ∆ and ∆
′
are two bases of Φ, then w(∆

′
) = ∆ for some w ∈ W .

Definition 1.1.9. [4] Let Φ be a root system in V and W the Weyl group of Φ.

Let α and β be any elements of V . We say that α is conjugate to β or α and β are

W - conjugate if there exists w ∈ W such that w(β) = α .

Proposition 1.1.10. Let W be the Weyl group of a root system and α, β the same

length roots. Then α and β are conjugate under W via w ∈ W such that w(β) = α

and

w =


σβ−α, if (α, β) = 0,

σασβσα, if (α, β) = 1,

σασβσασβ, if (α, β) = −1.

Note also that if (α, β) 6= 0, then (α∨, β) = (α, β∨) = ±1.

Proof. This is obvious. �

Theorem 1.1.11. [4] Let Φ be a root system in V , ∆ a base of Φ and W the Weyl

group of Φ.

(a) If α is any root, there exists w ∈ W such that w(α) ∈ ∆.

(b) W is generated by the σα(α ∈ ∆).

We can see from Theorem 1.1.11 (b) that the Weyl group of a root system is

generated by the simple reflections which are relative to a base.

From Example 1.1.7, we obtain that W =
〈
σ(0,1), σ(1,0)

〉
.

Definition 1.1.12. [4] Let ∆ be a fixed base of root system Φ in V . We define a

partial order ≺ on V as follows: for each λ, µ ∈ V , µ ≺ λ (or λ � µ) if and only if
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λ− µ is a sum of simple roots. In addition, we define µ � λ if and only if µ ≺ λ or

µ = λ .

The partial order ≺ (or �) has an eminent role for this thesis. We can see from

Example 1.1.7 that (−1, 0) ≺ (0, 1) since (0, 1)− (−1, 0) = (1, 1) = (0, 1)+ (1, 0) but

(1, 0) ⊀ (0, 1) since (0, 1)− (1, 0) = (−1, 1) is not a sum of (1, 0) and (0, 1).

Definition 1.1.13. [4] A root system Φ is called irreducible if it cannot be partition

into the union of two proper subsets such that each root in one set is orthogonal to

each root in the other.

Theorem 1.1.14. [4] Let Φ be an irreducible root system. Then at most two root

lengths occur in Φ, and all roots of a given length are conjugate under its Weyl group.

Proposition 1.1.15. [4] Let Φ be a root system in V , ∆ a fixed base and W the

Weyl group. Suppose S ⊆ ∆. Let V (S) be the vector subspace of V spanned by S ,

and let Φ(S) = Φ ∩ V (S). Then S is a base of the root system Φ(S). We also call

Φ(S) a subroot system of Φ. Therefore, the Weyl group of Φ(S) is

W
(
Φ(S)

)
= 〈σα : α ∈ S〉 .

Proposition 1.1.16. [4] Let Φ be a root system in V . Then Φ decomposes (uniquely)

as the union of irreducible root system Φi (in subspace Vi of V ) such that V =

V1 ⊕ · · · ⊕ Vt (orthogonal direct sum, i.e., each vector in Vi is orthogonal to each

vector in the others) for some t ∈ N.

Example 1.1.17. We note from Example 1.1.7 that Φ =
{
±(0, 1)

}
⊕
{
±(1, 0)

}
such

that {±(0, 1)} is root system in
〈
(0, 1)

〉
and {±(1, 0)} is root system in

〈
(1, 0)

〉
.

Proposition 1.1.16 shows that it is sufficient to classify only the irreducible root

systems.
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Definition 1.1.18. [4] For each root system with rank n and ∆ = {α1, . . . , αn} , the

Dynkin diagram of ∆ is a graph having n vertices the i-th joined to the j -th, where

i 6= j , by (αi, α
∨
j )(αj, α

∨
i ) edges and adding an arrow pointing to the shorter of the

two roots (in term of their lengths) whenever a double or triple edge occurs.

There is a natural notion of isomorphism between root systems.

Definition 1.1.19. [4] Let Φ and Φ
′
be root systems in respective finite-dimensional

real vector spaces V and V
′
. We call that (Φ, V ) and (Φ

′
, V

′
) are isomorphic if there

exists a linear isomorphism φ : V→V
′

sending Φ onto Φ
′

such that
(
φ(β), φ(α)∨

)
=

(β, α∨) for each pair of roots α, β ∈ Φ.

Theorem 1.1.20. [4] If Φ is an irreducible root system of rank n, its Dynkin diagram

is one of the following (n vertices in each case):

An (n ≥ 1) : c
α1

c
α2

c
αn

Bn (n ≥ 2) : c
α1

c
α2

c
αn−1

P� c
αn

Cn (n ≥ 3) : c
α1

c
α2

c
αn−1

�P c
αn

Dn (n ≥ 4) : c
α1

c
α2

c
αn−3

c
αn−2

�
��

c αn−1

Z
ZZ c αn

E6 :

c
α1

c
α2

c
α3

c
α4

c
α5

c
α6
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E7 :

c
α1

c
α2

c
α3

c
α4

c
α5

c
α7

c
α6

E8 :

c
α1

c
α2

c
α3

c
α4

c
α5

c
α7

c
α8

c
α6

F4 : c
α1

c
α2

P� c
α3

c
α4

G2 : c
α1

PP
�� c

α2

On the other hand, a root system can be constructed from each Dynkin diagram

(unique upto isomorphism). Note also that root systems with Dynkin diagram C2

and B2 are isomorphic but root systems with Dynkin diagram C3 and B3 are not

isomorphic. For further details, the reader can read in [4], p.63–65.

1.2. Abstract Theory of Weights

In this section, we provide definitions of a weight lattice, fundamental weights,

saturated weights and some theorems of weights which are relevant to this thesis. Ad-

ditionally, we define the group ring of the weight lattice. We focus on some particular

elements of that group ring, namely, the elementary symmetric sums of fundamental

weights and the characters of fundamental weights. We carry on using the notations

V, Φ, ∆,W and others as in Section 1.1.

Definition 1.2.1. [4] We define the weight lattice Λ to be

Λ =
{
λ ∈ V : (λ, α∨) ∈ Z for all α ∈ Φ

}
,
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and call its elements weight. For a fixed base ∆ ⊆ Φ, we define λ ∈ Λ to be dominant

if all integers (λ, α∨) (α ∈ ∆) are nonnegative, strongly dominant if these integers

are positive. Let Λ+ be the set of all dominant weights.

If ∆ = {α1, . . . , αn} , then the vectors α∨i =
2αi

(αi, αi)
, again, form a basis of V .

Definition 1.2.2. [4] Let ∆ = {α1, . . . , αn} be a fixed base of a root system Φ. The

fundamental weights are λ1, . . . , λn such that for all 1 ≤ i, j ≤ n

(λi, α
∨
j ) = δij.

We can see that the fundamental weights are dominant and

σαi
(λj) =


λj, if j 6= i,

λi − αi, if j = i.

Proposition 1.2.3. [4] Let ∆ = {α1, . . . , αn} be a fixed base of a root system Φ. The

fundamental weights λ1, . . . , λn form a Z-basis for the weight lattice Λ. In addition,

for each λ ∈ Λ,

λ =
n∑

i=1

(λ, α∨i )λi.

Furthermore, λ ∈ Λ+ if and only if (λ, α∨i ) ≥ 0 for all 1 ≤ i ≤ n.

Remark 1.2.4. As a result of Proposition 1.2.3,

Λ =

{∑
αi∈∆

kαi
λi : kαi

= (λ, α∨i ) ∈ Z for all αi ∈ ∆

}
, and

Λ+ =

{∑
αi∈∆

kαi
λi : kαi

= (λ, α∨i ) ∈ Z+
0 for all αi ∈ ∆

}
.
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Since Λ ⊆ V and ≺ is a partial order on V , we obtain a partial order on Λ. By

Definition 1.1.12, for λ, µ ∈ Λ

µ ≺ λ (or λ � µ) if and only if λ− µ =
∑
α∈∆

kαα

where kα ∈ Z+
0 not all zeros for all simple roots α . Moreover, we define µ � λ if and

only if µ ≺ λ or µ = λ .

Definition 1.2.5. [4] Define δ to be the half sum of all positive roots, i.e.,

δ =
1

2

∑
α∈Φ+

α.

Proposition 1.2.6. [4] The half sum δ of all positive roots is a weight. In fact,

δ =
n∑

i=1

λi .

Observe that δ is another example of dominant weights.

Theorem 1.2.7. [4] Each weight is conjugate under W to one and only one dominant

weight. If λ is dominant, then w(λ) � λ for all w ∈ W and if λ is strongly dominant,

then w(λ) = λ only when w = 1.

Theorem 1.2.8. [4] Let λ ∈ Λ+ , then the number of dominant weights µ such that

µ ≺ λ is finite.

Definition 1.2.9. [4] We call a subset Π of the weight Λ saturated if for all λ ∈ Π,

α ∈ Φ, and i between 0 and (λ, α)(inclusive), the weights λ− iα also lie in Π.

Notice that any saturated set is automatically stable under W .

Definition 1.2.10. [4] Let λ ∈ Λ+ . We say that a saturated set Π has the highest

weight λ if and only if λ ∈ Π and µ � λ for all µ ∈ Π.
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Theorem 1.2.11. [4] A saturated set of weights having highest weight λ must be

finite.

Theorem 1.2.12. [4] Let Π be a saturated set with highest weight λ. If µ ∈ Λ+ and

µ ≺ λ, then µ ∈ Π.

Theorem 1.2.12 emerges a very clear picture of a saturated set Π having highest

weight λ , i.e., Π consists of all dominant weights lower than or equal to λ in the par-

tial ordering, along with their conjugates under W . In particular, for given λ ∈ Λ+ ,

at most one such set Π can exist. Conversely, given λ ∈ Λ+ , we may simply define

Π to be the set of all dominant weights below λ , along with their W -conjugates.

Since Π is stable under W , it can be seen to be saturated, and Π has λ as a highest

weight.

Definition 1.2.13. [4] For λ ∈ Λ+ , define Π(λ) to be the smallest saturated subset

of Λ that contains λ . (Since intersections of saturated sets are saturated, it is clear

that the smallest saturated subset exists.)

Theorem 1.2.14. [7] For λ ∈ Λ+ , we have

Π(λ) =
{

µ ∈ Λ : w(µ) � λ for all w ∈ W
}

=
⋃

µ∈Λ+

µ�λ

Wµ.

Remark 1.2.15. For each λ ∈ Λ+ , we obtain that Π(λ) is the smallest saturated

set containing λ with highest weight λ .

Definition 1.2.16. [7] A dominant weight λ is minuscule if λ 6= 0 and (λ, α∨) ∈

{0,±1} for all α ∈ Φ.

Theorem 1.2.17. [7] A dominant weight λ is a minimal element of (Λ+,≺) if and

only if λ = 0 or λ is minuscule.
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Now, we give notion of a group ring which is mainly referred to [5]. Consider

an arbitary family
{
Gi : i ∈ I

}
(where I is an arbitary set) of groups. We de-

fine a binary operation on the Cartesian product
∏
i∈I

Gi as follows. If f, g ∈
∏
i∈I

Gi(
that is f, g : I →

⋃
i∈I

Gi

)
, then fg : I →

⋃
i∈I

Gi is the function given by i 7→ f(i)g(i).

The (external) weak direct product of groups
{
Gi : i ∈ I

}
, denoted

∏w

i∈ I

Gi , is the

set of all f ∈
∏
i∈I

Gi such that f(i) = ei , the identity in Gi , for all but a finite number

of i ∈ I . If all the groups Gi are (additive) abelian,
∏w

i∈ I

Gi is usually called the

(external) direct sum and is denoted
∑
i∈I

Gi .

Let G be a (multiplicative) group and R a ring. Let R(G) be the additive abelian

group
∑
g∈G

R (one copy of R for each g ∈ G). It will be convenient to adopt a new

notation for the element of R(G), i.e.,

R(G) =

{
n∑

i=1

rigi : n ∈ N, ri ∈ R and gi ∈ G for all i

}
.

We also allow the possibility that some of the ri are zero or that some gi are repeated,

so that an element of R(G) may be written in formally different ways (for example,

r1g1 +0g2 = r1g1 or r1g1 +s1g1 = (r1 +s1)g1 ). In this notation, addition in the group

R(G) is given by
n∑

i=1

rigi +
n∑

i=1

sigi =
n∑

i=1

(ri + si)gi,

by inserting zero coefficients if necessary we can always assume that two formal sums

involve exactly the same indices 1, . . . , n .

The group R(G) becomes a commutative ring if a specific multiplication is pro-

vided.
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Definition 1.2.18. [5] Let G be a (multiplicative) group and R a ring. Let R(G)

be the additive abelian group
∑
g∈G

R with addition described above. Define a multi-

plication in R(G) by(
n∑

i=1

rigi

)(
m∑

j=1

sihi

)
=

n∑
i=1

m∑
j=1

(risj)(gihj).

With these operations, R(G) is a ring. Then R(G) is called the group ring of G

over R .

Let Λ be the weight lattice of a root system Φ and G =
{
eλ : λ ∈ Λ

}
. Then G

is a multiplicative group if we define the multiplication eλeα = eλ+α for all λ, α ∈ G

and extend it linearly. Then the group ring Z[G] of G over Z exists. In general, we

use Z[Λ] in sense of Z[G] and call Z[Λ] the group ring of the weight lattice Λ over Z ,

i.e.,

Z[Λ] =

{∑
λ∈Λ

kλe
λ : kλ ∈ Z and kλ 6= 0 for all but finitely many λ ∈ Λ

}
.

Note that Z[Λ] is a free Z-module with basis element eλ in one-to-one correspondence

with the element λ of Λ.

Definition 1.2.19. [2] Let x ∈ Z[Λ], then x is invariant under W if w(x) = x for

all w ∈ W and x is anti-invariant under W if w(x) = det(w)x for all w ∈ W .

Moreover, Z[Λ]W is defined as

Z[Λ]W =
{
x ∈ Z[Λ] : w(x) = x for all w ∈ W

}
,

i.e., the set of elements of Z[Λ] which are invariant under W .

Definition 1.2.20. [3] Let λ be a weight in the weight lattice Λ and Wλ the orbit

of λ under W . The elementary symmetric sum S(eλ) of λ and the elementary
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alternating sum A(eλ) of λ are given by

S(eλ) =
∑

µ∈Wλ

eµ and A(eλ) =
∑
w∈W

det(w)ew(λ),

respectively. Furthermore, if λ is dominant, the character χλ with highest weight λ

is defined by

χλ =
A(eλ+δ)

A(eδ)
.

Remark 1.2.21. We observe that χλ ∈ Z[Λ]W for all λ ∈ Λ+ . Moreover, for each

λ ∈ Λ+ , we can see that S(eλ) ∈ Z[Λ]W and

S(eλ) =
∑

W(λ)w∈W/W(λ)

ew(λ) =
1

|W(λ)|
∑
w∈W

ew(λ),

where W(λ) =
{
w ∈ W : w(λ) = λ

}
. We give examples for these in following

chapters.

Proposition 1.2.22. Let λ ∈ Λ+ , then S(eλ) has λ as the highest weight.

Proof. It follows from µ ∈ Wλ ⊆ Π(λ). �

Proposition 1.2.23. [2] Let Φ be a root system, Λ the weight lattice and W the

Weyl group of Φ. Then the set

{
S(eλ) : λ is a dominant weight

}
forms a basis for the Z-module Z[Λ]W .

Definition 1.2.24. [5] Let R be a ring and denote

R[x1, . . . , xn] =
{
f : Nn → R : f(u) 6= 0 for at most finite numbers of u ∈ Nn

}
.

The ring R[x1, . . . , xn] is called the ring of polynomials in n determinates over R .



14

Theorem 1.2.25. [2] Let Λ be the weight lattice, λ1, . . . , λn the fundamental weights,

Φ a root system and W the Weyl group of Φ. We have

Z[x1, x2, . . . , xn] ∼= Z[Λ]W

such that xi ∈ Z[Λ] having highest weight λi for all 1 ≤ i ≤ n.

Example 1.2.26. Let Φ be a root system, λ1, . . . , λn fundamental weights, Λ the

weight lattice and W the Weyl group of Φ. Then, according to Definition 1.2.20,

Proposition 1.2.22 and Theorem 1.2.25,

Z[Λ]W ∼= Z[S(eλ1), . . . , S(eλn)] and

Z[Λ]W ∼= Z[χλ1 , . . . , χλn ].

We can see from Theorem 1.2.25 that the set {x1, . . . , xn} is a basis for Z-

module Z[Λ]W . Moreover, Example 1.2.26 shows that for a fixed root system with

fundamental weights λ1, . . . , λn , the set
{

S(eλi) : for all 1 ≤ i ≤ n
}

and the set{
χλi

: for all 1 ≤ i ≤ n
}

are bases for Z[Λ]W .

In Sections 1.3–1.4, we introduce concept of Lie algebra and representation theory,

respectively. In addition, this thesis focuses on semisimple Lie algebras, so we give

notion of a representation of a semisimple Lie algebra L . Then there exist concepts

of roots of L and weights of representation which can be viewed as roots and weights

described in Sections 1.1–1.2.

1.3. Elementary Concepts of Lie Algebras

We give concepts of Lie algebras very briefly in this section. The further details

can be read from [4].
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Definition 1.3.1. [4] A vector space L over a field F , with an operation L×L → L ,

denoted (x, y) 7→ [x, y] and called the bracket or commutator of x and y , is called a

Lie algebra over F if the following axioms are satisfied:

(L1) The bracket operation is bilinear.

(L2) [x, x] = 0 for all x in L .

(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L .

Axiom (L3) is called the Jacobi identity.

In this section we are concerned with a Lie algebra whose underlying vector space

is finite-dimensional.

Definition 1.3.2. [4] Let L be a Lie algebra. A subspace K of L is called a (Lie)

subalgebra of L if [x, y] ∈ K for all x, y ∈ K .

Definition 1.3.3. [4] A subspace I of a Lie algebra L is called an ideal of L if x ∈ L

and y ∈ I together imply [x, y] ∈ L .

Definition 1.3.4. [4] Let L and L
′

be Lie algebras over the same field. A linear

map ϕ : L → L
′
is called a Lie algebra homomorphism if ϕ

(
[x, y]

)
=
[
ϕ(x), ϕ(y)

]
for

all x, y ∈ L .

Definition 1.3.5. [4] Define a sequence of ideals of a Lie algebra L the derived series

by

L(0) = L, L(1) = [L, L], L(2) = [L(1), L(1)], . . . , L(i) = [L(i−1), L(i−1)]

for i ∈ N . Moreover, L is called solvable if L(n) = 0 for some n ∈ N .

Proposition 1.3.6. [4] Let L be a Lie algebra. If I and J are solvable ideals of L,

then so is I+J.

As a first application, let L be an arbitrary Lie algebra and S a maximal solvable

ideal of L (i.e., one included in no larger solvable ideal). If I is any other solvable
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ideal of L , then Proposition 1.3.6 forces S + I = S (by maximality), or I ⊆ S . This

proves the existence of a unique maximal solvable ideal.

Definition 1.3.7. [4] Let L be a Lie algebra. The maximal solvable ideal is called

the radical of L and denoted Rad L . In case Rad L = 0, the Lie algebra L is called

semisimple.

Definition 1.3.8. [4] Define a sequence of ideals of L the descending central series

by

L0 = L, L1 = [L, L](= L(1)), L2 = [L, L1], . . . , Li = [L, Li−1]

for i ∈ N . Moreover, L is caled nilpotent if Ln = 0 for some n ∈ N .

Definition 1.3.9. [4] The normalizer of a subalgebra K of L is defined by

NL(K) =
{
x ∈ L : [x, K] ⊆ K

}
.

Definition 1.3.10. [4] A Cartan subalgebra (abbreviated CSA) of a Lie algebra L is

a nilpotent subalgebra which equals its normalizer in L .

1.4. Elementary Representation Theory

In this section, we, first, provide the definition of a representation which leads to a

decomposition of root spaces. Then we define an L-module where L is a semisimple

Lie algebra, weight spaces and multiplicities of weights.

Definition 1.4.1. [4] Let L be a Lie algebra. A representation of L is a homomor-

phism

φ : L → gl(V )

for some vector space V where gl(V ) = End(V ).
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Example 1.4.2. [4] Let L be a Lie algabra. We define the map ad : L → gl(L)

where gl(L) = End(L) by

ad(x)y = [x, y] for all x, y ∈ L.

Then ad is called an adjoint representation of L .

From now on, let L denote a semisimple Lie algebra over the algebrically closed

field of characteristic 0 and H a fixed CSA of L . We are going to present the structure

of L via its adjoint representation. Recall that H∗ is the set of linear functionals

on H . We consider

Lα =
{
x ∈ L : [h, x] = α(h)x for all h ∈ H

}
where α ranges over H∗ and call Lα 6= {0} a root space. Actually, L is the direct sum

of the subspaces Lα(α ∈ H∗). The set of all nonzeros α ∈ H∗ for which Lα 6= {0} is

denoted by Φ and the elements of Φ are called the roots of L relative to H . With

this notation we have a root space decomposition:

L = L0 ⊕
∐
α∈Φ

Lα.

Importantly, we can see that Φ is a root system in a real Euclidean space V as

described in Section 1.1 since Φ is embedded in V with a bijection ϕ such that ϕ(Φ)

is a root system in V .

Next, we provide the definition of L-module.

Definition 1.4.3. [4] A vector space V over a field F , endowed with an operation

L× V → V (denoted (x, v) 7→ x · v ), is called an L-module if the following conditions

are satisfied: for all x, y ∈ L , v, w ∈ V , and a, b ∈ F ,

(M1) (ax + by) · v = a(x · v) + b(y · v),
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(M2) x · (av + bw) = a(x · v) + b(x · w),

(M3) [x, y] · v = x · y · v − y · x · v .

It is convenient to use the language of modules along with the equivalent language

of representations. For example, if φ : L → gl(V ) is a representation of L , then V

may be viewed as an L-module via x·v = φ(x)(v). Conversely, given an L-module V ,

this equation defines a representation φ : L → gl(V ).

Proposition 1.4.4. [4] If V is a finite dimensional L-module, then V =
∐

λ∈H∗

Vλ ,

where

Vλ =
{
v ∈ V : h · v = λ(h)v for all h ∈ H

}
.

Definition 1.4.5. [4] If Vλ 6= {0} (λ ∈ H∗), we call Vλ a weight space and λ a

weight of V .

Since the set Φ of all roots of L is a root system in a real Euclidean space and

Theorem 1.1.8 guarantees that a base ∆ of Φ exists, we obtain a base ∆ in L by

this way. In addition, we call an element of ∆ in L a simple root. We define a partial

ordering ≺ on H∗ as follow: µ ≺ λ if and only if λ−µ is a sum of simple roots in L

where λ, µ ∈ H∗ . From here on, let Φ be a root system of L and ∆ a fixed base

of Φ.

Definition 1.4.6. A maximal vector of weight λ in a finite-dimensional L-module V

is a nonzero vector v+ ∈ Vλ killed by all Lα (α ∈ ∆) and we call λ the highest weight

of V .

Part (a) of the following theorem justifies the terminology highest weight for λ .

Theorem 1.4.7. [4] Let V be a finite-dimensional L–module with highest weight λ

and ∆ = {α1, . . . , αn}. Then
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(a) the weights µ of V are of the form

µ = λ−
n∑

i=1

kiαi ,

where ki ∈ Z+ for all i, i.e., weights µ satisfy µ ≺ λ,

(b) for each µ ∈ H∗ , dim Vµ < ∞, and dim Vλ = 1.

A linear functional λ ∈ H∗ is called integral if all λ(hi) are integers where hi(1 ≤

i ≤ n) are basis elements of H . If all λ(hi) are nonnegative integers, then we call λ

dominant integral. The set of all integral linear functionals, denoted Λ, is therefore

a lattice in H∗ (or equally well, in the real vector space generated by roots) and the

set of dominant integral linear functions is denoted by Λ+ .

Recall that Φ is viewed as a root system in a Euclidean space V . Then the

weights occuring in a finite-dimensional L-module are also weights in the sense of

the abstract theory in Section 1.2. Actually, integral linear functionals in H∗ and

dominant integral linear functionals in H∗ are 1-1 correspondence with weights and

dominant weights in the language of Section 1.2 with respect to Φ, respectively, so all

concerned results proved in Sections 1.1–1.2 are available from now on (more details

can be seen in [4], Chapter VI p.112.).

Theorem 1.4.8. [4] Let λ ∈ H∗ be dominant integral. Then there exists an irre-

ducible L-module of highest weight λ. Denote by V (λ) the irreducible L-module of

highest weight λ.

Definition 1.4.9. [4] If V is an L-module, let Π(V ) = {µ ∈ H∗ : Vµ 6= 0} denote

the set of all its weights. For V = V (λ), write instead Π(λ).

As we see from Theorem 1.4.8 that dominant integral λ is a highest weight of for

some irreducible L–module V (λ) so that Π(λ) is definable.
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Proposition 1.4.10. [4] Let λ be dominant integral. Then Π(λ) is saturated in the

sense of Theorem 1.2.14.

Theorem 1.4.11. [4] If λ ∈ H∗ is dominant integral, then the irreducible L-module

V = V (λ) is finite-dimensional, and its set Π(λ) of weights is permuted by W , with

dim Vµ = dim Vσµ for all σ ∈ W .

Theorem 1.4.12. [4] The map λ 7→ V (λ) includes a one-to-one correspondence

between the set of all dominant integral in H∗ and the isomorphism classes of finite-

dimensional irreducible L-modules.

Definition 1.4.13. [4] Let V = V (λ) (λ ∈ Λ+) be an L-module. If µ ∈ H∗ is

an integral linear functional, define the multiplicity of µ in V (λ) to be mλ(µ) =

dim V (λ)µ (= 0 in case µ is not a weight of V (λ)).

1.5. Motivation

Let L be semisimple Lie algebras, H a fixed CSA of L , Φ the set of all roots

of L , W the Weyl group of Φ. Now, Φ is a root system of a real Euclidean space

and dominant integral and integral linear functionals are in 1-1 correspondence with

dominant weights and weights with respect to Φ, respectively. Then the weight

lattice Λ and the set of all dominant weights Λ+ described in Definition 1.2.1 are the

same as Λ the set of all integrals and Λ+ the set of all integrals, respectively. Let

λ1, . . . , λn be fundamental weights with respect to Φ

In this thesis, we consider irreducible L such that the Dynkin diagrams of Φ are

An, Bn, Cn, Dn and G2 for appropriate n . Recall from Section 1.2 that for a fixed root

system with fundamental weights λ1, . . . , λn , the sets

S =
{

S(eλi) : for all 1 ≤ i ≤ n
}

and χ =
{

χλi
: for all 1 ≤ i ≤ n

}
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are bases for the Z-module Z[Λ]W . Thus, we are interested in finding a formative

relation between the members of S and the members of χ .

In order to do that, the following facts are needed.

Theorem 1.5.1. [Fruthenthal’s formula, [4]] Let V = V (λ) be an irreducible L-

module of highest weight λ where λ ∈ Λ+ . If µ ∈ Λ, then the multiplicity of µ in V

is given recursively as follows:

(
(λ + δ, λ + δ)− (µ + δ, µ + δ)

)
mλ(µ) = 2

∑
α∈Φ+

∞∑
i=1

mλ(µ + iα)(µ + iα, α). (1.5.2)

Note 1.5.3. Let λ be a dominant weight. Then V (λ) exists from Theorem 1.4.12

and

mλ(µ) =


dim V (λ)µ, if µ ∈ Π(λ),

0, if µ /∈ Π(λ).

For convenience in calculation, we find the multiplicity of weight µ in V (λ) in

the language of roots and weights as in Sections 1.1–1.2.

Definition 1.5.4. [4] Let λ be a dominant weight. Define the formal character

chV (λ) of V (λ) as follows:

chV (λ) =
∑

µ∈Π(λ)

mλ(µ)eµ.

Since mλ(µ) = 0 whenever µ /∈ Π(λ), we can extend the summation to all integral

µ ∈ Λ.

Theorem 1.5.5. Let λ be a dominant weight. Then

chV (λ) = S(eλ) +
∑

µ∈Λ+

µ≺λ

mλ(µ)S(eµ).
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Proof. Note that chV (λ) =
∑

µ∈Π(λ)

mλ(µ)eµ and Π(λ) =
⋃

µ∈Λ+

µ�λ

Wµ from Theorem 1.2.14.

Then

chV (λ) =
∑

µ∈Λ+

µ�λ

∑
κ∈Wµ

mλ(κ)eκ.

Since weights which are conjugate under W have the same multiplicity from Theo-

rem 1.4.11, for each dominant weight µ such that µ � λ ,

∑
κ∈Wµ

mλ(κ)eκ = mλ(µ)
∑

κ∈Wµ

= mλ(µ)S(eµ).

Note that mλ(λ) = 1. Therefore, we obtain that

chV (λ) = S(eλ) +
∑

µ∈Λ+

µ≺λ

mλ(µ)S(eµ).

�

Theorem 1.5.6. [Weyl Character Formula, [6]] Let Φ be a root system and ∆ a

fixed base. Let λ be dominant weight. Then

chV (λ) =
A(λ + δ)

A(δ)
.

As a result, we obtain the following magnificant theorem.

Theorem 1.5.7. For the fundamental weight λ, we obtain that

χλ = S(eλ) +
∑

µ∈Λ+

µ≺λ

mλ(µ)S(eµ).

Proof. This follows from the fact that chV (λ) = χλ . �
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We can see from Theorem 1.5.7 that in order to find the desired relation, it is

enough to focus on finding multiplicities mλ(µ) where µ ∈ Λ+ and µ ≺ λ . Although,

there are many methods to find multiplicities, we apply Fruthenthal’s recursive for-

mula (1.5.2). Actually, the right hand side of (1.5.2) is a finite sum. We can see

that the calculation involves positive roots and weights. Moreover, we know that

positive roots and weights are vectors in a real Euclidean vector space. As a result,

we make use of the standard basis, i.e., we write each vector in a linear combination

of standard basis elements and apply the fact that the multiplicity of µ with highest

weight λ is zero if µ is not a weight. Finally, we obtain the general formula of the

multiplicities of weights µ with highest weight λ being fundamental weights, so we

know the particular formula in Theorem 1.5.7 of each root system.

In this literature, results of root systems whose Dynkin diagrams are An, Bn, Cn

and Dn are presented in the same manner in Chapters II, III, IV and V, respectively.

They are outline of the root system, example (A2, B2, C3 and D4 , respectively) and

the relation between S(eλm) and χλm . We give the outline of and the relation between

S(eλm) and χλm in the root system whose Dynkin diagram is G2 in Chapter VI. Since

we use the same technique to prove results in Chapters III–V, we provide in details

for those in chapter III only and we omit the proofs of some properties in Chapters

IV and V.



CHAPTER II

ROOT SYSTEM An

We consider Rn+1 as the vector space over R with the usual inner product. Let

ε1, . . . , εn+1 be the standard basis vectors of Rn+1 . The Z-span of this basis is a

lattice, denoted by I . Let V be the n-dimensional subspace of Rn+1 orthogonal to

the vector ε1 + · · ·+ εn+1 and let I
′
= I ∩ V .

2.1. Outline of the Root System An

Let Φ=
{
α ∈ I

′
: (α, α) = 2

}
. Note that all elements of Φ have the same length.

• Φ is a root system in V of rank n .

• Dynkin diagram is c
α1

c
α2

c
αn

• Roots are εr − εs for all r 6= s and 1 ≤ r, s ≤ n + 1.

• Simple roots are

αr = εr − εr+1 = (0, . . . , 0,
rth

1 ,−1, 0, . . . , 0) for all 1 ≤ r ≤ n.

• Positive roots are

εr − εs = αr + αr+1 + · · ·+ αs−1

= (0, . . . , 0,
rth

1 , 0, . . . , 0,
sth

−1 , 0, . . . , 0) for all 1 ≤ r < s ≤ n + 1.

• Fundamental weights are

λr =
n− r + 1

n + 1

r∑
j=1

εj −
r

n + 1

n+1∑
j=r+1

εj

=
n− r + 1

n + 1

r∑
j=1

jαj +
r

n + 1

n∑
j=r+1

(n− j + 1)αj for all 1 ≤ r ≤ n.
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2.2. Root system A2

We give an example of a root system whose Dynkin diagram is A2 . Let V be the

subspace of dimension 2 of R3 orthogonal to the vector (1,1,1), i.e.,

V =
〈
(1,−1, 0), (0, 1,−1)

〉
.

Let α1 = (1,−1, 0) and α2 = (0, 1,−1). Then

Φ =
{
±α1,±α2,±(α1 + α2)

}
=
{
±(1,−1, 0),±(0, 1,−1),±(1, 0,−1)

}
is a root system in V and

∆ =
{
α1, α2

}
=
{
(1,−1, 0), (0, 1,−1)

}
is a base of Φ. The Dynkin diagram is

c
α1

c
α2

We can see that positive roots are

α1 = (1,−1, 0), α2 = (0, 1,−1) and α1 + α2 = (1, 0,−1),

so δ = (1, 0,−1). The fundamental weights are

λ1 =

(
2

3
,−1

3
,−1

3

)
and λ2 =

(
1

3
,
1

3
,−2

3

)
.

We know that

σα1 :
α1 7→ −α1,

α2 7→ α1 + α2,

and σα2 :
α1 7→ α1 + α2,

α2 7→ −α2.
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Moreover,

σα1 :
λ1 7→ −λ1 + λ2,

λ2 7→ λ2,

and σα2 :
λ1 7→ λ1,

λ2 7→ λ1 − λ2.

The Weyl group W of Φ is 〈σα1 , σα2〉 , i.e.,

W =
{
iV , σα1 , σα2 , σα1σα2 , σα2σα1 , σα1σα2σα1

}
.

Next, for each fundamental weight λ , we consider the elementary symmetric

sum S(eλ) and the character χλ with highest weight λ (see also Definition 1.2.20).

We see that

Wλ1 =
{
λ1,−λ2, λ2 − λ1

}
and Wλ2 =

{
λ2,−λ1, λ1 − λ2

}
,

so

S(eλ1) = eλ1 + e−λ2 + eλ2−λ1 and S(eλ2) = eλ2 + e−λ1 + eλ1−λ2 .

In order to determine χλ1 and χλ2 , we need the followings.

A(eλ1+δ) = e2λ1+λ2 − e−2λ1+3λ2 − e3λ1−λ2 + e−3λ1+2λ2 + eλ1−3λ2 − e−λ1−2λ2 ,

A(eλ2+δ) = eλ1+2λ2 − e−λ1+3λ2 − e3λ1−2λ2 + e−3λ1+λ2 + e2λ1−3λ2 − e−2λ1−λ2 ,

and

A(eδ) = eλ1+λ2 − eλ2 − eλ1 + e−λ1 + e−λ2 − e−λ1−λ2 .
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Thus,

χλ1 =
e2λ1+λ2 − e−2λ1+3λ2 − e3λ1−λ2 + e−3λ1+2λ2 + eλ1−3λ2 − e−λ1−2λ2

eλ1+λ2 − eλ2 − eλ1 + e−λ1 + e−λ2 − e−λ1−λ2

= eλ1 + e−λ2 + eλ2−λ1

and

χλ2 =
eλ1+2λ2 − e−λ1+3λ2 − e3λ1−2λ2 + e−3λ1+λ2 + e2λ1−3λ2 − e−2λ1−λ2

eλ1+λ2 − eλ2 − eλ1 + e−λ1 + e−λ2 − e−λ1−λ2

= eλ2 + e−λ1 + eλ1−λ2 .

We observe that

χλ1 = S(eλ1) and χλ2 = S(eλ2).

On the other hand, we remind from Theorem 1.5.7 that for i = 1 and 2

χλi
= S(eλi) +

∑
µ∈Λ+

µ≺λi

mλi
(µ)S(eµ).

Moreover, we find out that λ1 and λ2 are minimal so that

χλ1 = S(eλ1) and χλ2 = S(eλ2).

2.3. The Relation between S(eλm) and χλm

Now, we let Φ be the root system whose Dynkin diagram is An , ∆ = {α1, . . . , αn}

the base of Φ, and λ1, . . . , λn the fundamental weights described in Section 2.1. Recall
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from Theorem 1.5.7 that for each fundamental weight λm ,

χλm = S(eλm) +
∑

µ∈Λ+

µ≺λm

mλm(µ)S(eµ).

We discover that all the fundamental weights are minimal. Remind that λ ∈ Λ+ is

minimal if and only if µ ∈ Λ+ , µ � λ implies µ = λ .

Proposition 2.3.1. All fundamental weights are nonzero minimal.

Proof. Let λm be a fundamental weight. Then λm is nonzero. Thank to Theo-

rem 1.2.17, it suffices to show that λm is minuscule. Let β ∈ Φ. Then β = ±αi

for some 1 ≤ i ≤ n or β = ±(αi + · · · + αj) for some 1 ≤ i < j ≤ n . By the

definition of λm , we have (λm, α∨k ) = δmk for all 1 ≤ k ≤ n . If β = ±αi , then it

is obvious that (λm,±α∨i ) ∈ {0,±1} . Since (αi, αi) = 2 for all 1 ≤ i ≤ n , we have

(λm, αi) = (λm, α∨i ) = δmk for all 1 ≤ k ≤ n . Let β = ±(αi + · · · + αj). Then we

know that (β, β) = 2 and

(
λm,±(αi + · · ·+ αj

)∨
) = 2

(
λm,±(αi + · · ·+ αj)

)(
±(αi + · · ·+ αj),±(αi + · · ·+ αj)

)
=
(
λm,±(αi + · · ·+ αj)

)
∈ {0,±1}.

We conclude that λm is minuscule, so λm is nonzero minimal. �

Note 2.3.2. Note that when a dominant weight λ is minimal, there is no dominant

weights µ such that µ ≺ λ .

Theorem 2.3.3. Let m be a positive integer such that 1 ≤ m ≤ n. Then

χλm = S(eλm).

Proof. This follows from Theorem 1.5.7 and Proposition 2.3.1. �



CHAPTER III

ROOT SYSTEM Bn

In this chapter, we fix n ∈ N \{1} . We consider Rn as the vector space over R

with the usual inner product. Let ε1, . . . , εn be the standard basis vectors of Rn . The

Z-span of this basis is a lattice, denoted by I .

3.1. Outline of the Root System Bn

Let Φ=
{
α ∈ I : (α, α)= 1 or 2

}
. Note that the squared length of an element

of Φ is 1 or 2.

• Φ is a root system in Rn of rank n .

• Dynkin diagram is c
α1

c
α2

c
αn−1

P� c
αn

• Short roots are

±εr (of squared length 1) for all 1 ≤ r ≤ n.

Long roots are

±(εr ± εs) (of squared length 2) for all 1 ≤ r 6= s ≤ n.

• Simple roots are

αr = εr − εr+1 = (0, . . . , 0,
rth

1 ,−1, 0, . . . , 0) for all 1 ≤ r ≤ n− 1 and

αn = εn = (0, . . . , 0, 1).
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• Positive roots are

εr = αr + αr+1 + · · ·+ αn for all 1 ≤ r ≤ n,

εr − εs = αr + αr+1 + · · ·+ αs−1 for all 1 ≤ r < s ≤ n, and

εr + εs = αr + αr+1 + · · ·+ αs−1

+2αs + 2αs+1 + · · ·+ 2αn for all 1 ≤ r < s ≤ n.

• Fundamental weights are

λr = ε1 + ε2 + · · ·+ εr

= α1 + 2α2 + · · ·+ (r − 1)αr−1 + r(αr + αr+1 + · · ·+ αn)

= (1, . . . , 1︸ ︷︷ ︸
r terms

, 0, . . . , 0) for all 1 ≤ r ≤ n− 1, and

λn =
1

2
(ε1 + ε2 + · · ·+ εn)

=
1

2
(α1 + 2α2 + · · ·+ nαn)

=

(
1

2
, . . . ,

1

2

)
.

• Let λ0 = 0. Then λ0 ≺ λ1 ≺ · · · ≺ λn−1 .

3.2. Root System B2

We give an example of a root system whose Dynkin diagram is B2 . We consider

R2 as the vector space over R with the usual inner product. Let α1 = (1,−1) and

α2 = (0, 1). Then

Φ =
{
±α1,±α2,±(α1 + α2),±(α1 + 2α2)

}
=
{
±(1,−1),±(0, 1),±(1, 0),±(1, 1)

}
is a root system in R2 and
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∆ =
{
α1, α2

}
=
{
(1,−1), (0, 1)

}
is a base of Φ. The Dynkin diagram is

c
α1

P� c
α2

We can see that positive roots are

α1 = (1,−1), α2 = (0, 1), α1 + α2 = (1, 0) and α1 + 2α2 = (1, 1),

so δ =

(
3

2
,
1

2

)
. The fundamental weights are

λ1 = (1, 0) and λ2 =

(
1

2
,
1

2

)
.

We know that

σα1 :
α1 7→ −α1,

α2 7→ 3α1 + α2,

and σα2 :
α1 7→ α1 + α2,

α2 7→ −α2.

Moreover,

σα1 :
λ1 7→ −λ1 + 2λ2,

λ2 7→ λ2,

and σα2 :
λ1 7→ λ1,

λ2 7→ λ1 − λ2.

The Weyl group W of Φ is
〈
σα1 , σα2

〉
, i.e.,

W =
{
iV , σα1 , σα2 , σα1σα2 , σα2σα1 , σα1σα2σα1 , σα2σα1σα2 , σα1σα2σα1σα2

}
.

Next, for each fundamental weight λ , we consider the elementary symmetric

sum S(eλ) and the character χλ with highest weight λ (see also Definition 1.2.20).

We see that
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Wλ1 =
{
λ1,−λ1, λ1 − 2λ2,−λ1 + 2λ2

}
and

Wλ2 =
{
λ2,−λ1 + λ2, λ1 − λ2,−λ2

}
.

Then

S(eλ1) = eλ1 + e−λ1 + eλ1−2λ2 + e−λ1+2λ2

and

S(eλ2) = eλ2 + e−λ1+λ2 + eλ1−λ2 + e−λ2 .

We need the followings in order to calculate χλ1 and χλ2 .

A(eλ1+δ) = e2λ1+λ2 − e−3λ1+λ2 + e−2λ1−λ2 + e3λ1−5λ2 − e−2λ1+5λ2

− e2λ1−5λ2 + e−3λ1+5λ2 − e3λ1−λ2 ,

A(eλ2+δ) = eλ1+2λ2 − e−3λ1+2λ2 + e−λ1−2λ2 + e3λ1−4λ2 − e−λ1+4λ2

− eλ1−4λ2 + e−3λ1+4λ2 − e3λ1−2λ2 and

A(eδ) = eλ1+λ2 − e−2λ1+λ2 + e−λ1−λ2 + e2λ1−3λ2 − e−λ1+3λ2

+ e−2λ1+3λ2 − e2λ1−λ2 .

Thus,

χλ1 =
A(eλ1+δ)

A(δ)
= 1 + e−λ1 + eλ1 + eλ1−2λ2 + e−λ1+2λ2
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and

χλ2 =
A(eλ2+δ)

A(δ)
= e−λ2 + eλ1−λ2 + eλ2 + e−λ1+λ2 .

We observe that

χλ1 = S(eλ1) + 1 and χλ2 = S(eλ2).

On the other hand, we remind from Theorem 1.5.7 that for i = 1 and 2

χλi
= S(eλi) +

∑
µ∈Λ+

µ≺λi

mλi
(µ)S(eµ).

We discover that a dominant weight µ such that µ ≺ λ1 is only 0 and λ2 is minimal.

Moreover, if we calculate by Fruthenthal’s recursive formula, then we obtain that

mλ1(0) = 1. Thus

χλ1 = S(eλ1) + 1 and χλ2 = S(eλ2).

3.3. The Relation between S(eλm) and χλm

Let Φ be the root system whose Dynkin diagram is Bn , ∆ = {α1, . . . , αn} a base,

λ1, . . . , λn the fundamental weights described in Section 3.1 and W the Weyl group

of Φ.

For each fundamental weight λ , we want to find the multiplicities of dominant

weights µ such that µ ≺ λ . For each m < n , if µ is a dominant weight such that

µ ≺ λm , then µ is only λ0, λ1, . . . , λm−2 or λm−1 , so it restricts us to find only

mλm(λk) where 0 ≤ k < m .

From the Fruthenthal’s recursive formula (1.5.2) for weight µ with highest weight λ ,

we, first, consider the multiplier of mλm(λk) (0 ≤ k < m) in its left hand side. Note

that mλm(λm) = 1
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Proposition 3.3.1. Let m and k be nonnegative integers such that 0 ≤ k < m < n.

Then

(λm + δ, λm + δ)− (λk + δ, λk + δ) = (m− k)(2n−m− k + 1).

Proof. We can see that λm − λk = (0, . . . , 0,
k+1th

1 , . . . ,
mth

1 , 0, . . . , 0) and

δ =

(
n− 1

2
, n− 3

2
, n− 2i− 1

2
, . . . ,

1

2

)
where 1 ≤ i ≤ n.

Then

(λm − λk, δ) =
m∑

j=k+1

(
n +

1

2
− j

)

= (m− k)

(
n +

1

2

)
−
(

m(m + 1)

2
− k(k + 1)

2

)

= (m− k)

(
2n−m− k

2

)
.

Now, since (λm, λm) = m and (λk, λk) = k , it follows that

(λm + δ, λm + δ)− (λk + δ, λk + δ) = (λm, λm)− (λk, λk) + 2(λm − λk, δ)

= (m− k) + 2(m− k)

(
2n−m− k

2

)

= (m− k)(2n−m− k + 1).

�

Next, in order to know mλm(λk) (0 ≤ k < m), we require values of mλm(λk + tα)

where α ∈ Φ+ and t ∈ N . We use two main techniques to find these. First, we write

positive roots in terms of standard basis elements, i.e., either εr (for some 1 ≤ r ≤ n)

or εr±εs (for some 1 ≤ r < s ≤ n). Second, we apply the fact that mλm(λk +tα) = 0
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when λk + tα is not a weight in Π(λk). There are two main cases to calculate these

mλm(λk + tα) as follows:

Case 1 α = εr where 1 ≤ r ≤ n

(1.1) r ≤ k and t ∈ N

(1.2) r > k and t ∈ N \{1}

(1.3) r > k and t = 1

Case 2 α = εr ± εs where 1 ≤ r < s ≤ n

(2.1) r ≤ k and t ∈ N

(2.2) r > k and t ∈ N \{1}

(2.3) r > k and t = 1

Proposition 3.3.2. Let k,m and r be nonnegative integers such that 1 ≤ r ≤ k <

m < n. Then mλm(λk + tεr) = 0 for all t ∈ N.

Proof. Let t ∈ N . We claim that λk + tεr � λm . We consider

λm − (λk + tεr) = (0, . . . , 0,
rth

−t , 0, . . . , 0,
(k+1)th

1 , . . . ,
mth

1 , 0, . . . , 0).

Suppose that λk + tεr � λm . Then there exist a1, . . . , an ∈ Z+
0 such that

λm − (λk + tεr) =
n∑

i=1

aiαi =
n−1∑
i=1

ai(εi − εi+1) + anεn

= (a1, a2 − a1, . . . , ar − ar−1, . . . , an−1 − an−2, an − an−1).

That is,

(0, . . . , 0,
rth

−t , 0, . . . , 0,
(k+1)th

1 , . . . ,
mth

1 , 0, . . . , 0)

= (a1, a2 − a1, . . . , ar − ar−1, . . . , an−1 − an−2, an − an−1).
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Then, a1 = a2 = · · · = ar−1 = 0 so that ar = −t which is a contradiction since

ar ∈ Z+
0 but t ∈ N . Thus λk + tεr � λm . By Theorem 1.4.7, we conclude that

mλm(λk + tεr) = 0. �

Proposition 3.3.3. Let k,m, r, s ∈ Z+
0 such that 1 ≤ r ≤ k < m < n and r < s.

Then mλm

(
λk + t(εr ± εs)

)
= 0 for all t ∈ N.

Proof. Let t ∈ N .

Case 1 r < s ≤ k

We know that

λk + t(εr ± εs) =
(
1, . . . , 1,

rth

(1 + t) , 1, . . . , 1,
sth

(1± t) , 1, . . . ,
kth

1 , 0, . . . , 0
)
.

Therefore,

λm −
(
λk + t(εr ± εs)

)
= (0, . . . , 0,

rth

−t , 0, . . . , 0,
sth

∓t , 0, . . . , 0,
(k+1)th

1 , . . . ,
mth

1 , 0, . . . , 0).

By the same reason as in the proof of Proposition 3.3.2, we assure that

mλm

(
λk + t(εr ± εs)

)
= 0.

Case 2 r ≤ k < s

We use the same method as in Case 1 and obtain that

mλm

(
λk + t(εr ± εs)

)
= 0.

�
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Recall from Theorem 1.4.11 that weights which are conjugate under the Weyl

group have the same multiplicity. Then we apply this fact to obtain two following

propositions.

Proposition 3.3.4. Let b, k and m be nonnegative integers such that 1 < b ≤ n−k ,

and 0 ≤ k < m < n. Then mλm(λk+1) = mλm(λk + εk+b).

Proof. Since εk+1 and εk+b are positive roots of the same length, they are con-

jugate under W . Furthermore, (εk+1, εk+b) = 0, so σεk+1−εk+b
(εk+1) = εk+b by

Proposition 1.1.10. Because of the orthogonality between εk+1 − εk+b and λk , then

σεk+1−εk+b
(λk) = λk . Thus σεk+1−εk+b

(λk + εk+1) = λk + εk+b , i.e., λk + εk+1 and

λk + εk+b are conjugate under W . In conclusion, from Theorem 1.4.11, we have

mλm(λk+1) = mλm(λk + εk+1) = mλm(λk + εk+b).

�

Proposition 3.3.5. Let b, c, k and m be nonnegative integers such that 1 ≤ b < c ≤

n− k and 0 ≤ k < m < n. Then mλm(λk+2) = mλm

(
λk + (εk+b ± εk+c)

)
.

Proof. Since εk+1 + εk+2 and εk+b ± εk+c are positive roots of the same length, they

are conjugate under W . Let α = εk+1 + εk+2 and β = εk+b ± εk+c . Also, one of

σα−β(β) = α , σασβσα(β) = α, or σασβσβσα(β) = α holds. For each case, λk is fixed,

so that λk + εk+1 + εk+2 is mapped to λk + (εk+b ± εk+c), i.e., they are conjugate

under W . By Theorem 1.4.11, we conclude that

mλm(λk+2) = mλm

(
λk + (εk+1 + εk+2)

)
= mλm

(
λk + (εk+b ± εk+c)

)
.

�

From the proof of Propositions 3.3.4 and 3.3.5, we obtain two corollaries.
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Corollary 3.3.6. Let t ∈ N, then tεk+b conjugates to tεk+1 and λk+tεk+b conjugates

to λk + tεk+1 for all 1 ≤ b ≤ n− k .

Corollary 3.3.7. Let t ∈ N, then t(εk+b ± εk+c) conjugates to t(εk+1 ± εk+2) and

λk + t(εk+b ± εk+c) conjugates to λk + t(εk+1 ± εk+2) for 1 ≤ b < c ≤ n− k .

Proposition 3.3.8. Let k,m and r be nonnegative integers such that 0 ≤ k < r ≤ n,

and t ∈ N \{1}. Then mλm(λk + tεr) = 0.

Proof. We know from Corollary 3.3.6 that λk + tεr is conjugate to λk + tεk+1 . Then

it suffices to show that mλm(λk + tεk+1) = 0. Of course,

λk + tεk+1 = (1, . . . ,
kth

1 , t, 0, . . . , 0).

Therefore,

λm − (λk + tεk+1) = (0, . . . ,
kth

0 , 1− t, 1, . . . ,
mth

1 , 0, . . . , 0).

Since t ≥ 2, we attain λk + tεk+1 � λm so that mλm(λk + tεk+1) = 0. �

Proposition 3.3.9. Let k, m, r and s be nonnegative integers such that 0 ≤ k < r <

s ≤ n and t ∈ N\{1}. Then mλm

(
λk + t(εr ± εs)

)
= 0.

Proof. This is similar to the proof of Proposition 3.3.8. �

Consequently, we can reduce the finite sum in the right hand side of (1.5.2) to the

simpler form.
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Theorem 3.3.10. Let k and m be nonnegative integers such that 0 ≤ k < m < n.

Then

∑
α∈Φ+

∞∑
t=1

mλm(λk + tα)(λk + tα, α)

= (n− k)mλm(λk+1) + 2(n− k)(n− k − 1)mλm(λk+2).

Proof. Let α be a positive root and t ∈ N . Then α = εr for some 1 ≤ r ≤ n or

α = εr ± εs for some 1 ≤ r < s ≤ n .

Case 1 α = εr

(1.1) r ≤ k and t ∈ N

It follows from Proposition 3.3.2 that mλm(λk + tεr) = 0.

(1.2) r > k and t ∈ N \{1}

It follows from Proposition 3.3.8 that mλm(λk + tεr) = 0.

(1.3) r > k and t = 1

By Proposition 3.3.4, we acquire the fact that

mλm(λk+1) = mλm(λk + εk+1) = mλm(λk + εr).

Case 2 α = εr ± εs

(2.1) r ≤ k and t ∈ N

It follows from Proposition 3.3.3 that mλm

(
λk + t(εr ± εs)

)
= 0.

(2.2) r > k and t ∈ N \{1}

It follows from Proposition 3.3.9 that mλm

(
λk + t(εr ± εs)

)
= 0.

(2.3) r > k and t = 1

By Proposition 3.3.5, we reach the fact that

mλm(λk+2) = mλm

(
λk + (εk+1 + εk+2)

)
= mλm

(
λk + (εr ± εs)

)
.
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We conclude from all the cases that

∑
α∈Φ+

∞∑
t=1

mλm(λk + tα)(λk + tα, α)

=
n∑

r=k+1

mλm(λk + εr)(λk + εr, εr) +
n−1∑

r=k+1

n∑
s=r+1

mλm(λk + εr ± εs)(λk + εr ± εs, εr ± εs)

= (n− k)mλm(λk+1) + 4

(
n− k

2

)
mλm(λk+2)

= (n− k)mλm(λk+1) + 2(n− k)(n− k − 1)mλm(λk+2).

�

We are ready to provide the particular form of Fruthenthal’s multiplicity recursive

formula for fundamental weights λk with highest weight λm where 1 ≤ k < m < n .

By Proposition 3.3.1, Theorem 3.3.10 and the formula (1.5.2), we obtain that

(m− k)(2n−m− k + 1)mλm(λk)

= 2(n− k)mλm(λk+1) + 4(n− k)(n− k − 1)mλm(λk+2). (3.3.11)

Next, we present the general formula for the multiplicities of λk with highest

weight λm where 0 ≤ k < m < n .

Proposition 3.3.12. Let m ∈ N be such that 1 ≤ m < n. Then

mλm(λm−i) =

(
n−m + i

b i
2
c

)

for all 1 ≤ i ≤ m.

Proof. We prove by using the strong induction.
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Basis step

We replace k by m − 1, m − 2 and m − 3 in the formula (3.3.11), respectively.

Then we obtain that

mλm(λm−1) = 1 =

(
n−m + 1

0

)

mλm(λm−2) =
2(n−m + 2)mλm(λm−1) + 4(n−m + 2)(n−m + 1)mλm(λm)

2(2n− 2m + 2 + 1)

=
(n−m + 2)

(
1 + 2(n−m + 1)

)
(2n− 2m + 2 + 1)

= n−m + 2

=

(
n−m + 2

b2
2
c

)
mλm(λm−3) =

2(n−m + 3)mλm(λm−2) + 4(n−m + 3)(n−m + 2)mλm(λm−1)

3(2n− 2m + 3 + 1)

=
(n−m + 3)(n−m + 2)

(n−m + 2)

= n−m + 3

=

(
n−m + 3

b3
2
c

)

Induction step

Suppose that the statement is true for 1, . . . , i− 1.

Case 1 i is even.

Then i = 2b for some b ∈ N , so

mλm(λm−2b)

=
2(n−m + 2b)mλm(λm−2b+1) + 4(n−m + 2b)(n−m + 2b− 1)mλm(λm−2b+2)

2b(2n− 2m + 2b + 1)
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=
2(n−m + 2b)

(
n−m+2b−1

b−1

)
+ 4(n−m + 2b)(n−m + 2b− 1)

(
n−m+2b−2

b−1

)
2b(2n− 2m + 2b + 1)

=
(n−m + 2b)! + (n−m + 2b)!(2n− 2m + 2b)

(n−m + b)!b!(2n− 2m + 2b + 1)

=
(n−m + 2b)!

(n + m + b)!b!
=

(
n−m + 2b

b

)
=

(
n−m + 2b

b2b
2
c

)
.

Case 2 i is odd.

Then i = 2b + 1 for some b ∈ Z+
0 , so

mλm(λm−(2b+1))

=
2(n−m + 2b + 1)mλm(λm−2b) + 4(n−m + 2b + 1)(n−m + 2b)mλm(λm−2b+1)

(2b + 1)(2n− 2m + 2b + 1 + 1)

=
2(n−m + 2b + 1)

(
n−m+2b

b

)
+ 4(n−m + 2b + 1)(n−m + 2b)

(
n−m+2b−1

b−1

)
(2b + 1)(2n− 2m + 2b + 1 + 1)

=
(n−m + 2b + 1)! + 2b(n−m + b + 1)!

(2b + 1)(n−m + 2b + 1)!b!

=
(n−m + 2b + 1)!

(n−m + b + 1)!b!
=

(
n−m + 2b + 1

b

)
=

(
n−m + 2b + 1

b2b+1
2
c

)
.

Thus, for each 1 ≤ i ≤ m , we conclude that

mλm(λm−i) =

(
n−m + i

b i
2
c

)
.

�

Proposition 3.3.13. The fundamental weight λn is nonzero minimal.

Proof. Remember from Section 3.1 that λn =

(
1

2
, . . . ,

1

2

)
so that λn is nonzero.

We show that λn is minuscule. Let α ∈ Φ. Then α = ±εr or ± (εr ± εs) where

1 ≤ r < s ≤ n .
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Case 1 α = ±εr

We consider that

((
1

2
, . . . ,

1

2

)
,±ε∨r

)
= 2

((
1

2
, . . . ,

1

2

)
,±εr

)
∈ {0,±1}.

Case 2 α = ±(εr ± εs)

We consider that

((
1

2
, . . . ,

1

2

)
,±(εr ± εs)

∨
)

=

((
1

2
, . . . ,

1

2

)
,±(εr ± εs)

)
∈ {0,±1}.

From these two cases, we obtain that (λn, α
∨) ∈ {0,±1} . Then λn is minuscule, so

λn is minimal from Theorem 1.2.14. �

Recall that λ0 = 0.

Theorem 3.3.14. Let m be a positive integer such that m ≤ n. Then

χλm =


S(eλm), if m = n,
m∑

i=0

(
n−m + i

b i
2
c

)
S(eλm−i), if m < n.

Proof. Recall from Theorem 1.5.7 that

χλm = S(eλm) +
∑

µ∈Λ+

µ≺λm

mλm(µ)S(eµ).

Proposition 3.3.13 shows that λn is minimal in its subposet of (Λ+,≺) so that

χλn = S(eλn).

Next, let m < n . Then the dominant weights which are less than λm are

λ0, λ1, . . . , λm−1 since λ0 ≺ λ1 ≺ · · · ≺ λm−1 ≺ λm . Moreover, Proposition 3.3.12
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assures us that

χλm = S(eλm) +
m∑

i=1

(
n−m + i

b i
2
c

)
S(eλm−i)

=
m∑

i=0

(
n−m + i

b i
2
c

)
S(eλm−i).

�



CHAPTER IV

ROOT SYSTEM Cn

In this chapter, we fix n ∈ N \{1, 2} . We consider Rn as the vector space over R

with the usual inner product. Let ε1, . . . , εn be the standard basis vectors of Rn . The

Z-span of this basis is a lattice, denoted by I . Let Φ
′
=
{
α ∈ I : (α, α) = 1 or 2

}
.

4.1. Outline of the Root System Cn

Let Φ =
{
α∨ : α ∈ Φ

′}
. Note that the squared length of an element of Φ is 2

or 4.

• Φ is root system in Rn of rank n .

• Dynkin diagram is c
α1

c
α2

c
αn−1

�P c
αn

• Short roots are

±(εr ± εs) (of squared length 2) for all 1 ≤ r < s ≤ n.

Long roots are

±2εr (of squared length 4) for all 1 ≤ r ≤ n.

• Simple roots are

αr = εr − εr+1 = (0, . . . , 0,
rth

1 ,−1, 0, . . . , 0) for all 1 ≤ r ≤ n− 1 and

αn = 2εn = (0, . . . , 0, 2).
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• Positive roots are

εr − εs = αr + αr+1 + · · ·+ αs−1, for all 1 ≤ r < s ≤ n,

εr + εs = αr + αr+1 + · · ·+ αs−1

+ 2αs + 2αs+1 + · · ·+ 2αn−1 + 2αn, for all 1 ≤ r < s ≤ n, and

2εr = 2αr + 2αr+1 + · · ·+ 2αn−1 + 2αn, for all 1 ≤ r ≤ n.

• Fundamental weights are

λr = ε1 + ε2 + · · ·+ εr

= α1 + 2α2 + · · ·+ (r − 1)αr−1 + r

(
αr + αr+1 + · · ·+ αn−1 +

1

2
αn

)
= (1, . . . , 1︸ ︷︷ ︸

r terms

, 0, . . . , 0) for all 1 ≤ r ≤ n.

• Let λ0 = 0. Then

λ0 ≺ λ2 ≺ · · · ≺ λ2b for all 2b ≤ n

and

λ1 ≺ λ3 ≺ · · · ≺ λ2b+1 for all 2b + 1 ≤ n.

Moreover, if i is odd (even) and j is even (odd) then λi ⊀ λj and λj ⊀ λi .

4.2. Root System C3

We give the example of a root system whose Dynkin diagram is C3 . We consider

R3 as the vector space over R with the usual inner product. Let α1 = (1,−1, 0),

α2 = (0, 1,−1) and α3 = (0, 0, 2). Then
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Φ =
{
±(2α1 + 2α2 + α3),±(α1 + 2α2 + α3),±(α1 + α2 + α3),±(α1 + α2),±α1,

± (2α2 + α3),±(α2 + α3),±α2,±α3

}
=
{
±(2, 0, 0),±(1, 1, 0),±(1, 0, 1),±(1, 0,−1),±(1,−1, 0),±(0, 2, 0),±(0, 1, 1),

± (0, 1,−1),±(0, 0, 2)
}

is a root system in R3 and

∆ =
{
α1, α2, α3

}
=
{
(1,−1, 0), (0, 1,−1), (0, 0, 2)

}
is a base of Φ. The Dynkin diagram is

c
α1

c
α2

�P c
α3

We can see that positive roots are

α1 = (1,−1, 0) α1 + α2 = (1, 0,−1) α1 + α2 + α3 = (1, 0, 1)

α2 = (0, 1,−1) α2 + α3 = (0, 1, 1) α1 + 2α2 + α3 = (1, 1, 0)

α3 = (0, 0, 2) 2α2 + α3 = (0, 2, 0) 2α1 + 2α2 + α3 = (2, 0, 0),

so δ = (3, 2, 1). The fundamental weights are

λ1 = (1, 0, 0) , λ2 = (1, 1, 0) and λ3 = (1, 1, 1) .
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We know that

σα1 :

α1 7→ −α1,

α2 7→ α1 + α2,

α3 7→ α3,

σα2 :

α1 7→ α1 + α2,

α2 7→ −α2,

α3 7→ 2α2 + α3,

σα3 :

α1 7→ α1,

α2 7→ α2 + α3,

α3 7→ −α3.

Moreover,

σα1 :

λ1 7→ −λ1 + λ2,

λ2 7→ λ2,

λ3 7→ λ3,

σα2 :

λ1 7→ λ1,

λ2 7→ λ1 − λ2 + λ3,

λ3 7→ λ3,

σα3 :

λ1 7→ λ1,

λ2 7→ λ2,

λ3 7→ 2λ2 − λ3.

The Weyl group W of Φ is
〈
σα1 , σα2 , σα3

〉
consisting of 48 elements.

Next, for each fundamental weight λ , we consider the elementary symmetric

sum S(eλ) and the character χλ with highest weight λ (see also Definition 1.2.20).

We see that

Wλ1 =
{
−λ1, λ1, λ1 − λ2, λ2 − λ1, λ2 − λ3, λ3 − λ2

}
,

Wλ2 =
{
−λ2, 2λ1 − λ2, λ2,−2λ1 + λ2, λ1 − λ3,−λ1 + λ2 − λ3, λ1 + λ2 − λ3,

− λ1 + 2λ2 − λ3,−λ1 + λ3, λ1 − 2λ2 + λ3,−λ1 − λ2 + λ3, λ1 − λ2 + λ3

}

and

Wλ3 =
{
−λ3, 2λ1 − λ3, 2λ2 − λ3,−2λ1 + 2λ2 − λ3, λ3,−2λ1 + λ3,−2λ2 + λ3,

2λ1 − 2λ2 + λ3

}
.
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Then

S(eλ1) = e−λ1 + eλ1 + eλ1−λ2 + e−λ1+λ2 + eλ2−λ3 + e−λ2+λ3 ,

S(eλ2) = e−λ2 + e2λ1−λ2 + eλ2 + e−2λ1+λ2 + eλ1−λ3 + e−λ1+λ2−λ3 + eλ1+λ2−λ3

+ e−λ1+2λ2−λ3 + e−λ1+λ3 + eλ1−2λ2+λ3 + e−λ1−λ2+λ3 + eλ1−λ2+λ3 ,

and

S(eλ3) = e−λ3 + e2λ1−λ3 + e2λ2−λ3 + e−2λ1+2λ2−λ3 + eλ3 + e−2λ1+λ3

+ e−2λ2+λ3 + e2λ1−2λ2+λ3 .

We calculate that

χλ1 = e−λ1 + eλ1 + eλ1−λ2 + e−λ1+λ2 + eλ2−λ3 + e−λ2+λ3 ,

χλ2 = 2 + e−λ2 + e2λ1−λ2 + eλ2 + e−2λ1+λ2 + eλ1−λ3 + e−λ1+λ2−λ3 + eλ1+λ2−λ3

+ e−λ1+2λ2−λ3 + e−λ1+λ3 + eλ1−2λ2+λ3 + e−λ1−λ2+λ3 + eλ1−λ2+λ3 ,

and

χλ3 = e−λ1 + eλ1 + eλ1−λ2 + e−λ1+λ2 + e−λ3 + e2λ2−λ3 + eλ2−λ3 + e2λ1−λ3

+ e−2λ1+2λ2−λ3 + eλ3 + e−2λ1+λ3 + e−2λ2+λ3 + e2λ1−2λ2+λ3 + e−λ2+λ3 .

We observe that

χλ1 = S(eλ1), χλ2 = S(eλ2) + 2 and χλ3 = S(eλ3) + S(eλ1).
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On the other hand, we remind from Theorem 1.5.7 that for i = 1, 2 and 3

χλi
= S(eλi) +

∑
µ∈Λ+

µ≺λi

mλi
(µ)S(eµ).

We discover that a dominant weight µ such that µ ≺ λ2 is only 0, a dominant

weight µ such that µ ≺ λ3 is only λ1 and λ1 is minimal. Moreover, if we calculate

by Fruthenthal’s recursive formula, then we obtain that mλ2(0) = 2 and mλ3(λ1) = 1.

Hence

χλ1 = S(eλ1), χλ2 = S(eλ2) + 2 and χλ3 = S(eλ3) + S(eλ1).

4.3. The Relation between S(eλm) and χλm

Let Φ be the root system whose Dynkin diagram is Cn , ∆ = {α1, . . . , αn} a base,

λ1, . . . , λn the fundamental weights described in Section 4.1 and W the Weyl group

of Φ. We use the same technique used in the root system having Dynkin diagram Cn

to find the desired relation. We can check that λn is not minimal. Hence we consider

the case where 1 ≤ m ≤ n .

Proposition 4.3.1. Let m and k be nonnegative integers such that 0 ≤ k < m ≤ n.

Then

(λm + δ, λm + δ)− (λk + δ, λk + δ) = (m− k)(2n−m− k + 2).

Proof. We see that λm − λk = (0, . . . ,
k+1th

1 , . . . ,
mth

1 , 0, . . . , 0) and

δ = (n, n− 1, n− 2, . . . , n− i, . . . , 2, 1) where 0 ≤ i ≤ n.

Then
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(λm − λk, δ) =
m∑

i=k+1

(n + 1− i)

= (m− k)(n + 1)−
(

m(m + 1)− k(k + 1)

2

)
= (m− k)

(
2n−m− k + 1

2

)
.

Now, since (λm, λm) = m and (λk, λk) = k , it follows that

(λm + δ, λm + δ)− (λk + δ, λk + δ) = (λm, λm)− (λk, λk) + 2(λm − λk, δ)

= (m− k) + 2(m− k)

(
2n−m− k + 1

2

)
= (m− k)(2n−m− k + 2).

�

Note also that all positive roots are ±2εr where 1 ≤ r ≤ n or εr ± εs where

1 ≤ r < s ≤ n .

Proposition 4.3.2. Let k,m and r be nonnegative integers such that 1 ≤ r ≤ k <

m ≤ n and r < s. Then mλm(λk + 2tεr) = 0 for all t ∈N.

Proof. Let t ∈ N . We know that

λm − (λk + 2tεr) = (0, . . . , 0,
rth

1− 2t , 0, . . . , 0,
(k+1)th

1 , 1, . . . , 1,
mth

1 , 0, . . . , 0).

Suppose that λk + 2tεr � λm . Then there exist a1, . . . , an ∈N0 such that
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λm − (λk + 2tεr) =
n∑

i=1

aiαi =
n−1∑
i=1

ai(εi − εi+1) + 2anεn

= (a1, a2 − a1, . . . , ar − ar−1, . . . , an−1 − an−2, 2an − an−1).

That is

(0, . . . , 0,
rth

1− 2t , 0, . . . , 0,
(k+1)th

1 , 1, . . . , 1,
mth

1 , 0, . . . , 0)

= (a1, a2 − a1, . . . , ar − ar−1, . . . , an−1 − an−2, 2an − an−1).

Then a1 = a2 = · · · = ar−1 = 0 and ar = 1 − 2t which is a contradiction. Thus

λk + 2tεr � λm . By Theorem 1.4.7, we conclude that mλm(λk + 2tεr) = 0.

�

Proposition 4.3.3. Let k,m, r and s be nonnegative integers such that 1 ≤ r ≤ k <

m ≤ n and r < s. Then mλm

(
λk + t(εr ± εs)

)
= 0 for all t ∈N.

Proof. Let t ∈ N

Case 1 r < s ≤ k

We know that

λk + t(εr ± εs) =
(
1, . . . ,

rth

(1 + t) , 1, . . . ,
sth

(1± t) ,
kth

1 , . . . ,
mth

1 , 0, . . . , 0
)
.

Therefore,

λm − (λk + t(εr ± εs))

= (0, . . . , 0,
rth

−t , 0, . . . , 0,
sth

∓t , 0, . . . , 0,
(k+1)th

1 , . . . ,
mth

1 , . . . , 0).
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By the similar argument to the proof of Proposition 4.3.2, we assert that

mλm

(
λk + t(εr ± εs)

)
= 0.

Case 2 r ≤ k < s

We use the same method as in Case 1 and obtain that

mλm

(
λk + t(εr ± εs)

)
= 0.

�

Proposition 4.3.4. Let b, c, k and m be nonnegative integers such that 1 ≤ b < c ≤

n− k and m < n. Then mλm(λk+2) = mλm

(
λk + (εk+b ± εk+c)

)
.

Corollary 4.3.5. We have that t(εk+1 ± εk+2) are conjugate to t(εk+b ± εk+c) and

λk + t(εk+1 ± εk+2) are conjugate to λk + t(εk+b ± εk+c) for 1 ≤ b < c ≤ n− k .

Proposition 4.3.6. Let k, m, r and s be nonnegative integers such that 0 ≤ k < r <

s ≤ n and t ∈ N\{1}. Then mλm

(
λk + t(εr ± εs)

)
= 0.

Theorem 4.3.7. Let k and m be nonnegative integers such that 0 ≤ k < m ≤ n.

Then

∑
α∈Φ+

∞∑
t=1

mλm(λk + tα)(λk + tα, α) = 2(n− k)(n− k − 1)mλm(λk+2).

Proof. Let α be a positive root and t ∈ N . Then α = 2εr for 1 ≤ r ≤ n or α = εr±εs

for 1 ≤ r < s ≤ n .

Case 1 α = 2εr and t ∈ N

It follows from Proposition 4.3.2 that mλm(λk + 2tεr) = 0.

Case 2 α = εr ± εs

(2.1) r ≤ k and t ∈ N
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It follows from Proposition 4.3.3 that mλm

(
λk + t(εr ± εs

)
= 0.

(2.2) r > k and t ∈ N \{1}

It follows from Proposition 4.3.6 that mλm

(
λk + t(εr ± εs

)
= 0.

(2.3) r > k and t = 1

By Proposition 4.3.4, we reach the fact that

mλm(λk+2) = mλm

(
λk + (εk+1 + εk+2)

)
= mλm

(
λk + (εr ± εs

)
.

We conclude from all the cases that

∑
α∈Φ+

∞∑
t=1

mλm(λk + tα)(λk + tα, α) =
n−1∑

r=k+1

n∑
s=r+1

mλm(λk + εr ± εs)(λk + εr ± εs, εr ± εs)

= 4

(
n− k

2

)
mλm(λk+2)

= 2(n− k)(n− k − 1)mλm(λk+2).

�

We are ready to provide the reduce form of Fruthenthal’s multiplicity recursive

formula for fundamental weights λk with highest weight λm where 1 ≤ k < m < n .

By Proposition 4.3.1, Theorem 4.3.7 and the formula (1.5.2), we obtain that

(m− k)(2n−m− k + 2)mλm(λk) = 4(n− k)(n− k − 1)mλm(λk+2). (4.3.8)

Next, we present the general formula for multiplicity of λk , where k = m− 2i for

some i , with highest weight λm by using the formula (4.3.8).

Lemma 4.3.9. Let i and m ∈ N be such that 1 ≤ 2i ≤ m < n− 1. Then

mλm(λm−2i) =

(
n−m + 2i

i

)
n−m + 1

n−m + i + 1
.
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Proof. We prove by strong induction. Recall that mλm(λm) = 1

Basis step

We replace k by m− 2 in the formula (4.3.8), then

mλm(λm−2) =
4(n−m + 2)(n−m + 1)mλm(λm)

2(2n− 2m + 4)

= n−m− 1

=

(
n−m + 2

1

)
n−m + 1

n−m + 1 + 1

Induction step

Suppose that the statement is true for 1, . . . , i− 1. Then

mλm(λm−2i) =
4(n−m + 2i)(n−m + 2i− 1)mλm(λm−2i+2)

2i(2n− 2m + 2i + 2)

=
(n−m + 2i)(n−m + 2i− 1)

(
n−m+2i−2

i−1

)
(n−m + 1)

i(n−m + i + 1)(n−m + i)

=
(n−m + 2i)!(n−m + 1)

i!(n−m + i)!(n−m + i + 1)

=

(
n−m + 2i

i

)
n−m + 1

n−m + i + 1

�

Theorem 4.3.10. Let m be a positive integer such that m ≤ n. Then

χλm =
∑

0≤2i≤m

(
n−m + 2i

i

)
n−m + 1

n−m + i + 1
S(eλm−2i).

Proof. Recall from Theorem 1.5.7 that

χλm = S(eλm) +
∑

µ∈Λ+

µ≺λm

mλm(µ)S(eµ).
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We know that the dominant weights which are less than λm are λm−2i for some i ∈ N

since

λ0 ≺ λ2 ≺ · · · ≺ λ2b for all 2b ≤ m

or

λ1 ≺ λ3 ≺ · · · ≺ λ2b+1 for all 2b + 1 ≤ m.

Moreover, Proposition 4.3.9 assures us that

χλm = S(eλm) +
∑

2≤2i≤m

(
n−m + 2i

i

)
n−m + 1

n−m + i + 1
S(eλm−2i)

=
∑

0≤2i≤m

(
n−m + 2i

i

)
n−m + 1

n−m + i + 1
S(eλm−2i).

�



CHAPTER V

ROOT SYSTEM Dn

In this chapter, we fix n ∈ N\{1, 2, 3} . We consider Rn as the vector space over R

with the usual inner product. Let ε1, . . . , εn be the standard basis vectors of Rn . The

Z-span of this basis is a lattice, denoted by I .

5.1. Outline of the Root System Dn

Let Φ =
{
α ∈ I : (α, α) = 2} . Note that all elements of Φ have the same length.

• Φ is a root system in Rn of rank n .

• Dynkin diagram is c
α1

c
α2

c
αn−3

c
αn−2

�
��

c αn−1

Z
ZZ c αn• Roots are

±(εr ± εs) for all 1 ≤ r < s ≤ n.

• Simple roots are

αr = εr − εr+1 = (0, . . . , 0,
rth

1 ,−1, 0, . . . , 0) for all 1 ≤ r ≤ n− 1 and

αn = εn−1 + εn = (0, . . . , 0, 1, 1).
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• Positive roots are

εr − εs = αr + αr+1 + · · ·+ αs−1, for all 1 ≤ r < s ≤ n,

εr + εn = αr + αr+1 + · · ·+ αn for all 1 ≤ r ≤ n− 1,

εr + εs = αr + αr+1 + · · ·+ αs−1 + 2αs

+ 2αs+1 + · · ·+ 2αn−2 + αn−1 + αn for all 1 ≤ r < s ≤ n− 1.

• Fundamental weights are

λr = ε1 + ε2 + · · ·+ εr

= α1 + 2α2 + · · ·+ (r − 1)αr−1 + r(αr + αr+1 + · · ·+ αn−2)

+
r

2
(αn−1 + αn)

= (1, . . . , 1︸ ︷︷ ︸
r terms

, 0, . . . , 0) for all 1 ≤ r ≤ n− 2,

λn−1 =
1

2
(ε1 + ε2 + · · ·+ εn−1 − εn)

=
1

2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1

2
nαn−1 +

1

2
(n− 2)αn

)
=

(
1

2
, · · · ,

1

2
,−1

2

)
, and

λn =
1

2
(ε1 + ε2 + · · ·+ εn−1 + εn)

=
1

2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1

2
(n− 2)αn−1 +

1

2
nαn

)
=

(
1

2
, . . . ,

1

2
,
1

2

)
.
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• Let λ0 = 0. Then

λ0 ≺ λ2 ≺ · · · ≺ λ2b for all 2b ≤ n− 2

and

λ1 ≺ λ3 ≺ · · · ≺ λ2b+1 for all 2b + 1 ≤ n− 2.

Moreover, if i is odd (even) and j is even (odd) then λi ⊀ λj and λj ⊀ λi .

5.2. Root System D4

We give an example of a root system whose Dynkin diagram is D4 . We consider

R4 as the vector space over R with the usual inner product. Let α1 = (1,−1, 0, 0),

α2 = (0, 1,−1, 0), α3 = (0, 0, 1,−1) and α4 = (0, 0, 1, 1). Then

Φ =
{
±(α1 + 2α2 + α3 + α4),±(α1 + α2 + α3 + α4),±(α1 + α2 + α4),±(α1 + α2 + α3)

± (α1 + α2),±α1,±(α2 + α3 + α4),±(α2 + α4),±(α2 + α3),±α2,±α4,±α3

}
=
{
±(1, 1, 0, 0),±(1, 0, 1, 0),±(1, 0, 0, 1),±(1, 0, 0,−1)± (1, 0,−1, 0),±(1,−1, 0, 0),

± (0, 1, 1, 0),±(0, 1, 0, 1),±(0, 1, 0,−1),±(0, 1,−1, 0),±(0, 0, 1, 1),±(0, 0, 1,−1)
}
.

is a root system in R4 and

∆ =
{
α1, α2, α3, α4

}
=
{
(1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1), (0, 0, 1, 1)

}
is a base of Φ. The Dynkin diagram is

c
α1

c
α2

�
��

c α3

Z
ZZ c α4
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We can see that positive roots are

α1 = (1,−1, 0, 0) α1 + α2 = (1, 0,−1, 0) α1 + α2 + α3 = (1, 0, 0,−1)

α2 = (0, 1,−1, 0) α2 + α3 = (0, 1, 0,−1) α2 + α3 + α4 = (0, 1, 1, 0)

α3 = (0, 0, 1,−1) α2 + α4 = (0, 1, 0, 1) α1 + α2 + α4 = (1, 0, 0, 1)

α4 = (0, 0, 1, 1)

α1 + 2α2 + α3 + α4 = (1, 1, 0, 0) and α1 + α2 + α3 + α4 = (1, 0, 1, 0).

We obtain that δ = (3, 2, 1, 0). The fundamental weights are

λ1 = (1, 0, 0, 0) , λ2 = (1, 1, 0, 0) , λ3 =

(
1

2
,
1

2
,
1

2
,−1

2

)
, and λ4 =

(
1

2
,
1

2
,
1

2
,
1

2

)
.

We know that

σα1 :



α1 7→ −α1

α2 7→ α1 + α2

α3 7→ α3

α4 7→ α4

σα2 :



α1 7→ α1 + α2

α2 7→ −α2

α3 7→ α2 + α3

α4 7→ α2 + α4

σα3 :



α1 7→ α1

α2 7→ α2 + α3

α3 7→ −α3

α4 7→ α4

σα4 :



α1 7→ α1

α2 7→ α2 + α4

α3 7→ α3

α4 7→ −α4
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Moreover,

σα1 :



λ1 7→ −λ1 + λ2

λ2 7→ λ2

λ3 7→ λ3

λ4 7→ λ4

σα2 :



λ1 7→ λ1

λ2 7→ λ1 − λ2 + λ3 + λ4

λ3 7→ λ3

λ4 7→ λ4

σα3 :



λ1 7→ λ1

λ2 7→ λ2

λ3 7→ λ2 − λ3

λ4 7→ λ4

σα4 :



λ1 7→ λ1

λ2 7→ λ2

λ3 7→ λ3

λ4 7→ λ2 − λ4

The Weyl group W of Φ is
〈
σα1 , σα2 , σα3 , σα4

〉
consisting of 192 elements.

Next, for each fundamental weight λ , we consider the elementary symmetric

sum S(eλ) and the character χλ with highest weight λ (see also Definition 1.2.20).

We calculate that

S(eλ1) = e−λ1 + eλ1 + eλ1−λ2 + e−λ1+λ2 + eλ2−λ3−λ4 + eλ3−λ4 + e−λ3+λ4 + e−λ2+λ3+λ4 ,

S(eλ2) = e−λ2 + e2λ1+λ2 + eλ2 + e−2λ1+λ2 + eλ2−2λ3 + e−λ2+2λ3 + eλ2−2λ4 + eλ1−λ3−λ4

+ e−λ1+λ2−λ3−λ4 + eλ1+λ2−λ3−λ4 + e−λ1+2λ2−λ3−λ4 + e−λ1+λ3−λ4 + eλ1+λ3−λ4

+ eλ1−λ2+λ3−λ4 + e−λ1+λ2+λ3−λ4 + e−λ1−λ3+λ4 + eλ1−λ3+λ4 + eλ1−λ2−λ3+λ4

+ e−λ1+λ2−λ3+λ4 + e−λ1+λ3+λ4 + eλ1−2λ2+λ3+λ4 + e−λ1−λ2+λ3+λ4

+ eλ1−λ2+λ3+λ4 + e−λ2+2λ4

S(eλ3) = e−λ3 + eλ2−λ3 + eλ3 + e−λ2+λ3 + eλ1−λ4 + e−λ1+λ2−λ4 + e−λ1+λ4 + eλ1−λ2+λ4 ,
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and

S(eλ4) = eλ1−λ3 + e−λ1+λ2−λ3 + e−λ1+λ3 + eλ1−λ2+λ3 + e−λ4 + eλ2−λ4 + eλ4 + e−λ2+λ4 .

Also,

χλ1 = e−λ1 + eλ1 + eλ1−λ2 + e−λ1+λ2 + eλ2−λ3−λ4 + eλ3−λ4 + e−λ3+λ4 + e−λ2+λ3+λ4 ,

χλ2 = e−λ2 + e2λ1+λ2 + eλ2 + e−2λ1+λ2 + eλ2−2λ3 + e−λ2+2λ3 + eλ2−2λ4 + eλ1−λ3−λ4

+ e−λ1+λ2−λ3−λ4 + eλ1+λ2−λ3−λ4 + e−λ1+2λ2−λ3−λ4 + e−λ1+λ3−λ4 + eλ1+λ3−λ4

+ eλ1−λ2+λ3−λ4 + e−λ1+λ2+λ3−λ4 + e−λ1−λ3+λ4 + eλ1−λ3+λ4 + eλ1−λ2−λ3+λ4

+ e−λ1+λ2−λ3+λ4 + e−λ1+λ3+λ4 + eλ1−2λ2+λ3+λ4 + e−λ1−λ2+λ3+λ4

+ eλ1−λ2+λ3+λ4 + e−λ2+2λ4 + e−λ1 + eλ1 + eλ1−λ2 + e−λ1+λ2 + eλ2−λ3−λ4

+ eλ3−λ4 + e−λ3+λ4 + e−λ2+λ3+λ4 + 4,

χλ3 = e−λ3 + eλ2−λ3 + eλ3 + e−λ2+λ3 + eλ1−λ4 + e−λ1+λ2−λ4 + e−λ1+λ4 + eλ1−λ2+λ4

and

χλ4 = eλ1−λ3 + e−λ1+λ2−λ3 + e−λ1+λ3 + eλ1−λ2+λ3 + e−λ4 + eλ2−λ4 + eλ4 + e−λ2+λ4 .

We observe that

χλ1 = S(eλ1), χλ2 = S(eλ2) + S(eλ1) + 4, χλ3 = S(eλ3) and χλ4 = S(eλ4).

On the other hand, we remind from Theorem 1.5.7 that for i = 1, 2, 3 and 4

χλi
= S(eλi) +

∑
µ∈Λ+

µ≺λi

mλi
(µ)S(eµ).
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We discover that a dominant weight µ such that µ ≺ λ2 is only 0 and λ1, λ3 and λ4

are minimal. Moreover, if we calculate by Fruthenthal’s recursive formula, then we

obtain that mλ2(0) = 4. Thus

χλ1 = S(eλ1), χλ2 = S(eλ2) + S(eλ1) + 4, χλ3 = S(eλ3) and χλ4 = S(eλ4).

5.3. The Relation between S(eλm) and χλm

Now, we let Φ be the root system whose Dynkin diagram is Dn , ∆ = {α1, . . . , αn}

a base, λ1, . . . , λn the fundamental weights described in Section 5.1 and W the Weyl

group of Φ. First, we consider the case where m ≤ n− 2.

Proposition 5.3.1. Let m and k be nonnegative integers such that 0 ≤ k < m ≤

n− 2. Then

(λm + δ, λm + δ)− (λk + δ, λk + δ) = (m− k)(2n−m− k).

Proof. We see that λm − λk = (0, . . . ,
k+1th

1 , . . . ,
mth

1 , 0, . . . , 0) and,

δ = (n− 1, n− 2, n− 3, . . . , n− i, . . . , 1, 0) where 4 ≤ i ≤ n.

Thus,

(λm − λk, δ) =
m∑

i=k+1

(n− i)

= (m− k)n−
(

m(m + 1)− k(k + 1)

2

)
= (m− k)

(
2n−m− k − 1

2

)
.

Now, since (λm, λm) = m and (λk, λk) = k , it follows that
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(λm + δ, λm + δ)− (λk + δ, λk + δ) = (λm, λm)− (λk, λk) + 2(λm − λk, δ)

= (m− k) + 2(m− k)

(
2n−m− k − 1

2

)
= (m− k)(2n−m− k).

�

Proposition 5.3.2. Let k, m, r and s be nonnegative integers such that 1 ≤ r ≤ k <

m ≤ n− 2 and r < s. Then mλm

(
λk + t(εr ± εs)

)
= 0 for all t ∈ N.

Proof. Let t ∈ N .

Case 1 r < s ≤ k

We know that

λk + t(εr ± εs) =
(
1, . . . ,

rth

(1 + t) , 1, . . . ,
sth

(1± t) ,
kth

1 , . . . ,
mth

1 , 0, . . . , 0
)
.

Therefore,

λm − (λk + t(εr ± εs))

= (0, . . . , 0,
rth

−t , 0, . . . , 0,
sth

∓t , 0, . . . , 0,
(k+1)th

1 , . . . ,
mth

1 , . . . , 0).

Suppose that λk + t(εr ± εs) � λm . Then there exist a1, . . . , an ∈N0 such

that

λm − (λk + t(εr ± εs)) =
n∑

i=1

aiαn =
n−1∑
i=1

ai(εi − εi+1) + an(εn−1 + εn)

= (a1, a2 − a1, . . . , ar − ar−1, . . . , 2an−1 − an−2, an − an−1).
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That is

(0, . . . , 0,
rth

−t , 0, . . . , 0,
sth

∓t , 0, . . . , 0,
(k+1)th

1 , . . . ,
mth

1 , 0, . . . , 0)

= (a1, a2 − a1, . . . , ar − ar−1, . . . , 2an−1 + an−2, an − an−1).

Then, a1 = a2 = · · · = ar−1 = 0 so that ar = −t which is a contradiction.

Thus λk + t(εr ± εr) � λm . By Theorem 1.4.7, we conclude that

mλm

(
λk + t(εr ± εs)

)
= 0.

Case 2 r ≤ k < s

We use the same method as in Case 1 and obtain that

mλm

(
λk + t(εr ± εs)

)
= 0.

�

Proposition 5.3.3. Let b, c, k and m be nonnegative integers such that 1 ≤ b < c ≤

n− k and k < m ≤ n− 2. Then mλm(λk+2) = mλm

(
λk + (εk+b ± εk+c)

)
.

Corollary 5.3.4. We have that t(εk+1 ± εk+2) are conjugate to t(εk+b ± εk+c) and

λk + t(εk+1 ± εk+2) are conjugate to λk + t(εk+b ± εk+c) for 1 ≤ b < c ≤ n − k and

k < m ≤ n− 2.

Proposition 5.3.5. Let k,m, r and s be nonnegative integers such that 0 ≤ k < r <

s ≤ n and k < m ≤ n− 2 for all t ∈ N\{1}. Then mλm

(
λk + t(εr ± εs)

)
= 0.
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Theorem 5.3.6. Let k and m be nonnegative integers such that 0 ≤ k < m ≤ n−2.

Then

∑
α∈Φ+

∞∑
t=1

mλm(λk + tα)(λk + tα, α) = 2(n− k)(n− k − 1)mλm(λk+2).

Proof. Let α be a positive root and t ∈ N . Then α = εr ± εs for 1 ≤ r < s ≤ n .

Case 1 r ≤ k and t ∈ N

It follows from Proposition 5.3.2 that mλm

(
λk + t(εr ± εs

)
= 0.

Case 2 r > k and t ∈ N \{1}

It follows from Proposition 5.3.5 that mλm

(
λk + t(εr ± εs

)
= 0.

Case 3 r > k and t = 1

By Proposition 5.3.3, we reach the fact that

mλm(λk+2) = mλm

(
λk + (εk+1 + εk+2)

)
= mλm

(
λk + (εr ± εs)

)
.

We conclude from all the cases that

∑
α∈Φ+

∞∑
t=1

mλm(λk + tα)(λk + tα, α) =
n−1∑

r=k+1

n∑
s=r+1

mλm(λk + εr ± εs)(λk + εr ± εs, εr ± εs)

= 4

(
n− k

2

)
mλm(λk+2)

= 2(n− k)(n− k − 1)mλm(λk+2).

�

We are ready to provide the reduce form of Fruthenthal’s multiplicity recursive

formula for fundamental weights λk with highest weight λm where 1 ≤ k < m ≤ n−2.

By Proposition 5.3.1, Theorem 5.3.6 and the formula (1.5.2), we obtain that

(m− k)(2n−m− k)mλm(λk) = 4(n− k)(n− k − 1)mλm(λk+2). (5.3.7)
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Next, we present the general formula for multiplicity of λk , where k = m− 2i for

some i , with highest weight λm by using the formula (5.3.7).

Lemma 5.3.8. Let i and m ∈ N be such that 1 ≤ 2i ≤ m ≤ n− 2. Then

mλm(λm − 2i) =

(
n−m + 2i

i

)
.

Proof. We prove by strong induction. Recall that mλm(λm) = 1.

Basis step

We replace k by m− 2 in the formula (5.3.7), then

mλm(λm−2) =
4(n−m + 2)(n−m + 1)mλm(λm)

2(2n− 2m + 2)

= n−m + 2 =

(
n−m + 2

1

)
.

Induction step

Suppose that the statement is true for 1, . . . , i− 1. Then

mλm(λm−2i) =
4(n−m + 2i)(n−m + 2i− 1)mλm(λm−2i+2)

2i(2n− 2m + 2i)

=
(n−m + 2i)(n−m + 2i− 1)

(
n−m+2i−2

i−1

)
i(n−m + i)

=
(n−m + 2i)!

(n−m + i)!i!
=

(
n−m + 2i

i

)
.

�

Lemma 5.3.9. The fundamental weights λn−1 and λn are minimal.

Proof. Remember from Section 5.1 that λn−1 =

(
1

2
, . . . ,

1

2
,−1

2

)
and λn =

(
1

2
, . . . ,

1

2

)
.

We show that λn−1 and λn−1 are minuscule. Let α ∈ Φ. Then α = ±(εr ± εs) where

r 6= s .
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((
1

2
, . . . ,

1

2
,−1

2

)
,±(εr ± εs)

∨
)

=

((
1

2
, . . . ,−1

2

)
,±(εr ± εs)

)
∈ {0,±1}.

Hence, λn−1 is minuscule.

((
1

2
, . . . ,

1

2

)
,±(εr ± εs)

∨
)

=

((
1

2
, . . . ,

1

2

)
,±(εr ± εs)

)
∈ {0,±1}.

Therefore, λn is minuscule. We obtain that λn−1 and λn are minimal from Theo-

rem 1.2.14. �

Theorem 5.3.10. Let m be a positive integer such that such that m ≤ n. Then

χλm =


S(eλm), if m = n, n− 1,∑
0≤2i≤m

(
n−m + 2i

i

)
S(eλm−2i), if m ≤ n− 2.

Proof. Recall from Theorem 1.5.7 that

χλm = S(eλm) +
∑

µ∈Λ+

µ≺λm

mλm(µ)S(eµ).

Lemma 5.3.9 shows that λn and λn−1 are minimal in its subposet of (Λ+,≺), then

χλn = S(eλn) and χλn−1 = S(eλn−1). Next, let m ≤ n − 2. We know that the

dominant weights which are less than λm are λm−2i for some i ∈ N since

λ0 ≺ λ2 ≺ · · · ≺ λ2b for all 2b ≤ m

or

λ1 ≺ λ3 ≺ · · · ≺ λ2b+1 for all 2b + 1 ≤ m.
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Moreover, Proposition 5.3.8 assures us that

χλm = S(eλm) +
∑

2≤2i≤m

(
n−m + 2i

i

)
S(eλm−2i)

=
∑

0≤2i≤m

(
n−m + 2i

i

)
S(eλm−2i).

We conclude that

χλm =


S(eλm), if m = n, n− 1,∑
0≤2i≤m

(
n−m + 2i

i

)
S(eλm−2i), if m ≤ n− 2.

�



CHAPTER VI

ROOT SYSTEM G2

We consider R3 as the vector space over R with the usual inner product. Let

(1, 0, 0), (0, 1, 0) and (0, 0, 1) be the standard basis vectors of R3 . The Z-span of

this basis is a lattice, denoted by I . Let V be the 2-dimensional subspace of R3

orthogonal to the vector (1, 1, 1) and I
′
= I ∩ V .

6.1. Outline of the Root System G2

Let Φ=
{
α ∈ I

′
: (α, α) = 2 or 6

}
, i.e.,

Φ =
{
±(1, 0,−1),±(1,−1, 0),±(0, 1,−1),±(−1, 2,−1),±(2,−1,−1),±(−1,−1, 2)

}
.

Note that the squared length of an element of Φ is 2 or 6.

• Φ is a root system in V of rank 2.

• Dynkin diagram is c
α1

PP
�� c

α2

• Short roots are

±(1,−1, 0),±(1, 0,−1) and ± (0, 1,−1) (of squared length 2).

Long roots are

±(2,−1,−1),±(−1, 2,−1) and ± (−1,−1, 2) (of squared length 6).

• Simple roots are

α1 = (1,−1, 0) and α2 = (−2, 1, 1).
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• Positive roots are

α1 = (1,−1, 0), α2 = (−2, 1, 1), α1 + α2 = (−1, 0, 1),

2α1 + α2 = (0,−1, 1), 3α1 + α2 = (1,−2, 1) and 3α1 + 2α2 = (−1,−1, 2).

• Fundamental weights are

λ1 = 2α1 + α2 = (0,−1, 1) and λ2 = 3α1 + 2α2 = (−1,−1, 2).

• Let λ0 = 0. Then λ0 ≺ λ1 ≺ λ2 .

6.2. The Relation between S(eλm) and χλm

In this section, we let Φ be the root system whose Dynkin diagram is G2 , ∆ =

{α1, α2} the base of Φ, and λ1, λ2 the fundamental weights described in Section 6.1.

In addition, we know that δ = λ1 + λ2 = (−1,−2, 3). In order to determine S(eλ1)

and S(eλ2), first, we find the Weyl group W of Φ. Remind that

σα1 :
α1 7→ −α1,

α2 7→ 3α1 + α2,

and σα2 :
α1 7→ α1 + α2,

α2 7→ −α2.

Moreover,

σα1 :
λ1 7→ −λ1 + λ2,

λ2 7→ λ1,

and σα2 :
λ1 7→ λ1,

λ2 7→ 3λ1 − λ2.

Then W consists of 12 elements as follows:

iV , σα, σβ, σασβ, σβσα, σασβσα, σβσασβ, σασβσασβ,

σβσασβσα, σασβσασβσα, σβσασβσασβ, σασβσασβσασβ.
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Next, for each fundamental weight λ , we consider the elementary symmetric

sum S(eλ) and the character χλ with highest weight λ (see also Definition 1.2.20).

We see that

Wλ1 =
{
λ1, λ1 − λ2,−2λ1 + λ2,−λ1, 2λ1 − λ2,−λ1 + λ2

}
and

Wλ2 =
{
λ2, 3λ1 − 2λ2,−3λ1 + 2λ2,−3λ1 + λ2, 3λ1 − λ2,−λ2

}
.

Then

S(eλ1) = eλ1 + eλ1−λ2 + e−2λ1+λ2 + e−λ1 + e2λ1−λ2 + e−λ1+λ2

and

S(eλ2) = eλ2 + e3λ1−2λ2 + e−3λ1+2λ2 + e−3λ1+λ2 + e3λ1−λ2 + e−λ2 .

We need the followings in order to calculate χλ1 and χλ2 .

A(eλ1+δ) = e5λ1+4λ2 − e7λ1+4λ2 − e2λ1−3λ2 + e7λ1−3λ2 + e−2λ1−λ2 − e5λ1−λ2

−e−5λ1+λ2 + e2λ1+λ2 + e−7λ1+3λ2 − e−2λ1+3λ2 − e−7λ1+4λ2 + e−5λ1+4λ2 ,

A(eλ2+δ) = e7λ1+5λ2 − e8λ1−5λ2 − eλ1−3λ2 + e8λ1−3λ2 + e−λ1−2λ2 − e7λ1−2λ2

−e−7λ1+2λ2 + eλ1+2λ2 + e−8λ1+3λ2 − e−λ1+3λ2 − e−8λ1+5λ2 + e−7λ1+5λ2 ,

and

A(eδ) = e4λ1+3λ2 − e5λ1−3λ2 − eλ1−2λ2 + e5λ1−2λ2 + e−λ1−2λ2 − e4λ1−λ2

−e−4λ1+λ2 + eλ1+λ2 + e−5λ1+2λ2 − eλ1+2λ2 − e−5λ1+3λ2 + e−4λ1+3λ2 .

Thus,

χλ1 = 1 + e−λ1 + eλ1 + eλ1−λ2 + e2λ1−λ2 + e−2λ1+λ2 + e−λ1+λ2
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and

χλ2 = 2 + e−λ1 + eλ1 + eλ1−λ2 + e2λ1−λ2 + e−2λ1+λ2 + e−λ1+λ2 + eλ2

+ e3λ1−2λ2 + e−3λ1+2λ2 + e−3λ1+λ2 + e3λ1−λ2 + e−λ2 .

We conclude that

χλ1 = S(eλ1) + 1 and χλ2 = S(eλ2) + S(eλ1) + 2.

On the other hand, we remind from Theorem 1.5.7 that for i = 1 and 2

χλi
= S(eλi) +

∑
µ∈Λ+

µ≺λi

mλi
(µ)S(eµ).

We discover that a dominant weight µ such that µ ≺ λ1 is only 0 and dominant

weights µ such that µ ≺ λ2 are 0, λ1 , where 0 ≺ λ1 . Moreover, if we calculate by

Fruthenthal’s recursive formula, then we obtain that mλ1(0) = 1, mλ2(λ1) = 1 and

mλ2(0) = 2. Thus

χλ1 = S(eλ1) + 1 and χλ2 = S(eλ2) + S(eλ1) + 2.
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