CHAPTER III

NONRELATIVISTIC TWO DIMENSIONAL HYDROGEN ATOM

In this chapter we will study the problem of the two dimensional

hydrogen atom by means of the n dic quantum mechanics. First,

in Section 3.1, we study -elativistic quantum

mechanical treatment of wkdon. space which has been

discussed by Zaslow a yeki (10), and by
Hassoun (11). Then, thge and relativistic

effects will be made \\\

F 3 / \\\\ 4 respectively.
3.1 THE SCHROEDINGER WAVE / f 9

* TWO DIMENSIONAL
HYDROGEN ATOM.

The time independent S L1 quation for the two dimensional
hydrogen atom, the 3 e ,
around the nucleus - ¥ active Coulomb potential
V(p) = - Ze fp, is :

@g&ﬂ@mﬁnmﬂwni
am@\m‘mummmaﬂ

= ap PaP pzaﬁ (342}

where

in the two dimensional polar coordinates (p, ¢), m is the mass of the
electron, E is thg energy eigenvalue, and U(p, ;{} is the wave function
associated with E. In order to solve Eg.(3.1) we first separate the

radial and the angular parts by substituting

U(p, §) = R(p)P(g) (3.3)
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into Eq.(3.1) and dividing throughout by U(p,#) :

2. I 2 2
o d o d 2mp Ze
[R{anoE Y Rlodas * T2 (B ¥ ] R(p) = HETBTEFE 0(£) (3.4)

Since the left side of Eq.(3.4) depends only on p where as the right side
depends only on @, both sides must be equal to a constant that we call 12.
Thus Eq.(3.4) gives us a radial equation

d 1d 2m
and an angular equation
2

a®_ o(8) (3.6)

-d'BE :
The angular equation (3 ces, its general solution
may be written

o (g) j (3.7)

b

The requirement that ((g) a.‘nd nuous through out the domain
@ = 0 to 2n demands $het T must he—a noat s gative integer or zero,

We thus replace Eq {3

““1"”ﬂﬁmwn%’ “g'm, o i

where the multipMjfing constant 1$ chosen eg in order that

“’”““‘ﬂ"‘mﬁ\i’ﬂ‘i‘mﬂﬁ‘ﬁﬂﬂ’]aﬂ

f 00, (Bag = 1 (3.9)

The subscript 1 is added to denote the dependence of §(¢) on 1.

TA0299b5%
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The radial equation that corresponds to the guantum number 1 is

2 -2 2
d H 1ﬂ. Em Ze - 1 _
(o018 28 (p, 2 p—-a]mp) =0 (3.10)

where 1 = 0,21,22,.... It is convenient in dealing with an equation of

this type to rewrite it in dimensionless form. For this purpose we

introduce (a) the atomic unit of length, the Bohr radius :

(3.11)

(b) the atomic

(3.12)
and (c) the
(3.13)
Equation (3.10) then becomés @
[:T; ) ‘;:.-,' i (3.14)
Y

roduce a positive

nﬂﬂ§W81ﬂ§ 0

For the bound state , "3 Tk,

guantity II' by the equatgqm

ﬂuil’J

e Qﬂlﬁﬁﬂ,ﬁ e AHIA s
[E+§§;-u3 -%-églntm (3.16)

3.1.1 Asymptotic Behavior : The solution of Eq.(3.16) is facilitated by

first examining the dominant behavior of R(o)in the asymptc;tic regions

©-0 and o+ . For sufficiently small o we can omit the third and the

forth terms , Eq.(3.16) is then reduced to
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Mg
M

d 1 d 1 =
i— e Rl R{p) =0 {3-1?)
[dﬁa P dp PE]
Assuming
- =
%Efé . B (3.18)

we get the condition

(3.19)

(3.20)
and _R(p) (3.21)
p— 0
For sufficiently large p deny o ; im B .16) the second, the
forth, and the last terms ; '
= (3.22)

Thus, the asymptntic‘ b ' ‘_: p must be of the

f
ﬂum%zmwwm (3.23)
g “amwmwﬁﬂmw 5k

ve B = 0.9

form

3.1.2 General Solution of the Radial Equation : From the asymptotic

bahavior of the radial function we can write the solution of Eq. (3.16)

for all values of p in the form

R(3) = exp(-ap) p’ F(p) | (3.24)

where F(p) is a power series
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s=0
Substituting Eq. (3.24) into Eq. (3.16), we obtain

-‘: (al2v+1)+2a8-22)p _p P ot E.' s(2v+e)B_p LS 0. i(3226)
s=0 s=0

The recusion relation between the coefficients of successive terms of the

ng to zero the coefficient of the

series(3.25) can be obtained by egi

term of power (v+s-2). The

EE
B ]

5-1

(3.27)

3.7.3Quantum Cc-ndit.'»' i o].'l.m-rs frr.:m Eg. (3.27)

that the coefficients of power, s—co, satisfy the

abbreviated recursion.

=]

B (3.28)

5-1
which is the same as that of 55;‘,
the conclusion that (o : Oy [hghaves asymptotically

— — -

as exp(2¢0). Eq. (3.20¢
boundary conditi on on

r exp(20ap). This ratio permits

F(p) violates the
"'lf series (3.25) must

terminate, If trﬂwgwgmwﬁa‘ Q? F(g) is the

polynomial of ddgree n, thenf Dbut..&n_l_.l—ﬂ. ths-=n+1,Eq (3.27)

o tﬂ*'ermmﬂmum'mmaa

u{2T+“IJ + 2an - 22 = (3.29a)

' n) for large p. Hance,

or

Z=aln+v+ %) (3.29b)

Since, from Egs. (3.15), (3.13) and (3.12),

2 2ER°

o - _""]I (3130J

me
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andY= |1| ,we can solve for the energy eigenvalues E ;

E = - mzzeh o m3234

B 282 11482 282 (n)2

(3.31)

where n is the new quantum number defined by the equation

n=n+ 111+ 1 (3.32)

Eq. (3.31) indicates that, using the ee dimensional hydrogen atom as a

reference, the energy levels di owed A Lhe planar case, For the ground
es that of the three

dimensional atom. The low=¥%_ s #ne oy Llevels B the two dimensional

(3.33)
This implies that

F(p) =

=B ﬂl EJ ﬁﬂ utpﬁ +(331+}
wrere 7, L1 DN JALIRAANYAAS

a _  , ala+1) aa+1) (a+2) 22

e = a E_
1t SUSI BN e B f oS 2T E e Sy s )

The radial part of the wave function R(p) is thus

- 1|

nl(p} - B EXP(—ap} e Fq[—n+lll+1;alll+1;235} (3.36)
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FICURE 3.1 Low-lying energy levels of the nonrelativistic

two-dimensional hydrogen atom (? = 1). The left
portion shows the energy levels of the

nonrelativistic three-dimensional hydrogen atom.
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where PB_ is a constant factor to be determined from the normalization
condition. The subscripts n and 1 are added to indicate the dependence

of R(p) on the gquantum numbers n and 1.

3.1.4 Normalized Wave Functions : Since the motion of the electron

around the nucleus is constrainted to be planar, the normalization

condition is, in the plane pola dinates (o,#),

+ \ .
[ rane Pl LR ,z
over the plane - >
" "ﬁ....

The angular part of the ‘ 54l by dy chosen to satisfy
\\
/// \\\‘\\\\ :

the angular normalizatiog . .13.37) then requires

i NN
that the radial normalig bl dond it 4 \

0," Rnl(nlﬂnl(p'] 0 ._7 )i (3.38)

. s l";

(3.37)

be satisfied. Writing Ef.(5.3840754 fgems Of the dimensionless variable
|| E -
- faindanis, « 4]
p yields "&
(b2 2
e + - “ '.:_"-- e (3.39}
d’r R211("'-":"‘1‘:.11 V e

(2a }2'1' *2 0 ﬂﬁﬂm‘mﬂWﬁﬂ Hqﬂﬁ
R AR W) g4 Y

o 252 W1 [[F,(-n+ 111 $152121 +152)] "dz

_ a1 +1I};1+ ”l'.’;(n-ill )(En 1) (3.41)

G

Eq.(3.40) then gives

Y
B, = Maos 1)) ] LR L C
[F(2111 +1)]“M(n- 111 ) (2n-1) o
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Thus the normalized wave functions for the two dimensicnal hydrogen

atom are
Unlin.ﬁ) = Rnlip} ¢1(ﬁ) (3.43a)
}E .
R ,(p) = o Cin: 1) exp(-%p0) (po) '*!
5 |_[r'(2|1|+1}] P(n-111)(2n-1) .
X 1F1{-n+|1'|+1; (3.43b)
0, (#) = (2m) 7 explilfioms (3.43¢)
where P is defined by
. 2 _ouze AT NN (3.44)
8,  nl(a ) S AL

As can be seen from BEY. = of the quantum

number n, the possibl 5 eseyXin=-1).

The corresponding energl

%, =7 U (3.45)

V= Y
The radial pant 3;,;. also be expressed

-
¥

(o) = —Mﬂ%ﬁw&ﬂmﬁeﬁﬁﬁm, (3.46)
T S

of the confluent hypergeometric functions as (38)

in terms of the geners zad Laguerra pnlynnmi

1‘:""J'( ) = H—ﬁ%—:{%}- 1Filen; c+15 2) (3.47)

n is any non-negative integer and c¢c may be any complex number.

Table 3.1 is a listing of the normalized radial functions
R liu} for n=1, 2, 3, 4. In Figure 3.2, these radial functions are
n

given in graphical form for Z=1.
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TABLE %.7 The normalized radial functions for the states with
= 1, 2y 3 L.
11) 111
Ry (0) = Wh[ﬂn_-l_ﬁ%ﬁ] exp(-#g0) (pe)
x ,F,(-n+11+1; 2111415 Bp) s B = i—:
n 1
_a 2Zp
1 0 Rm{n} = £ ao}
Zo 27
2 0 Rzolfp) = 3 h(;-) exp( 3a )
(o] [o]
1
Zp 2Zo
2 RyeiC0d (=) (- =)
-1 e o E'an
p(-£2)
3 0 R, (p) =f E
o 12] exp(-220)
[n] 530
1 - L}
3 8228 o amm o
E J
. R, () .‘-.g—{apn exp( ﬂ"} 41 "'*(Z"}E p(-229)
= ﬂ am;; $19N9
u 'g'v w ﬂp33 expl(- ﬂp}
I -

2

L
-2
3

L

TG o0
e [12¢80) - 8(p0)2 + (pp)?] m(_g,

}"5"'_" [ﬂr?cz"} 56(22)2, ucz"m-’-"] exp(-.iz—“
0

m[ﬁ(ﬁp}z - (p0)?] exp(-B2

R,,.(p) = =
L2 Z 416Y210 Zpy2 20,3 2Zp
S, 252105 s 8 ey ] expime?
= 3 By = 64V35 Zpy3
Rya3(P) = T3735(60) e:-:p(-p—é} - & }ngca e {———)
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The radial functions R ,(p), Eq.(3.43b), indicate that, using
the three dimensional hydrogen atom as a reference, the electron

distribution is displaced towards the nucleus.

5.1.5 Badial Probability Distribution : The probability of finding

the electron between p and p + dp is equal to wn}_(p]dp where

wnlip} (3.48)
are the so-called radial prob® ons. These radial
probability distributions f.to large values of
p as the guantum number nA¥caE &7 3”'”-?-A\« illustrate this
for the states listed in Ab € ‘:}_ ‘ ‘Q;ﬁ,; Jal functions are
shown in Figures 3.2. Fo -‘ : t:: ;7-? “‘%f\'-ial probability

(1/4) of the Bohr

radius (aﬂ), while the thre probability

distribution peaks at the BoM 1‘au1t is consistent

with the result obtained befare ARt erey levels are lower in

d

the planar cases. g

lF

¥ ¥

AULINININYINT
RIAINTAUIM TN
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3.1.6 Constant of the Motion and Interpretation of the Quantum

Numbers : Since the electron is confined to move only in a plane,

say, the xy-plane, only the z-component of the angular momemtum

exists ;

i.‘:r:;:s:ﬁ:ua (3.49)

In the plane polar coordinate ) ¥ s orperator takes the form

(3.50)

Since Lz commutes wit _,H] = 0, we conclude

that L and H can ha : Fgf] Eanedlis, eigéugunctions and that L

is a conetant of thaA i Lz can be obtained

by operating on the w e operator in Eq.(3.50).

The result is

P Zza
LGnliﬂ.ﬁ} (3.51)

that is, the y e .‘ easily seen from

= 2
Eq.(3.51) that the eigenvalu axe (1n)~. Thus, the
(s

i¥

guantum number 1 tells"g both the Wnitude and direction of the

orbital angulﬂ%ﬂxﬂuﬂgg ﬁe@ﬂ ijf}ﬂ f;sn dimensional

hydrogen atom.

AR INMINNAL...... ..

z-component of the orbital angular momentum, and the magnitude of
the orbital angular momentum for the nonrelativistic two dimensional
hydrogen atom with those for the nonrelativistic three dimensional
hydrogen atom , see Table 3.2, we can conclude that the quantum
numbers n, |11, and 1 are the two dimensional analog of the three

dimensional "principal', "orbital', and "magnetic orbital" quantum
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numbers, respectively.

It is convenient at this point to introduce the nonrelativistie
"two dimensional" spectroscopic notation by which the quantum states
of the electron (without spin) are specified. The state of the electron
is identified by writing the value of n, followed by the letter

identifying 111 :

111 “ee
Designation 5
The value of 1 is alsol: el L0 ;:'F,.:ﬁﬂi;: a subscript. Thus, for
example, the state belgy ' b B R 1 is written as BBl S

In the next d the Schroedinger

wave mechanical treats skt of the electron spin

and the effect due to! mtion of mass with

FI‘IJEJ’JVIEWI?WEJ’]ﬂﬁ
ﬂmaﬂﬂimum'mmaﬂ
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TABLE 3.2 Comparision of some quantities for the nonrelativistic

two and three dimensional hydrogen atoms

Two Dimensional Three Dimensional
Quantities
Hydrogen Atom Hydrogen Atom
ZE L
Energy eigenvalues E En = _E_EEE
28 n

n = 11 31 31 l‘*, LR
= (Princi?al quantum
“number

Magnitude of the n ' Rﬁ\\‘ BVI(1+1)

orbital angular wfor a given n :

momentum a0y Tyeesy AD=1)
Korbital gquantum
wumber )
Eigenvalues of mlﬁ

the z-component _ S ZRas /) for a given n :

of the orbital [ .oy ) = 021,000, %(n=1)
i¥dr a given 1 :

:! 1= :r' = 0,1‘1,.-.,11
magnetic orbital

< a v ?uantum number)
ARIAATAUNNIINGIAY

angular momentum &/
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3.2 NONRELATIVISTIC TREATMENT OF THE ELECTRON SPIN FOR THE TWO

DIMENSIONAL HYDROGEN ATOM.

In this section we will extend the Schrddinger wave
mechanical treatment of the two dimensional hydrogen atom discussed

in the preceeding section, in the same way as Pauli had been done

the electron spin.

When taking o f the electron spin,

the total energy of % mensional hydrogen

atom consists of thr irgy, the electrostatic

potential energy, and th 4hteraction of the

electron's spin magne ts orbital magnetic

moment -ir' = -ELE n-orbit interaction.
2me T

The last part is (40)

£ P
H = = JL!‘.UZ (3.52)

‘where Sz = ﬁ'ﬁﬁi ) '*..! is = TLX .A

ﬂuﬁﬂmﬁlswmm
Qmﬂ'&ﬂ‘?ﬁﬁwm?ﬂﬂ’]aﬁl

The Eamiltnn:l.an operator is then

and

RS s A R
H_"E:m apE*pﬁp'FPE a_ﬁ'}-TiHBP é (3.54)
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3.2.1 Constant of Motion : The operators Lz’ Sz, and JZ=LZ+Ez
commute with the Hamiltonian (3.54) and constitute a set of commuting
constants of the motion, i.e., commute with each other. In computing
the eigenvalues of the Hamiltonian (3.54) we therefore may restrict
ourselves to the eigenfunctions that are the simultanecus

eigenfunctions of Lz, Sz, and Jz.

LU, (p,6) = Vy /% n U, (p,8) . (3.55)

The eigenfunction of ] : ag 5 e\ eigehvalue 11 is thus

U, (o) = e (3.56)

where, in order to A=Eure sing i Np,8), 1 is restricted

to the values 0,:1,:-?13..-- ” h‘

" 'm NINYINT
AT AR Y, | oo

R {p)e
and operating on each of these U's the operator

-ih g_,d' + ¥n o]
J_ = : (3.58)
o -inm 3g - bl

we find that
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Jzﬁiip.ﬁ) (1+}§}nui{a‘ﬁ} (3.59)

and

I

E
Jzulla{p,ﬁ) (1-%)80; (o, ) (3.60)

so that Ei(p,ﬁ} and Uf{n,ﬁ} are the eigenfunctions of J belonging
to the eigenvalues jn=(1+¥)h and ju=(1-%)h, respectively. Thus, there

exists two sets of functions which are simultaneous eigenfunctions

of Jz and Lz 3 namely

A p—
U) So1ep (8 o D e (3.61)
and
B ,
Uy, =11 (3.62)
A . £:4. e PR WA
Ul,j=1+ﬁ is also the B 1L 500 ) 28 8, \-s;ing to the eigenvalue

$¥h and therefore correspon ‘ase, where as “1‘521_;5

corresponds to the ﬂyin--owfig

Thus, instéad dle) equation HU = EU

in its generality, -;%'», -he simpler problem of
studying separately the two equations -

E Ulﬂ:ulﬁ"’j}w E’ m;:w a%n‘i (3.63)
PQIAIUYBLININY

where H is the Hamiltonian given in Eg-(3.54). Substituting Egs.(3.61)
and (3,62) into Eqs.(3.63), we obtain, after some simple algebra,

the two radial equations :

-2 2 2 1

a 14 _2m Ze j 2ml

e S . M o .__..._—.-.-{F:IR{}={) (.6)

402 P T g2 o o2 n o | Fae 3.65
and

_ P 2 2 3

d 1.d 2m Ze 1 2ml »

o L P g W T gy i) RifRL S0, 33:60)
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Apart from the terms in B(p), Eqs.(3.65) and (3.66) are both identical

with the Schroedinger radial equation (3.5).

3.2.35The Spin Correction : Since spin effects are known to be small
we may consider the terms inE(p) as perturbing potentials and may

handle Egs.(3.65) and (3.66) by perturbation method .(36). In the

” are

:'rr.---1r (3.67)

zeroth approximation, the energ

--.., =

\-. \, malized B:.genfunctiona
\

(3.68)

A{O} (p.#) 2

UB“”(p 4) 3 (3.69)

where Hnlfp} and ¢1{ﬁ} ar 43b) and (3.43c).

The flrst—nier 46 the spin-orbit

interaction for the lEgin-i AY |

E“” : P P u““ 0.#)a8 pdo . (3.70)

ﬂ ﬁﬂ'malmwmn‘:

rA A A

. o/
A TNy o
Eq.(3.70) tibsn becomes

T?E ff [UMD}(PJJ]* 1 Mm(p,ﬁ)&ﬁ pdp
p

=5eh1<—3> : b

From Appendix A, the expectation value of p_3 is

n
sp.
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From Appendix A, the expectation value of p_} is

m3Z3EE

) (3.73)
P ) % g 5
1o (n=-%) 7110 (1l =1.) (11 +3%)
we thus get
4 8
4 5 . mZ ‘e 1
Eﬁl = L 2 3 . (3‘-?4}
Ep- j
In a similar way, igs QH?*; rrection for the spin-
down case is found ta_
B(1)
Enl = (3'?5}
BD.
To the first-order a o fhe \eigénvalues for the spin-up
and spin-down cases arn
(1) _ (0) | LAY aatg) % (1)
R SRS il gl -8 + k)

respectively. From Egs. (3.’ 5#1 . hat the states with positive

1 and spin-up haVwaj:fj-~~—;~r é_i__;_;;;;;wﬂksa with negative 1

A

g B‘ﬁuﬁ%ﬁwﬁww -

Also, the Btate with negativegl and sp —up have t same energy

weveis A FRN 3 N Q@ﬂﬂu&iﬂﬂ d

ICH EBE1} Ol gt 1

P o 212 (n-h)2 4n“c2(q-ﬁ)3 CIL1-%) (111438)

and spin-down;

(3.78)

These results are the expected ones since, in this case, there is no

distinction between up- and down-directions in the space.
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The levels (3.77) and (3.78) are shown in Figure 3.4 for z=45, "

It is important to note that, from Eq.(3.52), the spin-orbit
interaction energy is zero whenever 1=0, the spin thus causes no
displacement in the energy levels of the states in which 1=0. This

conclusion is borne out by Egs.(3.65) and (3.66), which become

' aquaticn (3.5) when 1=0.
However Egs.(3.7P)we 3 éonvmishing spin

corrections even whenwd P - contradiction lies 4ip
the fact that the avé¥ag e o x\ 1én by Eq.(3.73) contains

» "\
the factor |1| in tHE dafic / for | \\ \\::\\, ‘getting the corrections
\

)

(3.77) and (3.78) wesfiayf /Tth the 1 that multiplies

5(p) :i,n Egs.(3.65) and" (3.¢

AU INENTNEINS
RN TUUMINYAE

For Z = 1 the splitting of the energy levels are so small that

it is inconvenient to represent them graphically.
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3.3 RELATIVISTIC CORRECTIONS

The starting point of nonrelativistic Schroedinger's wave
mechanics consists in writing the classical expression for the
Hamiltonian H, which is defined as the sum of the kinetic energy T

and the potential energy V. That is

/‘ (3.79)
-lat since in the special

‘S:C\Rax . particle is the
\\\ nd its rest energy mGE
\\\\\ (3.80)
where m is the rest méssgo 4 the

ﬁ;maﬁf; P\ S ‘relativistically correct.
Jr3

expression for the Ham tgnie iﬁﬁ <

rlﬂé o £ s

= e """'uf m
r Erel Trel_+ v #-*ﬁk?;trﬁ o

theory of relativity

difference between its

Trel =(o P

. (}.81}

In the nonrelativisgle =5‘:he above relation

] —
can be written appro1jmately A5 ¥

éuaﬁmﬂﬂswaﬂni o
:::i;:;am&a sramngy

» We see that

the error in the classical expression for the Hamiltonian is,

to the
first-order approximation,
I 2 2
Ban = & P - g A - - ‘v; ’ (3.83)
Bm-c*© 2me 2mc

where E = En is the energy eigenvalue derived from the nonrelativistice

Schroedinger wave mechanics.
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In the case of the two dimensional hydrogen atom, if we use
the eigenfunctions (3.68) and (3,69) as the unperturbed eigenfunctions,
we can use the non-degenerate perturbation theory to evaluate the
shift in the energy levels of the corresponding states due to the
addition of the term Hrel » _According to the theory, the first-order

energy correction is

to 21 N\
) , 2 0
. : " v 'EEn”U:El;J} (p,#) dfodp.

(3.84)

oL 5 ¢ L, B
rel 2me“ 0 0

Now

Vip) = - v (3.85)

so0 we obtain

g0 0
‘rel

O ER

2 2,2 b
=1 mZe 7 e
R i (3.8
_ . 1% (n-1#) 2 1 (n-8) 1) 2
Eq.(3.86) becomes | —— =5
ngﬁ" o J}‘
Et“) L= %EI - - - “ﬁ (

Eq.(3.88) ﬂvesﬂhuﬁﬁﬁ%ﬁ?}ﬂlﬂﬁ ﬁé?elativistic effect

for the states ifil which 1 # 0. ‘(see Figure 3.4) Far‘jhe states with
F=9

- o SRR ATUINATNHORE = =

impossible %o evaluate the enérgy corrections due-to the relativistic

effect for these states by mean of the perturbation method.

As in the case of the three dimensional hydrogen atom, there
is another relativistic correction term - the two dimensional analog
of the three dimensional "Darwin" term - whose the Existeuce cannot

be predicted since it has no classical counter part (see Appendix B):

Zaana
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This term contributes to the energy levels En the amount

2
Elg;lwin = <HDarwin> T zezhe < "’_3>

8m“c
4L 8

m% e 1 1
= - 1 I#Dw ( !90}
o catn-ﬁﬁ B111CIL1=38) (111 +38) 2

Thus, when taking into account the effects due to the spin-orbit

interaction, the relativistic

\“ on of mass with velocity, and

the two dimensional Darwim  be 2y levels for the two

— - ‘ J
dimensional hydrogen atomws the=first=trder approximation,
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where k is the new quafl the relations
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FIGURE 3.4 Energy levels of the nonrelativistic hydrogen atom (2D)

after taken into account the spin-and-relativistic

effects : (a) nonrelativistic energy levels for Z=U45,
(b) with spin-orbit interaction, (c¢) with spin-orbit
interaction and relativistic variation of mass , (g4)

with spin-orbit interaction, relativistic variatiop

of mass, and two-dimensional Darwin term.
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