CHAPTER 11

THEORY

In this chapter, the theory concerning equations of state, fugacity and
fugacity coefficient, vapor-liquid ilibrium calculations, binary interaction
parameters and mixing rules will b

2.1 Equations of State

An equation o ‘relation properties of a substance
-- pressure, temperature 41 i
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resent no one equationf of state exists that is equally suitable for all
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limited s¢ope have been achleve

To start with, it was the Boyl's work in 1662, Charles and Gay-
lussac's work in 1802 and Clapeyron's work in 1834 with the ideal gas law,

PV =RT (2.2)

From the beginning, it was realized that the ideal gas law often is



only a rough approximation of true behavior. Deviations were ascribed to the
finite volumes occupied by the molecules themselves and to forces of
repulsion and attraction between the molecules. Both these factors were taken
into account quantitatively by van der Waals (vdW) in 1873. He proposed
and equation that is generally accepted as the first realistic equation of state,

__RT _a (2.3)
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where a, b and R are conﬂh@;'

attractive term is the sec?‘( — —
1faat] haals equation have been

Scores of mo

made. Among thes n der Waals EOS, have

received much attentioft d hei simp} ‘a;“?ractical success. They are
explicit in pressure and 1ird- degre e or compressibility factor.
When a cubic EOS i ; compressibility factor has three positive real
roots, the largest one i 7 th  smallest one that of the liquid

and the intermediate ong with ificance. Parameters of cubic

Following the“studies of Martin in 1979, A@bott in 1979 and Vera et
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This equatlon may be modified by changing the value of a(T), k 1 , k2 and k3
in the attractive term, for example the van der Waals EOS uses a(T) = a,
k1=0,ky =0andk3z =1. Table 2.1 shows the value of a(T), k; ,kp and
k3 of some cubic EOS.

(2.4)

At the beginning of modifications of van der Waals EOS, the two-
parameter equations of state were developed. And mostly the attractive term
was modified. The attractive term (the second term) is caused by molecular



Table 2.1 the value of a(T), k1, kp and k3 of some cubic equations of

state in form:

RT a(T)[V - k,b]
“WF=5] = PIV? +kbV +k,b*]

Investigator | '9) k3
vdw (1873) \ N 0 1
Clausius (1880) 7% N (c/b)2 1

IRK  (1949) | I\ 0 1
Soave  (1972) | 0 1
PR (1976) 2 A 1
SW (1980) 0] -3w 1
PT (1982)., -(c/b) 1

- aﬂuﬂqwﬂwﬁwﬁﬁﬁ%
aﬁmwmﬁ%ﬁﬁﬂﬂiﬁ" ¢

- Peng and Robinson [6]
SW - Schmidt and Wenzel [10]
PT - Patel and Teja [12]



attraction forces while the repulsive term (the first term) is caused by
molecular size that should not be much modified. Therefore Eq. (2.4) has the
same repulsive term as the van der Waals EOS. However, it is not sure. Some
investigators [1] have modified the repulsive term as well such as Scott in
1971, Guggenheim in 1965 and Carnahan & Starling in 1972. In addition to
using two parameters in EOS like the van der Waals EOS, many investigators
proposed more parameters for fle apphcatlons such as the three-parameter
equation of Clausius in 1880 &{\ 7

In 1949, RedhchmEWany [Z]Mcd an equation of state which
adjusted the attractiv nence ofwtemperature. This EOS could
considerably improv 1 hori%ﬁuﬂy, the critical isotherm. It
could also improve ' '

]

Redlich-Kwong EOS. The a
emperature to improve the

prediction of the pure-co . The parameter o was a linear

function of reduced tem erature. Ho@ This recommendation was largely

ignored, even though this EOS was a%uccessfully to many systems.

was determined by %1mu1taneously matchmg 11q111d density and forcing the
vapor and lﬁfgfza adm Eﬂ ﬂm component's vapor
pressure. Thl% tﬁo method, however, it
cannot be used for enthalpy calculations. =,
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In 1972, Soave [5] proposed an EOS in the same form as the Wilson
EOS. Unlike the Wilson EOS, Soave's modification gained quick and wide
acceptance and became the most popular method for high-pressure VLE
calculations. This equation, called the Soave-Redlich-Kwong equation,
applied well to all nonpolar components.

In 1976, Peng and Robinson [6] modified the attractive term by using
only two parameters. This EOS is generally similar to Soave's for VLE, but



better than Soave's for liquid density by without making » a function of
temperature. However, it was not able to simultaneously improve the vapor

density.

In 1979, Martin [7] concluded that his equation was the best cubic
EOS. The equation is a four-p eter form of the Clausius EOS. The

parameters includes a, b, ¢ and 'Z parameter Z; 1is the experimental
compressibility factor at ' It gave added flexibility to the
Martin EOS which enabled it t o r@resm-T properties for a variety of
substances with greatenlud"" 7 than w e case with the Soave or

Peng-Robinson EOS_

In 1980, Heye
the modification of
parameters. The a and
functions of the temper:

o

In 1980, Harmens afid" Knap@ proposed a cubic EOS which
possessed three adjustable pargme;ers and therefore was more flexible than the -
Redlich-Kwong and}eng-Robmson M arameters were correlated
in terms of T , Pg actor ® quation was found in good
overall performance fych as the volu alo@ the critical isotherm,
boiling temperatures dand saturated hquld volumes for pure and normal

s ﬂﬂﬂ'ﬁ‘i’lﬂﬂ‘ﬁ'ﬂﬂﬁﬂ'ﬁ

In 1980 chmidt and Wenzel [10] propesed an ﬁ)amm of state of the

i dﬂ%'ﬂ@“@'ﬁ uelthé dricpdl datg T hld PG fand the Pitcer'

acentric factor ® as mput data and which yielded a substance-dependent
critical compressibility factor. Parameters a, b are given by an expression
similar to that proposed by Soave. The suggested equation yields improved
liquid densities and vapor pressures. However, the equation is restricted to

non-associated compounds.

In 1982, Kubic [11] took a different approach. He made a and the third
parameter ¢ temperature-dependent. This EOS was modified from the Clausius
EOS.



In 1982, Patel and Teja [12] proposed a mew cubic EOS. The new
equation required T¢ , Pc  as well as two additional parameters, correlated
with the acentric factor, to characterize each particular fluid. The new equation
showed good predictions of volumetric properties in the liquid region and
maintained accuracy in vapor-liquid equilibrium calculations.

a comparable improvement
modeled on that of van

N perature dependence by
h simpler, the RK equation
:

or gas-phase properties

Kwong [2] proposed
over the other equati
der Waals but its p

continues in limi
calculations, but not
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been reported, one of the most i

made by Soave [5] in 1972«.1&‘&15* '

it modification of this equation was
n, the temperature—dependent term
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The parametep"' a(T,w) was formulated prime arily to m e the equation fit

the @OWQ Qﬂ ny mmﬂﬂﬂ factor @ is a
measurej of the acentr resul s in simple-fluid

behavior. Soave gave

a(T,m)=a.c (2.6)
where

o0-5 = 1+m(1-T,0-3) (2.7)
m = 0480 + 1.574® - 0.17602 (2.8)



The coefficients m of this term were modified by Graboski & Daubert [13] in
1978 to

m = 0.48508 + 1.55171® - 0.15713w2 (2.9)

Soave suggested that the o might be in a different form, such as in the case
of strongly polar substances such as water, alcohols and others.

The parameters a and b ns of the critical properties by
comparing coefficients th the equation at the critical
point with the form of e observation that the three

a=Q,R2 W7 (2.10)
b = QpRT | — ' (2.11)
Q, =0.427480 P | (2.12)
Qp = 0.0866 A (2.13)

Although the coe c@ 'n; e are constaﬁt, usually the
fit of data to the equation oved by allowing the coefficients

"“

to vary from substqlllje to substan

1s expressed explicity in

For convenier : .
in terms of compressibih'ty ctor Z,

the form of polynomials

au&a wmwmm an
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A a o P /(RT)2 (2.15)
B =b P/(RT) (2.16)

The Soave equation is applicable to both physical states (liquid and
gaseous), polar and apolar compounds and, by the use of proper mixing rules,
can describe accurately the phase equilibria of binary and multicomponent
systems, with a minimum of empirical parameters, whereas it retains the
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simplicity.

2.3 The Peng-Robinson Equation of State

In 1976, Peng and Robinson [6] proposed that the attractive term in the
vdW equation should be -a/ g(v) where g(v) is a functlon of the molar volume

more realistic value. The' € €quation at very high pressures is
affected by the ma _ Vg le 1s the predicted critical
volume. And treating ncisionle s scaling factor for the temperature-
dependence parametezds a'fi 1gtio \\g‘ tor in addition to reduced
temperature has sigr oved the prediction of vapor pressures for

(2.17)

a(Tc), b(T¢) and Z

wpERREEn Ny 25
Atany ok SnaniMId gy

a(7) = a(T ) Ty 0) 2.21)

b(T) = b(Ze) (222)

where o7}, w) is a dimensionless function of reduced temperature and
acentric factor and equals unity at the critical temperature. Similarly to the
Soave parameter, it is defined as in Eq. (2.7) but m is different.
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m = 0.37464 + 1.54226® - 0.26992w2 (2.23)

Eq. (2.17) can be expressed in the form of polynomials in terms of
compressibility factor,

73 -(1-B)Z2+(A-3B2-2B)Z- (AB-B2-B3)=0 (2.24)
where A and B are deﬁne@”f/ and (2.16).
According to e@w@ critical compressibility is

Ze = 0.307. This v s of many substances,

particularly nonpolar r two-parameter EOS's. This
1s a partial explanatio ion is able to predict liquid
densities more accura ation, which is otherwise
qulte s1m11ar in p equation has inherent

work. The EOS li d, i ; temperature T and
critical pressure P , o substance dependent parameters ¢ and F as input

e UG INYNTHYINT

The EOog proposed in their work has the following form :
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(V-b) V(V+b)+c(V —b)

(2.25)

where R is the universal gas constant, a is a function of temperature and b
and c are constants. These parameters are obtained as follows:

a(T) =Qy (R2 T2 /Pc) o(Ty) (2.26)
b = Qp (RT /Py) (2.27)
&= O (RTs /P (2.28)
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The values of Q, Qp and Q. are obtained from the critical
compressibility factor, & . '

Q. =1-3¢&; (2.29)
Qn = 38c2 +3(1-28¢) Qp + Qp2 +1 - 35 (2.30)

and Qp is the smallest positive r T

Q3 +(2-3¢ )Q&L
For o(Ty), Patel and
used by Soave, Peng,

the following cubic equation:

(2.31)

of reduced temperature as

o(Ty) = [1 +F@- (2.32)

‘ are  evaluated by
ities while simultaneously
satisfying the equality of ng the saturation curve. By
this approach, in addi ¢ fluids, the new EOS can be
applied to polar fluids such.-as:»ﬁatelf;’ amimonia_and the alcohols, and extend
to the mixtures. t::\ : :

The substance depen ,
minimizing deviations i

For nonpolar Bxbs S, o theﬁarameters &c and F can
be correlated with an acpntnc factor. The esultmg correlations are given by

%ﬂﬂl%lﬁ ml’!iﬂﬂ'ﬁ 25)

29032 0076799'ail + ‘ﬁ 02]1’34%028 ’_] a E] (2.34)
q ﬁ)s’;] ﬁﬁm@cyi mg})éedlcung compressibilities of nonpolar fluids
using the generalized constants was less than 1% and, often, less than 0.1%.
From Eq. (2.25), polynomial forms in the compressibility factor are more
preferred in this work. It can be made by substitution V with ZRT/P in Eq.
(2.25) then become

Z3 +(C-1)22 + (A-2BC-B-C-B2)Z + (BC+B2C-AB) = 0 (2.35)



13

where
C = cP/(RT)2 (2.36)
and A and B are defined as in Eq. (2.15) and (2.16).

The new equation give average deviations between calculated
values and experimental values y uid and vapor densities, for which it

consistently gives beﬁaq:gmﬁ the P-R equation and the R-K
equation. Even in the critical regon <1.0), The equation can correct
deviations if &; iswdifferen tly modi: apor pressures of pure fluids,

the overall average®dcvifiion be 7' and experimental values is
% oy and entropy departures of
,, ew. equation is as good as the Soave
and Peng-Pobinson atios, for - mixtures ofli@t hydrocarbons. For systems
containing heavy 1S anl olar ﬂhstances, the new equation is

r-parameter extension of the
original SRK equago n (Soave, 1! /hich was intended to improve vapor-
liquid equilibria and | vapor pressure gglculatlons for compounds or systems
which exhi n of state, henceforth
refered to ﬂm&m m the original only in the
functional form of the température-dependent energy-attraction term. The
e AT 3 1), ko 54 Bt rersraon o
polar systems in terms of two parameters (in addition to T and P¢). These two
parameters (g and h) are unique to the compound of interest and must be -
determined with an empirical data fit. This contrasts with the original SRK
energy term which used only one fitted parameter, the acentric factor. The new
expression which comprised the sole modification to the original SRK
equation was

oT) =1+ (1-Tp)(g + WTy) (2.37)
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where g and h are the two adjustable MSRK parameters, replacing the
acentric factor, which in general are fit to vapor pressure data for the
compound of interest. The other concerned equations for calculations are
defined like in the case of the SRK equations as in Eq. (2.5) and (2.10) - (2.16).

In spite of the enhancements, application of the equation has been
hampered since it requires two adjustable parameters for which no known
tabulation exists. In 1986, Saqdkﬁ\ E& y and Yesavage [15] undertook a
program of fitting modifie p ts#to Sondergard's extensive vapor
pressure  databank c@nm data f(ﬂa% organic and inorganic
compounds. Sandaruei rs fi e Soave technique, which
he discussed in a [16] in , for acquiring the two

parameter values, call vlified | ccdur\éﬂ.‘\This method was found to
be simple to program, g0 5 - tationally.and produced g and h
values which could 1 & vapor pressures.
P'J\
The MSRK eq r polar systems well. The
equation handles vapor pr sur_-eﬁor*' “and nonpolar systems well

with a little bias or deviafior"F add@‘t models enthalpy departures for
polar organic (both pure and i yt%em__s much better than the more
common industrial | Eﬁuations of state : the origin and PR.

\r‘

- —

2.6 The modified Peng-% obinson Equation of State

Eaquac 8 dekododohoh UK. Sk BRK 1k ke wod widely i

process design simulation. The accuracy of these equationsdnm predicting the
por 8 BB 4 Gl A R o syt
is withinfithe accuracy of experimental data. However, these equations give
poor results when they are used to describe the liquid phase densities even for
simple systems.

In order to investigate the feasiblilty of improving the accuracy of
liquid phase density, in 1986, Moshfeghian, Chariat and Maddox [17]
expressed the b constant of the PR EOS as a function of temperature and
added the new parameter m in it. This is different from the referred two-
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parameter EOS that the parameter  depends on the critical temperature and
pressure but is independent of the system temperature. They proposed the new
bas:

b =b(Tc)B(Tr.n) (2.38)

The value of B must become unity Whe reduced temperature, Ty, approaches

one. It was given in the followmgx' ///

2 (2.39)

1 :“‘—-..

' i ic%’ameter. It can be determined
atmization of the objective function which
erit L vapor pressure, calculated and

B=1+n(1-T ) ‘—_“

The paramet 1A

éntal heat of vaporization. In
new value of for each pure

in Eq. (2.38) and
. defined such as in the

In this paper, 1t was 1nd1cated that the proposed modlﬁcauon not only
improved the %ﬁymm ) but also improved
the accuracy m pfes volume prediction
capabilities. Fmally, Moshfeghian, Shariat ~and Maddom concluded that

mor oG Ay b A M 6 ffn

present any complicated calculations.

2.7 Fugacity and Fugacity Coefficient

The concept of fugacity arises from a consideration of the change in
Gibbs energy that results from changes in pressure and temperature. The
fugacity and partial fugacity reduce to the pressure and partial pressure at low
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values.
. -
I;EP = l’}_r)xg¢— (2.40)
{0 (2.41)

The f and fj are called fugacity and partial fugacity whereas the ratio
¢=1/P and ¢; =fj/(x;P) are called /:ity and partial fugacity coefficients.

For pure substanees and n xtﬁ fugacity and partial fugacity
coefficient coefficients can.beevaluated fe 0_equation of state by replacing
P with its equivalent in_the '-/ wing .is nations;.

For pure substances, '

Ing=2Z-1- (2.42)
For mixtures,
RTIng, = r ‘4:? 3 (2.43)

when the infinite ﬁf” R 1 tessure and the derivative
OP/Onj is taken at  both turem and total volume. The
expression of the p fugaclty coefﬁments for some EOS are presented

" Tablezzﬂ‘llﬂ’J“flEJﬂiWEJ']ﬂ‘i

In this work, the two-coniponent mixtures are considered, so the partial

) R E 480 1) 1 i e ot
section for vapor-liquid equili

ibrium calculation.
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Table 2.2 Partial fugacity coeffient expressions for the selected EOS

EOS Expression

~ B
SRK,MSRK In ¢-)=;'(Z-1)—1n(Z—B)

(acr), j,ln[l + ; ]

— 7 B ~
PR, MPR i &\\

. {5 Z+2.414B
\ PRIC )} [z 04143]

AN

PT [ | axeng * —RTW(Z~B)—~ Q“’ Zy<“>
g ’f | Q+"I ](3b+ )+b(3c+b)

-———+V

ﬂﬂﬂ??ﬂﬂﬁﬂlﬁﬂi
amaxﬂmtuumwmaﬂ
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2.8 Vapor-liquid Equilibrium Calculation

The calculation of vapor-liquid equilibrium 1is concerned with
description of the state of two or more phases which are free to interact and
which have reached a state of equilibrium.

The starting point of all Vl‘j alculations is the equilibrium condition :
£V - £L ®

/

(2.44)
That is, the partial fug vapor should be equal to its
partial fugacity in the li artial fugacity is expressed in terms
of the partial fug yotfiete cfered to Section 2.7, Eq. (2.44)
becomes : -

%VyiP = ¢f 223 W\ Y (2.45)
when the distribution Coe 1s approached, the following
expression is also obtained

Kj = yi/x (2.46)
The distribution coegé-i-en thﬂ vaporization equilibrium

ratio, 1is the key quanP in the analys1s of vapor-liquid equilibria. Many
relations are sﬂ:‘I ﬁmi mﬂ] I! i» but because they
depend on T @ ﬁ f , solutions of typical
problems in terms of Kj must bé accomplished by successive approximation.

ol ) 0 o b apans, b

points arid flashes. Thatis, for the VLE calculation, Eq. (2.46) provides
the simplest and most direct method by applying an equation of state to both
phases.
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2.9 Binary Interaction Parameters

The behavior of mixtures naturally is affected by interactions of unlike
molecules, particularly if some are polar. Interactions between triplets and
higher combinations are usually less important than those between pairs of
components. Higher-order interactions often are small and thus hidden by
imperfections of practicable equ of states, so that incorporation of only
binary data in addition to those o‘f‘ﬁr onents generally leads to a major
possible improvement in \Ee accur € equauon of state. For an n-
component mixture the;r.EE( -1)}2 — ary interaction parameters.

1 he jj for several systems
found only a small e?fct of temperature over a 10@ C range and found the
definitely temperature dependent bm@/ interaction parameters of water
with COy ﬁ.&l § ﬂm o be independent of
temperature, ?} d :Ej pmmce however, this is
not strictly true and Kjj should’ be determined at conditions of interest. It

should b §14éd difehe jemoiahild dependenck i e il o predict VLE

at other temperatures.

The various investigators wi

An outstanding success of the concept that binary interactions largely
determine the deviations of multicomponent mixtures from ideality are related
correlations for activity coefficients. Since activity coefficients often are
adequately computed from molecular structural contributions. It may be
possible that binary interaction parameters, Kjj also could be evaluated from
pure component properties, but this has not yet been done in comprehensive
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form. Compared with VLE predictions, the sensitivity of predicted bulk
mixture properties such as density and enthalpy to the value of Kjj 1s
small. Therefore, it is common practice to use binary VLE data for the
determination of Kj; values.

2.10 Mixing Rules

1s of equations of state (a,
r more). Most equations of
he one-fluid van der Waals

applied to mixtures.
b, ¢ or more) in conditi®
state use the "classie
mixing rules:

4,=2.2.7 (2.47)
b, = ﬁ;z:b, (2.48)
c, = Z::z,.c,. (2.49)
and popular term (aﬁm
(ac),, = ) (2.50)
ith th
T NN NN S
a; —(l—q}i Nao));® ¢ (2.51)

@w'm@mm UANINYIAY e

the bmary interaction parameters Kjj in Eq. (2.51) - (2.52), which will be
discussed in the next section, are used to correct for deviation of ajj and (a
@)jj from the geometric mean.

The "classical" mixing rules are capable enough for general
application, however, it is likely that an equation of state will have a
significantly better vapor-liquid equilibrium performance if the improved
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mixing rules are used.

The most obvious improvement of mixing rules [18] is the substitution
of b; with b1J and proposing the new binary constant in Eq.(2.48). The b1J is
similar to the ajj in Eq.(2.47) and the new binary constant corrects for the
deviation of bj; from the arithmetic mean. The eqution has been shown to
of vapor-liquid equilibrium predictions
hhssalso been shown to improve the
equilibrium.

in very asymmetric Hy binarie

prediction of hydrocarbo: :
—— 2

Other mixing 'p X

(local mole fraction)

improve the temperature-depende‘ti

se}wen [19] in 1981. The LMF

for non-random mixing,

The by; and ¢y, a sande “Classical" g rules but, for ay, , the
mixing rules with the v b &ry—go stani ‘and.the local mole fraction of a
component in the vi€inity another ¢ onént was recommended. These
mixing rules improve ghe Jpr diction 4 iquid equilibrium for highly
non-ideal mixtures. @ ;‘: —.T =

e

In 1979, Huron and W:&[Z@osed the LMF mixing rules with
three binary constants. The mixitig r}ﬂ% based on the excess Gibbs free
energy and used u{i_he complex, uﬂcms.—_ )j

For the m@:ult . enmtﬁdependent mixing rules,
proposed by Whiting a?d Prausnitz [ZI&n 1981; Mollerup [22] in 1981, may
be accepted. Elln ﬂcﬁ mﬂﬁ:ﬂmc mole fraction
dependence EI' ?y rd dence of the LMF
mixing rules at high density. Héwever, theysincrease co ﬁt\tauon time and

mey bR PO 818 Spiabonsiotisie?|

In this work, the "classical" mixing rules will be used. Perharps, ajy,
by and ¢y, are used in form of Ay, , By, and Cyy, . Equations for am, bm
and cy, are similar to equations for Ap,, By, and Cpy
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