CHAPTER 2

Tight binding method and the calculation of energy bands

In " this chapt%w vnl./@ briefly the tight-binding

me/bhod‘ ity The t.hdn ba-asad-bo calculate the energy bands

of La_CuO, in the (

* \ .
—bindhm or the so-called the
rbitels (L\QG" method to the energy
% : ' e year 954 by Slater and Koster‘''’,
. .‘ linear combinations of the
atomic  orbitals r ev'mg.c go :gso id‘ under consideration.
Electr‘omc wave functions maedmm s linear combinations of the
Bloch states. T-)'Using t.ha basis, the mét.rix
representation o _‘hhe crystal : n;be obtained. Let ¢ (r - 'r:‘)
» be an atomic oi‘l!it,al cor:esi)nding to an ‘Iaﬁom at site 'r:‘. The
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N is the number of unit cells in the crystal under cqnsiderat.ion.
The summation is oveb all unit cells,

If H is the crystal Hami ltonian, the interaction matrix element is
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The summation of a -fer integrals over m are identical at every

L therefore, we g
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Similary, weﬁu nrw ﬂﬂ{lwmmnt Bloch states.

They are foundjto be
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where S&a and EZ are Bloch states with wave vector K
¢(?-ﬂ_) and (*) are atomic orbitals centered

at A_ and the origin respectively




H is the crystal Hamiltonian

The integration is over the whole crystal.,

In the K_NiF_ structure, each copper atom of La_CuO_ occupies
a site B . e n;a; + n,a, of a square Bravais lattice (Cu0_ plane),
and is surrounded by an octahedrq .of six neighbouring oxysgen atoms,
two of them lying above or below tha p{éﬁe and the four others occupying
the sites R_ =+ a o/ L il | op 2 ins!de the plane, chosen as the
(x,y) - plane (Fig.i) Tho oxygén octahedra and the neighbouring copper
atoms give rise toa st né crystil field, the leading berm of which is

cubic and thus spli):xyhe ftwo d~orbjtals of copper into a t —triplet

(dxy. dyx and d i iqh lits '1ur telaw the Fermi energy, and

is thus completely cqupied. _fan}' an e -dou.blet. (d”.z_f and d 2_2),

which is only partially | occupied>k§1§ 2a)., We shall neglect the
ok & Jd

splitting of the e -dowblet by thq;nyxt term in the crystal field.

——-

The oxygen atoms experience an axiﬁﬂ~field produced by the non-cubic
-t e 2y _‘::‘_dl-'ﬂ

disbribu£ion of gﬁé La-and Cu-atoms. Tharefqre,{@he three degenerate

oxysen p-states §;§'5p15£ by the axial crystal&#geld into a twofold
level (p,) and a singlet (p,)(Fig.2b). Since it is possible that the
states responsible for .the superconductivity .~in-the Cuozplanes‘a'g’.
we, therefore, consider 2D electronic band structure corresponding to
a Cu - 0 plane, .A Cu - O.plane can. be.viewed.as that-in Fig .3 Five
Bloch sums corresponding to the five atomic orbitals of atoms in the

plane are chosen as our bases (Fig .4). They are
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Flg 4 $=ypP~y and d- orbitals involved in our model

S(P~R ), d'i_g(F~F‘) end ds_2(P-F ) are atomic orbitals corresponding

E A O sl BOR (Pl R end P G-10FR Y ek wealo
. | .

orbitals of oxygen at site ;‘+§;‘ and ;‘+§;2 respectively. : N
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is the total nunber of unit cells contained in the plane. If we
consider only the integral with integrand consisting of atom;c orbitals
within one unit cell and neglect the overldpping between atomic
orbitals, we can eassily get the matrix elements, < ¢, w1, >,
with no need in detail about tha Hamiltonian. The ways to get some

matrix elements are now shown as fol iows

v
The first gabrix _element to be'censidered is < Q‘ tHI ¢. >,

From eq. (2.4) and ;q; $E . BY A we get
; 1

<, @ >4 1 5 """‘fs (=AM s (H IV (2,10

} P
Considering only the inbegrﬁl witﬂ?iﬁbegrand consisting of atomic
orbitals within one unit cell makes ;s iPnsider only the term with
Z_=0. We cen also wnite the Hamirﬁnan, H G, as H (P = H(P) +

H (;). HO(r) is atomic Hamiltonian.ﬁ Now eq. (2.10) becomes

< b, 1H1 §, ;_>

fs'(?')Ho(?‘)s(F)d’fi- ,fs'(?)ﬂ(?)sﬁ)d-f.
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ANE fs'(?)ﬁ(ﬁ)s(?)d-f.

Becausel H (%) 18 smdll An . the, .atomic region, we canh neglect the second

term on the right -hand side and get
< §, iHi Q‘ > = .p 2.11)

The matrix element < ¢a TH(R) 1 ¢‘ > is the second examﬁle.

Similarly to the preceeding, we have
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' -‘;’.‘ -> -3 -5
<, m g > Se /""fd ot (B B OH@ sV,
As before we consider only the term with ;‘ = 9 and we

also write H(F) = H_(F) + H(F) . We get

V//?)s(?)d%#ﬁ'_:_g ®HE s av .
Z i

The first term o&-h@d ﬂ'the overlapping between
atomic orbitals ah( o The second term on the

right-hand side, as ca . H ,- y can be neglected.
These give : | ,
<, D v AN (2.12)
The last matri onsidered is
<@, iH P OHMIs(MdY

From fig.4, we see bhat. in a umt cell there are only cases whe-re/a.,.‘o

e ﬂﬂtl“’??‘i’ﬂ“?’f‘mmﬂ‘ﬁ
am*aﬁa s A 4y

iﬁ'*(r-ia‘)ﬂ('r)s(;)w\/.
¥ e“‘r'fp‘ (7+13 OH _®siraw

+e' "rP'x(;i'}.;‘)H('?‘)s(F)d‘/
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At the right-hand side, the first and the third terms are overlapping
between atomic orbitals, we thus neglect these terms. The atomic
orbitals involved in the second and the fourth terms do not correspond
to the same atoms, therefore H (F) is not in the atomic region and it
needs not be small, we thus cannot neglect these terms. These two

terms are equivalent and it is venient to define an inbegr!al as a

parameter&,'In term of

(2.13)

where

C2.9%)
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b ; : ﬂ
In the Qwe way, the remaining mat~ix elements are obtain.
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) Eg v (=" —x (1-8'" | (240)
<(1-e'**) (5(1-9“‘%') Y(1-e' ) E, "]
w(1-e" v %) pai-e’®  Ya-e'trh ) E,
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where
E_ is the energy of the s-orbital of copper
E, is the energy of the e,-doublet of copper in the crystal
field '
E, isthee ‘ m of oxygen
+ o is the tr gr bet.wee orbitals s ( R )
g . \ _ bt Tid
and P (R
-
P is the orbitals d_ (R“.“‘)
and P (R
»
¥ is the trensf _, *" 2 the orbitals
dz f;,;— and P (R T R“‘ “:.+;a‘)
v, g
* P = Igf. (P& OH P, 2 wFray” (2an
- = p ('F+§ g OH ' (P, ﬁ(r)df (2.18)
ﬂ = ’ pj(r—;a‘)ﬂ "(®rdx z(r)d (2.19)

i Y = f Py (FHE OH ' Frdz_p®ran (2.20)
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The deﬁerminant of the corresponding secular equation is made easier,

from 5 x 5 matrix to 4 x 4 matrix, by using the transformation by

€13

Heine « The transformed secular equation is
E-E ) p(1-e~ ' %% pe1-e™t )
) E,-E % Y (1o ~¥(1-a"'*7%)
4 .4 =0 (2.2)
» - — 2 a - a
pei-e' %) Y(1-e'*x% ﬁ’E x(l—a““)(1-e Y _x1-e'tx%)(1-e7 v

'1 Eg-E E,-E
f . 2 . = Vhga
pa1- e A TR (ST -«xl-e“f“)(l—e W | A-etrhia-eTtre
F 4 J , BES ~E Ef L ES ¢ E
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Using the conventional m.t.hod 1n caié\ﬂablng the determinant, we get
244
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(E~E)*(E_-E} -<Y+P)(E ZE)(E _“E){(1-e R Cyre %) 41017 ")

. il

;J{ o
< 3 P & - 03
(1-e” 7)1 44vp( -0 M) (1ma™ ARy (1 -0 v )(1 e 'Y )—(E -B) (E -E)-

= 2 Y a
- X (1-e' %8 (-t ") -(E‘-E)Q(Eh—E)a(l-e“7 Fobe ' y®) +4(E B
Es-E ES—E

- QB gD 1B b -] ¥ e (2.22)
Eg~E

Eq.(2.22) can be easily solved by the quadratic formula if we define a
E4-E

parameter R = E;E and solve the equation in terms of R.

Substituting R into the equation gives
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(E-E)*(E-E_J ~(Y4p) (E-E,) (B-E_){(1-e'***) (1-e” '***)4(1-0'"r").
» o »

CC1me™ M M) +adp 1= 2% (107 M1 ") (16 MY %) (1-0” MY ) —(E-E ) (E-E_)4R-

(E-E)*(E-E ) (¥ i IO T N PY S T A T
-* il
(1= "™ ®)3+4 Y ¢ e'"1®)(1-e"'"Y") = ¢
Applying the quadr
(E-E_)(E-E ) (2.23)
where — !
i )@—a"“mu i bl
¥ s 2

£ 1 [(h‘ﬁ%(t;.éjkw E-}%’%})w-ﬁa)ﬁgj“‘f‘n’-mr’ipzwfn)-
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Equation (2.23) can be rewritten as

| (E¢+ED)E + (EdE’-7;)

(2.25)
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Applying the quadratic formula again gives the solutions

2 %
(E+E_) & [(E_+E_)-4(E_E_-¥; )]

E-» -
ke 2 %
e (E+E ) + [(E -E )+4Y%, ]
o > —
We define i
” _

: (E_tE)) EE, (2.26)
’ E‘* % 2 o 2, + X

The complete e:gjubions of fq.(a .26) are obtained after we have

evaluabed R. Subst.it.uwns one of the solutions of eq. (2.26) into the
def‘inition / / B Y

R £ f 7 A KE-E U(EE) (2.27)
' i

',?‘T:',U

will give us the correspondiﬁg R: {Jp\-genaral R may be a positive or a

negative valu.e. it-ﬁ is equal to zero at. B=E add undef'ined at E-E In

|

our case st.udy E may be expected closer to E4- tﬁan E_ so IRI is less
than one. From eq. (2.24) , we see that 'X*> X_“". t.hex‘ef‘ox"e,I A,> &. ,
where 4,= {4E_nE| /23 %y The corden pof~ the four energy levels is,
then, E,  >Eqi 7E_ "V E_, ,

The four energy bands obtained  in eq. (2.26) are very
complicated so  using it directly will make further calculation more
.dif‘f‘iculb. We, therefore, make some approximations on it. Because the
orbitals d’ . » arg directed ‘perpendicﬁlarly to the (x,y) - plane,

the absolute value of [ is much smaller than that of Y. The transfer

integral « is also smaller than Y because of more separation in

013803
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energy levels., Therefore Y is the dominating term. We thus approximate
the energy bands by considering the Y’ﬁerm only. the approximated
energy bands are

%
2
((E+E )72} +[((E,-E /23" + %, ] (2.28)

Eis

(2.29)

approximated ener ' ~4'; hibit no rsion with constant
enersgies E‘ and E’ ] e ‘;'. ranges of the energy

bands E;7 are s d equs howing no dispersion indicates
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