Density of states
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The reduced energy is defined by the equation

€ » = - cos(k@) - cos( ' (3.3)

a: (3.4)
The reduce “stal n lculated. For a unit
cell with area a*,t “_’:1'3> st : 5. according to eq(3.1), is
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We niow consider the limits of integration of eq. (3.8). To get the

limits of integration, we return to eq. (2.3), We have as the range of
¢t —2¢ ¢t 2. The reduced densit& of states is symmetric in ¢
because of the cosine functions, therefore, we need consider only £
in the range 0 <t £ 2 . For 2 <t £ 2 we show in fig. 5§ a cwrve
of constant ¢ in the (kx.k’} ane
, N\ %,
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we integrate along a part and multiply the integral by 4. At the upper

right-hand side the limits of integrétion are g and the point of

interception k“.

as X = cos ( g .8) = -1 corresponding to the poinb (."l I ) and

Using eq., (3.7), we get the limits of integration

ara
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X = cos ( k“a ) = - cés ({.a) wif S Y corresponding to

the point ( k_,x ). Therefore eq. (3.8) becomes
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Substituting these results intoc eq. (3.9), we get
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g(e) =173x(/1_(§ =_ "// (3.14)
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where K(k) is the : iptdc ﬁof‘ the 1" kind
withk=/1—<§>’.7- -
|
. To get the d /stabés reduced density of
states, the relati This can be obtained
by using the proper t rom eq. (3.4) we get
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and eq. (3.15) becomes
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Eq. (3.16) is the relatibn/be ' the
reduced density of states. f§in¢e hxe' density of states per unit
cell is
(3.17)
where P(E) is t.hy densit.y of* st..t.es per unit. erll and is equal to
(g‘ 33 fSu-: - EY )dﬁ Using eq. (3.5) and eg. (3.14), eq. (3.17)
* B.Ze
becomes
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s L DL
LB = o5 7u €K([1 - (30 (3.18)

For the whole Cu-0 plane with N unit cell, the density of states is,

therefore,
Q+EF
N = _@_‘,E-( 2 )I £ .2
IP(E) = = <2 K(/1 - (2) ) (3.19)
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Further consideration can be made by replacing the complete elliptic

integral with a series representation. The series representation

to be used is
|

B IR
ko = 1nd + (h*and, 1_',m e (3.20)
Rl -8 // (3.21)
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In this case k* <)% ., From eq. (3.20)

_ =1 \\\
we see that the density of s // \ rithmic singularity at
ve s \\\\ corresponding to £ = 0,
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Fig.6  Density of states of the bends 'E:‘: « The small -

asymmetry is due to the linear term of E.
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they are
E : p |
E, = (-1;_—EL yrc-zEe ey e s (3.22)

e g = & =¥
of the saddle points lkxl- 3 with ky = @, and kx =-0 with Ik,' =
in the reciprocal space. Actuslly, these singularities have their

F
origins in the two-dimensional chabiééég of the model according to

14>

van Hove® » and they would remain_ even . if the transfer integrals

between the next neigﬁbpurs in tbe plane are taken into account. In the

>

«® pure La:Cuo‘, thedﬁgpﬁ%p ions aée cu** s the d-states should contain

S electrons per copp 9£6h in;tﬁbﬁground state. The upper non-empty

W

band is thus a helf-£il1éd bend. | Wie cen sesily see from eq. (2.28)

and eq. (3.22) th /;{xe{Fepmi energy coincides with the logarithmic
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singularity at the eferg: rEfi of 'the bend E°° . This singularity
¥ ,a,,é.ﬁ' :.3";’_ 4

exhibits a double dege‘éréb&-éincefﬁiiés associated to the two saddle

points (1 ,0) and (8,% )| i1 the tebragonal phase. We thus expect a

band Jahn—Tellen;éf =t éﬁbuctural‘phase transition
from the tebragdgié-phase to an orthorhombic é;:. In the orthorhombic

* phase, the energ{;s of the two previous saddjé points are different,
and the logarithmic [singularity As™ thus splitiinto two distinct onég.
with the Ferdi energy lying between them, in a regiop where the density
of states is™low (Pig.7)3" £Subst {tut ion Tnismal 1 Amalintdf Ba to La i.e.
Laa_“Ba“Cu04. or changing of density of oxygen vacancies i.e,
La_Cu0,__, or both, is to increase the cu®*/cu®* ratio and thus shift
the Fermi energy a little. Above some small critical ratio of

cu®*/cu®**. the band Jahn - Teller effect disappears and makes the




orthorhombic ph

one. As the Fermi

phase. The tetragona

rature, T., will be

e critical temperature,

we must know the dJnsity of states in the nughbourhood of the Fermi

level. Knowi that.‘f'oﬁ ragonal phase, has the

Fermi ener‘gﬁ mﬂﬁwﬂl ﬁuﬁrity at the energy
s the density of states hf the ne

,ama\mzu AN o

To get t.he density of states in the neighbourhood of E: y we return to

eq. (3.4). The equation is rewritten as
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Eg = o | (3.23)

From eq. (3.22), we get

Bt E (3.24)
Substituting eq. (3. : ﬁ for the band E;l(k) ,
Wé get 1 \
*‘.
e T —_— (3.25)
s From eq. (3.19) and eq. ¢ - e that the density of states, in
LT ; =3
terms of £ o, Sn be wr'fbfaﬂi fn
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Np(E) = -f +] (3.26)
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We also get, from eq (3.25),
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Substituting eq. (3.28) into eq (3.27), we get

‘ ) 167 :
Np(e) = "'i', l (IE,::(K)-QH’-%‘(M)‘)

Def'ine D=

or Np(E) =

Eq. (3.31) shows the density of .

# s
and it will be used, in the next
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he neighbourhood of E}

tery to calculate the critical
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