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CHAPTER 1

PRELIMINARIES

In this chapter, we summarize basic concepts of root systems, abstract theory of
weights, Lie algebra, and representation theory which are related to this thesis in
Sections 1.1 — 1.4. Moreover, our motivation for this thesis and key theorems which
will play major roles in the following chapters are stated in Section 1.5. The main

references of these are from [2], [3] and [4].

1.1. Root Systems

First, we fix V to be a finite-dimensional Euclidean space with an inner prod-
uct (, ). We introduce a reflection in V' which is used for defining a root system
in V. Then, we define a base of a root system in V' which is a basis of V' with a
certain property. Finally, we bring in Dynkin diagrams which lead to catagorizing

root systems.

Definition 1.1.1. [4] A reflection in V' is an invertible linear transformation leav-
ing pointwise fixed some hyperplane (subspace of codimension one) and sending any

vector orthogonal to that hyperplane into its negative.

Any nonzero vector '« determines a reflection o, , with reflecting hyperplane P, =
{5 eVi(fa) = O}. Of course, nonzero vectors proportional to « yield the same
reflection. Evidently, a reflection is orthogonal, i.e., (04(8),04(7)) = (8,7) for all

a, 3,7 € V. There is an explicit formula for a reflection o, (a € V') as follows:

(6,a)
(o, q)

oa(B)=0—2 a forall geV.



Since the number ZEﬁ’a; occurs frequently, for our convenience, we denote it by
a, o
(3, a") where v = m, so that 0,(8) = 6 — (8, a")a.

Definition 1.1.2. [4] A subset ® of V is called a root system in V' if the following

axioms are satisfied:

(R1) @ is finite, spans V', and does not contain 0.
(R2) If o € @, the only multiples of @ in ® are +a.
(R3) If a € @, the reflection o, leaves @ invariant.

(R4) If o, 8 € @, then (8,a") € Z.

For each root system @, the elements of ® are called roots, and the rank of ® is the

dimension of V.

Axiom (R4) in Definition 1.1.2 limits severely the possible angles occuring between

pairs of roots. Recall that the cosine of the angle 6 between vectors o, 3 € V' is given

(3.) _ 118

(,a) o]

by the formula ||«||||5]| cos@ = (&, 3). Therefore, (3, ") = 2
(o, BY)(B,a") = 4cos? §. This last number is a nonnegative integer; but 0 < cos?6 < 1,
and (o, 3Y), (8,a") have like sign. The following possibilities of § and [|3]*/| «||?

are the only ones when o # £ and ||3|| > ||| are given.

(o, 8 | (Br¥) | 0| ABI7/lel?

0 0 7/2 | undetermined
1 1 /3 1

~1 “1 | 2n/3 1
1 2 | /4 2

1 | -2 |3m/4 2
1 3 /6 3

1 | -3 |57/6 3




Definition 1.1.3. [4] A subset A of a root system ® in V' is called a base if

(B1) A is a basis of V,
(B2) each root [ can be written as (3 = Zkaa with integral coefficients k, all

acA
nonnegative or nonpositive.

The roots in a base are called simple. Moreover, o,, where « is a simple root, is

called a simple reflection.

Definition 1.1.4. [4] Let ® be a root system, A a base of ® and = Zkaa a
€A

root. If all k, > 0(k, < 0), we call § positive (negative) and write 5> 0 (8 < 0).

The set of all positive and negative roots (relative to @) is denoted by ®* and &,

respectively.

Note 1.1.5. Let ® be a root system and A a base of ®. It is obvious that A C &+

and &~ = —®T.

Definition 1.1.6. [4] Let @ be a root system in V. The Weyl group W of & is the
subgroup of invertible linear transformations on V' generated by reflections o, where

aed.

Example 1.1.7. We consider R? as a vector space with the usual inner prod-
uct. Let @ = {£(0,1),£(L,0)}. Then ® is a root system in R? with the base

A= {(O, 1), (1, 0)} and the Weyl group W = {z'Rz, 0(0,1)> 0(1,0)5 0(0,1)0(170)} where

7(0,1)(0,1) = —(0,1) o(0,1)(1,0) = (1,0)
7(1,0)(0,1) = (0,1) 7(1,0)(1,0) = =(1,0).
It is not obvious that (B2) guarantees the existence of a base of a root system.

However, the following thoerem assures that. In fact, a base is not unique but there

is a relation between these bases.
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Theorem 1.1.8. [4] For each root system ® in V', bases exist but are not unique.

Moreover, if A and A’ are two bases of ®, then w(A") = A for some w € W.

Definition 1.1.9. [4] Let ® be a root system in V' and W the Weyl group of .
Let o and 3 be any elements of V. We say that « is conjugate to § or a and [ are

W- conjugate if there exists w € W such that w(3) = a.

Proposition 1.1.10. Let W be the Weyl group of a root system and o, 3 the same
length roots. Then « and [ are conjugate under W via w € W such that w() = «
and

(

Uﬁ-on Zf (CY)ﬁ) -~ 07

L’ & 00030 q, Zf (aaﬁ) = 17

(92930208, if (e, B8) = —1.

Note also that if (v, 3) # 0, then (oY, 5) = (a, Y) = 1.
Proof. This is obvious. U

Theorem 1.1.11. [4] Let ® be a root system in V', A a base of ® and W the Weyl

group of P.

(a) If o is-any root, there exists w € W. such that w(o) € A.

(b) W is generated by the o,(a € A).

We can see from Theorem 1.1.11 (b) that the 'Weyl group of a root system is
generated by the simple reflections which are relative to a base.

From Example 1.1.7, we obtain that W = <0(0,1), 0(1,0)>.

Definition 1.1.12. [4] Let A be a fixed base of root system ® in V. We define a

partial order < on V as follows: for each A\, u € V', u < X (or X\ > p) if and only if



5
A — p is a sum of simple roots. In addition, we define p < A if and only if © < X\ or

n=A\.

The partial order < (or >) has an eminent role for this thesis. We can see from
Example 1.1.7 that (—1,0) < (0,1) since (0,1) —(—=1,0) = (1,1) = (0,1) +(1,0) but
(1,0) £ (0,1) since (0,1) — (1,0) = (—1,1) is not a sum of (1,0) and (0, 1).

Definition 1.1.13. [4] A root system @ is called irreducible if it cannot be partition
into the union of two proper subsets such that each root in one set is orthogonal to

each root in the other.

Theorem 1.1.14. [4] Let © be an irreducible root system. Then at most two root

lengths occur in ®, and all roots of a given length are conjugate under its Weyl group.

Proposition 1.1.15. [4] Let ® be a root system in V., A a fized base and W the
Weyl group. Suppose S C A. Let V(S) be the vector subspace of V' spanned by S,
and let ®(S) =P NV(S). Then S is a base of the root system ®(S). We also call

®(S) a subroot system of ®. Therefore, the Weyl group of ®(S) is
W(®(S)) =(oa:a€S).

Proposition 1.1.16. [4] Let ® be a root system in V. Then ® decomposes (uniquely)
as the union of irreducible root system ®; (in subspace Vi of V') such that V =
Vi@ @V, (orthogonal direct sum, i.e., each vector in V; is orthogonal to each

vector in the others) for some t € N.

Example 1.1.17. We note from Example 1.1.7 that ® = {£(0,1)} & {£(1,0)} such

that {£(0,1)} is root system in ((0,1)) and {#(1,0)} is root system in {(1,0)).

Proposition 1.1.16 shows that it is sufficient to classify only the irreducible root

systems.
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Definition 1.1.18. [4] For each root system with rank n and A = {ay,...,a,}, the
Dynkin diagram of A is a graph having n vertices the i-th joined to the j-th, where
i #j, by (qi,af)(a;,a;) edges and adding an arrow pointing to the shorter of the

two roots (in term of their lengths) whenever a double or triple edge occurs.
There is a natural notion of isomorphism between root systems.

Definition 1.1.19. [4] Let ® and & be root systems in respective finite-dimensional
real vector spaces V and V'. We call that (®,V) and (&', V") are isomorphic if there
exists a linear isomorphism ¢ : V—V' sending ® onto ® such that (gb(ﬁ), gb(oz)v) =

(B,a") for each pair of roots a, f € ®.

Theorem 1.1.20. [4] If ® is an irreducible root system of rank n, its Dynkin diagram

is one of the following (n vertices in each case):

A, (n>1): OfF —— Oy~ |50
a7 (65 Ay
B, (n>2 0—O0— . .  —O—==—20
n ) (TR Qe O
C. (n>3) o—0— —0—==20
n aq (65)) Q1 (677}
Op—1
D, (n>4): iEmEALL
Ay -
aq a2 n=3 o, >
Oy,
o o o o o
a &%) Q3 Oy a5
Es



O O O O O O
(631 (&%) a3 Oy 0% ar
E7 :
Qg
(o O O O O O O
(631 (&%) Q3 Oy Qs Q7 Qg
Es
(g
F, : o0— o—==—20 0o
aq Qg Q3 Gy
G; : c—==o0
aq o %)

On the other hand, a root system can be constructed from each Dynkin diagram
(unique upto isomorphism). Note also that root systems with Dynkin diagram G,
and By are isomorphic but root systems with Dynkin diagram C3 and Bs are not

isomorphic. For further details, the reader can read in [4], p.63-65.

1.2. Abstract Theory of Weights

In this section, we provide definitions of a weight lattice, fundamental weights,
saturated weights-and some theorems of weights which are relevant to this thesis. Ad-
ditionally, we define the group ring of the weight lattice. We focus on some particular
elements of that group ring, namely, the elementary symmetric sums of fundamental
weights and the characters of fundamental weights. We carry on using the notations

V,®, A, W and others as in Section 1.1.

Definition 1.2.1. [4] We define the weight lattice A to be

A={ eV:(\a')eZforall ac d},
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and call its elements weight. For a fixed base A C &, we define X\ € A to be dominant
if all integers (A, ") («a € A) are nonnegative, strongly dominant if these integers

are positive. Let AT be the set of all dominant weights.

QOéi

(v, ;)

If A={ay,...,a,}, then the vectors o = , again, form a basis of V.

Definition 1.2.2. [4] Let A = {ay,...,a,} be a fixed base of a root system ®. The

fundamental weights are Xy, ..., A\, such that for all 1 <i,j <n
(>\i7 Oé;/) = (5”

We can see that the fundamental weights are dominant and

Ajs if j # 1,
O-Oéi(/\j) a

Proposition 1.2.3. [4] Let A ={ay, ..., a,} be a fized base of a root system ®. The
fundamental weights Ay, ..., X\, form a Z-basis for the weight lattice A. In addition,
for each X\ € A,

A= i(x,ay)xi.
=1

Furthermore, X€ At if and only if (X, o)) >0 forall 1 <i<n.

Remark 1.2.4. As a result of Proposition 1.2.3,

A= {Zkagi ke, = (N ) € Z for all a; € A}, and

a; EA

AT = {Zkai)‘i3ka¢ =\, ) € Z§ for all aieA}.

a; EA



9
Since A C V and < is a partial order on V', we obtain a partial order on A. By

Definition 1.1.12, for A\, € A

<A (or A> p) if and only if /\—,u:Zkaoz

acA

where k, € ZJ not all zeros for all simple roots o. Moreover, we define y < X if and

only if g < X or = A\.

Definition 1.2.5. [4] Define 6 to be the half sum of all positive roots, i.e.,

1
0= 5’2{3 €.
aedt
Proposition 1.2.6. [4] The half sum & of all positive roots is a weight. In fact,
i=1

Observe that § is another example of dominant weights.

Theorem 1.2.7. [4] Fach weight is conjugate under W to one and only one dominant
weight. If X is dominant, then w(\) < A for all w € W and if A is strongly dominant,

then w(\) = X\ only when w = 1.

Theorem 1.2.8. [4] Let A € AT, then the number of dominant weights u such that

=< A is finite.

Definition 1.2.9. [4] We call a subset Il of the weight A saturated if for all A € II,

a € ¢, and i between 0 and (A, ) (inclusive), the weights A — icv also lie in II.
Notice that any saturated set is automatically stable under WW.

Definition 1.2.10. [4] Let A € AT. We say that a saturated set II has the highest

weight A if and only if A € Il and p <X A for all p € 1I.
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Theorem 1.2.11. [4] A saturated set of weights having highest weight X\ must be

finite.

Theorem 1.2.12. [4] Let 11 be a saturated set with highest weight X. If u € A* and

W =A, then u € 1I.

Theorem 1.2.12 emerges a very clear picture of a saturated set Il having highest
weight A, i.e., II consists of all dominant weights lower than or equal to A in the par-
tial ordering, along with their conjugates under W. In particular, for given A\ € AT,
at most one such set IT can exist. Conversely, given A € AT, we may simply define
IT to be the set of all dominant weights below A, along with their WW-conjugates.
Since II is stable under ¥V, it can be seen to be saturated, and II has A as a highest

weight.

Definition 1.2.13. [4] For A € A", define TI()\) to be the smallest saturated subset
of A that contains A. (Since intersections of saturated sets are saturated, it is clear

that the smallest saturated subset exists.)

Theorem 1.2.14. [7] For A € A", we have

00 ={ue A w(p) <A for allw e W} = (J Wi

HEAT
B2

Remark 1.2.15. For each A € A", we obtain that II(\) is the smallest saturated

set containing A with highest weight X.

Definition 1.2.16. [7] A dominant weight A is minuscule if A # 0 and (A, ") €

{0,£1} for all a € ®.

Theorem 1.2.17. [7] A dominant weight X is a minimal element of (AT, <) if and

only if =0 or X\ is minuscule.
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Now, we give notion of a group ring which is mainly referred to [5]. Consider
an arbitary family {Gi 1 e 1 } (where [ is an arbitary set) of groups. We de-

fine a binary operation on the Cartesian product HGZ' as follows. If f,g € HGi

iel iel
(that is f,g: I — UG1> ,then fg: 1 — UGZ' is the function given by i — f(7)g(7).
iel i€l
The (external) weak direct product of groups {Gi el }, denoted Hw G, is the
iel

set of all f € HG" such that f(i) = e;, the identity in G;, for all but a finite number
ofiel. If ;lellthe groups G; are (additive) abelian, Hw G, is usually called the
(external) direct sum and is denoted ZGi' -

Let G be a (multiplicative) group aflii R aring. Let R(G) be the additive abelian

group ZR (one copy of R for each g € G'). It will be convenient to adopt a new

geG
notation for the element of R(G), i.e.,

R(G) = {Zrigi :n €N, r; € Rand g; € G for all z} )

=i

We also allow the possibility that some of the r; are zero or that some g; are repeated,
so that an element of R(G) may be written in formally different ways (for example,
r1g1+0g2 = 1191 or 1191 + 5191 = (r1+51)g1 ). In this notation, addition in the group
R(G) is given by

n

Zﬁgi + Zsigi = Z(Tz +5:) 94,
=1 i=1

=1

by inserting zero coefficients if necessary we can always assume that two formal sums
involve exactly the same indices 1,...,n.
The group R(G) becomes a commutative ring if a specific multiplication is pro-

vided.
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Definition 1.2.18. [5] Let G be a (multiplicative) group and R a ring. Let R(G)
be the additive abelian group ZR with addition described above. Define a multi-

geG
plication in R(G) by

i=1 j=1

(Zrigi) (Zsﬂ) = ZZ(risj)(gihj).

With these operations, R(G) is a ring. Then R(G) is called the group ring of G

over R.

Let A be the weight lattice of a root system ® and G = {6)‘ CNE A}. Then G
is a multiplicative group if we define the multiplication ete® = M for all \,a € G
and extend it linearly. Then the group ring Z[G| of G over Z exists. In general, we
use Z[A] in sense of Z[G] and call Z[A| the group ring of the weight lattice A over Z,

ie.,

Z[A] = {Z kxe : ky € Z and ky # 0 for all but finitely many \ € A} )
AEA

Note that Z[A] is a free Z-module with basis element e* in one-to-one correspondence

with the element \ of A.

Definition 1.2.19. [2] Let = € Z[A], then x is invariant under W if w(z) = x for
all w € W and wis ‘anti-invariant under W if w(z) = det(w)z for all w € W.

Moreover, Z[A]"Y is defined as
ZINDY ={z € Z[A] : w(z) = x for all w € W},

i.e., the set of elements of Z[A] which are invariant under W.

Definition 1.2.20. [3] Let A be a weight in the weight lattice A and WA the orbit

of X\ under W. The elementary symmetric sum S(e*) of A\ and the elementary
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alternating sum A(e*) of X are given by

S(BA) = Z et and A(e)‘) = Z det(w)e“’()‘),

LEWA weW

respectively. Furthermore, if A\ is dominant, the character y, with highest weight A

is defined by
I A(€A+6)

Remark 1.2.21. We observe that y, € Z[A]Y for all A € AT. Moreover, for each

A € AT, we can see that S(e?) € Z[A]"Y and

1
S(e) = e?® =~ N w(y),
C I W2

WNWeW/W(N)

where W(A) = {w € W : w(\) = A}. We give examples for these in following

chapters.
Proposition 1.2.22. Let A € A", then S(e) has X as the highest weight.
Proof. 1t follows from p € WA CII()). O

Proposition 1.2.23. [2] Let ® be a root system, A the weight lattice and W the

Weyl group of ®. Then the set
{S(e’\) : A is a dominant weight }

forms a basis for the Z-module Z[A]Y.

Definition 1.2.24. [5] Let R be a ring and denote
Rlzy,...,x,) = {f :N" = R: f(u) # 0 for at most finite numbers of u € N"}.

The ring R[zy,...,x,] is called the ring of polynomials in n determinates over R.
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Theorem 1.2.25. [2] Let A be the weight lattice, M1, ..., \, the fundamental weights,

® a root system and W the Weyl group of ®. We have
Z[xly'rQa s ,.',Un] = Z[A]W

such that x; € Z[A] having highest weight \; for all 1 <i<n.

Example 1.2.26. Let ® be a root system, Aq,..., A\, fundamental weights, A the
weight lattice and W the Weyl group of ®. Then, according to Definition 1.2.20,

Proposition 1.2.22 and Theorem 1.2.25,

ZINY 2 Z[S(eM) . ., S(e*)] and

Z[A]W E Z[X)q: JA ,X>\7L].

We can see from Theorem 1.2.25 that the set {xy,...,z,} is a basis for Z-
module Z[A]"Y. Moreover, Example 1.2.26 shows that for a fixed root system with
fundamental weights Aq,...,\,, the set {S(e’\i) cforall 1 <i< n} and the set
{XA'L forall 1 <¢< n} are bases for Z[A]V.

In Sections 1.3-1.4; we introduce concept of Lie algebra and representation theory,
respectively. In addition, this thesis focuses on semisimple Lie algebras, so we give
notion of a representation of a semisimple Lie algebra- L. Then there exist concepts
of roots of L and weights of representation which can be viewed as roots and weights

described in Sections 1.1-1.2.

1.3. Elementary Concepts of Lie Algebras

We give concepts of Lie algebras very briefly in this section. The further details

can be read from [4].
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Definition 1.3.1. [4] A vector space L over a field F, with an operation L x L — L,
denoted (z,y) — [x,y] and called the bracket or commutator of x and y, is called a
Lie algebra over T if the following axioms are satisfied:
(L1) The bracket operation is bilinear.
(L2) [z,2] =0 for all z in L.
(L3) [z, [y, 2]] + [y, [z, z]] + [z, [#,9]] = 0 for all z,y,z € L.

Axiom (L3) is called the Jacobi identity.

In this section we are concerned with a Lie algebra whose underlying vector space

is finite-dimensional.

Definition 1.3.2. [4] Let L be a Lie algebra. A subspace K of L is called a (Lie)

subalgebra of L if [x,y] € K for all =,y € K.

Definition 1.3.3. [4] A subspace I of a Lie algebra L is called an ideal of L if x € L

and y € I together imply [z,y] € L.

Definition 1.3.4. [4] Let L and L' be Lie algebras over the same field. A linear
map ¢ : L — L' is called a Lie algebra homomorphism if gp([:p,y]) = [gp(m), gp(y)} for

all z,y € L.

Definition 1.3.5. [4] Define a sequence of ideals of a Lie algebra L the derived series
by
LO =1, M= (L, L], L2 — [L(l),L(l)], o, LW = [L("*l),L(i’l)]

for i € N. Moreover, L. is called solvable if L™ = 0 for some n & N,

Proposition 1.3.6. [4] Let L be a Lie algebra. If I and J are solvable ideals of L,

then so is I+J.

As a first application, let L be an arbitrary Lie algebra and S a maximal solvable

ideal of L (i.e., one included in no larger solvable ideal). If I is any other solvable
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ideal of L, then Proposition 1.3.6 forces S+ I =S (by maximality), or I C S. This

proves the existence of a unique maximal solvable ideal.

Definition 1.3.7. [4] Let L be a Lie algebra. The maximal solvable ideal is called
the radical of L and denoted Rad L. In case Rad L = 0, the Lie algebra L is called

semisimple.

Definition 1.3.8. [4] Define a sequence of ideals of L the descending central series
by
L0 = L, Ll V), DR [T . ., [ = [L, [}

for © € N. Moreover, L is caled nilpotent if L™ = 0 for some n € N.

Definition 1.3.9. [4] The normalizer of a subalgebra K of L is defined by
Ny(K)={zeL:[z,K|C K}.

Definition 1.3.10. [4] A Cartan subalgebra (abbreviated CSA) of a Lie algebra L is

a nilpotent subalgebra which equals its normalizer in L.

1.4. Elementary Representation Theory

In this section, we, first, provide the definition of a representation which leads to a
decomposition of root spaces. Then we define an L-module where L is a semisimple

Lie algebra, weight spaces and multiplicities of weights.

Definition 1.4.1. [4] Let L be a Lie algebra. A representation of L is a homomor-
phism
¢:L— gl(V)

for some vector space V' where gl(V) = End(V).
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Example 1.4.2. [4] Let L be a Lie algabra. We define the map ad : L — gl(L)

where gl(L) = End(L) by
ad(x)y = [z,y] for all z,y € L.

Then ad is called an adjoint representation of L.

From now on, let L denote a semisimple Lie algebra over the algebrically closed
field of characteristic 0 and H a fixed CSA of L. We are going to present the structure
of L via its adjoint representation. Recall that H* is the set of linear functionals

on H. We consider
Lo={zecL:[ha]=alh)zforallhec H}

where « ranges over H* and call L, # {0} a root space. Actually, L is the direct sum
of the subspaces L,(a € H*). The set of all nonzeros o« € H* for which L, # {0} is
denoted by ® and the elements of ® are called the roots of L relative to H. With

this notation we have a root space decomposition:

L:LO@HLQ.

acd

Importantly, we can see that @ is a root system in a real Euclidean space V' as
described in Section 1.1 since ®-is embedded in V' with a bijection ¢ such that ¢(®)
is a root system in V.

Next, we provide the definition of L-module.

Definition 1.4.3. [4] A vector space V over a field F, endowed with an operation
L xV — V(denoted (z,v) — x-v), is called an L-module if the following conditions

are satisfied: for all x,y € L, v,w €V, and a,b € F,

(M1) (az+by)-v=a(z-v)+bly-v),
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(M2) z- (av +bw) = a(z - v) + b(x - w),

(M3) [z,y]-v=x-y-v—y-x-0.

It is convenient to use the language of modules along with the equivalent language
of representations. For example, if ¢ : L — gl(V) is a representation of L, then V
may be viewed as an L-module via z-v = ¢(x)(v). Conversely, given an L-module V',

this equation defines a representation ¢ : L — gi(V').

Proposition 1.4.4. [4] If V' is a finite dimensional L-module, then V = H Vi,

ACH*
where

Vw={veV:h-v=Ah) forallh e H}.

Definition 1.4.5. [4] If Vi # {0} (A € HY), we call V) a weight space and A a

weight of V.

Since the set ® of all roots of L is a root system in a real Euclidean space and
Theorem 1.1.8 guarantees that a base A of ® exists, we obtain a base A in L by
this way. In addition, we call an element of A in L a simple root. We define a partial
ordering < on H* as follow: p < A if and only if A — g is a sum of simple roots in L
where A\, € H*. From here on, let ® be a root system of L and A a fixed base
of ®.

Definition 1.4.6. A maximal vector of weight X in a finite-dimensional L-module V
is a nonzero vector vt €V, killed by all L, (o€ A) and we call X the highest weight

of V.
Part (a) of the following theorem justifies the terminology highest weight for A.

Theorem 1.4.7. [4] Let V be a finite-dimensional L-module with highest weight X

and A ={aq,...,a,}. Then
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(a) the weights v of V' are of the form

p=A-— ikiai )
i=1

where k; € Z for all i, i.e., weights u satisfy p < X,
(b) for each p€ H*, dimV, < 0o, and dim V) = 1.

A linear functional A € H* is called integral if all A\(h;) are integers where h;(1 <
i < n) are basis elements of H. If all A\(h;) are nonnegative integers, then we call A
dominant integral. The set of all integral linear functionals, denoted A, is therefore
a lattice in H* (or equally well, in the real vector space generated by roots) and the
set of dominant integral linear functions is denoted by A™.

Recall that & is viewed as a root system in a Euclidean space V. Then the
weights occuring in a finite-dimensional L-module are also weights in the sense of
the abstract theory in Section 1.2. Actually, integral linear functionals in H* and
dominant integral linear functionals in H* are 1-1 correspondence with weights and
dominant weights in the language of Section 1.2 with respect to ®, respectively, so all
concerned results proved in Sections 1.1-1.2 are available from now on (more details

can be seen in [4], Chapter VI p.112.).

Theorem 1.4.8. [4] Let X '€ H* be dominant integral. Then there exists an irre-
ducible L-module of highest weight \. Denote by V(\) the w@rreducible L-module of

highest weight ).

Definition 1.4.9. [4] If V is an L-module, let II(V) = {p € H* : V,, # 0} denote

the set of all its weights. For V' = V(\), write instead II(\).

As we see from Theorem 1.4.8 that dominant integral A is a highest weight of for

some irreducible L—module V(A) so that II(\) is definable.
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Proposition 1.4.10. [4] Let A\ be dominant integral. Then II(X\) is saturated in the

sense of Theorem 1.2.14.

Theorem 1.4.11. [4] If A € H* is dominant integral, then the irreducible L-module
V =V(\) is finite-dimensional, and its set TI(\) of weights is permuted by W, with

dimV, =dimV,, forall c € W.

Theorem 1.4.12. [4] The map X — V()\) includes a one-to-one correspondence
between the set of all dominant integral in H* and the isomorphism classes of finite-

dimensional irreducible L -modules.

Definition 1.4.13. [4] Let V. = V(X) (A € A") be an L-module. If p € H* is
an integral linear functional, define the multiplicity of p in V() to be my(u) =

dim V(A), (= 0 in case w is not a weight of V' (X)).

1.5. Motivation

Let L be semisimple Lie algebras, H a fixed CSA of L, ® the set of all roots
of L, W the Weyl group of ®. Now, @ is a root system of a real Fuclidean space
and dominant integral and integral linear functionals are in 1-1 correspondence with
dominant weights and weights with respect to ®, respectively. Then the weight
lattice A and the set of all dominant weights A" described in Definition 1.2.1 are the
same as A the set of all integrals and AT the set of all integrals, respectively. Let
A1, ..o, A, be fundamental weights with respect to ®

In this thesis, we consider irreducible L such that the Dynkin diagrams of ® are
A,,B,,C,, D, and G, for appropriate n. Recall from Section 1.2 that for a fixed root

system with fundamental weights A{,..., A, , the sets

S:{S(e’\"):foralllgign} and X:{X)\i:foralllgign}
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are bases for the Z-module Z[A]"Y. Thus, we are interested in finding a formative
relation between the members of S and the members of .

In order to do that, the following facts are needed.

Theorem 1.5.1. [Fruthenthal’s formula, [4)] Let V = V()) be an irreducible L-
module of highest weight X where X\ € AT, If u € A, then the multiplicity of u in V

s given recursively as follows:
(A +8X+06) — (u+ 0, p+6))ma(p) =2 Z Z ma(p 4 ta)(p + i, o). (1.5.2)
acdt i=1

Note 1.5.3. Let A be a dominant weight. Then V(\) exists from Theorem 1.4.12

and

dim V.(X),, if p € II(N),
my(p) =
0, if u ¢ II(N).
For convenience in calculation, we find the multiplicity of weight x in V(A) in

the language of roots and weights as in Sections 1.1-1.2.

Definition 1.5.4. [4] Let A\ be a dominant weight. Define the formal character

chy ) of V(X) as follows:

chy(yy = Z m(p)er.

pelI(X)

Since my(p) = 0 whenever p ¢ II(\), we can extend the summation to all integral

weA.

Theorem 1.5.5. Let \ be a dominant weight. Then

chyy = S(e) + Y ma(u)S(e").

peAt
p<A
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Proof. Note that chy () = Z my(p)e! and II(N) = U Wi from Theorem 1.2.14.

HETI(N) pEAT
M=

Then

chyoy = Z Z m(k)e”.

pEAT KEWL
H=A

Since weights which are conjugate under ¥ have the same multiplicity from Theo-

rem 1.4.11, for each dominant weight p such that p© < A,
Z my(s)e™ = my (k) Z = m(p)S(e").
KEWN KEWL

Note that my(\) = 1. Therefore, we obtain that

chy(y = S(€N) + > ma(u)S(e").

ueAt
B=A

Theorem 1.5.6. [Weyl Character Formula, [6]] Let ® be a root system and A a

fized base. Let A be dominant weight. Then

AN+ 6)
Chv()\) = W

As a result, we obtain the following magnificant theorem.

Theorem 1.5.7. For the fundamental weight X, we obtain that

=S+ 3 ma(u)S(et),

ueAT
B=A

Proof. This follows from the fact that chy () = xx. O
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We can see from Theorem 1.5.7 that in order to find the desired relation, it is
enough to focus on finding multiplicities my(u) where p € AT and p < A. Although,
there are many methods to find multiplicities, we apply Fruthenthal’s recursive for-
mula (1.5.2). Actually, the right hand side of (1.5.2) is a finite sum. We can see
that the calculation involves positive roots and weights. Moreover, we know that
positive roots and weights are vectors in a real Euclidean vector space. As a result,
we make use of the standard basis, i.e., we write each vector in a linear combination
of standard basis elements and apply the fact that the multiplicity of p with highest
weight A is zero if p is not a weight. Finally, we obtain the general formula of the
multiplicities of weights p with highest weight A being fundamental weights, so we
know the particular formula in Theorem 1.5.7 of each root system.

In this literature, results of root systems whose Dynkin diagrams are A,,B,,C,
and D,, are presented in the same manner in Chapters LI, III, IV and V, respectively.
They are outline of the root system, example (Ag, Ba, C3 and Dy, respectively) and
the relation between S(e*) and y,,. . We give the outline of and the relation between
S(e*) and ,,, in the root system whose Dynkin diagram is G, in Chapter VI. Since
we use the same technique to prove results in Chapters I1I-V, we provide in details
for those in chapter IIl only and we omit the proofs of some properties in Chapters

IV and V.



CHAPTER 11

ROOT SYSTEM A,

We consider R"*! as the vector space over R with the usual inner product. Let
€1,...,6n41 be the standard basis vectors of R, The Z-span of this basis is a
lattice, denoted by I. Let V' be the n-dimensional subspace of R™™! orthogonal to

the vector €; +---+ €, and let I'=InV.

2.1. Outline of the Root System A,

Let ®={a € I':(a a)=2}. Note that all elements of ® have the same length.

e & is a root system in V" of rank n.

e Dynkin diagram is S ==
1 2 n

e Roots are ¢, — ¢, forall r #s and 1 <7r,s <n+1.

e Simple roots are

Tth

a =€ — €641 =(0,...,0,1 ,=1,0,...,0) foralll <r <n.

e Positive roots are

€ — € = Op+ Qrpit Qs

th Sth

— (0,...,0,1 ,05...,0,~1 ,0,..,0) foralll<r<s<n+l.

e Fundamental weights are

iy, S
r = €;
n+1 &7 n41 4"
j=1 j=r+1
n—r+le T -
= o+ ———— — 74+ Do, T HN1<r<n.
] jzljaj+”+1j;1(n j+1la; foralll<r<n
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2.2. Root system A,

We give an example of a root system whose Dynkin diagram is As. Let V' be the

subspace of dimension 2 of R? orthogonal to the vector (1,1,1), i.e.,
V ={((1,-1,0),(0,1,-1)).

Let a3 = (1,-1,0) and ay = (0,1, —1). Then

® = {£ay, tag, =(oy + as) } = {£(1,-1,0),£(0,1,-1), £(1,0,-1)}
is a root system in V' and

A ={ay, 0} ={(1,-1,0),(0,1,-1)}
is a base of ®. The Dynkin diagram is
aq Qg

We can see that positive roots are

a; = (1,-1,0), az = (0,1,-1) and a; +ay = (1,0,-1),
so § = (1,0, —1). The fundamental weights are

@ Griahivm s

We know that

= —aq, aq  aq + Q,
Ouy : and Cas *

Qg — 1 + A9, Q9 — — Q9.
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Moreover,

At A+ Ay, A1 A,
lo and Oay

/\2 — )\2; )\2 — /\1 — AQ.

The Weyl group W of @ is (0q,,0a,), L€,
W = {iV7 0015002:0010a3)0020a; 5 Ualaagaal}-

Next, for each fundamental weight A\, we consider the elementary symmetric
sum S(e*) and the character Y, with highest weight A (see also Definition 1.2.20).

We see that
WA = {1, =X A=A} and WA= { g, =AM — Ao},

SO

S(eM) = M 4 e 22 4N and S(eM?) = et 4 e 4 M2,

In order to determine x,, and x,,, we need the followings.

A+H0\ . 2XA14+ ) . —2X1+3Xo 3A1—A2 —3A1+2X9 A1—3)A2 _ —A1—2A2
AleM ™) =e e +e +e e

— e ,

A(6A2+5) — 6)\1+2)\2 _ e—)\1+3)\2 il 63)\1—2)\2 + e—3>\1+)\2 + 62/\1—3)\2 _ e—2>\1—)\2’

and

NI =EONSEEE Qe Blell Va 1-2 VT F



Thus,
62)\1+>\2 _ 6—2)\1+3)\2 _ 63)\1—/\2 + 6—3)\1-1-2)\2 + e>\1—3>\2 _ e—>\1—2>\2
X = eMtAz —pra oM e A fem A2 — e AR
— M + e A2 + etz
and

6)\1+2)\2 _ 6—/\1+3)\2 B, 63)\1—2/\2 + 6—3)\1+/\2 + 62)\1—3)\2 _ 6—2)\1—)\2

X)\2 - €>\1+>\2 -, e>\2 _ 6)\1 + e—>\1 _|_ e—>\2 — 6_>\1_)\2

= M 4 ™M 4 gtz
We observe that
Y A1 L A2
X =S(e) and X, = S(e™?).

On the other hand, we remind from Theorem 1.5.7 that for ¢ =1 and 2

Moreover, we find out that A\; and Ay are minimal so that

XN = S(e)‘l) and Xo = S(e)‘Q).

2.3. The Relation between. S(e*) and x)

Now, we let ® be the root system whose Dynkin 'diagramis A,,, A= {aq, ...

27

O }

the base of @, and A, ..., A\, the fundamental weights described in Section 2.1. Recall
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from Theorem 1.5.7 that for each fundamental weight \,,,

Xom = S(EX) + > ma,, (1)S(e).
peAt
H=<Am

We discover that all the fundamental weights are minimal. Remind that A € AT is

minimal if and only if © € AT, g <\ implies u = .
Proposition 2.3.1. All fundamental weights are nonzero minimal.

Proof. Let \,, be a fundamental weight. Then J\,, is nonzero. Thank to Theo-
rem 1.2.17, it suffices to show that A, is minuscule. Let g € ®. Then ( = +q;
for some 1 < i < n or B = £(a; +---+ a;) for some 1 < i < j < n. By the
definition of \,,, we have (A, )) = 0py for all 1 < k < n. If § = +a;, then it
is obvious that (A, +a)) € {0, £1}. Since (a;, ;) = 2 for all 1 < i < n, we have
(Ams @) = (Am, @) = O for all 1 < k< n. Let § = +(ay; +---+ ;). Then we
know that (3,3) = 2 and

()\m, +(a;+ -+ ozj))

(/\m,:i:(()éi‘f‘""’_aj) ):2<i(ai+...+o¢j),:|:(ai+"'+05j))

= (Ams (i + -+ +0,)) € {0,£1}.

We conclude that )\, is minuscule; so )\, is nonzero minimal. O

Note 2.3.2. Note that when a dominant weight A\ is minimal, there is no dominant

weights g 'such that p < A.

Theorem 2.3.3. Let m be a positive integer such that 1 < m <n. Then

o = S(eM).

Proof. This follows from Theorem 1.5.7 and Proposition 2.3.1. 0J



CHAPTER IIT
ROOT SYSTEM B,

In this chapter, we fix n € N\{1}. We consider R™ as the vector space over R
with the usual inner product. Let €,...,¢, be the standard basis vectors of R™. The

Z-span of this basis is a lattice, denoted by I.

3.1. Outline of the Root System B,

Let ®={a € I: (a,a)= 1 or 2}. Note that the squared length of an element
of ®is 1 or 2.

e ® is a root system in R" of rank n.

e Dynkin diagram is o——o0— —o—==0
(075} (67%) 1 (7%

e Short roots are

+e. (of squared length 1) for all 1 <r < n.

Long roots are

+(e. T €5) (of squared length 2) for all 1 <r#s < n.

e Simple roots are

rth
a, =€ —é641=10(0,...,0,1 ,—1,0,...,0) foralll<r<n-1 and

an, =€, =(0,...,0,1).
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e Positive roots are

€ = Qp +0Qppq+ -+ forall 1 <r <mn,
€ —€s = Qp+Qu+-o-+ Qs forall1 <r <s<mn, and
& t+€ = QG+ 0+ + 0

205 + 20501 + - -+ 20, foralll <r <s<n.

e Fundamental weights are

AN—=€+e+ - +e€,
=a)+ 204+ (r=1Dao—y +r(a, +apir + -+ ay)

=L & £ 0L 0) forall 1 <r<n-—1, and

T terms

1
)\n:§(6]+€2+"'+6n)

1
25(0414-2062—0—"‘4—7104“)

(1
= {5 5]

e Let \g =0. Then A\g <Ay <---<X\,_1.

3.2. Root System B,

We give an example of a root _system whose Dynkin diagram is B,. We consider
R? as the vector space over R with the usual inner product. Let oy = (1,—1) and

as = (0,1). Then
® = {£ay, tas, £(o + as), £(ag + 2a2) } = {£(1, 1), £(0,1), £(1,0), £(1,1)}

is a root system in R? and
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A={a,a}={(1,-1),01)}

is a base of ®. The Dynkin diagram is

We can see that positive roots are
a; = (1,-1), aa=1(0,1), a1 + az =(1,0) and a3 + 20y = (1,1),

31
so 0 = (57 5) . The fundamental weights are

11
)\1 3 (170) and )\2 s - (57 5) .

We know that

o — —Qy, Qy — aq + o,
Oay and Oay
Qo — 30 + Qo, Qg — —Q.
Moreover,
AL = —=A1 + 2), AL Ag,
Oay and Oay
)\2 — )\2, )\2 — )\1 — )\2.

The Weyl group W of & is <aa1,aa2>, Le.,
W = {ZV; O-Oq ) 0-012) UOq 0-0527 0-012 O-Ozla 0-0410-(12 qu ) 0-052 0-0410-012) O-Oqo-ocg Ualaag } .

Next, for each fundamental weight A, we consider the elementary symmetric
sum S(e*) and the character x, with highest weight A (see also Definition 1.2.20).

We see that



WAL = {1, =A1, AL — 2X, =1 + 2X0}

and

WA, = {)\2, —A1F Ao, AL — Ao, —)\2}‘
Then

S(eM) = eM e M M-y Ntk
and

S(GAZ) — 2 7, e ATtA2 + eM A2 < e 2

We need the followings in order to calculate y,, and x.,.

A(e)\1+5) — 62>\1+)\2 —3A1+Ag + 672)\17)\2 + 63)\175)\2 —2A1+5)2

— € — €

r 62/\1—5/\2 /e 6—3)\1+5)\2 A 63/\1_>\2,
A(e)\Q-HS) — 6)\1+2)\2 - 6—3>\1+2>\2 = 6—>\1—2>\2 4 63)\1—4)\2 . €—>\1+4>\2
. e)\1—4)\2 + 6—3)\1—‘,-4)\2 =2 63)\1—2)\2 and

A(e§) _ e)\1+/\2 . 6—2)\1+)\2 _|_ e—)\l—)\g + 62)\173)\2 _ e*)\1+3)\2

+ 6—2)\1+3)\2 o 62)\1_)\2.

Thus,

A(eM o)

X)\l — A((S) — 1 _|_ 6—)\1 + e/\1 + 6)\1—2)\2 + e—)\1+2)\2

32
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and

A(erT)

X = Ty =T e

We observe that

X,\le(e’\l)—l—l and X,\2:S(e’\2).

On the other hand, we remind from Theorem 1.5.7 that for ¢ =1 and 2

We discover that a dominant weight p such that g < A is only 0 and Ay is minimal.
Moreover, if we calculate by Fruthenthal’s recursive formula, then we obtain that
my, (0) = 1. Thus

X,\1:S(e’\1)+1 and X,\zzS(e’\2).

3.3. The Relation between S(e*) and )

Let ® be the root system whose Dynkin diagram is B,,, A = {«1,...,«,} a base,
AL, ..., A, the fundamental weights described in Section 3.1 and W the Weyl group
of ®.

For each fundamental weight A, we want to find the multiplicities of dominant
weights p such that p© < A. For each m < n, if u is a dominant weight such that
=< Ap, then p is only Ao, A1, ... Ao Or A, 3, so it restricts us to find only
my,, (Ax) where 0 < k <m.

From the Fruthenthal’s recursive formula (1.5.2) for weight p with highest weight A,
we, first, consider the multiplier of m,,, (Ax) (0 <k < m) in its left hand side. Note

that my, (An) =1
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Proposition 3.3.1. Let m and k be nonnegative integers such that 0 < k <m <n.

Then
A+ 6 +0) — M+ +0)=(m—Kk)(2n—m—k+1).
k+1th mth
Proof. We can see that \,, — Ay = (0,...,0, 1 ,...,;1 ,0,...,0) and
1 3 21— 1 1 .
=(n—=n—=,n— e where 1 <17 < n.
( 2 2 2 2)
Then

(A = Ay ) = i <n+%—j)

:<nj_ K ( 7 %) \ <m<m2+ Ol k<k2+ 1))
£475 <2n—;n—k>'

Now, since (A, An) = m and (Mg, Ap) = k, it follows that
(A 4 0, A +0) — (A + 0, A\ +0) = (A, Am) — (Ais M) + 2( Ay — Mg, 6)

= (m — k) +2(m — k) (W)

=(m—Fk)(2n—m—k+1).

O

Next, in order to know m,,, (Ax) (0 < k < m), we require values of my,, (A\x + ta)
where v € ®* and ¢ € N. We use two main techniques to find these. First, we write
positive roots in terms of standard basis elements, i.e., either €, (for some 1 <17 <n)

or €, ¢, (for some 1 <r < s <mn). Second, we apply the fact that m,,, (A\p+ta) =0
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when \; + ta is not a weight in II(\;). There are two main cases to calculate these

my,, (Ax + ta) as follows:

Casel a=¢, where 1 <r <n
(1.1) r<kand t € N
(1.2) » >k and t € N\ {1}
(1.3) r>kand t =1
Case 2 a=¢,+t¢, where 1<r<s<n
(2.1) r <k and t € N
(2.2) r >k and t e N\{1}
(23) r>Fk and t = 1

Proposition 3.3.2. Let k,m and r be nonnegative integers such that 1 < r < k <

m <n. Then my, (A +te) =0 for all t € N.

Proof. Let t € N. We claim that A, + te, A \,,. We consider
pth (k+1)th mth

Am — e +t6,) = (0,...,0,—¢t ,0,...,0, 1 ...,1 ,0,...,0).

Suppose that A\, +te, < A,,. Then there exist aq,...,a, € Zar such that

Am — (A + t€) Zaza, Z ai(€ —€r1) =+ anen

:(a/17a’2_ala"‘aa’T_a'r'—17"'7a”n—1_an—27a’n_an—1)-
That is,
pth (k=+1) mth
©,...,0,-t ,0,...,0, 1 ,...,1,0,...,0)

= (a’la a2 — A1y« -5 QG = Qp_1y...,0p-1 — Up-2,Ap — an—l)-



36
Then, a; = as = --- = a,_; = 0 so that a, = —t which is a contradiction since
a, € Z(J{ but ¢ € N. Thus A\ + te, ﬁ Am. By Theorem 1.4.7, we conclude that

m)\m()\k—i—ter) =0. ]

Proposition 3.3.3. Let k,m,r,s € Za“ such that 1 <r<k<m<nandr < s.

Then my,, (A +t(e, £ €5)) =0 for all t € N.

Proof. Let t € N.

Casel r<s<k

We know that
rth sth Lth

Ao +ile, £e)=(1,..,1,(1+¢) ,1,...,1,(1+¢) ,1,...,1 ,0,...,0).

Therefore,

A, — (/\k + t(e es))

pth Sth (k+1)th mth

=(0,...,0,—t ,0,...,0,%t ,0,...,0, 1 ,...,1 ,0,...,0).
By the same reason as in the proof of Proposition 3.3.2, we assure that
my,, ()\k +t(e, £ es)) =0.

Case 2 r<k<s

We use the same method as in Case 1 and obtain that

my,, (/\k +t(e, + 65)) =0.
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Recall from Theorem 1.4.11 that weights which are conjugate under the Weyl
group have the same multiplicity. Then we apply this fact to obtain two following

propositions.

Proposition 3.3.4. Let b, k and m be nonnegative integers such that 1 <b <n—k,

and 0 < k <m <n. Then my, (Arr1) = ma,, (Mg + €xip) -

Proof. Since €,y and €y, are positive roots of the same length, they are con-
jugate under W. Furthermore, (€riq,€rp) = 0, 50 0 i—cp\y (k1) = €rgp by
Proposition 1.1.10. Because of the orthogonality between €,,1 — €x1, and A, then
Oepir—enss (M) = Ao Thus o -, , (A + €g1) = M + g, 1€, Ay + €441 and

Ak + €rvp are conjugate under V. In conclusion, from Theorem 1.4.11, we have

Mo, (Aks1) = M, (A + €ny1) = 1, (A + €xyp).

O

Proposition 3.3.5. Let b, c, k and m be nonnegative integers such that 1 <b < ¢ <

n—k and 0 <k <m <n. Then my, (Mpr2) = my,, (Ao + (€rso T €xic)) -

Proof. Since €1 + €19 and €,y £ €44 are positive roots of the same length, they
are conjugate under W. Let a = €41 + €x10 and 8 = €1y + €. Also, one of
a—p(B) = a, 0,0504(3) = @, or 6,05030,(3) = a holds. For each case, Ay is fixed,
so that Ay + €xy1 + €xt2 is mappedito Ay + (€xp4p =L €rie), 1.€., they are conjugate

under W. By Theorem 1.4.11; we conclude that

M, (Met2) = m,, (M + (€1 + €r2)) = m,, (M + (€t £ €rse)).

From the proof of Propositions 3.3.4 and 3.3.5, we obtain two corollaries.
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Corollary 3.3.6. Let t € N, then tegi, conjugates to tegy1 and A\ +tegry conjugates

to A\, +tegsq forall 1<b<n-—k.

Corollary 3.3.7. Let t € N, then t(exip £ €xre) conjugates to t(exr1 £ €xr2) and

Ak + t(epsp £ €xpe) conjugates to Mg + (e £ €pra) for 1 <b<ec<n-—k.

Proposition 3.3.8. Let k,m and r be nonnegative integers such that 0 < k <r <n,

and t € N\{1}. Then m,, (A\p+te.) = 0.

Proof. We know from Corollary 3.3.6 that A\, + fe, is conjugate to Ay + tex1. Then

it suffices to show that my, (A + tex.1) = 0. Of course,

kth

)\k+t€k+1:(1;~~;1 ,t,O,...,O).

Therefore,
kth mth
A — O +tesi) = (0,...,0 ,1=4,1,...,1 ,0,...,0).
Since t > 2, we attain Ay + tegp1 2 Ay S0 that my,, (M + teg1) = 0. O

Proposition 3.3.9. Let k, m;r and s be nonnegative-integers such that 0 < k < r <

s <n and t € N\{1}. Then my, (A +t(e, £¢)) =0.

Proof. This is similar to the proof of Proposition 3.3.8. 0

Consequently, we can reduce the finite sum in the right hand side of (1.5.2) to the

simpler form.
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Theorem 3.3.10. Let k and m be nonnegative integers such that 0 < k <m <n.

Then

Z Z my,, ( Ak + ta) (g + ta, @)

acdt+ t=1

= (n —k)my,,(Aeg1) +2(n — k)(n =k — )my,, (Ay2)-

Proof. Let a be a positive root and ¢ € N. Then a = ¢, for some 1 < r < n or

a=¢€,+e forsome 1 <r<s<n.

Case 1 a =¢,
(1.1) r<kand t €N
It follows from Proposition 3.3.2 that my,, (\x + te.) = 0.
(1.2) r >k and t € N\ {1}
It follows from Proposition 3.3.8 that m,,, (\x + te,) = 0.
(1.3) r>kand t =1

By Proposition 3.3.4, we acquire the fact that

M, (Akt1) = M, (Ak + €1) = Mo, (A + €).

Case 2 o =€, T ¢
(2.1) »< kand t. €N
It follows from Proposition 3.3.3 that m,,, ()\k +t(e. £ es)) =0.
(2.2) >k and t € N\ {1}
It follows from Proposition 3.3.9 that m,,, ()\k +t(e, + es)) =0.
(2.3) r>kand t=1

By Proposition 3.3.5, we reach the fact that

M, (Met2) = mo,, (M + (61 + €nr2)) = ma,, (M + (6 £ 65)).
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We conclude from all the cases that

Z ZmAm()\k + ta) (A, + ta, «)

acdt t=1
n n—1 n
= > ma ket e) Mt ee)+ > D ma (At e te) Mt e Ee e te)
r=k+1 r=k+1 s=r+1

= (n — k)m,\m()\k+1) + 4<n ; k) m)\m()\k+2)
= (n—k)my, (A1) +2(n —k)(n — k — Dmy,, (Agi2).

O

We are ready to provide the particular form of Fruthenthal’s multiplicity recursive
formula for fundamental weights A\, with highest weight \,, where 1 <k <m < n.

By Proposition 3.3.1, Theorem 3.3.10 and the formula (1.5.2), we obtain that

(m—k)2n —m —k+ 1)m,,, (Ax)

=2(n — k)my, (Aps1) F4(n— k) (n —k — 1)my,, (Aes2). (3.3.11)

Next, we present the general formula for the multiplicities of A\, with highest

weight \,, where 0 <k <m <n.

Proposition 3.3.12. Let m € N be such that 1.<m <n. Then

oy, (nei) = (n _LZ ] Z)

forall 1 <i<m.

Proof. We prove by using the strong induction.
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Basis step
We replace & by m — 1,m — 2 and m — 3 in the formula (3.3.11), respectively.

Then we obtain that

2(n—m+2)my, (A1) +4(n —m+2)(n —m + 1)my,, (Am)

M (Am-2) = 2Cn-2m+2+1)

(n=m+2)(1+2(n—m+1))

B (2n —2m+2+1)

=n—m-+2

_(n—m+2

-("7)

_2(n=m 4 3)my,, (Am—z) +4(n —m + 3)(n —m + 2)my,, (Am-1)
m,\m()\m_g) =

3(2n—2m +3+ 1)
(n—m+3)(n —m+ 2)
(n—m+2)

=n—-—m+3

- (n _§J+3)

Induction step

Suppose that the statement is true for 1,...,2 —1.

Case 1 i is even.

Then i =2b for some b € N, so

my,, ()\m—2b)

2(n —m+2b)my, (Am—2p11) +4(n —m +2b)(n —m + 2b — 1)my,, (Am_2p12)

- 2b(2n — 2m + 2b + 1)



42

2(n —m +2b) (") 4 d(n — m+ 20)(n — m + 20 — 1) (")
2b(2n —2m +2b+ 1)

(n —m+ 2b)! + (n — m + 2b)!(2n — 2m + 2b)
B (n —m+b)!b!(2n — 2m + 2b + 1)

((Z;;liz?)blyt - (n_n;+2b> - (n_@;r Zb)‘

Case 2 7 is odd.

Then i = 2b + 1 for some b € Zg ; SO

m,, ()\m—(2b+1))

2(n —m +2b+1)my,, (Am—ap) +4(n —m +2b+ 1)(n — m + 2b)my,, (Am—20+1)
(2b4+1)(2n —2m +2b+1+1)

2(n —m +2b+ 1) (") 4 A(n — m + 20+ 1) (n — m + 2b) ("R
(2b4+1)(2n —2m +2b+ 1+ 1)

(n—m+20+ 1) +2b(n —m+0b+1)!
(2b+ 1)(n —m + 2b+ 1)
C(n=mA+204+1) i -mA+204+1\  (n—m+2b+1
T (n—m+ b+ D! b W |22t |

Thus, for each 1 <7< m, we conclude that

M, (Am_i) = (” m ’)

2]

Proposition 3.3.13. The fundamental weight X, is nonzero minimal.

1
5
We show that A, is minuscule. Let o € ®. Then o = +¢, or + (e, + ¢5) where

1
Proof. Remember from Section 3.1 that A\, = < ., 5) so that A, is nonzero.

1<r<s<n.
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Case 1 a = *e,

We consider that

((%%) ,iey) :2<(%%) ,ier) € {0, %1}

Case 2 o = *(€, t¢)

We consider that

(33 )teens) — (g ) 2o 2] € 0211

From these two cases, we obtain that (\,,a") € {0,£1}. Then )\, is minuscule, so

A, 1s minimal from Theorem 1.2.14. O
Recall that A\g = 0.

Theorem 3.3.14. Let m be a positive integer such that m < n. Then

S(er™y, if m=mn,
X —l— m . 5
’ Z (n Lzﬁj—i_Z)S(e’\m"’), if m <n.
i=0 2

Proof. Recall from Theorem 1.5.7 that

Proposition 3.3.13 shows that \, is minimal in its subposet of (A*,<) so that
Next, let m < n. Then the dominant weights which are less than \,, are

A0y Ay ey Ao since A\g < Ay < --- < A1 < Ap. Moreover, Proposition 3.3.12



assures us that

AONUUINBUINT )
ANRINTUNINEAE
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CHAPTER IV

ROOT SYSTEM C,

In this chapter, we fix n € N\{1,2}. We consider R™ as the vector space over R
with the usual inner product. Let €,...,¢, be the standard basis vectors of R™. The

Z-span of this basis is a lattice, denoted by I. Let ® = {a €1:(a,a)=1or 2}.

4.1. Outline of the Root System C,

Let & = {av fa € (IJI}. Note that the squared length of an element of ® is 2

or 4.

e & is root system in R" of rank n.

e Dynkin diagram is o——o— . —o—=—==0
aq &%) Ap—1 Oy

e Short roots are
+(e. £ €5) (of squared length 2) forall 1 <r < s <n.
Long roots are
+2¢, (of squared length4) - for all 1.<r < mn.
o Simple roots are

rth
a,=¢€6 —€641=1(0,...,0,1 ,—1,0,...,0) foralll<r<n-1 and

a, =26, =(0,...,0,2).
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e Positive roots are

€ — €5 = Qp + Qpig + - + g1, forall1 <r < s <n,
€+ € =0 FQpy1 + -+ 05
+ 205 + 200541 + -+ 2001 + 20, forall 1 <r <s<n, and
2¢, = 20, + 20041 + - - 4 200,21 + 200y, forall 1 <r <n.
e Fundamental weights are
Ar =€+ €+ o tE,
2

1
=041+2a2+---+(7"—1)ar1+’r’<0zr+ar+1+---+an1+—an)

=(1,...,1,0,...,0) forall 1 <r <n.
——

r terms

e Let \g =0. Then

Ao < Ag =< =< Ay for all 2b < n
and

/\1-<)\3‘<"'-<)\21)+1 for all 2b+1 < n.

Moreover, if 7 is odd (even) and 7 is even (odd) then A\; £ A; and A\; £ ;.

4.2. Root System Cj

We give the example of a root system whose Dynkin diagram is C3. We consider
R3 as the vector space over R with the usual inner product. Let a; = (1,—1,0),

as =(0,1,—1) and a3 = (0,0,2). Then



O = {:l:(2a1 + 205 + a3), (a1 + 200 + ag), (g + e + a3), £(ag + ), £aq,

+ (203 + 3), £(2 + a3), £ap, Fas }

= {+(2,0,0),+(1,1,0), +(1,0,1), +(1,0, =1), 4(1, —1,0), £(0,2,0), £(0, 1, 1),

+(0,1,—1),£(0,0,2)}
is a root system in R® and
A =4ay,a, a5} = {(1,-1,0),(0,1,-1),(0,0,2)}

is a base of ®. The Dynkin diagram is

o=———02t-—0
(04} (6%) (0%
We can see that positive roots are
o = (1,-1,0) ar +az = (1,0,-1) o+ g + ag
Qg = (0,1,—1) Qo + (g = (O,]_,l) &1+20&2+OZ3
az = (0,0,2) 205 + az= (0,2,0) 2001 + 209 + a3

so § = (3,2,1). The fundamental weights are

=(1,0,1)
=(1,1,0)

=(2,0,0),

)\1 = (1,0, 0) y )\2 = (1, 1,0) and )\3 = (1, 1, 1) .

47
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We know that

o1 = —Qy, o1 = g + g, o1 Qg
Oay * Qg > (1 + (i, Oay © Qig > —Qig, Oaz * Qg > Qg + (i3,
Qs — Qs, as — 2049 + ag, Q3 — —Q3.
Moreover,
A= A Ay, A1 — AL, AL = A,
Oar * Ag = Ag, Tagt Ag = Ay — Ao + A3, Taz * Ag = Mg,
)\3 — )\3, )\3 = )\3, )\3 — 2)\2 - )\3.

The Weyl group W of ® is <aa1, (o 0a3> consisting of 48 elements.
Next, for each fundamental weight A, we consider the elementary symmetric
sum S(e*) and the character Y, with highest weight A (see also Definition 1.2.20).

We see that

WA = {—)\1, )\1, )\1 y )\2, Ay — )\17)\2 i )\37/\3 = /\2}7
W/\2 = {—)\2, 2/\1 = )\2, >\2, —2>\1 aF )\2, )\1 — )\3, —>\1 a- )\2 - )\37 )‘1 + )\2 - /\37

— A+ 20 — A3, = A F A, A — 200 F Az, A — Ao+ g —)\2—1—)\3}

and

WAs = {—)\3, 201 — A3, 229 — A3, —2A1 + 2Xg — A3, A3, =271 + A3, =200 + A,

2 — 2Xg + A3}
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Then

S(eM) — e M + e + e A2 + e~ ArtA2 + 2= A3 + €—>\2+)\3’
S(€>\2) — e—>\2 + €2>\1—>\2 + 6>\2 + €—2>\1+>\2 + e>\1—>\3 + €—>\1+)\2—>\3 + 6>\1+>\2—>\3

—A1+2X2—A3 —A1+A3 A1—2X2+A3 —A1—A2+A3 A1—A2+A3
+e +e +e +e +e ,

and

S(e)\g) — 67>\3 + 62)\1—>\3 _'_ 62)\2f)\3 + 6—2)\1+2/\27)\3 + 6)\3 + 672)\14»)\3

+ 672)\24-)\3 + 62)\1—2/\2+)\3

We calculate that

X)\l — 6—>\1 + e/\l + e)\1~/\2 _I_ e—)\1+)\2 +6/\2—>\3 _|_ 6_>\2+)\3,
Yo, =2+ e A2 + 2=z LY o2 2 e 2MatA2 - e A + e~ MtA2—A3 + eMTAz— A3

—A1+2X2—A3 —A1+A3 A1—2X2+A3 —A1=A2+A3 A1—A2+A3
+e +e ¢ @ I @ +e ,

and

Xos = 67)\1 \ 6)\1 + 6)\17)\2 o 67/\1+)\2 4 e*)\g 4 62)\27)\3 + 6)\27/\3 4 62)\17)\3

+ 672)\1+2)\27)\3 + e/\g + 672)\14»)\3 + 672)\2-#)\3 + 62)\172)\24»)\3 + e*)\2+)\3'

We observe that

XA, = S(e’\l) Xro = S(e>‘2) +2 and xy, = S(e)‘3) + S(e“).

Y
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On the other hand, we remind from Theorem 1.5.7 that for + = 1,2 and 3

Xn = S(e)\i) + § m&(:u)s(eu>
peAt
=X

We discover that a dominant weight g such that g < Ay is only 0, a dominant
weight p such that p < A3 is only A; and A; is minimal. Moreover, if we calculate
by Fruthenthal’s recursive formula, then we obtain that m,,(0) = 2 and m,,(A\) = 1.

Hence

X = S(€M), Xp=8(e) +2 and xy, = 5(e) + 5(eM).

4.3. The Relation between S(e*) and Yy,

Let ® be the root system whose Dynkin diagram is C,,, A = {ay,...,a,} a base,
A, ..., A, the fundamental weights described in Section 4.1 and W the Weyl group
of ®. We use the same technique used in the root system having Dynkin diagram C,
to find the desired relation. We can check that A, is not minimal. Hence we consider

the case where 1 < m < n.

Proposition 4.3.1. Let m and k be nonnegative integers such that 0 < k <m < n.

Then
(A F 0 X 4 0) =X+, Xk +0) = (m=k)2n =m =k + 2).
k‘+1th mth
Proof. We see that A\, — A\, =(0,..., 1 ,....1 ,0,...,0) and

b=Mnmn—-1n—-2,....,n—1,...,2,1) where 0 < i < n.

Then
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Am =M, 8) = Y (n+1—14)
- )+ 1) (m(m+1)2—k(k+1))

:(m_k)<2n—m2—k—|—1>‘

Now, since (A, Ay) = m and (Mg, Ax) = k, it follows that

(A 4+ 0, A +0) — Ak +0, M + ) = (A, Am) — (A, Ax) + 2( A — Mg, 0)

:(m—k)+2(m—k)(

n—m-—~k+1
2

=(m—k)(2n—m —k + 2).

Note also that all positive roots are 4+2¢, where 1 < r < n or €. £ ¢, where

1<r<s<n.

Proposition 4.3.2. Let k, m and r be nonnegative integers such that 1 <r < k <

m<n and r <s. Then my, (A, + 2te,) =0 for all t €N,

Proof. Let t € N. We know that

,r,th (k+1)th

Am — (\n +2te,) = (0,...,0,1—2¢ ,0,...,0, 1 ,1,...

Suppose that A, + 2te, < A,,. Then there exist aq,...,a, €Ny such that
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n—1
Am — (A + 2te,) = E a0y = E a;(€; — €41) + 2an€,
=1
= (0,1, g —A1,...,Ar —Ap_1,...,0n—1 — An_-2, 2an - an—l)-
That is
rth (k+1)th mth

(0,...,0,1=2t ,0,...,0, 1 ,1,...,1,1 0y::",0)
— (a17a/2 — Q1.5 Qp — Qp_1,...,0p-1 — a’n—272a’n - an—l)‘

Then a1 = a9 = -+ = a,.1 = 0 and a, = 1 — 2¢t which is a contradiction. Thus

A, + 2te, ﬁ Am - By Theorem 1.4.7, we conclude that my, (A\x + 2te,) = 0.

Proposition 4.3.3. Let k,m,r and s be nonnegative integers such that 1 <r < k <

m<n and r <s. Then mxm()\k—Ft(EriEs)) =0 forall t eN.

Proof. Let t € N

Casel r<s<k

We know that

rth sth th mth
Mot t(ente) = (1, ., (L+2) 1. (L&t) ,1,...,1 ,0,...,0).
Therefore,
Am — (A + (e, £¢5))
rth sth (k-+1)th mth

=(0,...,0,—t ,0,...,0,F¢t ,0,...,0, 1 ,...,)1 ,....0).
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By the similar argument to the proof of Proposition 4.3.2, we assert that
ma,, (A + (e £ e)) = 0.

Case2 r<k<s

We use the same method as in Case 1 and obtain that
my,, ()xk +t(e £ es)) =0.

O

Proposition 4.3.4. Let b,c, k and m be nonnegative integers such that 1 <b < ¢ <

n—=k and m <n. Then my, (Api2) = my,, ()\k + (€pyp = 6k+c)) )

Corollary 4.3.5. We have that t(egs1 £ €x40) are conjugate to t(exrp + €xre) and

Ak + t(epr1 £ €xt2) are conjugate to Mg + tlepyp £ €pye) for 1 <b<c<n-—k.

Proposition 4.3.6. Let k;m,r and s be nonnegative integers such that 0 < k < r <

s <n and t € N\{1}. Then my,, (X + t(e; £€)) =0.

Theorem 4.3.7. Let k and m be nonnegative integers such that 0 < k <m < n.

Then

DD mn (ke ted o) = 2(n = k) (n = k= 1)ma,, (Akr2).

acdt t=1

Proof. Let « be a positive root-and t € N. Then a = 2¢, for 1 <7 <n or a = €, ¢,
for 1 <r<s<n.
Casel o« =2¢, and t € N
It follows from Proposition 4.3.2 that my,, (Ax + 2te,.) = 0.
Case 2 a =€, : ¢

(21) r<kand teN
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It follows from Proposition 4.3.3 that m,, ()\k + t(e, + es) =0.
(22) r>k and t e N\{1}
It follows from Proposition 4.3.6 that m,,, ()\k +t(e £ es) =0.
(23) r>kand t=1

By Proposition 4.3.4, we reach the fact that

i, (Aks2) = M, (Ak + (€xg1 + €xs2)) = ma, (M + (6 £ 65).

We conclude from all the cases that

00 n—1 n
Z Zm,\m(kk + ta) (A Ftaya) = Z Z M, (Ax + € £ e5)( Ak + € L €5, €6, £ €5)
acdt t=1 r=k+1 s=r+1

=4 (n ; k) ma,, (Ars2)

=2(n—=k)(n—k—1)my,, (Api2).

We are ready to provide the reduce form of Fruthenthal’s multiplicity recursive
formula for fundamental weights A\, with highest weight ),, where 1 <k <m < n.

By Proposition 4.3.1, Theorem 4.3.7 and the formula (1.5.2), we obtain that
(m—Fk)2n—m —k+2)my,, (M) =4(n —k)(n—k — Dmy,, (Ari2). (4.3.8)

Next, we present, the general formula for multiplicity of A\, where kK = m — 2i for

some 7, with highest weight \,, by using the formula (4.3.8).

Lemma 4.3.9. Let i and m € N be such that 1 <21 <m <n—1. Then
n—m-+ 21 n—m-+1
m/\m(>\mf2i) = ( >

i n—m+i+1



Proof. We prove by strong induction. Recall that my, (\;,) =1

Basis step

We replace k by m — 2 in the formula (4.3.8), then

4n—m+2)(n—m+ 1)my,, (Am)

my,, ()\m—2> =

2(2n — 2m +4)
=n—-—m-—1
-~ n—m-+2 n—m-+1
~ 1 n—m+1+1

Induction step

Suppose that the statement is true for 1,...,7 — 1. Then

4n —m+2i)(n—m+2i — Dmy, (Am_2i12)
%i(2n = 2m + 2i + 2)

_ (n—m+2i)(n—m~+2i —1)(" ") (n—m+1)

mAm()\m—%) =

iln—m+i+1)(n—m+1)
_ (n=m+2)(n—-m+1)
illn=—m+)l(n-—m+i+1)
- (n—m—i—Zi) n—m-+1

7 n—m-+i1+1

Theorem 4.3.10. Let m be a positive integer such that m < n. Then

n—m+2\ n—m-+1
L I E Qe m—2iY
X ( 1 )n—m+i+1 (e )

0<2i<m

Proof. Recall from Theorem 1.5.7 that

55
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We know that the dominant weights which are less than \,, are \,,_s; for some i € N

since
A <Ay << Ay for all 2b < m
or

A < A3 << Ay forall 26 +1 < m.

AONUUINBUINT )
ANRINITUINENAY



CHAPTER V

ROOT SYSTEM D,,

In this chapter, we fix n € N\{1,2,3}. We consider R" as the vector space over R
with the usual inner product. Let €,...,¢, be the standard basis vectors of R™. The

Z-span of this basis is a lattice, denoted by I.

5.1. Outline of the Root System D,

Let ® = {a € I: (o,a) =2}. Note that all elements of ® have the same length.

e & is a root system in R” of rank n.
Qn—1

e Dynkin diagramis o o
o Qo On-3 o, 5

e Roots are Qp
+(e, £e5) foralll <r <s<n.
e Simple roots are

a, =€ — €41 =1(0,...,0,1 ,—1,0,...,0) forall 1 <r <n-—1and
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e Positive roots are
€r — €5 = Qp + Qpy1 + -+ - + g1, forall1 <r <s<n,
&+ en=0+a 11+ -+, forall1 <r <n-—1,
€r+€s:ar+ar+1+"'+as—1+2as

+20541 4+ + 200 0+ a1+, foralll<r<s<n-—1

e Fundamental weights are

A =€+ e ¢t e

=a; +2a + o (r=1)a, 1 +r(a, + g+ + ano)

g
13 _(an—l +an>
2
=(1,...,1,0,...,0) foralll<r<n-2
——
r terms

A1 =6+ e+ -+ ey —€n)
1 1
= <a1 = 20(2 S eo0 IF (TL — 2)Odn72 + Enan,l + é(n — 2)an>
1 1 1
- 57' '757_§>aand
A ==(6+e++e1+6)

1 1
a; + 203+ 0+ (0= 2)ap—o+ =(n — 2)ay1 + S

2
11
gig )

I/ Nl N/~ N = N

DN | —
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e Let A\ =0. Then
A <Ay <+ < Ay for all 26 <n —2
and

Al < A3 <o < Agprg forall 26 +1<n — 2.

Moreover, if 4 is odd (even) and j is even (odd) then A\; A A; and A; £ \;.

5.2. Root System D;

We give an example of a root system whose Dynkin diagram is D,. We consider
R* as the vector space over R with the usual inner product. Let a; = (1,—1,0,0),

az =(0,1,—-1,0), ag =(0,0,1,—1) and a4 = (0,0,1,1). Then

® = {£(a1 + 203 + a3 + au), F(oy + @z + @5 + au), (o + as + o), (a1 + a2 + a3)
=+ (051 + aQ)y j:ala :i:(O[2 - a3 == 054), j:(a2 + 014), j:(OZQ + OZg), iaQ) :*:()[4, :l:O[3}
— {+(1,1,0,0),(1,0,1,0), £(1,0,0,1), =(1,0,0, —1) = (1,0,—1,0), +(1, — 1,0, 0),

+(0,1,1,0),4(0,1,0,1),%(0, 1,0, 1), (0,1, =1,0), +(0,0,1,1), £(0,0, 1, 1) }.
is a root system in R* and
A = {ay, a0, 03,04} = {(1,-1,0,0),(0,1,-1,0),(0,0,1,-1),(0,0,1,1) }

is a base of ®. The Dynkin diagram is

a3

(8%
Qg



We can see that positive roots are

a; = (1,-1,0,0) a; +as = (1,0,—1,0) a; +as+az = (1,0,0,—-1)
012:(0,1,—1,0) 012+(I3: (0,1,0,—1) 0z2+oz3—|—0z4:(0,1,1,0)
063:<0,0,1,—1) 062+Oé4: (0,1,0,1) 041+C¥2+Oé4:(1,0,0,1)
Oy = (O, O, 1, 1)
oy + 200 + a3+ ag = (1,1,0,0) and a; +as+ a3+ ag = (1,0,1,0).
We obtain that § = (3,2,1,0). The fundamental weights are
AX'R 2

RN IR I, T 1111
/\1_(1707070)7 )\2_(1717070)7 )\3_( _)7 and >\4_ (5757575) .

We know that

( (
o] = =0 Q] o+ o
Qg = o+ Qo Qg — —Qg
Oay @ty ¢
3 — Q3 Q3 Qg + (g
Qg 0y Qy Qg+ oy
\ \
( (
O{l (g O{l O[l > O(l
Qo — g+ Qs Qg = g+ Qy
Oas Oay -
O{4 > 054 a4 > —Q4
\ \
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Moreover,
( (
)\1 = —)\1 + /\2 /\1 = )\1
)\2 |—>/\2 /\2 l—>)\1—>\2+)\3+/\4
Oq,q Oaqy -
)\3 — /\3 /\3 — )\3
)\4 — /\4 /\4 — )\4
\ \
( r
)\1 — /\1 )\1 = )‘1
)\2 — )\2 )\2 — )\2
Oqg Oay
)\3 — )\2 7 )\3 )\d = )\3
)\4 — /\4 )\4 — )\2 — )\4
\ \

The Weyl group W of @ is (Gq,, Oay, Oag: 0a, ) consisting of 192 elements.
Next, for each fundamental weight A, we consider the elementary symmetric
sum S(e!) and the character x, with highest weight A (see also Definition 1.2.20).

We calculate that

S(e/\l) — e M 4 eM a e A2 4+ e~ MtA2 4 ez As— A 4 e\ i e~ AstA + €*>\2+A3+)\4’

S(e/\z) — e*)\g _'_ 62)\1+)\2 + e)\g _|_ 672)\14»)\2 _|_ e}\272>\3 + e—)\2+2)\3 + 6)\272)\4 + 6)\17)\37)\4

+ 6—>\1+/\2—>\3—>\4 4 e>\1+>\2—)\3—>\4 ¥ e—>\1+2/\2—>\3—>\4 4 e—/\1+>\3—>\4 + e>\1+>\3—>\4
+ e>\1—>\2+)\3—>\4 + 6—>\1+>\2+)\3—>\4 + €—>\1—>\3+)\4 + 6>\1—)\3+>\4 u 6)\1—>\2—>\3+)\4
4 e*)\1+>\2*>\3+>\4 4 e—)\1+>\3+>\4 4 €>\1*2>\2+>\3+>\4 4 e*A1—>\2+>\3+>\4

=+ e>\1*>\2+)\3+)\4 + e*)\2+2)\4

S<6x\3) — e + 23 + 3 + e A2t + MM + e~ A tA2—Ae + e~ AtM + e>\1—)\2+/\4’
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and
5(6)‘4) — M3 + e~ AMTA2—A3 4 e~ AMTA3 + eM—A2+A3 + e M =+ M2 + M + e~ A2tAs
Also,

Yo, = e M _|_e)\1 +€>‘1_)‘2 +6_)‘1+>\2 —1—6)‘2_)\3_)\4 +€>\3—>\4 +e—>\3+)\4 +€—A2+>\3+>\4

1 )

X)\ — €—>\2 +€2)\1+)\2 +6>\2 +e—2)\1+)\2 +6)\2—2)\3 +€—>\2+2>\3 +€)\2—2)\4 +6>\1_)\3_)\4

2
+ 6*/\1+>\2*)\3*/\4 " 6)\1+/\2*>\3*)\4 4 e*>\1+2>\2*/\3*>\4 4 €*>\1+>\3*/\4 + 6)\1+/\3*>\4
+ 6)\1—)\2-&-/\3*)\4 o e—)\1+/\2+)\3—)\4 4 6—)\1—)\3+>\4 =l 6)\1—>\3+)\4 + 6/\1—)\2—)\3+/\4
+ 6—>\1+>\2—>\3+>\4 i €—>\1+>\3+/\4 3 €>\1—2>\2+)\3+>\4 + 6—>\1—>\2+)\3+>\4
T 6>\1—>\2+>\3+>\4 4 6_)‘2+2)\4 i 6—)\1 4 6>\1 + e>\1—>\2 + e—>x1+>\2 + 6>\2—>\3—>\4
Az—MAg —A3+Ag —A2+ A3+

+e +e +e + 4,

- A2—A A —As+A A1—A —A1+A2—A —A1+A A1—A2+A
Xag = € 34 M2 4 A3 o 2+3+€1 14 e 1+A2 146 1+4+€1 2+Aq
and

o 26)\1_/\3+€_)\1+>\2_)\3+€_)‘1+)\3+6)\1_)‘2+>\3—|—6_)\4+6)\2_)\4+6)\4+6_)\2+)\4.
We observe that
3 Sxome! S() 5 S(M) ¥4, xo, = 8(e) and by, (= S(eM
X = S(e™) X = 5(e2) H15(e™) +4, X, = S(e) and xa, = 5(e™).

On the other hand, we remind from Theorem 1.5.7 that for ¢ =1,2,3 and 4

XX\ = S(e)\i) + E m)\l(u>5’(e#)
neAt
=X
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We discover that a dominant weight g such that © < A9 is only 0 and Aj, A3 and A4
are minimal. Moreover, if we calculate by Fruthenthal’s recursive formula, then we

obtain that m,,(0) = 4. Thus

Yo, = S(eM), xa, = S(eM) + S(eM) +4, xa, = S(e™) and yy, = S(eM).

5.3. The Relation between S(e#) and Y,

Now, we let ® be the root system whose Dynkin diagram is D,,, A = {ay,...,a,}
a base, \i,...,\, the fundamental weights described in Section 5.1 and VW the Weyl

group of ®. First, we consider the case where m < n — 2.

Proposition 5.3.1. Let m and k be nonnegative integers such that 0 < k < m <

n—2. Then

A+ 0, A +0) — (M + 6, A +0) = (m—k)(2n —m — k).

k+1th mth

Proof. We see that A\ —Ap=(0sceey b ool . 0,...,0) and,
d=mn—-1,n—-2n-3,....n—14,...,1,0) where 4 < i <n.

Thus,

m

A= Xe8) =) (n = 0)

i=k+1

(- k) — <m(m+ 1)2— k(k + 1))

—— (Qn—mQ—k—l)'

Now, since (A, An) = m and (A, Ax) = k, it follows that
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O + 6, A+ 8) — (e + 6,2 4 8) = (s ) — ey M) + 200 — Ay 8)

— m— k)4 20m — B) (2n—m2—k—1)

=(m—Fk)(2n—m — k).

Proposition 5.3.2. Let k,m,r and s be nonnegative integers such that 1 <r < k <

m<n—2 and r < s. Then my,, (A + t(e; £¢,)) =0 for all t € N.

Proof. Let t € N.

Casel r<s<k

We know that

T.th Sth kth

A+ tle e)= (1o (1+8) ,1,...,(1£¢t) ,1 ,...,1 ,0,...,0).
Therefore,
Am — (Ak +t(e £ €))
,th Sth (k+1)th mth
=(0,...,0,—t ,0,. L0, Ft 0,0, 1 1 ..., 0).

Suppose that A\, + t(&. = €,) X A\y. Then there exist a;...,a, € Ny such

that
n—1
Am — (A + (e, £€5)) Zalan = Z a;(€; — €i11) + an(€n_1 + €,)
=1

= (a17a2 — A1y Uy = p1y ey 201 — G2, Ay — an—l)-
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That is
rth Sth (k+1)th mth
0,...,0,—-t ,0,...,0,%t ,0,...,0, 1 ,...,1 ,0,...,0)
= (aly A2 — A1y vy Qp — Qp_1y ..., 2a’n—l + an—2, 0, — an—l)-
Then, a; = ay = --- = a,_1 = 0 so that a, = —t which is a contradiction.

Thus A\, + t(e, £ €.) A A By Theorem 1.4.7, we conclude that
my,, ()\k + t(e £ es)) = 0.

Case2 r<k<s

We use the same method as in Case 1 and obtain that

my,, (A + tle £ e)) = 0.

Proposition 5.3.3. Let b,c, k and m be nonnegative integers such that 1 < b < ¢ <

n—=k and k <m <n—2. Then my,, (Aps2) = my,, ()\k + (e £ ek+c)) )

Corollary 5.3.4. We have that t(ex11 £ €py2) are conjugate to t(exrp £ €xre) and
Ak + t(egr1 £ €xao) are conjugate to Ny + t(eprp L€pre) for 1 <b<c<n-—k and

k<m<n-—2.

Proposition 5.3.5. Let k,m,r and s be nonnegative integers such that 0 < k < r <

s<nand k <m <n—2 forall t € N\{1}. Then m,,, (M +t(e. £¢€;)) = 0.
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Theorem 5.3.6. Let k and m be nonnegative integers such that 0 < k <m <n—2.

Then
> i, (A ta) (A e, ) = 2(n — k) (n — k — 1)my,, (Akra).
acdt t=1
Proof. Let a be a positive root and ¢t € N. Then o =¢, £ ¢5 for 1 <r <s<n.
Casel r<kand t €N
It follows from Proposition 5.3.2 that m,,, (/\k +t(e, + es) =0.
Case 2 r >k and t € N\ {1}
It follows frem Proposition 5.3.5 that m,, ()\k +t(e, = es) =0.

Case3 r>kand t=1

By Proposition 5.3.3, we reach the fact that

m)\m()\k+2) —w, ()\k =5 <5k+1 T €k+2)) =my,, ()\k + (6,« + Es)).

We conclude from all the cases that

00 n~1 n
Z ZmAm()\k + ta) (A + ta, ) = Z Z M, (Ax + € £ e5)(Ax + € £ €5, 6, £ €5)
acdt t=1 r=k+1 s=r+1

n—=k
=4< 5 )mxm()\mz)

=2(n—Fk)(n —k—1)m,, (Ari2).
0

We are ready to provide the reduce form of Fruthenthal’s multiplicity recursive
formula for fundamental weights A\, with highest weight A, where 1 <k <m < n—2.

By Proposition 5.3.1, Theorem 5.3.6 and the formula (1.5.2), we obtain that

(m—Fk)2n—m —k)my, (M) =4(n —k)(n —k — 1)my,, (Aes2). (5.3.7)
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Next, we present the general formula for multiplicity of A\, where k& = m — 2i for

some 7, with highest weight \,, by using the formula (5.3.7).

Lemma 5.3.8. Let ¢ and m € N be such that 1 <2t <m <n—2. Then

n—m—l—Qz’)
. )

7nMJAm——%)::<

Proof. We prove by strong induction. Recall that m,, (\,) = 1.
Basis step

We replace k& by m — 2 in the formula (5.3.7), then

An—m+2)(n —m+1Lm,, (An)

Am=s) =
Mamt) 2(2n — 2m + 2)
n—m+2
= A2 1 .

Induction step

Suppose that the statement is true for 1,...,2— 1. Then

4(n —m+2i)(n —m+ 2i — HYmy,, (Am_2i12)
2i(2n — 2m + 21)

my,, ()\m—%) =

(n-m+2)(n—m+2 - 1))
B i(n —m+1i)
dn—m429)! n—m+ 2

O (h=ma) o i '

Lemma 5.3.9. The fundamental weights \,_1 and X\, are minimal.

27 ) 27 2 27 ) 2
We show that \,_; and \,_; are minuscule. Let o € ®. Then o = +(€, - ¢5) where

r+#s.

1 1 1 1 1
Proof. Remember from Section 5.1 that \,_; = (— e, — ——) and A\, = (— —) .
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(b stoser) = (b t) ) < 020

Hence, \,,_; is minuscule.

((33) 2o zer) = (5. 3) tote)) € 0211

Therefore, )\, is minuscule. We obtain that A,_; and A, are minimal from Theo-

rem 1.2.14. O

Theorem 5.3.10. Let m be a positive integer such that such that m < mn. Then

S(erm), ifm=mn,n—1,
X/\m = & 2
Z (n m+ 2)S(e’\m?i), ifm<n-—2.
0<2i<m i

Proof. Recall from Theorem 1.5.7 that

Xam = S(e*) + Z my,, (1) S(e").

uEAT
H=Am

Lemma 5.3.9 shows that A, and A, 4 are minimal in-its-subposet of (A", <), then
Xa, = S(eM) and yy,_, = S(e*1). Next, let m < n —2. We know that the
dominant weights which are less than A, are \,, 9; for some ¢ € N since

A< Ay =< < Ay for all 2b <m
or

A< A3 <o < Agpg for all 26 +1 < m.
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Moreover, Proposition 5.3.8 assures us that

2

Xom = S+ 3 (" e 2’) S(erm-)

2<2i<m

s (n o + 22') S

0<2i<m

We conclude that

AONUUINBUINT )
ANRINTUNINEAE



CHAPTER VI

ROOT SYSTEM G,

We consider R? as the vector space over R with the usual inner product. Let
(1,0,0),(0,1,0) and (0,0,1) be the standard basis vectors of R?*. The Z-span of
this basis is a lattice, denoted by I. Let V be the 2-dimensional subspace of R3

orthogonal to the vector (1,1,1) and I' =InV.

6.1. Outline of the Root System G,

Let q):{oz € I':(a,a)=2o0r 6}, ie.,
® = {£(1,0,-1),£(1,-1,0),£(0, 1, = 1), %(~1,2, =1), (2, -1, -1), (-1, -1,2) }.

Note that the squared length of an element of ® is 2 or 6.

e & is a root system in V' of rank 2.

e Dynkin diagram is o—==o

aq (e%)
e Short roots are

+(1,+1,0), £(1,0, =1) and =+ (0,1, =1) (of squared length 2).
Long roots are
+(2,—1,-1),+(-1,2,-1) and + (—1,—1,2) (of squared length 6).
e Simple roots are

a; = (1,-1,0) and g =(-2,1,1).
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e Positive roots are

] = (1, —1,0), Qg = (—2, 1, 1), o+ g = (—1,0, 1),

200 + g = (0,—1,1), 3a1 +as = (1,—2,1) and 3ay + 200 = (—1,—1,2).
e Fundamental weights are
A =201 +as=(0,—1,1) and Ao = 3a; + 203 = (—1,—1,2).

e Let \g =0. Then \g < A\; < X\

6.2. The Relation between S(e*) and )

In this section, we let ® be the root system whose Dynkin diagram is Go, A =
{a1, as} the base of &, and Ay, Xy the fundamental weights described in Section 6.1.
In addition, we know that § = Ay 4 Xy = (=1, —2,3). In order to determine S(e)

and S(e*?), first, we find the Weyl group W of ®. Remind that

oy — —Qy, o) — g + g,
o and o
Qo — 3a + Qo g — —Qg.
Moreover,
)\1 — —A1+)\2, A1 H)\la
Oay and Coy -
)\QH)\l, )\2'—>3>\1—)\2.

Then W consists of 12 elements as follows:

w,00,03,0008,0804,00030q,030,083,0,030,03,

03000300,0003000304,0300030003,0a00300030q043-
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Next, for each fundamental weight A\, we consider the elementary symmetric
sum S(e*) and the character x, with highest weight A (see also Definition 1.2.20).

We see that

WAL= {0, A= Aay —2M0 + g, = A1, 200 — Mg, — Ay + Ao}

and

WAy = {X2,3M1 — 2X9, =3\; + 2X9, =3A1 + A2, M1 — Ao, —Xa ).
Then

S(eM) = M feM My e PNuthe oAy (2 he oAt
and

S(e)\z) _ ez\g + 63)\1—2/\2 + 6—3)\1+2/\2 A\ 6—3)\1+)\2 + 63)\1—)\2 + 6_>\2.

We need the followings in order to calculate x,, and x,,.

221 =32 =" 67)\1—3)\2 + 6—2)\1—)\2 _ 65/\1—>\2

A(e/\1+6) — €5>\1+4>\2 _ 67)\1+4)\2 —
—5A1+A 2X1+A —TA1+3X —2X1+3X\ —TA1+4X —5A1+4A
—e 1 2+e 1 2+€ 1 2_6 1 2_6 1 2+€ 1 2’
A(e>\2+§) — 67)\14-5)\2 | 68)\1—5)\2 il 6)\1—3)\2 + 68)\1—3)\2 e 6—)\1—2>\2 _ 67)\1—2)\2
—TA14+2X A1+2X —8A1+3X —A1+3A —8A1+5A —TA14+5A
—e 1 2+61 2+6 1 2_6 1 2_6 1 2_|_e 1 2’
and
A(e5> — 64)\1+3>\2 _ 65)\1—3)\2 _ 6)\1—2)\2 + e5>\1—2)\2 + e—>\1—2>\2 _ 64>\1—)\2
_6—4)\1+)\2 + 6)\1+)\2 + 6*5)\14’2)\2 H | e)\1+2)\2 | - 675)\1+3)\2 + 674)\14»3)\2'
Thus,

Xa, = 14 6—)\1 4 e)\l 4 €>\1—)\2 4 62)\1—)\2 + 6—2)\1+>\2 + e—)\1+)\2
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and

X)\Q — 2 + 6—)\1 + e)\l + 6)\1—)\2 + 82)\1—)\2 + 6—2)\1+)\2 + 6—)\1+)\2 + 6)\2

+ 63)\1—2>\2 + 6—3)\1+2>\2 + 6—3>\1+)\2 + 63)\1—/\2 + €—>\2

We conclude that
X = S(eM) +1 and Ay =S5(e?) + S(eM) + 2.
On the other hand, we remind from Theorem 1.5.7 that for ¢ = 1 and 2

XX = S(e)\i) + Z ey, (M)S(eu)

neAt
=X

We discover that a dominant weight p such that g < Ay is only 0 and dominant
weights p such that g < Ay are 0, Ay, where 0 < A;. Moreover, if we calculate by
Fruthenthal’s recursive formula, then we obtain that my, (0) = 1,my,(A\;) = 1 and

my,(0) = 2. Thus

X = S(e)\l) - I and XXa = S(e)a) 2 S(eAl) + 2.
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